xref: /linux/fs/f2fs/segment.h (revision e48e16f3e37fac76e2f0c14c58df2b0398a323b0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22 
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
26 
27 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
30 
31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32 						unsigned short seg_type)
33 {
34 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36 
37 #define MAIN_BLKADDR(sbi)						\
38 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
39 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
40 #define SEG0_BLKADDR(sbi)						\
41 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
42 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
43 
44 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
45 #define MAIN_SECS(sbi)	((sbi)->total_sections)
46 
47 #define TOTAL_SEGS(sbi)							\
48 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
49 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
50 #define TOTAL_BLKS(sbi)	(SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
51 
52 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
53 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
54 					(sbi)->log_blocks_per_seg))
55 
56 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
57 	 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
58 
59 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
60 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
61 
62 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
64 	(BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
65 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
66 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
67 
68 #define GET_SEGNO(sbi, blk_addr)					\
69 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
70 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
71 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
72 #ifdef CONFIG_BLK_DEV_ZONED
73 #define CAP_BLKS_PER_SEC(sbi)					\
74 	(BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
75 #define CAP_SEGS_PER_SEC(sbi)					\
76 	(SEGS_PER_SEC(sbi) -					\
77 	BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
78 #else
79 #define CAP_BLKS_PER_SEC(sbi) BLKS_PER_SEC(sbi)
80 #define CAP_SEGS_PER_SEC(sbi) SEGS_PER_SEC(sbi)
81 #endif
82 #define GET_START_SEG_FROM_SEC(sbi, segno)			\
83 	(rounddown(segno, SEGS_PER_SEC(sbi)))
84 #define GET_SEC_FROM_SEG(sbi, segno)				\
85 	(((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
86 #define GET_SEG_FROM_SEC(sbi, secno)				\
87 	((secno) * SEGS_PER_SEC(sbi))
88 #define GET_ZONE_FROM_SEC(sbi, secno)				\
89 	(((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
90 #define GET_ZONE_FROM_SEG(sbi, segno)				\
91 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
92 
93 #define GET_SUM_BLOCK(sbi, segno)	\
94 	(SM_I(sbi)->ssa_blkaddr + (segno / (sbi)->sums_per_block))
95 #define GET_SUM_BLKOFF(sbi, segno) (segno % (sbi)->sums_per_block)
96 #define SUM_BLK_PAGE_ADDR(sbi, folio, segno)	\
97 	(folio_address(folio) + GET_SUM_BLKOFF(sbi, segno) * (sbi)->sum_blocksize)
98 
99 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
100 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
101 
102 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
103 	((segno) % (sit_i)->sents_per_block)
104 #define SIT_BLOCK_OFFSET(segno)					\
105 	((segno) / SIT_ENTRY_PER_BLOCK)
106 #define	START_SEGNO(segno)		\
107 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
108 #define SIT_BLK_CNT(sbi)			\
109 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
110 #define f2fs_bitmap_size(nr)			\
111 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
112 
113 #define SECTOR_FROM_BLOCK(blk_addr)					\
114 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
115 #define SECTOR_TO_BLOCK(sectors)					\
116 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
117 
118 /*
119  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
120  * LFS writes data sequentially with cleaning operations.
121  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
123  * fragmented segment which has similar aging degree.
124  */
125 enum {
126 	LFS = 0,
127 	SSR,
128 	AT_SSR,
129 };
130 
131 /*
132  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
133  * GC_CB is based on cost-benefit algorithm.
134  * GC_GREEDY is based on greedy algorithm.
135  * GC_AT is based on age-threshold algorithm.
136  */
137 enum {
138 	GC_CB = 0,
139 	GC_GREEDY,
140 	GC_AT,
141 	ALLOC_NEXT,
142 	FLUSH_DEVICE,
143 	MAX_GC_POLICY,
144 };
145 
146 /*
147  * BG_GC means the background cleaning job.
148  * FG_GC means the on-demand cleaning job.
149  */
150 enum {
151 	BG_GC = 0,
152 	FG_GC,
153 };
154 
155 /* for a function parameter to select a victim segment */
156 struct victim_sel_policy {
157 	int alloc_mode;			/* LFS or SSR */
158 	int gc_mode;			/* GC_CB or GC_GREEDY */
159 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
160 	unsigned int max_search;	/*
161 					 * maximum # of segments/sections
162 					 * to search
163 					 */
164 	unsigned int offset;		/* last scanned bitmap offset */
165 	unsigned int ofs_unit;		/* bitmap search unit */
166 	unsigned int min_cost;		/* minimum cost */
167 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
168 	unsigned int min_segno;		/* segment # having min. cost */
169 	unsigned long long age;		/* mtime of GCed section*/
170 	unsigned long long age_threshold;/* age threshold */
171 	bool one_time_gc;		/* one time GC */
172 };
173 
174 struct seg_entry {
175 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
176 	unsigned int valid_blocks:10;	/* # of valid blocks */
177 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
178 	unsigned int padding:6;		/* padding */
179 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
180 #ifdef CONFIG_F2FS_CHECK_FS
181 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
182 #endif
183 	/*
184 	 * # of valid blocks and the validity bitmap stored in the last
185 	 * checkpoint pack. This information is used by the SSR mode.
186 	 */
187 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
188 	unsigned char *discard_map;
189 	unsigned long long mtime;	/* modification time of the segment */
190 };
191 
192 struct sec_entry {
193 	unsigned int valid_blocks;	/* # of valid blocks in a section */
194 	unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */
195 };
196 
197 #define MAX_SKIP_GC_COUNT			16
198 
199 struct revoke_entry {
200 	struct list_head list;
201 	block_t old_addr;		/* for revoking when fail to commit */
202 	pgoff_t index;
203 };
204 
205 struct sit_info {
206 	block_t sit_base_addr;		/* start block address of SIT area */
207 	block_t sit_blocks;		/* # of blocks used by SIT area */
208 	block_t written_valid_blocks;	/* # of valid blocks in main area */
209 	char *bitmap;			/* all bitmaps pointer */
210 	char *sit_bitmap;		/* SIT bitmap pointer */
211 #ifdef CONFIG_F2FS_CHECK_FS
212 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
213 
214 	/* bitmap of segments to be ignored by GC in case of errors */
215 	unsigned long *invalid_segmap;
216 #endif
217 	unsigned int bitmap_size;	/* SIT bitmap size */
218 
219 	unsigned long *tmp_map;			/* bitmap for temporal use */
220 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
221 	unsigned int dirty_sentries;		/* # of dirty sentries */
222 	unsigned int sents_per_block;		/* # of SIT entries per block */
223 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
224 	struct seg_entry *sentries;		/* SIT segment-level cache */
225 	struct sec_entry *sec_entries;		/* SIT section-level cache */
226 
227 	/* for cost-benefit algorithm in cleaning procedure */
228 	unsigned long long elapsed_time;	/* elapsed time after mount */
229 	unsigned long long mounted_time;	/* mount time */
230 	unsigned long long min_mtime;		/* min. modification time */
231 	unsigned long long max_mtime;		/* max. modification time */
232 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
233 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
234 
235 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
236 };
237 
238 struct free_segmap_info {
239 	unsigned int start_segno;	/* start segment number logically */
240 	unsigned int free_segments;	/* # of free segments */
241 	unsigned int free_sections;	/* # of free sections */
242 	spinlock_t segmap_lock;		/* free segmap lock */
243 	unsigned long *free_segmap;	/* free segment bitmap */
244 	unsigned long *free_secmap;	/* free section bitmap */
245 };
246 
247 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
248 enum dirty_type {
249 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
250 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
251 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
252 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
253 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
254 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
255 	DIRTY,			/* to count # of dirty segments */
256 	PRE,			/* to count # of entirely obsolete segments */
257 	NR_DIRTY_TYPE
258 };
259 
260 struct dirty_seglist_info {
261 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
262 	unsigned long *dirty_secmap;
263 	struct mutex seglist_lock;		/* lock for segment bitmaps */
264 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
265 	unsigned long *victim_secmap;		/* background GC victims */
266 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
267 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
268 	bool enable_pin_section;		/* enable pinning section */
269 };
270 
271 /* for active log information */
272 struct curseg_info {
273 	struct mutex curseg_mutex;		/* lock for consistency */
274 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
275 	struct rw_semaphore journal_rwsem;	/* protect journal area */
276 	struct f2fs_journal *journal;		/* cached journal info */
277 	unsigned char alloc_type;		/* current allocation type */
278 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
279 	unsigned int segno;			/* current segment number */
280 	unsigned short next_blkoff;		/* next block offset to write */
281 	unsigned int zone;			/* current zone number */
282 	unsigned int next_segno;		/* preallocated segment */
283 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
284 	bool inited;				/* indicate inmem log is inited */
285 };
286 
287 struct sit_entry_set {
288 	struct list_head set_list;	/* link with all sit sets */
289 	unsigned int start_segno;	/* start segno of sits in set */
290 	unsigned int entry_cnt;		/* the # of sit entries in set */
291 };
292 
293 /*
294  * inline functions
295  */
296 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
297 {
298 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
299 }
300 
301 static inline bool is_curseg(struct f2fs_sb_info *sbi, unsigned int segno)
302 {
303 	int i;
304 
305 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
306 		if (segno == CURSEG_I(sbi, i)->segno)
307 			return true;
308 	}
309 	return false;
310 }
311 
312 static inline bool is_cursec(struct f2fs_sb_info *sbi, unsigned int secno)
313 {
314 	int i;
315 
316 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
317 		if (secno == GET_SEC_FROM_SEG(sbi, CURSEG_I(sbi, i)->segno))
318 			return true;
319 	}
320 	return false;
321 }
322 
323 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
324 						unsigned int segno)
325 {
326 	struct sit_info *sit_i = SIT_I(sbi);
327 	return &sit_i->sentries[segno];
328 }
329 
330 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
331 						unsigned int segno)
332 {
333 	struct sit_info *sit_i = SIT_I(sbi);
334 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
335 }
336 
337 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
338 				unsigned int segno, bool use_section)
339 {
340 	/*
341 	 * In order to get # of valid blocks in a section instantly from many
342 	 * segments, f2fs manages two counting structures separately.
343 	 */
344 	if (use_section && __is_large_section(sbi))
345 		return get_sec_entry(sbi, segno)->valid_blocks;
346 	else
347 		return get_seg_entry(sbi, segno)->valid_blocks;
348 }
349 
350 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
351 				unsigned int segno, bool use_section)
352 {
353 	if (use_section && __is_large_section(sbi))
354 		return get_sec_entry(sbi, segno)->ckpt_valid_blocks;
355 	else
356 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
357 }
358 
359 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
360 		unsigned int segno)
361 {
362 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
363 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
364 	unsigned int blocks = 0;
365 	int i;
366 
367 	for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
368 		struct seg_entry *se = get_seg_entry(sbi, start_segno);
369 
370 		blocks += se->ckpt_valid_blocks;
371 	}
372 	get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks;
373 }
374 
375 #ifdef CONFIG_F2FS_CHECK_FS
376 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
377 		unsigned int segno)
378 {
379 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
380 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
381 	unsigned int blocks = 0;
382 	int i;
383 
384 	for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
385 		struct seg_entry *se = get_seg_entry(sbi, start_segno);
386 
387 		blocks += se->ckpt_valid_blocks;
388 	}
389 
390 	if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) {
391 		f2fs_err(sbi,
392 			"Inconsistent ckpt valid blocks: "
393 			"seg entry(%d) vs sec entry(%d) at secno %d",
394 			blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno);
395 		f2fs_bug_on(sbi, 1);
396 	}
397 }
398 #else
399 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
400 			unsigned int segno)
401 {
402 }
403 #endif
404 static inline void seg_info_from_raw_sit(struct seg_entry *se,
405 					struct f2fs_sit_entry *rs)
406 {
407 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
408 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
409 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
410 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
411 #ifdef CONFIG_F2FS_CHECK_FS
412 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413 #endif
414 	se->type = GET_SIT_TYPE(rs);
415 	se->mtime = le64_to_cpu(rs->mtime);
416 }
417 
418 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
419 					struct f2fs_sit_entry *rs)
420 {
421 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
422 					se->valid_blocks;
423 	rs->vblocks = cpu_to_le16(raw_vblocks);
424 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
425 	rs->mtime = cpu_to_le64(se->mtime);
426 }
427 
428 static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi,
429 				struct folio *folio, unsigned int start)
430 {
431 	struct f2fs_sit_block *raw_sit;
432 	struct seg_entry *se;
433 	struct f2fs_sit_entry *rs;
434 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
435 					(unsigned long)MAIN_SEGS(sbi));
436 	int i;
437 
438 	raw_sit = folio_address(folio);
439 	memset(raw_sit, 0, PAGE_SIZE);
440 	for (i = 0; i < end - start; i++) {
441 		rs = &raw_sit->entries[i];
442 		se = get_seg_entry(sbi, start + i);
443 		__seg_info_to_raw_sit(se, rs);
444 	}
445 }
446 
447 static inline void seg_info_to_raw_sit(struct seg_entry *se,
448 					struct f2fs_sit_entry *rs)
449 {
450 	__seg_info_to_raw_sit(se, rs);
451 
452 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
453 	se->ckpt_valid_blocks = se->valid_blocks;
454 }
455 
456 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
457 		unsigned int max, unsigned int segno)
458 {
459 	unsigned int ret;
460 	spin_lock(&free_i->segmap_lock);
461 	ret = find_next_bit(free_i->free_segmap, max, segno);
462 	spin_unlock(&free_i->segmap_lock);
463 	return ret;
464 }
465 
466 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
467 {
468 	struct free_segmap_info *free_i = FREE_I(sbi);
469 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
470 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
471 	unsigned int next;
472 
473 	spin_lock(&free_i->segmap_lock);
474 	clear_bit(segno, free_i->free_segmap);
475 	free_i->free_segments++;
476 
477 	next = find_next_bit(free_i->free_segmap,
478 			start_segno + SEGS_PER_SEC(sbi), start_segno);
479 	if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) {
480 		clear_bit(secno, free_i->free_secmap);
481 		free_i->free_sections++;
482 	}
483 	spin_unlock(&free_i->segmap_lock);
484 }
485 
486 static inline void __set_inuse(struct f2fs_sb_info *sbi,
487 		unsigned int segno)
488 {
489 	struct free_segmap_info *free_i = FREE_I(sbi);
490 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
491 
492 	set_bit(segno, free_i->free_segmap);
493 	free_i->free_segments--;
494 	if (!test_and_set_bit(secno, free_i->free_secmap))
495 		free_i->free_sections--;
496 }
497 
498 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
499 		unsigned int segno, bool inmem)
500 {
501 	struct free_segmap_info *free_i = FREE_I(sbi);
502 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
503 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
504 	unsigned int next;
505 	bool ret;
506 
507 	spin_lock(&free_i->segmap_lock);
508 	ret = test_and_clear_bit(segno, free_i->free_segmap);
509 	if (!ret)
510 		goto unlock_out;
511 
512 	free_i->free_segments++;
513 
514 	if (!inmem && is_cursec(sbi, secno))
515 		goto unlock_out;
516 
517 	/* check large section */
518 	next = find_next_bit(free_i->free_segmap,
519 			     start_segno + SEGS_PER_SEC(sbi), start_segno);
520 	if (next < start_segno + f2fs_usable_segs_in_sec(sbi))
521 		goto unlock_out;
522 
523 	ret = test_and_clear_bit(secno, free_i->free_secmap);
524 	if (!ret)
525 		goto unlock_out;
526 
527 	free_i->free_sections++;
528 
529 	if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno)
530 		sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
531 	if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno)
532 		sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
533 
534 unlock_out:
535 	spin_unlock(&free_i->segmap_lock);
536 }
537 
538 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
539 		unsigned int segno)
540 {
541 	struct free_segmap_info *free_i = FREE_I(sbi);
542 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
543 
544 	spin_lock(&free_i->segmap_lock);
545 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
546 		free_i->free_segments--;
547 		if (!test_and_set_bit(secno, free_i->free_secmap))
548 			free_i->free_sections--;
549 	}
550 	spin_unlock(&free_i->segmap_lock);
551 }
552 
553 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
554 		void *dst_addr)
555 {
556 	struct sit_info *sit_i = SIT_I(sbi);
557 
558 #ifdef CONFIG_F2FS_CHECK_FS
559 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
560 						sit_i->bitmap_size))
561 		f2fs_bug_on(sbi, 1);
562 #endif
563 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
564 }
565 
566 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
567 {
568 	return SIT_I(sbi)->written_valid_blocks;
569 }
570 
571 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
572 {
573 	return FREE_I(sbi)->free_segments;
574 }
575 
576 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
577 {
578 	return SM_I(sbi)->reserved_segments;
579 }
580 
581 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
582 {
583 	return FREE_I(sbi)->free_sections;
584 }
585 
586 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
587 {
588 	return DIRTY_I(sbi)->nr_dirty[PRE];
589 }
590 
591 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
592 {
593 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
594 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
595 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
596 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
597 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
598 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
599 }
600 
601 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
602 {
603 	return SM_I(sbi)->ovp_segments;
604 }
605 
606 static inline int reserved_sections(struct f2fs_sb_info *sbi)
607 {
608 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
609 }
610 
611 static inline unsigned int get_left_section_blocks(struct f2fs_sb_info *sbi,
612 					enum log_type type, unsigned int segno)
613 {
614 	if (f2fs_lfs_mode(sbi)) {
615 		unsigned int used_blocks = __is_large_section(sbi) ? SEGS_TO_BLKS(sbi,
616 				(segno - GET_START_SEG_FROM_SEC(sbi, segno))) : 0;
617 		return CAP_BLKS_PER_SEC(sbi) - used_blocks -
618 			CURSEG_I(sbi, type)->next_blkoff;
619 	}
620 	return CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true);
621 }
622 
623 static inline void get_additional_blocks_required(struct f2fs_sb_info *sbi,
624 			unsigned int *total_node_blocks, unsigned int *total_data_blocks,
625 			unsigned int *total_dent_blocks, bool separate_dent)
626 {
627 	unsigned int segno, left_blocks;
628 	int i;
629 	unsigned int min_free_node_blocks = CAP_BLKS_PER_SEC(sbi);
630 	unsigned int min_free_dent_blocks = CAP_BLKS_PER_SEC(sbi);
631 	unsigned int min_free_data_blocks = CAP_BLKS_PER_SEC(sbi);
632 
633 	/* check current data/node sections in the worst case. */
634 	for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
635 		segno = CURSEG_I(sbi, i)->segno;
636 
637 		if (unlikely(segno == NULL_SEGNO))
638 			return;
639 
640 		left_blocks = get_left_section_blocks(sbi, i, segno);
641 
642 		if (i > CURSEG_COLD_DATA)
643 			min_free_node_blocks = min(min_free_node_blocks, left_blocks);
644 		else if (i == CURSEG_HOT_DATA && separate_dent)
645 			min_free_dent_blocks = left_blocks;
646 		else
647 			min_free_data_blocks = min(min_free_data_blocks, left_blocks);
648 	}
649 
650 	*total_node_blocks = (*total_node_blocks > min_free_node_blocks) ?
651 			*total_node_blocks - min_free_node_blocks : 0;
652 	*total_dent_blocks = (*total_dent_blocks > min_free_dent_blocks) ?
653 			*total_dent_blocks - min_free_dent_blocks : 0;
654 	*total_data_blocks = (*total_data_blocks > min_free_data_blocks) ?
655 			*total_data_blocks - min_free_data_blocks : 0;
656 }
657 
658 /*
659  * call get_additional_blocks_required to calculate dirty blocks
660  * needing to be placed in free sections, please note that, it
661  * needs to account dirty data as well in lfs mode when checkpoint
662  * is disabled.
663  */
664 static inline int __get_secs_required(struct f2fs_sb_info *sbi)
665 {
666 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
667 					get_pages(sbi, F2FS_DIRTY_DENTS) +
668 					get_pages(sbi, F2FS_DIRTY_IMETA);
669 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
670 	unsigned int total_data_blocks = 0;
671 	bool separate_dent = true;
672 
673 	if (f2fs_lfs_mode(sbi))
674 		total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
675 
676 	/*
677 	 * When active_logs != 4, dentry blocks and data blocks can be
678 	 * mixed in the same logs, so check their space together.
679 	 */
680 	if (F2FS_OPTION(sbi).active_logs != 4) {
681 		total_data_blocks += total_dent_blocks;
682 		total_dent_blocks = 0;
683 		separate_dent = false;
684 	}
685 
686 	get_additional_blocks_required(sbi, &total_node_blocks, &total_dent_blocks,
687 			&total_data_blocks, separate_dent);
688 
689 	return DIV_ROUND_UP(total_node_blocks, CAP_BLKS_PER_SEC(sbi)) +
690 			DIV_ROUND_UP(total_dent_blocks, CAP_BLKS_PER_SEC(sbi)) +
691 			DIV_ROUND_UP(total_data_blocks, CAP_BLKS_PER_SEC(sbi));
692 }
693 
694 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
695 					int freed, int needed)
696 {
697 	unsigned int free_secs, required_secs;
698 
699 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
700 		return false;
701 
702 	free_secs = free_sections(sbi) + freed;
703 	required_secs = needed + reserved_sections(sbi) +
704 			__get_secs_required(sbi);
705 
706 	return free_secs < required_secs;
707 }
708 
709 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
710 					int freed, int needed)
711 {
712 	return !has_not_enough_free_secs(sbi, freed, needed);
713 }
714 
715 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
716 {
717 	unsigned int total_free_blocks = 0;
718 	unsigned int avail_user_block_count;
719 
720 	spin_lock(&sbi->stat_lock);
721 
722 	avail_user_block_count = get_available_block_count(sbi, NULL, true);
723 	total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
724 
725 	spin_unlock(&sbi->stat_lock);
726 
727 	return total_free_blocks > 0;
728 }
729 
730 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
731 {
732 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
733 		return true;
734 	if (likely(has_enough_free_secs(sbi, 0, 0)))
735 		return true;
736 	if (!f2fs_lfs_mode(sbi) &&
737 		likely(has_enough_free_blks(sbi)))
738 		return true;
739 	return false;
740 }
741 
742 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
743 {
744 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
745 }
746 
747 static inline int utilization(struct f2fs_sb_info *sbi)
748 {
749 	return div_u64((u64)valid_user_blocks(sbi) * 100,
750 					sbi->user_block_count);
751 }
752 
753 /*
754  * Sometimes f2fs may be better to drop out-of-place update policy.
755  * And, users can control the policy through sysfs entries.
756  * There are five policies with triggering conditions as follows.
757  * F2FS_IPU_FORCE - all the time,
758  * F2FS_IPU_SSR - if SSR mode is activated,
759  * F2FS_IPU_UTIL - if FS utilization is over threashold,
760  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
761  *                     threashold,
762  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
763  *                     storages. IPU will be triggered only if the # of dirty
764  *                     pages over min_fsync_blocks. (=default option)
765  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
766  * F2FS_IPU_NOCACHE - disable IPU bio cache.
767  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
768  *                            FI_OPU_WRITE flag.
769  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
770  */
771 #define DEF_MIN_IPU_UTIL	70
772 #define DEF_MIN_FSYNC_BLOCKS	8
773 #define DEF_MIN_HOT_BLOCKS	16
774 
775 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
776 
777 #define F2FS_IPU_DISABLE	0
778 
779 /* Modification on enum should be synchronized with ipu_mode_names array */
780 enum {
781 	F2FS_IPU_FORCE,
782 	F2FS_IPU_SSR,
783 	F2FS_IPU_UTIL,
784 	F2FS_IPU_SSR_UTIL,
785 	F2FS_IPU_FSYNC,
786 	F2FS_IPU_ASYNC,
787 	F2FS_IPU_NOCACHE,
788 	F2FS_IPU_HONOR_OPU_WRITE,
789 	F2FS_IPU_MAX,
790 };
791 
792 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
793 {
794 	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
795 }
796 
797 #define F2FS_IPU_POLICY(name)					\
798 static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
799 {								\
800 	return SM_I(sbi)->ipu_policy & BIT(name);		\
801 }
802 
803 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
804 F2FS_IPU_POLICY(F2FS_IPU_SSR);
805 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
806 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
807 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
808 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
809 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
810 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
811 
812 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
813 		int type)
814 {
815 	struct curseg_info *curseg = CURSEG_I(sbi, type);
816 	return curseg->segno;
817 }
818 
819 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
820 		int type)
821 {
822 	struct curseg_info *curseg = CURSEG_I(sbi, type);
823 	return curseg->alloc_type;
824 }
825 
826 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
827 		unsigned int segno)
828 {
829 	return segno <= (MAIN_SEGS(sbi) - 1);
830 }
831 
832 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
833 {
834 	struct f2fs_sb_info *sbi = fio->sbi;
835 
836 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
837 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
838 					META_GENERIC : DATA_GENERIC);
839 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
840 					META_GENERIC : DATA_GENERIC_ENHANCE);
841 }
842 
843 /*
844  * Summary block is always treated as an invalid block
845  */
846 static inline int check_block_count(struct f2fs_sb_info *sbi,
847 		int segno, struct f2fs_sit_entry *raw_sit)
848 {
849 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
850 	int valid_blocks = 0;
851 	int cur_pos = 0, next_pos;
852 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
853 
854 	/* check bitmap with valid block count */
855 	do {
856 		if (is_valid) {
857 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
858 					usable_blks_per_seg,
859 					cur_pos);
860 			valid_blocks += next_pos - cur_pos;
861 		} else
862 			next_pos = find_next_bit_le(&raw_sit->valid_map,
863 					usable_blks_per_seg,
864 					cur_pos);
865 		cur_pos = next_pos;
866 		is_valid = !is_valid;
867 	} while (cur_pos < usable_blks_per_seg);
868 
869 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
870 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
871 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
872 		set_sbi_flag(sbi, SBI_NEED_FSCK);
873 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
874 		return -EFSCORRUPTED;
875 	}
876 
877 	if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
878 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
879 				BLKS_PER_SEG(sbi),
880 				usable_blks_per_seg) != BLKS_PER_SEG(sbi));
881 
882 	/* check segment usage, and check boundary of a given segment number */
883 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
884 					|| !valid_main_segno(sbi, segno))) {
885 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
886 			 GET_SIT_VBLOCKS(raw_sit), segno);
887 		set_sbi_flag(sbi, SBI_NEED_FSCK);
888 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
889 		return -EFSCORRUPTED;
890 	}
891 	return 0;
892 }
893 
894 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
895 						unsigned int start)
896 {
897 	struct sit_info *sit_i = SIT_I(sbi);
898 	unsigned int offset = SIT_BLOCK_OFFSET(start);
899 	block_t blk_addr = sit_i->sit_base_addr + offset;
900 
901 	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
902 
903 #ifdef CONFIG_F2FS_CHECK_FS
904 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
905 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
906 		f2fs_bug_on(sbi, 1);
907 #endif
908 
909 	/* calculate sit block address */
910 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
911 		blk_addr += sit_i->sit_blocks;
912 
913 	return blk_addr;
914 }
915 
916 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
917 						pgoff_t block_addr)
918 {
919 	struct sit_info *sit_i = SIT_I(sbi);
920 	block_addr -= sit_i->sit_base_addr;
921 	if (block_addr < sit_i->sit_blocks)
922 		block_addr += sit_i->sit_blocks;
923 	else
924 		block_addr -= sit_i->sit_blocks;
925 
926 	return block_addr + sit_i->sit_base_addr;
927 }
928 
929 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
930 {
931 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
932 
933 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
934 #ifdef CONFIG_F2FS_CHECK_FS
935 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
936 #endif
937 }
938 
939 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
940 						bool base_time)
941 {
942 	struct sit_info *sit_i = SIT_I(sbi);
943 	time64_t diff, now = ktime_get_boottime_seconds();
944 
945 	if (now >= sit_i->mounted_time)
946 		return sit_i->elapsed_time + now - sit_i->mounted_time;
947 
948 	/* system time is set to the past */
949 	if (!base_time) {
950 		diff = sit_i->mounted_time - now;
951 		if (sit_i->elapsed_time >= diff)
952 			return sit_i->elapsed_time - diff;
953 		return 0;
954 	}
955 	return sit_i->elapsed_time;
956 }
957 
958 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
959 			unsigned int ofs_in_node, unsigned char version)
960 {
961 	sum->nid = cpu_to_le32(nid);
962 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
963 	sum->version = version;
964 }
965 
966 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
967 {
968 	return __start_cp_addr(sbi) +
969 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
970 }
971 
972 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
973 {
974 	return __start_cp_addr(sbi) +
975 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
976 				- (base + 1) + type;
977 }
978 
979 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
980 {
981 	if (is_cursec(sbi, secno) || (sbi->cur_victim_sec == secno))
982 		return true;
983 	return false;
984 }
985 
986 /*
987  * It is very important to gather dirty pages and write at once, so that we can
988  * submit a big bio without interfering other data writes.
989  * By default, 512 pages for directory data,
990  * 512 pages (2MB) * 8 for nodes, and
991  * 256 pages * 8 for meta are set.
992  */
993 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
994 {
995 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
996 		return 0;
997 
998 	if (type == DATA)
999 		return BLKS_PER_SEG(sbi);
1000 	else if (type == NODE)
1001 		return SEGS_TO_BLKS(sbi, 8);
1002 	else if (type == META)
1003 		return 8 * BIO_MAX_VECS;
1004 	else
1005 		return 0;
1006 }
1007 
1008 /*
1009  * When writing pages, it'd better align nr_to_write for segment size.
1010  */
1011 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
1012 					struct writeback_control *wbc)
1013 {
1014 	long nr_to_write, desired;
1015 
1016 	if (wbc->sync_mode != WB_SYNC_NONE)
1017 		return 0;
1018 
1019 	nr_to_write = wbc->nr_to_write;
1020 	desired = BIO_MAX_VECS;
1021 	if (type == NODE)
1022 		desired <<= 1;
1023 
1024 	wbc->nr_to_write = desired;
1025 	return desired - nr_to_write;
1026 }
1027 
1028 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
1029 {
1030 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1031 	bool wakeup = false;
1032 	int i;
1033 
1034 	if (force)
1035 		goto wake_up;
1036 
1037 	mutex_lock(&dcc->cmd_lock);
1038 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1039 		if (i + 1 < dcc->discard_granularity)
1040 			break;
1041 		if (!list_empty(&dcc->pend_list[i])) {
1042 			wakeup = true;
1043 			break;
1044 		}
1045 	}
1046 	mutex_unlock(&dcc->cmd_lock);
1047 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
1048 		return;
1049 wake_up:
1050 	dcc->discard_wake = true;
1051 	wake_up_interruptible_all(&dcc->discard_wait_queue);
1052 }
1053