1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 enum bpf_features { 48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0, 49 BPF_FEAT_STREAMS = 1, 50 __MAX_BPF_FEAT, 51 }; 52 53 struct bpf_mem_alloc bpf_global_percpu_ma; 54 static bool bpf_global_percpu_ma_set; 55 56 /* bpf_check() is a static code analyzer that walks eBPF program 57 * instruction by instruction and updates register/stack state. 58 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 59 * 60 * The first pass is depth-first-search to check that the program is a DAG. 61 * It rejects the following programs: 62 * - larger than BPF_MAXINSNS insns 63 * - if loop is present (detected via back-edge) 64 * - unreachable insns exist (shouldn't be a forest. program = one function) 65 * - out of bounds or malformed jumps 66 * The second pass is all possible path descent from the 1st insn. 67 * Since it's analyzing all paths through the program, the length of the 68 * analysis is limited to 64k insn, which may be hit even if total number of 69 * insn is less then 4K, but there are too many branches that change stack/regs. 70 * Number of 'branches to be analyzed' is limited to 1k 71 * 72 * On entry to each instruction, each register has a type, and the instruction 73 * changes the types of the registers depending on instruction semantics. 74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 75 * copied to R1. 76 * 77 * All registers are 64-bit. 78 * R0 - return register 79 * R1-R5 argument passing registers 80 * R6-R9 callee saved registers 81 * R10 - frame pointer read-only 82 * 83 * At the start of BPF program the register R1 contains a pointer to bpf_context 84 * and has type PTR_TO_CTX. 85 * 86 * Verifier tracks arithmetic operations on pointers in case: 87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 89 * 1st insn copies R10 (which has FRAME_PTR) type into R1 90 * and 2nd arithmetic instruction is pattern matched to recognize 91 * that it wants to construct a pointer to some element within stack. 92 * So after 2nd insn, the register R1 has type PTR_TO_STACK 93 * (and -20 constant is saved for further stack bounds checking). 94 * Meaning that this reg is a pointer to stack plus known immediate constant. 95 * 96 * Most of the time the registers have SCALAR_VALUE type, which 97 * means the register has some value, but it's not a valid pointer. 98 * (like pointer plus pointer becomes SCALAR_VALUE type) 99 * 100 * When verifier sees load or store instructions the type of base register 101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 102 * four pointer types recognized by check_mem_access() function. 103 * 104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 105 * and the range of [ptr, ptr + map's value_size) is accessible. 106 * 107 * registers used to pass values to function calls are checked against 108 * function argument constraints. 109 * 110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 111 * It means that the register type passed to this function must be 112 * PTR_TO_STACK and it will be used inside the function as 113 * 'pointer to map element key' 114 * 115 * For example the argument constraints for bpf_map_lookup_elem(): 116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 117 * .arg1_type = ARG_CONST_MAP_PTR, 118 * .arg2_type = ARG_PTR_TO_MAP_KEY, 119 * 120 * ret_type says that this function returns 'pointer to map elem value or null' 121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 122 * 2nd argument should be a pointer to stack, which will be used inside 123 * the helper function as a pointer to map element key. 124 * 125 * On the kernel side the helper function looks like: 126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 127 * { 128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 129 * void *key = (void *) (unsigned long) r2; 130 * void *value; 131 * 132 * here kernel can access 'key' and 'map' pointers safely, knowing that 133 * [key, key + map->key_size) bytes are valid and were initialized on 134 * the stack of eBPF program. 135 * } 136 * 137 * Corresponding eBPF program may look like: 138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 142 * here verifier looks at prototype of map_lookup_elem() and sees: 143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 145 * 146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 148 * and were initialized prior to this call. 149 * If it's ok, then verifier allows this BPF_CALL insn and looks at 150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 152 * returns either pointer to map value or NULL. 153 * 154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 155 * insn, the register holding that pointer in the true branch changes state to 156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 157 * branch. See check_cond_jmp_op(). 158 * 159 * After the call R0 is set to return type of the function and registers R1-R5 160 * are set to NOT_INIT to indicate that they are no longer readable. 161 * 162 * The following reference types represent a potential reference to a kernel 163 * resource which, after first being allocated, must be checked and freed by 164 * the BPF program: 165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 166 * 167 * When the verifier sees a helper call return a reference type, it allocates a 168 * pointer id for the reference and stores it in the current function state. 169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 171 * passes through a NULL-check conditional. For the branch wherein the state is 172 * changed to CONST_IMM, the verifier releases the reference. 173 * 174 * For each helper function that allocates a reference, such as 175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 176 * bpf_sk_release(). When a reference type passes into the release function, 177 * the verifier also releases the reference. If any unchecked or unreleased 178 * reference remains at the end of the program, the verifier rejects it. 179 */ 180 181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 182 struct bpf_verifier_stack_elem { 183 /* verifier state is 'st' 184 * before processing instruction 'insn_idx' 185 * and after processing instruction 'prev_insn_idx' 186 */ 187 struct bpf_verifier_state st; 188 int insn_idx; 189 int prev_insn_idx; 190 struct bpf_verifier_stack_elem *next; 191 /* length of verifier log at the time this state was pushed on stack */ 192 u32 log_pos; 193 }; 194 195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 196 #define BPF_COMPLEXITY_LIMIT_STATES 64 197 198 #define BPF_MAP_KEY_POISON (1ULL << 63) 199 #define BPF_MAP_KEY_SEEN (1ULL << 62) 200 201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 202 203 #define BPF_PRIV_STACK_MIN_SIZE 64 204 205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 210 static int ref_set_non_owning(struct bpf_verifier_env *env, 211 struct bpf_reg_state *reg); 212 static bool is_trusted_reg(const struct bpf_reg_state *reg); 213 214 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 215 { 216 return aux->map_ptr_state.poison; 217 } 218 219 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_ptr_state.unpriv; 222 } 223 224 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 225 struct bpf_map *map, 226 bool unpriv, bool poison) 227 { 228 unpriv |= bpf_map_ptr_unpriv(aux); 229 aux->map_ptr_state.unpriv = unpriv; 230 aux->map_ptr_state.poison = poison; 231 aux->map_ptr_state.map_ptr = map; 232 } 233 234 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 235 { 236 return aux->map_key_state & BPF_MAP_KEY_POISON; 237 } 238 239 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 240 { 241 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 242 } 243 244 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 245 { 246 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 247 } 248 249 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 250 { 251 bool poisoned = bpf_map_key_poisoned(aux); 252 253 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 254 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 255 } 256 257 static bool bpf_helper_call(const struct bpf_insn *insn) 258 { 259 return insn->code == (BPF_JMP | BPF_CALL) && 260 insn->src_reg == 0; 261 } 262 263 static bool bpf_pseudo_call(const struct bpf_insn *insn) 264 { 265 return insn->code == (BPF_JMP | BPF_CALL) && 266 insn->src_reg == BPF_PSEUDO_CALL; 267 } 268 269 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 270 { 271 return insn->code == (BPF_JMP | BPF_CALL) && 272 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 273 } 274 275 struct bpf_map_desc { 276 struct bpf_map *ptr; 277 int uid; 278 }; 279 280 struct bpf_call_arg_meta { 281 struct bpf_map_desc map; 282 bool raw_mode; 283 bool pkt_access; 284 u8 release_regno; 285 int regno; 286 int access_size; 287 int mem_size; 288 u64 msize_max_value; 289 int ref_obj_id; 290 int dynptr_id; 291 int func_id; 292 struct btf *btf; 293 u32 btf_id; 294 struct btf *ret_btf; 295 u32 ret_btf_id; 296 u32 subprogno; 297 struct btf_field *kptr_field; 298 s64 const_map_key; 299 }; 300 301 struct bpf_kfunc_meta { 302 struct btf *btf; 303 const struct btf_type *proto; 304 const char *name; 305 const u32 *flags; 306 s32 id; 307 }; 308 309 struct bpf_kfunc_call_arg_meta { 310 /* In parameters */ 311 struct btf *btf; 312 u32 func_id; 313 u32 kfunc_flags; 314 const struct btf_type *func_proto; 315 const char *func_name; 316 /* Out parameters */ 317 u32 ref_obj_id; 318 u8 release_regno; 319 bool r0_rdonly; 320 u32 ret_btf_id; 321 u64 r0_size; 322 u32 subprogno; 323 struct { 324 u64 value; 325 bool found; 326 } arg_constant; 327 328 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 329 * generally to pass info about user-defined local kptr types to later 330 * verification logic 331 * bpf_obj_drop/bpf_percpu_obj_drop 332 * Record the local kptr type to be drop'd 333 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 334 * Record the local kptr type to be refcount_incr'd and use 335 * arg_owning_ref to determine whether refcount_acquire should be 336 * fallible 337 */ 338 struct btf *arg_btf; 339 u32 arg_btf_id; 340 bool arg_owning_ref; 341 bool arg_prog; 342 343 struct { 344 struct btf_field *field; 345 } arg_list_head; 346 struct { 347 struct btf_field *field; 348 } arg_rbtree_root; 349 struct { 350 enum bpf_dynptr_type type; 351 u32 id; 352 u32 ref_obj_id; 353 } initialized_dynptr; 354 struct { 355 u8 spi; 356 u8 frameno; 357 } iter; 358 struct bpf_map_desc map; 359 u64 mem_size; 360 }; 361 362 struct btf *btf_vmlinux; 363 364 static const char *btf_type_name(const struct btf *btf, u32 id) 365 { 366 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 367 } 368 369 static DEFINE_MUTEX(bpf_verifier_lock); 370 static DEFINE_MUTEX(bpf_percpu_ma_lock); 371 372 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 373 { 374 struct bpf_verifier_env *env = private_data; 375 va_list args; 376 377 if (!bpf_verifier_log_needed(&env->log)) 378 return; 379 380 va_start(args, fmt); 381 bpf_verifier_vlog(&env->log, fmt, args); 382 va_end(args); 383 } 384 385 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 386 struct bpf_reg_state *reg, 387 struct bpf_retval_range range, const char *ctx, 388 const char *reg_name) 389 { 390 bool unknown = true; 391 392 verbose(env, "%s the register %s has", ctx, reg_name); 393 if (reg->smin_value > S64_MIN) { 394 verbose(env, " smin=%lld", reg->smin_value); 395 unknown = false; 396 } 397 if (reg->smax_value < S64_MAX) { 398 verbose(env, " smax=%lld", reg->smax_value); 399 unknown = false; 400 } 401 if (unknown) 402 verbose(env, " unknown scalar value"); 403 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 404 } 405 406 static bool reg_not_null(const struct bpf_reg_state *reg) 407 { 408 enum bpf_reg_type type; 409 410 type = reg->type; 411 if (type_may_be_null(type)) 412 return false; 413 414 type = base_type(type); 415 return type == PTR_TO_SOCKET || 416 type == PTR_TO_TCP_SOCK || 417 type == PTR_TO_MAP_VALUE || 418 type == PTR_TO_MAP_KEY || 419 type == PTR_TO_SOCK_COMMON || 420 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 421 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || 422 type == CONST_PTR_TO_MAP; 423 } 424 425 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 426 { 427 struct btf_record *rec = NULL; 428 struct btf_struct_meta *meta; 429 430 if (reg->type == PTR_TO_MAP_VALUE) { 431 rec = reg->map_ptr->record; 432 } else if (type_is_ptr_alloc_obj(reg->type)) { 433 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 434 if (meta) 435 rec = meta->record; 436 } 437 return rec; 438 } 439 440 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 441 { 442 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 443 444 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 445 } 446 447 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 448 { 449 struct bpf_func_info *info; 450 451 if (!env->prog->aux->func_info) 452 return ""; 453 454 info = &env->prog->aux->func_info[subprog]; 455 return btf_type_name(env->prog->aux->btf, info->type_id); 456 } 457 458 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 459 { 460 struct bpf_subprog_info *info = subprog_info(env, subprog); 461 462 info->is_cb = true; 463 info->is_async_cb = true; 464 info->is_exception_cb = true; 465 } 466 467 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 468 { 469 return subprog_info(env, subprog)->is_exception_cb; 470 } 471 472 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 473 { 474 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 475 } 476 477 static bool type_is_rdonly_mem(u32 type) 478 { 479 return type & MEM_RDONLY; 480 } 481 482 static bool is_acquire_function(enum bpf_func_id func_id, 483 const struct bpf_map *map) 484 { 485 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 486 487 if (func_id == BPF_FUNC_sk_lookup_tcp || 488 func_id == BPF_FUNC_sk_lookup_udp || 489 func_id == BPF_FUNC_skc_lookup_tcp || 490 func_id == BPF_FUNC_ringbuf_reserve || 491 func_id == BPF_FUNC_kptr_xchg) 492 return true; 493 494 if (func_id == BPF_FUNC_map_lookup_elem && 495 (map_type == BPF_MAP_TYPE_SOCKMAP || 496 map_type == BPF_MAP_TYPE_SOCKHASH)) 497 return true; 498 499 return false; 500 } 501 502 static bool is_ptr_cast_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_tcp_sock || 505 func_id == BPF_FUNC_sk_fullsock || 506 func_id == BPF_FUNC_skc_to_tcp_sock || 507 func_id == BPF_FUNC_skc_to_tcp6_sock || 508 func_id == BPF_FUNC_skc_to_udp6_sock || 509 func_id == BPF_FUNC_skc_to_mptcp_sock || 510 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 511 func_id == BPF_FUNC_skc_to_tcp_request_sock; 512 } 513 514 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 515 { 516 return func_id == BPF_FUNC_dynptr_data; 517 } 518 519 static bool is_sync_callback_calling_kfunc(u32 btf_id); 520 static bool is_async_callback_calling_kfunc(u32 btf_id); 521 static bool is_callback_calling_kfunc(u32 btf_id); 522 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 523 524 static bool is_bpf_wq_set_callback_kfunc(u32 btf_id); 525 static bool is_task_work_add_kfunc(u32 func_id); 526 527 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 528 { 529 return func_id == BPF_FUNC_for_each_map_elem || 530 func_id == BPF_FUNC_find_vma || 531 func_id == BPF_FUNC_loop || 532 func_id == BPF_FUNC_user_ringbuf_drain; 533 } 534 535 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 536 { 537 return func_id == BPF_FUNC_timer_set_callback; 538 } 539 540 static bool is_callback_calling_function(enum bpf_func_id func_id) 541 { 542 return is_sync_callback_calling_function(func_id) || 543 is_async_callback_calling_function(func_id); 544 } 545 546 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 547 { 548 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 549 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 550 } 551 552 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 553 { 554 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 555 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 556 } 557 558 static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn) 559 { 560 /* bpf_timer callbacks are never sleepable. */ 561 if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback) 562 return false; 563 564 /* bpf_wq and bpf_task_work callbacks are always sleepable. */ 565 if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 566 (is_bpf_wq_set_callback_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm))) 567 return true; 568 569 verifier_bug(env, "unhandled async callback in is_async_cb_sleepable"); 570 return false; 571 } 572 573 static bool is_may_goto_insn(struct bpf_insn *insn) 574 { 575 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 576 } 577 578 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 579 { 580 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 581 } 582 583 static bool is_storage_get_function(enum bpf_func_id func_id) 584 { 585 return func_id == BPF_FUNC_sk_storage_get || 586 func_id == BPF_FUNC_inode_storage_get || 587 func_id == BPF_FUNC_task_storage_get || 588 func_id == BPF_FUNC_cgrp_storage_get; 589 } 590 591 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 592 const struct bpf_map *map) 593 { 594 int ref_obj_uses = 0; 595 596 if (is_ptr_cast_function(func_id)) 597 ref_obj_uses++; 598 if (is_acquire_function(func_id, map)) 599 ref_obj_uses++; 600 if (is_dynptr_ref_function(func_id)) 601 ref_obj_uses++; 602 603 return ref_obj_uses > 1; 604 } 605 606 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 607 { 608 return BPF_CLASS(insn->code) == BPF_STX && 609 BPF_MODE(insn->code) == BPF_ATOMIC && 610 insn->imm == BPF_CMPXCHG; 611 } 612 613 static bool is_atomic_load_insn(const struct bpf_insn *insn) 614 { 615 return BPF_CLASS(insn->code) == BPF_STX && 616 BPF_MODE(insn->code) == BPF_ATOMIC && 617 insn->imm == BPF_LOAD_ACQ; 618 } 619 620 static int __get_spi(s32 off) 621 { 622 return (-off - 1) / BPF_REG_SIZE; 623 } 624 625 static struct bpf_func_state *func(struct bpf_verifier_env *env, 626 const struct bpf_reg_state *reg) 627 { 628 struct bpf_verifier_state *cur = env->cur_state; 629 630 return cur->frame[reg->frameno]; 631 } 632 633 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 634 { 635 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 636 637 /* We need to check that slots between [spi - nr_slots + 1, spi] are 638 * within [0, allocated_stack). 639 * 640 * Please note that the spi grows downwards. For example, a dynptr 641 * takes the size of two stack slots; the first slot will be at 642 * spi and the second slot will be at spi - 1. 643 */ 644 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 645 } 646 647 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 648 const char *obj_kind, int nr_slots) 649 { 650 int off, spi; 651 652 if (!tnum_is_const(reg->var_off)) { 653 verbose(env, "%s has to be at a constant offset\n", obj_kind); 654 return -EINVAL; 655 } 656 657 off = reg->off + reg->var_off.value; 658 if (off % BPF_REG_SIZE) { 659 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 660 return -EINVAL; 661 } 662 663 spi = __get_spi(off); 664 if (spi + 1 < nr_slots) { 665 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 666 return -EINVAL; 667 } 668 669 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 670 return -ERANGE; 671 return spi; 672 } 673 674 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 675 { 676 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 677 } 678 679 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 680 { 681 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 682 } 683 684 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 685 { 686 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 687 } 688 689 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 690 { 691 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 692 case DYNPTR_TYPE_LOCAL: 693 return BPF_DYNPTR_TYPE_LOCAL; 694 case DYNPTR_TYPE_RINGBUF: 695 return BPF_DYNPTR_TYPE_RINGBUF; 696 case DYNPTR_TYPE_SKB: 697 return BPF_DYNPTR_TYPE_SKB; 698 case DYNPTR_TYPE_XDP: 699 return BPF_DYNPTR_TYPE_XDP; 700 case DYNPTR_TYPE_SKB_META: 701 return BPF_DYNPTR_TYPE_SKB_META; 702 case DYNPTR_TYPE_FILE: 703 return BPF_DYNPTR_TYPE_FILE; 704 default: 705 return BPF_DYNPTR_TYPE_INVALID; 706 } 707 } 708 709 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 710 { 711 switch (type) { 712 case BPF_DYNPTR_TYPE_LOCAL: 713 return DYNPTR_TYPE_LOCAL; 714 case BPF_DYNPTR_TYPE_RINGBUF: 715 return DYNPTR_TYPE_RINGBUF; 716 case BPF_DYNPTR_TYPE_SKB: 717 return DYNPTR_TYPE_SKB; 718 case BPF_DYNPTR_TYPE_XDP: 719 return DYNPTR_TYPE_XDP; 720 case BPF_DYNPTR_TYPE_SKB_META: 721 return DYNPTR_TYPE_SKB_META; 722 case BPF_DYNPTR_TYPE_FILE: 723 return DYNPTR_TYPE_FILE; 724 default: 725 return 0; 726 } 727 } 728 729 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 730 { 731 return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE; 732 } 733 734 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 735 enum bpf_dynptr_type type, 736 bool first_slot, int dynptr_id); 737 738 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 739 struct bpf_reg_state *reg); 740 741 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 742 struct bpf_reg_state *sreg1, 743 struct bpf_reg_state *sreg2, 744 enum bpf_dynptr_type type) 745 { 746 int id = ++env->id_gen; 747 748 __mark_dynptr_reg(sreg1, type, true, id); 749 __mark_dynptr_reg(sreg2, type, false, id); 750 } 751 752 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 753 struct bpf_reg_state *reg, 754 enum bpf_dynptr_type type) 755 { 756 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 757 } 758 759 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 760 struct bpf_func_state *state, int spi); 761 762 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 763 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 764 { 765 struct bpf_func_state *state = func(env, reg); 766 enum bpf_dynptr_type type; 767 int spi, i, err; 768 769 spi = dynptr_get_spi(env, reg); 770 if (spi < 0) 771 return spi; 772 773 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 774 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 775 * to ensure that for the following example: 776 * [d1][d1][d2][d2] 777 * spi 3 2 1 0 778 * So marking spi = 2 should lead to destruction of both d1 and d2. In 779 * case they do belong to same dynptr, second call won't see slot_type 780 * as STACK_DYNPTR and will simply skip destruction. 781 */ 782 err = destroy_if_dynptr_stack_slot(env, state, spi); 783 if (err) 784 return err; 785 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 786 if (err) 787 return err; 788 789 for (i = 0; i < BPF_REG_SIZE; i++) { 790 state->stack[spi].slot_type[i] = STACK_DYNPTR; 791 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 792 } 793 794 type = arg_to_dynptr_type(arg_type); 795 if (type == BPF_DYNPTR_TYPE_INVALID) 796 return -EINVAL; 797 798 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 799 &state->stack[spi - 1].spilled_ptr, type); 800 801 if (dynptr_type_refcounted(type)) { 802 /* The id is used to track proper releasing */ 803 int id; 804 805 if (clone_ref_obj_id) 806 id = clone_ref_obj_id; 807 else 808 id = acquire_reference(env, insn_idx); 809 810 if (id < 0) 811 return id; 812 813 state->stack[spi].spilled_ptr.ref_obj_id = id; 814 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 815 } 816 817 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 818 819 return 0; 820 } 821 822 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 823 { 824 int i; 825 826 for (i = 0; i < BPF_REG_SIZE; i++) { 827 state->stack[spi].slot_type[i] = STACK_INVALID; 828 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 829 } 830 831 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 832 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 833 834 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 835 } 836 837 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 838 { 839 struct bpf_func_state *state = func(env, reg); 840 int spi, ref_obj_id, i; 841 842 /* 843 * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 844 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 845 * is safe to do directly. 846 */ 847 if (reg->type == CONST_PTR_TO_DYNPTR) { 848 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); 849 return -EFAULT; 850 } 851 spi = dynptr_get_spi(env, reg); 852 if (spi < 0) 853 return spi; 854 855 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 856 invalidate_dynptr(env, state, spi); 857 return 0; 858 } 859 860 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 861 862 /* If the dynptr has a ref_obj_id, then we need to invalidate 863 * two things: 864 * 865 * 1) Any dynptrs with a matching ref_obj_id (clones) 866 * 2) Any slices derived from this dynptr. 867 */ 868 869 /* Invalidate any slices associated with this dynptr */ 870 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 871 872 /* Invalidate any dynptr clones */ 873 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 874 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 875 continue; 876 877 /* it should always be the case that if the ref obj id 878 * matches then the stack slot also belongs to a 879 * dynptr 880 */ 881 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 882 verifier_bug(env, "misconfigured ref_obj_id"); 883 return -EFAULT; 884 } 885 if (state->stack[i].spilled_ptr.dynptr.first_slot) 886 invalidate_dynptr(env, state, i); 887 } 888 889 return 0; 890 } 891 892 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 893 struct bpf_reg_state *reg); 894 895 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 896 { 897 if (!env->allow_ptr_leaks) 898 __mark_reg_not_init(env, reg); 899 else 900 __mark_reg_unknown(env, reg); 901 } 902 903 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 904 struct bpf_func_state *state, int spi) 905 { 906 struct bpf_func_state *fstate; 907 struct bpf_reg_state *dreg; 908 int i, dynptr_id; 909 910 /* We always ensure that STACK_DYNPTR is never set partially, 911 * hence just checking for slot_type[0] is enough. This is 912 * different for STACK_SPILL, where it may be only set for 913 * 1 byte, so code has to use is_spilled_reg. 914 */ 915 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 916 return 0; 917 918 /* Reposition spi to first slot */ 919 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 920 spi = spi + 1; 921 922 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 923 verbose(env, "cannot overwrite referenced dynptr\n"); 924 return -EINVAL; 925 } 926 927 mark_stack_slot_scratched(env, spi); 928 mark_stack_slot_scratched(env, spi - 1); 929 930 /* Writing partially to one dynptr stack slot destroys both. */ 931 for (i = 0; i < BPF_REG_SIZE; i++) { 932 state->stack[spi].slot_type[i] = STACK_INVALID; 933 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 934 } 935 936 dynptr_id = state->stack[spi].spilled_ptr.id; 937 /* Invalidate any slices associated with this dynptr */ 938 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 939 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 940 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 941 continue; 942 if (dreg->dynptr_id == dynptr_id) 943 mark_reg_invalid(env, dreg); 944 })); 945 946 /* Do not release reference state, we are destroying dynptr on stack, 947 * not using some helper to release it. Just reset register. 948 */ 949 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 950 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 951 952 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 953 954 return 0; 955 } 956 957 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 958 { 959 int spi; 960 961 if (reg->type == CONST_PTR_TO_DYNPTR) 962 return false; 963 964 spi = dynptr_get_spi(env, reg); 965 966 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 967 * error because this just means the stack state hasn't been updated yet. 968 * We will do check_mem_access to check and update stack bounds later. 969 */ 970 if (spi < 0 && spi != -ERANGE) 971 return false; 972 973 /* We don't need to check if the stack slots are marked by previous 974 * dynptr initializations because we allow overwriting existing unreferenced 975 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 976 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 977 * touching are completely destructed before we reinitialize them for a new 978 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 979 * instead of delaying it until the end where the user will get "Unreleased 980 * reference" error. 981 */ 982 return true; 983 } 984 985 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 986 { 987 struct bpf_func_state *state = func(env, reg); 988 int i, spi; 989 990 /* This already represents first slot of initialized bpf_dynptr. 991 * 992 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 993 * check_func_arg_reg_off's logic, so we don't need to check its 994 * offset and alignment. 995 */ 996 if (reg->type == CONST_PTR_TO_DYNPTR) 997 return true; 998 999 spi = dynptr_get_spi(env, reg); 1000 if (spi < 0) 1001 return false; 1002 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1003 return false; 1004 1005 for (i = 0; i < BPF_REG_SIZE; i++) { 1006 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1007 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1008 return false; 1009 } 1010 1011 return true; 1012 } 1013 1014 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1015 enum bpf_arg_type arg_type) 1016 { 1017 struct bpf_func_state *state = func(env, reg); 1018 enum bpf_dynptr_type dynptr_type; 1019 int spi; 1020 1021 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1022 if (arg_type == ARG_PTR_TO_DYNPTR) 1023 return true; 1024 1025 dynptr_type = arg_to_dynptr_type(arg_type); 1026 if (reg->type == CONST_PTR_TO_DYNPTR) { 1027 return reg->dynptr.type == dynptr_type; 1028 } else { 1029 spi = dynptr_get_spi(env, reg); 1030 if (spi < 0) 1031 return false; 1032 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1033 } 1034 } 1035 1036 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1037 1038 static bool in_rcu_cs(struct bpf_verifier_env *env); 1039 1040 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1041 1042 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1043 struct bpf_kfunc_call_arg_meta *meta, 1044 struct bpf_reg_state *reg, int insn_idx, 1045 struct btf *btf, u32 btf_id, int nr_slots) 1046 { 1047 struct bpf_func_state *state = func(env, reg); 1048 int spi, i, j, id; 1049 1050 spi = iter_get_spi(env, reg, nr_slots); 1051 if (spi < 0) 1052 return spi; 1053 1054 id = acquire_reference(env, insn_idx); 1055 if (id < 0) 1056 return id; 1057 1058 for (i = 0; i < nr_slots; i++) { 1059 struct bpf_stack_state *slot = &state->stack[spi - i]; 1060 struct bpf_reg_state *st = &slot->spilled_ptr; 1061 1062 __mark_reg_known_zero(st); 1063 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1064 if (is_kfunc_rcu_protected(meta)) { 1065 if (in_rcu_cs(env)) 1066 st->type |= MEM_RCU; 1067 else 1068 st->type |= PTR_UNTRUSTED; 1069 } 1070 st->ref_obj_id = i == 0 ? id : 0; 1071 st->iter.btf = btf; 1072 st->iter.btf_id = btf_id; 1073 st->iter.state = BPF_ITER_STATE_ACTIVE; 1074 st->iter.depth = 0; 1075 1076 for (j = 0; j < BPF_REG_SIZE; j++) 1077 slot->slot_type[j] = STACK_ITER; 1078 1079 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1080 mark_stack_slot_scratched(env, spi - i); 1081 } 1082 1083 return 0; 1084 } 1085 1086 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1087 struct bpf_reg_state *reg, int nr_slots) 1088 { 1089 struct bpf_func_state *state = func(env, reg); 1090 int spi, i, j; 1091 1092 spi = iter_get_spi(env, reg, nr_slots); 1093 if (spi < 0) 1094 return spi; 1095 1096 for (i = 0; i < nr_slots; i++) { 1097 struct bpf_stack_state *slot = &state->stack[spi - i]; 1098 struct bpf_reg_state *st = &slot->spilled_ptr; 1099 1100 if (i == 0) 1101 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1102 1103 __mark_reg_not_init(env, st); 1104 1105 for (j = 0; j < BPF_REG_SIZE; j++) 1106 slot->slot_type[j] = STACK_INVALID; 1107 1108 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1109 mark_stack_slot_scratched(env, spi - i); 1110 } 1111 1112 return 0; 1113 } 1114 1115 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1116 struct bpf_reg_state *reg, int nr_slots) 1117 { 1118 struct bpf_func_state *state = func(env, reg); 1119 int spi, i, j; 1120 1121 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1122 * will do check_mem_access to check and update stack bounds later, so 1123 * return true for that case. 1124 */ 1125 spi = iter_get_spi(env, reg, nr_slots); 1126 if (spi == -ERANGE) 1127 return true; 1128 if (spi < 0) 1129 return false; 1130 1131 for (i = 0; i < nr_slots; i++) { 1132 struct bpf_stack_state *slot = &state->stack[spi - i]; 1133 1134 for (j = 0; j < BPF_REG_SIZE; j++) 1135 if (slot->slot_type[j] == STACK_ITER) 1136 return false; 1137 } 1138 1139 return true; 1140 } 1141 1142 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1143 struct btf *btf, u32 btf_id, int nr_slots) 1144 { 1145 struct bpf_func_state *state = func(env, reg); 1146 int spi, i, j; 1147 1148 spi = iter_get_spi(env, reg, nr_slots); 1149 if (spi < 0) 1150 return -EINVAL; 1151 1152 for (i = 0; i < nr_slots; i++) { 1153 struct bpf_stack_state *slot = &state->stack[spi - i]; 1154 struct bpf_reg_state *st = &slot->spilled_ptr; 1155 1156 if (st->type & PTR_UNTRUSTED) 1157 return -EPROTO; 1158 /* only main (first) slot has ref_obj_id set */ 1159 if (i == 0 && !st->ref_obj_id) 1160 return -EINVAL; 1161 if (i != 0 && st->ref_obj_id) 1162 return -EINVAL; 1163 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1164 return -EINVAL; 1165 1166 for (j = 0; j < BPF_REG_SIZE; j++) 1167 if (slot->slot_type[j] != STACK_ITER) 1168 return -EINVAL; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1175 static int release_irq_state(struct bpf_verifier_state *state, int id); 1176 1177 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1178 struct bpf_kfunc_call_arg_meta *meta, 1179 struct bpf_reg_state *reg, int insn_idx, 1180 int kfunc_class) 1181 { 1182 struct bpf_func_state *state = func(env, reg); 1183 struct bpf_stack_state *slot; 1184 struct bpf_reg_state *st; 1185 int spi, i, id; 1186 1187 spi = irq_flag_get_spi(env, reg); 1188 if (spi < 0) 1189 return spi; 1190 1191 id = acquire_irq_state(env, insn_idx); 1192 if (id < 0) 1193 return id; 1194 1195 slot = &state->stack[spi]; 1196 st = &slot->spilled_ptr; 1197 1198 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1199 __mark_reg_known_zero(st); 1200 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1201 st->ref_obj_id = id; 1202 st->irq.kfunc_class = kfunc_class; 1203 1204 for (i = 0; i < BPF_REG_SIZE; i++) 1205 slot->slot_type[i] = STACK_IRQ_FLAG; 1206 1207 mark_stack_slot_scratched(env, spi); 1208 return 0; 1209 } 1210 1211 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1212 int kfunc_class) 1213 { 1214 struct bpf_func_state *state = func(env, reg); 1215 struct bpf_stack_state *slot; 1216 struct bpf_reg_state *st; 1217 int spi, i, err; 1218 1219 spi = irq_flag_get_spi(env, reg); 1220 if (spi < 0) 1221 return spi; 1222 1223 slot = &state->stack[spi]; 1224 st = &slot->spilled_ptr; 1225 1226 if (st->irq.kfunc_class != kfunc_class) { 1227 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1228 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1229 1230 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1231 flag_kfunc, used_kfunc); 1232 return -EINVAL; 1233 } 1234 1235 err = release_irq_state(env->cur_state, st->ref_obj_id); 1236 WARN_ON_ONCE(err && err != -EACCES); 1237 if (err) { 1238 int insn_idx = 0; 1239 1240 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1241 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1242 insn_idx = env->cur_state->refs[i].insn_idx; 1243 break; 1244 } 1245 } 1246 1247 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1248 env->cur_state->active_irq_id, insn_idx); 1249 return err; 1250 } 1251 1252 __mark_reg_not_init(env, st); 1253 1254 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1255 1256 for (i = 0; i < BPF_REG_SIZE; i++) 1257 slot->slot_type[i] = STACK_INVALID; 1258 1259 mark_stack_slot_scratched(env, spi); 1260 return 0; 1261 } 1262 1263 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1264 { 1265 struct bpf_func_state *state = func(env, reg); 1266 struct bpf_stack_state *slot; 1267 int spi, i; 1268 1269 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1270 * will do check_mem_access to check and update stack bounds later, so 1271 * return true for that case. 1272 */ 1273 spi = irq_flag_get_spi(env, reg); 1274 if (spi == -ERANGE) 1275 return true; 1276 if (spi < 0) 1277 return false; 1278 1279 slot = &state->stack[spi]; 1280 1281 for (i = 0; i < BPF_REG_SIZE; i++) 1282 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1283 return false; 1284 return true; 1285 } 1286 1287 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1288 { 1289 struct bpf_func_state *state = func(env, reg); 1290 struct bpf_stack_state *slot; 1291 struct bpf_reg_state *st; 1292 int spi, i; 1293 1294 spi = irq_flag_get_spi(env, reg); 1295 if (spi < 0) 1296 return -EINVAL; 1297 1298 slot = &state->stack[spi]; 1299 st = &slot->spilled_ptr; 1300 1301 if (!st->ref_obj_id) 1302 return -EINVAL; 1303 1304 for (i = 0; i < BPF_REG_SIZE; i++) 1305 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1306 return -EINVAL; 1307 return 0; 1308 } 1309 1310 /* Check if given stack slot is "special": 1311 * - spilled register state (STACK_SPILL); 1312 * - dynptr state (STACK_DYNPTR); 1313 * - iter state (STACK_ITER). 1314 * - irq flag state (STACK_IRQ_FLAG) 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 case STACK_IRQ_FLAG: 1325 return true; 1326 case STACK_INVALID: 1327 case STACK_MISC: 1328 case STACK_ZERO: 1329 return false; 1330 default: 1331 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1332 return true; 1333 } 1334 } 1335 1336 /* The reg state of a pointer or a bounded scalar was saved when 1337 * it was spilled to the stack. 1338 */ 1339 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1340 { 1341 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1342 } 1343 1344 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1345 { 1346 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1347 stack->spilled_ptr.type == SCALAR_VALUE; 1348 } 1349 1350 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1351 { 1352 return stack->slot_type[0] == STACK_SPILL && 1353 stack->spilled_ptr.type == SCALAR_VALUE; 1354 } 1355 1356 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1357 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1358 * more precise STACK_ZERO. 1359 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1360 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1361 * unnecessary as both are considered equivalent when loading data and pruning, 1362 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1363 * slots. 1364 */ 1365 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1366 { 1367 if (*stype == STACK_ZERO) 1368 return; 1369 if (*stype == STACK_INVALID) 1370 return; 1371 *stype = STACK_MISC; 1372 } 1373 1374 static void scrub_spilled_slot(u8 *stype) 1375 { 1376 if (*stype != STACK_INVALID) 1377 *stype = STACK_MISC; 1378 } 1379 1380 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1381 * small to hold src. This is different from krealloc since we don't want to preserve 1382 * the contents of dst. 1383 * 1384 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1385 * not be allocated. 1386 */ 1387 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1388 { 1389 size_t alloc_bytes; 1390 void *orig = dst; 1391 size_t bytes; 1392 1393 if (ZERO_OR_NULL_PTR(src)) 1394 goto out; 1395 1396 if (unlikely(check_mul_overflow(n, size, &bytes))) 1397 return NULL; 1398 1399 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1400 dst = krealloc(orig, alloc_bytes, flags); 1401 if (!dst) { 1402 kfree(orig); 1403 return NULL; 1404 } 1405 1406 memcpy(dst, src, bytes); 1407 out: 1408 return dst ? dst : ZERO_SIZE_PTR; 1409 } 1410 1411 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1412 * small to hold new_n items. new items are zeroed out if the array grows. 1413 * 1414 * Contrary to krealloc_array, does not free arr if new_n is zero. 1415 */ 1416 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1417 { 1418 size_t alloc_size; 1419 void *new_arr; 1420 1421 if (!new_n || old_n == new_n) 1422 goto out; 1423 1424 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1425 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); 1426 if (!new_arr) { 1427 kfree(arr); 1428 return NULL; 1429 } 1430 arr = new_arr; 1431 1432 if (new_n > old_n) 1433 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1434 1435 out: 1436 return arr ? arr : ZERO_SIZE_PTR; 1437 } 1438 1439 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1440 { 1441 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1442 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); 1443 if (!dst->refs) 1444 return -ENOMEM; 1445 1446 dst->acquired_refs = src->acquired_refs; 1447 dst->active_locks = src->active_locks; 1448 dst->active_preempt_locks = src->active_preempt_locks; 1449 dst->active_rcu_locks = src->active_rcu_locks; 1450 dst->active_irq_id = src->active_irq_id; 1451 dst->active_lock_id = src->active_lock_id; 1452 dst->active_lock_ptr = src->active_lock_ptr; 1453 return 0; 1454 } 1455 1456 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1457 { 1458 size_t n = src->allocated_stack / BPF_REG_SIZE; 1459 1460 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1461 GFP_KERNEL_ACCOUNT); 1462 if (!dst->stack) 1463 return -ENOMEM; 1464 1465 dst->allocated_stack = src->allocated_stack; 1466 return 0; 1467 } 1468 1469 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1470 { 1471 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1472 sizeof(struct bpf_reference_state)); 1473 if (!state->refs) 1474 return -ENOMEM; 1475 1476 state->acquired_refs = n; 1477 return 0; 1478 } 1479 1480 /* Possibly update state->allocated_stack to be at least size bytes. Also 1481 * possibly update the function's high-water mark in its bpf_subprog_info. 1482 */ 1483 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1484 { 1485 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1486 1487 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1488 size = round_up(size, BPF_REG_SIZE); 1489 n = size / BPF_REG_SIZE; 1490 1491 if (old_n >= n) 1492 return 0; 1493 1494 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1495 if (!state->stack) 1496 return -ENOMEM; 1497 1498 state->allocated_stack = size; 1499 1500 /* update known max for given subprogram */ 1501 if (env->subprog_info[state->subprogno].stack_depth < size) 1502 env->subprog_info[state->subprogno].stack_depth = size; 1503 1504 return 0; 1505 } 1506 1507 /* Acquire a pointer id from the env and update the state->refs to include 1508 * this new pointer reference. 1509 * On success, returns a valid pointer id to associate with the register 1510 * On failure, returns a negative errno. 1511 */ 1512 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1513 { 1514 struct bpf_verifier_state *state = env->cur_state; 1515 int new_ofs = state->acquired_refs; 1516 int err; 1517 1518 err = resize_reference_state(state, state->acquired_refs + 1); 1519 if (err) 1520 return NULL; 1521 state->refs[new_ofs].insn_idx = insn_idx; 1522 1523 return &state->refs[new_ofs]; 1524 } 1525 1526 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1527 { 1528 struct bpf_reference_state *s; 1529 1530 s = acquire_reference_state(env, insn_idx); 1531 if (!s) 1532 return -ENOMEM; 1533 s->type = REF_TYPE_PTR; 1534 s->id = ++env->id_gen; 1535 return s->id; 1536 } 1537 1538 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1539 int id, void *ptr) 1540 { 1541 struct bpf_verifier_state *state = env->cur_state; 1542 struct bpf_reference_state *s; 1543 1544 s = acquire_reference_state(env, insn_idx); 1545 if (!s) 1546 return -ENOMEM; 1547 s->type = type; 1548 s->id = id; 1549 s->ptr = ptr; 1550 1551 state->active_locks++; 1552 state->active_lock_id = id; 1553 state->active_lock_ptr = ptr; 1554 return 0; 1555 } 1556 1557 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1558 { 1559 struct bpf_verifier_state *state = env->cur_state; 1560 struct bpf_reference_state *s; 1561 1562 s = acquire_reference_state(env, insn_idx); 1563 if (!s) 1564 return -ENOMEM; 1565 s->type = REF_TYPE_IRQ; 1566 s->id = ++env->id_gen; 1567 1568 state->active_irq_id = s->id; 1569 return s->id; 1570 } 1571 1572 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1573 { 1574 int last_idx; 1575 size_t rem; 1576 1577 /* IRQ state requires the relative ordering of elements remaining the 1578 * same, since it relies on the refs array to behave as a stack, so that 1579 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1580 * the array instead of swapping the final element into the deleted idx. 1581 */ 1582 last_idx = state->acquired_refs - 1; 1583 rem = state->acquired_refs - idx - 1; 1584 if (last_idx && idx != last_idx) 1585 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1586 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1587 state->acquired_refs--; 1588 return; 1589 } 1590 1591 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1592 { 1593 int i; 1594 1595 for (i = 0; i < state->acquired_refs; i++) 1596 if (state->refs[i].id == ptr_id) 1597 return true; 1598 1599 return false; 1600 } 1601 1602 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1603 { 1604 void *prev_ptr = NULL; 1605 u32 prev_id = 0; 1606 int i; 1607 1608 for (i = 0; i < state->acquired_refs; i++) { 1609 if (state->refs[i].type == type && state->refs[i].id == id && 1610 state->refs[i].ptr == ptr) { 1611 release_reference_state(state, i); 1612 state->active_locks--; 1613 /* Reassign active lock (id, ptr). */ 1614 state->active_lock_id = prev_id; 1615 state->active_lock_ptr = prev_ptr; 1616 return 0; 1617 } 1618 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1619 prev_id = state->refs[i].id; 1620 prev_ptr = state->refs[i].ptr; 1621 } 1622 } 1623 return -EINVAL; 1624 } 1625 1626 static int release_irq_state(struct bpf_verifier_state *state, int id) 1627 { 1628 u32 prev_id = 0; 1629 int i; 1630 1631 if (id != state->active_irq_id) 1632 return -EACCES; 1633 1634 for (i = 0; i < state->acquired_refs; i++) { 1635 if (state->refs[i].type != REF_TYPE_IRQ) 1636 continue; 1637 if (state->refs[i].id == id) { 1638 release_reference_state(state, i); 1639 state->active_irq_id = prev_id; 1640 return 0; 1641 } else { 1642 prev_id = state->refs[i].id; 1643 } 1644 } 1645 return -EINVAL; 1646 } 1647 1648 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1649 int id, void *ptr) 1650 { 1651 int i; 1652 1653 for (i = 0; i < state->acquired_refs; i++) { 1654 struct bpf_reference_state *s = &state->refs[i]; 1655 1656 if (!(s->type & type)) 1657 continue; 1658 1659 if (s->id == id && s->ptr == ptr) 1660 return s; 1661 } 1662 return NULL; 1663 } 1664 1665 static void update_peak_states(struct bpf_verifier_env *env) 1666 { 1667 u32 cur_states; 1668 1669 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; 1670 env->peak_states = max(env->peak_states, cur_states); 1671 } 1672 1673 static void free_func_state(struct bpf_func_state *state) 1674 { 1675 if (!state) 1676 return; 1677 kfree(state->stack); 1678 kfree(state); 1679 } 1680 1681 static void clear_jmp_history(struct bpf_verifier_state *state) 1682 { 1683 kfree(state->jmp_history); 1684 state->jmp_history = NULL; 1685 state->jmp_history_cnt = 0; 1686 } 1687 1688 static void free_verifier_state(struct bpf_verifier_state *state, 1689 bool free_self) 1690 { 1691 int i; 1692 1693 for (i = 0; i <= state->curframe; i++) { 1694 free_func_state(state->frame[i]); 1695 state->frame[i] = NULL; 1696 } 1697 kfree(state->refs); 1698 clear_jmp_history(state); 1699 if (free_self) 1700 kfree(state); 1701 } 1702 1703 /* struct bpf_verifier_state->parent refers to states 1704 * that are in either of env->{expored_states,free_list}. 1705 * In both cases the state is contained in struct bpf_verifier_state_list. 1706 */ 1707 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1708 { 1709 if (st->parent) 1710 return container_of(st->parent, struct bpf_verifier_state_list, state); 1711 return NULL; 1712 } 1713 1714 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1715 struct bpf_verifier_state *st); 1716 1717 /* A state can be freed if it is no longer referenced: 1718 * - is in the env->free_list; 1719 * - has no children states; 1720 */ 1721 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1722 struct bpf_verifier_state_list *sl) 1723 { 1724 if (!sl->in_free_list 1725 || sl->state.branches != 0 1726 || incomplete_read_marks(env, &sl->state)) 1727 return; 1728 list_del(&sl->node); 1729 free_verifier_state(&sl->state, false); 1730 kfree(sl); 1731 env->free_list_size--; 1732 } 1733 1734 /* copy verifier state from src to dst growing dst stack space 1735 * when necessary to accommodate larger src stack 1736 */ 1737 static int copy_func_state(struct bpf_func_state *dst, 1738 const struct bpf_func_state *src) 1739 { 1740 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1741 return copy_stack_state(dst, src); 1742 } 1743 1744 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1745 const struct bpf_verifier_state *src) 1746 { 1747 struct bpf_func_state *dst; 1748 int i, err; 1749 1750 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1751 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1752 GFP_KERNEL_ACCOUNT); 1753 if (!dst_state->jmp_history) 1754 return -ENOMEM; 1755 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1756 1757 /* if dst has more stack frames then src frame, free them, this is also 1758 * necessary in case of exceptional exits using bpf_throw. 1759 */ 1760 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1761 free_func_state(dst_state->frame[i]); 1762 dst_state->frame[i] = NULL; 1763 } 1764 err = copy_reference_state(dst_state, src); 1765 if (err) 1766 return err; 1767 dst_state->speculative = src->speculative; 1768 dst_state->in_sleepable = src->in_sleepable; 1769 dst_state->cleaned = src->cleaned; 1770 dst_state->curframe = src->curframe; 1771 dst_state->branches = src->branches; 1772 dst_state->parent = src->parent; 1773 dst_state->first_insn_idx = src->first_insn_idx; 1774 dst_state->last_insn_idx = src->last_insn_idx; 1775 dst_state->dfs_depth = src->dfs_depth; 1776 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1777 dst_state->may_goto_depth = src->may_goto_depth; 1778 dst_state->equal_state = src->equal_state; 1779 for (i = 0; i <= src->curframe; i++) { 1780 dst = dst_state->frame[i]; 1781 if (!dst) { 1782 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); 1783 if (!dst) 1784 return -ENOMEM; 1785 dst_state->frame[i] = dst; 1786 } 1787 err = copy_func_state(dst, src->frame[i]); 1788 if (err) 1789 return err; 1790 } 1791 return 0; 1792 } 1793 1794 static u32 state_htab_size(struct bpf_verifier_env *env) 1795 { 1796 return env->prog->len; 1797 } 1798 1799 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1800 { 1801 struct bpf_verifier_state *cur = env->cur_state; 1802 struct bpf_func_state *state = cur->frame[cur->curframe]; 1803 1804 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1805 } 1806 1807 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1808 { 1809 int fr; 1810 1811 if (a->curframe != b->curframe) 1812 return false; 1813 1814 for (fr = a->curframe; fr >= 0; fr--) 1815 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1816 return false; 1817 1818 return true; 1819 } 1820 1821 /* Return IP for a given frame in a call stack */ 1822 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) 1823 { 1824 return frame == st->curframe 1825 ? st->insn_idx 1826 : st->frame[frame + 1]->callsite; 1827 } 1828 1829 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC, 1830 * if such frame exists form a corresponding @callchain as an array of 1831 * call sites leading to this frame and SCC id. 1832 * E.g.: 1833 * 1834 * void foo() { A: loop {... SCC#1 ...}; } 1835 * void bar() { B: loop { C: foo(); ... SCC#2 ... } 1836 * D: loop { E: foo(); ... SCC#3 ... } } 1837 * void main() { F: bar(); } 1838 * 1839 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending 1840 * on @st frame call sites being (F,C,A) or (F,E,A). 1841 */ 1842 static bool compute_scc_callchain(struct bpf_verifier_env *env, 1843 struct bpf_verifier_state *st, 1844 struct bpf_scc_callchain *callchain) 1845 { 1846 u32 i, scc, insn_idx; 1847 1848 memset(callchain, 0, sizeof(*callchain)); 1849 for (i = 0; i <= st->curframe; i++) { 1850 insn_idx = frame_insn_idx(st, i); 1851 scc = env->insn_aux_data[insn_idx].scc; 1852 if (scc) { 1853 callchain->scc = scc; 1854 break; 1855 } else if (i < st->curframe) { 1856 callchain->callsites[i] = insn_idx; 1857 } else { 1858 return false; 1859 } 1860 } 1861 return true; 1862 } 1863 1864 /* Check if bpf_scc_visit instance for @callchain exists. */ 1865 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, 1866 struct bpf_scc_callchain *callchain) 1867 { 1868 struct bpf_scc_info *info = env->scc_info[callchain->scc]; 1869 struct bpf_scc_visit *visits = info->visits; 1870 u32 i; 1871 1872 if (!info) 1873 return NULL; 1874 for (i = 0; i < info->num_visits; i++) 1875 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) 1876 return &visits[i]; 1877 return NULL; 1878 } 1879 1880 /* Allocate a new bpf_scc_visit instance corresponding to @callchain. 1881 * Allocated instances are alive for a duration of the do_check_common() 1882 * call and are freed by free_states(). 1883 */ 1884 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, 1885 struct bpf_scc_callchain *callchain) 1886 { 1887 struct bpf_scc_visit *visit; 1888 struct bpf_scc_info *info; 1889 u32 scc, num_visits; 1890 u64 new_sz; 1891 1892 scc = callchain->scc; 1893 info = env->scc_info[scc]; 1894 num_visits = info ? info->num_visits : 0; 1895 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); 1896 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); 1897 if (!info) 1898 return NULL; 1899 env->scc_info[scc] = info; 1900 info->num_visits = num_visits + 1; 1901 visit = &info->visits[num_visits]; 1902 memset(visit, 0, sizeof(*visit)); 1903 memcpy(&visit->callchain, callchain, sizeof(*callchain)); 1904 return visit; 1905 } 1906 1907 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ 1908 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) 1909 { 1910 char *buf = env->tmp_str_buf; 1911 int i, delta = 0; 1912 1913 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); 1914 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { 1915 if (!callchain->callsites[i]) 1916 break; 1917 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", 1918 callchain->callsites[i]); 1919 } 1920 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); 1921 return env->tmp_str_buf; 1922 } 1923 1924 /* If callchain for @st exists (@st is in some SCC), ensure that 1925 * bpf_scc_visit instance for this callchain exists. 1926 * If instance does not exist or is empty, assign visit->entry_state to @st. 1927 */ 1928 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1929 { 1930 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1931 struct bpf_scc_visit *visit; 1932 1933 if (!compute_scc_callchain(env, st, callchain)) 1934 return 0; 1935 visit = scc_visit_lookup(env, callchain); 1936 visit = visit ?: scc_visit_alloc(env, callchain); 1937 if (!visit) 1938 return -ENOMEM; 1939 if (!visit->entry_state) { 1940 visit->entry_state = st; 1941 if (env->log.level & BPF_LOG_LEVEL2) 1942 verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); 1943 } 1944 return 0; 1945 } 1946 1947 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); 1948 1949 /* If callchain for @st exists (@st is in some SCC), make it empty: 1950 * - set visit->entry_state to NULL; 1951 * - flush accumulated backedges. 1952 */ 1953 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1954 { 1955 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1956 struct bpf_scc_visit *visit; 1957 1958 if (!compute_scc_callchain(env, st, callchain)) 1959 return 0; 1960 visit = scc_visit_lookup(env, callchain); 1961 if (!visit) { 1962 /* 1963 * If path traversal stops inside an SCC, corresponding bpf_scc_visit 1964 * must exist for non-speculative paths. For non-speculative paths 1965 * traversal stops when: 1966 * a. Verification error is found, maybe_exit_scc() is not called. 1967 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member 1968 * of any SCC. 1969 * c. A checkpoint is reached and matched. Checkpoints are created by 1970 * is_state_visited(), which calls maybe_enter_scc(), which allocates 1971 * bpf_scc_visit instances for checkpoints within SCCs. 1972 * (c) is the only case that can reach this point. 1973 */ 1974 if (!st->speculative) { 1975 verifier_bug(env, "scc exit: no visit info for call chain %s", 1976 format_callchain(env, callchain)); 1977 return -EFAULT; 1978 } 1979 return 0; 1980 } 1981 if (visit->entry_state != st) 1982 return 0; 1983 if (env->log.level & BPF_LOG_LEVEL2) 1984 verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); 1985 visit->entry_state = NULL; 1986 env->num_backedges -= visit->num_backedges; 1987 visit->num_backedges = 0; 1988 update_peak_states(env); 1989 return propagate_backedges(env, visit); 1990 } 1991 1992 /* Lookup an bpf_scc_visit instance corresponding to @st callchain 1993 * and add @backedge to visit->backedges. @st callchain must exist. 1994 */ 1995 static int add_scc_backedge(struct bpf_verifier_env *env, 1996 struct bpf_verifier_state *st, 1997 struct bpf_scc_backedge *backedge) 1998 { 1999 struct bpf_scc_callchain *callchain = &env->callchain_buf; 2000 struct bpf_scc_visit *visit; 2001 2002 if (!compute_scc_callchain(env, st, callchain)) { 2003 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", 2004 st->insn_idx); 2005 return -EFAULT; 2006 } 2007 visit = scc_visit_lookup(env, callchain); 2008 if (!visit) { 2009 verifier_bug(env, "add backedge: no visit info for call chain %s", 2010 format_callchain(env, callchain)); 2011 return -EFAULT; 2012 } 2013 if (env->log.level & BPF_LOG_LEVEL2) 2014 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); 2015 backedge->next = visit->backedges; 2016 visit->backedges = backedge; 2017 visit->num_backedges++; 2018 env->num_backedges++; 2019 update_peak_states(env); 2020 return 0; 2021 } 2022 2023 /* bpf_reg_state->live marks for registers in a state @st are incomplete, 2024 * if state @st is in some SCC and not all execution paths starting at this 2025 * SCC are fully explored. 2026 */ 2027 static bool incomplete_read_marks(struct bpf_verifier_env *env, 2028 struct bpf_verifier_state *st) 2029 { 2030 struct bpf_scc_callchain *callchain = &env->callchain_buf; 2031 struct bpf_scc_visit *visit; 2032 2033 if (!compute_scc_callchain(env, st, callchain)) 2034 return false; 2035 visit = scc_visit_lookup(env, callchain); 2036 if (!visit) 2037 return false; 2038 return !!visit->backedges; 2039 } 2040 2041 static void free_backedges(struct bpf_scc_visit *visit) 2042 { 2043 struct bpf_scc_backedge *backedge, *next; 2044 2045 for (backedge = visit->backedges; backedge; backedge = next) { 2046 free_verifier_state(&backedge->state, false); 2047 next = backedge->next; 2048 kfree(backedge); 2049 } 2050 visit->backedges = NULL; 2051 } 2052 2053 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2054 { 2055 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 2056 struct bpf_verifier_state *parent; 2057 int err; 2058 2059 while (st) { 2060 u32 br = --st->branches; 2061 2062 /* verifier_bug_if(br > 1, ...) technically makes sense here, 2063 * but see comment in push_stack(), hence: 2064 */ 2065 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); 2066 if (br) 2067 break; 2068 err = maybe_exit_scc(env, st); 2069 if (err) 2070 return err; 2071 parent = st->parent; 2072 parent_sl = state_parent_as_list(st); 2073 if (sl) 2074 maybe_free_verifier_state(env, sl); 2075 st = parent; 2076 sl = parent_sl; 2077 } 2078 return 0; 2079 } 2080 2081 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2082 int *insn_idx, bool pop_log) 2083 { 2084 struct bpf_verifier_state *cur = env->cur_state; 2085 struct bpf_verifier_stack_elem *elem, *head = env->head; 2086 int err; 2087 2088 if (env->head == NULL) 2089 return -ENOENT; 2090 2091 if (cur) { 2092 err = copy_verifier_state(cur, &head->st); 2093 if (err) 2094 return err; 2095 } 2096 if (pop_log) 2097 bpf_vlog_reset(&env->log, head->log_pos); 2098 if (insn_idx) 2099 *insn_idx = head->insn_idx; 2100 if (prev_insn_idx) 2101 *prev_insn_idx = head->prev_insn_idx; 2102 elem = head->next; 2103 free_verifier_state(&head->st, false); 2104 kfree(head); 2105 env->head = elem; 2106 env->stack_size--; 2107 return 0; 2108 } 2109 2110 static bool error_recoverable_with_nospec(int err) 2111 { 2112 /* Should only return true for non-fatal errors that are allowed to 2113 * occur during speculative verification. For these we can insert a 2114 * nospec and the program might still be accepted. Do not include 2115 * something like ENOMEM because it is likely to re-occur for the next 2116 * architectural path once it has been recovered-from in all speculative 2117 * paths. 2118 */ 2119 return err == -EPERM || err == -EACCES || err == -EINVAL; 2120 } 2121 2122 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2123 int insn_idx, int prev_insn_idx, 2124 bool speculative) 2125 { 2126 struct bpf_verifier_state *cur = env->cur_state; 2127 struct bpf_verifier_stack_elem *elem; 2128 int err; 2129 2130 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2131 if (!elem) 2132 return ERR_PTR(-ENOMEM); 2133 2134 elem->insn_idx = insn_idx; 2135 elem->prev_insn_idx = prev_insn_idx; 2136 elem->next = env->head; 2137 elem->log_pos = env->log.end_pos; 2138 env->head = elem; 2139 env->stack_size++; 2140 err = copy_verifier_state(&elem->st, cur); 2141 if (err) 2142 return ERR_PTR(-ENOMEM); 2143 elem->st.speculative |= speculative; 2144 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2145 verbose(env, "The sequence of %d jumps is too complex.\n", 2146 env->stack_size); 2147 return ERR_PTR(-E2BIG); 2148 } 2149 if (elem->st.parent) { 2150 ++elem->st.parent->branches; 2151 /* WARN_ON(branches > 2) technically makes sense here, 2152 * but 2153 * 1. speculative states will bump 'branches' for non-branch 2154 * instructions 2155 * 2. is_state_visited() heuristics may decide not to create 2156 * a new state for a sequence of branches and all such current 2157 * and cloned states will be pointing to a single parent state 2158 * which might have large 'branches' count. 2159 */ 2160 } 2161 return &elem->st; 2162 } 2163 2164 #define CALLER_SAVED_REGS 6 2165 static const int caller_saved[CALLER_SAVED_REGS] = { 2166 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2167 }; 2168 2169 /* This helper doesn't clear reg->id */ 2170 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2171 { 2172 reg->var_off = tnum_const(imm); 2173 reg->smin_value = (s64)imm; 2174 reg->smax_value = (s64)imm; 2175 reg->umin_value = imm; 2176 reg->umax_value = imm; 2177 2178 reg->s32_min_value = (s32)imm; 2179 reg->s32_max_value = (s32)imm; 2180 reg->u32_min_value = (u32)imm; 2181 reg->u32_max_value = (u32)imm; 2182 } 2183 2184 /* Mark the unknown part of a register (variable offset or scalar value) as 2185 * known to have the value @imm. 2186 */ 2187 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2188 { 2189 /* Clear off and union(map_ptr, range) */ 2190 memset(((u8 *)reg) + sizeof(reg->type), 0, 2191 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2192 reg->id = 0; 2193 reg->ref_obj_id = 0; 2194 ___mark_reg_known(reg, imm); 2195 } 2196 2197 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2198 { 2199 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2200 reg->s32_min_value = (s32)imm; 2201 reg->s32_max_value = (s32)imm; 2202 reg->u32_min_value = (u32)imm; 2203 reg->u32_max_value = (u32)imm; 2204 } 2205 2206 /* Mark the 'variable offset' part of a register as zero. This should be 2207 * used only on registers holding a pointer type. 2208 */ 2209 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2210 { 2211 __mark_reg_known(reg, 0); 2212 } 2213 2214 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2215 { 2216 __mark_reg_known(reg, 0); 2217 reg->type = SCALAR_VALUE; 2218 /* all scalars are assumed imprecise initially (unless unprivileged, 2219 * in which case everything is forced to be precise) 2220 */ 2221 reg->precise = !env->bpf_capable; 2222 } 2223 2224 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2225 struct bpf_reg_state *regs, u32 regno) 2226 { 2227 if (WARN_ON(regno >= MAX_BPF_REG)) { 2228 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2229 /* Something bad happened, let's kill all regs */ 2230 for (regno = 0; regno < MAX_BPF_REG; regno++) 2231 __mark_reg_not_init(env, regs + regno); 2232 return; 2233 } 2234 __mark_reg_known_zero(regs + regno); 2235 } 2236 2237 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2238 bool first_slot, int dynptr_id) 2239 { 2240 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2241 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2242 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2243 */ 2244 __mark_reg_known_zero(reg); 2245 reg->type = CONST_PTR_TO_DYNPTR; 2246 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2247 reg->id = dynptr_id; 2248 reg->dynptr.type = type; 2249 reg->dynptr.first_slot = first_slot; 2250 } 2251 2252 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2253 { 2254 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2255 const struct bpf_map *map = reg->map_ptr; 2256 2257 if (map->inner_map_meta) { 2258 reg->type = CONST_PTR_TO_MAP; 2259 reg->map_ptr = map->inner_map_meta; 2260 /* transfer reg's id which is unique for every map_lookup_elem 2261 * as UID of the inner map. 2262 */ 2263 if (btf_record_has_field(map->inner_map_meta->record, 2264 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) { 2265 reg->map_uid = reg->id; 2266 } 2267 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2268 reg->type = PTR_TO_XDP_SOCK; 2269 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2270 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2271 reg->type = PTR_TO_SOCKET; 2272 } else { 2273 reg->type = PTR_TO_MAP_VALUE; 2274 } 2275 return; 2276 } 2277 2278 reg->type &= ~PTR_MAYBE_NULL; 2279 } 2280 2281 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2282 struct btf_field_graph_root *ds_head) 2283 { 2284 __mark_reg_known_zero(®s[regno]); 2285 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2286 regs[regno].btf = ds_head->btf; 2287 regs[regno].btf_id = ds_head->value_btf_id; 2288 regs[regno].off = ds_head->node_offset; 2289 } 2290 2291 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2292 { 2293 return type_is_pkt_pointer(reg->type); 2294 } 2295 2296 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2297 { 2298 return reg_is_pkt_pointer(reg) || 2299 reg->type == PTR_TO_PACKET_END; 2300 } 2301 2302 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2303 { 2304 return base_type(reg->type) == PTR_TO_MEM && 2305 (reg->type & 2306 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); 2307 } 2308 2309 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2310 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2311 enum bpf_reg_type which) 2312 { 2313 /* The register can already have a range from prior markings. 2314 * This is fine as long as it hasn't been advanced from its 2315 * origin. 2316 */ 2317 return reg->type == which && 2318 reg->id == 0 && 2319 reg->off == 0 && 2320 tnum_equals_const(reg->var_off, 0); 2321 } 2322 2323 /* Reset the min/max bounds of a register */ 2324 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2325 { 2326 reg->smin_value = S64_MIN; 2327 reg->smax_value = S64_MAX; 2328 reg->umin_value = 0; 2329 reg->umax_value = U64_MAX; 2330 2331 reg->s32_min_value = S32_MIN; 2332 reg->s32_max_value = S32_MAX; 2333 reg->u32_min_value = 0; 2334 reg->u32_max_value = U32_MAX; 2335 } 2336 2337 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2338 { 2339 reg->smin_value = S64_MIN; 2340 reg->smax_value = S64_MAX; 2341 reg->umin_value = 0; 2342 reg->umax_value = U64_MAX; 2343 } 2344 2345 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2346 { 2347 reg->s32_min_value = S32_MIN; 2348 reg->s32_max_value = S32_MAX; 2349 reg->u32_min_value = 0; 2350 reg->u32_max_value = U32_MAX; 2351 } 2352 2353 static void reset_reg64_and_tnum(struct bpf_reg_state *reg) 2354 { 2355 __mark_reg64_unbounded(reg); 2356 reg->var_off = tnum_unknown; 2357 } 2358 2359 static void reset_reg32_and_tnum(struct bpf_reg_state *reg) 2360 { 2361 __mark_reg32_unbounded(reg); 2362 reg->var_off = tnum_unknown; 2363 } 2364 2365 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2366 { 2367 struct tnum var32_off = tnum_subreg(reg->var_off); 2368 2369 /* min signed is max(sign bit) | min(other bits) */ 2370 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2371 var32_off.value | (var32_off.mask & S32_MIN)); 2372 /* max signed is min(sign bit) | max(other bits) */ 2373 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2374 var32_off.value | (var32_off.mask & S32_MAX)); 2375 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2376 reg->u32_max_value = min(reg->u32_max_value, 2377 (u32)(var32_off.value | var32_off.mask)); 2378 } 2379 2380 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2381 { 2382 /* min signed is max(sign bit) | min(other bits) */ 2383 reg->smin_value = max_t(s64, reg->smin_value, 2384 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2385 /* max signed is min(sign bit) | max(other bits) */ 2386 reg->smax_value = min_t(s64, reg->smax_value, 2387 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2388 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2389 reg->umax_value = min(reg->umax_value, 2390 reg->var_off.value | reg->var_off.mask); 2391 } 2392 2393 static void __update_reg_bounds(struct bpf_reg_state *reg) 2394 { 2395 __update_reg32_bounds(reg); 2396 __update_reg64_bounds(reg); 2397 } 2398 2399 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2400 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2401 { 2402 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2403 * bits to improve our u32/s32 boundaries. 2404 * 2405 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2406 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2407 * [10, 20] range. But this property holds for any 64-bit range as 2408 * long as upper 32 bits in that entire range of values stay the same. 2409 * 2410 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2411 * in decimal) has the same upper 32 bits throughout all the values in 2412 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2413 * range. 2414 * 2415 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2416 * following the rules outlined below about u64/s64 correspondence 2417 * (which equally applies to u32 vs s32 correspondence). In general it 2418 * depends on actual hexadecimal values of 32-bit range. They can form 2419 * only valid u32, or only valid s32 ranges in some cases. 2420 * 2421 * So we use all these insights to derive bounds for subregisters here. 2422 */ 2423 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2424 /* u64 to u32 casting preserves validity of low 32 bits as 2425 * a range, if upper 32 bits are the same 2426 */ 2427 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2428 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2429 2430 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2431 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2432 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2433 } 2434 } 2435 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2436 /* low 32 bits should form a proper u32 range */ 2437 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2438 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2439 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2440 } 2441 /* low 32 bits should form a proper s32 range */ 2442 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2443 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2444 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2445 } 2446 } 2447 /* Special case where upper bits form a small sequence of two 2448 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2449 * 0x00000000 is also valid), while lower bits form a proper s32 range 2450 * going from negative numbers to positive numbers. E.g., let's say we 2451 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2452 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2453 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2454 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2455 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2456 * upper 32 bits. As a random example, s64 range 2457 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2458 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2459 */ 2460 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2461 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2462 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2463 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2464 } 2465 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2466 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2467 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2468 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2469 } 2470 /* if u32 range forms a valid s32 range (due to matching sign bit), 2471 * try to learn from that 2472 */ 2473 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2474 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2475 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2476 } 2477 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2478 * are the same, so combine. This works even in the negative case, e.g. 2479 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2480 */ 2481 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2482 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2483 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2484 } 2485 } 2486 2487 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2488 { 2489 /* If u64 range forms a valid s64 range (due to matching sign bit), 2490 * try to learn from that. Let's do a bit of ASCII art to see when 2491 * this is happening. Let's take u64 range first: 2492 * 2493 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2494 * |-------------------------------|--------------------------------| 2495 * 2496 * Valid u64 range is formed when umin and umax are anywhere in the 2497 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2498 * straightforward. Let's see how s64 range maps onto the same range 2499 * of values, annotated below the line for comparison: 2500 * 2501 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2502 * |-------------------------------|--------------------------------| 2503 * 0 S64_MAX S64_MIN -1 2504 * 2505 * So s64 values basically start in the middle and they are logically 2506 * contiguous to the right of it, wrapping around from -1 to 0, and 2507 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2508 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2509 * more visually as mapped to sign-agnostic range of hex values. 2510 * 2511 * u64 start u64 end 2512 * _______________________________________________________________ 2513 * / \ 2514 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2515 * |-------------------------------|--------------------------------| 2516 * 0 S64_MAX S64_MIN -1 2517 * / \ 2518 * >------------------------------ -------------------------------> 2519 * s64 continues... s64 end s64 start s64 "midpoint" 2520 * 2521 * What this means is that, in general, we can't always derive 2522 * something new about u64 from any random s64 range, and vice versa. 2523 * 2524 * But we can do that in two particular cases. One is when entire 2525 * u64/s64 range is *entirely* contained within left half of the above 2526 * diagram or when it is *entirely* contained in the right half. I.e.: 2527 * 2528 * |-------------------------------|--------------------------------| 2529 * ^ ^ ^ ^ 2530 * A B C D 2531 * 2532 * [A, B] and [C, D] are contained entirely in their respective halves 2533 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2534 * will be non-negative both as u64 and s64 (and in fact it will be 2535 * identical ranges no matter the signedness). [C, D] treated as s64 2536 * will be a range of negative values, while in u64 it will be 2537 * non-negative range of values larger than 0x8000000000000000. 2538 * 2539 * Now, any other range here can't be represented in both u64 and s64 2540 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2541 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2542 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2543 * for example. Similarly, valid s64 range [D, A] (going from negative 2544 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2545 * ranges as u64. Currently reg_state can't represent two segments per 2546 * numeric domain, so in such situations we can only derive maximal 2547 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2548 * 2549 * So we use these facts to derive umin/umax from smin/smax and vice 2550 * versa only if they stay within the same "half". This is equivalent 2551 * to checking sign bit: lower half will have sign bit as zero, upper 2552 * half have sign bit 1. Below in code we simplify this by just 2553 * casting umin/umax as smin/smax and checking if they form valid 2554 * range, and vice versa. Those are equivalent checks. 2555 */ 2556 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2557 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2558 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2559 } 2560 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2561 * are the same, so combine. This works even in the negative case, e.g. 2562 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2563 */ 2564 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2565 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2566 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2567 } else { 2568 /* If the s64 range crosses the sign boundary, then it's split 2569 * between the beginning and end of the U64 domain. In that 2570 * case, we can derive new bounds if the u64 range overlaps 2571 * with only one end of the s64 range. 2572 * 2573 * In the following example, the u64 range overlaps only with 2574 * positive portion of the s64 range. 2575 * 2576 * 0 U64_MAX 2577 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2578 * |----------------------------|----------------------------| 2579 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| 2580 * 0 S64_MAX S64_MIN -1 2581 * 2582 * We can thus derive the following new s64 and u64 ranges. 2583 * 2584 * 0 U64_MAX 2585 * | [xxxxxx u64 range xxxxx] | 2586 * |----------------------------|----------------------------| 2587 * | [xxxxxx s64 range xxxxx] | 2588 * 0 S64_MAX S64_MIN -1 2589 * 2590 * If they overlap in two places, we can't derive anything 2591 * because reg_state can't represent two ranges per numeric 2592 * domain. 2593 * 2594 * 0 U64_MAX 2595 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | 2596 * |----------------------------|----------------------------| 2597 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| 2598 * 0 S64_MAX S64_MIN -1 2599 * 2600 * The first condition below corresponds to the first diagram 2601 * above. 2602 */ 2603 if (reg->umax_value < (u64)reg->smin_value) { 2604 reg->smin_value = (s64)reg->umin_value; 2605 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); 2606 } else if ((u64)reg->smax_value < reg->umin_value) { 2607 /* This second condition considers the case where the u64 range 2608 * overlaps with the negative portion of the s64 range: 2609 * 2610 * 0 U64_MAX 2611 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2612 * |----------------------------|----------------------------| 2613 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | 2614 * 0 S64_MAX S64_MIN -1 2615 */ 2616 reg->smax_value = (s64)reg->umax_value; 2617 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); 2618 } 2619 } 2620 } 2621 2622 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2623 { 2624 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2625 * values on both sides of 64-bit range in hope to have tighter range. 2626 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2627 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2628 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2629 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2630 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2631 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2632 * We just need to make sure that derived bounds we are intersecting 2633 * with are well-formed ranges in respective s64 or u64 domain, just 2634 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2635 */ 2636 __u64 new_umin, new_umax; 2637 __s64 new_smin, new_smax; 2638 2639 /* u32 -> u64 tightening, it's always well-formed */ 2640 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2641 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2642 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2643 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2644 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2645 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2646 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2647 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2648 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2649 2650 /* Here we would like to handle a special case after sign extending load, 2651 * when upper bits for a 64-bit range are all 1s or all 0s. 2652 * 2653 * Upper bits are all 1s when register is in a range: 2654 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2655 * Upper bits are all 0s when register is in a range: 2656 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2657 * Together this forms are continuous range: 2658 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2659 * 2660 * Now, suppose that register range is in fact tighter: 2661 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2662 * Also suppose that it's 32-bit range is positive, 2663 * meaning that lower 32-bits of the full 64-bit register 2664 * are in the range: 2665 * [0x0000_0000, 0x7fff_ffff] (W) 2666 * 2667 * If this happens, then any value in a range: 2668 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2669 * is smaller than a lowest bound of the range (R): 2670 * 0xffff_ffff_8000_0000 2671 * which means that upper bits of the full 64-bit register 2672 * can't be all 1s, when lower bits are in range (W). 2673 * 2674 * Note that: 2675 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2676 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2677 * These relations are used in the conditions below. 2678 */ 2679 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2680 reg->smin_value = reg->s32_min_value; 2681 reg->smax_value = reg->s32_max_value; 2682 reg->umin_value = reg->s32_min_value; 2683 reg->umax_value = reg->s32_max_value; 2684 reg->var_off = tnum_intersect(reg->var_off, 2685 tnum_range(reg->smin_value, reg->smax_value)); 2686 } 2687 } 2688 2689 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2690 { 2691 __reg32_deduce_bounds(reg); 2692 __reg64_deduce_bounds(reg); 2693 __reg_deduce_mixed_bounds(reg); 2694 } 2695 2696 /* Attempts to improve var_off based on unsigned min/max information */ 2697 static void __reg_bound_offset(struct bpf_reg_state *reg) 2698 { 2699 struct tnum var64_off = tnum_intersect(reg->var_off, 2700 tnum_range(reg->umin_value, 2701 reg->umax_value)); 2702 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2703 tnum_range(reg->u32_min_value, 2704 reg->u32_max_value)); 2705 2706 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2707 } 2708 2709 static void reg_bounds_sync(struct bpf_reg_state *reg) 2710 { 2711 /* We might have learned new bounds from the var_off. */ 2712 __update_reg_bounds(reg); 2713 /* We might have learned something about the sign bit. */ 2714 __reg_deduce_bounds(reg); 2715 __reg_deduce_bounds(reg); 2716 __reg_deduce_bounds(reg); 2717 /* We might have learned some bits from the bounds. */ 2718 __reg_bound_offset(reg); 2719 /* Intersecting with the old var_off might have improved our bounds 2720 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2721 * then new var_off is (0; 0x7f...fc) which improves our umax. 2722 */ 2723 __update_reg_bounds(reg); 2724 } 2725 2726 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2727 struct bpf_reg_state *reg, const char *ctx) 2728 { 2729 const char *msg; 2730 2731 if (reg->umin_value > reg->umax_value || 2732 reg->smin_value > reg->smax_value || 2733 reg->u32_min_value > reg->u32_max_value || 2734 reg->s32_min_value > reg->s32_max_value) { 2735 msg = "range bounds violation"; 2736 goto out; 2737 } 2738 2739 if (tnum_is_const(reg->var_off)) { 2740 u64 uval = reg->var_off.value; 2741 s64 sval = (s64)uval; 2742 2743 if (reg->umin_value != uval || reg->umax_value != uval || 2744 reg->smin_value != sval || reg->smax_value != sval) { 2745 msg = "const tnum out of sync with range bounds"; 2746 goto out; 2747 } 2748 } 2749 2750 if (tnum_subreg_is_const(reg->var_off)) { 2751 u32 uval32 = tnum_subreg(reg->var_off).value; 2752 s32 sval32 = (s32)uval32; 2753 2754 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2755 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2756 msg = "const subreg tnum out of sync with range bounds"; 2757 goto out; 2758 } 2759 } 2760 2761 return 0; 2762 out: 2763 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2764 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", 2765 ctx, msg, reg->umin_value, reg->umax_value, 2766 reg->smin_value, reg->smax_value, 2767 reg->u32_min_value, reg->u32_max_value, 2768 reg->s32_min_value, reg->s32_max_value, 2769 reg->var_off.value, reg->var_off.mask); 2770 if (env->test_reg_invariants) 2771 return -EFAULT; 2772 __mark_reg_unbounded(reg); 2773 return 0; 2774 } 2775 2776 static bool __reg32_bound_s64(s32 a) 2777 { 2778 return a >= 0 && a <= S32_MAX; 2779 } 2780 2781 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2782 { 2783 reg->umin_value = reg->u32_min_value; 2784 reg->umax_value = reg->u32_max_value; 2785 2786 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2787 * be positive otherwise set to worse case bounds and refine later 2788 * from tnum. 2789 */ 2790 if (__reg32_bound_s64(reg->s32_min_value) && 2791 __reg32_bound_s64(reg->s32_max_value)) { 2792 reg->smin_value = reg->s32_min_value; 2793 reg->smax_value = reg->s32_max_value; 2794 } else { 2795 reg->smin_value = 0; 2796 reg->smax_value = U32_MAX; 2797 } 2798 } 2799 2800 /* Mark a register as having a completely unknown (scalar) value. */ 2801 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2802 { 2803 /* 2804 * Clear type, off, and union(map_ptr, range) and 2805 * padding between 'type' and union 2806 */ 2807 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2808 reg->type = SCALAR_VALUE; 2809 reg->id = 0; 2810 reg->ref_obj_id = 0; 2811 reg->var_off = tnum_unknown; 2812 reg->frameno = 0; 2813 reg->precise = false; 2814 __mark_reg_unbounded(reg); 2815 } 2816 2817 /* Mark a register as having a completely unknown (scalar) value, 2818 * initialize .precise as true when not bpf capable. 2819 */ 2820 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2821 struct bpf_reg_state *reg) 2822 { 2823 __mark_reg_unknown_imprecise(reg); 2824 reg->precise = !env->bpf_capable; 2825 } 2826 2827 static void mark_reg_unknown(struct bpf_verifier_env *env, 2828 struct bpf_reg_state *regs, u32 regno) 2829 { 2830 if (WARN_ON(regno >= MAX_BPF_REG)) { 2831 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2832 /* Something bad happened, let's kill all regs except FP */ 2833 for (regno = 0; regno < BPF_REG_FP; regno++) 2834 __mark_reg_not_init(env, regs + regno); 2835 return; 2836 } 2837 __mark_reg_unknown(env, regs + regno); 2838 } 2839 2840 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2841 struct bpf_reg_state *regs, 2842 u32 regno, 2843 s32 s32_min, 2844 s32 s32_max) 2845 { 2846 struct bpf_reg_state *reg = regs + regno; 2847 2848 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2849 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2850 2851 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2852 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2853 2854 reg_bounds_sync(reg); 2855 2856 return reg_bounds_sanity_check(env, reg, "s32_range"); 2857 } 2858 2859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2860 struct bpf_reg_state *reg) 2861 { 2862 __mark_reg_unknown(env, reg); 2863 reg->type = NOT_INIT; 2864 } 2865 2866 static void mark_reg_not_init(struct bpf_verifier_env *env, 2867 struct bpf_reg_state *regs, u32 regno) 2868 { 2869 if (WARN_ON(regno >= MAX_BPF_REG)) { 2870 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2871 /* Something bad happened, let's kill all regs except FP */ 2872 for (regno = 0; regno < BPF_REG_FP; regno++) 2873 __mark_reg_not_init(env, regs + regno); 2874 return; 2875 } 2876 __mark_reg_not_init(env, regs + regno); 2877 } 2878 2879 static int mark_btf_ld_reg(struct bpf_verifier_env *env, 2880 struct bpf_reg_state *regs, u32 regno, 2881 enum bpf_reg_type reg_type, 2882 struct btf *btf, u32 btf_id, 2883 enum bpf_type_flag flag) 2884 { 2885 switch (reg_type) { 2886 case SCALAR_VALUE: 2887 mark_reg_unknown(env, regs, regno); 2888 return 0; 2889 case PTR_TO_BTF_ID: 2890 mark_reg_known_zero(env, regs, regno); 2891 regs[regno].type = PTR_TO_BTF_ID | flag; 2892 regs[regno].btf = btf; 2893 regs[regno].btf_id = btf_id; 2894 if (type_may_be_null(flag)) 2895 regs[regno].id = ++env->id_gen; 2896 return 0; 2897 case PTR_TO_MEM: 2898 mark_reg_known_zero(env, regs, regno); 2899 regs[regno].type = PTR_TO_MEM | flag; 2900 regs[regno].mem_size = 0; 2901 return 0; 2902 default: 2903 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); 2904 return -EFAULT; 2905 } 2906 } 2907 2908 #define DEF_NOT_SUBREG (0) 2909 static void init_reg_state(struct bpf_verifier_env *env, 2910 struct bpf_func_state *state) 2911 { 2912 struct bpf_reg_state *regs = state->regs; 2913 int i; 2914 2915 for (i = 0; i < MAX_BPF_REG; i++) { 2916 mark_reg_not_init(env, regs, i); 2917 regs[i].subreg_def = DEF_NOT_SUBREG; 2918 } 2919 2920 /* frame pointer */ 2921 regs[BPF_REG_FP].type = PTR_TO_STACK; 2922 mark_reg_known_zero(env, regs, BPF_REG_FP); 2923 regs[BPF_REG_FP].frameno = state->frameno; 2924 } 2925 2926 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2927 { 2928 return (struct bpf_retval_range){ minval, maxval }; 2929 } 2930 2931 #define BPF_MAIN_FUNC (-1) 2932 static void init_func_state(struct bpf_verifier_env *env, 2933 struct bpf_func_state *state, 2934 int callsite, int frameno, int subprogno) 2935 { 2936 state->callsite = callsite; 2937 state->frameno = frameno; 2938 state->subprogno = subprogno; 2939 state->callback_ret_range = retval_range(0, 0); 2940 init_reg_state(env, state); 2941 mark_verifier_state_scratched(env); 2942 } 2943 2944 /* Similar to push_stack(), but for async callbacks */ 2945 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2946 int insn_idx, int prev_insn_idx, 2947 int subprog, bool is_sleepable) 2948 { 2949 struct bpf_verifier_stack_elem *elem; 2950 struct bpf_func_state *frame; 2951 2952 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2953 if (!elem) 2954 return ERR_PTR(-ENOMEM); 2955 2956 elem->insn_idx = insn_idx; 2957 elem->prev_insn_idx = prev_insn_idx; 2958 elem->next = env->head; 2959 elem->log_pos = env->log.end_pos; 2960 env->head = elem; 2961 env->stack_size++; 2962 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2963 verbose(env, 2964 "The sequence of %d jumps is too complex for async cb.\n", 2965 env->stack_size); 2966 return ERR_PTR(-E2BIG); 2967 } 2968 /* Unlike push_stack() do not copy_verifier_state(). 2969 * The caller state doesn't matter. 2970 * This is async callback. It starts in a fresh stack. 2971 * Initialize it similar to do_check_common(). 2972 */ 2973 elem->st.branches = 1; 2974 elem->st.in_sleepable = is_sleepable; 2975 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); 2976 if (!frame) 2977 return ERR_PTR(-ENOMEM); 2978 init_func_state(env, frame, 2979 BPF_MAIN_FUNC /* callsite */, 2980 0 /* frameno within this callchain */, 2981 subprog /* subprog number within this prog */); 2982 elem->st.frame[0] = frame; 2983 return &elem->st; 2984 } 2985 2986 2987 enum reg_arg_type { 2988 SRC_OP, /* register is used as source operand */ 2989 DST_OP, /* register is used as destination operand */ 2990 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2991 }; 2992 2993 static int cmp_subprogs(const void *a, const void *b) 2994 { 2995 return ((struct bpf_subprog_info *)a)->start - 2996 ((struct bpf_subprog_info *)b)->start; 2997 } 2998 2999 /* Find subprogram that contains instruction at 'off' */ 3000 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off) 3001 { 3002 struct bpf_subprog_info *vals = env->subprog_info; 3003 int l, r, m; 3004 3005 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 3006 return NULL; 3007 3008 l = 0; 3009 r = env->subprog_cnt - 1; 3010 while (l < r) { 3011 m = l + (r - l + 1) / 2; 3012 if (vals[m].start <= off) 3013 l = m; 3014 else 3015 r = m - 1; 3016 } 3017 return &vals[l]; 3018 } 3019 3020 /* Find subprogram that starts exactly at 'off' */ 3021 static int find_subprog(struct bpf_verifier_env *env, int off) 3022 { 3023 struct bpf_subprog_info *p; 3024 3025 p = bpf_find_containing_subprog(env, off); 3026 if (!p || p->start != off) 3027 return -ENOENT; 3028 return p - env->subprog_info; 3029 } 3030 3031 static int add_subprog(struct bpf_verifier_env *env, int off) 3032 { 3033 int insn_cnt = env->prog->len; 3034 int ret; 3035 3036 if (off >= insn_cnt || off < 0) { 3037 verbose(env, "call to invalid destination\n"); 3038 return -EINVAL; 3039 } 3040 ret = find_subprog(env, off); 3041 if (ret >= 0) 3042 return ret; 3043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 3044 verbose(env, "too many subprograms\n"); 3045 return -E2BIG; 3046 } 3047 /* determine subprog starts. The end is one before the next starts */ 3048 env->subprog_info[env->subprog_cnt++].start = off; 3049 sort(env->subprog_info, env->subprog_cnt, 3050 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 3051 return env->subprog_cnt - 1; 3052 } 3053 3054 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 3055 { 3056 struct bpf_prog_aux *aux = env->prog->aux; 3057 struct btf *btf = aux->btf; 3058 const struct btf_type *t; 3059 u32 main_btf_id, id; 3060 const char *name; 3061 int ret, i; 3062 3063 /* Non-zero func_info_cnt implies valid btf */ 3064 if (!aux->func_info_cnt) 3065 return 0; 3066 main_btf_id = aux->func_info[0].type_id; 3067 3068 t = btf_type_by_id(btf, main_btf_id); 3069 if (!t) { 3070 verbose(env, "invalid btf id for main subprog in func_info\n"); 3071 return -EINVAL; 3072 } 3073 3074 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 3075 if (IS_ERR(name)) { 3076 ret = PTR_ERR(name); 3077 /* If there is no tag present, there is no exception callback */ 3078 if (ret == -ENOENT) 3079 ret = 0; 3080 else if (ret == -EEXIST) 3081 verbose(env, "multiple exception callback tags for main subprog\n"); 3082 return ret; 3083 } 3084 3085 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 3086 if (ret < 0) { 3087 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 3088 return ret; 3089 } 3090 id = ret; 3091 t = btf_type_by_id(btf, id); 3092 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3093 verbose(env, "exception callback '%s' must have global linkage\n", name); 3094 return -EINVAL; 3095 } 3096 ret = 0; 3097 for (i = 0; i < aux->func_info_cnt; i++) { 3098 if (aux->func_info[i].type_id != id) 3099 continue; 3100 ret = aux->func_info[i].insn_off; 3101 /* Further func_info and subprog checks will also happen 3102 * later, so assume this is the right insn_off for now. 3103 */ 3104 if (!ret) { 3105 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 3106 ret = -EINVAL; 3107 } 3108 } 3109 if (!ret) { 3110 verbose(env, "exception callback type id not found in func_info\n"); 3111 ret = -EINVAL; 3112 } 3113 return ret; 3114 } 3115 3116 #define MAX_KFUNC_DESCS 256 3117 #define MAX_KFUNC_BTFS 256 3118 3119 struct bpf_kfunc_desc { 3120 struct btf_func_model func_model; 3121 u32 func_id; 3122 s32 imm; 3123 u16 offset; 3124 unsigned long addr; 3125 }; 3126 3127 struct bpf_kfunc_btf { 3128 struct btf *btf; 3129 struct module *module; 3130 u16 offset; 3131 }; 3132 3133 struct bpf_kfunc_desc_tab { 3134 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 3135 * verification. JITs do lookups by bpf_insn, where func_id may not be 3136 * available, therefore at the end of verification do_misc_fixups() 3137 * sorts this by imm and offset. 3138 */ 3139 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 3140 u32 nr_descs; 3141 }; 3142 3143 struct bpf_kfunc_btf_tab { 3144 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 3145 u32 nr_descs; 3146 }; 3147 3148 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, 3149 int insn_idx); 3150 3151 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 3152 { 3153 const struct bpf_kfunc_desc *d0 = a; 3154 const struct bpf_kfunc_desc *d1 = b; 3155 3156 /* func_id is not greater than BTF_MAX_TYPE */ 3157 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3158 } 3159 3160 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3161 { 3162 const struct bpf_kfunc_btf *d0 = a; 3163 const struct bpf_kfunc_btf *d1 = b; 3164 3165 return d0->offset - d1->offset; 3166 } 3167 3168 static struct bpf_kfunc_desc * 3169 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3170 { 3171 struct bpf_kfunc_desc desc = { 3172 .func_id = func_id, 3173 .offset = offset, 3174 }; 3175 struct bpf_kfunc_desc_tab *tab; 3176 3177 tab = prog->aux->kfunc_tab; 3178 return bsearch(&desc, tab->descs, tab->nr_descs, 3179 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3180 } 3181 3182 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3183 u16 btf_fd_idx, u8 **func_addr) 3184 { 3185 const struct bpf_kfunc_desc *desc; 3186 3187 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3188 if (!desc) 3189 return -EFAULT; 3190 3191 *func_addr = (u8 *)desc->addr; 3192 return 0; 3193 } 3194 3195 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3196 s16 offset) 3197 { 3198 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3199 struct bpf_kfunc_btf_tab *tab; 3200 struct bpf_kfunc_btf *b; 3201 struct module *mod; 3202 struct btf *btf; 3203 int btf_fd; 3204 3205 tab = env->prog->aux->kfunc_btf_tab; 3206 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3207 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3208 if (!b) { 3209 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3210 verbose(env, "too many different module BTFs\n"); 3211 return ERR_PTR(-E2BIG); 3212 } 3213 3214 if (bpfptr_is_null(env->fd_array)) { 3215 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3216 return ERR_PTR(-EPROTO); 3217 } 3218 3219 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3220 offset * sizeof(btf_fd), 3221 sizeof(btf_fd))) 3222 return ERR_PTR(-EFAULT); 3223 3224 btf = btf_get_by_fd(btf_fd); 3225 if (IS_ERR(btf)) { 3226 verbose(env, "invalid module BTF fd specified\n"); 3227 return btf; 3228 } 3229 3230 if (!btf_is_module(btf)) { 3231 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3232 btf_put(btf); 3233 return ERR_PTR(-EINVAL); 3234 } 3235 3236 mod = btf_try_get_module(btf); 3237 if (!mod) { 3238 btf_put(btf); 3239 return ERR_PTR(-ENXIO); 3240 } 3241 3242 b = &tab->descs[tab->nr_descs++]; 3243 b->btf = btf; 3244 b->module = mod; 3245 b->offset = offset; 3246 3247 /* sort() reorders entries by value, so b may no longer point 3248 * to the right entry after this 3249 */ 3250 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3251 kfunc_btf_cmp_by_off, NULL); 3252 } else { 3253 btf = b->btf; 3254 } 3255 3256 return btf; 3257 } 3258 3259 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3260 { 3261 if (!tab) 3262 return; 3263 3264 while (tab->nr_descs--) { 3265 module_put(tab->descs[tab->nr_descs].module); 3266 btf_put(tab->descs[tab->nr_descs].btf); 3267 } 3268 kfree(tab); 3269 } 3270 3271 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3272 { 3273 if (offset) { 3274 if (offset < 0) { 3275 /* In the future, this can be allowed to increase limit 3276 * of fd index into fd_array, interpreted as u16. 3277 */ 3278 verbose(env, "negative offset disallowed for kernel module function call\n"); 3279 return ERR_PTR(-EINVAL); 3280 } 3281 3282 return __find_kfunc_desc_btf(env, offset); 3283 } 3284 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3285 } 3286 3287 #define KF_IMPL_SUFFIX "_impl" 3288 3289 static const struct btf_type *find_kfunc_impl_proto(struct bpf_verifier_env *env, 3290 struct btf *btf, 3291 const char *func_name) 3292 { 3293 char *buf = env->tmp_str_buf; 3294 const struct btf_type *func; 3295 s32 impl_id; 3296 int len; 3297 3298 len = snprintf(buf, TMP_STR_BUF_LEN, "%s%s", func_name, KF_IMPL_SUFFIX); 3299 if (len < 0 || len >= TMP_STR_BUF_LEN) { 3300 verbose(env, "function name %s%s is too long\n", func_name, KF_IMPL_SUFFIX); 3301 return NULL; 3302 } 3303 3304 impl_id = btf_find_by_name_kind(btf, buf, BTF_KIND_FUNC); 3305 if (impl_id <= 0) { 3306 verbose(env, "cannot find function %s in BTF\n", buf); 3307 return NULL; 3308 } 3309 3310 func = btf_type_by_id(btf, impl_id); 3311 3312 return btf_type_by_id(btf, func->type); 3313 } 3314 3315 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 3316 s32 func_id, 3317 s16 offset, 3318 struct bpf_kfunc_meta *kfunc) 3319 { 3320 const struct btf_type *func, *func_proto; 3321 const char *func_name; 3322 u32 *kfunc_flags; 3323 struct btf *btf; 3324 3325 if (func_id <= 0) { 3326 verbose(env, "invalid kernel function btf_id %d\n", func_id); 3327 return -EINVAL; 3328 } 3329 3330 btf = find_kfunc_desc_btf(env, offset); 3331 if (IS_ERR(btf)) { 3332 verbose(env, "failed to find BTF for kernel function\n"); 3333 return PTR_ERR(btf); 3334 } 3335 3336 /* 3337 * Note that kfunc_flags may be NULL at this point, which 3338 * means that we couldn't find func_id in any relevant 3339 * kfunc_id_set. This most likely indicates an invalid kfunc 3340 * call. However we don't fail with an error here, 3341 * and let the caller decide what to do with NULL kfunc->flags. 3342 */ 3343 kfunc_flags = btf_kfunc_flags(btf, func_id, env->prog); 3344 3345 func = btf_type_by_id(btf, func_id); 3346 if (!func || !btf_type_is_func(func)) { 3347 verbose(env, "kernel btf_id %d is not a function\n", func_id); 3348 return -EINVAL; 3349 } 3350 3351 func_name = btf_name_by_offset(btf, func->name_off); 3352 3353 /* 3354 * An actual prototype of a kfunc with KF_IMPLICIT_ARGS flag 3355 * can be found through the counterpart _impl kfunc. 3356 */ 3357 if (kfunc_flags && (*kfunc_flags & KF_IMPLICIT_ARGS)) 3358 func_proto = find_kfunc_impl_proto(env, btf, func_name); 3359 else 3360 func_proto = btf_type_by_id(btf, func->type); 3361 3362 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3363 verbose(env, "kernel function btf_id %d does not have a valid func_proto\n", 3364 func_id); 3365 return -EINVAL; 3366 } 3367 3368 memset(kfunc, 0, sizeof(*kfunc)); 3369 kfunc->btf = btf; 3370 kfunc->id = func_id; 3371 kfunc->name = func_name; 3372 kfunc->proto = func_proto; 3373 kfunc->flags = kfunc_flags; 3374 3375 return 0; 3376 } 3377 3378 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3379 { 3380 struct bpf_kfunc_btf_tab *btf_tab; 3381 struct btf_func_model func_model; 3382 struct bpf_kfunc_desc_tab *tab; 3383 struct bpf_prog_aux *prog_aux; 3384 struct bpf_kfunc_meta kfunc; 3385 struct bpf_kfunc_desc *desc; 3386 unsigned long addr; 3387 int err; 3388 3389 prog_aux = env->prog->aux; 3390 tab = prog_aux->kfunc_tab; 3391 btf_tab = prog_aux->kfunc_btf_tab; 3392 if (!tab) { 3393 if (!btf_vmlinux) { 3394 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3395 return -ENOTSUPP; 3396 } 3397 3398 if (!env->prog->jit_requested) { 3399 verbose(env, "JIT is required for calling kernel function\n"); 3400 return -ENOTSUPP; 3401 } 3402 3403 if (!bpf_jit_supports_kfunc_call()) { 3404 verbose(env, "JIT does not support calling kernel function\n"); 3405 return -ENOTSUPP; 3406 } 3407 3408 if (!env->prog->gpl_compatible) { 3409 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3410 return -EINVAL; 3411 } 3412 3413 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); 3414 if (!tab) 3415 return -ENOMEM; 3416 prog_aux->kfunc_tab = tab; 3417 } 3418 3419 /* func_id == 0 is always invalid, but instead of returning an error, be 3420 * conservative and wait until the code elimination pass before returning 3421 * error, so that invalid calls that get pruned out can be in BPF programs 3422 * loaded from userspace. It is also required that offset be untouched 3423 * for such calls. 3424 */ 3425 if (!func_id && !offset) 3426 return 0; 3427 3428 if (!btf_tab && offset) { 3429 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); 3430 if (!btf_tab) 3431 return -ENOMEM; 3432 prog_aux->kfunc_btf_tab = btf_tab; 3433 } 3434 3435 if (find_kfunc_desc(env->prog, func_id, offset)) 3436 return 0; 3437 3438 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3439 verbose(env, "too many different kernel function calls\n"); 3440 return -E2BIG; 3441 } 3442 3443 err = fetch_kfunc_meta(env, func_id, offset, &kfunc); 3444 if (err) 3445 return err; 3446 3447 addr = kallsyms_lookup_name(kfunc.name); 3448 if (!addr) { 3449 verbose(env, "cannot find address for kernel function %s\n", kfunc.name); 3450 return -EINVAL; 3451 } 3452 3453 if (bpf_dev_bound_kfunc_id(func_id)) { 3454 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3455 if (err) 3456 return err; 3457 } 3458 3459 err = btf_distill_func_proto(&env->log, kfunc.btf, kfunc.proto, kfunc.name, &func_model); 3460 if (err) 3461 return err; 3462 3463 desc = &tab->descs[tab->nr_descs++]; 3464 desc->func_id = func_id; 3465 desc->offset = offset; 3466 desc->addr = addr; 3467 desc->func_model = func_model; 3468 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3469 kfunc_desc_cmp_by_id_off, NULL); 3470 return 0; 3471 } 3472 3473 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3474 { 3475 const struct bpf_kfunc_desc *d0 = a; 3476 const struct bpf_kfunc_desc *d1 = b; 3477 3478 if (d0->imm != d1->imm) 3479 return d0->imm < d1->imm ? -1 : 1; 3480 if (d0->offset != d1->offset) 3481 return d0->offset < d1->offset ? -1 : 1; 3482 return 0; 3483 } 3484 3485 static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc) 3486 { 3487 unsigned long call_imm; 3488 3489 if (bpf_jit_supports_far_kfunc_call()) { 3490 call_imm = desc->func_id; 3491 } else { 3492 call_imm = BPF_CALL_IMM(desc->addr); 3493 /* Check whether the relative offset overflows desc->imm */ 3494 if ((unsigned long)(s32)call_imm != call_imm) { 3495 verbose(env, "address of kernel func_id %u is out of range\n", 3496 desc->func_id); 3497 return -EINVAL; 3498 } 3499 } 3500 desc->imm = call_imm; 3501 return 0; 3502 } 3503 3504 static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env) 3505 { 3506 struct bpf_kfunc_desc_tab *tab; 3507 int i, err; 3508 3509 tab = env->prog->aux->kfunc_tab; 3510 if (!tab) 3511 return 0; 3512 3513 for (i = 0; i < tab->nr_descs; i++) { 3514 err = set_kfunc_desc_imm(env, &tab->descs[i]); 3515 if (err) 3516 return err; 3517 } 3518 3519 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3520 kfunc_desc_cmp_by_imm_off, NULL); 3521 return 0; 3522 } 3523 3524 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3525 { 3526 return !!prog->aux->kfunc_tab; 3527 } 3528 3529 const struct btf_func_model * 3530 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3531 const struct bpf_insn *insn) 3532 { 3533 const struct bpf_kfunc_desc desc = { 3534 .imm = insn->imm, 3535 .offset = insn->off, 3536 }; 3537 const struct bpf_kfunc_desc *res; 3538 struct bpf_kfunc_desc_tab *tab; 3539 3540 tab = prog->aux->kfunc_tab; 3541 res = bsearch(&desc, tab->descs, tab->nr_descs, 3542 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3543 3544 return res ? &res->func_model : NULL; 3545 } 3546 3547 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3548 struct bpf_insn *insn, int cnt) 3549 { 3550 int i, ret; 3551 3552 for (i = 0; i < cnt; i++, insn++) { 3553 if (bpf_pseudo_kfunc_call(insn)) { 3554 ret = add_kfunc_call(env, insn->imm, insn->off); 3555 if (ret < 0) 3556 return ret; 3557 } 3558 } 3559 return 0; 3560 } 3561 3562 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3563 { 3564 struct bpf_subprog_info *subprog = env->subprog_info; 3565 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3566 struct bpf_insn *insn = env->prog->insnsi; 3567 3568 /* Add entry function. */ 3569 ret = add_subprog(env, 0); 3570 if (ret) 3571 return ret; 3572 3573 for (i = 0; i < insn_cnt; i++, insn++) { 3574 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3575 !bpf_pseudo_kfunc_call(insn)) 3576 continue; 3577 3578 if (!env->bpf_capable) { 3579 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3580 return -EPERM; 3581 } 3582 3583 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3584 ret = add_subprog(env, i + insn->imm + 1); 3585 else 3586 ret = add_kfunc_call(env, insn->imm, insn->off); 3587 3588 if (ret < 0) 3589 return ret; 3590 } 3591 3592 ret = bpf_find_exception_callback_insn_off(env); 3593 if (ret < 0) 3594 return ret; 3595 ex_cb_insn = ret; 3596 3597 /* If ex_cb_insn > 0, this means that the main program has a subprog 3598 * marked using BTF decl tag to serve as the exception callback. 3599 */ 3600 if (ex_cb_insn) { 3601 ret = add_subprog(env, ex_cb_insn); 3602 if (ret < 0) 3603 return ret; 3604 for (i = 1; i < env->subprog_cnt; i++) { 3605 if (env->subprog_info[i].start != ex_cb_insn) 3606 continue; 3607 env->exception_callback_subprog = i; 3608 mark_subprog_exc_cb(env, i); 3609 break; 3610 } 3611 } 3612 3613 /* Add a fake 'exit' subprog which could simplify subprog iteration 3614 * logic. 'subprog_cnt' should not be increased. 3615 */ 3616 subprog[env->subprog_cnt].start = insn_cnt; 3617 3618 if (env->log.level & BPF_LOG_LEVEL2) 3619 for (i = 0; i < env->subprog_cnt; i++) 3620 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3621 3622 return 0; 3623 } 3624 3625 static int check_subprogs(struct bpf_verifier_env *env) 3626 { 3627 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3628 struct bpf_subprog_info *subprog = env->subprog_info; 3629 struct bpf_insn *insn = env->prog->insnsi; 3630 int insn_cnt = env->prog->len; 3631 3632 /* now check that all jumps are within the same subprog */ 3633 subprog_start = subprog[cur_subprog].start; 3634 subprog_end = subprog[cur_subprog + 1].start; 3635 for (i = 0; i < insn_cnt; i++) { 3636 u8 code = insn[i].code; 3637 3638 if (code == (BPF_JMP | BPF_CALL) && 3639 insn[i].src_reg == 0 && 3640 insn[i].imm == BPF_FUNC_tail_call) { 3641 subprog[cur_subprog].has_tail_call = true; 3642 subprog[cur_subprog].tail_call_reachable = true; 3643 } 3644 if (BPF_CLASS(code) == BPF_LD && 3645 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3646 subprog[cur_subprog].has_ld_abs = true; 3647 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3648 goto next; 3649 if (BPF_OP(code) == BPF_CALL) 3650 goto next; 3651 if (BPF_OP(code) == BPF_EXIT) { 3652 subprog[cur_subprog].exit_idx = i; 3653 goto next; 3654 } 3655 off = i + bpf_jmp_offset(&insn[i]) + 1; 3656 if (off < subprog_start || off >= subprog_end) { 3657 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3658 return -EINVAL; 3659 } 3660 next: 3661 if (i == subprog_end - 1) { 3662 /* to avoid fall-through from one subprog into another 3663 * the last insn of the subprog should be either exit 3664 * or unconditional jump back or bpf_throw call 3665 */ 3666 if (code != (BPF_JMP | BPF_EXIT) && 3667 code != (BPF_JMP32 | BPF_JA) && 3668 code != (BPF_JMP | BPF_JA)) { 3669 verbose(env, "last insn is not an exit or jmp\n"); 3670 return -EINVAL; 3671 } 3672 subprog_start = subprog_end; 3673 cur_subprog++; 3674 if (cur_subprog < env->subprog_cnt) 3675 subprog_end = subprog[cur_subprog + 1].start; 3676 } 3677 } 3678 return 0; 3679 } 3680 3681 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3682 int spi, int nr_slots) 3683 { 3684 int err, i; 3685 3686 for (i = 0; i < nr_slots; i++) { 3687 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i)); 3688 if (err) 3689 return err; 3690 mark_stack_slot_scratched(env, spi - i); 3691 } 3692 return 0; 3693 } 3694 3695 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3696 { 3697 int spi; 3698 3699 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3700 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3701 * check_kfunc_call. 3702 */ 3703 if (reg->type == CONST_PTR_TO_DYNPTR) 3704 return 0; 3705 spi = dynptr_get_spi(env, reg); 3706 if (spi < 0) 3707 return spi; 3708 /* Caller ensures dynptr is valid and initialized, which means spi is in 3709 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3710 * read. 3711 */ 3712 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3713 } 3714 3715 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3716 int spi, int nr_slots) 3717 { 3718 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3719 } 3720 3721 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3722 { 3723 int spi; 3724 3725 spi = irq_flag_get_spi(env, reg); 3726 if (spi < 0) 3727 return spi; 3728 return mark_stack_slot_obj_read(env, reg, spi, 1); 3729 } 3730 3731 /* This function is supposed to be used by the following 32-bit optimization 3732 * code only. It returns TRUE if the source or destination register operates 3733 * on 64-bit, otherwise return FALSE. 3734 */ 3735 static bool is_reg64(struct bpf_insn *insn, 3736 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3737 { 3738 u8 code, class, op; 3739 3740 code = insn->code; 3741 class = BPF_CLASS(code); 3742 op = BPF_OP(code); 3743 if (class == BPF_JMP) { 3744 /* BPF_EXIT for "main" will reach here. Return TRUE 3745 * conservatively. 3746 */ 3747 if (op == BPF_EXIT) 3748 return true; 3749 if (op == BPF_CALL) { 3750 /* BPF to BPF call will reach here because of marking 3751 * caller saved clobber with DST_OP_NO_MARK for which we 3752 * don't care the register def because they are anyway 3753 * marked as NOT_INIT already. 3754 */ 3755 if (insn->src_reg == BPF_PSEUDO_CALL) 3756 return false; 3757 /* Helper call will reach here because of arg type 3758 * check, conservatively return TRUE. 3759 */ 3760 if (t == SRC_OP) 3761 return true; 3762 3763 return false; 3764 } 3765 } 3766 3767 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3768 return false; 3769 3770 if (class == BPF_ALU64 || class == BPF_JMP || 3771 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3772 return true; 3773 3774 if (class == BPF_ALU || class == BPF_JMP32) 3775 return false; 3776 3777 if (class == BPF_LDX) { 3778 if (t != SRC_OP) 3779 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3780 /* LDX source must be ptr. */ 3781 return true; 3782 } 3783 3784 if (class == BPF_STX) { 3785 /* BPF_STX (including atomic variants) has one or more source 3786 * operands, one of which is a ptr. Check whether the caller is 3787 * asking about it. 3788 */ 3789 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3790 return true; 3791 return BPF_SIZE(code) == BPF_DW; 3792 } 3793 3794 if (class == BPF_LD) { 3795 u8 mode = BPF_MODE(code); 3796 3797 /* LD_IMM64 */ 3798 if (mode == BPF_IMM) 3799 return true; 3800 3801 /* Both LD_IND and LD_ABS return 32-bit data. */ 3802 if (t != SRC_OP) 3803 return false; 3804 3805 /* Implicit ctx ptr. */ 3806 if (regno == BPF_REG_6) 3807 return true; 3808 3809 /* Explicit source could be any width. */ 3810 return true; 3811 } 3812 3813 if (class == BPF_ST) 3814 /* The only source register for BPF_ST is a ptr. */ 3815 return true; 3816 3817 /* Conservatively return true at default. */ 3818 return true; 3819 } 3820 3821 /* Return the regno defined by the insn, or -1. */ 3822 static int insn_def_regno(const struct bpf_insn *insn) 3823 { 3824 switch (BPF_CLASS(insn->code)) { 3825 case BPF_JMP: 3826 case BPF_JMP32: 3827 case BPF_ST: 3828 return -1; 3829 case BPF_STX: 3830 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3831 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3832 if (insn->imm == BPF_CMPXCHG) 3833 return BPF_REG_0; 3834 else if (insn->imm == BPF_LOAD_ACQ) 3835 return insn->dst_reg; 3836 else if (insn->imm & BPF_FETCH) 3837 return insn->src_reg; 3838 } 3839 return -1; 3840 default: 3841 return insn->dst_reg; 3842 } 3843 } 3844 3845 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3846 static bool insn_has_def32(struct bpf_insn *insn) 3847 { 3848 int dst_reg = insn_def_regno(insn); 3849 3850 if (dst_reg == -1) 3851 return false; 3852 3853 return !is_reg64(insn, dst_reg, NULL, DST_OP); 3854 } 3855 3856 static void mark_insn_zext(struct bpf_verifier_env *env, 3857 struct bpf_reg_state *reg) 3858 { 3859 s32 def_idx = reg->subreg_def; 3860 3861 if (def_idx == DEF_NOT_SUBREG) 3862 return; 3863 3864 env->insn_aux_data[def_idx - 1].zext_dst = true; 3865 /* The dst will be zero extended, so won't be sub-register anymore. */ 3866 reg->subreg_def = DEF_NOT_SUBREG; 3867 } 3868 3869 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3870 enum reg_arg_type t) 3871 { 3872 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3873 struct bpf_reg_state *reg; 3874 bool rw64; 3875 3876 if (regno >= MAX_BPF_REG) { 3877 verbose(env, "R%d is invalid\n", regno); 3878 return -EINVAL; 3879 } 3880 3881 mark_reg_scratched(env, regno); 3882 3883 reg = ®s[regno]; 3884 rw64 = is_reg64(insn, regno, reg, t); 3885 if (t == SRC_OP) { 3886 /* check whether register used as source operand can be read */ 3887 if (reg->type == NOT_INIT) { 3888 verbose(env, "R%d !read_ok\n", regno); 3889 return -EACCES; 3890 } 3891 /* We don't need to worry about FP liveness because it's read-only */ 3892 if (regno == BPF_REG_FP) 3893 return 0; 3894 3895 if (rw64) 3896 mark_insn_zext(env, reg); 3897 3898 return 0; 3899 } else { 3900 /* check whether register used as dest operand can be written to */ 3901 if (regno == BPF_REG_FP) { 3902 verbose(env, "frame pointer is read only\n"); 3903 return -EACCES; 3904 } 3905 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3906 if (t == DST_OP) 3907 mark_reg_unknown(env, regs, regno); 3908 } 3909 return 0; 3910 } 3911 3912 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3913 enum reg_arg_type t) 3914 { 3915 struct bpf_verifier_state *vstate = env->cur_state; 3916 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3917 3918 return __check_reg_arg(env, state->regs, regno, t); 3919 } 3920 3921 static int insn_stack_access_flags(int frameno, int spi) 3922 { 3923 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3924 } 3925 3926 static int insn_stack_access_spi(int insn_flags) 3927 { 3928 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3929 } 3930 3931 static int insn_stack_access_frameno(int insn_flags) 3932 { 3933 return insn_flags & INSN_F_FRAMENO_MASK; 3934 } 3935 3936 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3937 { 3938 env->insn_aux_data[idx].jmp_point = true; 3939 } 3940 3941 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3942 { 3943 return env->insn_aux_data[insn_idx].jmp_point; 3944 } 3945 3946 #define LR_FRAMENO_BITS 3 3947 #define LR_SPI_BITS 6 3948 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3949 #define LR_SIZE_BITS 4 3950 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3951 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3952 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3953 #define LR_SPI_OFF LR_FRAMENO_BITS 3954 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3955 #define LINKED_REGS_MAX 6 3956 3957 struct linked_reg { 3958 u8 frameno; 3959 union { 3960 u8 spi; 3961 u8 regno; 3962 }; 3963 bool is_reg; 3964 }; 3965 3966 struct linked_regs { 3967 int cnt; 3968 struct linked_reg entries[LINKED_REGS_MAX]; 3969 }; 3970 3971 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3972 { 3973 if (s->cnt < LINKED_REGS_MAX) 3974 return &s->entries[s->cnt++]; 3975 3976 return NULL; 3977 } 3978 3979 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3980 * number of elements currently in stack. 3981 * Pack one history entry for linked registers as 10 bits in the following format: 3982 * - 3-bits frameno 3983 * - 6-bits spi_or_reg 3984 * - 1-bit is_reg 3985 */ 3986 static u64 linked_regs_pack(struct linked_regs *s) 3987 { 3988 u64 val = 0; 3989 int i; 3990 3991 for (i = 0; i < s->cnt; ++i) { 3992 struct linked_reg *e = &s->entries[i]; 3993 u64 tmp = 0; 3994 3995 tmp |= e->frameno; 3996 tmp |= e->spi << LR_SPI_OFF; 3997 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3998 3999 val <<= LR_ENTRY_BITS; 4000 val |= tmp; 4001 } 4002 val <<= LR_SIZE_BITS; 4003 val |= s->cnt; 4004 return val; 4005 } 4006 4007 static void linked_regs_unpack(u64 val, struct linked_regs *s) 4008 { 4009 int i; 4010 4011 s->cnt = val & LR_SIZE_MASK; 4012 val >>= LR_SIZE_BITS; 4013 4014 for (i = 0; i < s->cnt; ++i) { 4015 struct linked_reg *e = &s->entries[i]; 4016 4017 e->frameno = val & LR_FRAMENO_MASK; 4018 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 4019 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 4020 val >>= LR_ENTRY_BITS; 4021 } 4022 } 4023 4024 /* for any branch, call, exit record the history of jmps in the given state */ 4025 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 4026 int insn_flags, u64 linked_regs) 4027 { 4028 u32 cnt = cur->jmp_history_cnt; 4029 struct bpf_jmp_history_entry *p; 4030 size_t alloc_size; 4031 4032 /* combine instruction flags if we already recorded this instruction */ 4033 if (env->cur_hist_ent) { 4034 /* atomic instructions push insn_flags twice, for READ and 4035 * WRITE sides, but they should agree on stack slot 4036 */ 4037 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 4038 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 4039 env, "insn history: insn_idx %d cur flags %x new flags %x", 4040 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 4041 env->cur_hist_ent->flags |= insn_flags; 4042 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 4043 "insn history: insn_idx %d linked_regs: %#llx", 4044 env->insn_idx, env->cur_hist_ent->linked_regs); 4045 env->cur_hist_ent->linked_regs = linked_regs; 4046 return 0; 4047 } 4048 4049 cnt++; 4050 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 4051 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); 4052 if (!p) 4053 return -ENOMEM; 4054 cur->jmp_history = p; 4055 4056 p = &cur->jmp_history[cnt - 1]; 4057 p->idx = env->insn_idx; 4058 p->prev_idx = env->prev_insn_idx; 4059 p->flags = insn_flags; 4060 p->linked_regs = linked_regs; 4061 cur->jmp_history_cnt = cnt; 4062 env->cur_hist_ent = p; 4063 4064 return 0; 4065 } 4066 4067 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 4068 u32 hist_end, int insn_idx) 4069 { 4070 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 4071 return &st->jmp_history[hist_end - 1]; 4072 return NULL; 4073 } 4074 4075 /* Backtrack one insn at a time. If idx is not at the top of recorded 4076 * history then previous instruction came from straight line execution. 4077 * Return -ENOENT if we exhausted all instructions within given state. 4078 * 4079 * It's legal to have a bit of a looping with the same starting and ending 4080 * insn index within the same state, e.g.: 3->4->5->3, so just because current 4081 * instruction index is the same as state's first_idx doesn't mean we are 4082 * done. If there is still some jump history left, we should keep going. We 4083 * need to take into account that we might have a jump history between given 4084 * state's parent and itself, due to checkpointing. In this case, we'll have 4085 * history entry recording a jump from last instruction of parent state and 4086 * first instruction of given state. 4087 */ 4088 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 4089 u32 *history) 4090 { 4091 u32 cnt = *history; 4092 4093 if (i == st->first_insn_idx) { 4094 if (cnt == 0) 4095 return -ENOENT; 4096 if (cnt == 1 && st->jmp_history[0].idx == i) 4097 return -ENOENT; 4098 } 4099 4100 if (cnt && st->jmp_history[cnt - 1].idx == i) { 4101 i = st->jmp_history[cnt - 1].prev_idx; 4102 (*history)--; 4103 } else { 4104 i--; 4105 } 4106 return i; 4107 } 4108 4109 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 4110 { 4111 const struct btf_type *func; 4112 struct btf *desc_btf; 4113 4114 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 4115 return NULL; 4116 4117 desc_btf = find_kfunc_desc_btf(data, insn->off); 4118 if (IS_ERR(desc_btf)) 4119 return "<error>"; 4120 4121 func = btf_type_by_id(desc_btf, insn->imm); 4122 return btf_name_by_offset(desc_btf, func->name_off); 4123 } 4124 4125 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 4126 { 4127 const struct bpf_insn_cbs cbs = { 4128 .cb_call = disasm_kfunc_name, 4129 .cb_print = verbose, 4130 .private_data = env, 4131 }; 4132 4133 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4134 } 4135 4136 static inline void bt_init(struct backtrack_state *bt, u32 frame) 4137 { 4138 bt->frame = frame; 4139 } 4140 4141 static inline void bt_reset(struct backtrack_state *bt) 4142 { 4143 struct bpf_verifier_env *env = bt->env; 4144 4145 memset(bt, 0, sizeof(*bt)); 4146 bt->env = env; 4147 } 4148 4149 static inline u32 bt_empty(struct backtrack_state *bt) 4150 { 4151 u64 mask = 0; 4152 int i; 4153 4154 for (i = 0; i <= bt->frame; i++) 4155 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 4156 4157 return mask == 0; 4158 } 4159 4160 static inline int bt_subprog_enter(struct backtrack_state *bt) 4161 { 4162 if (bt->frame == MAX_CALL_FRAMES - 1) { 4163 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 4164 return -EFAULT; 4165 } 4166 bt->frame++; 4167 return 0; 4168 } 4169 4170 static inline int bt_subprog_exit(struct backtrack_state *bt) 4171 { 4172 if (bt->frame == 0) { 4173 verifier_bug(bt->env, "subprog exit from frame 0"); 4174 return -EFAULT; 4175 } 4176 bt->frame--; 4177 return 0; 4178 } 4179 4180 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4181 { 4182 bt->reg_masks[frame] |= 1 << reg; 4183 } 4184 4185 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4186 { 4187 bt->reg_masks[frame] &= ~(1 << reg); 4188 } 4189 4190 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4191 { 4192 bt_set_frame_reg(bt, bt->frame, reg); 4193 } 4194 4195 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4196 { 4197 bt_clear_frame_reg(bt, bt->frame, reg); 4198 } 4199 4200 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4201 { 4202 bt->stack_masks[frame] |= 1ull << slot; 4203 } 4204 4205 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4206 { 4207 bt->stack_masks[frame] &= ~(1ull << slot); 4208 } 4209 4210 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4211 { 4212 return bt->reg_masks[frame]; 4213 } 4214 4215 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4216 { 4217 return bt->reg_masks[bt->frame]; 4218 } 4219 4220 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4221 { 4222 return bt->stack_masks[frame]; 4223 } 4224 4225 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4226 { 4227 return bt->stack_masks[bt->frame]; 4228 } 4229 4230 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4231 { 4232 return bt->reg_masks[bt->frame] & (1 << reg); 4233 } 4234 4235 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4236 { 4237 return bt->reg_masks[frame] & (1 << reg); 4238 } 4239 4240 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4241 { 4242 return bt->stack_masks[frame] & (1ull << slot); 4243 } 4244 4245 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4246 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4247 { 4248 DECLARE_BITMAP(mask, 64); 4249 bool first = true; 4250 int i, n; 4251 4252 buf[0] = '\0'; 4253 4254 bitmap_from_u64(mask, reg_mask); 4255 for_each_set_bit(i, mask, 32) { 4256 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4257 first = false; 4258 buf += n; 4259 buf_sz -= n; 4260 if (buf_sz < 0) 4261 break; 4262 } 4263 } 4264 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4265 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4266 { 4267 DECLARE_BITMAP(mask, 64); 4268 bool first = true; 4269 int i, n; 4270 4271 buf[0] = '\0'; 4272 4273 bitmap_from_u64(mask, stack_mask); 4274 for_each_set_bit(i, mask, 64) { 4275 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4276 first = false; 4277 buf += n; 4278 buf_sz -= n; 4279 if (buf_sz < 0) 4280 break; 4281 } 4282 } 4283 4284 /* If any register R in hist->linked_regs is marked as precise in bt, 4285 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4286 */ 4287 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 4288 { 4289 struct linked_regs linked_regs; 4290 bool some_precise = false; 4291 int i; 4292 4293 if (!hist || hist->linked_regs == 0) 4294 return; 4295 4296 linked_regs_unpack(hist->linked_regs, &linked_regs); 4297 for (i = 0; i < linked_regs.cnt; ++i) { 4298 struct linked_reg *e = &linked_regs.entries[i]; 4299 4300 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4301 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4302 some_precise = true; 4303 break; 4304 } 4305 } 4306 4307 if (!some_precise) 4308 return; 4309 4310 for (i = 0; i < linked_regs.cnt; ++i) { 4311 struct linked_reg *e = &linked_regs.entries[i]; 4312 4313 if (e->is_reg) 4314 bt_set_frame_reg(bt, e->frameno, e->regno); 4315 else 4316 bt_set_frame_slot(bt, e->frameno, e->spi); 4317 } 4318 } 4319 4320 /* For given verifier state backtrack_insn() is called from the last insn to 4321 * the first insn. Its purpose is to compute a bitmask of registers and 4322 * stack slots that needs precision in the parent verifier state. 4323 * 4324 * @idx is an index of the instruction we are currently processing; 4325 * @subseq_idx is an index of the subsequent instruction that: 4326 * - *would be* executed next, if jump history is viewed in forward order; 4327 * - *was* processed previously during backtracking. 4328 */ 4329 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4330 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 4331 { 4332 struct bpf_insn *insn = env->prog->insnsi + idx; 4333 u8 class = BPF_CLASS(insn->code); 4334 u8 opcode = BPF_OP(insn->code); 4335 u8 mode = BPF_MODE(insn->code); 4336 u32 dreg = insn->dst_reg; 4337 u32 sreg = insn->src_reg; 4338 u32 spi, i, fr; 4339 4340 if (insn->code == 0) 4341 return 0; 4342 if (env->log.level & BPF_LOG_LEVEL2) { 4343 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4344 verbose(env, "mark_precise: frame%d: regs=%s ", 4345 bt->frame, env->tmp_str_buf); 4346 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4347 verbose(env, "stack=%s before ", env->tmp_str_buf); 4348 verbose(env, "%d: ", idx); 4349 verbose_insn(env, insn); 4350 } 4351 4352 /* If there is a history record that some registers gained range at this insn, 4353 * propagate precision marks to those registers, so that bt_is_reg_set() 4354 * accounts for these registers. 4355 */ 4356 bt_sync_linked_regs(bt, hist); 4357 4358 if (class == BPF_ALU || class == BPF_ALU64) { 4359 if (!bt_is_reg_set(bt, dreg)) 4360 return 0; 4361 if (opcode == BPF_END || opcode == BPF_NEG) { 4362 /* sreg is reserved and unused 4363 * dreg still need precision before this insn 4364 */ 4365 return 0; 4366 } else if (opcode == BPF_MOV) { 4367 if (BPF_SRC(insn->code) == BPF_X) { 4368 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4369 * dreg needs precision after this insn 4370 * sreg needs precision before this insn 4371 */ 4372 bt_clear_reg(bt, dreg); 4373 if (sreg != BPF_REG_FP) 4374 bt_set_reg(bt, sreg); 4375 } else { 4376 /* dreg = K 4377 * dreg needs precision after this insn. 4378 * Corresponding register is already marked 4379 * as precise=true in this verifier state. 4380 * No further markings in parent are necessary 4381 */ 4382 bt_clear_reg(bt, dreg); 4383 } 4384 } else { 4385 if (BPF_SRC(insn->code) == BPF_X) { 4386 /* dreg += sreg 4387 * both dreg and sreg need precision 4388 * before this insn 4389 */ 4390 if (sreg != BPF_REG_FP) 4391 bt_set_reg(bt, sreg); 4392 } /* else dreg += K 4393 * dreg still needs precision before this insn 4394 */ 4395 } 4396 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4397 if (!bt_is_reg_set(bt, dreg)) 4398 return 0; 4399 bt_clear_reg(bt, dreg); 4400 4401 /* scalars can only be spilled into stack w/o losing precision. 4402 * Load from any other memory can be zero extended. 4403 * The desire to keep that precision is already indicated 4404 * by 'precise' mark in corresponding register of this state. 4405 * No further tracking necessary. 4406 */ 4407 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4408 return 0; 4409 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4410 * that [fp - off] slot contains scalar that needs to be 4411 * tracked with precision 4412 */ 4413 spi = insn_stack_access_spi(hist->flags); 4414 fr = insn_stack_access_frameno(hist->flags); 4415 bt_set_frame_slot(bt, fr, spi); 4416 } else if (class == BPF_STX || class == BPF_ST) { 4417 if (bt_is_reg_set(bt, dreg)) 4418 /* stx & st shouldn't be using _scalar_ dst_reg 4419 * to access memory. It means backtracking 4420 * encountered a case of pointer subtraction. 4421 */ 4422 return -ENOTSUPP; 4423 /* scalars can only be spilled into stack */ 4424 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4425 return 0; 4426 spi = insn_stack_access_spi(hist->flags); 4427 fr = insn_stack_access_frameno(hist->flags); 4428 if (!bt_is_frame_slot_set(bt, fr, spi)) 4429 return 0; 4430 bt_clear_frame_slot(bt, fr, spi); 4431 if (class == BPF_STX) 4432 bt_set_reg(bt, sreg); 4433 } else if (class == BPF_JMP || class == BPF_JMP32) { 4434 if (bpf_pseudo_call(insn)) { 4435 int subprog_insn_idx, subprog; 4436 4437 subprog_insn_idx = idx + insn->imm + 1; 4438 subprog = find_subprog(env, subprog_insn_idx); 4439 if (subprog < 0) 4440 return -EFAULT; 4441 4442 if (subprog_is_global(env, subprog)) { 4443 /* check that jump history doesn't have any 4444 * extra instructions from subprog; the next 4445 * instruction after call to global subprog 4446 * should be literally next instruction in 4447 * caller program 4448 */ 4449 verifier_bug_if(idx + 1 != subseq_idx, env, 4450 "extra insn from subprog"); 4451 /* r1-r5 are invalidated after subprog call, 4452 * so for global func call it shouldn't be set 4453 * anymore 4454 */ 4455 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4456 verifier_bug(env, "global subprog unexpected regs %x", 4457 bt_reg_mask(bt)); 4458 return -EFAULT; 4459 } 4460 /* global subprog always sets R0 */ 4461 bt_clear_reg(bt, BPF_REG_0); 4462 return 0; 4463 } else { 4464 /* static subprog call instruction, which 4465 * means that we are exiting current subprog, 4466 * so only r1-r5 could be still requested as 4467 * precise, r0 and r6-r10 or any stack slot in 4468 * the current frame should be zero by now 4469 */ 4470 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4471 verifier_bug(env, "static subprog unexpected regs %x", 4472 bt_reg_mask(bt)); 4473 return -EFAULT; 4474 } 4475 /* we are now tracking register spills correctly, 4476 * so any instance of leftover slots is a bug 4477 */ 4478 if (bt_stack_mask(bt) != 0) { 4479 verifier_bug(env, 4480 "static subprog leftover stack slots %llx", 4481 bt_stack_mask(bt)); 4482 return -EFAULT; 4483 } 4484 /* propagate r1-r5 to the caller */ 4485 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4486 if (bt_is_reg_set(bt, i)) { 4487 bt_clear_reg(bt, i); 4488 bt_set_frame_reg(bt, bt->frame - 1, i); 4489 } 4490 } 4491 if (bt_subprog_exit(bt)) 4492 return -EFAULT; 4493 return 0; 4494 } 4495 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4496 /* exit from callback subprog to callback-calling helper or 4497 * kfunc call. Use idx/subseq_idx check to discern it from 4498 * straight line code backtracking. 4499 * Unlike the subprog call handling above, we shouldn't 4500 * propagate precision of r1-r5 (if any requested), as they are 4501 * not actually arguments passed directly to callback subprogs 4502 */ 4503 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4504 verifier_bug(env, "callback unexpected regs %x", 4505 bt_reg_mask(bt)); 4506 return -EFAULT; 4507 } 4508 if (bt_stack_mask(bt) != 0) { 4509 verifier_bug(env, "callback leftover stack slots %llx", 4510 bt_stack_mask(bt)); 4511 return -EFAULT; 4512 } 4513 /* clear r1-r5 in callback subprog's mask */ 4514 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4515 bt_clear_reg(bt, i); 4516 if (bt_subprog_exit(bt)) 4517 return -EFAULT; 4518 return 0; 4519 } else if (opcode == BPF_CALL) { 4520 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4521 * catch this error later. Make backtracking conservative 4522 * with ENOTSUPP. 4523 */ 4524 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4525 return -ENOTSUPP; 4526 /* regular helper call sets R0 */ 4527 bt_clear_reg(bt, BPF_REG_0); 4528 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4529 /* if backtracking was looking for registers R1-R5 4530 * they should have been found already. 4531 */ 4532 verifier_bug(env, "backtracking call unexpected regs %x", 4533 bt_reg_mask(bt)); 4534 return -EFAULT; 4535 } 4536 if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call 4537 && subseq_idx - idx != 1) { 4538 if (bt_subprog_enter(bt)) 4539 return -EFAULT; 4540 } 4541 } else if (opcode == BPF_EXIT) { 4542 bool r0_precise; 4543 4544 /* Backtracking to a nested function call, 'idx' is a part of 4545 * the inner frame 'subseq_idx' is a part of the outer frame. 4546 * In case of a regular function call, instructions giving 4547 * precision to registers R1-R5 should have been found already. 4548 * In case of a callback, it is ok to have R1-R5 marked for 4549 * backtracking, as these registers are set by the function 4550 * invoking callback. 4551 */ 4552 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx)) 4553 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4554 bt_clear_reg(bt, i); 4555 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4556 verifier_bug(env, "backtracking exit unexpected regs %x", 4557 bt_reg_mask(bt)); 4558 return -EFAULT; 4559 } 4560 4561 /* BPF_EXIT in subprog or callback always returns 4562 * right after the call instruction, so by checking 4563 * whether the instruction at subseq_idx-1 is subprog 4564 * call or not we can distinguish actual exit from 4565 * *subprog* from exit from *callback*. In the former 4566 * case, we need to propagate r0 precision, if 4567 * necessary. In the former we never do that. 4568 */ 4569 r0_precise = subseq_idx - 1 >= 0 && 4570 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4571 bt_is_reg_set(bt, BPF_REG_0); 4572 4573 bt_clear_reg(bt, BPF_REG_0); 4574 if (bt_subprog_enter(bt)) 4575 return -EFAULT; 4576 4577 if (r0_precise) 4578 bt_set_reg(bt, BPF_REG_0); 4579 /* r6-r9 and stack slots will stay set in caller frame 4580 * bitmasks until we return back from callee(s) 4581 */ 4582 return 0; 4583 } else if (BPF_SRC(insn->code) == BPF_X) { 4584 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4585 return 0; 4586 /* dreg <cond> sreg 4587 * Both dreg and sreg need precision before 4588 * this insn. If only sreg was marked precise 4589 * before it would be equally necessary to 4590 * propagate it to dreg. 4591 */ 4592 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4593 bt_set_reg(bt, sreg); 4594 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4595 bt_set_reg(bt, dreg); 4596 } else if (BPF_SRC(insn->code) == BPF_K) { 4597 /* dreg <cond> K 4598 * Only dreg still needs precision before 4599 * this insn, so for the K-based conditional 4600 * there is nothing new to be marked. 4601 */ 4602 } 4603 } else if (class == BPF_LD) { 4604 if (!bt_is_reg_set(bt, dreg)) 4605 return 0; 4606 bt_clear_reg(bt, dreg); 4607 /* It's ld_imm64 or ld_abs or ld_ind. 4608 * For ld_imm64 no further tracking of precision 4609 * into parent is necessary 4610 */ 4611 if (mode == BPF_IND || mode == BPF_ABS) 4612 /* to be analyzed */ 4613 return -ENOTSUPP; 4614 } 4615 /* Propagate precision marks to linked registers, to account for 4616 * registers marked as precise in this function. 4617 */ 4618 bt_sync_linked_regs(bt, hist); 4619 return 0; 4620 } 4621 4622 /* the scalar precision tracking algorithm: 4623 * . at the start all registers have precise=false. 4624 * . scalar ranges are tracked as normal through alu and jmp insns. 4625 * . once precise value of the scalar register is used in: 4626 * . ptr + scalar alu 4627 * . if (scalar cond K|scalar) 4628 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4629 * backtrack through the verifier states and mark all registers and 4630 * stack slots with spilled constants that these scalar registers 4631 * should be precise. 4632 * . during state pruning two registers (or spilled stack slots) 4633 * are equivalent if both are not precise. 4634 * 4635 * Note the verifier cannot simply walk register parentage chain, 4636 * since many different registers and stack slots could have been 4637 * used to compute single precise scalar. 4638 * 4639 * The approach of starting with precise=true for all registers and then 4640 * backtrack to mark a register as not precise when the verifier detects 4641 * that program doesn't care about specific value (e.g., when helper 4642 * takes register as ARG_ANYTHING parameter) is not safe. 4643 * 4644 * It's ok to walk single parentage chain of the verifier states. 4645 * It's possible that this backtracking will go all the way till 1st insn. 4646 * All other branches will be explored for needing precision later. 4647 * 4648 * The backtracking needs to deal with cases like: 4649 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4650 * r9 -= r8 4651 * r5 = r9 4652 * if r5 > 0x79f goto pc+7 4653 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4654 * r5 += 1 4655 * ... 4656 * call bpf_perf_event_output#25 4657 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4658 * 4659 * and this case: 4660 * r6 = 1 4661 * call foo // uses callee's r6 inside to compute r0 4662 * r0 += r6 4663 * if r0 == 0 goto 4664 * 4665 * to track above reg_mask/stack_mask needs to be independent for each frame. 4666 * 4667 * Also if parent's curframe > frame where backtracking started, 4668 * the verifier need to mark registers in both frames, otherwise callees 4669 * may incorrectly prune callers. This is similar to 4670 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4671 * 4672 * For now backtracking falls back into conservative marking. 4673 */ 4674 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4675 struct bpf_verifier_state *st) 4676 { 4677 struct bpf_func_state *func; 4678 struct bpf_reg_state *reg; 4679 int i, j; 4680 4681 if (env->log.level & BPF_LOG_LEVEL2) { 4682 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4683 st->curframe); 4684 } 4685 4686 /* big hammer: mark all scalars precise in this path. 4687 * pop_stack may still get !precise scalars. 4688 * We also skip current state and go straight to first parent state, 4689 * because precision markings in current non-checkpointed state are 4690 * not needed. See why in the comment in __mark_chain_precision below. 4691 */ 4692 for (st = st->parent; st; st = st->parent) { 4693 for (i = 0; i <= st->curframe; i++) { 4694 func = st->frame[i]; 4695 for (j = 0; j < BPF_REG_FP; j++) { 4696 reg = &func->regs[j]; 4697 if (reg->type != SCALAR_VALUE || reg->precise) 4698 continue; 4699 reg->precise = true; 4700 if (env->log.level & BPF_LOG_LEVEL2) { 4701 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4702 i, j); 4703 } 4704 } 4705 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4706 if (!is_spilled_reg(&func->stack[j])) 4707 continue; 4708 reg = &func->stack[j].spilled_ptr; 4709 if (reg->type != SCALAR_VALUE || reg->precise) 4710 continue; 4711 reg->precise = true; 4712 if (env->log.level & BPF_LOG_LEVEL2) { 4713 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4714 i, -(j + 1) * 8); 4715 } 4716 } 4717 } 4718 } 4719 } 4720 4721 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4722 { 4723 struct bpf_func_state *func; 4724 struct bpf_reg_state *reg; 4725 int i, j; 4726 4727 for (i = 0; i <= st->curframe; i++) { 4728 func = st->frame[i]; 4729 for (j = 0; j < BPF_REG_FP; j++) { 4730 reg = &func->regs[j]; 4731 if (reg->type != SCALAR_VALUE) 4732 continue; 4733 reg->precise = false; 4734 } 4735 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4736 if (!is_spilled_reg(&func->stack[j])) 4737 continue; 4738 reg = &func->stack[j].spilled_ptr; 4739 if (reg->type != SCALAR_VALUE) 4740 continue; 4741 reg->precise = false; 4742 } 4743 } 4744 } 4745 4746 /* 4747 * __mark_chain_precision() backtracks BPF program instruction sequence and 4748 * chain of verifier states making sure that register *regno* (if regno >= 0) 4749 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4750 * SCALARS, as well as any other registers and slots that contribute to 4751 * a tracked state of given registers/stack slots, depending on specific BPF 4752 * assembly instructions (see backtrack_insns() for exact instruction handling 4753 * logic). This backtracking relies on recorded jmp_history and is able to 4754 * traverse entire chain of parent states. This process ends only when all the 4755 * necessary registers/slots and their transitive dependencies are marked as 4756 * precise. 4757 * 4758 * One important and subtle aspect is that precise marks *do not matter* in 4759 * the currently verified state (current state). It is important to understand 4760 * why this is the case. 4761 * 4762 * First, note that current state is the state that is not yet "checkpointed", 4763 * i.e., it is not yet put into env->explored_states, and it has no children 4764 * states as well. It's ephemeral, and can end up either a) being discarded if 4765 * compatible explored state is found at some point or BPF_EXIT instruction is 4766 * reached or b) checkpointed and put into env->explored_states, branching out 4767 * into one or more children states. 4768 * 4769 * In the former case, precise markings in current state are completely 4770 * ignored by state comparison code (see regsafe() for details). Only 4771 * checkpointed ("old") state precise markings are important, and if old 4772 * state's register/slot is precise, regsafe() assumes current state's 4773 * register/slot as precise and checks value ranges exactly and precisely. If 4774 * states turn out to be compatible, current state's necessary precise 4775 * markings and any required parent states' precise markings are enforced 4776 * after the fact with propagate_precision() logic, after the fact. But it's 4777 * important to realize that in this case, even after marking current state 4778 * registers/slots as precise, we immediately discard current state. So what 4779 * actually matters is any of the precise markings propagated into current 4780 * state's parent states, which are always checkpointed (due to b) case above). 4781 * As such, for scenario a) it doesn't matter if current state has precise 4782 * markings set or not. 4783 * 4784 * Now, for the scenario b), checkpointing and forking into child(ren) 4785 * state(s). Note that before current state gets to checkpointing step, any 4786 * processed instruction always assumes precise SCALAR register/slot 4787 * knowledge: if precise value or range is useful to prune jump branch, BPF 4788 * verifier takes this opportunity enthusiastically. Similarly, when 4789 * register's value is used to calculate offset or memory address, exact 4790 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4791 * what we mentioned above about state comparison ignoring precise markings 4792 * during state comparison, BPF verifier ignores and also assumes precise 4793 * markings *at will* during instruction verification process. But as verifier 4794 * assumes precision, it also propagates any precision dependencies across 4795 * parent states, which are not yet finalized, so can be further restricted 4796 * based on new knowledge gained from restrictions enforced by their children 4797 * states. This is so that once those parent states are finalized, i.e., when 4798 * they have no more active children state, state comparison logic in 4799 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4800 * required for correctness. 4801 * 4802 * To build a bit more intuition, note also that once a state is checkpointed, 4803 * the path we took to get to that state is not important. This is crucial 4804 * property for state pruning. When state is checkpointed and finalized at 4805 * some instruction index, it can be correctly and safely used to "short 4806 * circuit" any *compatible* state that reaches exactly the same instruction 4807 * index. I.e., if we jumped to that instruction from a completely different 4808 * code path than original finalized state was derived from, it doesn't 4809 * matter, current state can be discarded because from that instruction 4810 * forward having a compatible state will ensure we will safely reach the 4811 * exit. States describe preconditions for further exploration, but completely 4812 * forget the history of how we got here. 4813 * 4814 * This also means that even if we needed precise SCALAR range to get to 4815 * finalized state, but from that point forward *that same* SCALAR register is 4816 * never used in a precise context (i.e., it's precise value is not needed for 4817 * correctness), it's correct and safe to mark such register as "imprecise" 4818 * (i.e., precise marking set to false). This is what we rely on when we do 4819 * not set precise marking in current state. If no child state requires 4820 * precision for any given SCALAR register, it's safe to dictate that it can 4821 * be imprecise. If any child state does require this register to be precise, 4822 * we'll mark it precise later retroactively during precise markings 4823 * propagation from child state to parent states. 4824 * 4825 * Skipping precise marking setting in current state is a mild version of 4826 * relying on the above observation. But we can utilize this property even 4827 * more aggressively by proactively forgetting any precise marking in the 4828 * current state (which we inherited from the parent state), right before we 4829 * checkpoint it and branch off into new child state. This is done by 4830 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4831 * finalized states which help in short circuiting more future states. 4832 */ 4833 static int __mark_chain_precision(struct bpf_verifier_env *env, 4834 struct bpf_verifier_state *starting_state, 4835 int regno, 4836 bool *changed) 4837 { 4838 struct bpf_verifier_state *st = starting_state; 4839 struct backtrack_state *bt = &env->bt; 4840 int first_idx = st->first_insn_idx; 4841 int last_idx = starting_state->insn_idx; 4842 int subseq_idx = -1; 4843 struct bpf_func_state *func; 4844 bool tmp, skip_first = true; 4845 struct bpf_reg_state *reg; 4846 int i, fr, err; 4847 4848 if (!env->bpf_capable) 4849 return 0; 4850 4851 changed = changed ?: &tmp; 4852 /* set frame number from which we are starting to backtrack */ 4853 bt_init(bt, starting_state->curframe); 4854 4855 /* Do sanity checks against current state of register and/or stack 4856 * slot, but don't set precise flag in current state, as precision 4857 * tracking in the current state is unnecessary. 4858 */ 4859 func = st->frame[bt->frame]; 4860 if (regno >= 0) { 4861 reg = &func->regs[regno]; 4862 if (reg->type != SCALAR_VALUE) { 4863 verifier_bug(env, "backtracking misuse"); 4864 return -EFAULT; 4865 } 4866 bt_set_reg(bt, regno); 4867 } 4868 4869 if (bt_empty(bt)) 4870 return 0; 4871 4872 for (;;) { 4873 DECLARE_BITMAP(mask, 64); 4874 u32 history = st->jmp_history_cnt; 4875 struct bpf_jmp_history_entry *hist; 4876 4877 if (env->log.level & BPF_LOG_LEVEL2) { 4878 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4879 bt->frame, last_idx, first_idx, subseq_idx); 4880 } 4881 4882 if (last_idx < 0) { 4883 /* we are at the entry into subprog, which 4884 * is expected for global funcs, but only if 4885 * requested precise registers are R1-R5 4886 * (which are global func's input arguments) 4887 */ 4888 if (st->curframe == 0 && 4889 st->frame[0]->subprogno > 0 && 4890 st->frame[0]->callsite == BPF_MAIN_FUNC && 4891 bt_stack_mask(bt) == 0 && 4892 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4893 bitmap_from_u64(mask, bt_reg_mask(bt)); 4894 for_each_set_bit(i, mask, 32) { 4895 reg = &st->frame[0]->regs[i]; 4896 bt_clear_reg(bt, i); 4897 if (reg->type == SCALAR_VALUE) { 4898 reg->precise = true; 4899 *changed = true; 4900 } 4901 } 4902 return 0; 4903 } 4904 4905 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4906 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4907 return -EFAULT; 4908 } 4909 4910 for (i = last_idx;;) { 4911 if (skip_first) { 4912 err = 0; 4913 skip_first = false; 4914 } else { 4915 hist = get_jmp_hist_entry(st, history, i); 4916 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4917 } 4918 if (err == -ENOTSUPP) { 4919 mark_all_scalars_precise(env, starting_state); 4920 bt_reset(bt); 4921 return 0; 4922 } else if (err) { 4923 return err; 4924 } 4925 if (bt_empty(bt)) 4926 /* Found assignment(s) into tracked register in this state. 4927 * Since this state is already marked, just return. 4928 * Nothing to be tracked further in the parent state. 4929 */ 4930 return 0; 4931 subseq_idx = i; 4932 i = get_prev_insn_idx(st, i, &history); 4933 if (i == -ENOENT) 4934 break; 4935 if (i >= env->prog->len) { 4936 /* This can happen if backtracking reached insn 0 4937 * and there are still reg_mask or stack_mask 4938 * to backtrack. 4939 * It means the backtracking missed the spot where 4940 * particular register was initialized with a constant. 4941 */ 4942 verifier_bug(env, "backtracking idx %d", i); 4943 return -EFAULT; 4944 } 4945 } 4946 st = st->parent; 4947 if (!st) 4948 break; 4949 4950 for (fr = bt->frame; fr >= 0; fr--) { 4951 func = st->frame[fr]; 4952 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4953 for_each_set_bit(i, mask, 32) { 4954 reg = &func->regs[i]; 4955 if (reg->type != SCALAR_VALUE) { 4956 bt_clear_frame_reg(bt, fr, i); 4957 continue; 4958 } 4959 if (reg->precise) { 4960 bt_clear_frame_reg(bt, fr, i); 4961 } else { 4962 reg->precise = true; 4963 *changed = true; 4964 } 4965 } 4966 4967 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4968 for_each_set_bit(i, mask, 64) { 4969 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4970 env, "stack slot %d, total slots %d", 4971 i, func->allocated_stack / BPF_REG_SIZE)) 4972 return -EFAULT; 4973 4974 if (!is_spilled_scalar_reg(&func->stack[i])) { 4975 bt_clear_frame_slot(bt, fr, i); 4976 continue; 4977 } 4978 reg = &func->stack[i].spilled_ptr; 4979 if (reg->precise) { 4980 bt_clear_frame_slot(bt, fr, i); 4981 } else { 4982 reg->precise = true; 4983 *changed = true; 4984 } 4985 } 4986 if (env->log.level & BPF_LOG_LEVEL2) { 4987 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4988 bt_frame_reg_mask(bt, fr)); 4989 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4990 fr, env->tmp_str_buf); 4991 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4992 bt_frame_stack_mask(bt, fr)); 4993 verbose(env, "stack=%s: ", env->tmp_str_buf); 4994 print_verifier_state(env, st, fr, true); 4995 } 4996 } 4997 4998 if (bt_empty(bt)) 4999 return 0; 5000 5001 subseq_idx = first_idx; 5002 last_idx = st->last_insn_idx; 5003 first_idx = st->first_insn_idx; 5004 } 5005 5006 /* if we still have requested precise regs or slots, we missed 5007 * something (e.g., stack access through non-r10 register), so 5008 * fallback to marking all precise 5009 */ 5010 if (!bt_empty(bt)) { 5011 mark_all_scalars_precise(env, starting_state); 5012 bt_reset(bt); 5013 } 5014 5015 return 0; 5016 } 5017 5018 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 5019 { 5020 return __mark_chain_precision(env, env->cur_state, regno, NULL); 5021 } 5022 5023 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 5024 * desired reg and stack masks across all relevant frames 5025 */ 5026 static int mark_chain_precision_batch(struct bpf_verifier_env *env, 5027 struct bpf_verifier_state *starting_state) 5028 { 5029 return __mark_chain_precision(env, starting_state, -1, NULL); 5030 } 5031 5032 static bool is_spillable_regtype(enum bpf_reg_type type) 5033 { 5034 switch (base_type(type)) { 5035 case PTR_TO_MAP_VALUE: 5036 case PTR_TO_STACK: 5037 case PTR_TO_CTX: 5038 case PTR_TO_PACKET: 5039 case PTR_TO_PACKET_META: 5040 case PTR_TO_PACKET_END: 5041 case PTR_TO_FLOW_KEYS: 5042 case CONST_PTR_TO_MAP: 5043 case PTR_TO_SOCKET: 5044 case PTR_TO_SOCK_COMMON: 5045 case PTR_TO_TCP_SOCK: 5046 case PTR_TO_XDP_SOCK: 5047 case PTR_TO_BTF_ID: 5048 case PTR_TO_BUF: 5049 case PTR_TO_MEM: 5050 case PTR_TO_FUNC: 5051 case PTR_TO_MAP_KEY: 5052 case PTR_TO_ARENA: 5053 return true; 5054 default: 5055 return false; 5056 } 5057 } 5058 5059 /* Does this register contain a constant zero? */ 5060 static bool register_is_null(struct bpf_reg_state *reg) 5061 { 5062 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 5063 } 5064 5065 /* check if register is a constant scalar value */ 5066 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 5067 { 5068 return reg->type == SCALAR_VALUE && 5069 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 5070 } 5071 5072 /* assuming is_reg_const() is true, return constant value of a register */ 5073 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 5074 { 5075 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 5076 } 5077 5078 static bool __is_pointer_value(bool allow_ptr_leaks, 5079 const struct bpf_reg_state *reg) 5080 { 5081 if (allow_ptr_leaks) 5082 return false; 5083 5084 return reg->type != SCALAR_VALUE; 5085 } 5086 5087 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 5088 struct bpf_reg_state *src_reg) 5089 { 5090 if (src_reg->type != SCALAR_VALUE) 5091 return; 5092 5093 if (src_reg->id & BPF_ADD_CONST) { 5094 /* 5095 * The verifier is processing rX = rY insn and 5096 * rY->id has special linked register already. 5097 * Cleared it, since multiple rX += const are not supported. 5098 */ 5099 src_reg->id = 0; 5100 src_reg->off = 0; 5101 } 5102 5103 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 5104 /* Ensure that src_reg has a valid ID that will be copied to 5105 * dst_reg and then will be used by sync_linked_regs() to 5106 * propagate min/max range. 5107 */ 5108 src_reg->id = ++env->id_gen; 5109 } 5110 5111 /* Copy src state preserving dst->parent and dst->live fields */ 5112 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 5113 { 5114 *dst = *src; 5115 } 5116 5117 static void save_register_state(struct bpf_verifier_env *env, 5118 struct bpf_func_state *state, 5119 int spi, struct bpf_reg_state *reg, 5120 int size) 5121 { 5122 int i; 5123 5124 copy_register_state(&state->stack[spi].spilled_ptr, reg); 5125 5126 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 5127 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 5128 5129 /* size < 8 bytes spill */ 5130 for (; i; i--) 5131 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 5132 } 5133 5134 static bool is_bpf_st_mem(struct bpf_insn *insn) 5135 { 5136 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 5137 } 5138 5139 static int get_reg_width(struct bpf_reg_state *reg) 5140 { 5141 return fls64(reg->umax_value); 5142 } 5143 5144 /* See comment for mark_fastcall_pattern_for_call() */ 5145 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 5146 struct bpf_func_state *state, int insn_idx, int off) 5147 { 5148 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 5149 struct bpf_insn_aux_data *aux = env->insn_aux_data; 5150 int i; 5151 5152 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 5153 return; 5154 /* access to the region [max_stack_depth .. fastcall_stack_off) 5155 * from something that is not a part of the fastcall pattern, 5156 * disable fastcall rewrites for current subprogram by setting 5157 * fastcall_stack_off to a value smaller than any possible offset. 5158 */ 5159 subprog->fastcall_stack_off = S16_MIN; 5160 /* reset fastcall aux flags within subprogram, 5161 * happens at most once per subprogram 5162 */ 5163 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 5164 aux[i].fastcall_spills_num = 0; 5165 aux[i].fastcall_pattern = 0; 5166 } 5167 } 5168 5169 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 5170 * stack boundary and alignment are checked in check_mem_access() 5171 */ 5172 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 5173 /* stack frame we're writing to */ 5174 struct bpf_func_state *state, 5175 int off, int size, int value_regno, 5176 int insn_idx) 5177 { 5178 struct bpf_func_state *cur; /* state of the current function */ 5179 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 5180 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5181 struct bpf_reg_state *reg = NULL; 5182 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5183 5184 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5185 * so it's aligned access and [off, off + size) are within stack limits 5186 */ 5187 if (!env->allow_ptr_leaks && 5188 is_spilled_reg(&state->stack[spi]) && 5189 !is_spilled_scalar_reg(&state->stack[spi]) && 5190 size != BPF_REG_SIZE) { 5191 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5192 return -EACCES; 5193 } 5194 5195 cur = env->cur_state->frame[env->cur_state->curframe]; 5196 if (value_regno >= 0) 5197 reg = &cur->regs[value_regno]; 5198 if (!env->bypass_spec_v4) { 5199 bool sanitize = reg && is_spillable_regtype(reg->type); 5200 5201 for (i = 0; i < size; i++) { 5202 u8 type = state->stack[spi].slot_type[i]; 5203 5204 if (type != STACK_MISC && type != STACK_ZERO) { 5205 sanitize = true; 5206 break; 5207 } 5208 } 5209 5210 if (sanitize) 5211 env->insn_aux_data[insn_idx].nospec_result = true; 5212 } 5213 5214 err = destroy_if_dynptr_stack_slot(env, state, spi); 5215 if (err) 5216 return err; 5217 5218 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) { 5219 /* only mark the slot as written if all 8 bytes were written 5220 * otherwise read propagation may incorrectly stop too soon 5221 * when stack slots are partially written. 5222 * This heuristic means that read propagation will be 5223 * conservative, since it will add reg_live_read marks 5224 * to stack slots all the way to first state when programs 5225 * writes+reads less than 8 bytes 5226 */ 5227 bpf_mark_stack_write(env, state->frameno, BIT(spi)); 5228 } 5229 5230 check_fastcall_stack_contract(env, state, insn_idx, off); 5231 mark_stack_slot_scratched(env, spi); 5232 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5233 bool reg_value_fits; 5234 5235 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5236 /* Make sure that reg had an ID to build a relation on spill. */ 5237 if (reg_value_fits) 5238 assign_scalar_id_before_mov(env, reg); 5239 save_register_state(env, state, spi, reg, size); 5240 /* Break the relation on a narrowing spill. */ 5241 if (!reg_value_fits) 5242 state->stack[spi].spilled_ptr.id = 0; 5243 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5244 env->bpf_capable) { 5245 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5246 5247 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5248 __mark_reg_known(tmp_reg, insn->imm); 5249 tmp_reg->type = SCALAR_VALUE; 5250 save_register_state(env, state, spi, tmp_reg, size); 5251 } else if (reg && is_spillable_regtype(reg->type)) { 5252 /* register containing pointer is being spilled into stack */ 5253 if (size != BPF_REG_SIZE) { 5254 verbose_linfo(env, insn_idx, "; "); 5255 verbose(env, "invalid size of register spill\n"); 5256 return -EACCES; 5257 } 5258 if (state != cur && reg->type == PTR_TO_STACK) { 5259 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5260 return -EINVAL; 5261 } 5262 save_register_state(env, state, spi, reg, size); 5263 } else { 5264 u8 type = STACK_MISC; 5265 5266 /* regular write of data into stack destroys any spilled ptr */ 5267 state->stack[spi].spilled_ptr.type = NOT_INIT; 5268 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5269 if (is_stack_slot_special(&state->stack[spi])) 5270 for (i = 0; i < BPF_REG_SIZE; i++) 5271 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5272 5273 /* when we zero initialize stack slots mark them as such */ 5274 if ((reg && register_is_null(reg)) || 5275 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5276 /* STACK_ZERO case happened because register spill 5277 * wasn't properly aligned at the stack slot boundary, 5278 * so it's not a register spill anymore; force 5279 * originating register to be precise to make 5280 * STACK_ZERO correct for subsequent states 5281 */ 5282 err = mark_chain_precision(env, value_regno); 5283 if (err) 5284 return err; 5285 type = STACK_ZERO; 5286 } 5287 5288 /* Mark slots affected by this stack write. */ 5289 for (i = 0; i < size; i++) 5290 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5291 insn_flags = 0; /* not a register spill */ 5292 } 5293 5294 if (insn_flags) 5295 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5296 return 0; 5297 } 5298 5299 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5300 * known to contain a variable offset. 5301 * This function checks whether the write is permitted and conservatively 5302 * tracks the effects of the write, considering that each stack slot in the 5303 * dynamic range is potentially written to. 5304 * 5305 * 'off' includes 'regno->off'. 5306 * 'value_regno' can be -1, meaning that an unknown value is being written to 5307 * the stack. 5308 * 5309 * Spilled pointers in range are not marked as written because we don't know 5310 * what's going to be actually written. This means that read propagation for 5311 * future reads cannot be terminated by this write. 5312 * 5313 * For privileged programs, uninitialized stack slots are considered 5314 * initialized by this write (even though we don't know exactly what offsets 5315 * are going to be written to). The idea is that we don't want the verifier to 5316 * reject future reads that access slots written to through variable offsets. 5317 */ 5318 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5319 /* func where register points to */ 5320 struct bpf_func_state *state, 5321 int ptr_regno, int off, int size, 5322 int value_regno, int insn_idx) 5323 { 5324 struct bpf_func_state *cur; /* state of the current function */ 5325 int min_off, max_off; 5326 int i, err; 5327 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5328 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5329 bool writing_zero = false; 5330 /* set if the fact that we're writing a zero is used to let any 5331 * stack slots remain STACK_ZERO 5332 */ 5333 bool zero_used = false; 5334 5335 cur = env->cur_state->frame[env->cur_state->curframe]; 5336 ptr_reg = &cur->regs[ptr_regno]; 5337 min_off = ptr_reg->smin_value + off; 5338 max_off = ptr_reg->smax_value + off + size; 5339 if (value_regno >= 0) 5340 value_reg = &cur->regs[value_regno]; 5341 if ((value_reg && register_is_null(value_reg)) || 5342 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5343 writing_zero = true; 5344 5345 for (i = min_off; i < max_off; i++) { 5346 int spi; 5347 5348 spi = __get_spi(i); 5349 err = destroy_if_dynptr_stack_slot(env, state, spi); 5350 if (err) 5351 return err; 5352 } 5353 5354 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5355 /* Variable offset writes destroy any spilled pointers in range. */ 5356 for (i = min_off; i < max_off; i++) { 5357 u8 new_type, *stype; 5358 int slot, spi; 5359 5360 slot = -i - 1; 5361 spi = slot / BPF_REG_SIZE; 5362 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5363 mark_stack_slot_scratched(env, spi); 5364 5365 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5366 /* Reject the write if range we may write to has not 5367 * been initialized beforehand. If we didn't reject 5368 * here, the ptr status would be erased below (even 5369 * though not all slots are actually overwritten), 5370 * possibly opening the door to leaks. 5371 * 5372 * We do however catch STACK_INVALID case below, and 5373 * only allow reading possibly uninitialized memory 5374 * later for CAP_PERFMON, as the write may not happen to 5375 * that slot. 5376 */ 5377 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5378 insn_idx, i); 5379 return -EINVAL; 5380 } 5381 5382 /* If writing_zero and the spi slot contains a spill of value 0, 5383 * maintain the spill type. 5384 */ 5385 if (writing_zero && *stype == STACK_SPILL && 5386 is_spilled_scalar_reg(&state->stack[spi])) { 5387 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5388 5389 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5390 zero_used = true; 5391 continue; 5392 } 5393 } 5394 5395 /* Erase all other spilled pointers. */ 5396 state->stack[spi].spilled_ptr.type = NOT_INIT; 5397 5398 /* Update the slot type. */ 5399 new_type = STACK_MISC; 5400 if (writing_zero && *stype == STACK_ZERO) { 5401 new_type = STACK_ZERO; 5402 zero_used = true; 5403 } 5404 /* If the slot is STACK_INVALID, we check whether it's OK to 5405 * pretend that it will be initialized by this write. The slot 5406 * might not actually be written to, and so if we mark it as 5407 * initialized future reads might leak uninitialized memory. 5408 * For privileged programs, we will accept such reads to slots 5409 * that may or may not be written because, if we're reject 5410 * them, the error would be too confusing. 5411 */ 5412 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5413 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5414 insn_idx, i); 5415 return -EINVAL; 5416 } 5417 *stype = new_type; 5418 } 5419 if (zero_used) { 5420 /* backtracking doesn't work for STACK_ZERO yet. */ 5421 err = mark_chain_precision(env, value_regno); 5422 if (err) 5423 return err; 5424 } 5425 return 0; 5426 } 5427 5428 /* When register 'dst_regno' is assigned some values from stack[min_off, 5429 * max_off), we set the register's type according to the types of the 5430 * respective stack slots. If all the stack values are known to be zeros, then 5431 * so is the destination reg. Otherwise, the register is considered to be 5432 * SCALAR. This function does not deal with register filling; the caller must 5433 * ensure that all spilled registers in the stack range have been marked as 5434 * read. 5435 */ 5436 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5437 /* func where src register points to */ 5438 struct bpf_func_state *ptr_state, 5439 int min_off, int max_off, int dst_regno) 5440 { 5441 struct bpf_verifier_state *vstate = env->cur_state; 5442 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5443 int i, slot, spi; 5444 u8 *stype; 5445 int zeros = 0; 5446 5447 for (i = min_off; i < max_off; i++) { 5448 slot = -i - 1; 5449 spi = slot / BPF_REG_SIZE; 5450 mark_stack_slot_scratched(env, spi); 5451 stype = ptr_state->stack[spi].slot_type; 5452 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5453 break; 5454 zeros++; 5455 } 5456 if (zeros == max_off - min_off) { 5457 /* Any access_size read into register is zero extended, 5458 * so the whole register == const_zero. 5459 */ 5460 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5461 } else { 5462 /* have read misc data from the stack */ 5463 mark_reg_unknown(env, state->regs, dst_regno); 5464 } 5465 } 5466 5467 /* Read the stack at 'off' and put the results into the register indicated by 5468 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5469 * spilled reg. 5470 * 5471 * 'dst_regno' can be -1, meaning that the read value is not going to a 5472 * register. 5473 * 5474 * The access is assumed to be within the current stack bounds. 5475 */ 5476 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5477 /* func where src register points to */ 5478 struct bpf_func_state *reg_state, 5479 int off, int size, int dst_regno) 5480 { 5481 struct bpf_verifier_state *vstate = env->cur_state; 5482 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5483 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5484 struct bpf_reg_state *reg; 5485 u8 *stype, type; 5486 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5487 int err; 5488 5489 stype = reg_state->stack[spi].slot_type; 5490 reg = ®_state->stack[spi].spilled_ptr; 5491 5492 mark_stack_slot_scratched(env, spi); 5493 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5494 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi)); 5495 if (err) 5496 return err; 5497 5498 if (is_spilled_reg(®_state->stack[spi])) { 5499 u8 spill_size = 1; 5500 5501 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5502 spill_size++; 5503 5504 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5505 if (reg->type != SCALAR_VALUE) { 5506 verbose_linfo(env, env->insn_idx, "; "); 5507 verbose(env, "invalid size of register fill\n"); 5508 return -EACCES; 5509 } 5510 5511 if (dst_regno < 0) 5512 return 0; 5513 5514 if (size <= spill_size && 5515 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5516 /* The earlier check_reg_arg() has decided the 5517 * subreg_def for this insn. Save it first. 5518 */ 5519 s32 subreg_def = state->regs[dst_regno].subreg_def; 5520 5521 if (env->bpf_capable && size == 4 && spill_size == 4 && 5522 get_reg_width(reg) <= 32) 5523 /* Ensure stack slot has an ID to build a relation 5524 * with the destination register on fill. 5525 */ 5526 assign_scalar_id_before_mov(env, reg); 5527 copy_register_state(&state->regs[dst_regno], reg); 5528 state->regs[dst_regno].subreg_def = subreg_def; 5529 5530 /* Break the relation on a narrowing fill. 5531 * coerce_reg_to_size will adjust the boundaries. 5532 */ 5533 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5534 state->regs[dst_regno].id = 0; 5535 } else { 5536 int spill_cnt = 0, zero_cnt = 0; 5537 5538 for (i = 0; i < size; i++) { 5539 type = stype[(slot - i) % BPF_REG_SIZE]; 5540 if (type == STACK_SPILL) { 5541 spill_cnt++; 5542 continue; 5543 } 5544 if (type == STACK_MISC) 5545 continue; 5546 if (type == STACK_ZERO) { 5547 zero_cnt++; 5548 continue; 5549 } 5550 if (type == STACK_INVALID && env->allow_uninit_stack) 5551 continue; 5552 verbose(env, "invalid read from stack off %d+%d size %d\n", 5553 off, i, size); 5554 return -EACCES; 5555 } 5556 5557 if (spill_cnt == size && 5558 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5559 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5560 /* this IS register fill, so keep insn_flags */ 5561 } else if (zero_cnt == size) { 5562 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5563 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5564 insn_flags = 0; /* not restoring original register state */ 5565 } else { 5566 mark_reg_unknown(env, state->regs, dst_regno); 5567 insn_flags = 0; /* not restoring original register state */ 5568 } 5569 } 5570 } else if (dst_regno >= 0) { 5571 /* restore register state from stack */ 5572 if (env->bpf_capable) 5573 /* Ensure stack slot has an ID to build a relation 5574 * with the destination register on fill. 5575 */ 5576 assign_scalar_id_before_mov(env, reg); 5577 copy_register_state(&state->regs[dst_regno], reg); 5578 /* mark reg as written since spilled pointer state likely 5579 * has its liveness marks cleared by is_state_visited() 5580 * which resets stack/reg liveness for state transitions 5581 */ 5582 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5583 /* If dst_regno==-1, the caller is asking us whether 5584 * it is acceptable to use this value as a SCALAR_VALUE 5585 * (e.g. for XADD). 5586 * We must not allow unprivileged callers to do that 5587 * with spilled pointers. 5588 */ 5589 verbose(env, "leaking pointer from stack off %d\n", 5590 off); 5591 return -EACCES; 5592 } 5593 } else { 5594 for (i = 0; i < size; i++) { 5595 type = stype[(slot - i) % BPF_REG_SIZE]; 5596 if (type == STACK_MISC) 5597 continue; 5598 if (type == STACK_ZERO) 5599 continue; 5600 if (type == STACK_INVALID && env->allow_uninit_stack) 5601 continue; 5602 verbose(env, "invalid read from stack off %d+%d size %d\n", 5603 off, i, size); 5604 return -EACCES; 5605 } 5606 if (dst_regno >= 0) 5607 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5608 insn_flags = 0; /* we are not restoring spilled register */ 5609 } 5610 if (insn_flags) 5611 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5612 return 0; 5613 } 5614 5615 enum bpf_access_src { 5616 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5617 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5618 }; 5619 5620 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5621 int regno, int off, int access_size, 5622 bool zero_size_allowed, 5623 enum bpf_access_type type, 5624 struct bpf_call_arg_meta *meta); 5625 5626 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5627 { 5628 return cur_regs(env) + regno; 5629 } 5630 5631 /* Read the stack at 'ptr_regno + off' and put the result into the register 5632 * 'dst_regno'. 5633 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5634 * but not its variable offset. 5635 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5636 * 5637 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5638 * filling registers (i.e. reads of spilled register cannot be detected when 5639 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5640 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5641 * offset; for a fixed offset check_stack_read_fixed_off should be used 5642 * instead. 5643 */ 5644 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5645 int ptr_regno, int off, int size, int dst_regno) 5646 { 5647 /* The state of the source register. */ 5648 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5649 struct bpf_func_state *ptr_state = func(env, reg); 5650 int err; 5651 int min_off, max_off; 5652 5653 /* Note that we pass a NULL meta, so raw access will not be permitted. 5654 */ 5655 err = check_stack_range_initialized(env, ptr_regno, off, size, 5656 false, BPF_READ, NULL); 5657 if (err) 5658 return err; 5659 5660 min_off = reg->smin_value + off; 5661 max_off = reg->smax_value + off; 5662 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5663 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5664 return 0; 5665 } 5666 5667 /* check_stack_read dispatches to check_stack_read_fixed_off or 5668 * check_stack_read_var_off. 5669 * 5670 * The caller must ensure that the offset falls within the allocated stack 5671 * bounds. 5672 * 5673 * 'dst_regno' is a register which will receive the value from the stack. It 5674 * can be -1, meaning that the read value is not going to a register. 5675 */ 5676 static int check_stack_read(struct bpf_verifier_env *env, 5677 int ptr_regno, int off, int size, 5678 int dst_regno) 5679 { 5680 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5681 struct bpf_func_state *state = func(env, reg); 5682 int err; 5683 /* Some accesses are only permitted with a static offset. */ 5684 bool var_off = !tnum_is_const(reg->var_off); 5685 5686 /* The offset is required to be static when reads don't go to a 5687 * register, in order to not leak pointers (see 5688 * check_stack_read_fixed_off). 5689 */ 5690 if (dst_regno < 0 && var_off) { 5691 char tn_buf[48]; 5692 5693 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5694 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5695 tn_buf, off, size); 5696 return -EACCES; 5697 } 5698 /* Variable offset is prohibited for unprivileged mode for simplicity 5699 * since it requires corresponding support in Spectre masking for stack 5700 * ALU. See also retrieve_ptr_limit(). The check in 5701 * check_stack_access_for_ptr_arithmetic() called by 5702 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5703 * with variable offsets, therefore no check is required here. Further, 5704 * just checking it here would be insufficient as speculative stack 5705 * writes could still lead to unsafe speculative behaviour. 5706 */ 5707 if (!var_off) { 5708 off += reg->var_off.value; 5709 err = check_stack_read_fixed_off(env, state, off, size, 5710 dst_regno); 5711 } else { 5712 /* Variable offset stack reads need more conservative handling 5713 * than fixed offset ones. Note that dst_regno >= 0 on this 5714 * branch. 5715 */ 5716 err = check_stack_read_var_off(env, ptr_regno, off, size, 5717 dst_regno); 5718 } 5719 return err; 5720 } 5721 5722 5723 /* check_stack_write dispatches to check_stack_write_fixed_off or 5724 * check_stack_write_var_off. 5725 * 5726 * 'ptr_regno' is the register used as a pointer into the stack. 5727 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5728 * 'value_regno' is the register whose value we're writing to the stack. It can 5729 * be -1, meaning that we're not writing from a register. 5730 * 5731 * The caller must ensure that the offset falls within the maximum stack size. 5732 */ 5733 static int check_stack_write(struct bpf_verifier_env *env, 5734 int ptr_regno, int off, int size, 5735 int value_regno, int insn_idx) 5736 { 5737 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5738 struct bpf_func_state *state = func(env, reg); 5739 int err; 5740 5741 if (tnum_is_const(reg->var_off)) { 5742 off += reg->var_off.value; 5743 err = check_stack_write_fixed_off(env, state, off, size, 5744 value_regno, insn_idx); 5745 } else { 5746 /* Variable offset stack reads need more conservative handling 5747 * than fixed offset ones. 5748 */ 5749 err = check_stack_write_var_off(env, state, 5750 ptr_regno, off, size, 5751 value_regno, insn_idx); 5752 } 5753 return err; 5754 } 5755 5756 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5757 int off, int size, enum bpf_access_type type) 5758 { 5759 struct bpf_reg_state *reg = reg_state(env, regno); 5760 struct bpf_map *map = reg->map_ptr; 5761 u32 cap = bpf_map_flags_to_cap(map); 5762 5763 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5764 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5765 map->value_size, off, size); 5766 return -EACCES; 5767 } 5768 5769 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5770 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5771 map->value_size, off, size); 5772 return -EACCES; 5773 } 5774 5775 return 0; 5776 } 5777 5778 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5779 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5780 int off, int size, u32 mem_size, 5781 bool zero_size_allowed) 5782 { 5783 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5784 struct bpf_reg_state *reg; 5785 5786 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5787 return 0; 5788 5789 reg = &cur_regs(env)[regno]; 5790 switch (reg->type) { 5791 case PTR_TO_MAP_KEY: 5792 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5793 mem_size, off, size); 5794 break; 5795 case PTR_TO_MAP_VALUE: 5796 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5797 mem_size, off, size); 5798 break; 5799 case PTR_TO_PACKET: 5800 case PTR_TO_PACKET_META: 5801 case PTR_TO_PACKET_END: 5802 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5803 off, size, regno, reg->id, off, mem_size); 5804 break; 5805 case PTR_TO_MEM: 5806 default: 5807 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5808 mem_size, off, size); 5809 } 5810 5811 return -EACCES; 5812 } 5813 5814 /* check read/write into a memory region with possible variable offset */ 5815 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5816 int off, int size, u32 mem_size, 5817 bool zero_size_allowed) 5818 { 5819 struct bpf_verifier_state *vstate = env->cur_state; 5820 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5821 struct bpf_reg_state *reg = &state->regs[regno]; 5822 int err; 5823 5824 /* We may have adjusted the register pointing to memory region, so we 5825 * need to try adding each of min_value and max_value to off 5826 * to make sure our theoretical access will be safe. 5827 * 5828 * The minimum value is only important with signed 5829 * comparisons where we can't assume the floor of a 5830 * value is 0. If we are using signed variables for our 5831 * index'es we need to make sure that whatever we use 5832 * will have a set floor within our range. 5833 */ 5834 if (reg->smin_value < 0 && 5835 (reg->smin_value == S64_MIN || 5836 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5837 reg->smin_value + off < 0)) { 5838 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5839 regno); 5840 return -EACCES; 5841 } 5842 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5843 mem_size, zero_size_allowed); 5844 if (err) { 5845 verbose(env, "R%d min value is outside of the allowed memory range\n", 5846 regno); 5847 return err; 5848 } 5849 5850 /* If we haven't set a max value then we need to bail since we can't be 5851 * sure we won't do bad things. 5852 * If reg->umax_value + off could overflow, treat that as unbounded too. 5853 */ 5854 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5855 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5856 regno); 5857 return -EACCES; 5858 } 5859 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5860 mem_size, zero_size_allowed); 5861 if (err) { 5862 verbose(env, "R%d max value is outside of the allowed memory range\n", 5863 regno); 5864 return err; 5865 } 5866 5867 return 0; 5868 } 5869 5870 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5871 const struct bpf_reg_state *reg, int regno, 5872 bool fixed_off_ok) 5873 { 5874 /* Access to this pointer-typed register or passing it to a helper 5875 * is only allowed in its original, unmodified form. 5876 */ 5877 5878 if (reg->off < 0) { 5879 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5880 reg_type_str(env, reg->type), regno, reg->off); 5881 return -EACCES; 5882 } 5883 5884 if (!fixed_off_ok && reg->off) { 5885 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5886 reg_type_str(env, reg->type), regno, reg->off); 5887 return -EACCES; 5888 } 5889 5890 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5891 char tn_buf[48]; 5892 5893 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5894 verbose(env, "variable %s access var_off=%s disallowed\n", 5895 reg_type_str(env, reg->type), tn_buf); 5896 return -EACCES; 5897 } 5898 5899 return 0; 5900 } 5901 5902 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5903 const struct bpf_reg_state *reg, int regno) 5904 { 5905 return __check_ptr_off_reg(env, reg, regno, false); 5906 } 5907 5908 static int map_kptr_match_type(struct bpf_verifier_env *env, 5909 struct btf_field *kptr_field, 5910 struct bpf_reg_state *reg, u32 regno) 5911 { 5912 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5913 int perm_flags; 5914 const char *reg_name = ""; 5915 5916 if (btf_is_kernel(reg->btf)) { 5917 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5918 5919 /* Only unreferenced case accepts untrusted pointers */ 5920 if (kptr_field->type == BPF_KPTR_UNREF) 5921 perm_flags |= PTR_UNTRUSTED; 5922 } else { 5923 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5924 if (kptr_field->type == BPF_KPTR_PERCPU) 5925 perm_flags |= MEM_PERCPU; 5926 } 5927 5928 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5929 goto bad_type; 5930 5931 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5932 reg_name = btf_type_name(reg->btf, reg->btf_id); 5933 5934 /* For ref_ptr case, release function check should ensure we get one 5935 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5936 * normal store of unreferenced kptr, we must ensure var_off is zero. 5937 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5938 * reg->off and reg->ref_obj_id are not needed here. 5939 */ 5940 if (__check_ptr_off_reg(env, reg, regno, true)) 5941 return -EACCES; 5942 5943 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5944 * we also need to take into account the reg->off. 5945 * 5946 * We want to support cases like: 5947 * 5948 * struct foo { 5949 * struct bar br; 5950 * struct baz bz; 5951 * }; 5952 * 5953 * struct foo *v; 5954 * v = func(); // PTR_TO_BTF_ID 5955 * val->foo = v; // reg->off is zero, btf and btf_id match type 5956 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5957 * // first member type of struct after comparison fails 5958 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5959 * // to match type 5960 * 5961 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5962 * is zero. We must also ensure that btf_struct_ids_match does not walk 5963 * the struct to match type against first member of struct, i.e. reject 5964 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5965 * strict mode to true for type match. 5966 */ 5967 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5968 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5969 kptr_field->type != BPF_KPTR_UNREF)) 5970 goto bad_type; 5971 return 0; 5972 bad_type: 5973 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5974 reg_type_str(env, reg->type), reg_name); 5975 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5976 if (kptr_field->type == BPF_KPTR_UNREF) 5977 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5978 targ_name); 5979 else 5980 verbose(env, "\n"); 5981 return -EINVAL; 5982 } 5983 5984 static bool in_sleepable(struct bpf_verifier_env *env) 5985 { 5986 return env->cur_state->in_sleepable; 5987 } 5988 5989 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5990 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5991 */ 5992 static bool in_rcu_cs(struct bpf_verifier_env *env) 5993 { 5994 return env->cur_state->active_rcu_locks || 5995 env->cur_state->active_locks || 5996 !in_sleepable(env); 5997 } 5998 5999 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 6000 BTF_SET_START(rcu_protected_types) 6001 #ifdef CONFIG_NET 6002 BTF_ID(struct, prog_test_ref_kfunc) 6003 #endif 6004 #ifdef CONFIG_CGROUPS 6005 BTF_ID(struct, cgroup) 6006 #endif 6007 #ifdef CONFIG_BPF_JIT 6008 BTF_ID(struct, bpf_cpumask) 6009 #endif 6010 BTF_ID(struct, task_struct) 6011 #ifdef CONFIG_CRYPTO 6012 BTF_ID(struct, bpf_crypto_ctx) 6013 #endif 6014 BTF_SET_END(rcu_protected_types) 6015 6016 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 6017 { 6018 if (!btf_is_kernel(btf)) 6019 return true; 6020 return btf_id_set_contains(&rcu_protected_types, btf_id); 6021 } 6022 6023 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 6024 { 6025 struct btf_struct_meta *meta; 6026 6027 if (btf_is_kernel(kptr_field->kptr.btf)) 6028 return NULL; 6029 6030 meta = btf_find_struct_meta(kptr_field->kptr.btf, 6031 kptr_field->kptr.btf_id); 6032 6033 return meta ? meta->record : NULL; 6034 } 6035 6036 static bool rcu_safe_kptr(const struct btf_field *field) 6037 { 6038 const struct btf_field_kptr *kptr = &field->kptr; 6039 6040 return field->type == BPF_KPTR_PERCPU || 6041 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 6042 } 6043 6044 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 6045 { 6046 struct btf_record *rec; 6047 u32 ret; 6048 6049 ret = PTR_MAYBE_NULL; 6050 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 6051 ret |= MEM_RCU; 6052 if (kptr_field->type == BPF_KPTR_PERCPU) 6053 ret |= MEM_PERCPU; 6054 else if (!btf_is_kernel(kptr_field->kptr.btf)) 6055 ret |= MEM_ALLOC; 6056 6057 rec = kptr_pointee_btf_record(kptr_field); 6058 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 6059 ret |= NON_OWN_REF; 6060 } else { 6061 ret |= PTR_UNTRUSTED; 6062 } 6063 6064 return ret; 6065 } 6066 6067 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 6068 struct btf_field *field) 6069 { 6070 struct bpf_reg_state *reg; 6071 const struct btf_type *t; 6072 6073 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 6074 mark_reg_known_zero(env, cur_regs(env), regno); 6075 reg = reg_state(env, regno); 6076 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6077 reg->mem_size = t->size; 6078 reg->id = ++env->id_gen; 6079 6080 return 0; 6081 } 6082 6083 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 6084 int value_regno, int insn_idx, 6085 struct btf_field *kptr_field) 6086 { 6087 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 6088 int class = BPF_CLASS(insn->code); 6089 struct bpf_reg_state *val_reg; 6090 int ret; 6091 6092 /* Things we already checked for in check_map_access and caller: 6093 * - Reject cases where variable offset may touch kptr 6094 * - size of access (must be BPF_DW) 6095 * - tnum_is_const(reg->var_off) 6096 * - kptr_field->offset == off + reg->var_off.value 6097 */ 6098 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 6099 if (BPF_MODE(insn->code) != BPF_MEM) { 6100 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 6101 return -EACCES; 6102 } 6103 6104 /* We only allow loading referenced kptr, since it will be marked as 6105 * untrusted, similar to unreferenced kptr. 6106 */ 6107 if (class != BPF_LDX && 6108 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 6109 verbose(env, "store to referenced kptr disallowed\n"); 6110 return -EACCES; 6111 } 6112 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 6113 verbose(env, "store to uptr disallowed\n"); 6114 return -EACCES; 6115 } 6116 6117 if (class == BPF_LDX) { 6118 if (kptr_field->type == BPF_UPTR) 6119 return mark_uptr_ld_reg(env, value_regno, kptr_field); 6120 6121 /* We can simply mark the value_regno receiving the pointer 6122 * value from map as PTR_TO_BTF_ID, with the correct type. 6123 */ 6124 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, 6125 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 6126 btf_ld_kptr_type(env, kptr_field)); 6127 if (ret < 0) 6128 return ret; 6129 } else if (class == BPF_STX) { 6130 val_reg = reg_state(env, value_regno); 6131 if (!register_is_null(val_reg) && 6132 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 6133 return -EACCES; 6134 } else if (class == BPF_ST) { 6135 if (insn->imm) { 6136 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 6137 kptr_field->offset); 6138 return -EACCES; 6139 } 6140 } else { 6141 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 6142 return -EACCES; 6143 } 6144 return 0; 6145 } 6146 6147 /* 6148 * Return the size of the memory region accessible from a pointer to map value. 6149 * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible. 6150 */ 6151 static u32 map_mem_size(const struct bpf_map *map) 6152 { 6153 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) 6154 return map->max_entries * sizeof(long); 6155 6156 return map->value_size; 6157 } 6158 6159 /* check read/write into a map element with possible variable offset */ 6160 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 6161 int off, int size, bool zero_size_allowed, 6162 enum bpf_access_src src) 6163 { 6164 struct bpf_verifier_state *vstate = env->cur_state; 6165 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6166 struct bpf_reg_state *reg = &state->regs[regno]; 6167 struct bpf_map *map = reg->map_ptr; 6168 u32 mem_size = map_mem_size(map); 6169 struct btf_record *rec; 6170 int err, i; 6171 6172 err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed); 6173 if (err) 6174 return err; 6175 6176 if (IS_ERR_OR_NULL(map->record)) 6177 return 0; 6178 rec = map->record; 6179 for (i = 0; i < rec->cnt; i++) { 6180 struct btf_field *field = &rec->fields[i]; 6181 u32 p = field->offset; 6182 6183 /* If any part of a field can be touched by load/store, reject 6184 * this program. To check that [x1, x2) overlaps with [y1, y2), 6185 * it is sufficient to check x1 < y2 && y1 < x2. 6186 */ 6187 if (reg->smin_value + off < p + field->size && 6188 p < reg->umax_value + off + size) { 6189 switch (field->type) { 6190 case BPF_KPTR_UNREF: 6191 case BPF_KPTR_REF: 6192 case BPF_KPTR_PERCPU: 6193 case BPF_UPTR: 6194 if (src != ACCESS_DIRECT) { 6195 verbose(env, "%s cannot be accessed indirectly by helper\n", 6196 btf_field_type_name(field->type)); 6197 return -EACCES; 6198 } 6199 if (!tnum_is_const(reg->var_off)) { 6200 verbose(env, "%s access cannot have variable offset\n", 6201 btf_field_type_name(field->type)); 6202 return -EACCES; 6203 } 6204 if (p != off + reg->var_off.value) { 6205 verbose(env, "%s access misaligned expected=%u off=%llu\n", 6206 btf_field_type_name(field->type), 6207 p, off + reg->var_off.value); 6208 return -EACCES; 6209 } 6210 if (size != bpf_size_to_bytes(BPF_DW)) { 6211 verbose(env, "%s access size must be BPF_DW\n", 6212 btf_field_type_name(field->type)); 6213 return -EACCES; 6214 } 6215 break; 6216 default: 6217 verbose(env, "%s cannot be accessed directly by load/store\n", 6218 btf_field_type_name(field->type)); 6219 return -EACCES; 6220 } 6221 } 6222 } 6223 return 0; 6224 } 6225 6226 #define MAX_PACKET_OFF 0xffff 6227 6228 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6229 const struct bpf_call_arg_meta *meta, 6230 enum bpf_access_type t) 6231 { 6232 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6233 6234 switch (prog_type) { 6235 /* Program types only with direct read access go here! */ 6236 case BPF_PROG_TYPE_LWT_IN: 6237 case BPF_PROG_TYPE_LWT_OUT: 6238 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6239 case BPF_PROG_TYPE_SK_REUSEPORT: 6240 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6241 case BPF_PROG_TYPE_CGROUP_SKB: 6242 if (t == BPF_WRITE) 6243 return false; 6244 fallthrough; 6245 6246 /* Program types with direct read + write access go here! */ 6247 case BPF_PROG_TYPE_SCHED_CLS: 6248 case BPF_PROG_TYPE_SCHED_ACT: 6249 case BPF_PROG_TYPE_XDP: 6250 case BPF_PROG_TYPE_LWT_XMIT: 6251 case BPF_PROG_TYPE_SK_SKB: 6252 case BPF_PROG_TYPE_SK_MSG: 6253 if (meta) 6254 return meta->pkt_access; 6255 6256 env->seen_direct_write = true; 6257 return true; 6258 6259 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6260 if (t == BPF_WRITE) 6261 env->seen_direct_write = true; 6262 6263 return true; 6264 6265 default: 6266 return false; 6267 } 6268 } 6269 6270 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6271 int size, bool zero_size_allowed) 6272 { 6273 struct bpf_reg_state *reg = reg_state(env, regno); 6274 int err; 6275 6276 /* We may have added a variable offset to the packet pointer; but any 6277 * reg->range we have comes after that. We are only checking the fixed 6278 * offset. 6279 */ 6280 6281 /* We don't allow negative numbers, because we aren't tracking enough 6282 * detail to prove they're safe. 6283 */ 6284 if (reg->smin_value < 0) { 6285 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6286 regno); 6287 return -EACCES; 6288 } 6289 6290 err = reg->range < 0 ? -EINVAL : 6291 __check_mem_access(env, regno, off, size, reg->range, 6292 zero_size_allowed); 6293 if (err) { 6294 verbose(env, "R%d offset is outside of the packet\n", regno); 6295 return err; 6296 } 6297 6298 /* __check_mem_access has made sure "off + size - 1" is within u16. 6299 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6300 * otherwise find_good_pkt_pointers would have refused to set range info 6301 * that __check_mem_access would have rejected this pkt access. 6302 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6303 */ 6304 env->prog->aux->max_pkt_offset = 6305 max_t(u32, env->prog->aux->max_pkt_offset, 6306 off + reg->umax_value + size - 1); 6307 6308 return err; 6309 } 6310 6311 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6312 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6313 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6314 { 6315 if (env->ops->is_valid_access && 6316 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6317 /* A non zero info.ctx_field_size indicates that this field is a 6318 * candidate for later verifier transformation to load the whole 6319 * field and then apply a mask when accessed with a narrower 6320 * access than actual ctx access size. A zero info.ctx_field_size 6321 * will only allow for whole field access and rejects any other 6322 * type of narrower access. 6323 */ 6324 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6325 if (info->ref_obj_id && 6326 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6327 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6328 off); 6329 return -EACCES; 6330 } 6331 } else { 6332 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6333 } 6334 /* remember the offset of last byte accessed in ctx */ 6335 if (env->prog->aux->max_ctx_offset < off + size) 6336 env->prog->aux->max_ctx_offset = off + size; 6337 return 0; 6338 } 6339 6340 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6341 return -EACCES; 6342 } 6343 6344 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6345 int size) 6346 { 6347 if (size < 0 || off < 0 || 6348 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6349 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6350 off, size); 6351 return -EACCES; 6352 } 6353 return 0; 6354 } 6355 6356 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6357 u32 regno, int off, int size, 6358 enum bpf_access_type t) 6359 { 6360 struct bpf_reg_state *reg = reg_state(env, regno); 6361 struct bpf_insn_access_aux info = {}; 6362 bool valid; 6363 6364 if (reg->smin_value < 0) { 6365 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6366 regno); 6367 return -EACCES; 6368 } 6369 6370 switch (reg->type) { 6371 case PTR_TO_SOCK_COMMON: 6372 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6373 break; 6374 case PTR_TO_SOCKET: 6375 valid = bpf_sock_is_valid_access(off, size, t, &info); 6376 break; 6377 case PTR_TO_TCP_SOCK: 6378 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6379 break; 6380 case PTR_TO_XDP_SOCK: 6381 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6382 break; 6383 default: 6384 valid = false; 6385 } 6386 6387 6388 if (valid) { 6389 env->insn_aux_data[insn_idx].ctx_field_size = 6390 info.ctx_field_size; 6391 return 0; 6392 } 6393 6394 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6395 regno, reg_type_str(env, reg->type), off, size); 6396 6397 return -EACCES; 6398 } 6399 6400 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6401 { 6402 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6403 } 6404 6405 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6406 { 6407 const struct bpf_reg_state *reg = reg_state(env, regno); 6408 6409 return reg->type == PTR_TO_CTX; 6410 } 6411 6412 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6413 { 6414 const struct bpf_reg_state *reg = reg_state(env, regno); 6415 6416 return type_is_sk_pointer(reg->type); 6417 } 6418 6419 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6420 { 6421 const struct bpf_reg_state *reg = reg_state(env, regno); 6422 6423 return type_is_pkt_pointer(reg->type); 6424 } 6425 6426 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6427 { 6428 const struct bpf_reg_state *reg = reg_state(env, regno); 6429 6430 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6431 return reg->type == PTR_TO_FLOW_KEYS; 6432 } 6433 6434 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6435 { 6436 const struct bpf_reg_state *reg = reg_state(env, regno); 6437 6438 return reg->type == PTR_TO_ARENA; 6439 } 6440 6441 /* Return false if @regno contains a pointer whose type isn't supported for 6442 * atomic instruction @insn. 6443 */ 6444 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6445 struct bpf_insn *insn) 6446 { 6447 if (is_ctx_reg(env, regno)) 6448 return false; 6449 if (is_pkt_reg(env, regno)) 6450 return false; 6451 if (is_flow_key_reg(env, regno)) 6452 return false; 6453 if (is_sk_reg(env, regno)) 6454 return false; 6455 if (is_arena_reg(env, regno)) 6456 return bpf_jit_supports_insn(insn, true); 6457 6458 return true; 6459 } 6460 6461 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6462 #ifdef CONFIG_NET 6463 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6464 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6465 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6466 #endif 6467 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6468 }; 6469 6470 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6471 { 6472 /* A referenced register is always trusted. */ 6473 if (reg->ref_obj_id) 6474 return true; 6475 6476 /* Types listed in the reg2btf_ids are always trusted */ 6477 if (reg2btf_ids[base_type(reg->type)] && 6478 !bpf_type_has_unsafe_modifiers(reg->type)) 6479 return true; 6480 6481 /* If a register is not referenced, it is trusted if it has the 6482 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6483 * other type modifiers may be safe, but we elect to take an opt-in 6484 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6485 * not. 6486 * 6487 * Eventually, we should make PTR_TRUSTED the single source of truth 6488 * for whether a register is trusted. 6489 */ 6490 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6491 !bpf_type_has_unsafe_modifiers(reg->type); 6492 } 6493 6494 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6495 { 6496 return reg->type & MEM_RCU; 6497 } 6498 6499 static void clear_trusted_flags(enum bpf_type_flag *flag) 6500 { 6501 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6502 } 6503 6504 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6505 const struct bpf_reg_state *reg, 6506 int off, int size, bool strict) 6507 { 6508 struct tnum reg_off; 6509 int ip_align; 6510 6511 /* Byte size accesses are always allowed. */ 6512 if (!strict || size == 1) 6513 return 0; 6514 6515 /* For platforms that do not have a Kconfig enabling 6516 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6517 * NET_IP_ALIGN is universally set to '2'. And on platforms 6518 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6519 * to this code only in strict mode where we want to emulate 6520 * the NET_IP_ALIGN==2 checking. Therefore use an 6521 * unconditional IP align value of '2'. 6522 */ 6523 ip_align = 2; 6524 6525 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6526 if (!tnum_is_aligned(reg_off, size)) { 6527 char tn_buf[48]; 6528 6529 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6530 verbose(env, 6531 "misaligned packet access off %d+%s+%d+%d size %d\n", 6532 ip_align, tn_buf, reg->off, off, size); 6533 return -EACCES; 6534 } 6535 6536 return 0; 6537 } 6538 6539 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6540 const struct bpf_reg_state *reg, 6541 const char *pointer_desc, 6542 int off, int size, bool strict) 6543 { 6544 struct tnum reg_off; 6545 6546 /* Byte size accesses are always allowed. */ 6547 if (!strict || size == 1) 6548 return 0; 6549 6550 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6551 if (!tnum_is_aligned(reg_off, size)) { 6552 char tn_buf[48]; 6553 6554 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6555 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6556 pointer_desc, tn_buf, reg->off, off, size); 6557 return -EACCES; 6558 } 6559 6560 return 0; 6561 } 6562 6563 static int check_ptr_alignment(struct bpf_verifier_env *env, 6564 const struct bpf_reg_state *reg, int off, 6565 int size, bool strict_alignment_once) 6566 { 6567 bool strict = env->strict_alignment || strict_alignment_once; 6568 const char *pointer_desc = ""; 6569 6570 switch (reg->type) { 6571 case PTR_TO_PACKET: 6572 case PTR_TO_PACKET_META: 6573 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6574 * right in front, treat it the very same way. 6575 */ 6576 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6577 case PTR_TO_FLOW_KEYS: 6578 pointer_desc = "flow keys "; 6579 break; 6580 case PTR_TO_MAP_KEY: 6581 pointer_desc = "key "; 6582 break; 6583 case PTR_TO_MAP_VALUE: 6584 pointer_desc = "value "; 6585 if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY) 6586 strict = true; 6587 break; 6588 case PTR_TO_CTX: 6589 pointer_desc = "context "; 6590 break; 6591 case PTR_TO_STACK: 6592 pointer_desc = "stack "; 6593 /* The stack spill tracking logic in check_stack_write_fixed_off() 6594 * and check_stack_read_fixed_off() relies on stack accesses being 6595 * aligned. 6596 */ 6597 strict = true; 6598 break; 6599 case PTR_TO_SOCKET: 6600 pointer_desc = "sock "; 6601 break; 6602 case PTR_TO_SOCK_COMMON: 6603 pointer_desc = "sock_common "; 6604 break; 6605 case PTR_TO_TCP_SOCK: 6606 pointer_desc = "tcp_sock "; 6607 break; 6608 case PTR_TO_XDP_SOCK: 6609 pointer_desc = "xdp_sock "; 6610 break; 6611 case PTR_TO_ARENA: 6612 return 0; 6613 default: 6614 break; 6615 } 6616 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6617 strict); 6618 } 6619 6620 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6621 { 6622 if (!bpf_jit_supports_private_stack()) 6623 return NO_PRIV_STACK; 6624 6625 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6626 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6627 * explicitly. 6628 */ 6629 switch (prog->type) { 6630 case BPF_PROG_TYPE_KPROBE: 6631 case BPF_PROG_TYPE_TRACEPOINT: 6632 case BPF_PROG_TYPE_PERF_EVENT: 6633 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6634 return PRIV_STACK_ADAPTIVE; 6635 case BPF_PROG_TYPE_TRACING: 6636 case BPF_PROG_TYPE_LSM: 6637 case BPF_PROG_TYPE_STRUCT_OPS: 6638 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6639 return PRIV_STACK_ADAPTIVE; 6640 fallthrough; 6641 default: 6642 break; 6643 } 6644 6645 return NO_PRIV_STACK; 6646 } 6647 6648 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6649 { 6650 if (env->prog->jit_requested) 6651 return round_up(stack_depth, 16); 6652 6653 /* round up to 32-bytes, since this is granularity 6654 * of interpreter stack size 6655 */ 6656 return round_up(max_t(u32, stack_depth, 1), 32); 6657 } 6658 6659 /* starting from main bpf function walk all instructions of the function 6660 * and recursively walk all callees that given function can call. 6661 * Ignore jump and exit insns. 6662 * Since recursion is prevented by check_cfg() this algorithm 6663 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6664 */ 6665 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6666 bool priv_stack_supported) 6667 { 6668 struct bpf_subprog_info *subprog = env->subprog_info; 6669 struct bpf_insn *insn = env->prog->insnsi; 6670 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6671 bool tail_call_reachable = false; 6672 int ret_insn[MAX_CALL_FRAMES]; 6673 int ret_prog[MAX_CALL_FRAMES]; 6674 int j; 6675 6676 i = subprog[idx].start; 6677 if (!priv_stack_supported) 6678 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6679 process_func: 6680 /* protect against potential stack overflow that might happen when 6681 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6682 * depth for such case down to 256 so that the worst case scenario 6683 * would result in 8k stack size (32 which is tailcall limit * 256 = 6684 * 8k). 6685 * 6686 * To get the idea what might happen, see an example: 6687 * func1 -> sub rsp, 128 6688 * subfunc1 -> sub rsp, 256 6689 * tailcall1 -> add rsp, 256 6690 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6691 * subfunc2 -> sub rsp, 64 6692 * subfunc22 -> sub rsp, 128 6693 * tailcall2 -> add rsp, 128 6694 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6695 * 6696 * tailcall will unwind the current stack frame but it will not get rid 6697 * of caller's stack as shown on the example above. 6698 */ 6699 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6700 verbose(env, 6701 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6702 depth); 6703 return -EACCES; 6704 } 6705 6706 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6707 if (priv_stack_supported) { 6708 /* Request private stack support only if the subprog stack 6709 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6710 * avoid jit penalty if the stack usage is small. 6711 */ 6712 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6713 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6714 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6715 } 6716 6717 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6718 if (subprog_depth > MAX_BPF_STACK) { 6719 verbose(env, "stack size of subprog %d is %d. Too large\n", 6720 idx, subprog_depth); 6721 return -EACCES; 6722 } 6723 } else { 6724 depth += subprog_depth; 6725 if (depth > MAX_BPF_STACK) { 6726 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6727 frame + 1, depth); 6728 return -EACCES; 6729 } 6730 } 6731 continue_func: 6732 subprog_end = subprog[idx + 1].start; 6733 for (; i < subprog_end; i++) { 6734 int next_insn, sidx; 6735 6736 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6737 bool err = false; 6738 6739 if (!is_bpf_throw_kfunc(insn + i)) 6740 continue; 6741 if (subprog[idx].is_cb) 6742 err = true; 6743 for (int c = 0; c < frame && !err; c++) { 6744 if (subprog[ret_prog[c]].is_cb) { 6745 err = true; 6746 break; 6747 } 6748 } 6749 if (!err) 6750 continue; 6751 verbose(env, 6752 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6753 i, idx); 6754 return -EINVAL; 6755 } 6756 6757 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6758 continue; 6759 /* remember insn and function to return to */ 6760 ret_insn[frame] = i + 1; 6761 ret_prog[frame] = idx; 6762 6763 /* find the callee */ 6764 next_insn = i + insn[i].imm + 1; 6765 sidx = find_subprog(env, next_insn); 6766 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6767 return -EFAULT; 6768 if (subprog[sidx].is_async_cb) { 6769 if (subprog[sidx].has_tail_call) { 6770 verifier_bug(env, "subprog has tail_call and async cb"); 6771 return -EFAULT; 6772 } 6773 /* async callbacks don't increase bpf prog stack size unless called directly */ 6774 if (!bpf_pseudo_call(insn + i)) 6775 continue; 6776 if (subprog[sidx].is_exception_cb) { 6777 verbose(env, "insn %d cannot call exception cb directly", i); 6778 return -EINVAL; 6779 } 6780 } 6781 i = next_insn; 6782 idx = sidx; 6783 if (!priv_stack_supported) 6784 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6785 6786 if (subprog[idx].has_tail_call) 6787 tail_call_reachable = true; 6788 6789 frame++; 6790 if (frame >= MAX_CALL_FRAMES) { 6791 verbose(env, "the call stack of %d frames is too deep !\n", 6792 frame); 6793 return -E2BIG; 6794 } 6795 goto process_func; 6796 } 6797 /* if tail call got detected across bpf2bpf calls then mark each of the 6798 * currently present subprog frames as tail call reachable subprogs; 6799 * this info will be utilized by JIT so that we will be preserving the 6800 * tail call counter throughout bpf2bpf calls combined with tailcalls 6801 */ 6802 if (tail_call_reachable) 6803 for (j = 0; j < frame; j++) { 6804 if (subprog[ret_prog[j]].is_exception_cb) { 6805 verbose(env, "cannot tail call within exception cb\n"); 6806 return -EINVAL; 6807 } 6808 subprog[ret_prog[j]].tail_call_reachable = true; 6809 } 6810 if (subprog[0].tail_call_reachable) 6811 env->prog->aux->tail_call_reachable = true; 6812 6813 /* end of for() loop means the last insn of the 'subprog' 6814 * was reached. Doesn't matter whether it was JA or EXIT 6815 */ 6816 if (frame == 0) 6817 return 0; 6818 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6819 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6820 frame--; 6821 i = ret_insn[frame]; 6822 idx = ret_prog[frame]; 6823 goto continue_func; 6824 } 6825 6826 static int check_max_stack_depth(struct bpf_verifier_env *env) 6827 { 6828 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6829 struct bpf_subprog_info *si = env->subprog_info; 6830 bool priv_stack_supported; 6831 int ret; 6832 6833 for (int i = 0; i < env->subprog_cnt; i++) { 6834 if (si[i].has_tail_call) { 6835 priv_stack_mode = NO_PRIV_STACK; 6836 break; 6837 } 6838 } 6839 6840 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6841 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6842 6843 /* All async_cb subprogs use normal kernel stack. If a particular 6844 * subprog appears in both main prog and async_cb subtree, that 6845 * subprog will use normal kernel stack to avoid potential nesting. 6846 * The reverse subprog traversal ensures when main prog subtree is 6847 * checked, the subprogs appearing in async_cb subtrees are already 6848 * marked as using normal kernel stack, so stack size checking can 6849 * be done properly. 6850 */ 6851 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6852 if (!i || si[i].is_async_cb) { 6853 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6854 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6855 if (ret < 0) 6856 return ret; 6857 } 6858 } 6859 6860 for (int i = 0; i < env->subprog_cnt; i++) { 6861 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6862 env->prog->aux->jits_use_priv_stack = true; 6863 break; 6864 } 6865 } 6866 6867 return 0; 6868 } 6869 6870 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6871 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6872 const struct bpf_insn *insn, int idx) 6873 { 6874 int start = idx + insn->imm + 1, subprog; 6875 6876 subprog = find_subprog(env, start); 6877 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6878 return -EFAULT; 6879 return env->subprog_info[subprog].stack_depth; 6880 } 6881 #endif 6882 6883 static int __check_buffer_access(struct bpf_verifier_env *env, 6884 const char *buf_info, 6885 const struct bpf_reg_state *reg, 6886 int regno, int off, int size) 6887 { 6888 if (off < 0) { 6889 verbose(env, 6890 "R%d invalid %s buffer access: off=%d, size=%d\n", 6891 regno, buf_info, off, size); 6892 return -EACCES; 6893 } 6894 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6895 char tn_buf[48]; 6896 6897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6898 verbose(env, 6899 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6900 regno, off, tn_buf); 6901 return -EACCES; 6902 } 6903 6904 return 0; 6905 } 6906 6907 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6908 const struct bpf_reg_state *reg, 6909 int regno, int off, int size) 6910 { 6911 int err; 6912 6913 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6914 if (err) 6915 return err; 6916 6917 if (off + size > env->prog->aux->max_tp_access) 6918 env->prog->aux->max_tp_access = off + size; 6919 6920 return 0; 6921 } 6922 6923 static int check_buffer_access(struct bpf_verifier_env *env, 6924 const struct bpf_reg_state *reg, 6925 int regno, int off, int size, 6926 bool zero_size_allowed, 6927 u32 *max_access) 6928 { 6929 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6930 int err; 6931 6932 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6933 if (err) 6934 return err; 6935 6936 if (off + size > *max_access) 6937 *max_access = off + size; 6938 6939 return 0; 6940 } 6941 6942 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6943 static void zext_32_to_64(struct bpf_reg_state *reg) 6944 { 6945 reg->var_off = tnum_subreg(reg->var_off); 6946 __reg_assign_32_into_64(reg); 6947 } 6948 6949 /* truncate register to smaller size (in bytes) 6950 * must be called with size < BPF_REG_SIZE 6951 */ 6952 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6953 { 6954 u64 mask; 6955 6956 /* clear high bits in bit representation */ 6957 reg->var_off = tnum_cast(reg->var_off, size); 6958 6959 /* fix arithmetic bounds */ 6960 mask = ((u64)1 << (size * 8)) - 1; 6961 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6962 reg->umin_value &= mask; 6963 reg->umax_value &= mask; 6964 } else { 6965 reg->umin_value = 0; 6966 reg->umax_value = mask; 6967 } 6968 reg->smin_value = reg->umin_value; 6969 reg->smax_value = reg->umax_value; 6970 6971 /* If size is smaller than 32bit register the 32bit register 6972 * values are also truncated so we push 64-bit bounds into 6973 * 32-bit bounds. Above were truncated < 32-bits already. 6974 */ 6975 if (size < 4) 6976 __mark_reg32_unbounded(reg); 6977 6978 reg_bounds_sync(reg); 6979 } 6980 6981 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6982 { 6983 if (size == 1) { 6984 reg->smin_value = reg->s32_min_value = S8_MIN; 6985 reg->smax_value = reg->s32_max_value = S8_MAX; 6986 } else if (size == 2) { 6987 reg->smin_value = reg->s32_min_value = S16_MIN; 6988 reg->smax_value = reg->s32_max_value = S16_MAX; 6989 } else { 6990 /* size == 4 */ 6991 reg->smin_value = reg->s32_min_value = S32_MIN; 6992 reg->smax_value = reg->s32_max_value = S32_MAX; 6993 } 6994 reg->umin_value = reg->u32_min_value = 0; 6995 reg->umax_value = U64_MAX; 6996 reg->u32_max_value = U32_MAX; 6997 reg->var_off = tnum_unknown; 6998 } 6999 7000 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 7001 { 7002 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 7003 u64 top_smax_value, top_smin_value; 7004 u64 num_bits = size * 8; 7005 7006 if (tnum_is_const(reg->var_off)) { 7007 u64_cval = reg->var_off.value; 7008 if (size == 1) 7009 reg->var_off = tnum_const((s8)u64_cval); 7010 else if (size == 2) 7011 reg->var_off = tnum_const((s16)u64_cval); 7012 else 7013 /* size == 4 */ 7014 reg->var_off = tnum_const((s32)u64_cval); 7015 7016 u64_cval = reg->var_off.value; 7017 reg->smax_value = reg->smin_value = u64_cval; 7018 reg->umax_value = reg->umin_value = u64_cval; 7019 reg->s32_max_value = reg->s32_min_value = u64_cval; 7020 reg->u32_max_value = reg->u32_min_value = u64_cval; 7021 return; 7022 } 7023 7024 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 7025 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 7026 7027 if (top_smax_value != top_smin_value) 7028 goto out; 7029 7030 /* find the s64_min and s64_min after sign extension */ 7031 if (size == 1) { 7032 init_s64_max = (s8)reg->smax_value; 7033 init_s64_min = (s8)reg->smin_value; 7034 } else if (size == 2) { 7035 init_s64_max = (s16)reg->smax_value; 7036 init_s64_min = (s16)reg->smin_value; 7037 } else { 7038 init_s64_max = (s32)reg->smax_value; 7039 init_s64_min = (s32)reg->smin_value; 7040 } 7041 7042 s64_max = max(init_s64_max, init_s64_min); 7043 s64_min = min(init_s64_max, init_s64_min); 7044 7045 /* both of s64_max/s64_min positive or negative */ 7046 if ((s64_max >= 0) == (s64_min >= 0)) { 7047 reg->s32_min_value = reg->smin_value = s64_min; 7048 reg->s32_max_value = reg->smax_value = s64_max; 7049 reg->u32_min_value = reg->umin_value = s64_min; 7050 reg->u32_max_value = reg->umax_value = s64_max; 7051 reg->var_off = tnum_range(s64_min, s64_max); 7052 return; 7053 } 7054 7055 out: 7056 set_sext64_default_val(reg, size); 7057 } 7058 7059 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 7060 { 7061 if (size == 1) { 7062 reg->s32_min_value = S8_MIN; 7063 reg->s32_max_value = S8_MAX; 7064 } else { 7065 /* size == 2 */ 7066 reg->s32_min_value = S16_MIN; 7067 reg->s32_max_value = S16_MAX; 7068 } 7069 reg->u32_min_value = 0; 7070 reg->u32_max_value = U32_MAX; 7071 reg->var_off = tnum_subreg(tnum_unknown); 7072 } 7073 7074 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 7075 { 7076 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 7077 u32 top_smax_value, top_smin_value; 7078 u32 num_bits = size * 8; 7079 7080 if (tnum_is_const(reg->var_off)) { 7081 u32_val = reg->var_off.value; 7082 if (size == 1) 7083 reg->var_off = tnum_const((s8)u32_val); 7084 else 7085 reg->var_off = tnum_const((s16)u32_val); 7086 7087 u32_val = reg->var_off.value; 7088 reg->s32_min_value = reg->s32_max_value = u32_val; 7089 reg->u32_min_value = reg->u32_max_value = u32_val; 7090 return; 7091 } 7092 7093 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 7094 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 7095 7096 if (top_smax_value != top_smin_value) 7097 goto out; 7098 7099 /* find the s32_min and s32_min after sign extension */ 7100 if (size == 1) { 7101 init_s32_max = (s8)reg->s32_max_value; 7102 init_s32_min = (s8)reg->s32_min_value; 7103 } else { 7104 /* size == 2 */ 7105 init_s32_max = (s16)reg->s32_max_value; 7106 init_s32_min = (s16)reg->s32_min_value; 7107 } 7108 s32_max = max(init_s32_max, init_s32_min); 7109 s32_min = min(init_s32_max, init_s32_min); 7110 7111 if ((s32_min >= 0) == (s32_max >= 0)) { 7112 reg->s32_min_value = s32_min; 7113 reg->s32_max_value = s32_max; 7114 reg->u32_min_value = (u32)s32_min; 7115 reg->u32_max_value = (u32)s32_max; 7116 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 7117 return; 7118 } 7119 7120 out: 7121 set_sext32_default_val(reg, size); 7122 } 7123 7124 static bool bpf_map_is_rdonly(const struct bpf_map *map) 7125 { 7126 /* A map is considered read-only if the following condition are true: 7127 * 7128 * 1) BPF program side cannot change any of the map content. The 7129 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 7130 * and was set at map creation time. 7131 * 2) The map value(s) have been initialized from user space by a 7132 * loader and then "frozen", such that no new map update/delete 7133 * operations from syscall side are possible for the rest of 7134 * the map's lifetime from that point onwards. 7135 * 3) Any parallel/pending map update/delete operations from syscall 7136 * side have been completed. Only after that point, it's safe to 7137 * assume that map value(s) are immutable. 7138 */ 7139 return (map->map_flags & BPF_F_RDONLY_PROG) && 7140 READ_ONCE(map->frozen) && 7141 !bpf_map_write_active(map); 7142 } 7143 7144 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 7145 bool is_ldsx) 7146 { 7147 void *ptr; 7148 u64 addr; 7149 int err; 7150 7151 err = map->ops->map_direct_value_addr(map, &addr, off); 7152 if (err) 7153 return err; 7154 ptr = (void *)(long)addr + off; 7155 7156 switch (size) { 7157 case sizeof(u8): 7158 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 7159 break; 7160 case sizeof(u16): 7161 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 7162 break; 7163 case sizeof(u32): 7164 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 7165 break; 7166 case sizeof(u64): 7167 *val = *(u64 *)ptr; 7168 break; 7169 default: 7170 return -EINVAL; 7171 } 7172 return 0; 7173 } 7174 7175 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 7176 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 7177 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 7178 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 7179 7180 /* 7181 * Allow list few fields as RCU trusted or full trusted. 7182 * This logic doesn't allow mix tagging and will be removed once GCC supports 7183 * btf_type_tag. 7184 */ 7185 7186 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 7187 BTF_TYPE_SAFE_RCU(struct task_struct) { 7188 const cpumask_t *cpus_ptr; 7189 struct css_set __rcu *cgroups; 7190 struct task_struct __rcu *real_parent; 7191 struct task_struct *group_leader; 7192 }; 7193 7194 BTF_TYPE_SAFE_RCU(struct cgroup) { 7195 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 7196 struct kernfs_node *kn; 7197 }; 7198 7199 BTF_TYPE_SAFE_RCU(struct css_set) { 7200 struct cgroup *dfl_cgrp; 7201 }; 7202 7203 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 7204 struct cgroup *cgroup; 7205 }; 7206 7207 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7208 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7209 struct file __rcu *exe_file; 7210 #ifdef CONFIG_MEMCG 7211 struct task_struct __rcu *owner; 7212 #endif 7213 }; 7214 7215 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7216 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7217 */ 7218 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7219 struct sock *sk; 7220 }; 7221 7222 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7223 struct sock *sk; 7224 }; 7225 7226 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7227 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7228 struct seq_file *seq; 7229 }; 7230 7231 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7232 struct bpf_iter_meta *meta; 7233 struct task_struct *task; 7234 }; 7235 7236 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7237 struct file *file; 7238 }; 7239 7240 BTF_TYPE_SAFE_TRUSTED(struct file) { 7241 struct inode *f_inode; 7242 }; 7243 7244 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7245 struct inode *d_inode; 7246 }; 7247 7248 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7249 struct sock *sk; 7250 }; 7251 7252 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) { 7253 struct mm_struct *vm_mm; 7254 struct file *vm_file; 7255 }; 7256 7257 static bool type_is_rcu(struct bpf_verifier_env *env, 7258 struct bpf_reg_state *reg, 7259 const char *field_name, u32 btf_id) 7260 { 7261 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7262 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7263 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7264 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7265 7266 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7267 } 7268 7269 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7270 struct bpf_reg_state *reg, 7271 const char *field_name, u32 btf_id) 7272 { 7273 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7274 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7275 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7276 7277 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7278 } 7279 7280 static bool type_is_trusted(struct bpf_verifier_env *env, 7281 struct bpf_reg_state *reg, 7282 const char *field_name, u32 btf_id) 7283 { 7284 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7285 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7286 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7287 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7288 7289 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7290 } 7291 7292 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7293 struct bpf_reg_state *reg, 7294 const char *field_name, u32 btf_id) 7295 { 7296 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7297 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7298 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct)); 7299 7300 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7301 "__safe_trusted_or_null"); 7302 } 7303 7304 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7305 struct bpf_reg_state *regs, 7306 int regno, int off, int size, 7307 enum bpf_access_type atype, 7308 int value_regno) 7309 { 7310 struct bpf_reg_state *reg = regs + regno; 7311 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7312 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7313 const char *field_name = NULL; 7314 enum bpf_type_flag flag = 0; 7315 u32 btf_id = 0; 7316 int ret; 7317 7318 if (!env->allow_ptr_leaks) { 7319 verbose(env, 7320 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7321 tname); 7322 return -EPERM; 7323 } 7324 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7325 verbose(env, 7326 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7327 tname); 7328 return -EINVAL; 7329 } 7330 if (off < 0) { 7331 verbose(env, 7332 "R%d is ptr_%s invalid negative access: off=%d\n", 7333 regno, tname, off); 7334 return -EACCES; 7335 } 7336 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7337 char tn_buf[48]; 7338 7339 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7340 verbose(env, 7341 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7342 regno, tname, off, tn_buf); 7343 return -EACCES; 7344 } 7345 7346 if (reg->type & MEM_USER) { 7347 verbose(env, 7348 "R%d is ptr_%s access user memory: off=%d\n", 7349 regno, tname, off); 7350 return -EACCES; 7351 } 7352 7353 if (reg->type & MEM_PERCPU) { 7354 verbose(env, 7355 "R%d is ptr_%s access percpu memory: off=%d\n", 7356 regno, tname, off); 7357 return -EACCES; 7358 } 7359 7360 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7361 if (!btf_is_kernel(reg->btf)) { 7362 verifier_bug(env, "reg->btf must be kernel btf"); 7363 return -EFAULT; 7364 } 7365 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7366 } else { 7367 /* Writes are permitted with default btf_struct_access for 7368 * program allocated objects (which always have ref_obj_id > 0), 7369 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7370 */ 7371 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7372 verbose(env, "only read is supported\n"); 7373 return -EACCES; 7374 } 7375 7376 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7377 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7378 verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); 7379 return -EFAULT; 7380 } 7381 7382 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7383 } 7384 7385 if (ret < 0) 7386 return ret; 7387 7388 if (ret != PTR_TO_BTF_ID) { 7389 /* just mark; */ 7390 7391 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7392 /* If this is an untrusted pointer, all pointers formed by walking it 7393 * also inherit the untrusted flag. 7394 */ 7395 flag = PTR_UNTRUSTED; 7396 7397 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7398 /* By default any pointer obtained from walking a trusted pointer is no 7399 * longer trusted, unless the field being accessed has explicitly been 7400 * marked as inheriting its parent's state of trust (either full or RCU). 7401 * For example: 7402 * 'cgroups' pointer is untrusted if task->cgroups dereference 7403 * happened in a sleepable program outside of bpf_rcu_read_lock() 7404 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7405 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7406 * 7407 * A regular RCU-protected pointer with __rcu tag can also be deemed 7408 * trusted if we are in an RCU CS. Such pointer can be NULL. 7409 */ 7410 if (type_is_trusted(env, reg, field_name, btf_id)) { 7411 flag |= PTR_TRUSTED; 7412 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7413 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7414 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7415 if (type_is_rcu(env, reg, field_name, btf_id)) { 7416 /* ignore __rcu tag and mark it MEM_RCU */ 7417 flag |= MEM_RCU; 7418 } else if (flag & MEM_RCU || 7419 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7420 /* __rcu tagged pointers can be NULL */ 7421 flag |= MEM_RCU | PTR_MAYBE_NULL; 7422 7423 /* We always trust them */ 7424 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7425 flag & PTR_UNTRUSTED) 7426 flag &= ~PTR_UNTRUSTED; 7427 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7428 /* keep as-is */ 7429 } else { 7430 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7431 clear_trusted_flags(&flag); 7432 } 7433 } else { 7434 /* 7435 * If not in RCU CS or MEM_RCU pointer can be NULL then 7436 * aggressively mark as untrusted otherwise such 7437 * pointers will be plain PTR_TO_BTF_ID without flags 7438 * and will be allowed to be passed into helpers for 7439 * compat reasons. 7440 */ 7441 flag = PTR_UNTRUSTED; 7442 } 7443 } else { 7444 /* Old compat. Deprecated */ 7445 clear_trusted_flags(&flag); 7446 } 7447 7448 if (atype == BPF_READ && value_regno >= 0) { 7449 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7450 if (ret < 0) 7451 return ret; 7452 } 7453 7454 return 0; 7455 } 7456 7457 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7458 struct bpf_reg_state *regs, 7459 int regno, int off, int size, 7460 enum bpf_access_type atype, 7461 int value_regno) 7462 { 7463 struct bpf_reg_state *reg = regs + regno; 7464 struct bpf_map *map = reg->map_ptr; 7465 struct bpf_reg_state map_reg; 7466 enum bpf_type_flag flag = 0; 7467 const struct btf_type *t; 7468 const char *tname; 7469 u32 btf_id; 7470 int ret; 7471 7472 if (!btf_vmlinux) { 7473 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7474 return -ENOTSUPP; 7475 } 7476 7477 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7478 verbose(env, "map_ptr access not supported for map type %d\n", 7479 map->map_type); 7480 return -ENOTSUPP; 7481 } 7482 7483 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7484 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7485 7486 if (!env->allow_ptr_leaks) { 7487 verbose(env, 7488 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7489 tname); 7490 return -EPERM; 7491 } 7492 7493 if (off < 0) { 7494 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7495 regno, tname, off); 7496 return -EACCES; 7497 } 7498 7499 if (atype != BPF_READ) { 7500 verbose(env, "only read from %s is supported\n", tname); 7501 return -EACCES; 7502 } 7503 7504 /* Simulate access to a PTR_TO_BTF_ID */ 7505 memset(&map_reg, 0, sizeof(map_reg)); 7506 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, 7507 btf_vmlinux, *map->ops->map_btf_id, 0); 7508 if (ret < 0) 7509 return ret; 7510 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7511 if (ret < 0) 7512 return ret; 7513 7514 if (value_regno >= 0) { 7515 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7516 if (ret < 0) 7517 return ret; 7518 } 7519 7520 return 0; 7521 } 7522 7523 /* Check that the stack access at the given offset is within bounds. The 7524 * maximum valid offset is -1. 7525 * 7526 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7527 * -state->allocated_stack for reads. 7528 */ 7529 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7530 s64 off, 7531 struct bpf_func_state *state, 7532 enum bpf_access_type t) 7533 { 7534 int min_valid_off; 7535 7536 if (t == BPF_WRITE || env->allow_uninit_stack) 7537 min_valid_off = -MAX_BPF_STACK; 7538 else 7539 min_valid_off = -state->allocated_stack; 7540 7541 if (off < min_valid_off || off > -1) 7542 return -EACCES; 7543 return 0; 7544 } 7545 7546 /* Check that the stack access at 'regno + off' falls within the maximum stack 7547 * bounds. 7548 * 7549 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7550 */ 7551 static int check_stack_access_within_bounds( 7552 struct bpf_verifier_env *env, 7553 int regno, int off, int access_size, 7554 enum bpf_access_type type) 7555 { 7556 struct bpf_reg_state *reg = reg_state(env, regno); 7557 struct bpf_func_state *state = func(env, reg); 7558 s64 min_off, max_off; 7559 int err; 7560 char *err_extra; 7561 7562 if (type == BPF_READ) 7563 err_extra = " read from"; 7564 else 7565 err_extra = " write to"; 7566 7567 if (tnum_is_const(reg->var_off)) { 7568 min_off = (s64)reg->var_off.value + off; 7569 max_off = min_off + access_size; 7570 } else { 7571 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7572 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7573 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7574 err_extra, regno); 7575 return -EACCES; 7576 } 7577 min_off = reg->smin_value + off; 7578 max_off = reg->smax_value + off + access_size; 7579 } 7580 7581 err = check_stack_slot_within_bounds(env, min_off, state, type); 7582 if (!err && max_off > 0) 7583 err = -EINVAL; /* out of stack access into non-negative offsets */ 7584 if (!err && access_size < 0) 7585 /* access_size should not be negative (or overflow an int); others checks 7586 * along the way should have prevented such an access. 7587 */ 7588 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7589 7590 if (err) { 7591 if (tnum_is_const(reg->var_off)) { 7592 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7593 err_extra, regno, off, access_size); 7594 } else { 7595 char tn_buf[48]; 7596 7597 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7598 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7599 err_extra, regno, tn_buf, off, access_size); 7600 } 7601 return err; 7602 } 7603 7604 /* Note that there is no stack access with offset zero, so the needed stack 7605 * size is -min_off, not -min_off+1. 7606 */ 7607 return grow_stack_state(env, state, -min_off /* size */); 7608 } 7609 7610 static bool get_func_retval_range(struct bpf_prog *prog, 7611 struct bpf_retval_range *range) 7612 { 7613 if (prog->type == BPF_PROG_TYPE_LSM && 7614 prog->expected_attach_type == BPF_LSM_MAC && 7615 !bpf_lsm_get_retval_range(prog, range)) { 7616 return true; 7617 } 7618 return false; 7619 } 7620 7621 /* check whether memory at (regno + off) is accessible for t = (read | write) 7622 * if t==write, value_regno is a register which value is stored into memory 7623 * if t==read, value_regno is a register which will receive the value from memory 7624 * if t==write && value_regno==-1, some unknown value is stored into memory 7625 * if t==read && value_regno==-1, don't care what we read from memory 7626 */ 7627 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7628 int off, int bpf_size, enum bpf_access_type t, 7629 int value_regno, bool strict_alignment_once, bool is_ldsx) 7630 { 7631 struct bpf_reg_state *regs = cur_regs(env); 7632 struct bpf_reg_state *reg = regs + regno; 7633 int size, err = 0; 7634 7635 size = bpf_size_to_bytes(bpf_size); 7636 if (size < 0) 7637 return size; 7638 7639 /* alignment checks will add in reg->off themselves */ 7640 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7641 if (err) 7642 return err; 7643 7644 /* for access checks, reg->off is just part of off */ 7645 off += reg->off; 7646 7647 if (reg->type == PTR_TO_MAP_KEY) { 7648 if (t == BPF_WRITE) { 7649 verbose(env, "write to change key R%d not allowed\n", regno); 7650 return -EACCES; 7651 } 7652 7653 err = check_mem_region_access(env, regno, off, size, 7654 reg->map_ptr->key_size, false); 7655 if (err) 7656 return err; 7657 if (value_regno >= 0) 7658 mark_reg_unknown(env, regs, value_regno); 7659 } else if (reg->type == PTR_TO_MAP_VALUE) { 7660 struct btf_field *kptr_field = NULL; 7661 7662 if (t == BPF_WRITE && value_regno >= 0 && 7663 is_pointer_value(env, value_regno)) { 7664 verbose(env, "R%d leaks addr into map\n", value_regno); 7665 return -EACCES; 7666 } 7667 err = check_map_access_type(env, regno, off, size, t); 7668 if (err) 7669 return err; 7670 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7671 if (err) 7672 return err; 7673 if (tnum_is_const(reg->var_off)) 7674 kptr_field = btf_record_find(reg->map_ptr->record, 7675 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7676 if (kptr_field) { 7677 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7678 } else if (t == BPF_READ && value_regno >= 0) { 7679 struct bpf_map *map = reg->map_ptr; 7680 7681 /* 7682 * If map is read-only, track its contents as scalars, 7683 * unless it is an insn array (see the special case below) 7684 */ 7685 if (tnum_is_const(reg->var_off) && 7686 bpf_map_is_rdonly(map) && 7687 map->ops->map_direct_value_addr && 7688 map->map_type != BPF_MAP_TYPE_INSN_ARRAY) { 7689 int map_off = off + reg->var_off.value; 7690 u64 val = 0; 7691 7692 err = bpf_map_direct_read(map, map_off, size, 7693 &val, is_ldsx); 7694 if (err) 7695 return err; 7696 7697 regs[value_regno].type = SCALAR_VALUE; 7698 __mark_reg_known(®s[value_regno], val); 7699 } else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { 7700 if (bpf_size != BPF_DW) { 7701 verbose(env, "Invalid read of %d bytes from insn_array\n", 7702 size); 7703 return -EACCES; 7704 } 7705 copy_register_state(®s[value_regno], reg); 7706 regs[value_regno].type = PTR_TO_INSN; 7707 } else { 7708 mark_reg_unknown(env, regs, value_regno); 7709 } 7710 } 7711 } else if (base_type(reg->type) == PTR_TO_MEM) { 7712 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7713 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); 7714 7715 if (type_may_be_null(reg->type)) { 7716 verbose(env, "R%d invalid mem access '%s'\n", regno, 7717 reg_type_str(env, reg->type)); 7718 return -EACCES; 7719 } 7720 7721 if (t == BPF_WRITE && rdonly_mem) { 7722 verbose(env, "R%d cannot write into %s\n", 7723 regno, reg_type_str(env, reg->type)); 7724 return -EACCES; 7725 } 7726 7727 if (t == BPF_WRITE && value_regno >= 0 && 7728 is_pointer_value(env, value_regno)) { 7729 verbose(env, "R%d leaks addr into mem\n", value_regno); 7730 return -EACCES; 7731 } 7732 7733 /* 7734 * Accesses to untrusted PTR_TO_MEM are done through probe 7735 * instructions, hence no need to check bounds in that case. 7736 */ 7737 if (!rdonly_untrusted) 7738 err = check_mem_region_access(env, regno, off, size, 7739 reg->mem_size, false); 7740 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7741 mark_reg_unknown(env, regs, value_regno); 7742 } else if (reg->type == PTR_TO_CTX) { 7743 struct bpf_retval_range range; 7744 struct bpf_insn_access_aux info = { 7745 .reg_type = SCALAR_VALUE, 7746 .is_ldsx = is_ldsx, 7747 .log = &env->log, 7748 }; 7749 7750 if (t == BPF_WRITE && value_regno >= 0 && 7751 is_pointer_value(env, value_regno)) { 7752 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7753 return -EACCES; 7754 } 7755 7756 err = check_ptr_off_reg(env, reg, regno); 7757 if (err < 0) 7758 return err; 7759 7760 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7761 if (err) 7762 verbose_linfo(env, insn_idx, "; "); 7763 if (!err && t == BPF_READ && value_regno >= 0) { 7764 /* ctx access returns either a scalar, or a 7765 * PTR_TO_PACKET[_META,_END]. In the latter 7766 * case, we know the offset is zero. 7767 */ 7768 if (info.reg_type == SCALAR_VALUE) { 7769 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7770 err = __mark_reg_s32_range(env, regs, value_regno, 7771 range.minval, range.maxval); 7772 if (err) 7773 return err; 7774 } else { 7775 mark_reg_unknown(env, regs, value_regno); 7776 } 7777 } else { 7778 mark_reg_known_zero(env, regs, 7779 value_regno); 7780 if (type_may_be_null(info.reg_type)) 7781 regs[value_regno].id = ++env->id_gen; 7782 /* A load of ctx field could have different 7783 * actual load size with the one encoded in the 7784 * insn. When the dst is PTR, it is for sure not 7785 * a sub-register. 7786 */ 7787 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7788 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7789 regs[value_regno].btf = info.btf; 7790 regs[value_regno].btf_id = info.btf_id; 7791 regs[value_regno].ref_obj_id = info.ref_obj_id; 7792 } 7793 } 7794 regs[value_regno].type = info.reg_type; 7795 } 7796 7797 } else if (reg->type == PTR_TO_STACK) { 7798 /* Basic bounds checks. */ 7799 err = check_stack_access_within_bounds(env, regno, off, size, t); 7800 if (err) 7801 return err; 7802 7803 if (t == BPF_READ) 7804 err = check_stack_read(env, regno, off, size, 7805 value_regno); 7806 else 7807 err = check_stack_write(env, regno, off, size, 7808 value_regno, insn_idx); 7809 } else if (reg_is_pkt_pointer(reg)) { 7810 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7811 verbose(env, "cannot write into packet\n"); 7812 return -EACCES; 7813 } 7814 if (t == BPF_WRITE && value_regno >= 0 && 7815 is_pointer_value(env, value_regno)) { 7816 verbose(env, "R%d leaks addr into packet\n", 7817 value_regno); 7818 return -EACCES; 7819 } 7820 err = check_packet_access(env, regno, off, size, false); 7821 if (!err && t == BPF_READ && value_regno >= 0) 7822 mark_reg_unknown(env, regs, value_regno); 7823 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7824 if (t == BPF_WRITE && value_regno >= 0 && 7825 is_pointer_value(env, value_regno)) { 7826 verbose(env, "R%d leaks addr into flow keys\n", 7827 value_regno); 7828 return -EACCES; 7829 } 7830 7831 err = check_flow_keys_access(env, off, size); 7832 if (!err && t == BPF_READ && value_regno >= 0) 7833 mark_reg_unknown(env, regs, value_regno); 7834 } else if (type_is_sk_pointer(reg->type)) { 7835 if (t == BPF_WRITE) { 7836 verbose(env, "R%d cannot write into %s\n", 7837 regno, reg_type_str(env, reg->type)); 7838 return -EACCES; 7839 } 7840 err = check_sock_access(env, insn_idx, regno, off, size, t); 7841 if (!err && value_regno >= 0) 7842 mark_reg_unknown(env, regs, value_regno); 7843 } else if (reg->type == PTR_TO_TP_BUFFER) { 7844 err = check_tp_buffer_access(env, reg, regno, off, size); 7845 if (!err && t == BPF_READ && value_regno >= 0) 7846 mark_reg_unknown(env, regs, value_regno); 7847 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7848 !type_may_be_null(reg->type)) { 7849 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7850 value_regno); 7851 } else if (reg->type == CONST_PTR_TO_MAP) { 7852 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7853 value_regno); 7854 } else if (base_type(reg->type) == PTR_TO_BUF) { 7855 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7856 u32 *max_access; 7857 7858 if (rdonly_mem) { 7859 if (t == BPF_WRITE) { 7860 verbose(env, "R%d cannot write into %s\n", 7861 regno, reg_type_str(env, reg->type)); 7862 return -EACCES; 7863 } 7864 max_access = &env->prog->aux->max_rdonly_access; 7865 } else { 7866 max_access = &env->prog->aux->max_rdwr_access; 7867 } 7868 7869 err = check_buffer_access(env, reg, regno, off, size, false, 7870 max_access); 7871 7872 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7873 mark_reg_unknown(env, regs, value_regno); 7874 } else if (reg->type == PTR_TO_ARENA) { 7875 if (t == BPF_READ && value_regno >= 0) 7876 mark_reg_unknown(env, regs, value_regno); 7877 } else { 7878 verbose(env, "R%d invalid mem access '%s'\n", regno, 7879 reg_type_str(env, reg->type)); 7880 return -EACCES; 7881 } 7882 7883 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7884 regs[value_regno].type == SCALAR_VALUE) { 7885 if (!is_ldsx) 7886 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7887 coerce_reg_to_size(®s[value_regno], size); 7888 else 7889 coerce_reg_to_size_sx(®s[value_regno], size); 7890 } 7891 return err; 7892 } 7893 7894 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7895 bool allow_trust_mismatch); 7896 7897 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7898 bool strict_alignment_once, bool is_ldsx, 7899 bool allow_trust_mismatch, const char *ctx) 7900 { 7901 struct bpf_reg_state *regs = cur_regs(env); 7902 enum bpf_reg_type src_reg_type; 7903 int err; 7904 7905 /* check src operand */ 7906 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7907 if (err) 7908 return err; 7909 7910 /* check dst operand */ 7911 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7912 if (err) 7913 return err; 7914 7915 src_reg_type = regs[insn->src_reg].type; 7916 7917 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7918 * updated by this call. 7919 */ 7920 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7921 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7922 strict_alignment_once, is_ldsx); 7923 err = err ?: save_aux_ptr_type(env, src_reg_type, 7924 allow_trust_mismatch); 7925 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7926 7927 return err; 7928 } 7929 7930 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7931 bool strict_alignment_once) 7932 { 7933 struct bpf_reg_state *regs = cur_regs(env); 7934 enum bpf_reg_type dst_reg_type; 7935 int err; 7936 7937 /* check src1 operand */ 7938 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7939 if (err) 7940 return err; 7941 7942 /* check src2 operand */ 7943 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7944 if (err) 7945 return err; 7946 7947 dst_reg_type = regs[insn->dst_reg].type; 7948 7949 /* Check if (dst_reg + off) is writeable. */ 7950 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7951 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7952 strict_alignment_once, false); 7953 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7954 7955 return err; 7956 } 7957 7958 static int check_atomic_rmw(struct bpf_verifier_env *env, 7959 struct bpf_insn *insn) 7960 { 7961 int load_reg; 7962 int err; 7963 7964 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7965 verbose(env, "invalid atomic operand size\n"); 7966 return -EINVAL; 7967 } 7968 7969 /* check src1 operand */ 7970 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7971 if (err) 7972 return err; 7973 7974 /* check src2 operand */ 7975 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7976 if (err) 7977 return err; 7978 7979 if (insn->imm == BPF_CMPXCHG) { 7980 /* Check comparison of R0 with memory location */ 7981 const u32 aux_reg = BPF_REG_0; 7982 7983 err = check_reg_arg(env, aux_reg, SRC_OP); 7984 if (err) 7985 return err; 7986 7987 if (is_pointer_value(env, aux_reg)) { 7988 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7989 return -EACCES; 7990 } 7991 } 7992 7993 if (is_pointer_value(env, insn->src_reg)) { 7994 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7995 return -EACCES; 7996 } 7997 7998 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7999 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 8000 insn->dst_reg, 8001 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 8002 return -EACCES; 8003 } 8004 8005 if (insn->imm & BPF_FETCH) { 8006 if (insn->imm == BPF_CMPXCHG) 8007 load_reg = BPF_REG_0; 8008 else 8009 load_reg = insn->src_reg; 8010 8011 /* check and record load of old value */ 8012 err = check_reg_arg(env, load_reg, DST_OP); 8013 if (err) 8014 return err; 8015 } else { 8016 /* This instruction accesses a memory location but doesn't 8017 * actually load it into a register. 8018 */ 8019 load_reg = -1; 8020 } 8021 8022 /* Check whether we can read the memory, with second call for fetch 8023 * case to simulate the register fill. 8024 */ 8025 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 8026 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 8027 if (!err && load_reg >= 0) 8028 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8029 insn->off, BPF_SIZE(insn->code), 8030 BPF_READ, load_reg, true, false); 8031 if (err) 8032 return err; 8033 8034 if (is_arena_reg(env, insn->dst_reg)) { 8035 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 8036 if (err) 8037 return err; 8038 } 8039 /* Check whether we can write into the same memory. */ 8040 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 8041 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 8042 if (err) 8043 return err; 8044 return 0; 8045 } 8046 8047 static int check_atomic_load(struct bpf_verifier_env *env, 8048 struct bpf_insn *insn) 8049 { 8050 int err; 8051 8052 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 8053 if (err) 8054 return err; 8055 8056 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 8057 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 8058 insn->src_reg, 8059 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 8060 return -EACCES; 8061 } 8062 8063 return 0; 8064 } 8065 8066 static int check_atomic_store(struct bpf_verifier_env *env, 8067 struct bpf_insn *insn) 8068 { 8069 int err; 8070 8071 err = check_store_reg(env, insn, true); 8072 if (err) 8073 return err; 8074 8075 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 8076 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 8077 insn->dst_reg, 8078 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 8079 return -EACCES; 8080 } 8081 8082 return 0; 8083 } 8084 8085 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 8086 { 8087 switch (insn->imm) { 8088 case BPF_ADD: 8089 case BPF_ADD | BPF_FETCH: 8090 case BPF_AND: 8091 case BPF_AND | BPF_FETCH: 8092 case BPF_OR: 8093 case BPF_OR | BPF_FETCH: 8094 case BPF_XOR: 8095 case BPF_XOR | BPF_FETCH: 8096 case BPF_XCHG: 8097 case BPF_CMPXCHG: 8098 return check_atomic_rmw(env, insn); 8099 case BPF_LOAD_ACQ: 8100 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8101 verbose(env, 8102 "64-bit load-acquires are only supported on 64-bit arches\n"); 8103 return -EOPNOTSUPP; 8104 } 8105 return check_atomic_load(env, insn); 8106 case BPF_STORE_REL: 8107 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8108 verbose(env, 8109 "64-bit store-releases are only supported on 64-bit arches\n"); 8110 return -EOPNOTSUPP; 8111 } 8112 return check_atomic_store(env, insn); 8113 default: 8114 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 8115 insn->imm); 8116 return -EINVAL; 8117 } 8118 } 8119 8120 /* When register 'regno' is used to read the stack (either directly or through 8121 * a helper function) make sure that it's within stack boundary and, depending 8122 * on the access type and privileges, that all elements of the stack are 8123 * initialized. 8124 * 8125 * 'off' includes 'regno->off', but not its dynamic part (if any). 8126 * 8127 * All registers that have been spilled on the stack in the slots within the 8128 * read offsets are marked as read. 8129 */ 8130 static int check_stack_range_initialized( 8131 struct bpf_verifier_env *env, int regno, int off, 8132 int access_size, bool zero_size_allowed, 8133 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 8134 { 8135 struct bpf_reg_state *reg = reg_state(env, regno); 8136 struct bpf_func_state *state = func(env, reg); 8137 int err, min_off, max_off, i, j, slot, spi; 8138 /* Some accesses can write anything into the stack, others are 8139 * read-only. 8140 */ 8141 bool clobber = false; 8142 8143 if (access_size == 0 && !zero_size_allowed) { 8144 verbose(env, "invalid zero-sized read\n"); 8145 return -EACCES; 8146 } 8147 8148 if (type == BPF_WRITE) 8149 clobber = true; 8150 8151 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 8152 if (err) 8153 return err; 8154 8155 8156 if (tnum_is_const(reg->var_off)) { 8157 min_off = max_off = reg->var_off.value + off; 8158 } else { 8159 /* Variable offset is prohibited for unprivileged mode for 8160 * simplicity since it requires corresponding support in 8161 * Spectre masking for stack ALU. 8162 * See also retrieve_ptr_limit(). 8163 */ 8164 if (!env->bypass_spec_v1) { 8165 char tn_buf[48]; 8166 8167 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8168 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 8169 regno, tn_buf); 8170 return -EACCES; 8171 } 8172 /* Only initialized buffer on stack is allowed to be accessed 8173 * with variable offset. With uninitialized buffer it's hard to 8174 * guarantee that whole memory is marked as initialized on 8175 * helper return since specific bounds are unknown what may 8176 * cause uninitialized stack leaking. 8177 */ 8178 if (meta && meta->raw_mode) 8179 meta = NULL; 8180 8181 min_off = reg->smin_value + off; 8182 max_off = reg->smax_value + off; 8183 } 8184 8185 if (meta && meta->raw_mode) { 8186 /* Ensure we won't be overwriting dynptrs when simulating byte 8187 * by byte access in check_helper_call using meta.access_size. 8188 * This would be a problem if we have a helper in the future 8189 * which takes: 8190 * 8191 * helper(uninit_mem, len, dynptr) 8192 * 8193 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 8194 * may end up writing to dynptr itself when touching memory from 8195 * arg 1. This can be relaxed on a case by case basis for known 8196 * safe cases, but reject due to the possibilitiy of aliasing by 8197 * default. 8198 */ 8199 for (i = min_off; i < max_off + access_size; i++) { 8200 int stack_off = -i - 1; 8201 8202 spi = __get_spi(i); 8203 /* raw_mode may write past allocated_stack */ 8204 if (state->allocated_stack <= stack_off) 8205 continue; 8206 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 8207 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 8208 return -EACCES; 8209 } 8210 } 8211 meta->access_size = access_size; 8212 meta->regno = regno; 8213 return 0; 8214 } 8215 8216 for (i = min_off; i < max_off + access_size; i++) { 8217 u8 *stype; 8218 8219 slot = -i - 1; 8220 spi = slot / BPF_REG_SIZE; 8221 if (state->allocated_stack <= slot) { 8222 verbose(env, "allocated_stack too small\n"); 8223 return -EFAULT; 8224 } 8225 8226 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 8227 if (*stype == STACK_MISC) 8228 goto mark; 8229 if ((*stype == STACK_ZERO) || 8230 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 8231 if (clobber) { 8232 /* helper can write anything into the stack */ 8233 *stype = STACK_MISC; 8234 } 8235 goto mark; 8236 } 8237 8238 if (is_spilled_reg(&state->stack[spi]) && 8239 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 8240 env->allow_ptr_leaks)) { 8241 if (clobber) { 8242 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8243 for (j = 0; j < BPF_REG_SIZE; j++) 8244 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8245 } 8246 goto mark; 8247 } 8248 8249 if (tnum_is_const(reg->var_off)) { 8250 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8251 regno, min_off, i - min_off, access_size); 8252 } else { 8253 char tn_buf[48]; 8254 8255 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8256 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8257 regno, tn_buf, i - min_off, access_size); 8258 } 8259 return -EACCES; 8260 mark: 8261 /* reading any byte out of 8-byte 'spill_slot' will cause 8262 * the whole slot to be marked as 'read' 8263 */ 8264 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi)); 8265 if (err) 8266 return err; 8267 /* We do not call bpf_mark_stack_write(), as we can not 8268 * be sure that whether stack slot is written to or not. Hence, 8269 * we must still conservatively propagate reads upwards even if 8270 * helper may write to the entire memory range. 8271 */ 8272 } 8273 return 0; 8274 } 8275 8276 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8277 int access_size, enum bpf_access_type access_type, 8278 bool zero_size_allowed, 8279 struct bpf_call_arg_meta *meta) 8280 { 8281 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8282 u32 *max_access; 8283 8284 switch (base_type(reg->type)) { 8285 case PTR_TO_PACKET: 8286 case PTR_TO_PACKET_META: 8287 return check_packet_access(env, regno, reg->off, access_size, 8288 zero_size_allowed); 8289 case PTR_TO_MAP_KEY: 8290 if (access_type == BPF_WRITE) { 8291 verbose(env, "R%d cannot write into %s\n", regno, 8292 reg_type_str(env, reg->type)); 8293 return -EACCES; 8294 } 8295 return check_mem_region_access(env, regno, reg->off, access_size, 8296 reg->map_ptr->key_size, false); 8297 case PTR_TO_MAP_VALUE: 8298 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8299 return -EACCES; 8300 return check_map_access(env, regno, reg->off, access_size, 8301 zero_size_allowed, ACCESS_HELPER); 8302 case PTR_TO_MEM: 8303 if (type_is_rdonly_mem(reg->type)) { 8304 if (access_type == BPF_WRITE) { 8305 verbose(env, "R%d cannot write into %s\n", regno, 8306 reg_type_str(env, reg->type)); 8307 return -EACCES; 8308 } 8309 } 8310 return check_mem_region_access(env, regno, reg->off, 8311 access_size, reg->mem_size, 8312 zero_size_allowed); 8313 case PTR_TO_BUF: 8314 if (type_is_rdonly_mem(reg->type)) { 8315 if (access_type == BPF_WRITE) { 8316 verbose(env, "R%d cannot write into %s\n", regno, 8317 reg_type_str(env, reg->type)); 8318 return -EACCES; 8319 } 8320 8321 max_access = &env->prog->aux->max_rdonly_access; 8322 } else { 8323 max_access = &env->prog->aux->max_rdwr_access; 8324 } 8325 return check_buffer_access(env, reg, regno, reg->off, 8326 access_size, zero_size_allowed, 8327 max_access); 8328 case PTR_TO_STACK: 8329 return check_stack_range_initialized( 8330 env, 8331 regno, reg->off, access_size, 8332 zero_size_allowed, access_type, meta); 8333 case PTR_TO_BTF_ID: 8334 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8335 access_size, BPF_READ, -1); 8336 case PTR_TO_CTX: 8337 /* in case the function doesn't know how to access the context, 8338 * (because we are in a program of type SYSCALL for example), we 8339 * can not statically check its size. 8340 * Dynamically check it now. 8341 */ 8342 if (!env->ops->convert_ctx_access) { 8343 int offset = access_size - 1; 8344 8345 /* Allow zero-byte read from PTR_TO_CTX */ 8346 if (access_size == 0) 8347 return zero_size_allowed ? 0 : -EACCES; 8348 8349 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8350 access_type, -1, false, false); 8351 } 8352 8353 fallthrough; 8354 default: /* scalar_value or invalid ptr */ 8355 /* Allow zero-byte read from NULL, regardless of pointer type */ 8356 if (zero_size_allowed && access_size == 0 && 8357 register_is_null(reg)) 8358 return 0; 8359 8360 verbose(env, "R%d type=%s ", regno, 8361 reg_type_str(env, reg->type)); 8362 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8363 return -EACCES; 8364 } 8365 } 8366 8367 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8368 * size. 8369 * 8370 * @regno is the register containing the access size. regno-1 is the register 8371 * containing the pointer. 8372 */ 8373 static int check_mem_size_reg(struct bpf_verifier_env *env, 8374 struct bpf_reg_state *reg, u32 regno, 8375 enum bpf_access_type access_type, 8376 bool zero_size_allowed, 8377 struct bpf_call_arg_meta *meta) 8378 { 8379 int err; 8380 8381 /* This is used to refine r0 return value bounds for helpers 8382 * that enforce this value as an upper bound on return values. 8383 * See do_refine_retval_range() for helpers that can refine 8384 * the return value. C type of helper is u32 so we pull register 8385 * bound from umax_value however, if negative verifier errors 8386 * out. Only upper bounds can be learned because retval is an 8387 * int type and negative retvals are allowed. 8388 */ 8389 meta->msize_max_value = reg->umax_value; 8390 8391 /* The register is SCALAR_VALUE; the access check happens using 8392 * its boundaries. For unprivileged variable accesses, disable 8393 * raw mode so that the program is required to initialize all 8394 * the memory that the helper could just partially fill up. 8395 */ 8396 if (!tnum_is_const(reg->var_off)) 8397 meta = NULL; 8398 8399 if (reg->smin_value < 0) { 8400 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8401 regno); 8402 return -EACCES; 8403 } 8404 8405 if (reg->umin_value == 0 && !zero_size_allowed) { 8406 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8407 regno, reg->umin_value, reg->umax_value); 8408 return -EACCES; 8409 } 8410 8411 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8412 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8413 regno); 8414 return -EACCES; 8415 } 8416 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8417 access_type, zero_size_allowed, meta); 8418 if (!err) 8419 err = mark_chain_precision(env, regno); 8420 return err; 8421 } 8422 8423 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8424 u32 regno, u32 mem_size) 8425 { 8426 bool may_be_null = type_may_be_null(reg->type); 8427 struct bpf_reg_state saved_reg; 8428 int err; 8429 8430 if (register_is_null(reg)) 8431 return 0; 8432 8433 /* Assuming that the register contains a value check if the memory 8434 * access is safe. Temporarily save and restore the register's state as 8435 * the conversion shouldn't be visible to a caller. 8436 */ 8437 if (may_be_null) { 8438 saved_reg = *reg; 8439 mark_ptr_not_null_reg(reg); 8440 } 8441 8442 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8443 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8444 8445 if (may_be_null) 8446 *reg = saved_reg; 8447 8448 return err; 8449 } 8450 8451 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8452 u32 regno) 8453 { 8454 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8455 bool may_be_null = type_may_be_null(mem_reg->type); 8456 struct bpf_reg_state saved_reg; 8457 struct bpf_call_arg_meta meta; 8458 int err; 8459 8460 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8461 8462 memset(&meta, 0, sizeof(meta)); 8463 8464 if (may_be_null) { 8465 saved_reg = *mem_reg; 8466 mark_ptr_not_null_reg(mem_reg); 8467 } 8468 8469 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8470 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8471 8472 if (may_be_null) 8473 *mem_reg = saved_reg; 8474 8475 return err; 8476 } 8477 8478 enum { 8479 PROCESS_SPIN_LOCK = (1 << 0), 8480 PROCESS_RES_LOCK = (1 << 1), 8481 PROCESS_LOCK_IRQ = (1 << 2), 8482 }; 8483 8484 /* Implementation details: 8485 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8486 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8487 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8488 * Two separate bpf_obj_new will also have different reg->id. 8489 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8490 * clears reg->id after value_or_null->value transition, since the verifier only 8491 * cares about the range of access to valid map value pointer and doesn't care 8492 * about actual address of the map element. 8493 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8494 * reg->id > 0 after value_or_null->value transition. By doing so 8495 * two bpf_map_lookups will be considered two different pointers that 8496 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8497 * returned from bpf_obj_new. 8498 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8499 * dead-locks. 8500 * Since only one bpf_spin_lock is allowed the checks are simpler than 8501 * reg_is_refcounted() logic. The verifier needs to remember only 8502 * one spin_lock instead of array of acquired_refs. 8503 * env->cur_state->active_locks remembers which map value element or allocated 8504 * object got locked and clears it after bpf_spin_unlock. 8505 */ 8506 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8507 { 8508 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8509 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8510 struct bpf_reg_state *reg = reg_state(env, regno); 8511 struct bpf_verifier_state *cur = env->cur_state; 8512 bool is_const = tnum_is_const(reg->var_off); 8513 bool is_irq = flags & PROCESS_LOCK_IRQ; 8514 u64 val = reg->var_off.value; 8515 struct bpf_map *map = NULL; 8516 struct btf *btf = NULL; 8517 struct btf_record *rec; 8518 u32 spin_lock_off; 8519 int err; 8520 8521 if (!is_const) { 8522 verbose(env, 8523 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8524 regno, lock_str); 8525 return -EINVAL; 8526 } 8527 if (reg->type == PTR_TO_MAP_VALUE) { 8528 map = reg->map_ptr; 8529 if (!map->btf) { 8530 verbose(env, 8531 "map '%s' has to have BTF in order to use %s_lock\n", 8532 map->name, lock_str); 8533 return -EINVAL; 8534 } 8535 } else { 8536 btf = reg->btf; 8537 } 8538 8539 rec = reg_btf_record(reg); 8540 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8541 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8542 map ? map->name : "kptr", lock_str); 8543 return -EINVAL; 8544 } 8545 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8546 if (spin_lock_off != val + reg->off) { 8547 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8548 val + reg->off, lock_str, spin_lock_off); 8549 return -EINVAL; 8550 } 8551 if (is_lock) { 8552 void *ptr; 8553 int type; 8554 8555 if (map) 8556 ptr = map; 8557 else 8558 ptr = btf; 8559 8560 if (!is_res_lock && cur->active_locks) { 8561 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8562 verbose(env, 8563 "Locking two bpf_spin_locks are not allowed\n"); 8564 return -EINVAL; 8565 } 8566 } else if (is_res_lock && cur->active_locks) { 8567 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8568 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8569 return -EINVAL; 8570 } 8571 } 8572 8573 if (is_res_lock && is_irq) 8574 type = REF_TYPE_RES_LOCK_IRQ; 8575 else if (is_res_lock) 8576 type = REF_TYPE_RES_LOCK; 8577 else 8578 type = REF_TYPE_LOCK; 8579 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8580 if (err < 0) { 8581 verbose(env, "Failed to acquire lock state\n"); 8582 return err; 8583 } 8584 } else { 8585 void *ptr; 8586 int type; 8587 8588 if (map) 8589 ptr = map; 8590 else 8591 ptr = btf; 8592 8593 if (!cur->active_locks) { 8594 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8595 return -EINVAL; 8596 } 8597 8598 if (is_res_lock && is_irq) 8599 type = REF_TYPE_RES_LOCK_IRQ; 8600 else if (is_res_lock) 8601 type = REF_TYPE_RES_LOCK; 8602 else 8603 type = REF_TYPE_LOCK; 8604 if (!find_lock_state(cur, type, reg->id, ptr)) { 8605 verbose(env, "%s_unlock of different lock\n", lock_str); 8606 return -EINVAL; 8607 } 8608 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8609 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8610 return -EINVAL; 8611 } 8612 if (release_lock_state(cur, type, reg->id, ptr)) { 8613 verbose(env, "%s_unlock of different lock\n", lock_str); 8614 return -EINVAL; 8615 } 8616 8617 invalidate_non_owning_refs(env); 8618 } 8619 return 0; 8620 } 8621 8622 /* Check if @regno is a pointer to a specific field in a map value */ 8623 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno, 8624 enum btf_field_type field_type, 8625 struct bpf_map_desc *map_desc) 8626 { 8627 struct bpf_reg_state *reg = reg_state(env, regno); 8628 bool is_const = tnum_is_const(reg->var_off); 8629 struct bpf_map *map = reg->map_ptr; 8630 u64 val = reg->var_off.value; 8631 const char *struct_name = btf_field_type_name(field_type); 8632 int field_off = -1; 8633 8634 if (!is_const) { 8635 verbose(env, 8636 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 8637 regno, struct_name); 8638 return -EINVAL; 8639 } 8640 if (!map->btf) { 8641 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name, 8642 struct_name); 8643 return -EINVAL; 8644 } 8645 if (!btf_record_has_field(map->record, field_type)) { 8646 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name); 8647 return -EINVAL; 8648 } 8649 switch (field_type) { 8650 case BPF_TIMER: 8651 field_off = map->record->timer_off; 8652 break; 8653 case BPF_TASK_WORK: 8654 field_off = map->record->task_work_off; 8655 break; 8656 case BPF_WORKQUEUE: 8657 field_off = map->record->wq_off; 8658 break; 8659 default: 8660 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name); 8661 return -EINVAL; 8662 } 8663 if (field_off != val + reg->off) { 8664 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n", 8665 val + reg->off, struct_name, field_off); 8666 return -EINVAL; 8667 } 8668 if (map_desc->ptr) { 8669 verifier_bug(env, "Two map pointers in a %s helper", struct_name); 8670 return -EFAULT; 8671 } 8672 map_desc->uid = reg->map_uid; 8673 map_desc->ptr = map; 8674 return 0; 8675 } 8676 8677 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8678 struct bpf_map_desc *map) 8679 { 8680 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8681 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n"); 8682 return -EOPNOTSUPP; 8683 } 8684 return check_map_field_pointer(env, regno, BPF_TIMER, map); 8685 } 8686 8687 static int process_timer_helper(struct bpf_verifier_env *env, int regno, 8688 struct bpf_call_arg_meta *meta) 8689 { 8690 return process_timer_func(env, regno, &meta->map); 8691 } 8692 8693 static int process_timer_kfunc(struct bpf_verifier_env *env, int regno, 8694 struct bpf_kfunc_call_arg_meta *meta) 8695 { 8696 return process_timer_func(env, regno, &meta->map); 8697 } 8698 8699 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8700 struct bpf_call_arg_meta *meta) 8701 { 8702 struct bpf_reg_state *reg = reg_state(env, regno); 8703 struct btf_field *kptr_field; 8704 struct bpf_map *map_ptr; 8705 struct btf_record *rec; 8706 u32 kptr_off; 8707 8708 if (type_is_ptr_alloc_obj(reg->type)) { 8709 rec = reg_btf_record(reg); 8710 } else { /* PTR_TO_MAP_VALUE */ 8711 map_ptr = reg->map_ptr; 8712 if (!map_ptr->btf) { 8713 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8714 map_ptr->name); 8715 return -EINVAL; 8716 } 8717 rec = map_ptr->record; 8718 meta->map.ptr = map_ptr; 8719 } 8720 8721 if (!tnum_is_const(reg->var_off)) { 8722 verbose(env, 8723 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8724 regno); 8725 return -EINVAL; 8726 } 8727 8728 if (!btf_record_has_field(rec, BPF_KPTR)) { 8729 verbose(env, "R%d has no valid kptr\n", regno); 8730 return -EINVAL; 8731 } 8732 8733 kptr_off = reg->off + reg->var_off.value; 8734 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8735 if (!kptr_field) { 8736 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8737 return -EACCES; 8738 } 8739 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8740 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8741 return -EACCES; 8742 } 8743 meta->kptr_field = kptr_field; 8744 return 0; 8745 } 8746 8747 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8748 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8749 * 8750 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8751 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8752 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8753 * 8754 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8755 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8756 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8757 * mutate the view of the dynptr and also possibly destroy it. In the latter 8758 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8759 * memory that dynptr points to. 8760 * 8761 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8762 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8763 * readonly dynptr view yet, hence only the first case is tracked and checked. 8764 * 8765 * This is consistent with how C applies the const modifier to a struct object, 8766 * where the pointer itself inside bpf_dynptr becomes const but not what it 8767 * points to. 8768 * 8769 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8770 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8771 */ 8772 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8773 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8774 { 8775 struct bpf_reg_state *reg = reg_state(env, regno); 8776 int err; 8777 8778 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8779 verbose(env, 8780 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8781 regno - 1); 8782 return -EINVAL; 8783 } 8784 8785 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8786 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8787 */ 8788 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8789 verifier_bug(env, "misconfigured dynptr helper type flags"); 8790 return -EFAULT; 8791 } 8792 8793 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8794 * constructing a mutable bpf_dynptr object. 8795 * 8796 * Currently, this is only possible with PTR_TO_STACK 8797 * pointing to a region of at least 16 bytes which doesn't 8798 * contain an existing bpf_dynptr. 8799 * 8800 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8801 * mutated or destroyed. However, the memory it points to 8802 * may be mutated. 8803 * 8804 * None - Points to a initialized dynptr that can be mutated and 8805 * destroyed, including mutation of the memory it points 8806 * to. 8807 */ 8808 if (arg_type & MEM_UNINIT) { 8809 int i; 8810 8811 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8812 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8813 return -EINVAL; 8814 } 8815 8816 /* we write BPF_DW bits (8 bytes) at a time */ 8817 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8818 err = check_mem_access(env, insn_idx, regno, 8819 i, BPF_DW, BPF_WRITE, -1, false, false); 8820 if (err) 8821 return err; 8822 } 8823 8824 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8825 } else /* MEM_RDONLY and None case from above */ { 8826 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8827 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8828 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8829 return -EINVAL; 8830 } 8831 8832 if (!is_dynptr_reg_valid_init(env, reg)) { 8833 verbose(env, 8834 "Expected an initialized dynptr as arg #%d\n", 8835 regno - 1); 8836 return -EINVAL; 8837 } 8838 8839 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8840 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8841 verbose(env, 8842 "Expected a dynptr of type %s as arg #%d\n", 8843 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8844 return -EINVAL; 8845 } 8846 8847 err = mark_dynptr_read(env, reg); 8848 } 8849 return err; 8850 } 8851 8852 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8853 { 8854 struct bpf_func_state *state = func(env, reg); 8855 8856 return state->stack[spi].spilled_ptr.ref_obj_id; 8857 } 8858 8859 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8860 { 8861 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8862 } 8863 8864 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8865 { 8866 return meta->kfunc_flags & KF_ITER_NEW; 8867 } 8868 8869 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8870 { 8871 return meta->kfunc_flags & KF_ITER_NEXT; 8872 } 8873 8874 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8875 { 8876 return meta->kfunc_flags & KF_ITER_DESTROY; 8877 } 8878 8879 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8880 const struct btf_param *arg) 8881 { 8882 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8883 * kfunc is iter state pointer 8884 */ 8885 if (is_iter_kfunc(meta)) 8886 return arg_idx == 0; 8887 8888 /* iter passed as an argument to a generic kfunc */ 8889 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8890 } 8891 8892 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8893 struct bpf_kfunc_call_arg_meta *meta) 8894 { 8895 struct bpf_reg_state *reg = reg_state(env, regno); 8896 const struct btf_type *t; 8897 int spi, err, i, nr_slots, btf_id; 8898 8899 if (reg->type != PTR_TO_STACK) { 8900 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8901 return -EINVAL; 8902 } 8903 8904 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8905 * ensures struct convention, so we wouldn't need to do any BTF 8906 * validation here. But given iter state can be passed as a parameter 8907 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8908 * conservative here. 8909 */ 8910 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8911 if (btf_id < 0) { 8912 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8913 return -EINVAL; 8914 } 8915 t = btf_type_by_id(meta->btf, btf_id); 8916 nr_slots = t->size / BPF_REG_SIZE; 8917 8918 if (is_iter_new_kfunc(meta)) { 8919 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8920 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8921 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8922 iter_type_str(meta->btf, btf_id), regno - 1); 8923 return -EINVAL; 8924 } 8925 8926 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8927 err = check_mem_access(env, insn_idx, regno, 8928 i, BPF_DW, BPF_WRITE, -1, false, false); 8929 if (err) 8930 return err; 8931 } 8932 8933 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8934 if (err) 8935 return err; 8936 } else { 8937 /* iter_next() or iter_destroy(), as well as any kfunc 8938 * accepting iter argument, expect initialized iter state 8939 */ 8940 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8941 switch (err) { 8942 case 0: 8943 break; 8944 case -EINVAL: 8945 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8946 iter_type_str(meta->btf, btf_id), regno - 1); 8947 return err; 8948 case -EPROTO: 8949 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8950 return err; 8951 default: 8952 return err; 8953 } 8954 8955 spi = iter_get_spi(env, reg, nr_slots); 8956 if (spi < 0) 8957 return spi; 8958 8959 err = mark_iter_read(env, reg, spi, nr_slots); 8960 if (err) 8961 return err; 8962 8963 /* remember meta->iter info for process_iter_next_call() */ 8964 meta->iter.spi = spi; 8965 meta->iter.frameno = reg->frameno; 8966 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8967 8968 if (is_iter_destroy_kfunc(meta)) { 8969 err = unmark_stack_slots_iter(env, reg, nr_slots); 8970 if (err) 8971 return err; 8972 } 8973 } 8974 8975 return 0; 8976 } 8977 8978 /* Look for a previous loop entry at insn_idx: nearest parent state 8979 * stopped at insn_idx with callsites matching those in cur->frame. 8980 */ 8981 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8982 struct bpf_verifier_state *cur, 8983 int insn_idx) 8984 { 8985 struct bpf_verifier_state_list *sl; 8986 struct bpf_verifier_state *st; 8987 struct list_head *pos, *head; 8988 8989 /* Explored states are pushed in stack order, most recent states come first */ 8990 head = explored_state(env, insn_idx); 8991 list_for_each(pos, head) { 8992 sl = container_of(pos, struct bpf_verifier_state_list, node); 8993 /* If st->branches != 0 state is a part of current DFS verification path, 8994 * hence cur & st for a loop. 8995 */ 8996 st = &sl->state; 8997 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8998 st->dfs_depth < cur->dfs_depth) 8999 return st; 9000 } 9001 9002 return NULL; 9003 } 9004 9005 static void reset_idmap_scratch(struct bpf_verifier_env *env); 9006 static bool regs_exact(const struct bpf_reg_state *rold, 9007 const struct bpf_reg_state *rcur, 9008 struct bpf_idmap *idmap); 9009 9010 /* 9011 * Check if scalar registers are exact for the purpose of not widening. 9012 * More lenient than regs_exact() 9013 */ 9014 static bool scalars_exact_for_widen(const struct bpf_reg_state *rold, 9015 const struct bpf_reg_state *rcur) 9016 { 9017 return !memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)); 9018 } 9019 9020 static void maybe_widen_reg(struct bpf_verifier_env *env, 9021 struct bpf_reg_state *rold, struct bpf_reg_state *rcur) 9022 { 9023 if (rold->type != SCALAR_VALUE) 9024 return; 9025 if (rold->type != rcur->type) 9026 return; 9027 if (rold->precise || rcur->precise || scalars_exact_for_widen(rold, rcur)) 9028 return; 9029 __mark_reg_unknown(env, rcur); 9030 } 9031 9032 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 9033 struct bpf_verifier_state *old, 9034 struct bpf_verifier_state *cur) 9035 { 9036 struct bpf_func_state *fold, *fcur; 9037 int i, fr, num_slots; 9038 9039 for (fr = old->curframe; fr >= 0; fr--) { 9040 fold = old->frame[fr]; 9041 fcur = cur->frame[fr]; 9042 9043 for (i = 0; i < MAX_BPF_REG; i++) 9044 maybe_widen_reg(env, 9045 &fold->regs[i], 9046 &fcur->regs[i]); 9047 9048 num_slots = min(fold->allocated_stack / BPF_REG_SIZE, 9049 fcur->allocated_stack / BPF_REG_SIZE); 9050 for (i = 0; i < num_slots; i++) { 9051 if (!is_spilled_reg(&fold->stack[i]) || 9052 !is_spilled_reg(&fcur->stack[i])) 9053 continue; 9054 9055 maybe_widen_reg(env, 9056 &fold->stack[i].spilled_ptr, 9057 &fcur->stack[i].spilled_ptr); 9058 } 9059 } 9060 return 0; 9061 } 9062 9063 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 9064 struct bpf_kfunc_call_arg_meta *meta) 9065 { 9066 int iter_frameno = meta->iter.frameno; 9067 int iter_spi = meta->iter.spi; 9068 9069 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 9070 } 9071 9072 /* process_iter_next_call() is called when verifier gets to iterator's next 9073 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 9074 * to it as just "iter_next()" in comments below. 9075 * 9076 * BPF verifier relies on a crucial contract for any iter_next() 9077 * implementation: it should *eventually* return NULL, and once that happens 9078 * it should keep returning NULL. That is, once iterator exhausts elements to 9079 * iterate, it should never reset or spuriously return new elements. 9080 * 9081 * With the assumption of such contract, process_iter_next_call() simulates 9082 * a fork in the verifier state to validate loop logic correctness and safety 9083 * without having to simulate infinite amount of iterations. 9084 * 9085 * In current state, we first assume that iter_next() returned NULL and 9086 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 9087 * conditions we should not form an infinite loop and should eventually reach 9088 * exit. 9089 * 9090 * Besides that, we also fork current state and enqueue it for later 9091 * verification. In a forked state we keep iterator state as ACTIVE 9092 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 9093 * also bump iteration depth to prevent erroneous infinite loop detection 9094 * later on (see iter_active_depths_differ() comment for details). In this 9095 * state we assume that we'll eventually loop back to another iter_next() 9096 * calls (it could be in exactly same location or in some other instruction, 9097 * it doesn't matter, we don't make any unnecessary assumptions about this, 9098 * everything revolves around iterator state in a stack slot, not which 9099 * instruction is calling iter_next()). When that happens, we either will come 9100 * to iter_next() with equivalent state and can conclude that next iteration 9101 * will proceed in exactly the same way as we just verified, so it's safe to 9102 * assume that loop converges. If not, we'll go on another iteration 9103 * simulation with a different input state, until all possible starting states 9104 * are validated or we reach maximum number of instructions limit. 9105 * 9106 * This way, we will either exhaustively discover all possible input states 9107 * that iterator loop can start with and eventually will converge, or we'll 9108 * effectively regress into bounded loop simulation logic and either reach 9109 * maximum number of instructions if loop is not provably convergent, or there 9110 * is some statically known limit on number of iterations (e.g., if there is 9111 * an explicit `if n > 100 then break;` statement somewhere in the loop). 9112 * 9113 * Iteration convergence logic in is_state_visited() relies on exact 9114 * states comparison, which ignores read and precision marks. 9115 * This is necessary because read and precision marks are not finalized 9116 * while in the loop. Exact comparison might preclude convergence for 9117 * simple programs like below: 9118 * 9119 * i = 0; 9120 * while(iter_next(&it)) 9121 * i++; 9122 * 9123 * At each iteration step i++ would produce a new distinct state and 9124 * eventually instruction processing limit would be reached. 9125 * 9126 * To avoid such behavior speculatively forget (widen) range for 9127 * imprecise scalar registers, if those registers were not precise at the 9128 * end of the previous iteration and do not match exactly. 9129 * 9130 * This is a conservative heuristic that allows to verify wide range of programs, 9131 * however it precludes verification of programs that conjure an 9132 * imprecise value on the first loop iteration and use it as precise on a second. 9133 * For example, the following safe program would fail to verify: 9134 * 9135 * struct bpf_num_iter it; 9136 * int arr[10]; 9137 * int i = 0, a = 0; 9138 * bpf_iter_num_new(&it, 0, 10); 9139 * while (bpf_iter_num_next(&it)) { 9140 * if (a == 0) { 9141 * a = 1; 9142 * i = 7; // Because i changed verifier would forget 9143 * // it's range on second loop entry. 9144 * } else { 9145 * arr[i] = 42; // This would fail to verify. 9146 * } 9147 * } 9148 * bpf_iter_num_destroy(&it); 9149 */ 9150 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 9151 struct bpf_kfunc_call_arg_meta *meta) 9152 { 9153 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 9154 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 9155 struct bpf_reg_state *cur_iter, *queued_iter; 9156 9157 BTF_TYPE_EMIT(struct bpf_iter); 9158 9159 cur_iter = get_iter_from_state(cur_st, meta); 9160 9161 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 9162 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 9163 verifier_bug(env, "unexpected iterator state %d (%s)", 9164 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 9165 return -EFAULT; 9166 } 9167 9168 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 9169 /* Because iter_next() call is a checkpoint is_state_visitied() 9170 * should guarantee parent state with same call sites and insn_idx. 9171 */ 9172 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 9173 !same_callsites(cur_st->parent, cur_st)) { 9174 verifier_bug(env, "bad parent state for iter next call"); 9175 return -EFAULT; 9176 } 9177 /* Note cur_st->parent in the call below, it is necessary to skip 9178 * checkpoint created for cur_st by is_state_visited() 9179 * right at this instruction. 9180 */ 9181 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 9182 /* branch out active iter state */ 9183 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 9184 if (IS_ERR(queued_st)) 9185 return PTR_ERR(queued_st); 9186 9187 queued_iter = get_iter_from_state(queued_st, meta); 9188 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 9189 queued_iter->iter.depth++; 9190 if (prev_st) 9191 widen_imprecise_scalars(env, prev_st, queued_st); 9192 9193 queued_fr = queued_st->frame[queued_st->curframe]; 9194 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 9195 } 9196 9197 /* switch to DRAINED state, but keep the depth unchanged */ 9198 /* mark current iter state as drained and assume returned NULL */ 9199 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 9200 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 9201 9202 return 0; 9203 } 9204 9205 static bool arg_type_is_mem_size(enum bpf_arg_type type) 9206 { 9207 return type == ARG_CONST_SIZE || 9208 type == ARG_CONST_SIZE_OR_ZERO; 9209 } 9210 9211 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 9212 { 9213 return base_type(type) == ARG_PTR_TO_MEM && 9214 type & MEM_UNINIT; 9215 } 9216 9217 static bool arg_type_is_release(enum bpf_arg_type type) 9218 { 9219 return type & OBJ_RELEASE; 9220 } 9221 9222 static bool arg_type_is_dynptr(enum bpf_arg_type type) 9223 { 9224 return base_type(type) == ARG_PTR_TO_DYNPTR; 9225 } 9226 9227 static int resolve_map_arg_type(struct bpf_verifier_env *env, 9228 const struct bpf_call_arg_meta *meta, 9229 enum bpf_arg_type *arg_type) 9230 { 9231 if (!meta->map.ptr) { 9232 /* kernel subsystem misconfigured verifier */ 9233 verifier_bug(env, "invalid map_ptr to access map->type"); 9234 return -EFAULT; 9235 } 9236 9237 switch (meta->map.ptr->map_type) { 9238 case BPF_MAP_TYPE_SOCKMAP: 9239 case BPF_MAP_TYPE_SOCKHASH: 9240 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 9241 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 9242 } else { 9243 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 9244 return -EINVAL; 9245 } 9246 break; 9247 case BPF_MAP_TYPE_BLOOM_FILTER: 9248 if (meta->func_id == BPF_FUNC_map_peek_elem) 9249 *arg_type = ARG_PTR_TO_MAP_VALUE; 9250 break; 9251 default: 9252 break; 9253 } 9254 return 0; 9255 } 9256 9257 struct bpf_reg_types { 9258 const enum bpf_reg_type types[10]; 9259 u32 *btf_id; 9260 }; 9261 9262 static const struct bpf_reg_types sock_types = { 9263 .types = { 9264 PTR_TO_SOCK_COMMON, 9265 PTR_TO_SOCKET, 9266 PTR_TO_TCP_SOCK, 9267 PTR_TO_XDP_SOCK, 9268 }, 9269 }; 9270 9271 #ifdef CONFIG_NET 9272 static const struct bpf_reg_types btf_id_sock_common_types = { 9273 .types = { 9274 PTR_TO_SOCK_COMMON, 9275 PTR_TO_SOCKET, 9276 PTR_TO_TCP_SOCK, 9277 PTR_TO_XDP_SOCK, 9278 PTR_TO_BTF_ID, 9279 PTR_TO_BTF_ID | PTR_TRUSTED, 9280 }, 9281 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9282 }; 9283 #endif 9284 9285 static const struct bpf_reg_types mem_types = { 9286 .types = { 9287 PTR_TO_STACK, 9288 PTR_TO_PACKET, 9289 PTR_TO_PACKET_META, 9290 PTR_TO_MAP_KEY, 9291 PTR_TO_MAP_VALUE, 9292 PTR_TO_MEM, 9293 PTR_TO_MEM | MEM_RINGBUF, 9294 PTR_TO_BUF, 9295 PTR_TO_BTF_ID | PTR_TRUSTED, 9296 }, 9297 }; 9298 9299 static const struct bpf_reg_types spin_lock_types = { 9300 .types = { 9301 PTR_TO_MAP_VALUE, 9302 PTR_TO_BTF_ID | MEM_ALLOC, 9303 } 9304 }; 9305 9306 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9307 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9308 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9309 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9310 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9311 static const struct bpf_reg_types btf_ptr_types = { 9312 .types = { 9313 PTR_TO_BTF_ID, 9314 PTR_TO_BTF_ID | PTR_TRUSTED, 9315 PTR_TO_BTF_ID | MEM_RCU, 9316 }, 9317 }; 9318 static const struct bpf_reg_types percpu_btf_ptr_types = { 9319 .types = { 9320 PTR_TO_BTF_ID | MEM_PERCPU, 9321 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9322 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9323 } 9324 }; 9325 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9326 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9327 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9328 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9329 static const struct bpf_reg_types kptr_xchg_dest_types = { 9330 .types = { 9331 PTR_TO_MAP_VALUE, 9332 PTR_TO_BTF_ID | MEM_ALLOC 9333 } 9334 }; 9335 static const struct bpf_reg_types dynptr_types = { 9336 .types = { 9337 PTR_TO_STACK, 9338 CONST_PTR_TO_DYNPTR, 9339 } 9340 }; 9341 9342 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9343 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9344 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9345 [ARG_CONST_SIZE] = &scalar_types, 9346 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9347 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9348 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9349 [ARG_PTR_TO_CTX] = &context_types, 9350 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9351 #ifdef CONFIG_NET 9352 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9353 #endif 9354 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9355 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9356 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9357 [ARG_PTR_TO_MEM] = &mem_types, 9358 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9359 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9360 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9361 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9362 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9363 [ARG_PTR_TO_TIMER] = &timer_types, 9364 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9365 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9366 }; 9367 9368 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9369 enum bpf_arg_type arg_type, 9370 const u32 *arg_btf_id, 9371 struct bpf_call_arg_meta *meta) 9372 { 9373 struct bpf_reg_state *reg = reg_state(env, regno); 9374 enum bpf_reg_type expected, type = reg->type; 9375 const struct bpf_reg_types *compatible; 9376 int i, j; 9377 9378 compatible = compatible_reg_types[base_type(arg_type)]; 9379 if (!compatible) { 9380 verifier_bug(env, "unsupported arg type %d", arg_type); 9381 return -EFAULT; 9382 } 9383 9384 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9385 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9386 * 9387 * Same for MAYBE_NULL: 9388 * 9389 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9390 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9391 * 9392 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9393 * 9394 * Therefore we fold these flags depending on the arg_type before comparison. 9395 */ 9396 if (arg_type & MEM_RDONLY) 9397 type &= ~MEM_RDONLY; 9398 if (arg_type & PTR_MAYBE_NULL) 9399 type &= ~PTR_MAYBE_NULL; 9400 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9401 type &= ~DYNPTR_TYPE_FLAG_MASK; 9402 9403 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9404 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9405 type &= ~MEM_ALLOC; 9406 type &= ~MEM_PERCPU; 9407 } 9408 9409 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9410 expected = compatible->types[i]; 9411 if (expected == NOT_INIT) 9412 break; 9413 9414 if (type == expected) 9415 goto found; 9416 } 9417 9418 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9419 for (j = 0; j + 1 < i; j++) 9420 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9421 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9422 return -EACCES; 9423 9424 found: 9425 if (base_type(reg->type) != PTR_TO_BTF_ID) 9426 return 0; 9427 9428 if (compatible == &mem_types) { 9429 if (!(arg_type & MEM_RDONLY)) { 9430 verbose(env, 9431 "%s() may write into memory pointed by R%d type=%s\n", 9432 func_id_name(meta->func_id), 9433 regno, reg_type_str(env, reg->type)); 9434 return -EACCES; 9435 } 9436 return 0; 9437 } 9438 9439 switch ((int)reg->type) { 9440 case PTR_TO_BTF_ID: 9441 case PTR_TO_BTF_ID | PTR_TRUSTED: 9442 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9443 case PTR_TO_BTF_ID | MEM_RCU: 9444 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9445 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9446 { 9447 /* For bpf_sk_release, it needs to match against first member 9448 * 'struct sock_common', hence make an exception for it. This 9449 * allows bpf_sk_release to work for multiple socket types. 9450 */ 9451 bool strict_type_match = arg_type_is_release(arg_type) && 9452 meta->func_id != BPF_FUNC_sk_release; 9453 9454 if (type_may_be_null(reg->type) && 9455 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9456 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9457 return -EACCES; 9458 } 9459 9460 if (!arg_btf_id) { 9461 if (!compatible->btf_id) { 9462 verifier_bug(env, "missing arg compatible BTF ID"); 9463 return -EFAULT; 9464 } 9465 arg_btf_id = compatible->btf_id; 9466 } 9467 9468 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9469 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9470 return -EACCES; 9471 } else { 9472 if (arg_btf_id == BPF_PTR_POISON) { 9473 verbose(env, "verifier internal error:"); 9474 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9475 regno); 9476 return -EACCES; 9477 } 9478 9479 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9480 btf_vmlinux, *arg_btf_id, 9481 strict_type_match)) { 9482 verbose(env, "R%d is of type %s but %s is expected\n", 9483 regno, btf_type_name(reg->btf, reg->btf_id), 9484 btf_type_name(btf_vmlinux, *arg_btf_id)); 9485 return -EACCES; 9486 } 9487 } 9488 break; 9489 } 9490 case PTR_TO_BTF_ID | MEM_ALLOC: 9491 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9492 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9493 meta->func_id != BPF_FUNC_kptr_xchg) { 9494 verifier_bug(env, "unimplemented handling of MEM_ALLOC"); 9495 return -EFAULT; 9496 } 9497 /* Check if local kptr in src arg matches kptr in dst arg */ 9498 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9499 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9500 return -EACCES; 9501 } 9502 break; 9503 case PTR_TO_BTF_ID | MEM_PERCPU: 9504 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9505 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9506 /* Handled by helper specific checks */ 9507 break; 9508 default: 9509 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); 9510 return -EFAULT; 9511 } 9512 return 0; 9513 } 9514 9515 static struct btf_field * 9516 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9517 { 9518 struct btf_field *field; 9519 struct btf_record *rec; 9520 9521 rec = reg_btf_record(reg); 9522 if (!rec) 9523 return NULL; 9524 9525 field = btf_record_find(rec, off, fields); 9526 if (!field) 9527 return NULL; 9528 9529 return field; 9530 } 9531 9532 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9533 const struct bpf_reg_state *reg, int regno, 9534 enum bpf_arg_type arg_type) 9535 { 9536 u32 type = reg->type; 9537 9538 /* When referenced register is passed to release function, its fixed 9539 * offset must be 0. 9540 * 9541 * We will check arg_type_is_release reg has ref_obj_id when storing 9542 * meta->release_regno. 9543 */ 9544 if (arg_type_is_release(arg_type)) { 9545 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9546 * may not directly point to the object being released, but to 9547 * dynptr pointing to such object, which might be at some offset 9548 * on the stack. In that case, we simply to fallback to the 9549 * default handling. 9550 */ 9551 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9552 return 0; 9553 9554 /* Doing check_ptr_off_reg check for the offset will catch this 9555 * because fixed_off_ok is false, but checking here allows us 9556 * to give the user a better error message. 9557 */ 9558 if (reg->off) { 9559 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9560 regno); 9561 return -EINVAL; 9562 } 9563 return __check_ptr_off_reg(env, reg, regno, false); 9564 } 9565 9566 switch (type) { 9567 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9568 case PTR_TO_STACK: 9569 case PTR_TO_PACKET: 9570 case PTR_TO_PACKET_META: 9571 case PTR_TO_MAP_KEY: 9572 case PTR_TO_MAP_VALUE: 9573 case PTR_TO_MEM: 9574 case PTR_TO_MEM | MEM_RDONLY: 9575 case PTR_TO_MEM | MEM_RINGBUF: 9576 case PTR_TO_BUF: 9577 case PTR_TO_BUF | MEM_RDONLY: 9578 case PTR_TO_ARENA: 9579 case SCALAR_VALUE: 9580 return 0; 9581 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9582 * fixed offset. 9583 */ 9584 case PTR_TO_BTF_ID: 9585 case PTR_TO_BTF_ID | MEM_ALLOC: 9586 case PTR_TO_BTF_ID | PTR_TRUSTED: 9587 case PTR_TO_BTF_ID | MEM_RCU: 9588 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9589 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9590 /* When referenced PTR_TO_BTF_ID is passed to release function, 9591 * its fixed offset must be 0. In the other cases, fixed offset 9592 * can be non-zero. This was already checked above. So pass 9593 * fixed_off_ok as true to allow fixed offset for all other 9594 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9595 * still need to do checks instead of returning. 9596 */ 9597 return __check_ptr_off_reg(env, reg, regno, true); 9598 default: 9599 return __check_ptr_off_reg(env, reg, regno, false); 9600 } 9601 } 9602 9603 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9604 const struct bpf_func_proto *fn, 9605 struct bpf_reg_state *regs) 9606 { 9607 struct bpf_reg_state *state = NULL; 9608 int i; 9609 9610 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9611 if (arg_type_is_dynptr(fn->arg_type[i])) { 9612 if (state) { 9613 verbose(env, "verifier internal error: multiple dynptr args\n"); 9614 return NULL; 9615 } 9616 state = ®s[BPF_REG_1 + i]; 9617 } 9618 9619 if (!state) 9620 verbose(env, "verifier internal error: no dynptr arg found\n"); 9621 9622 return state; 9623 } 9624 9625 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9626 { 9627 struct bpf_func_state *state = func(env, reg); 9628 int spi; 9629 9630 if (reg->type == CONST_PTR_TO_DYNPTR) 9631 return reg->id; 9632 spi = dynptr_get_spi(env, reg); 9633 if (spi < 0) 9634 return spi; 9635 return state->stack[spi].spilled_ptr.id; 9636 } 9637 9638 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9639 { 9640 struct bpf_func_state *state = func(env, reg); 9641 int spi; 9642 9643 if (reg->type == CONST_PTR_TO_DYNPTR) 9644 return reg->ref_obj_id; 9645 spi = dynptr_get_spi(env, reg); 9646 if (spi < 0) 9647 return spi; 9648 return state->stack[spi].spilled_ptr.ref_obj_id; 9649 } 9650 9651 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9652 struct bpf_reg_state *reg) 9653 { 9654 struct bpf_func_state *state = func(env, reg); 9655 int spi; 9656 9657 if (reg->type == CONST_PTR_TO_DYNPTR) 9658 return reg->dynptr.type; 9659 9660 spi = __get_spi(reg->off); 9661 if (spi < 0) { 9662 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9663 return BPF_DYNPTR_TYPE_INVALID; 9664 } 9665 9666 return state->stack[spi].spilled_ptr.dynptr.type; 9667 } 9668 9669 static int check_reg_const_str(struct bpf_verifier_env *env, 9670 struct bpf_reg_state *reg, u32 regno) 9671 { 9672 struct bpf_map *map = reg->map_ptr; 9673 int err; 9674 int map_off; 9675 u64 map_addr; 9676 char *str_ptr; 9677 9678 if (reg->type != PTR_TO_MAP_VALUE) 9679 return -EINVAL; 9680 9681 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { 9682 verbose(env, "R%d points to insn_array map which cannot be used as const string\n", regno); 9683 return -EACCES; 9684 } 9685 9686 if (!bpf_map_is_rdonly(map)) { 9687 verbose(env, "R%d does not point to a readonly map'\n", regno); 9688 return -EACCES; 9689 } 9690 9691 if (!tnum_is_const(reg->var_off)) { 9692 verbose(env, "R%d is not a constant address'\n", regno); 9693 return -EACCES; 9694 } 9695 9696 if (!map->ops->map_direct_value_addr) { 9697 verbose(env, "no direct value access support for this map type\n"); 9698 return -EACCES; 9699 } 9700 9701 err = check_map_access(env, regno, reg->off, 9702 map->value_size - reg->off, false, 9703 ACCESS_HELPER); 9704 if (err) 9705 return err; 9706 9707 map_off = reg->off + reg->var_off.value; 9708 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9709 if (err) { 9710 verbose(env, "direct value access on string failed\n"); 9711 return err; 9712 } 9713 9714 str_ptr = (char *)(long)(map_addr); 9715 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9716 verbose(env, "string is not zero-terminated\n"); 9717 return -EINVAL; 9718 } 9719 return 0; 9720 } 9721 9722 /* Returns constant key value in `value` if possible, else negative error */ 9723 static int get_constant_map_key(struct bpf_verifier_env *env, 9724 struct bpf_reg_state *key, 9725 u32 key_size, 9726 s64 *value) 9727 { 9728 struct bpf_func_state *state = func(env, key); 9729 struct bpf_reg_state *reg; 9730 int slot, spi, off; 9731 int spill_size = 0; 9732 int zero_size = 0; 9733 int stack_off; 9734 int i, err; 9735 u8 *stype; 9736 9737 if (!env->bpf_capable) 9738 return -EOPNOTSUPP; 9739 if (key->type != PTR_TO_STACK) 9740 return -EOPNOTSUPP; 9741 if (!tnum_is_const(key->var_off)) 9742 return -EOPNOTSUPP; 9743 9744 stack_off = key->off + key->var_off.value; 9745 slot = -stack_off - 1; 9746 spi = slot / BPF_REG_SIZE; 9747 off = slot % BPF_REG_SIZE; 9748 stype = state->stack[spi].slot_type; 9749 9750 /* First handle precisely tracked STACK_ZERO */ 9751 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9752 zero_size++; 9753 if (zero_size >= key_size) { 9754 *value = 0; 9755 return 0; 9756 } 9757 9758 /* Check that stack contains a scalar spill of expected size */ 9759 if (!is_spilled_scalar_reg(&state->stack[spi])) 9760 return -EOPNOTSUPP; 9761 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9762 spill_size++; 9763 if (spill_size != key_size) 9764 return -EOPNOTSUPP; 9765 9766 reg = &state->stack[spi].spilled_ptr; 9767 if (!tnum_is_const(reg->var_off)) 9768 /* Stack value not statically known */ 9769 return -EOPNOTSUPP; 9770 9771 /* We are relying on a constant value. So mark as precise 9772 * to prevent pruning on it. 9773 */ 9774 bt_set_frame_slot(&env->bt, key->frameno, spi); 9775 err = mark_chain_precision_batch(env, env->cur_state); 9776 if (err < 0) 9777 return err; 9778 9779 *value = reg->var_off.value; 9780 return 0; 9781 } 9782 9783 static bool can_elide_value_nullness(enum bpf_map_type type); 9784 9785 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9786 struct bpf_call_arg_meta *meta, 9787 const struct bpf_func_proto *fn, 9788 int insn_idx) 9789 { 9790 u32 regno = BPF_REG_1 + arg; 9791 struct bpf_reg_state *reg = reg_state(env, regno); 9792 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9793 enum bpf_reg_type type = reg->type; 9794 u32 *arg_btf_id = NULL; 9795 u32 key_size; 9796 int err = 0; 9797 9798 if (arg_type == ARG_DONTCARE) 9799 return 0; 9800 9801 err = check_reg_arg(env, regno, SRC_OP); 9802 if (err) 9803 return err; 9804 9805 if (arg_type == ARG_ANYTHING) { 9806 if (is_pointer_value(env, regno)) { 9807 verbose(env, "R%d leaks addr into helper function\n", 9808 regno); 9809 return -EACCES; 9810 } 9811 return 0; 9812 } 9813 9814 if (type_is_pkt_pointer(type) && 9815 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9816 verbose(env, "helper access to the packet is not allowed\n"); 9817 return -EACCES; 9818 } 9819 9820 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9821 err = resolve_map_arg_type(env, meta, &arg_type); 9822 if (err) 9823 return err; 9824 } 9825 9826 if (register_is_null(reg) && type_may_be_null(arg_type)) 9827 /* A NULL register has a SCALAR_VALUE type, so skip 9828 * type checking. 9829 */ 9830 goto skip_type_check; 9831 9832 /* arg_btf_id and arg_size are in a union. */ 9833 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9834 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9835 arg_btf_id = fn->arg_btf_id[arg]; 9836 9837 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9838 if (err) 9839 return err; 9840 9841 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9842 if (err) 9843 return err; 9844 9845 skip_type_check: 9846 if (arg_type_is_release(arg_type)) { 9847 if (arg_type_is_dynptr(arg_type)) { 9848 struct bpf_func_state *state = func(env, reg); 9849 int spi; 9850 9851 /* Only dynptr created on stack can be released, thus 9852 * the get_spi and stack state checks for spilled_ptr 9853 * should only be done before process_dynptr_func for 9854 * PTR_TO_STACK. 9855 */ 9856 if (reg->type == PTR_TO_STACK) { 9857 spi = dynptr_get_spi(env, reg); 9858 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9859 verbose(env, "arg %d is an unacquired reference\n", regno); 9860 return -EINVAL; 9861 } 9862 } else { 9863 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9864 return -EINVAL; 9865 } 9866 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9867 verbose(env, "R%d must be referenced when passed to release function\n", 9868 regno); 9869 return -EINVAL; 9870 } 9871 if (meta->release_regno) { 9872 verifier_bug(env, "more than one release argument"); 9873 return -EFAULT; 9874 } 9875 meta->release_regno = regno; 9876 } 9877 9878 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9879 if (meta->ref_obj_id) { 9880 verbose(env, "more than one arg with ref_obj_id R%d %u %u", 9881 regno, reg->ref_obj_id, 9882 meta->ref_obj_id); 9883 return -EACCES; 9884 } 9885 meta->ref_obj_id = reg->ref_obj_id; 9886 } 9887 9888 switch (base_type(arg_type)) { 9889 case ARG_CONST_MAP_PTR: 9890 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9891 if (meta->map.ptr) { 9892 /* Use map_uid (which is unique id of inner map) to reject: 9893 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9894 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9895 * if (inner_map1 && inner_map2) { 9896 * timer = bpf_map_lookup_elem(inner_map1); 9897 * if (timer) 9898 * // mismatch would have been allowed 9899 * bpf_timer_init(timer, inner_map2); 9900 * } 9901 * 9902 * Comparing map_ptr is enough to distinguish normal and outer maps. 9903 */ 9904 if (meta->map.ptr != reg->map_ptr || 9905 meta->map.uid != reg->map_uid) { 9906 verbose(env, 9907 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9908 meta->map.uid, reg->map_uid); 9909 return -EINVAL; 9910 } 9911 } 9912 meta->map.ptr = reg->map_ptr; 9913 meta->map.uid = reg->map_uid; 9914 break; 9915 case ARG_PTR_TO_MAP_KEY: 9916 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9917 * check that [key, key + map->key_size) are within 9918 * stack limits and initialized 9919 */ 9920 if (!meta->map.ptr) { 9921 /* in function declaration map_ptr must come before 9922 * map_key, so that it's verified and known before 9923 * we have to check map_key here. Otherwise it means 9924 * that kernel subsystem misconfigured verifier 9925 */ 9926 verifier_bug(env, "invalid map_ptr to access map->key"); 9927 return -EFAULT; 9928 } 9929 key_size = meta->map.ptr->key_size; 9930 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9931 if (err) 9932 return err; 9933 if (can_elide_value_nullness(meta->map.ptr->map_type)) { 9934 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9935 if (err < 0) { 9936 meta->const_map_key = -1; 9937 if (err == -EOPNOTSUPP) 9938 err = 0; 9939 else 9940 return err; 9941 } 9942 } 9943 break; 9944 case ARG_PTR_TO_MAP_VALUE: 9945 if (type_may_be_null(arg_type) && register_is_null(reg)) 9946 return 0; 9947 9948 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9949 * check [value, value + map->value_size) validity 9950 */ 9951 if (!meta->map.ptr) { 9952 /* kernel subsystem misconfigured verifier */ 9953 verifier_bug(env, "invalid map_ptr to access map->value"); 9954 return -EFAULT; 9955 } 9956 meta->raw_mode = arg_type & MEM_UNINIT; 9957 err = check_helper_mem_access(env, regno, meta->map.ptr->value_size, 9958 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9959 false, meta); 9960 break; 9961 case ARG_PTR_TO_PERCPU_BTF_ID: 9962 if (!reg->btf_id) { 9963 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9964 return -EACCES; 9965 } 9966 meta->ret_btf = reg->btf; 9967 meta->ret_btf_id = reg->btf_id; 9968 break; 9969 case ARG_PTR_TO_SPIN_LOCK: 9970 if (in_rbtree_lock_required_cb(env)) { 9971 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9972 return -EACCES; 9973 } 9974 if (meta->func_id == BPF_FUNC_spin_lock) { 9975 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9976 if (err) 9977 return err; 9978 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9979 err = process_spin_lock(env, regno, 0); 9980 if (err) 9981 return err; 9982 } else { 9983 verifier_bug(env, "spin lock arg on unexpected helper"); 9984 return -EFAULT; 9985 } 9986 break; 9987 case ARG_PTR_TO_TIMER: 9988 err = process_timer_helper(env, regno, meta); 9989 if (err) 9990 return err; 9991 break; 9992 case ARG_PTR_TO_FUNC: 9993 meta->subprogno = reg->subprogno; 9994 break; 9995 case ARG_PTR_TO_MEM: 9996 /* The access to this pointer is only checked when we hit the 9997 * next is_mem_size argument below. 9998 */ 9999 meta->raw_mode = arg_type & MEM_UNINIT; 10000 if (arg_type & MEM_FIXED_SIZE) { 10001 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 10002 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 10003 false, meta); 10004 if (err) 10005 return err; 10006 if (arg_type & MEM_ALIGNED) 10007 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 10008 } 10009 break; 10010 case ARG_CONST_SIZE: 10011 err = check_mem_size_reg(env, reg, regno, 10012 fn->arg_type[arg - 1] & MEM_WRITE ? 10013 BPF_WRITE : BPF_READ, 10014 false, meta); 10015 break; 10016 case ARG_CONST_SIZE_OR_ZERO: 10017 err = check_mem_size_reg(env, reg, regno, 10018 fn->arg_type[arg - 1] & MEM_WRITE ? 10019 BPF_WRITE : BPF_READ, 10020 true, meta); 10021 break; 10022 case ARG_PTR_TO_DYNPTR: 10023 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 10024 if (err) 10025 return err; 10026 break; 10027 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 10028 if (!tnum_is_const(reg->var_off)) { 10029 verbose(env, "R%d is not a known constant'\n", 10030 regno); 10031 return -EACCES; 10032 } 10033 meta->mem_size = reg->var_off.value; 10034 err = mark_chain_precision(env, regno); 10035 if (err) 10036 return err; 10037 break; 10038 case ARG_PTR_TO_CONST_STR: 10039 { 10040 err = check_reg_const_str(env, reg, regno); 10041 if (err) 10042 return err; 10043 break; 10044 } 10045 case ARG_KPTR_XCHG_DEST: 10046 err = process_kptr_func(env, regno, meta); 10047 if (err) 10048 return err; 10049 break; 10050 } 10051 10052 return err; 10053 } 10054 10055 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 10056 { 10057 enum bpf_attach_type eatype = env->prog->expected_attach_type; 10058 enum bpf_prog_type type = resolve_prog_type(env->prog); 10059 10060 if (func_id != BPF_FUNC_map_update_elem && 10061 func_id != BPF_FUNC_map_delete_elem) 10062 return false; 10063 10064 /* It's not possible to get access to a locked struct sock in these 10065 * contexts, so updating is safe. 10066 */ 10067 switch (type) { 10068 case BPF_PROG_TYPE_TRACING: 10069 if (eatype == BPF_TRACE_ITER) 10070 return true; 10071 break; 10072 case BPF_PROG_TYPE_SOCK_OPS: 10073 /* map_update allowed only via dedicated helpers with event type checks */ 10074 if (func_id == BPF_FUNC_map_delete_elem) 10075 return true; 10076 break; 10077 case BPF_PROG_TYPE_SOCKET_FILTER: 10078 case BPF_PROG_TYPE_SCHED_CLS: 10079 case BPF_PROG_TYPE_SCHED_ACT: 10080 case BPF_PROG_TYPE_XDP: 10081 case BPF_PROG_TYPE_SK_REUSEPORT: 10082 case BPF_PROG_TYPE_FLOW_DISSECTOR: 10083 case BPF_PROG_TYPE_SK_LOOKUP: 10084 return true; 10085 default: 10086 break; 10087 } 10088 10089 verbose(env, "cannot update sockmap in this context\n"); 10090 return false; 10091 } 10092 10093 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 10094 { 10095 return env->prog->jit_requested && 10096 bpf_jit_supports_subprog_tailcalls(); 10097 } 10098 10099 static int check_map_func_compatibility(struct bpf_verifier_env *env, 10100 struct bpf_map *map, int func_id) 10101 { 10102 if (!map) 10103 return 0; 10104 10105 /* We need a two way check, first is from map perspective ... */ 10106 switch (map->map_type) { 10107 case BPF_MAP_TYPE_PROG_ARRAY: 10108 if (func_id != BPF_FUNC_tail_call) 10109 goto error; 10110 break; 10111 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 10112 if (func_id != BPF_FUNC_perf_event_read && 10113 func_id != BPF_FUNC_perf_event_output && 10114 func_id != BPF_FUNC_skb_output && 10115 func_id != BPF_FUNC_perf_event_read_value && 10116 func_id != BPF_FUNC_xdp_output) 10117 goto error; 10118 break; 10119 case BPF_MAP_TYPE_RINGBUF: 10120 if (func_id != BPF_FUNC_ringbuf_output && 10121 func_id != BPF_FUNC_ringbuf_reserve && 10122 func_id != BPF_FUNC_ringbuf_query && 10123 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 10124 func_id != BPF_FUNC_ringbuf_submit_dynptr && 10125 func_id != BPF_FUNC_ringbuf_discard_dynptr) 10126 goto error; 10127 break; 10128 case BPF_MAP_TYPE_USER_RINGBUF: 10129 if (func_id != BPF_FUNC_user_ringbuf_drain) 10130 goto error; 10131 break; 10132 case BPF_MAP_TYPE_STACK_TRACE: 10133 if (func_id != BPF_FUNC_get_stackid) 10134 goto error; 10135 break; 10136 case BPF_MAP_TYPE_CGROUP_ARRAY: 10137 if (func_id != BPF_FUNC_skb_under_cgroup && 10138 func_id != BPF_FUNC_current_task_under_cgroup) 10139 goto error; 10140 break; 10141 case BPF_MAP_TYPE_CGROUP_STORAGE: 10142 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 10143 if (func_id != BPF_FUNC_get_local_storage) 10144 goto error; 10145 break; 10146 case BPF_MAP_TYPE_DEVMAP: 10147 case BPF_MAP_TYPE_DEVMAP_HASH: 10148 if (func_id != BPF_FUNC_redirect_map && 10149 func_id != BPF_FUNC_map_lookup_elem) 10150 goto error; 10151 break; 10152 /* Restrict bpf side of cpumap and xskmap, open when use-cases 10153 * appear. 10154 */ 10155 case BPF_MAP_TYPE_CPUMAP: 10156 if (func_id != BPF_FUNC_redirect_map) 10157 goto error; 10158 break; 10159 case BPF_MAP_TYPE_XSKMAP: 10160 if (func_id != BPF_FUNC_redirect_map && 10161 func_id != BPF_FUNC_map_lookup_elem) 10162 goto error; 10163 break; 10164 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 10165 case BPF_MAP_TYPE_HASH_OF_MAPS: 10166 if (func_id != BPF_FUNC_map_lookup_elem) 10167 goto error; 10168 break; 10169 case BPF_MAP_TYPE_SOCKMAP: 10170 if (func_id != BPF_FUNC_sk_redirect_map && 10171 func_id != BPF_FUNC_sock_map_update && 10172 func_id != BPF_FUNC_msg_redirect_map && 10173 func_id != BPF_FUNC_sk_select_reuseport && 10174 func_id != BPF_FUNC_map_lookup_elem && 10175 !may_update_sockmap(env, func_id)) 10176 goto error; 10177 break; 10178 case BPF_MAP_TYPE_SOCKHASH: 10179 if (func_id != BPF_FUNC_sk_redirect_hash && 10180 func_id != BPF_FUNC_sock_hash_update && 10181 func_id != BPF_FUNC_msg_redirect_hash && 10182 func_id != BPF_FUNC_sk_select_reuseport && 10183 func_id != BPF_FUNC_map_lookup_elem && 10184 !may_update_sockmap(env, func_id)) 10185 goto error; 10186 break; 10187 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 10188 if (func_id != BPF_FUNC_sk_select_reuseport) 10189 goto error; 10190 break; 10191 case BPF_MAP_TYPE_QUEUE: 10192 case BPF_MAP_TYPE_STACK: 10193 if (func_id != BPF_FUNC_map_peek_elem && 10194 func_id != BPF_FUNC_map_pop_elem && 10195 func_id != BPF_FUNC_map_push_elem) 10196 goto error; 10197 break; 10198 case BPF_MAP_TYPE_SK_STORAGE: 10199 if (func_id != BPF_FUNC_sk_storage_get && 10200 func_id != BPF_FUNC_sk_storage_delete && 10201 func_id != BPF_FUNC_kptr_xchg) 10202 goto error; 10203 break; 10204 case BPF_MAP_TYPE_INODE_STORAGE: 10205 if (func_id != BPF_FUNC_inode_storage_get && 10206 func_id != BPF_FUNC_inode_storage_delete && 10207 func_id != BPF_FUNC_kptr_xchg) 10208 goto error; 10209 break; 10210 case BPF_MAP_TYPE_TASK_STORAGE: 10211 if (func_id != BPF_FUNC_task_storage_get && 10212 func_id != BPF_FUNC_task_storage_delete && 10213 func_id != BPF_FUNC_kptr_xchg) 10214 goto error; 10215 break; 10216 case BPF_MAP_TYPE_CGRP_STORAGE: 10217 if (func_id != BPF_FUNC_cgrp_storage_get && 10218 func_id != BPF_FUNC_cgrp_storage_delete && 10219 func_id != BPF_FUNC_kptr_xchg) 10220 goto error; 10221 break; 10222 case BPF_MAP_TYPE_BLOOM_FILTER: 10223 if (func_id != BPF_FUNC_map_peek_elem && 10224 func_id != BPF_FUNC_map_push_elem) 10225 goto error; 10226 break; 10227 case BPF_MAP_TYPE_INSN_ARRAY: 10228 goto error; 10229 default: 10230 break; 10231 } 10232 10233 /* ... and second from the function itself. */ 10234 switch (func_id) { 10235 case BPF_FUNC_tail_call: 10236 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 10237 goto error; 10238 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 10239 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 10240 return -EINVAL; 10241 } 10242 break; 10243 case BPF_FUNC_perf_event_read: 10244 case BPF_FUNC_perf_event_output: 10245 case BPF_FUNC_perf_event_read_value: 10246 case BPF_FUNC_skb_output: 10247 case BPF_FUNC_xdp_output: 10248 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10249 goto error; 10250 break; 10251 case BPF_FUNC_ringbuf_output: 10252 case BPF_FUNC_ringbuf_reserve: 10253 case BPF_FUNC_ringbuf_query: 10254 case BPF_FUNC_ringbuf_reserve_dynptr: 10255 case BPF_FUNC_ringbuf_submit_dynptr: 10256 case BPF_FUNC_ringbuf_discard_dynptr: 10257 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 10258 goto error; 10259 break; 10260 case BPF_FUNC_user_ringbuf_drain: 10261 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 10262 goto error; 10263 break; 10264 case BPF_FUNC_get_stackid: 10265 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 10266 goto error; 10267 break; 10268 case BPF_FUNC_current_task_under_cgroup: 10269 case BPF_FUNC_skb_under_cgroup: 10270 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 10271 goto error; 10272 break; 10273 case BPF_FUNC_redirect_map: 10274 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 10275 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 10276 map->map_type != BPF_MAP_TYPE_CPUMAP && 10277 map->map_type != BPF_MAP_TYPE_XSKMAP) 10278 goto error; 10279 break; 10280 case BPF_FUNC_sk_redirect_map: 10281 case BPF_FUNC_msg_redirect_map: 10282 case BPF_FUNC_sock_map_update: 10283 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10284 goto error; 10285 break; 10286 case BPF_FUNC_sk_redirect_hash: 10287 case BPF_FUNC_msg_redirect_hash: 10288 case BPF_FUNC_sock_hash_update: 10289 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10290 goto error; 10291 break; 10292 case BPF_FUNC_get_local_storage: 10293 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10294 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10295 goto error; 10296 break; 10297 case BPF_FUNC_sk_select_reuseport: 10298 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10299 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10300 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10301 goto error; 10302 break; 10303 case BPF_FUNC_map_pop_elem: 10304 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10305 map->map_type != BPF_MAP_TYPE_STACK) 10306 goto error; 10307 break; 10308 case BPF_FUNC_map_peek_elem: 10309 case BPF_FUNC_map_push_elem: 10310 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10311 map->map_type != BPF_MAP_TYPE_STACK && 10312 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10313 goto error; 10314 break; 10315 case BPF_FUNC_map_lookup_percpu_elem: 10316 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10317 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10318 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10319 goto error; 10320 break; 10321 case BPF_FUNC_sk_storage_get: 10322 case BPF_FUNC_sk_storage_delete: 10323 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10324 goto error; 10325 break; 10326 case BPF_FUNC_inode_storage_get: 10327 case BPF_FUNC_inode_storage_delete: 10328 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10329 goto error; 10330 break; 10331 case BPF_FUNC_task_storage_get: 10332 case BPF_FUNC_task_storage_delete: 10333 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10334 goto error; 10335 break; 10336 case BPF_FUNC_cgrp_storage_get: 10337 case BPF_FUNC_cgrp_storage_delete: 10338 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10339 goto error; 10340 break; 10341 default: 10342 break; 10343 } 10344 10345 return 0; 10346 error: 10347 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10348 map->map_type, func_id_name(func_id), func_id); 10349 return -EINVAL; 10350 } 10351 10352 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10353 { 10354 int count = 0; 10355 10356 if (arg_type_is_raw_mem(fn->arg1_type)) 10357 count++; 10358 if (arg_type_is_raw_mem(fn->arg2_type)) 10359 count++; 10360 if (arg_type_is_raw_mem(fn->arg3_type)) 10361 count++; 10362 if (arg_type_is_raw_mem(fn->arg4_type)) 10363 count++; 10364 if (arg_type_is_raw_mem(fn->arg5_type)) 10365 count++; 10366 10367 /* We only support one arg being in raw mode at the moment, 10368 * which is sufficient for the helper functions we have 10369 * right now. 10370 */ 10371 return count <= 1; 10372 } 10373 10374 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10375 { 10376 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10377 bool has_size = fn->arg_size[arg] != 0; 10378 bool is_next_size = false; 10379 10380 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10381 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10382 10383 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10384 return is_next_size; 10385 10386 return has_size == is_next_size || is_next_size == is_fixed; 10387 } 10388 10389 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10390 { 10391 /* bpf_xxx(..., buf, len) call will access 'len' 10392 * bytes from memory 'buf'. Both arg types need 10393 * to be paired, so make sure there's no buggy 10394 * helper function specification. 10395 */ 10396 if (arg_type_is_mem_size(fn->arg1_type) || 10397 check_args_pair_invalid(fn, 0) || 10398 check_args_pair_invalid(fn, 1) || 10399 check_args_pair_invalid(fn, 2) || 10400 check_args_pair_invalid(fn, 3) || 10401 check_args_pair_invalid(fn, 4)) 10402 return false; 10403 10404 return true; 10405 } 10406 10407 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10408 { 10409 int i; 10410 10411 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10412 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10413 return !!fn->arg_btf_id[i]; 10414 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10415 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10416 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10417 /* arg_btf_id and arg_size are in a union. */ 10418 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10419 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10420 return false; 10421 } 10422 10423 return true; 10424 } 10425 10426 static bool check_mem_arg_rw_flag_ok(const struct bpf_func_proto *fn) 10427 { 10428 int i; 10429 10430 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10431 enum bpf_arg_type arg_type = fn->arg_type[i]; 10432 10433 if (base_type(arg_type) != ARG_PTR_TO_MEM) 10434 continue; 10435 if (!(arg_type & (MEM_WRITE | MEM_RDONLY))) 10436 return false; 10437 } 10438 10439 return true; 10440 } 10441 10442 static int check_func_proto(const struct bpf_func_proto *fn) 10443 { 10444 return check_raw_mode_ok(fn) && 10445 check_arg_pair_ok(fn) && 10446 check_mem_arg_rw_flag_ok(fn) && 10447 check_btf_id_ok(fn) ? 0 : -EINVAL; 10448 } 10449 10450 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10451 * are now invalid, so turn them into unknown SCALAR_VALUE. 10452 * 10453 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10454 * since these slices point to packet data. 10455 */ 10456 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10457 { 10458 struct bpf_func_state *state; 10459 struct bpf_reg_state *reg; 10460 10461 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10462 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10463 mark_reg_invalid(env, reg); 10464 })); 10465 } 10466 10467 enum { 10468 AT_PKT_END = -1, 10469 BEYOND_PKT_END = -2, 10470 }; 10471 10472 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10473 { 10474 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10475 struct bpf_reg_state *reg = &state->regs[regn]; 10476 10477 if (reg->type != PTR_TO_PACKET) 10478 /* PTR_TO_PACKET_META is not supported yet */ 10479 return; 10480 10481 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10482 * How far beyond pkt_end it goes is unknown. 10483 * if (!range_open) it's the case of pkt >= pkt_end 10484 * if (range_open) it's the case of pkt > pkt_end 10485 * hence this pointer is at least 1 byte bigger than pkt_end 10486 */ 10487 if (range_open) 10488 reg->range = BEYOND_PKT_END; 10489 else 10490 reg->range = AT_PKT_END; 10491 } 10492 10493 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10494 { 10495 int i; 10496 10497 for (i = 0; i < state->acquired_refs; i++) { 10498 if (state->refs[i].type != REF_TYPE_PTR) 10499 continue; 10500 if (state->refs[i].id == ref_obj_id) { 10501 release_reference_state(state, i); 10502 return 0; 10503 } 10504 } 10505 return -EINVAL; 10506 } 10507 10508 /* The pointer with the specified id has released its reference to kernel 10509 * resources. Identify all copies of the same pointer and clear the reference. 10510 * 10511 * This is the release function corresponding to acquire_reference(). Idempotent. 10512 */ 10513 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10514 { 10515 struct bpf_verifier_state *vstate = env->cur_state; 10516 struct bpf_func_state *state; 10517 struct bpf_reg_state *reg; 10518 int err; 10519 10520 err = release_reference_nomark(vstate, ref_obj_id); 10521 if (err) 10522 return err; 10523 10524 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10525 if (reg->ref_obj_id == ref_obj_id) 10526 mark_reg_invalid(env, reg); 10527 })); 10528 10529 return 0; 10530 } 10531 10532 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10533 { 10534 struct bpf_func_state *unused; 10535 struct bpf_reg_state *reg; 10536 10537 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10538 if (type_is_non_owning_ref(reg->type)) 10539 mark_reg_invalid(env, reg); 10540 })); 10541 } 10542 10543 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10544 struct bpf_reg_state *regs) 10545 { 10546 int i; 10547 10548 /* after the call registers r0 - r5 were scratched */ 10549 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10550 mark_reg_not_init(env, regs, caller_saved[i]); 10551 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10552 } 10553 } 10554 10555 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10556 struct bpf_func_state *caller, 10557 struct bpf_func_state *callee, 10558 int insn_idx); 10559 10560 static int set_callee_state(struct bpf_verifier_env *env, 10561 struct bpf_func_state *caller, 10562 struct bpf_func_state *callee, int insn_idx); 10563 10564 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10565 set_callee_state_fn set_callee_state_cb, 10566 struct bpf_verifier_state *state) 10567 { 10568 struct bpf_func_state *caller, *callee; 10569 int err; 10570 10571 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10572 verbose(env, "the call stack of %d frames is too deep\n", 10573 state->curframe + 2); 10574 return -E2BIG; 10575 } 10576 10577 if (state->frame[state->curframe + 1]) { 10578 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10579 return -EFAULT; 10580 } 10581 10582 caller = state->frame[state->curframe]; 10583 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); 10584 if (!callee) 10585 return -ENOMEM; 10586 state->frame[state->curframe + 1] = callee; 10587 10588 /* callee cannot access r0, r6 - r9 for reading and has to write 10589 * into its own stack before reading from it. 10590 * callee can read/write into caller's stack 10591 */ 10592 init_func_state(env, callee, 10593 /* remember the callsite, it will be used by bpf_exit */ 10594 callsite, 10595 state->curframe + 1 /* frameno within this callchain */, 10596 subprog /* subprog number within this prog */); 10597 err = set_callee_state_cb(env, caller, callee, callsite); 10598 if (err) 10599 goto err_out; 10600 10601 /* only increment it after check_reg_arg() finished */ 10602 state->curframe++; 10603 10604 return 0; 10605 10606 err_out: 10607 free_func_state(callee); 10608 state->frame[state->curframe + 1] = NULL; 10609 return err; 10610 } 10611 10612 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10613 const struct btf *btf, 10614 struct bpf_reg_state *regs) 10615 { 10616 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10617 struct bpf_verifier_log *log = &env->log; 10618 u32 i; 10619 int ret; 10620 10621 ret = btf_prepare_func_args(env, subprog); 10622 if (ret) 10623 return ret; 10624 10625 /* check that BTF function arguments match actual types that the 10626 * verifier sees. 10627 */ 10628 for (i = 0; i < sub->arg_cnt; i++) { 10629 u32 regno = i + 1; 10630 struct bpf_reg_state *reg = ®s[regno]; 10631 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10632 10633 if (arg->arg_type == ARG_ANYTHING) { 10634 if (reg->type != SCALAR_VALUE) { 10635 bpf_log(log, "R%d is not a scalar\n", regno); 10636 return -EINVAL; 10637 } 10638 } else if (arg->arg_type & PTR_UNTRUSTED) { 10639 /* 10640 * Anything is allowed for untrusted arguments, as these are 10641 * read-only and probe read instructions would protect against 10642 * invalid memory access. 10643 */ 10644 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10645 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10646 if (ret < 0) 10647 return ret; 10648 /* If function expects ctx type in BTF check that caller 10649 * is passing PTR_TO_CTX. 10650 */ 10651 if (reg->type != PTR_TO_CTX) { 10652 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10653 return -EINVAL; 10654 } 10655 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10656 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10657 if (ret < 0) 10658 return ret; 10659 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10660 return -EINVAL; 10661 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10662 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10663 return -EINVAL; 10664 } 10665 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10666 /* 10667 * Can pass any value and the kernel won't crash, but 10668 * only PTR_TO_ARENA or SCALAR make sense. Everything 10669 * else is a bug in the bpf program. Point it out to 10670 * the user at the verification time instead of 10671 * run-time debug nightmare. 10672 */ 10673 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10674 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10675 return -EINVAL; 10676 } 10677 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10678 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10679 if (ret) 10680 return ret; 10681 10682 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10683 if (ret) 10684 return ret; 10685 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10686 struct bpf_call_arg_meta meta; 10687 int err; 10688 10689 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10690 continue; 10691 10692 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10693 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10694 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10695 if (err) 10696 return err; 10697 } else { 10698 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10699 return -EFAULT; 10700 } 10701 } 10702 10703 return 0; 10704 } 10705 10706 /* Compare BTF of a function call with given bpf_reg_state. 10707 * Returns: 10708 * EFAULT - there is a verifier bug. Abort verification. 10709 * EINVAL - there is a type mismatch or BTF is not available. 10710 * 0 - BTF matches with what bpf_reg_state expects. 10711 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10712 */ 10713 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10714 struct bpf_reg_state *regs) 10715 { 10716 struct bpf_prog *prog = env->prog; 10717 struct btf *btf = prog->aux->btf; 10718 u32 btf_id; 10719 int err; 10720 10721 if (!prog->aux->func_info) 10722 return -EINVAL; 10723 10724 btf_id = prog->aux->func_info[subprog].type_id; 10725 if (!btf_id) 10726 return -EFAULT; 10727 10728 if (prog->aux->func_info_aux[subprog].unreliable) 10729 return -EINVAL; 10730 10731 err = btf_check_func_arg_match(env, subprog, btf, regs); 10732 /* Compiler optimizations can remove arguments from static functions 10733 * or mismatched type can be passed into a global function. 10734 * In such cases mark the function as unreliable from BTF point of view. 10735 */ 10736 if (err) 10737 prog->aux->func_info_aux[subprog].unreliable = true; 10738 return err; 10739 } 10740 10741 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10742 int insn_idx, int subprog, 10743 set_callee_state_fn set_callee_state_cb) 10744 { 10745 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10746 struct bpf_func_state *caller, *callee; 10747 int err; 10748 10749 caller = state->frame[state->curframe]; 10750 err = btf_check_subprog_call(env, subprog, caller->regs); 10751 if (err == -EFAULT) 10752 return err; 10753 10754 /* set_callee_state is used for direct subprog calls, but we are 10755 * interested in validating only BPF helpers that can call subprogs as 10756 * callbacks 10757 */ 10758 env->subprog_info[subprog].is_cb = true; 10759 if (bpf_pseudo_kfunc_call(insn) && 10760 !is_callback_calling_kfunc(insn->imm)) { 10761 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10762 func_id_name(insn->imm), insn->imm); 10763 return -EFAULT; 10764 } else if (!bpf_pseudo_kfunc_call(insn) && 10765 !is_callback_calling_function(insn->imm)) { /* helper */ 10766 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10767 func_id_name(insn->imm), insn->imm); 10768 return -EFAULT; 10769 } 10770 10771 if (is_async_callback_calling_insn(insn)) { 10772 struct bpf_verifier_state *async_cb; 10773 10774 /* there is no real recursion here. timer and workqueue callbacks are async */ 10775 env->subprog_info[subprog].is_async_cb = true; 10776 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10777 insn_idx, subprog, 10778 is_async_cb_sleepable(env, insn)); 10779 if (IS_ERR(async_cb)) 10780 return PTR_ERR(async_cb); 10781 callee = async_cb->frame[0]; 10782 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10783 10784 /* Convert bpf_timer_set_callback() args into timer callback args */ 10785 err = set_callee_state_cb(env, caller, callee, insn_idx); 10786 if (err) 10787 return err; 10788 10789 return 0; 10790 } 10791 10792 /* for callback functions enqueue entry to callback and 10793 * proceed with next instruction within current frame. 10794 */ 10795 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10796 if (IS_ERR(callback_state)) 10797 return PTR_ERR(callback_state); 10798 10799 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10800 callback_state); 10801 if (err) 10802 return err; 10803 10804 callback_state->callback_unroll_depth++; 10805 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10806 caller->callback_depth = 0; 10807 return 0; 10808 } 10809 10810 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10811 int *insn_idx) 10812 { 10813 struct bpf_verifier_state *state = env->cur_state; 10814 struct bpf_func_state *caller; 10815 int err, subprog, target_insn; 10816 10817 target_insn = *insn_idx + insn->imm + 1; 10818 subprog = find_subprog(env, target_insn); 10819 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10820 target_insn)) 10821 return -EFAULT; 10822 10823 caller = state->frame[state->curframe]; 10824 err = btf_check_subprog_call(env, subprog, caller->regs); 10825 if (err == -EFAULT) 10826 return err; 10827 if (subprog_is_global(env, subprog)) { 10828 const char *sub_name = subprog_name(env, subprog); 10829 10830 if (env->cur_state->active_locks) { 10831 verbose(env, "global function calls are not allowed while holding a lock,\n" 10832 "use static function instead\n"); 10833 return -EINVAL; 10834 } 10835 10836 if (env->subprog_info[subprog].might_sleep && 10837 (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks || 10838 env->cur_state->active_irq_id || !in_sleepable(env))) { 10839 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10840 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10841 "a non-sleepable BPF program context\n"); 10842 return -EINVAL; 10843 } 10844 10845 if (err) { 10846 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10847 subprog, sub_name); 10848 return err; 10849 } 10850 10851 if (env->log.level & BPF_LOG_LEVEL) 10852 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10853 subprog, sub_name); 10854 if (env->subprog_info[subprog].changes_pkt_data) 10855 clear_all_pkt_pointers(env); 10856 /* mark global subprog for verifying after main prog */ 10857 subprog_aux(env, subprog)->called = true; 10858 clear_caller_saved_regs(env, caller->regs); 10859 10860 /* All global functions return a 64-bit SCALAR_VALUE */ 10861 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10862 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10863 10864 /* continue with next insn after call */ 10865 return 0; 10866 } 10867 10868 /* for regular function entry setup new frame and continue 10869 * from that frame. 10870 */ 10871 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10872 if (err) 10873 return err; 10874 10875 clear_caller_saved_regs(env, caller->regs); 10876 10877 /* and go analyze first insn of the callee */ 10878 *insn_idx = env->subprog_info[subprog].start - 1; 10879 10880 bpf_reset_live_stack_callchain(env); 10881 10882 if (env->log.level & BPF_LOG_LEVEL) { 10883 verbose(env, "caller:\n"); 10884 print_verifier_state(env, state, caller->frameno, true); 10885 verbose(env, "callee:\n"); 10886 print_verifier_state(env, state, state->curframe, true); 10887 } 10888 10889 return 0; 10890 } 10891 10892 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10893 struct bpf_func_state *caller, 10894 struct bpf_func_state *callee) 10895 { 10896 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10897 * void *callback_ctx, u64 flags); 10898 * callback_fn(struct bpf_map *map, void *key, void *value, 10899 * void *callback_ctx); 10900 */ 10901 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10902 10903 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10904 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10905 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10906 10907 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10908 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10909 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10910 10911 /* pointer to stack or null */ 10912 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10913 10914 /* unused */ 10915 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10916 return 0; 10917 } 10918 10919 static int set_callee_state(struct bpf_verifier_env *env, 10920 struct bpf_func_state *caller, 10921 struct bpf_func_state *callee, int insn_idx) 10922 { 10923 int i; 10924 10925 /* copy r1 - r5 args that callee can access. The copy includes parent 10926 * pointers, which connects us up to the liveness chain 10927 */ 10928 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10929 callee->regs[i] = caller->regs[i]; 10930 return 0; 10931 } 10932 10933 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10934 struct bpf_func_state *caller, 10935 struct bpf_func_state *callee, 10936 int insn_idx) 10937 { 10938 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10939 struct bpf_map *map; 10940 int err; 10941 10942 /* valid map_ptr and poison value does not matter */ 10943 map = insn_aux->map_ptr_state.map_ptr; 10944 if (!map->ops->map_set_for_each_callback_args || 10945 !map->ops->map_for_each_callback) { 10946 verbose(env, "callback function not allowed for map\n"); 10947 return -ENOTSUPP; 10948 } 10949 10950 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10951 if (err) 10952 return err; 10953 10954 callee->in_callback_fn = true; 10955 callee->callback_ret_range = retval_range(0, 1); 10956 return 0; 10957 } 10958 10959 static int set_loop_callback_state(struct bpf_verifier_env *env, 10960 struct bpf_func_state *caller, 10961 struct bpf_func_state *callee, 10962 int insn_idx) 10963 { 10964 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10965 * u64 flags); 10966 * callback_fn(u64 index, void *callback_ctx); 10967 */ 10968 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10969 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10970 10971 /* unused */ 10972 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10973 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10974 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10975 10976 callee->in_callback_fn = true; 10977 callee->callback_ret_range = retval_range(0, 1); 10978 return 0; 10979 } 10980 10981 static int set_timer_callback_state(struct bpf_verifier_env *env, 10982 struct bpf_func_state *caller, 10983 struct bpf_func_state *callee, 10984 int insn_idx) 10985 { 10986 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10987 10988 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10989 * callback_fn(struct bpf_map *map, void *key, void *value); 10990 */ 10991 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10992 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10993 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10994 10995 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10996 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10997 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10998 10999 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 11000 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 11001 callee->regs[BPF_REG_3].map_ptr = map_ptr; 11002 11003 /* unused */ 11004 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11005 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11006 callee->in_async_callback_fn = true; 11007 callee->callback_ret_range = retval_range(0, 0); 11008 return 0; 11009 } 11010 11011 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 11012 struct bpf_func_state *caller, 11013 struct bpf_func_state *callee, 11014 int insn_idx) 11015 { 11016 /* bpf_find_vma(struct task_struct *task, u64 addr, 11017 * void *callback_fn, void *callback_ctx, u64 flags) 11018 * (callback_fn)(struct task_struct *task, 11019 * struct vm_area_struct *vma, void *callback_ctx); 11020 */ 11021 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 11022 11023 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 11024 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 11025 callee->regs[BPF_REG_2].btf = btf_vmlinux; 11026 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 11027 11028 /* pointer to stack or null */ 11029 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 11030 11031 /* unused */ 11032 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11033 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11034 callee->in_callback_fn = true; 11035 callee->callback_ret_range = retval_range(0, 1); 11036 return 0; 11037 } 11038 11039 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 11040 struct bpf_func_state *caller, 11041 struct bpf_func_state *callee, 11042 int insn_idx) 11043 { 11044 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 11045 * callback_ctx, u64 flags); 11046 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 11047 */ 11048 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 11049 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 11050 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 11051 11052 /* unused */ 11053 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 11054 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11055 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11056 11057 callee->in_callback_fn = true; 11058 callee->callback_ret_range = retval_range(0, 1); 11059 return 0; 11060 } 11061 11062 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 11063 struct bpf_func_state *caller, 11064 struct bpf_func_state *callee, 11065 int insn_idx) 11066 { 11067 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 11068 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 11069 * 11070 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 11071 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 11072 * by this point, so look at 'root' 11073 */ 11074 struct btf_field *field; 11075 11076 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 11077 BPF_RB_ROOT); 11078 if (!field || !field->graph_root.value_btf_id) 11079 return -EFAULT; 11080 11081 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 11082 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 11083 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 11084 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 11085 11086 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 11087 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11088 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11089 callee->in_callback_fn = true; 11090 callee->callback_ret_range = retval_range(0, 1); 11091 return 0; 11092 } 11093 11094 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env, 11095 struct bpf_func_state *caller, 11096 struct bpf_func_state *callee, 11097 int insn_idx) 11098 { 11099 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr; 11100 11101 /* 11102 * callback_fn(struct bpf_map *map, void *key, void *value); 11103 */ 11104 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 11105 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 11106 callee->regs[BPF_REG_1].map_ptr = map_ptr; 11107 11108 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 11109 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 11110 callee->regs[BPF_REG_2].map_ptr = map_ptr; 11111 11112 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 11113 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 11114 callee->regs[BPF_REG_3].map_ptr = map_ptr; 11115 11116 /* unused */ 11117 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11118 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11119 callee->in_async_callback_fn = true; 11120 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX); 11121 return 0; 11122 } 11123 11124 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 11125 11126 /* Are we currently verifying the callback for a rbtree helper that must 11127 * be called with lock held? If so, no need to complain about unreleased 11128 * lock 11129 */ 11130 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 11131 { 11132 struct bpf_verifier_state *state = env->cur_state; 11133 struct bpf_insn *insn = env->prog->insnsi; 11134 struct bpf_func_state *callee; 11135 int kfunc_btf_id; 11136 11137 if (!state->curframe) 11138 return false; 11139 11140 callee = state->frame[state->curframe]; 11141 11142 if (!callee->in_callback_fn) 11143 return false; 11144 11145 kfunc_btf_id = insn[callee->callsite].imm; 11146 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 11147 } 11148 11149 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 11150 bool return_32bit) 11151 { 11152 if (return_32bit) 11153 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 11154 else 11155 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 11156 } 11157 11158 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 11159 { 11160 struct bpf_verifier_state *state = env->cur_state, *prev_st; 11161 struct bpf_func_state *caller, *callee; 11162 struct bpf_reg_state *r0; 11163 bool in_callback_fn; 11164 int err; 11165 11166 err = bpf_update_live_stack(env); 11167 if (err) 11168 return err; 11169 11170 callee = state->frame[state->curframe]; 11171 r0 = &callee->regs[BPF_REG_0]; 11172 if (r0->type == PTR_TO_STACK) { 11173 /* technically it's ok to return caller's stack pointer 11174 * (or caller's caller's pointer) back to the caller, 11175 * since these pointers are valid. Only current stack 11176 * pointer will be invalid as soon as function exits, 11177 * but let's be conservative 11178 */ 11179 verbose(env, "cannot return stack pointer to the caller\n"); 11180 return -EINVAL; 11181 } 11182 11183 caller = state->frame[state->curframe - 1]; 11184 if (callee->in_callback_fn) { 11185 if (r0->type != SCALAR_VALUE) { 11186 verbose(env, "R0 not a scalar value\n"); 11187 return -EACCES; 11188 } 11189 11190 /* we are going to rely on register's precise value */ 11191 err = mark_chain_precision(env, BPF_REG_0); 11192 if (err) 11193 return err; 11194 11195 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 11196 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 11197 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 11198 "At callback return", "R0"); 11199 return -EINVAL; 11200 } 11201 if (!bpf_calls_callback(env, callee->callsite)) { 11202 verifier_bug(env, "in callback at %d, callsite %d !calls_callback", 11203 *insn_idx, callee->callsite); 11204 return -EFAULT; 11205 } 11206 } else { 11207 /* return to the caller whatever r0 had in the callee */ 11208 caller->regs[BPF_REG_0] = *r0; 11209 } 11210 11211 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 11212 * there function call logic would reschedule callback visit. If iteration 11213 * converges is_state_visited() would prune that visit eventually. 11214 */ 11215 in_callback_fn = callee->in_callback_fn; 11216 if (in_callback_fn) 11217 *insn_idx = callee->callsite; 11218 else 11219 *insn_idx = callee->callsite + 1; 11220 11221 if (env->log.level & BPF_LOG_LEVEL) { 11222 verbose(env, "returning from callee:\n"); 11223 print_verifier_state(env, state, callee->frameno, true); 11224 verbose(env, "to caller at %d:\n", *insn_idx); 11225 print_verifier_state(env, state, caller->frameno, true); 11226 } 11227 /* clear everything in the callee. In case of exceptional exits using 11228 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 11229 free_func_state(callee); 11230 state->frame[state->curframe--] = NULL; 11231 11232 /* for callbacks widen imprecise scalars to make programs like below verify: 11233 * 11234 * struct ctx { int i; } 11235 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 11236 * ... 11237 * struct ctx = { .i = 0; } 11238 * bpf_loop(100, cb, &ctx, 0); 11239 * 11240 * This is similar to what is done in process_iter_next_call() for open 11241 * coded iterators. 11242 */ 11243 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 11244 if (prev_st) { 11245 err = widen_imprecise_scalars(env, prev_st, state); 11246 if (err) 11247 return err; 11248 } 11249 return 0; 11250 } 11251 11252 static int do_refine_retval_range(struct bpf_verifier_env *env, 11253 struct bpf_reg_state *regs, int ret_type, 11254 int func_id, 11255 struct bpf_call_arg_meta *meta) 11256 { 11257 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 11258 11259 if (ret_type != RET_INTEGER) 11260 return 0; 11261 11262 switch (func_id) { 11263 case BPF_FUNC_get_stack: 11264 case BPF_FUNC_get_task_stack: 11265 case BPF_FUNC_probe_read_str: 11266 case BPF_FUNC_probe_read_kernel_str: 11267 case BPF_FUNC_probe_read_user_str: 11268 ret_reg->smax_value = meta->msize_max_value; 11269 ret_reg->s32_max_value = meta->msize_max_value; 11270 ret_reg->smin_value = -MAX_ERRNO; 11271 ret_reg->s32_min_value = -MAX_ERRNO; 11272 reg_bounds_sync(ret_reg); 11273 break; 11274 case BPF_FUNC_get_smp_processor_id: 11275 ret_reg->umax_value = nr_cpu_ids - 1; 11276 ret_reg->u32_max_value = nr_cpu_ids - 1; 11277 ret_reg->smax_value = nr_cpu_ids - 1; 11278 ret_reg->s32_max_value = nr_cpu_ids - 1; 11279 ret_reg->umin_value = 0; 11280 ret_reg->u32_min_value = 0; 11281 ret_reg->smin_value = 0; 11282 ret_reg->s32_min_value = 0; 11283 reg_bounds_sync(ret_reg); 11284 break; 11285 } 11286 11287 return reg_bounds_sanity_check(env, ret_reg, "retval"); 11288 } 11289 11290 static int 11291 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11292 int func_id, int insn_idx) 11293 { 11294 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11295 struct bpf_map *map = meta->map.ptr; 11296 11297 if (func_id != BPF_FUNC_tail_call && 11298 func_id != BPF_FUNC_map_lookup_elem && 11299 func_id != BPF_FUNC_map_update_elem && 11300 func_id != BPF_FUNC_map_delete_elem && 11301 func_id != BPF_FUNC_map_push_elem && 11302 func_id != BPF_FUNC_map_pop_elem && 11303 func_id != BPF_FUNC_map_peek_elem && 11304 func_id != BPF_FUNC_for_each_map_elem && 11305 func_id != BPF_FUNC_redirect_map && 11306 func_id != BPF_FUNC_map_lookup_percpu_elem) 11307 return 0; 11308 11309 if (map == NULL) { 11310 verifier_bug(env, "expected map for helper call"); 11311 return -EFAULT; 11312 } 11313 11314 /* In case of read-only, some additional restrictions 11315 * need to be applied in order to prevent altering the 11316 * state of the map from program side. 11317 */ 11318 if ((map->map_flags & BPF_F_RDONLY_PROG) && 11319 (func_id == BPF_FUNC_map_delete_elem || 11320 func_id == BPF_FUNC_map_update_elem || 11321 func_id == BPF_FUNC_map_push_elem || 11322 func_id == BPF_FUNC_map_pop_elem)) { 11323 verbose(env, "write into map forbidden\n"); 11324 return -EACCES; 11325 } 11326 11327 if (!aux->map_ptr_state.map_ptr) 11328 bpf_map_ptr_store(aux, meta->map.ptr, 11329 !meta->map.ptr->bypass_spec_v1, false); 11330 else if (aux->map_ptr_state.map_ptr != meta->map.ptr) 11331 bpf_map_ptr_store(aux, meta->map.ptr, 11332 !meta->map.ptr->bypass_spec_v1, true); 11333 return 0; 11334 } 11335 11336 static int 11337 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11338 int func_id, int insn_idx) 11339 { 11340 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11341 struct bpf_reg_state *reg; 11342 struct bpf_map *map = meta->map.ptr; 11343 u64 val, max; 11344 int err; 11345 11346 if (func_id != BPF_FUNC_tail_call) 11347 return 0; 11348 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11349 verbose(env, "expected prog array map for tail call"); 11350 return -EINVAL; 11351 } 11352 11353 reg = reg_state(env, BPF_REG_3); 11354 val = reg->var_off.value; 11355 max = map->max_entries; 11356 11357 if (!(is_reg_const(reg, false) && val < max)) { 11358 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11359 return 0; 11360 } 11361 11362 err = mark_chain_precision(env, BPF_REG_3); 11363 if (err) 11364 return err; 11365 if (bpf_map_key_unseen(aux)) 11366 bpf_map_key_store(aux, val); 11367 else if (!bpf_map_key_poisoned(aux) && 11368 bpf_map_key_immediate(aux) != val) 11369 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11370 return 0; 11371 } 11372 11373 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11374 { 11375 struct bpf_verifier_state *state = env->cur_state; 11376 enum bpf_prog_type type = resolve_prog_type(env->prog); 11377 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11378 bool refs_lingering = false; 11379 int i; 11380 11381 if (!exception_exit && cur_func(env)->frameno) 11382 return 0; 11383 11384 for (i = 0; i < state->acquired_refs; i++) { 11385 if (state->refs[i].type != REF_TYPE_PTR) 11386 continue; 11387 /* Allow struct_ops programs to return a referenced kptr back to 11388 * kernel. Type checks are performed later in check_return_code. 11389 */ 11390 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11391 reg->ref_obj_id == state->refs[i].id) 11392 continue; 11393 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11394 state->refs[i].id, state->refs[i].insn_idx); 11395 refs_lingering = true; 11396 } 11397 return refs_lingering ? -EINVAL : 0; 11398 } 11399 11400 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11401 { 11402 int err; 11403 11404 if (check_lock && env->cur_state->active_locks) { 11405 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11406 return -EINVAL; 11407 } 11408 11409 err = check_reference_leak(env, exception_exit); 11410 if (err) { 11411 verbose(env, "%s would lead to reference leak\n", prefix); 11412 return err; 11413 } 11414 11415 if (check_lock && env->cur_state->active_irq_id) { 11416 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11417 return -EINVAL; 11418 } 11419 11420 if (check_lock && env->cur_state->active_rcu_locks) { 11421 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11422 return -EINVAL; 11423 } 11424 11425 if (check_lock && env->cur_state->active_preempt_locks) { 11426 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11427 return -EINVAL; 11428 } 11429 11430 return 0; 11431 } 11432 11433 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11434 struct bpf_reg_state *regs) 11435 { 11436 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11437 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11438 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11439 struct bpf_bprintf_data data = {}; 11440 int err, fmt_map_off, num_args; 11441 u64 fmt_addr; 11442 char *fmt; 11443 11444 /* data must be an array of u64 */ 11445 if (data_len_reg->var_off.value % 8) 11446 return -EINVAL; 11447 num_args = data_len_reg->var_off.value / 8; 11448 11449 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11450 * and map_direct_value_addr is set. 11451 */ 11452 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11453 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11454 fmt_map_off); 11455 if (err) { 11456 verbose(env, "failed to retrieve map value address\n"); 11457 return -EFAULT; 11458 } 11459 fmt = (char *)(long)fmt_addr + fmt_map_off; 11460 11461 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11462 * can focus on validating the format specifiers. 11463 */ 11464 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11465 if (err < 0) 11466 verbose(env, "Invalid format string\n"); 11467 11468 return err; 11469 } 11470 11471 static int check_get_func_ip(struct bpf_verifier_env *env) 11472 { 11473 enum bpf_prog_type type = resolve_prog_type(env->prog); 11474 int func_id = BPF_FUNC_get_func_ip; 11475 11476 if (type == BPF_PROG_TYPE_TRACING) { 11477 if (!bpf_prog_has_trampoline(env->prog)) { 11478 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11479 func_id_name(func_id), func_id); 11480 return -ENOTSUPP; 11481 } 11482 return 0; 11483 } else if (type == BPF_PROG_TYPE_KPROBE) { 11484 return 0; 11485 } 11486 11487 verbose(env, "func %s#%d not supported for program type %d\n", 11488 func_id_name(func_id), func_id, type); 11489 return -ENOTSUPP; 11490 } 11491 11492 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) 11493 { 11494 return &env->insn_aux_data[env->insn_idx]; 11495 } 11496 11497 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11498 { 11499 struct bpf_reg_state *reg = reg_state(env, BPF_REG_4); 11500 bool reg_is_null = register_is_null(reg); 11501 11502 if (reg_is_null) 11503 mark_chain_precision(env, BPF_REG_4); 11504 11505 return reg_is_null; 11506 } 11507 11508 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11509 { 11510 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11511 11512 if (!state->initialized) { 11513 state->initialized = 1; 11514 state->fit_for_inline = loop_flag_is_zero(env); 11515 state->callback_subprogno = subprogno; 11516 return; 11517 } 11518 11519 if (!state->fit_for_inline) 11520 return; 11521 11522 state->fit_for_inline = (loop_flag_is_zero(env) && 11523 state->callback_subprogno == subprogno); 11524 } 11525 11526 /* Returns whether or not the given map type can potentially elide 11527 * lookup return value nullness check. This is possible if the key 11528 * is statically known. 11529 */ 11530 static bool can_elide_value_nullness(enum bpf_map_type type) 11531 { 11532 switch (type) { 11533 case BPF_MAP_TYPE_ARRAY: 11534 case BPF_MAP_TYPE_PERCPU_ARRAY: 11535 return true; 11536 default: 11537 return false; 11538 } 11539 } 11540 11541 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11542 const struct bpf_func_proto **ptr) 11543 { 11544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11545 return -ERANGE; 11546 11547 if (!env->ops->get_func_proto) 11548 return -EINVAL; 11549 11550 *ptr = env->ops->get_func_proto(func_id, env->prog); 11551 return *ptr && (*ptr)->func ? 0 : -EINVAL; 11552 } 11553 11554 /* Check if we're in a sleepable context. */ 11555 static inline bool in_sleepable_context(struct bpf_verifier_env *env) 11556 { 11557 return !env->cur_state->active_rcu_locks && 11558 !env->cur_state->active_preempt_locks && 11559 !env->cur_state->active_locks && 11560 !env->cur_state->active_irq_id && 11561 in_sleepable(env); 11562 } 11563 11564 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11565 int *insn_idx_p) 11566 { 11567 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11568 bool returns_cpu_specific_alloc_ptr = false; 11569 const struct bpf_func_proto *fn = NULL; 11570 enum bpf_return_type ret_type; 11571 enum bpf_type_flag ret_flag; 11572 struct bpf_reg_state *regs; 11573 struct bpf_call_arg_meta meta; 11574 int insn_idx = *insn_idx_p; 11575 bool changes_data; 11576 int i, err, func_id; 11577 11578 /* find function prototype */ 11579 func_id = insn->imm; 11580 err = get_helper_proto(env, insn->imm, &fn); 11581 if (err == -ERANGE) { 11582 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11583 return -EINVAL; 11584 } 11585 11586 if (err) { 11587 verbose(env, "program of this type cannot use helper %s#%d\n", 11588 func_id_name(func_id), func_id); 11589 return err; 11590 } 11591 11592 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11593 if (!env->prog->gpl_compatible && fn->gpl_only) { 11594 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11595 return -EINVAL; 11596 } 11597 11598 if (fn->allowed && !fn->allowed(env->prog)) { 11599 verbose(env, "helper call is not allowed in probe\n"); 11600 return -EINVAL; 11601 } 11602 11603 if (!in_sleepable(env) && fn->might_sleep) { 11604 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11605 return -EINVAL; 11606 } 11607 11608 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11609 changes_data = bpf_helper_changes_pkt_data(func_id); 11610 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11611 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); 11612 return -EFAULT; 11613 } 11614 11615 memset(&meta, 0, sizeof(meta)); 11616 meta.pkt_access = fn->pkt_access; 11617 11618 err = check_func_proto(fn); 11619 if (err) { 11620 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); 11621 return err; 11622 } 11623 11624 if (env->cur_state->active_rcu_locks) { 11625 if (fn->might_sleep) { 11626 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11627 func_id_name(func_id), func_id); 11628 return -EINVAL; 11629 } 11630 } 11631 11632 if (env->cur_state->active_preempt_locks) { 11633 if (fn->might_sleep) { 11634 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11635 func_id_name(func_id), func_id); 11636 return -EINVAL; 11637 } 11638 } 11639 11640 if (env->cur_state->active_irq_id) { 11641 if (fn->might_sleep) { 11642 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11643 func_id_name(func_id), func_id); 11644 return -EINVAL; 11645 } 11646 } 11647 11648 /* Track non-sleepable context for helpers. */ 11649 if (!in_sleepable_context(env)) 11650 env->insn_aux_data[insn_idx].non_sleepable = true; 11651 11652 meta.func_id = func_id; 11653 /* check args */ 11654 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11655 err = check_func_arg(env, i, &meta, fn, insn_idx); 11656 if (err) 11657 return err; 11658 } 11659 11660 err = record_func_map(env, &meta, func_id, insn_idx); 11661 if (err) 11662 return err; 11663 11664 err = record_func_key(env, &meta, func_id, insn_idx); 11665 if (err) 11666 return err; 11667 11668 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11669 * is inferred from register state. 11670 */ 11671 for (i = 0; i < meta.access_size; i++) { 11672 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11673 BPF_WRITE, -1, false, false); 11674 if (err) 11675 return err; 11676 } 11677 11678 regs = cur_regs(env); 11679 11680 if (meta.release_regno) { 11681 err = -EINVAL; 11682 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11683 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11684 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11685 u32 ref_obj_id = meta.ref_obj_id; 11686 bool in_rcu = in_rcu_cs(env); 11687 struct bpf_func_state *state; 11688 struct bpf_reg_state *reg; 11689 11690 err = release_reference_nomark(env->cur_state, ref_obj_id); 11691 if (!err) { 11692 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11693 if (reg->ref_obj_id == ref_obj_id) { 11694 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11695 reg->ref_obj_id = 0; 11696 reg->type &= ~MEM_ALLOC; 11697 reg->type |= MEM_RCU; 11698 } else { 11699 mark_reg_invalid(env, reg); 11700 } 11701 } 11702 })); 11703 } 11704 } else if (meta.ref_obj_id) { 11705 err = release_reference(env, meta.ref_obj_id); 11706 } else if (register_is_null(®s[meta.release_regno])) { 11707 /* meta.ref_obj_id can only be 0 if register that is meant to be 11708 * released is NULL, which must be > R0. 11709 */ 11710 err = 0; 11711 } 11712 if (err) { 11713 verbose(env, "func %s#%d reference has not been acquired before\n", 11714 func_id_name(func_id), func_id); 11715 return err; 11716 } 11717 } 11718 11719 switch (func_id) { 11720 case BPF_FUNC_tail_call: 11721 err = check_resource_leak(env, false, true, "tail_call"); 11722 if (err) 11723 return err; 11724 break; 11725 case BPF_FUNC_get_local_storage: 11726 /* check that flags argument in get_local_storage(map, flags) is 0, 11727 * this is required because get_local_storage() can't return an error. 11728 */ 11729 if (!register_is_null(®s[BPF_REG_2])) { 11730 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11731 return -EINVAL; 11732 } 11733 break; 11734 case BPF_FUNC_for_each_map_elem: 11735 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11736 set_map_elem_callback_state); 11737 break; 11738 case BPF_FUNC_timer_set_callback: 11739 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11740 set_timer_callback_state); 11741 break; 11742 case BPF_FUNC_find_vma: 11743 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11744 set_find_vma_callback_state); 11745 break; 11746 case BPF_FUNC_snprintf: 11747 err = check_bpf_snprintf_call(env, regs); 11748 break; 11749 case BPF_FUNC_loop: 11750 update_loop_inline_state(env, meta.subprogno); 11751 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11752 * is finished, thus mark it precise. 11753 */ 11754 err = mark_chain_precision(env, BPF_REG_1); 11755 if (err) 11756 return err; 11757 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11758 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11759 set_loop_callback_state); 11760 } else { 11761 cur_func(env)->callback_depth = 0; 11762 if (env->log.level & BPF_LOG_LEVEL2) 11763 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11764 env->cur_state->curframe); 11765 } 11766 break; 11767 case BPF_FUNC_dynptr_from_mem: 11768 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11769 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11770 reg_type_str(env, regs[BPF_REG_1].type)); 11771 return -EACCES; 11772 } 11773 break; 11774 case BPF_FUNC_set_retval: 11775 if (prog_type == BPF_PROG_TYPE_LSM && 11776 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11777 if (!env->prog->aux->attach_func_proto->type) { 11778 /* Make sure programs that attach to void 11779 * hooks don't try to modify return value. 11780 */ 11781 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11782 return -EINVAL; 11783 } 11784 } 11785 break; 11786 case BPF_FUNC_dynptr_data: 11787 { 11788 struct bpf_reg_state *reg; 11789 int id, ref_obj_id; 11790 11791 reg = get_dynptr_arg_reg(env, fn, regs); 11792 if (!reg) 11793 return -EFAULT; 11794 11795 11796 if (meta.dynptr_id) { 11797 verifier_bug(env, "meta.dynptr_id already set"); 11798 return -EFAULT; 11799 } 11800 if (meta.ref_obj_id) { 11801 verifier_bug(env, "meta.ref_obj_id already set"); 11802 return -EFAULT; 11803 } 11804 11805 id = dynptr_id(env, reg); 11806 if (id < 0) { 11807 verifier_bug(env, "failed to obtain dynptr id"); 11808 return id; 11809 } 11810 11811 ref_obj_id = dynptr_ref_obj_id(env, reg); 11812 if (ref_obj_id < 0) { 11813 verifier_bug(env, "failed to obtain dynptr ref_obj_id"); 11814 return ref_obj_id; 11815 } 11816 11817 meta.dynptr_id = id; 11818 meta.ref_obj_id = ref_obj_id; 11819 11820 break; 11821 } 11822 case BPF_FUNC_dynptr_write: 11823 { 11824 enum bpf_dynptr_type dynptr_type; 11825 struct bpf_reg_state *reg; 11826 11827 reg = get_dynptr_arg_reg(env, fn, regs); 11828 if (!reg) 11829 return -EFAULT; 11830 11831 dynptr_type = dynptr_get_type(env, reg); 11832 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11833 return -EFAULT; 11834 11835 if (dynptr_type == BPF_DYNPTR_TYPE_SKB || 11836 dynptr_type == BPF_DYNPTR_TYPE_SKB_META) 11837 /* this will trigger clear_all_pkt_pointers(), which will 11838 * invalidate all dynptr slices associated with the skb 11839 */ 11840 changes_data = true; 11841 11842 break; 11843 } 11844 case BPF_FUNC_per_cpu_ptr: 11845 case BPF_FUNC_this_cpu_ptr: 11846 { 11847 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11848 const struct btf_type *type; 11849 11850 if (reg->type & MEM_RCU) { 11851 type = btf_type_by_id(reg->btf, reg->btf_id); 11852 if (!type || !btf_type_is_struct(type)) { 11853 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11854 return -EFAULT; 11855 } 11856 returns_cpu_specific_alloc_ptr = true; 11857 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11858 } 11859 break; 11860 } 11861 case BPF_FUNC_user_ringbuf_drain: 11862 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11863 set_user_ringbuf_callback_state); 11864 break; 11865 } 11866 11867 if (err) 11868 return err; 11869 11870 /* reset caller saved regs */ 11871 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11872 mark_reg_not_init(env, regs, caller_saved[i]); 11873 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11874 } 11875 11876 /* helper call returns 64-bit value. */ 11877 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11878 11879 /* update return register (already marked as written above) */ 11880 ret_type = fn->ret_type; 11881 ret_flag = type_flag(ret_type); 11882 11883 switch (base_type(ret_type)) { 11884 case RET_INTEGER: 11885 /* sets type to SCALAR_VALUE */ 11886 mark_reg_unknown(env, regs, BPF_REG_0); 11887 break; 11888 case RET_VOID: 11889 regs[BPF_REG_0].type = NOT_INIT; 11890 break; 11891 case RET_PTR_TO_MAP_VALUE: 11892 /* There is no offset yet applied, variable or fixed */ 11893 mark_reg_known_zero(env, regs, BPF_REG_0); 11894 /* remember map_ptr, so that check_map_access() 11895 * can check 'value_size' boundary of memory access 11896 * to map element returned from bpf_map_lookup_elem() 11897 */ 11898 if (meta.map.ptr == NULL) { 11899 verifier_bug(env, "unexpected null map_ptr"); 11900 return -EFAULT; 11901 } 11902 11903 if (func_id == BPF_FUNC_map_lookup_elem && 11904 can_elide_value_nullness(meta.map.ptr->map_type) && 11905 meta.const_map_key >= 0 && 11906 meta.const_map_key < meta.map.ptr->max_entries) 11907 ret_flag &= ~PTR_MAYBE_NULL; 11908 11909 regs[BPF_REG_0].map_ptr = meta.map.ptr; 11910 regs[BPF_REG_0].map_uid = meta.map.uid; 11911 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11912 if (!type_may_be_null(ret_flag) && 11913 btf_record_has_field(meta.map.ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11914 regs[BPF_REG_0].id = ++env->id_gen; 11915 } 11916 break; 11917 case RET_PTR_TO_SOCKET: 11918 mark_reg_known_zero(env, regs, BPF_REG_0); 11919 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11920 break; 11921 case RET_PTR_TO_SOCK_COMMON: 11922 mark_reg_known_zero(env, regs, BPF_REG_0); 11923 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11924 break; 11925 case RET_PTR_TO_TCP_SOCK: 11926 mark_reg_known_zero(env, regs, BPF_REG_0); 11927 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11928 break; 11929 case RET_PTR_TO_MEM: 11930 mark_reg_known_zero(env, regs, BPF_REG_0); 11931 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11932 regs[BPF_REG_0].mem_size = meta.mem_size; 11933 break; 11934 case RET_PTR_TO_MEM_OR_BTF_ID: 11935 { 11936 const struct btf_type *t; 11937 11938 mark_reg_known_zero(env, regs, BPF_REG_0); 11939 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11940 if (!btf_type_is_struct(t)) { 11941 u32 tsize; 11942 const struct btf_type *ret; 11943 const char *tname; 11944 11945 /* resolve the type size of ksym. */ 11946 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11947 if (IS_ERR(ret)) { 11948 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11949 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11950 tname, PTR_ERR(ret)); 11951 return -EINVAL; 11952 } 11953 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11954 regs[BPF_REG_0].mem_size = tsize; 11955 } else { 11956 if (returns_cpu_specific_alloc_ptr) { 11957 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11958 } else { 11959 /* MEM_RDONLY may be carried from ret_flag, but it 11960 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11961 * it will confuse the check of PTR_TO_BTF_ID in 11962 * check_mem_access(). 11963 */ 11964 ret_flag &= ~MEM_RDONLY; 11965 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11966 } 11967 11968 regs[BPF_REG_0].btf = meta.ret_btf; 11969 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11970 } 11971 break; 11972 } 11973 case RET_PTR_TO_BTF_ID: 11974 { 11975 struct btf *ret_btf; 11976 int ret_btf_id; 11977 11978 mark_reg_known_zero(env, regs, BPF_REG_0); 11979 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11980 if (func_id == BPF_FUNC_kptr_xchg) { 11981 ret_btf = meta.kptr_field->kptr.btf; 11982 ret_btf_id = meta.kptr_field->kptr.btf_id; 11983 if (!btf_is_kernel(ret_btf)) { 11984 regs[BPF_REG_0].type |= MEM_ALLOC; 11985 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11986 regs[BPF_REG_0].type |= MEM_PERCPU; 11987 } 11988 } else { 11989 if (fn->ret_btf_id == BPF_PTR_POISON) { 11990 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", 11991 func_id_name(func_id)); 11992 return -EFAULT; 11993 } 11994 ret_btf = btf_vmlinux; 11995 ret_btf_id = *fn->ret_btf_id; 11996 } 11997 if (ret_btf_id == 0) { 11998 verbose(env, "invalid return type %u of func %s#%d\n", 11999 base_type(ret_type), func_id_name(func_id), 12000 func_id); 12001 return -EINVAL; 12002 } 12003 regs[BPF_REG_0].btf = ret_btf; 12004 regs[BPF_REG_0].btf_id = ret_btf_id; 12005 break; 12006 } 12007 default: 12008 verbose(env, "unknown return type %u of func %s#%d\n", 12009 base_type(ret_type), func_id_name(func_id), func_id); 12010 return -EINVAL; 12011 } 12012 12013 if (type_may_be_null(regs[BPF_REG_0].type)) 12014 regs[BPF_REG_0].id = ++env->id_gen; 12015 12016 if (helper_multiple_ref_obj_use(func_id, meta.map.ptr)) { 12017 verifier_bug(env, "func %s#%d sets ref_obj_id more than once", 12018 func_id_name(func_id), func_id); 12019 return -EFAULT; 12020 } 12021 12022 if (is_dynptr_ref_function(func_id)) 12023 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 12024 12025 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 12026 /* For release_reference() */ 12027 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12028 } else if (is_acquire_function(func_id, meta.map.ptr)) { 12029 int id = acquire_reference(env, insn_idx); 12030 12031 if (id < 0) 12032 return id; 12033 /* For mark_ptr_or_null_reg() */ 12034 regs[BPF_REG_0].id = id; 12035 /* For release_reference() */ 12036 regs[BPF_REG_0].ref_obj_id = id; 12037 } 12038 12039 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 12040 if (err) 12041 return err; 12042 12043 err = check_map_func_compatibility(env, meta.map.ptr, func_id); 12044 if (err) 12045 return err; 12046 12047 if ((func_id == BPF_FUNC_get_stack || 12048 func_id == BPF_FUNC_get_task_stack) && 12049 !env->prog->has_callchain_buf) { 12050 const char *err_str; 12051 12052 #ifdef CONFIG_PERF_EVENTS 12053 err = get_callchain_buffers(sysctl_perf_event_max_stack); 12054 err_str = "cannot get callchain buffer for func %s#%d\n"; 12055 #else 12056 err = -ENOTSUPP; 12057 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 12058 #endif 12059 if (err) { 12060 verbose(env, err_str, func_id_name(func_id), func_id); 12061 return err; 12062 } 12063 12064 env->prog->has_callchain_buf = true; 12065 } 12066 12067 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 12068 env->prog->call_get_stack = true; 12069 12070 if (func_id == BPF_FUNC_get_func_ip) { 12071 if (check_get_func_ip(env)) 12072 return -ENOTSUPP; 12073 env->prog->call_get_func_ip = true; 12074 } 12075 12076 if (func_id == BPF_FUNC_tail_call) { 12077 if (env->cur_state->curframe) { 12078 struct bpf_verifier_state *branch; 12079 12080 mark_reg_scratched(env, BPF_REG_0); 12081 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 12082 if (IS_ERR(branch)) 12083 return PTR_ERR(branch); 12084 clear_all_pkt_pointers(env); 12085 mark_reg_unknown(env, regs, BPF_REG_0); 12086 err = prepare_func_exit(env, &env->insn_idx); 12087 if (err) 12088 return err; 12089 env->insn_idx--; 12090 } else { 12091 changes_data = false; 12092 } 12093 } 12094 12095 if (changes_data) 12096 clear_all_pkt_pointers(env); 12097 return 0; 12098 } 12099 12100 /* mark_btf_func_reg_size() is used when the reg size is determined by 12101 * the BTF func_proto's return value size and argument. 12102 */ 12103 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 12104 u32 regno, size_t reg_size) 12105 { 12106 struct bpf_reg_state *reg = ®s[regno]; 12107 12108 if (regno == BPF_REG_0) { 12109 /* Function return value */ 12110 reg->subreg_def = reg_size == sizeof(u64) ? 12111 DEF_NOT_SUBREG : env->insn_idx + 1; 12112 } else if (reg_size == sizeof(u64)) { 12113 /* Function argument */ 12114 mark_insn_zext(env, reg); 12115 } 12116 } 12117 12118 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 12119 size_t reg_size) 12120 { 12121 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 12122 } 12123 12124 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 12125 { 12126 return meta->kfunc_flags & KF_ACQUIRE; 12127 } 12128 12129 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 12130 { 12131 return meta->kfunc_flags & KF_RELEASE; 12132 } 12133 12134 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 12135 { 12136 return meta->kfunc_flags & KF_SLEEPABLE; 12137 } 12138 12139 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 12140 { 12141 return meta->kfunc_flags & KF_DESTRUCTIVE; 12142 } 12143 12144 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 12145 { 12146 return meta->kfunc_flags & KF_RCU; 12147 } 12148 12149 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 12150 { 12151 return meta->kfunc_flags & KF_RCU_PROTECTED; 12152 } 12153 12154 static bool is_kfunc_arg_mem_size(const struct btf *btf, 12155 const struct btf_param *arg, 12156 const struct bpf_reg_state *reg) 12157 { 12158 const struct btf_type *t; 12159 12160 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12161 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 12162 return false; 12163 12164 return btf_param_match_suffix(btf, arg, "__sz"); 12165 } 12166 12167 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 12168 const struct btf_param *arg, 12169 const struct bpf_reg_state *reg) 12170 { 12171 const struct btf_type *t; 12172 12173 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12174 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 12175 return false; 12176 12177 return btf_param_match_suffix(btf, arg, "__szk"); 12178 } 12179 12180 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 12181 { 12182 return btf_param_match_suffix(btf, arg, "__k"); 12183 } 12184 12185 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 12186 { 12187 return btf_param_match_suffix(btf, arg, "__ign"); 12188 } 12189 12190 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 12191 { 12192 return btf_param_match_suffix(btf, arg, "__map"); 12193 } 12194 12195 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 12196 { 12197 return btf_param_match_suffix(btf, arg, "__alloc"); 12198 } 12199 12200 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 12201 { 12202 return btf_param_match_suffix(btf, arg, "__uninit"); 12203 } 12204 12205 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 12206 { 12207 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 12208 } 12209 12210 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 12211 { 12212 return btf_param_match_suffix(btf, arg, "__nullable"); 12213 } 12214 12215 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 12216 { 12217 return btf_param_match_suffix(btf, arg, "__str"); 12218 } 12219 12220 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 12221 { 12222 return btf_param_match_suffix(btf, arg, "__irq_flag"); 12223 } 12224 12225 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 12226 const struct btf_param *arg, 12227 const char *name) 12228 { 12229 int len, target_len = strlen(name); 12230 const char *param_name; 12231 12232 param_name = btf_name_by_offset(btf, arg->name_off); 12233 if (str_is_empty(param_name)) 12234 return false; 12235 len = strlen(param_name); 12236 if (len != target_len) 12237 return false; 12238 if (strcmp(param_name, name)) 12239 return false; 12240 12241 return true; 12242 } 12243 12244 enum { 12245 KF_ARG_DYNPTR_ID, 12246 KF_ARG_LIST_HEAD_ID, 12247 KF_ARG_LIST_NODE_ID, 12248 KF_ARG_RB_ROOT_ID, 12249 KF_ARG_RB_NODE_ID, 12250 KF_ARG_WORKQUEUE_ID, 12251 KF_ARG_RES_SPIN_LOCK_ID, 12252 KF_ARG_TASK_WORK_ID, 12253 KF_ARG_PROG_AUX_ID, 12254 KF_ARG_TIMER_ID 12255 }; 12256 12257 BTF_ID_LIST(kf_arg_btf_ids) 12258 BTF_ID(struct, bpf_dynptr) 12259 BTF_ID(struct, bpf_list_head) 12260 BTF_ID(struct, bpf_list_node) 12261 BTF_ID(struct, bpf_rb_root) 12262 BTF_ID(struct, bpf_rb_node) 12263 BTF_ID(struct, bpf_wq) 12264 BTF_ID(struct, bpf_res_spin_lock) 12265 BTF_ID(struct, bpf_task_work) 12266 BTF_ID(struct, bpf_prog_aux) 12267 BTF_ID(struct, bpf_timer) 12268 12269 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 12270 const struct btf_param *arg, int type) 12271 { 12272 const struct btf_type *t; 12273 u32 res_id; 12274 12275 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12276 if (!t) 12277 return false; 12278 if (!btf_type_is_ptr(t)) 12279 return false; 12280 t = btf_type_skip_modifiers(btf, t->type, &res_id); 12281 if (!t) 12282 return false; 12283 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 12284 } 12285 12286 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 12287 { 12288 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 12289 } 12290 12291 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 12292 { 12293 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 12294 } 12295 12296 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 12297 { 12298 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 12299 } 12300 12301 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 12302 { 12303 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 12304 } 12305 12306 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 12307 { 12308 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 12309 } 12310 12311 static bool is_kfunc_arg_timer(const struct btf *btf, const struct btf_param *arg) 12312 { 12313 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TIMER_ID); 12314 } 12315 12316 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 12317 { 12318 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 12319 } 12320 12321 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg) 12322 { 12323 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID); 12324 } 12325 12326 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 12327 { 12328 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 12329 } 12330 12331 static bool is_rbtree_node_type(const struct btf_type *t) 12332 { 12333 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 12334 } 12335 12336 static bool is_list_node_type(const struct btf_type *t) 12337 { 12338 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 12339 } 12340 12341 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 12342 const struct btf_param *arg) 12343 { 12344 const struct btf_type *t; 12345 12346 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12347 if (!t) 12348 return false; 12349 12350 return true; 12351 } 12352 12353 static bool is_kfunc_arg_prog_aux(const struct btf *btf, const struct btf_param *arg) 12354 { 12355 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_PROG_AUX_ID); 12356 } 12357 12358 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12359 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12360 const struct btf *btf, 12361 const struct btf_type *t, int rec) 12362 { 12363 const struct btf_type *member_type; 12364 const struct btf_member *member; 12365 u32 i; 12366 12367 if (!btf_type_is_struct(t)) 12368 return false; 12369 12370 for_each_member(i, t, member) { 12371 const struct btf_array *array; 12372 12373 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12374 if (btf_type_is_struct(member_type)) { 12375 if (rec >= 3) { 12376 verbose(env, "max struct nesting depth exceeded\n"); 12377 return false; 12378 } 12379 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12380 return false; 12381 continue; 12382 } 12383 if (btf_type_is_array(member_type)) { 12384 array = btf_array(member_type); 12385 if (!array->nelems) 12386 return false; 12387 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12388 if (!btf_type_is_scalar(member_type)) 12389 return false; 12390 continue; 12391 } 12392 if (!btf_type_is_scalar(member_type)) 12393 return false; 12394 } 12395 return true; 12396 } 12397 12398 enum kfunc_ptr_arg_type { 12399 KF_ARG_PTR_TO_CTX, 12400 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12401 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12402 KF_ARG_PTR_TO_DYNPTR, 12403 KF_ARG_PTR_TO_ITER, 12404 KF_ARG_PTR_TO_LIST_HEAD, 12405 KF_ARG_PTR_TO_LIST_NODE, 12406 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12407 KF_ARG_PTR_TO_MEM, 12408 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12409 KF_ARG_PTR_TO_CALLBACK, 12410 KF_ARG_PTR_TO_RB_ROOT, 12411 KF_ARG_PTR_TO_RB_NODE, 12412 KF_ARG_PTR_TO_NULL, 12413 KF_ARG_PTR_TO_CONST_STR, 12414 KF_ARG_PTR_TO_MAP, 12415 KF_ARG_PTR_TO_TIMER, 12416 KF_ARG_PTR_TO_WORKQUEUE, 12417 KF_ARG_PTR_TO_IRQ_FLAG, 12418 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12419 KF_ARG_PTR_TO_TASK_WORK, 12420 }; 12421 12422 enum special_kfunc_type { 12423 KF_bpf_obj_new_impl, 12424 KF_bpf_obj_drop_impl, 12425 KF_bpf_refcount_acquire_impl, 12426 KF_bpf_list_push_front_impl, 12427 KF_bpf_list_push_back_impl, 12428 KF_bpf_list_pop_front, 12429 KF_bpf_list_pop_back, 12430 KF_bpf_list_front, 12431 KF_bpf_list_back, 12432 KF_bpf_cast_to_kern_ctx, 12433 KF_bpf_rdonly_cast, 12434 KF_bpf_rcu_read_lock, 12435 KF_bpf_rcu_read_unlock, 12436 KF_bpf_rbtree_remove, 12437 KF_bpf_rbtree_add_impl, 12438 KF_bpf_rbtree_first, 12439 KF_bpf_rbtree_root, 12440 KF_bpf_rbtree_left, 12441 KF_bpf_rbtree_right, 12442 KF_bpf_dynptr_from_skb, 12443 KF_bpf_dynptr_from_xdp, 12444 KF_bpf_dynptr_from_skb_meta, 12445 KF_bpf_xdp_pull_data, 12446 KF_bpf_dynptr_slice, 12447 KF_bpf_dynptr_slice_rdwr, 12448 KF_bpf_dynptr_clone, 12449 KF_bpf_percpu_obj_new_impl, 12450 KF_bpf_percpu_obj_drop_impl, 12451 KF_bpf_throw, 12452 KF_bpf_wq_set_callback, 12453 KF_bpf_preempt_disable, 12454 KF_bpf_preempt_enable, 12455 KF_bpf_iter_css_task_new, 12456 KF_bpf_session_cookie, 12457 KF_bpf_get_kmem_cache, 12458 KF_bpf_local_irq_save, 12459 KF_bpf_local_irq_restore, 12460 KF_bpf_iter_num_new, 12461 KF_bpf_iter_num_next, 12462 KF_bpf_iter_num_destroy, 12463 KF_bpf_set_dentry_xattr, 12464 KF_bpf_remove_dentry_xattr, 12465 KF_bpf_res_spin_lock, 12466 KF_bpf_res_spin_unlock, 12467 KF_bpf_res_spin_lock_irqsave, 12468 KF_bpf_res_spin_unlock_irqrestore, 12469 KF_bpf_dynptr_from_file, 12470 KF_bpf_dynptr_file_discard, 12471 KF___bpf_trap, 12472 KF_bpf_task_work_schedule_signal, 12473 KF_bpf_task_work_schedule_resume, 12474 KF_bpf_arena_alloc_pages, 12475 KF_bpf_arena_free_pages, 12476 KF_bpf_arena_reserve_pages, 12477 KF_bpf_session_is_return, 12478 KF_bpf_stream_vprintk, 12479 KF_bpf_stream_print_stack, 12480 }; 12481 12482 BTF_ID_LIST(special_kfunc_list) 12483 BTF_ID(func, bpf_obj_new_impl) 12484 BTF_ID(func, bpf_obj_drop_impl) 12485 BTF_ID(func, bpf_refcount_acquire_impl) 12486 BTF_ID(func, bpf_list_push_front_impl) 12487 BTF_ID(func, bpf_list_push_back_impl) 12488 BTF_ID(func, bpf_list_pop_front) 12489 BTF_ID(func, bpf_list_pop_back) 12490 BTF_ID(func, bpf_list_front) 12491 BTF_ID(func, bpf_list_back) 12492 BTF_ID(func, bpf_cast_to_kern_ctx) 12493 BTF_ID(func, bpf_rdonly_cast) 12494 BTF_ID(func, bpf_rcu_read_lock) 12495 BTF_ID(func, bpf_rcu_read_unlock) 12496 BTF_ID(func, bpf_rbtree_remove) 12497 BTF_ID(func, bpf_rbtree_add_impl) 12498 BTF_ID(func, bpf_rbtree_first) 12499 BTF_ID(func, bpf_rbtree_root) 12500 BTF_ID(func, bpf_rbtree_left) 12501 BTF_ID(func, bpf_rbtree_right) 12502 #ifdef CONFIG_NET 12503 BTF_ID(func, bpf_dynptr_from_skb) 12504 BTF_ID(func, bpf_dynptr_from_xdp) 12505 BTF_ID(func, bpf_dynptr_from_skb_meta) 12506 BTF_ID(func, bpf_xdp_pull_data) 12507 #else 12508 BTF_ID_UNUSED 12509 BTF_ID_UNUSED 12510 BTF_ID_UNUSED 12511 BTF_ID_UNUSED 12512 #endif 12513 BTF_ID(func, bpf_dynptr_slice) 12514 BTF_ID(func, bpf_dynptr_slice_rdwr) 12515 BTF_ID(func, bpf_dynptr_clone) 12516 BTF_ID(func, bpf_percpu_obj_new_impl) 12517 BTF_ID(func, bpf_percpu_obj_drop_impl) 12518 BTF_ID(func, bpf_throw) 12519 BTF_ID(func, bpf_wq_set_callback) 12520 BTF_ID(func, bpf_preempt_disable) 12521 BTF_ID(func, bpf_preempt_enable) 12522 #ifdef CONFIG_CGROUPS 12523 BTF_ID(func, bpf_iter_css_task_new) 12524 #else 12525 BTF_ID_UNUSED 12526 #endif 12527 #ifdef CONFIG_BPF_EVENTS 12528 BTF_ID(func, bpf_session_cookie) 12529 #else 12530 BTF_ID_UNUSED 12531 #endif 12532 BTF_ID(func, bpf_get_kmem_cache) 12533 BTF_ID(func, bpf_local_irq_save) 12534 BTF_ID(func, bpf_local_irq_restore) 12535 BTF_ID(func, bpf_iter_num_new) 12536 BTF_ID(func, bpf_iter_num_next) 12537 BTF_ID(func, bpf_iter_num_destroy) 12538 #ifdef CONFIG_BPF_LSM 12539 BTF_ID(func, bpf_set_dentry_xattr) 12540 BTF_ID(func, bpf_remove_dentry_xattr) 12541 #else 12542 BTF_ID_UNUSED 12543 BTF_ID_UNUSED 12544 #endif 12545 BTF_ID(func, bpf_res_spin_lock) 12546 BTF_ID(func, bpf_res_spin_unlock) 12547 BTF_ID(func, bpf_res_spin_lock_irqsave) 12548 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12549 BTF_ID(func, bpf_dynptr_from_file) 12550 BTF_ID(func, bpf_dynptr_file_discard) 12551 BTF_ID(func, __bpf_trap) 12552 BTF_ID(func, bpf_task_work_schedule_signal) 12553 BTF_ID(func, bpf_task_work_schedule_resume) 12554 BTF_ID(func, bpf_arena_alloc_pages) 12555 BTF_ID(func, bpf_arena_free_pages) 12556 BTF_ID(func, bpf_arena_reserve_pages) 12557 BTF_ID(func, bpf_session_is_return) 12558 BTF_ID(func, bpf_stream_vprintk) 12559 BTF_ID(func, bpf_stream_print_stack) 12560 12561 static bool is_task_work_add_kfunc(u32 func_id) 12562 { 12563 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal] || 12564 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume]; 12565 } 12566 12567 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12568 { 12569 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12570 meta->arg_owning_ref) { 12571 return false; 12572 } 12573 12574 return meta->kfunc_flags & KF_RET_NULL; 12575 } 12576 12577 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12578 { 12579 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12580 } 12581 12582 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12583 { 12584 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12585 } 12586 12587 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12588 { 12589 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12590 } 12591 12592 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12593 { 12594 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12595 } 12596 12597 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta) 12598 { 12599 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data]; 12600 } 12601 12602 static enum kfunc_ptr_arg_type 12603 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12604 struct bpf_kfunc_call_arg_meta *meta, 12605 const struct btf_type *t, const struct btf_type *ref_t, 12606 const char *ref_tname, const struct btf_param *args, 12607 int argno, int nargs) 12608 { 12609 u32 regno = argno + 1; 12610 struct bpf_reg_state *regs = cur_regs(env); 12611 struct bpf_reg_state *reg = ®s[regno]; 12612 bool arg_mem_size = false; 12613 12614 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 12615 meta->func_id == special_kfunc_list[KF_bpf_session_is_return] || 12616 meta->func_id == special_kfunc_list[KF_bpf_session_cookie]) 12617 return KF_ARG_PTR_TO_CTX; 12618 12619 if (argno + 1 < nargs && 12620 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12621 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12622 arg_mem_size = true; 12623 12624 /* In this function, we verify the kfunc's BTF as per the argument type, 12625 * leaving the rest of the verification with respect to the register 12626 * type to our caller. When a set of conditions hold in the BTF type of 12627 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12628 */ 12629 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12630 return KF_ARG_PTR_TO_CTX; 12631 12632 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg) && 12633 !arg_mem_size) 12634 return KF_ARG_PTR_TO_NULL; 12635 12636 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12637 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12638 12639 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12640 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12641 12642 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12643 return KF_ARG_PTR_TO_DYNPTR; 12644 12645 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12646 return KF_ARG_PTR_TO_ITER; 12647 12648 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12649 return KF_ARG_PTR_TO_LIST_HEAD; 12650 12651 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12652 return KF_ARG_PTR_TO_LIST_NODE; 12653 12654 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12655 return KF_ARG_PTR_TO_RB_ROOT; 12656 12657 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12658 return KF_ARG_PTR_TO_RB_NODE; 12659 12660 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12661 return KF_ARG_PTR_TO_CONST_STR; 12662 12663 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12664 return KF_ARG_PTR_TO_MAP; 12665 12666 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12667 return KF_ARG_PTR_TO_WORKQUEUE; 12668 12669 if (is_kfunc_arg_timer(meta->btf, &args[argno])) 12670 return KF_ARG_PTR_TO_TIMER; 12671 12672 if (is_kfunc_arg_task_work(meta->btf, &args[argno])) 12673 return KF_ARG_PTR_TO_TASK_WORK; 12674 12675 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12676 return KF_ARG_PTR_TO_IRQ_FLAG; 12677 12678 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12679 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12680 12681 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12682 if (!btf_type_is_struct(ref_t)) { 12683 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12684 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12685 return -EINVAL; 12686 } 12687 return KF_ARG_PTR_TO_BTF_ID; 12688 } 12689 12690 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12691 return KF_ARG_PTR_TO_CALLBACK; 12692 12693 /* This is the catch all argument type of register types supported by 12694 * check_helper_mem_access. However, we only allow when argument type is 12695 * pointer to scalar, or struct composed (recursively) of scalars. When 12696 * arg_mem_size is true, the pointer can be void *. 12697 */ 12698 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12699 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12700 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12701 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12702 return -EINVAL; 12703 } 12704 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12705 } 12706 12707 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12708 struct bpf_reg_state *reg, 12709 const struct btf_type *ref_t, 12710 const char *ref_tname, u32 ref_id, 12711 struct bpf_kfunc_call_arg_meta *meta, 12712 int argno) 12713 { 12714 const struct btf_type *reg_ref_t; 12715 bool strict_type_match = false; 12716 const struct btf *reg_btf; 12717 const char *reg_ref_tname; 12718 bool taking_projection; 12719 bool struct_same; 12720 u32 reg_ref_id; 12721 12722 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12723 reg_btf = reg->btf; 12724 reg_ref_id = reg->btf_id; 12725 } else { 12726 reg_btf = btf_vmlinux; 12727 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12728 } 12729 12730 /* Enforce strict type matching for calls to kfuncs that are acquiring 12731 * or releasing a reference, or are no-cast aliases. We do _not_ 12732 * enforce strict matching for kfuncs by default, 12733 * as we want to enable BPF programs to pass types that are bitwise 12734 * equivalent without forcing them to explicitly cast with something 12735 * like bpf_cast_to_kern_ctx(). 12736 * 12737 * For example, say we had a type like the following: 12738 * 12739 * struct bpf_cpumask { 12740 * cpumask_t cpumask; 12741 * refcount_t usage; 12742 * }; 12743 * 12744 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12745 * to a struct cpumask, so it would be safe to pass a struct 12746 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12747 * 12748 * The philosophy here is similar to how we allow scalars of different 12749 * types to be passed to kfuncs as long as the size is the same. The 12750 * only difference here is that we're simply allowing 12751 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12752 * resolve types. 12753 */ 12754 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12755 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12756 strict_type_match = true; 12757 12758 WARN_ON_ONCE(is_kfunc_release(meta) && 12759 (reg->off || !tnum_is_const(reg->var_off) || 12760 reg->var_off.value)); 12761 12762 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12763 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12764 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12765 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12766 * actually use it -- it must cast to the underlying type. So we allow 12767 * caller to pass in the underlying type. 12768 */ 12769 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12770 if (!taking_projection && !struct_same) { 12771 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12772 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12773 btf_type_str(reg_ref_t), reg_ref_tname); 12774 return -EINVAL; 12775 } 12776 return 0; 12777 } 12778 12779 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12780 struct bpf_kfunc_call_arg_meta *meta) 12781 { 12782 struct bpf_reg_state *reg = reg_state(env, regno); 12783 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12784 bool irq_save; 12785 12786 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12787 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12788 irq_save = true; 12789 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12790 kfunc_class = IRQ_LOCK_KFUNC; 12791 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12792 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12793 irq_save = false; 12794 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12795 kfunc_class = IRQ_LOCK_KFUNC; 12796 } else { 12797 verifier_bug(env, "unknown irq flags kfunc"); 12798 return -EFAULT; 12799 } 12800 12801 if (irq_save) { 12802 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12803 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12804 return -EINVAL; 12805 } 12806 12807 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12808 if (err) 12809 return err; 12810 12811 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12812 if (err) 12813 return err; 12814 } else { 12815 err = is_irq_flag_reg_valid_init(env, reg); 12816 if (err) { 12817 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12818 return err; 12819 } 12820 12821 err = mark_irq_flag_read(env, reg); 12822 if (err) 12823 return err; 12824 12825 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12826 if (err) 12827 return err; 12828 } 12829 return 0; 12830 } 12831 12832 12833 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12834 { 12835 struct btf_record *rec = reg_btf_record(reg); 12836 12837 if (!env->cur_state->active_locks) { 12838 verifier_bug(env, "%s w/o active lock", __func__); 12839 return -EFAULT; 12840 } 12841 12842 if (type_flag(reg->type) & NON_OWN_REF) { 12843 verifier_bug(env, "NON_OWN_REF already set"); 12844 return -EFAULT; 12845 } 12846 12847 reg->type |= NON_OWN_REF; 12848 if (rec->refcount_off >= 0) 12849 reg->type |= MEM_RCU; 12850 12851 return 0; 12852 } 12853 12854 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12855 { 12856 struct bpf_verifier_state *state = env->cur_state; 12857 struct bpf_func_state *unused; 12858 struct bpf_reg_state *reg; 12859 int i; 12860 12861 if (!ref_obj_id) { 12862 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); 12863 return -EFAULT; 12864 } 12865 12866 for (i = 0; i < state->acquired_refs; i++) { 12867 if (state->refs[i].id != ref_obj_id) 12868 continue; 12869 12870 /* Clear ref_obj_id here so release_reference doesn't clobber 12871 * the whole reg 12872 */ 12873 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12874 if (reg->ref_obj_id == ref_obj_id) { 12875 reg->ref_obj_id = 0; 12876 ref_set_non_owning(env, reg); 12877 } 12878 })); 12879 return 0; 12880 } 12881 12882 verifier_bug(env, "ref state missing for ref_obj_id"); 12883 return -EFAULT; 12884 } 12885 12886 /* Implementation details: 12887 * 12888 * Each register points to some region of memory, which we define as an 12889 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12890 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12891 * allocation. The lock and the data it protects are colocated in the same 12892 * memory region. 12893 * 12894 * Hence, everytime a register holds a pointer value pointing to such 12895 * allocation, the verifier preserves a unique reg->id for it. 12896 * 12897 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12898 * bpf_spin_lock is called. 12899 * 12900 * To enable this, lock state in the verifier captures two values: 12901 * active_lock.ptr = Register's type specific pointer 12902 * active_lock.id = A unique ID for each register pointer value 12903 * 12904 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12905 * supported register types. 12906 * 12907 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12908 * allocated objects is the reg->btf pointer. 12909 * 12910 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12911 * can establish the provenance of the map value statically for each distinct 12912 * lookup into such maps. They always contain a single map value hence unique 12913 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12914 * 12915 * So, in case of global variables, they use array maps with max_entries = 1, 12916 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12917 * into the same map value as max_entries is 1, as described above). 12918 * 12919 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12920 * outer map pointer (in verifier context), but each lookup into an inner map 12921 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12922 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12923 * will get different reg->id assigned to each lookup, hence different 12924 * active_lock.id. 12925 * 12926 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12927 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12928 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12929 */ 12930 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12931 { 12932 struct bpf_reference_state *s; 12933 void *ptr; 12934 u32 id; 12935 12936 switch ((int)reg->type) { 12937 case PTR_TO_MAP_VALUE: 12938 ptr = reg->map_ptr; 12939 break; 12940 case PTR_TO_BTF_ID | MEM_ALLOC: 12941 ptr = reg->btf; 12942 break; 12943 default: 12944 verifier_bug(env, "unknown reg type for lock check"); 12945 return -EFAULT; 12946 } 12947 id = reg->id; 12948 12949 if (!env->cur_state->active_locks) 12950 return -EINVAL; 12951 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12952 if (!s) { 12953 verbose(env, "held lock and object are not in the same allocation\n"); 12954 return -EINVAL; 12955 } 12956 return 0; 12957 } 12958 12959 static bool is_bpf_list_api_kfunc(u32 btf_id) 12960 { 12961 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12962 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12963 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12964 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12965 btf_id == special_kfunc_list[KF_bpf_list_front] || 12966 btf_id == special_kfunc_list[KF_bpf_list_back]; 12967 } 12968 12969 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12970 { 12971 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12972 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12973 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12974 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12975 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12976 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12977 } 12978 12979 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12980 { 12981 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12982 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12983 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12984 } 12985 12986 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12987 { 12988 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12989 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12990 } 12991 12992 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12993 { 12994 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12995 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12996 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12997 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12998 } 12999 13000 static bool is_bpf_arena_kfunc(u32 btf_id) 13001 { 13002 return btf_id == special_kfunc_list[KF_bpf_arena_alloc_pages] || 13003 btf_id == special_kfunc_list[KF_bpf_arena_free_pages] || 13004 btf_id == special_kfunc_list[KF_bpf_arena_reserve_pages]; 13005 } 13006 13007 static bool is_bpf_stream_kfunc(u32 btf_id) 13008 { 13009 return btf_id == special_kfunc_list[KF_bpf_stream_vprintk] || 13010 btf_id == special_kfunc_list[KF_bpf_stream_print_stack]; 13011 } 13012 13013 static bool kfunc_spin_allowed(u32 btf_id) 13014 { 13015 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 13016 is_bpf_res_spin_lock_kfunc(btf_id) || is_bpf_arena_kfunc(btf_id) || 13017 is_bpf_stream_kfunc(btf_id); 13018 } 13019 13020 static bool is_sync_callback_calling_kfunc(u32 btf_id) 13021 { 13022 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 13023 } 13024 13025 static bool is_async_callback_calling_kfunc(u32 btf_id) 13026 { 13027 return is_bpf_wq_set_callback_kfunc(btf_id) || 13028 is_task_work_add_kfunc(btf_id); 13029 } 13030 13031 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 13032 { 13033 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 13034 insn->imm == special_kfunc_list[KF_bpf_throw]; 13035 } 13036 13037 static bool is_bpf_wq_set_callback_kfunc(u32 btf_id) 13038 { 13039 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback]; 13040 } 13041 13042 static bool is_callback_calling_kfunc(u32 btf_id) 13043 { 13044 return is_sync_callback_calling_kfunc(btf_id) || 13045 is_async_callback_calling_kfunc(btf_id); 13046 } 13047 13048 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 13049 { 13050 return is_bpf_rbtree_api_kfunc(btf_id); 13051 } 13052 13053 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 13054 enum btf_field_type head_field_type, 13055 u32 kfunc_btf_id) 13056 { 13057 bool ret; 13058 13059 switch (head_field_type) { 13060 case BPF_LIST_HEAD: 13061 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 13062 break; 13063 case BPF_RB_ROOT: 13064 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 13065 break; 13066 default: 13067 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 13068 btf_field_type_name(head_field_type)); 13069 return false; 13070 } 13071 13072 if (!ret) 13073 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 13074 btf_field_type_name(head_field_type)); 13075 return ret; 13076 } 13077 13078 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 13079 enum btf_field_type node_field_type, 13080 u32 kfunc_btf_id) 13081 { 13082 bool ret; 13083 13084 switch (node_field_type) { 13085 case BPF_LIST_NODE: 13086 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13087 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 13088 break; 13089 case BPF_RB_NODE: 13090 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 13091 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 13092 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 13093 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 13094 break; 13095 default: 13096 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 13097 btf_field_type_name(node_field_type)); 13098 return false; 13099 } 13100 13101 if (!ret) 13102 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 13103 btf_field_type_name(node_field_type)); 13104 return ret; 13105 } 13106 13107 static int 13108 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 13109 struct bpf_reg_state *reg, u32 regno, 13110 struct bpf_kfunc_call_arg_meta *meta, 13111 enum btf_field_type head_field_type, 13112 struct btf_field **head_field) 13113 { 13114 const char *head_type_name; 13115 struct btf_field *field; 13116 struct btf_record *rec; 13117 u32 head_off; 13118 13119 if (meta->btf != btf_vmlinux) { 13120 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 13121 return -EFAULT; 13122 } 13123 13124 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 13125 return -EFAULT; 13126 13127 head_type_name = btf_field_type_name(head_field_type); 13128 if (!tnum_is_const(reg->var_off)) { 13129 verbose(env, 13130 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 13131 regno, head_type_name); 13132 return -EINVAL; 13133 } 13134 13135 rec = reg_btf_record(reg); 13136 head_off = reg->off + reg->var_off.value; 13137 field = btf_record_find(rec, head_off, head_field_type); 13138 if (!field) { 13139 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 13140 return -EINVAL; 13141 } 13142 13143 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 13144 if (check_reg_allocation_locked(env, reg)) { 13145 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 13146 rec->spin_lock_off, head_type_name); 13147 return -EINVAL; 13148 } 13149 13150 if (*head_field) { 13151 verifier_bug(env, "repeating %s arg", head_type_name); 13152 return -EFAULT; 13153 } 13154 *head_field = field; 13155 return 0; 13156 } 13157 13158 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 13159 struct bpf_reg_state *reg, u32 regno, 13160 struct bpf_kfunc_call_arg_meta *meta) 13161 { 13162 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 13163 &meta->arg_list_head.field); 13164 } 13165 13166 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 13167 struct bpf_reg_state *reg, u32 regno, 13168 struct bpf_kfunc_call_arg_meta *meta) 13169 { 13170 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 13171 &meta->arg_rbtree_root.field); 13172 } 13173 13174 static int 13175 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 13176 struct bpf_reg_state *reg, u32 regno, 13177 struct bpf_kfunc_call_arg_meta *meta, 13178 enum btf_field_type head_field_type, 13179 enum btf_field_type node_field_type, 13180 struct btf_field **node_field) 13181 { 13182 const char *node_type_name; 13183 const struct btf_type *et, *t; 13184 struct btf_field *field; 13185 u32 node_off; 13186 13187 if (meta->btf != btf_vmlinux) { 13188 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 13189 return -EFAULT; 13190 } 13191 13192 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 13193 return -EFAULT; 13194 13195 node_type_name = btf_field_type_name(node_field_type); 13196 if (!tnum_is_const(reg->var_off)) { 13197 verbose(env, 13198 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 13199 regno, node_type_name); 13200 return -EINVAL; 13201 } 13202 13203 node_off = reg->off + reg->var_off.value; 13204 field = reg_find_field_offset(reg, node_off, node_field_type); 13205 if (!field) { 13206 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 13207 return -EINVAL; 13208 } 13209 13210 field = *node_field; 13211 13212 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 13213 t = btf_type_by_id(reg->btf, reg->btf_id); 13214 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 13215 field->graph_root.value_btf_id, true)) { 13216 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 13217 "in struct %s, but arg is at offset=%d in struct %s\n", 13218 btf_field_type_name(head_field_type), 13219 btf_field_type_name(node_field_type), 13220 field->graph_root.node_offset, 13221 btf_name_by_offset(field->graph_root.btf, et->name_off), 13222 node_off, btf_name_by_offset(reg->btf, t->name_off)); 13223 return -EINVAL; 13224 } 13225 meta->arg_btf = reg->btf; 13226 meta->arg_btf_id = reg->btf_id; 13227 13228 if (node_off != field->graph_root.node_offset) { 13229 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 13230 node_off, btf_field_type_name(node_field_type), 13231 field->graph_root.node_offset, 13232 btf_name_by_offset(field->graph_root.btf, et->name_off)); 13233 return -EINVAL; 13234 } 13235 13236 return 0; 13237 } 13238 13239 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 13240 struct bpf_reg_state *reg, u32 regno, 13241 struct bpf_kfunc_call_arg_meta *meta) 13242 { 13243 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13244 BPF_LIST_HEAD, BPF_LIST_NODE, 13245 &meta->arg_list_head.field); 13246 } 13247 13248 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 13249 struct bpf_reg_state *reg, u32 regno, 13250 struct bpf_kfunc_call_arg_meta *meta) 13251 { 13252 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13253 BPF_RB_ROOT, BPF_RB_NODE, 13254 &meta->arg_rbtree_root.field); 13255 } 13256 13257 /* 13258 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 13259 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 13260 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 13261 * them can only be attached to some specific hook points. 13262 */ 13263 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 13264 { 13265 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13266 13267 switch (prog_type) { 13268 case BPF_PROG_TYPE_LSM: 13269 return true; 13270 case BPF_PROG_TYPE_TRACING: 13271 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 13272 return true; 13273 fallthrough; 13274 default: 13275 return in_sleepable(env); 13276 } 13277 } 13278 13279 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13280 int insn_idx) 13281 { 13282 const char *func_name = meta->func_name, *ref_tname; 13283 const struct btf *btf = meta->btf; 13284 const struct btf_param *args; 13285 struct btf_record *rec; 13286 u32 i, nargs; 13287 int ret; 13288 13289 args = (const struct btf_param *)(meta->func_proto + 1); 13290 nargs = btf_type_vlen(meta->func_proto); 13291 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 13292 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 13293 MAX_BPF_FUNC_REG_ARGS); 13294 return -EINVAL; 13295 } 13296 13297 /* Check that BTF function arguments match actual types that the 13298 * verifier sees. 13299 */ 13300 for (i = 0; i < nargs; i++) { 13301 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 13302 const struct btf_type *t, *ref_t, *resolve_ret; 13303 enum bpf_arg_type arg_type = ARG_DONTCARE; 13304 u32 regno = i + 1, ref_id, type_size; 13305 bool is_ret_buf_sz = false; 13306 int kf_arg_type; 13307 13308 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 13309 13310 if (is_kfunc_arg_ignore(btf, &args[i])) 13311 continue; 13312 13313 if (is_kfunc_arg_prog_aux(btf, &args[i])) { 13314 /* Reject repeated use bpf_prog_aux */ 13315 if (meta->arg_prog) { 13316 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); 13317 return -EFAULT; 13318 } 13319 meta->arg_prog = true; 13320 cur_aux(env)->arg_prog = regno; 13321 continue; 13322 } 13323 13324 if (btf_type_is_scalar(t)) { 13325 if (reg->type != SCALAR_VALUE) { 13326 verbose(env, "R%d is not a scalar\n", regno); 13327 return -EINVAL; 13328 } 13329 13330 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 13331 if (meta->arg_constant.found) { 13332 verifier_bug(env, "only one constant argument permitted"); 13333 return -EFAULT; 13334 } 13335 if (!tnum_is_const(reg->var_off)) { 13336 verbose(env, "R%d must be a known constant\n", regno); 13337 return -EINVAL; 13338 } 13339 ret = mark_chain_precision(env, regno); 13340 if (ret < 0) 13341 return ret; 13342 meta->arg_constant.found = true; 13343 meta->arg_constant.value = reg->var_off.value; 13344 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 13345 meta->r0_rdonly = true; 13346 is_ret_buf_sz = true; 13347 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 13348 is_ret_buf_sz = true; 13349 } 13350 13351 if (is_ret_buf_sz) { 13352 if (meta->r0_size) { 13353 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 13354 return -EINVAL; 13355 } 13356 13357 if (!tnum_is_const(reg->var_off)) { 13358 verbose(env, "R%d is not a const\n", regno); 13359 return -EINVAL; 13360 } 13361 13362 meta->r0_size = reg->var_off.value; 13363 ret = mark_chain_precision(env, regno); 13364 if (ret) 13365 return ret; 13366 } 13367 continue; 13368 } 13369 13370 if (!btf_type_is_ptr(t)) { 13371 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 13372 return -EINVAL; 13373 } 13374 13375 if ((register_is_null(reg) || type_may_be_null(reg->type)) && 13376 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 13377 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 13378 return -EACCES; 13379 } 13380 13381 if (reg->ref_obj_id) { 13382 if (is_kfunc_release(meta) && meta->ref_obj_id) { 13383 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", 13384 regno, reg->ref_obj_id, 13385 meta->ref_obj_id); 13386 return -EFAULT; 13387 } 13388 meta->ref_obj_id = reg->ref_obj_id; 13389 if (is_kfunc_release(meta)) 13390 meta->release_regno = regno; 13391 } 13392 13393 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 13394 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13395 13396 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 13397 if (kf_arg_type < 0) 13398 return kf_arg_type; 13399 13400 switch (kf_arg_type) { 13401 case KF_ARG_PTR_TO_NULL: 13402 continue; 13403 case KF_ARG_PTR_TO_MAP: 13404 if (!reg->map_ptr) { 13405 verbose(env, "pointer in R%d isn't map pointer\n", regno); 13406 return -EINVAL; 13407 } 13408 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 || 13409 reg->map_ptr->record->task_work_off >= 0)) { 13410 /* Use map_uid (which is unique id of inner map) to reject: 13411 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 13412 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13413 * if (inner_map1 && inner_map2) { 13414 * wq = bpf_map_lookup_elem(inner_map1); 13415 * if (wq) 13416 * // mismatch would have been allowed 13417 * bpf_wq_init(wq, inner_map2); 13418 * } 13419 * 13420 * Comparing map_ptr is enough to distinguish normal and outer maps. 13421 */ 13422 if (meta->map.ptr != reg->map_ptr || 13423 meta->map.uid != reg->map_uid) { 13424 if (reg->map_ptr->record->task_work_off >= 0) { 13425 verbose(env, 13426 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n", 13427 meta->map.uid, reg->map_uid); 13428 return -EINVAL; 13429 } 13430 verbose(env, 13431 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13432 meta->map.uid, reg->map_uid); 13433 return -EINVAL; 13434 } 13435 } 13436 meta->map.ptr = reg->map_ptr; 13437 meta->map.uid = reg->map_uid; 13438 fallthrough; 13439 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13440 case KF_ARG_PTR_TO_BTF_ID: 13441 if (!is_trusted_reg(reg)) { 13442 if (!is_kfunc_rcu(meta)) { 13443 verbose(env, "R%d must be referenced or trusted\n", regno); 13444 return -EINVAL; 13445 } 13446 if (!is_rcu_reg(reg)) { 13447 verbose(env, "R%d must be a rcu pointer\n", regno); 13448 return -EINVAL; 13449 } 13450 } 13451 fallthrough; 13452 case KF_ARG_PTR_TO_CTX: 13453 case KF_ARG_PTR_TO_DYNPTR: 13454 case KF_ARG_PTR_TO_ITER: 13455 case KF_ARG_PTR_TO_LIST_HEAD: 13456 case KF_ARG_PTR_TO_LIST_NODE: 13457 case KF_ARG_PTR_TO_RB_ROOT: 13458 case KF_ARG_PTR_TO_RB_NODE: 13459 case KF_ARG_PTR_TO_MEM: 13460 case KF_ARG_PTR_TO_MEM_SIZE: 13461 case KF_ARG_PTR_TO_CALLBACK: 13462 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13463 case KF_ARG_PTR_TO_CONST_STR: 13464 case KF_ARG_PTR_TO_WORKQUEUE: 13465 case KF_ARG_PTR_TO_TIMER: 13466 case KF_ARG_PTR_TO_TASK_WORK: 13467 case KF_ARG_PTR_TO_IRQ_FLAG: 13468 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13469 break; 13470 default: 13471 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); 13472 return -EFAULT; 13473 } 13474 13475 if (is_kfunc_release(meta) && reg->ref_obj_id) 13476 arg_type |= OBJ_RELEASE; 13477 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13478 if (ret < 0) 13479 return ret; 13480 13481 switch (kf_arg_type) { 13482 case KF_ARG_PTR_TO_CTX: 13483 if (reg->type != PTR_TO_CTX) { 13484 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13485 i, reg_type_str(env, reg->type)); 13486 return -EINVAL; 13487 } 13488 13489 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13490 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13491 if (ret < 0) 13492 return -EINVAL; 13493 meta->ret_btf_id = ret; 13494 } 13495 break; 13496 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13497 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13498 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13499 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13500 return -EINVAL; 13501 } 13502 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13503 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13504 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13505 return -EINVAL; 13506 } 13507 } else { 13508 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13509 return -EINVAL; 13510 } 13511 if (!reg->ref_obj_id) { 13512 verbose(env, "allocated object must be referenced\n"); 13513 return -EINVAL; 13514 } 13515 if (meta->btf == btf_vmlinux) { 13516 meta->arg_btf = reg->btf; 13517 meta->arg_btf_id = reg->btf_id; 13518 } 13519 break; 13520 case KF_ARG_PTR_TO_DYNPTR: 13521 { 13522 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13523 int clone_ref_obj_id = 0; 13524 13525 if (reg->type == CONST_PTR_TO_DYNPTR) 13526 dynptr_arg_type |= MEM_RDONLY; 13527 13528 if (is_kfunc_arg_uninit(btf, &args[i])) 13529 dynptr_arg_type |= MEM_UNINIT; 13530 13531 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13532 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13533 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13534 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13535 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { 13536 dynptr_arg_type |= DYNPTR_TYPE_SKB_META; 13537 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { 13538 dynptr_arg_type |= DYNPTR_TYPE_FILE; 13539 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) { 13540 dynptr_arg_type |= DYNPTR_TYPE_FILE; 13541 meta->release_regno = regno; 13542 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13543 (dynptr_arg_type & MEM_UNINIT)) { 13544 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13545 13546 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13547 verifier_bug(env, "no dynptr type for parent of clone"); 13548 return -EFAULT; 13549 } 13550 13551 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13552 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13553 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13554 verifier_bug(env, "missing ref obj id for parent of clone"); 13555 return -EFAULT; 13556 } 13557 } 13558 13559 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13560 if (ret < 0) 13561 return ret; 13562 13563 if (!(dynptr_arg_type & MEM_UNINIT)) { 13564 int id = dynptr_id(env, reg); 13565 13566 if (id < 0) { 13567 verifier_bug(env, "failed to obtain dynptr id"); 13568 return id; 13569 } 13570 meta->initialized_dynptr.id = id; 13571 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13572 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13573 } 13574 13575 break; 13576 } 13577 case KF_ARG_PTR_TO_ITER: 13578 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13579 if (!check_css_task_iter_allowlist(env)) { 13580 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13581 return -EINVAL; 13582 } 13583 } 13584 ret = process_iter_arg(env, regno, insn_idx, meta); 13585 if (ret < 0) 13586 return ret; 13587 break; 13588 case KF_ARG_PTR_TO_LIST_HEAD: 13589 if (reg->type != PTR_TO_MAP_VALUE && 13590 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13591 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13592 return -EINVAL; 13593 } 13594 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13595 verbose(env, "allocated object must be referenced\n"); 13596 return -EINVAL; 13597 } 13598 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13599 if (ret < 0) 13600 return ret; 13601 break; 13602 case KF_ARG_PTR_TO_RB_ROOT: 13603 if (reg->type != PTR_TO_MAP_VALUE && 13604 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13605 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13606 return -EINVAL; 13607 } 13608 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13609 verbose(env, "allocated object must be referenced\n"); 13610 return -EINVAL; 13611 } 13612 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13613 if (ret < 0) 13614 return ret; 13615 break; 13616 case KF_ARG_PTR_TO_LIST_NODE: 13617 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13618 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13619 return -EINVAL; 13620 } 13621 if (!reg->ref_obj_id) { 13622 verbose(env, "allocated object must be referenced\n"); 13623 return -EINVAL; 13624 } 13625 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13626 if (ret < 0) 13627 return ret; 13628 break; 13629 case KF_ARG_PTR_TO_RB_NODE: 13630 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13631 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13632 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13633 return -EINVAL; 13634 } 13635 if (!reg->ref_obj_id) { 13636 verbose(env, "allocated object must be referenced\n"); 13637 return -EINVAL; 13638 } 13639 } else { 13640 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13641 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13642 return -EINVAL; 13643 } 13644 if (in_rbtree_lock_required_cb(env)) { 13645 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13646 return -EINVAL; 13647 } 13648 } 13649 13650 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13651 if (ret < 0) 13652 return ret; 13653 break; 13654 case KF_ARG_PTR_TO_MAP: 13655 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13656 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13657 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13658 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13659 fallthrough; 13660 case KF_ARG_PTR_TO_BTF_ID: 13661 /* Only base_type is checked, further checks are done here */ 13662 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13663 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13664 !reg2btf_ids[base_type(reg->type)]) { 13665 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13666 verbose(env, "expected %s or socket\n", 13667 reg_type_str(env, base_type(reg->type) | 13668 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13669 return -EINVAL; 13670 } 13671 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13672 if (ret < 0) 13673 return ret; 13674 break; 13675 case KF_ARG_PTR_TO_MEM: 13676 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13677 if (IS_ERR(resolve_ret)) { 13678 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13679 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13680 return -EINVAL; 13681 } 13682 ret = check_mem_reg(env, reg, regno, type_size); 13683 if (ret < 0) 13684 return ret; 13685 break; 13686 case KF_ARG_PTR_TO_MEM_SIZE: 13687 { 13688 struct bpf_reg_state *buff_reg = ®s[regno]; 13689 const struct btf_param *buff_arg = &args[i]; 13690 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13691 const struct btf_param *size_arg = &args[i + 1]; 13692 13693 if (!register_is_null(buff_reg) || !is_kfunc_arg_nullable(meta->btf, buff_arg)) { 13694 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13695 if (ret < 0) { 13696 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13697 return ret; 13698 } 13699 } 13700 13701 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13702 if (meta->arg_constant.found) { 13703 verifier_bug(env, "only one constant argument permitted"); 13704 return -EFAULT; 13705 } 13706 if (!tnum_is_const(size_reg->var_off)) { 13707 verbose(env, "R%d must be a known constant\n", regno + 1); 13708 return -EINVAL; 13709 } 13710 meta->arg_constant.found = true; 13711 meta->arg_constant.value = size_reg->var_off.value; 13712 } 13713 13714 /* Skip next '__sz' or '__szk' argument */ 13715 i++; 13716 break; 13717 } 13718 case KF_ARG_PTR_TO_CALLBACK: 13719 if (reg->type != PTR_TO_FUNC) { 13720 verbose(env, "arg%d expected pointer to func\n", i); 13721 return -EINVAL; 13722 } 13723 meta->subprogno = reg->subprogno; 13724 break; 13725 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13726 if (!type_is_ptr_alloc_obj(reg->type)) { 13727 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13728 return -EINVAL; 13729 } 13730 if (!type_is_non_owning_ref(reg->type)) 13731 meta->arg_owning_ref = true; 13732 13733 rec = reg_btf_record(reg); 13734 if (!rec) { 13735 verifier_bug(env, "Couldn't find btf_record"); 13736 return -EFAULT; 13737 } 13738 13739 if (rec->refcount_off < 0) { 13740 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13741 return -EINVAL; 13742 } 13743 13744 meta->arg_btf = reg->btf; 13745 meta->arg_btf_id = reg->btf_id; 13746 break; 13747 case KF_ARG_PTR_TO_CONST_STR: 13748 if (reg->type != PTR_TO_MAP_VALUE) { 13749 verbose(env, "arg#%d doesn't point to a const string\n", i); 13750 return -EINVAL; 13751 } 13752 ret = check_reg_const_str(env, reg, regno); 13753 if (ret) 13754 return ret; 13755 break; 13756 case KF_ARG_PTR_TO_WORKQUEUE: 13757 if (reg->type != PTR_TO_MAP_VALUE) { 13758 verbose(env, "arg#%d doesn't point to a map value\n", i); 13759 return -EINVAL; 13760 } 13761 ret = check_map_field_pointer(env, regno, BPF_WORKQUEUE, &meta->map); 13762 if (ret < 0) 13763 return ret; 13764 break; 13765 case KF_ARG_PTR_TO_TIMER: 13766 if (reg->type != PTR_TO_MAP_VALUE) { 13767 verbose(env, "arg#%d doesn't point to a map value\n", i); 13768 return -EINVAL; 13769 } 13770 ret = process_timer_kfunc(env, regno, meta); 13771 if (ret < 0) 13772 return ret; 13773 break; 13774 case KF_ARG_PTR_TO_TASK_WORK: 13775 if (reg->type != PTR_TO_MAP_VALUE) { 13776 verbose(env, "arg#%d doesn't point to a map value\n", i); 13777 return -EINVAL; 13778 } 13779 ret = check_map_field_pointer(env, regno, BPF_TASK_WORK, &meta->map); 13780 if (ret < 0) 13781 return ret; 13782 break; 13783 case KF_ARG_PTR_TO_IRQ_FLAG: 13784 if (reg->type != PTR_TO_STACK) { 13785 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13786 return -EINVAL; 13787 } 13788 ret = process_irq_flag(env, regno, meta); 13789 if (ret < 0) 13790 return ret; 13791 break; 13792 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13793 { 13794 int flags = PROCESS_RES_LOCK; 13795 13796 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13797 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13798 return -EINVAL; 13799 } 13800 13801 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13802 return -EFAULT; 13803 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13804 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13805 flags |= PROCESS_SPIN_LOCK; 13806 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13807 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13808 flags |= PROCESS_LOCK_IRQ; 13809 ret = process_spin_lock(env, regno, flags); 13810 if (ret < 0) 13811 return ret; 13812 break; 13813 } 13814 } 13815 } 13816 13817 if (is_kfunc_release(meta) && !meta->release_regno) { 13818 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13819 func_name); 13820 return -EINVAL; 13821 } 13822 13823 return 0; 13824 } 13825 13826 static int fetch_kfunc_arg_meta(struct bpf_verifier_env *env, 13827 s32 func_id, 13828 s16 offset, 13829 struct bpf_kfunc_call_arg_meta *meta) 13830 { 13831 struct bpf_kfunc_meta kfunc; 13832 int err; 13833 13834 err = fetch_kfunc_meta(env, func_id, offset, &kfunc); 13835 if (err) 13836 return err; 13837 13838 memset(meta, 0, sizeof(*meta)); 13839 meta->btf = kfunc.btf; 13840 meta->func_id = kfunc.id; 13841 meta->func_proto = kfunc.proto; 13842 meta->func_name = kfunc.name; 13843 13844 if (!kfunc.flags || !btf_kfunc_is_allowed(kfunc.btf, kfunc.id, env->prog)) 13845 return -EACCES; 13846 13847 meta->kfunc_flags = *kfunc.flags; 13848 13849 return 0; 13850 } 13851 13852 /* check special kfuncs and return: 13853 * 1 - not fall-through to 'else' branch, continue verification 13854 * 0 - fall-through to 'else' branch 13855 * < 0 - not fall-through to 'else' branch, return error 13856 */ 13857 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13858 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13859 const struct btf_type *ptr_type, struct btf *desc_btf) 13860 { 13861 const struct btf_type *ret_t; 13862 int err = 0; 13863 13864 if (meta->btf != btf_vmlinux) 13865 return 0; 13866 13867 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13868 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13869 struct btf_struct_meta *struct_meta; 13870 struct btf *ret_btf; 13871 u32 ret_btf_id; 13872 13873 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13874 return -ENOMEM; 13875 13876 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13877 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13878 return -EINVAL; 13879 } 13880 13881 ret_btf = env->prog->aux->btf; 13882 ret_btf_id = meta->arg_constant.value; 13883 13884 /* This may be NULL due to user not supplying a BTF */ 13885 if (!ret_btf) { 13886 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13887 return -EINVAL; 13888 } 13889 13890 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13891 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13892 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13893 return -EINVAL; 13894 } 13895 13896 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13897 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13898 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13899 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13900 return -EINVAL; 13901 } 13902 13903 if (!bpf_global_percpu_ma_set) { 13904 mutex_lock(&bpf_percpu_ma_lock); 13905 if (!bpf_global_percpu_ma_set) { 13906 /* Charge memory allocated with bpf_global_percpu_ma to 13907 * root memcg. The obj_cgroup for root memcg is NULL. 13908 */ 13909 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13910 if (!err) 13911 bpf_global_percpu_ma_set = true; 13912 } 13913 mutex_unlock(&bpf_percpu_ma_lock); 13914 if (err) 13915 return err; 13916 } 13917 13918 mutex_lock(&bpf_percpu_ma_lock); 13919 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13920 mutex_unlock(&bpf_percpu_ma_lock); 13921 if (err) 13922 return err; 13923 } 13924 13925 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13926 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13927 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13928 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13929 return -EINVAL; 13930 } 13931 13932 if (struct_meta) { 13933 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13934 return -EINVAL; 13935 } 13936 } 13937 13938 mark_reg_known_zero(env, regs, BPF_REG_0); 13939 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13940 regs[BPF_REG_0].btf = ret_btf; 13941 regs[BPF_REG_0].btf_id = ret_btf_id; 13942 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13943 regs[BPF_REG_0].type |= MEM_PERCPU; 13944 13945 insn_aux->obj_new_size = ret_t->size; 13946 insn_aux->kptr_struct_meta = struct_meta; 13947 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13948 mark_reg_known_zero(env, regs, BPF_REG_0); 13949 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13950 regs[BPF_REG_0].btf = meta->arg_btf; 13951 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13952 13953 insn_aux->kptr_struct_meta = 13954 btf_find_struct_meta(meta->arg_btf, 13955 meta->arg_btf_id); 13956 } else if (is_list_node_type(ptr_type)) { 13957 struct btf_field *field = meta->arg_list_head.field; 13958 13959 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13960 } else if (is_rbtree_node_type(ptr_type)) { 13961 struct btf_field *field = meta->arg_rbtree_root.field; 13962 13963 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13964 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13965 mark_reg_known_zero(env, regs, BPF_REG_0); 13966 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13967 regs[BPF_REG_0].btf = desc_btf; 13968 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13969 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13970 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13971 if (!ret_t) { 13972 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", 13973 meta->arg_constant.value); 13974 return -EINVAL; 13975 } else if (btf_type_is_struct(ret_t)) { 13976 mark_reg_known_zero(env, regs, BPF_REG_0); 13977 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13978 regs[BPF_REG_0].btf = desc_btf; 13979 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13980 } else if (btf_type_is_void(ret_t)) { 13981 mark_reg_known_zero(env, regs, BPF_REG_0); 13982 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 13983 regs[BPF_REG_0].mem_size = 0; 13984 } else { 13985 verbose(env, 13986 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); 13987 return -EINVAL; 13988 } 13989 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13990 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13991 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13992 13993 mark_reg_known_zero(env, regs, BPF_REG_0); 13994 13995 if (!meta->arg_constant.found) { 13996 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); 13997 return -EFAULT; 13998 } 13999 14000 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 14001 14002 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 14003 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 14004 14005 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 14006 regs[BPF_REG_0].type |= MEM_RDONLY; 14007 } else { 14008 /* this will set env->seen_direct_write to true */ 14009 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 14010 verbose(env, "the prog does not allow writes to packet data\n"); 14011 return -EINVAL; 14012 } 14013 } 14014 14015 if (!meta->initialized_dynptr.id) { 14016 verifier_bug(env, "no dynptr id"); 14017 return -EFAULT; 14018 } 14019 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 14020 14021 /* we don't need to set BPF_REG_0's ref obj id 14022 * because packet slices are not refcounted (see 14023 * dynptr_type_refcounted) 14024 */ 14025 } else { 14026 return 0; 14027 } 14028 14029 return 1; 14030 } 14031 14032 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 14033 14034 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 14035 int *insn_idx_p) 14036 { 14037 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 14038 u32 i, nargs, ptr_type_id, release_ref_obj_id; 14039 struct bpf_reg_state *regs = cur_regs(env); 14040 const char *func_name, *ptr_type_name; 14041 const struct btf_type *t, *ptr_type; 14042 struct bpf_kfunc_call_arg_meta meta; 14043 struct bpf_insn_aux_data *insn_aux; 14044 int err, insn_idx = *insn_idx_p; 14045 const struct btf_param *args; 14046 struct btf *desc_btf; 14047 14048 /* skip for now, but return error when we find this in fixup_kfunc_call */ 14049 if (!insn->imm) 14050 return 0; 14051 14052 err = fetch_kfunc_arg_meta(env, insn->imm, insn->off, &meta); 14053 if (err == -EACCES && meta.func_name) 14054 verbose(env, "calling kernel function %s is not allowed\n", meta.func_name); 14055 if (err) 14056 return err; 14057 desc_btf = meta.btf; 14058 func_name = meta.func_name; 14059 insn_aux = &env->insn_aux_data[insn_idx]; 14060 14061 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 14062 14063 if (!insn->off && 14064 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 14065 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 14066 struct bpf_verifier_state *branch; 14067 struct bpf_reg_state *regs; 14068 14069 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 14070 if (IS_ERR(branch)) { 14071 verbose(env, "failed to push state for failed lock acquisition\n"); 14072 return PTR_ERR(branch); 14073 } 14074 14075 regs = branch->frame[branch->curframe]->regs; 14076 14077 /* Clear r0-r5 registers in forked state */ 14078 for (i = 0; i < CALLER_SAVED_REGS; i++) 14079 mark_reg_not_init(env, regs, caller_saved[i]); 14080 14081 mark_reg_unknown(env, regs, BPF_REG_0); 14082 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 14083 if (err) { 14084 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 14085 return err; 14086 } 14087 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 14088 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 14089 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 14090 return -EFAULT; 14091 } 14092 14093 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 14094 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 14095 return -EACCES; 14096 } 14097 14098 sleepable = is_kfunc_sleepable(&meta); 14099 if (sleepable && !in_sleepable(env)) { 14100 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 14101 return -EACCES; 14102 } 14103 14104 /* Track non-sleepable context for kfuncs, same as for helpers. */ 14105 if (!in_sleepable_context(env)) 14106 insn_aux->non_sleepable = true; 14107 14108 /* Check the arguments */ 14109 err = check_kfunc_args(env, &meta, insn_idx); 14110 if (err < 0) 14111 return err; 14112 14113 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 14114 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14115 set_rbtree_add_callback_state); 14116 if (err) { 14117 verbose(env, "kfunc %s#%d failed callback verification\n", 14118 func_name, meta.func_id); 14119 return err; 14120 } 14121 } 14122 14123 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 14124 meta.r0_size = sizeof(u64); 14125 meta.r0_rdonly = false; 14126 } 14127 14128 if (is_bpf_wq_set_callback_kfunc(meta.func_id)) { 14129 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14130 set_timer_callback_state); 14131 if (err) { 14132 verbose(env, "kfunc %s#%d failed callback verification\n", 14133 func_name, meta.func_id); 14134 return err; 14135 } 14136 } 14137 14138 if (is_task_work_add_kfunc(meta.func_id)) { 14139 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14140 set_task_work_schedule_callback_state); 14141 if (err) { 14142 verbose(env, "kfunc %s#%d failed callback verification\n", 14143 func_name, meta.func_id); 14144 return err; 14145 } 14146 } 14147 14148 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 14149 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 14150 14151 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 14152 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 14153 14154 if (rcu_lock) { 14155 env->cur_state->active_rcu_locks++; 14156 } else if (rcu_unlock) { 14157 struct bpf_func_state *state; 14158 struct bpf_reg_state *reg; 14159 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 14160 14161 if (env->cur_state->active_rcu_locks == 0) { 14162 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 14163 return -EINVAL; 14164 } 14165 if (--env->cur_state->active_rcu_locks == 0) { 14166 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 14167 if (reg->type & MEM_RCU) { 14168 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 14169 reg->type |= PTR_UNTRUSTED; 14170 } 14171 })); 14172 } 14173 } else if (sleepable && env->cur_state->active_rcu_locks) { 14174 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 14175 return -EACCES; 14176 } 14177 14178 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 14179 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 14180 return -EACCES; 14181 } 14182 14183 if (env->cur_state->active_preempt_locks) { 14184 if (preempt_disable) { 14185 env->cur_state->active_preempt_locks++; 14186 } else if (preempt_enable) { 14187 env->cur_state->active_preempt_locks--; 14188 } else if (sleepable) { 14189 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 14190 return -EACCES; 14191 } 14192 } else if (preempt_disable) { 14193 env->cur_state->active_preempt_locks++; 14194 } else if (preempt_enable) { 14195 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 14196 return -EINVAL; 14197 } 14198 14199 if (env->cur_state->active_irq_id && sleepable) { 14200 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 14201 return -EACCES; 14202 } 14203 14204 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) { 14205 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name); 14206 return -EACCES; 14207 } 14208 14209 /* In case of release function, we get register number of refcounted 14210 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 14211 */ 14212 if (meta.release_regno) { 14213 struct bpf_reg_state *reg = ®s[meta.release_regno]; 14214 14215 if (meta.initialized_dynptr.ref_obj_id) { 14216 err = unmark_stack_slots_dynptr(env, reg); 14217 } else { 14218 err = release_reference(env, reg->ref_obj_id); 14219 if (err) 14220 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 14221 func_name, meta.func_id); 14222 } 14223 if (err) 14224 return err; 14225 } 14226 14227 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 14228 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 14229 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 14230 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 14231 insn_aux->insert_off = regs[BPF_REG_2].off; 14232 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 14233 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 14234 if (err) { 14235 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 14236 func_name, meta.func_id); 14237 return err; 14238 } 14239 14240 err = release_reference(env, release_ref_obj_id); 14241 if (err) { 14242 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 14243 func_name, meta.func_id); 14244 return err; 14245 } 14246 } 14247 14248 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 14249 if (!bpf_jit_supports_exceptions()) { 14250 verbose(env, "JIT does not support calling kfunc %s#%d\n", 14251 func_name, meta.func_id); 14252 return -ENOTSUPP; 14253 } 14254 env->seen_exception = true; 14255 14256 /* In the case of the default callback, the cookie value passed 14257 * to bpf_throw becomes the return value of the program. 14258 */ 14259 if (!env->exception_callback_subprog) { 14260 err = check_return_code(env, BPF_REG_1, "R1"); 14261 if (err < 0) 14262 return err; 14263 } 14264 } 14265 14266 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14267 u32 regno = caller_saved[i]; 14268 14269 mark_reg_not_init(env, regs, regno); 14270 regs[regno].subreg_def = DEF_NOT_SUBREG; 14271 } 14272 14273 /* Check return type */ 14274 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 14275 14276 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 14277 /* Only exception is bpf_obj_new_impl */ 14278 if (meta.btf != btf_vmlinux || 14279 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 14280 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 14281 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 14282 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 14283 return -EINVAL; 14284 } 14285 } 14286 14287 if (btf_type_is_scalar(t)) { 14288 mark_reg_unknown(env, regs, BPF_REG_0); 14289 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 14290 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 14291 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 14292 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 14293 } else if (btf_type_is_ptr(t)) { 14294 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 14295 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 14296 if (err) { 14297 if (err < 0) 14298 return err; 14299 } else if (btf_type_is_void(ptr_type)) { 14300 /* kfunc returning 'void *' is equivalent to returning scalar */ 14301 mark_reg_unknown(env, regs, BPF_REG_0); 14302 } else if (!__btf_type_is_struct(ptr_type)) { 14303 if (!meta.r0_size) { 14304 __u32 sz; 14305 14306 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 14307 meta.r0_size = sz; 14308 meta.r0_rdonly = true; 14309 } 14310 } 14311 if (!meta.r0_size) { 14312 ptr_type_name = btf_name_by_offset(desc_btf, 14313 ptr_type->name_off); 14314 verbose(env, 14315 "kernel function %s returns pointer type %s %s is not supported\n", 14316 func_name, 14317 btf_type_str(ptr_type), 14318 ptr_type_name); 14319 return -EINVAL; 14320 } 14321 14322 mark_reg_known_zero(env, regs, BPF_REG_0); 14323 regs[BPF_REG_0].type = PTR_TO_MEM; 14324 regs[BPF_REG_0].mem_size = meta.r0_size; 14325 14326 if (meta.r0_rdonly) 14327 regs[BPF_REG_0].type |= MEM_RDONLY; 14328 14329 /* Ensures we don't access the memory after a release_reference() */ 14330 if (meta.ref_obj_id) 14331 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 14332 14333 if (is_kfunc_rcu_protected(&meta)) 14334 regs[BPF_REG_0].type |= MEM_RCU; 14335 } else { 14336 enum bpf_reg_type type = PTR_TO_BTF_ID; 14337 14338 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 14339 type |= PTR_UNTRUSTED; 14340 else if (is_kfunc_rcu_protected(&meta) || 14341 (is_iter_next_kfunc(&meta) && 14342 (get_iter_from_state(env->cur_state, &meta) 14343 ->type & MEM_RCU))) { 14344 /* 14345 * If the iterator's constructor (the _new 14346 * function e.g., bpf_iter_task_new) has been 14347 * annotated with BPF kfunc flag 14348 * KF_RCU_PROTECTED and was called within a RCU 14349 * read-side critical section, also propagate 14350 * the MEM_RCU flag to the pointer returned from 14351 * the iterator's next function (e.g., 14352 * bpf_iter_task_next). 14353 */ 14354 type |= MEM_RCU; 14355 } else { 14356 /* 14357 * Any PTR_TO_BTF_ID that is returned from a BPF 14358 * kfunc should by default be treated as 14359 * implicitly trusted. 14360 */ 14361 type |= PTR_TRUSTED; 14362 } 14363 14364 mark_reg_known_zero(env, regs, BPF_REG_0); 14365 regs[BPF_REG_0].btf = desc_btf; 14366 regs[BPF_REG_0].type = type; 14367 regs[BPF_REG_0].btf_id = ptr_type_id; 14368 } 14369 14370 if (is_kfunc_ret_null(&meta)) { 14371 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 14372 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 14373 regs[BPF_REG_0].id = ++env->id_gen; 14374 } 14375 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 14376 if (is_kfunc_acquire(&meta)) { 14377 int id = acquire_reference(env, insn_idx); 14378 14379 if (id < 0) 14380 return id; 14381 if (is_kfunc_ret_null(&meta)) 14382 regs[BPF_REG_0].id = id; 14383 regs[BPF_REG_0].ref_obj_id = id; 14384 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 14385 ref_set_non_owning(env, ®s[BPF_REG_0]); 14386 } 14387 14388 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 14389 regs[BPF_REG_0].id = ++env->id_gen; 14390 } else if (btf_type_is_void(t)) { 14391 if (meta.btf == btf_vmlinux) { 14392 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 14393 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 14394 insn_aux->kptr_struct_meta = 14395 btf_find_struct_meta(meta.arg_btf, 14396 meta.arg_btf_id); 14397 } 14398 } 14399 } 14400 14401 if (is_kfunc_pkt_changing(&meta)) 14402 clear_all_pkt_pointers(env); 14403 14404 nargs = btf_type_vlen(meta.func_proto); 14405 args = (const struct btf_param *)(meta.func_proto + 1); 14406 for (i = 0; i < nargs; i++) { 14407 u32 regno = i + 1; 14408 14409 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 14410 if (btf_type_is_ptr(t)) 14411 mark_btf_func_reg_size(env, regno, sizeof(void *)); 14412 else 14413 /* scalar. ensured by btf_check_kfunc_arg_match() */ 14414 mark_btf_func_reg_size(env, regno, t->size); 14415 } 14416 14417 if (is_iter_next_kfunc(&meta)) { 14418 err = process_iter_next_call(env, insn_idx, &meta); 14419 if (err) 14420 return err; 14421 } 14422 14423 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) 14424 env->prog->call_session_cookie = true; 14425 14426 return 0; 14427 } 14428 14429 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 14430 const struct bpf_reg_state *reg, 14431 enum bpf_reg_type type) 14432 { 14433 bool known = tnum_is_const(reg->var_off); 14434 s64 val = reg->var_off.value; 14435 s64 smin = reg->smin_value; 14436 14437 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 14438 verbose(env, "math between %s pointer and %lld is not allowed\n", 14439 reg_type_str(env, type), val); 14440 return false; 14441 } 14442 14443 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 14444 verbose(env, "%s pointer offset %d is not allowed\n", 14445 reg_type_str(env, type), reg->off); 14446 return false; 14447 } 14448 14449 if (smin == S64_MIN) { 14450 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 14451 reg_type_str(env, type)); 14452 return false; 14453 } 14454 14455 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 14456 verbose(env, "value %lld makes %s pointer be out of bounds\n", 14457 smin, reg_type_str(env, type)); 14458 return false; 14459 } 14460 14461 return true; 14462 } 14463 14464 enum { 14465 REASON_BOUNDS = -1, 14466 REASON_TYPE = -2, 14467 REASON_PATHS = -3, 14468 REASON_LIMIT = -4, 14469 REASON_STACK = -5, 14470 }; 14471 14472 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 14473 u32 *alu_limit, bool mask_to_left) 14474 { 14475 u32 max = 0, ptr_limit = 0; 14476 14477 switch (ptr_reg->type) { 14478 case PTR_TO_STACK: 14479 /* Offset 0 is out-of-bounds, but acceptable start for the 14480 * left direction, see BPF_REG_FP. Also, unknown scalar 14481 * offset where we would need to deal with min/max bounds is 14482 * currently prohibited for unprivileged. 14483 */ 14484 max = MAX_BPF_STACK + mask_to_left; 14485 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14486 break; 14487 case PTR_TO_MAP_VALUE: 14488 max = ptr_reg->map_ptr->value_size; 14489 ptr_limit = (mask_to_left ? 14490 ptr_reg->smin_value : 14491 ptr_reg->umax_value) + ptr_reg->off; 14492 break; 14493 default: 14494 return REASON_TYPE; 14495 } 14496 14497 if (ptr_limit >= max) 14498 return REASON_LIMIT; 14499 *alu_limit = ptr_limit; 14500 return 0; 14501 } 14502 14503 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14504 const struct bpf_insn *insn) 14505 { 14506 return env->bypass_spec_v1 || 14507 BPF_SRC(insn->code) == BPF_K || 14508 cur_aux(env)->nospec; 14509 } 14510 14511 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14512 u32 alu_state, u32 alu_limit) 14513 { 14514 /* If we arrived here from different branches with different 14515 * state or limits to sanitize, then this won't work. 14516 */ 14517 if (aux->alu_state && 14518 (aux->alu_state != alu_state || 14519 aux->alu_limit != alu_limit)) 14520 return REASON_PATHS; 14521 14522 /* Corresponding fixup done in do_misc_fixups(). */ 14523 aux->alu_state = alu_state; 14524 aux->alu_limit = alu_limit; 14525 return 0; 14526 } 14527 14528 static int sanitize_val_alu(struct bpf_verifier_env *env, 14529 struct bpf_insn *insn) 14530 { 14531 struct bpf_insn_aux_data *aux = cur_aux(env); 14532 14533 if (can_skip_alu_sanitation(env, insn)) 14534 return 0; 14535 14536 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14537 } 14538 14539 static bool sanitize_needed(u8 opcode) 14540 { 14541 return opcode == BPF_ADD || opcode == BPF_SUB; 14542 } 14543 14544 struct bpf_sanitize_info { 14545 struct bpf_insn_aux_data aux; 14546 bool mask_to_left; 14547 }; 14548 14549 static int sanitize_speculative_path(struct bpf_verifier_env *env, 14550 const struct bpf_insn *insn, 14551 u32 next_idx, u32 curr_idx) 14552 { 14553 struct bpf_verifier_state *branch; 14554 struct bpf_reg_state *regs; 14555 14556 branch = push_stack(env, next_idx, curr_idx, true); 14557 if (!IS_ERR(branch) && insn) { 14558 regs = branch->frame[branch->curframe]->regs; 14559 if (BPF_SRC(insn->code) == BPF_K) { 14560 mark_reg_unknown(env, regs, insn->dst_reg); 14561 } else if (BPF_SRC(insn->code) == BPF_X) { 14562 mark_reg_unknown(env, regs, insn->dst_reg); 14563 mark_reg_unknown(env, regs, insn->src_reg); 14564 } 14565 } 14566 return PTR_ERR_OR_ZERO(branch); 14567 } 14568 14569 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14570 struct bpf_insn *insn, 14571 const struct bpf_reg_state *ptr_reg, 14572 const struct bpf_reg_state *off_reg, 14573 struct bpf_reg_state *dst_reg, 14574 struct bpf_sanitize_info *info, 14575 const bool commit_window) 14576 { 14577 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14578 struct bpf_verifier_state *vstate = env->cur_state; 14579 bool off_is_imm = tnum_is_const(off_reg->var_off); 14580 bool off_is_neg = off_reg->smin_value < 0; 14581 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14582 u8 opcode = BPF_OP(insn->code); 14583 u32 alu_state, alu_limit; 14584 struct bpf_reg_state tmp; 14585 int err; 14586 14587 if (can_skip_alu_sanitation(env, insn)) 14588 return 0; 14589 14590 /* We already marked aux for masking from non-speculative 14591 * paths, thus we got here in the first place. We only care 14592 * to explore bad access from here. 14593 */ 14594 if (vstate->speculative) 14595 goto do_sim; 14596 14597 if (!commit_window) { 14598 if (!tnum_is_const(off_reg->var_off) && 14599 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14600 return REASON_BOUNDS; 14601 14602 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14603 (opcode == BPF_SUB && !off_is_neg); 14604 } 14605 14606 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14607 if (err < 0) 14608 return err; 14609 14610 if (commit_window) { 14611 /* In commit phase we narrow the masking window based on 14612 * the observed pointer move after the simulated operation. 14613 */ 14614 alu_state = info->aux.alu_state; 14615 alu_limit = abs(info->aux.alu_limit - alu_limit); 14616 } else { 14617 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14618 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14619 alu_state |= ptr_is_dst_reg ? 14620 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14621 14622 /* Limit pruning on unknown scalars to enable deep search for 14623 * potential masking differences from other program paths. 14624 */ 14625 if (!off_is_imm) 14626 env->explore_alu_limits = true; 14627 } 14628 14629 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14630 if (err < 0) 14631 return err; 14632 do_sim: 14633 /* If we're in commit phase, we're done here given we already 14634 * pushed the truncated dst_reg into the speculative verification 14635 * stack. 14636 * 14637 * Also, when register is a known constant, we rewrite register-based 14638 * operation to immediate-based, and thus do not need masking (and as 14639 * a consequence, do not need to simulate the zero-truncation either). 14640 */ 14641 if (commit_window || off_is_imm) 14642 return 0; 14643 14644 /* Simulate and find potential out-of-bounds access under 14645 * speculative execution from truncation as a result of 14646 * masking when off was not within expected range. If off 14647 * sits in dst, then we temporarily need to move ptr there 14648 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14649 * for cases where we use K-based arithmetic in one direction 14650 * and truncated reg-based in the other in order to explore 14651 * bad access. 14652 */ 14653 if (!ptr_is_dst_reg) { 14654 tmp = *dst_reg; 14655 copy_register_state(dst_reg, ptr_reg); 14656 } 14657 err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx); 14658 if (err < 0) 14659 return REASON_STACK; 14660 if (!ptr_is_dst_reg) 14661 *dst_reg = tmp; 14662 return 0; 14663 } 14664 14665 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14666 { 14667 struct bpf_verifier_state *vstate = env->cur_state; 14668 14669 /* If we simulate paths under speculation, we don't update the 14670 * insn as 'seen' such that when we verify unreachable paths in 14671 * the non-speculative domain, sanitize_dead_code() can still 14672 * rewrite/sanitize them. 14673 */ 14674 if (!vstate->speculative) 14675 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14676 } 14677 14678 static int sanitize_err(struct bpf_verifier_env *env, 14679 const struct bpf_insn *insn, int reason, 14680 const struct bpf_reg_state *off_reg, 14681 const struct bpf_reg_state *dst_reg) 14682 { 14683 static const char *err = "pointer arithmetic with it prohibited for !root"; 14684 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14685 u32 dst = insn->dst_reg, src = insn->src_reg; 14686 14687 switch (reason) { 14688 case REASON_BOUNDS: 14689 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14690 off_reg == dst_reg ? dst : src, err); 14691 break; 14692 case REASON_TYPE: 14693 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14694 off_reg == dst_reg ? src : dst, err); 14695 break; 14696 case REASON_PATHS: 14697 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14698 dst, op, err); 14699 break; 14700 case REASON_LIMIT: 14701 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14702 dst, op, err); 14703 break; 14704 case REASON_STACK: 14705 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14706 dst, err); 14707 return -ENOMEM; 14708 default: 14709 verifier_bug(env, "unknown reason (%d)", reason); 14710 break; 14711 } 14712 14713 return -EACCES; 14714 } 14715 14716 /* check that stack access falls within stack limits and that 'reg' doesn't 14717 * have a variable offset. 14718 * 14719 * Variable offset is prohibited for unprivileged mode for simplicity since it 14720 * requires corresponding support in Spectre masking for stack ALU. See also 14721 * retrieve_ptr_limit(). 14722 * 14723 * 14724 * 'off' includes 'reg->off'. 14725 */ 14726 static int check_stack_access_for_ptr_arithmetic( 14727 struct bpf_verifier_env *env, 14728 int regno, 14729 const struct bpf_reg_state *reg, 14730 int off) 14731 { 14732 if (!tnum_is_const(reg->var_off)) { 14733 char tn_buf[48]; 14734 14735 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14736 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14737 regno, tn_buf, off); 14738 return -EACCES; 14739 } 14740 14741 if (off >= 0 || off < -MAX_BPF_STACK) { 14742 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14743 "prohibited for !root; off=%d\n", regno, off); 14744 return -EACCES; 14745 } 14746 14747 return 0; 14748 } 14749 14750 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14751 const struct bpf_insn *insn, 14752 const struct bpf_reg_state *dst_reg) 14753 { 14754 u32 dst = insn->dst_reg; 14755 14756 /* For unprivileged we require that resulting offset must be in bounds 14757 * in order to be able to sanitize access later on. 14758 */ 14759 if (env->bypass_spec_v1) 14760 return 0; 14761 14762 switch (dst_reg->type) { 14763 case PTR_TO_STACK: 14764 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14765 dst_reg->off + dst_reg->var_off.value)) 14766 return -EACCES; 14767 break; 14768 case PTR_TO_MAP_VALUE: 14769 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14770 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14771 "prohibited for !root\n", dst); 14772 return -EACCES; 14773 } 14774 break; 14775 default: 14776 return -EOPNOTSUPP; 14777 } 14778 14779 return 0; 14780 } 14781 14782 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14783 * Caller should also handle BPF_MOV case separately. 14784 * If we return -EACCES, caller may want to try again treating pointer as a 14785 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14786 */ 14787 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14788 struct bpf_insn *insn, 14789 const struct bpf_reg_state *ptr_reg, 14790 const struct bpf_reg_state *off_reg) 14791 { 14792 struct bpf_verifier_state *vstate = env->cur_state; 14793 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14794 struct bpf_reg_state *regs = state->regs, *dst_reg; 14795 bool known = tnum_is_const(off_reg->var_off); 14796 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14797 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14798 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14799 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14800 struct bpf_sanitize_info info = {}; 14801 u8 opcode = BPF_OP(insn->code); 14802 u32 dst = insn->dst_reg; 14803 int ret, bounds_ret; 14804 14805 dst_reg = ®s[dst]; 14806 14807 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14808 smin_val > smax_val || umin_val > umax_val) { 14809 /* Taint dst register if offset had invalid bounds derived from 14810 * e.g. dead branches. 14811 */ 14812 __mark_reg_unknown(env, dst_reg); 14813 return 0; 14814 } 14815 14816 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14817 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14818 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14819 __mark_reg_unknown(env, dst_reg); 14820 return 0; 14821 } 14822 14823 verbose(env, 14824 "R%d 32-bit pointer arithmetic prohibited\n", 14825 dst); 14826 return -EACCES; 14827 } 14828 14829 if (ptr_reg->type & PTR_MAYBE_NULL) { 14830 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14831 dst, reg_type_str(env, ptr_reg->type)); 14832 return -EACCES; 14833 } 14834 14835 /* 14836 * Accesses to untrusted PTR_TO_MEM are done through probe 14837 * instructions, hence no need to track offsets. 14838 */ 14839 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) 14840 return 0; 14841 14842 switch (base_type(ptr_reg->type)) { 14843 case PTR_TO_CTX: 14844 case PTR_TO_MAP_VALUE: 14845 case PTR_TO_MAP_KEY: 14846 case PTR_TO_STACK: 14847 case PTR_TO_PACKET_META: 14848 case PTR_TO_PACKET: 14849 case PTR_TO_TP_BUFFER: 14850 case PTR_TO_BTF_ID: 14851 case PTR_TO_MEM: 14852 case PTR_TO_BUF: 14853 case PTR_TO_FUNC: 14854 case CONST_PTR_TO_DYNPTR: 14855 break; 14856 case PTR_TO_FLOW_KEYS: 14857 if (known) 14858 break; 14859 fallthrough; 14860 case CONST_PTR_TO_MAP: 14861 /* smin_val represents the known value */ 14862 if (known && smin_val == 0 && opcode == BPF_ADD) 14863 break; 14864 fallthrough; 14865 default: 14866 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14867 dst, reg_type_str(env, ptr_reg->type)); 14868 return -EACCES; 14869 } 14870 14871 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14872 * The id may be overwritten later if we create a new variable offset. 14873 */ 14874 dst_reg->type = ptr_reg->type; 14875 dst_reg->id = ptr_reg->id; 14876 14877 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14878 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14879 return -EINVAL; 14880 14881 /* pointer types do not carry 32-bit bounds at the moment. */ 14882 __mark_reg32_unbounded(dst_reg); 14883 14884 if (sanitize_needed(opcode)) { 14885 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14886 &info, false); 14887 if (ret < 0) 14888 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14889 } 14890 14891 switch (opcode) { 14892 case BPF_ADD: 14893 /* We can take a fixed offset as long as it doesn't overflow 14894 * the s32 'off' field 14895 */ 14896 if (known && (ptr_reg->off + smin_val == 14897 (s64)(s32)(ptr_reg->off + smin_val))) { 14898 /* pointer += K. Accumulate it into fixed offset */ 14899 dst_reg->smin_value = smin_ptr; 14900 dst_reg->smax_value = smax_ptr; 14901 dst_reg->umin_value = umin_ptr; 14902 dst_reg->umax_value = umax_ptr; 14903 dst_reg->var_off = ptr_reg->var_off; 14904 dst_reg->off = ptr_reg->off + smin_val; 14905 dst_reg->raw = ptr_reg->raw; 14906 break; 14907 } 14908 /* A new variable offset is created. Note that off_reg->off 14909 * == 0, since it's a scalar. 14910 * dst_reg gets the pointer type and since some positive 14911 * integer value was added to the pointer, give it a new 'id' 14912 * if it's a PTR_TO_PACKET. 14913 * this creates a new 'base' pointer, off_reg (variable) gets 14914 * added into the variable offset, and we copy the fixed offset 14915 * from ptr_reg. 14916 */ 14917 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14918 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14919 dst_reg->smin_value = S64_MIN; 14920 dst_reg->smax_value = S64_MAX; 14921 } 14922 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14923 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14924 dst_reg->umin_value = 0; 14925 dst_reg->umax_value = U64_MAX; 14926 } 14927 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14928 dst_reg->off = ptr_reg->off; 14929 dst_reg->raw = ptr_reg->raw; 14930 if (reg_is_pkt_pointer(ptr_reg)) { 14931 dst_reg->id = ++env->id_gen; 14932 /* something was added to pkt_ptr, set range to zero */ 14933 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14934 } 14935 break; 14936 case BPF_SUB: 14937 if (dst_reg == off_reg) { 14938 /* scalar -= pointer. Creates an unknown scalar */ 14939 verbose(env, "R%d tried to subtract pointer from scalar\n", 14940 dst); 14941 return -EACCES; 14942 } 14943 /* We don't allow subtraction from FP, because (according to 14944 * test_verifier.c test "invalid fp arithmetic", JITs might not 14945 * be able to deal with it. 14946 */ 14947 if (ptr_reg->type == PTR_TO_STACK) { 14948 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14949 dst); 14950 return -EACCES; 14951 } 14952 if (known && (ptr_reg->off - smin_val == 14953 (s64)(s32)(ptr_reg->off - smin_val))) { 14954 /* pointer -= K. Subtract it from fixed offset */ 14955 dst_reg->smin_value = smin_ptr; 14956 dst_reg->smax_value = smax_ptr; 14957 dst_reg->umin_value = umin_ptr; 14958 dst_reg->umax_value = umax_ptr; 14959 dst_reg->var_off = ptr_reg->var_off; 14960 dst_reg->id = ptr_reg->id; 14961 dst_reg->off = ptr_reg->off - smin_val; 14962 dst_reg->raw = ptr_reg->raw; 14963 break; 14964 } 14965 /* A new variable offset is created. If the subtrahend is known 14966 * nonnegative, then any reg->range we had before is still good. 14967 */ 14968 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14969 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14970 /* Overflow possible, we know nothing */ 14971 dst_reg->smin_value = S64_MIN; 14972 dst_reg->smax_value = S64_MAX; 14973 } 14974 if (umin_ptr < umax_val) { 14975 /* Overflow possible, we know nothing */ 14976 dst_reg->umin_value = 0; 14977 dst_reg->umax_value = U64_MAX; 14978 } else { 14979 /* Cannot overflow (as long as bounds are consistent) */ 14980 dst_reg->umin_value = umin_ptr - umax_val; 14981 dst_reg->umax_value = umax_ptr - umin_val; 14982 } 14983 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14984 dst_reg->off = ptr_reg->off; 14985 dst_reg->raw = ptr_reg->raw; 14986 if (reg_is_pkt_pointer(ptr_reg)) { 14987 dst_reg->id = ++env->id_gen; 14988 /* something was added to pkt_ptr, set range to zero */ 14989 if (smin_val < 0) 14990 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14991 } 14992 break; 14993 case BPF_AND: 14994 case BPF_OR: 14995 case BPF_XOR: 14996 /* bitwise ops on pointers are troublesome, prohibit. */ 14997 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14998 dst, bpf_alu_string[opcode >> 4]); 14999 return -EACCES; 15000 default: 15001 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 15002 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 15003 dst, bpf_alu_string[opcode >> 4]); 15004 return -EACCES; 15005 } 15006 15007 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 15008 return -EINVAL; 15009 reg_bounds_sync(dst_reg); 15010 bounds_ret = sanitize_check_bounds(env, insn, dst_reg); 15011 if (bounds_ret == -EACCES) 15012 return bounds_ret; 15013 if (sanitize_needed(opcode)) { 15014 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 15015 &info, true); 15016 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) 15017 && !env->cur_state->speculative 15018 && bounds_ret 15019 && !ret, 15020 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { 15021 return -EFAULT; 15022 } 15023 if (ret < 0) 15024 return sanitize_err(env, insn, ret, off_reg, dst_reg); 15025 } 15026 15027 return 0; 15028 } 15029 15030 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 15031 struct bpf_reg_state *src_reg) 15032 { 15033 s32 *dst_smin = &dst_reg->s32_min_value; 15034 s32 *dst_smax = &dst_reg->s32_max_value; 15035 u32 *dst_umin = &dst_reg->u32_min_value; 15036 u32 *dst_umax = &dst_reg->u32_max_value; 15037 u32 umin_val = src_reg->u32_min_value; 15038 u32 umax_val = src_reg->u32_max_value; 15039 bool min_overflow, max_overflow; 15040 15041 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 15042 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 15043 *dst_smin = S32_MIN; 15044 *dst_smax = S32_MAX; 15045 } 15046 15047 /* If either all additions overflow or no additions overflow, then 15048 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 15049 * dst_umax + src_umax. Otherwise (some additions overflow), set 15050 * the output bounds to unbounded. 15051 */ 15052 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 15053 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 15054 15055 if (!min_overflow && max_overflow) { 15056 *dst_umin = 0; 15057 *dst_umax = U32_MAX; 15058 } 15059 } 15060 15061 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 15062 struct bpf_reg_state *src_reg) 15063 { 15064 s64 *dst_smin = &dst_reg->smin_value; 15065 s64 *dst_smax = &dst_reg->smax_value; 15066 u64 *dst_umin = &dst_reg->umin_value; 15067 u64 *dst_umax = &dst_reg->umax_value; 15068 u64 umin_val = src_reg->umin_value; 15069 u64 umax_val = src_reg->umax_value; 15070 bool min_overflow, max_overflow; 15071 15072 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 15073 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 15074 *dst_smin = S64_MIN; 15075 *dst_smax = S64_MAX; 15076 } 15077 15078 /* If either all additions overflow or no additions overflow, then 15079 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 15080 * dst_umax + src_umax. Otherwise (some additions overflow), set 15081 * the output bounds to unbounded. 15082 */ 15083 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 15084 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 15085 15086 if (!min_overflow && max_overflow) { 15087 *dst_umin = 0; 15088 *dst_umax = U64_MAX; 15089 } 15090 } 15091 15092 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 15093 struct bpf_reg_state *src_reg) 15094 { 15095 s32 *dst_smin = &dst_reg->s32_min_value; 15096 s32 *dst_smax = &dst_reg->s32_max_value; 15097 u32 *dst_umin = &dst_reg->u32_min_value; 15098 u32 *dst_umax = &dst_reg->u32_max_value; 15099 u32 umin_val = src_reg->u32_min_value; 15100 u32 umax_val = src_reg->u32_max_value; 15101 bool min_underflow, max_underflow; 15102 15103 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 15104 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 15105 /* Overflow possible, we know nothing */ 15106 *dst_smin = S32_MIN; 15107 *dst_smax = S32_MAX; 15108 } 15109 15110 /* If either all subtractions underflow or no subtractions 15111 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 15112 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 15113 * underflow), set the output bounds to unbounded. 15114 */ 15115 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 15116 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 15117 15118 if (min_underflow && !max_underflow) { 15119 *dst_umin = 0; 15120 *dst_umax = U32_MAX; 15121 } 15122 } 15123 15124 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 15125 struct bpf_reg_state *src_reg) 15126 { 15127 s64 *dst_smin = &dst_reg->smin_value; 15128 s64 *dst_smax = &dst_reg->smax_value; 15129 u64 *dst_umin = &dst_reg->umin_value; 15130 u64 *dst_umax = &dst_reg->umax_value; 15131 u64 umin_val = src_reg->umin_value; 15132 u64 umax_val = src_reg->umax_value; 15133 bool min_underflow, max_underflow; 15134 15135 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 15136 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 15137 /* Overflow possible, we know nothing */ 15138 *dst_smin = S64_MIN; 15139 *dst_smax = S64_MAX; 15140 } 15141 15142 /* If either all subtractions underflow or no subtractions 15143 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 15144 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 15145 * underflow), set the output bounds to unbounded. 15146 */ 15147 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 15148 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 15149 15150 if (min_underflow && !max_underflow) { 15151 *dst_umin = 0; 15152 *dst_umax = U64_MAX; 15153 } 15154 } 15155 15156 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 15157 struct bpf_reg_state *src_reg) 15158 { 15159 s32 *dst_smin = &dst_reg->s32_min_value; 15160 s32 *dst_smax = &dst_reg->s32_max_value; 15161 u32 *dst_umin = &dst_reg->u32_min_value; 15162 u32 *dst_umax = &dst_reg->u32_max_value; 15163 s32 tmp_prod[4]; 15164 15165 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 15166 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 15167 /* Overflow possible, we know nothing */ 15168 *dst_umin = 0; 15169 *dst_umax = U32_MAX; 15170 } 15171 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 15172 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 15173 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 15174 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 15175 /* Overflow possible, we know nothing */ 15176 *dst_smin = S32_MIN; 15177 *dst_smax = S32_MAX; 15178 } else { 15179 *dst_smin = min_array(tmp_prod, 4); 15180 *dst_smax = max_array(tmp_prod, 4); 15181 } 15182 } 15183 15184 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 15185 struct bpf_reg_state *src_reg) 15186 { 15187 s64 *dst_smin = &dst_reg->smin_value; 15188 s64 *dst_smax = &dst_reg->smax_value; 15189 u64 *dst_umin = &dst_reg->umin_value; 15190 u64 *dst_umax = &dst_reg->umax_value; 15191 s64 tmp_prod[4]; 15192 15193 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 15194 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 15195 /* Overflow possible, we know nothing */ 15196 *dst_umin = 0; 15197 *dst_umax = U64_MAX; 15198 } 15199 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 15200 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 15201 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 15202 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 15203 /* Overflow possible, we know nothing */ 15204 *dst_smin = S64_MIN; 15205 *dst_smax = S64_MAX; 15206 } else { 15207 *dst_smin = min_array(tmp_prod, 4); 15208 *dst_smax = max_array(tmp_prod, 4); 15209 } 15210 } 15211 15212 static void scalar32_min_max_udiv(struct bpf_reg_state *dst_reg, 15213 struct bpf_reg_state *src_reg) 15214 { 15215 u32 *dst_umin = &dst_reg->u32_min_value; 15216 u32 *dst_umax = &dst_reg->u32_max_value; 15217 u32 src_val = src_reg->u32_min_value; /* non-zero, const divisor */ 15218 15219 *dst_umin = *dst_umin / src_val; 15220 *dst_umax = *dst_umax / src_val; 15221 15222 /* Reset other ranges/tnum to unbounded/unknown. */ 15223 dst_reg->s32_min_value = S32_MIN; 15224 dst_reg->s32_max_value = S32_MAX; 15225 reset_reg64_and_tnum(dst_reg); 15226 } 15227 15228 static void scalar_min_max_udiv(struct bpf_reg_state *dst_reg, 15229 struct bpf_reg_state *src_reg) 15230 { 15231 u64 *dst_umin = &dst_reg->umin_value; 15232 u64 *dst_umax = &dst_reg->umax_value; 15233 u64 src_val = src_reg->umin_value; /* non-zero, const divisor */ 15234 15235 *dst_umin = div64_u64(*dst_umin, src_val); 15236 *dst_umax = div64_u64(*dst_umax, src_val); 15237 15238 /* Reset other ranges/tnum to unbounded/unknown. */ 15239 dst_reg->smin_value = S64_MIN; 15240 dst_reg->smax_value = S64_MAX; 15241 reset_reg32_and_tnum(dst_reg); 15242 } 15243 15244 static void scalar32_min_max_sdiv(struct bpf_reg_state *dst_reg, 15245 struct bpf_reg_state *src_reg) 15246 { 15247 s32 *dst_smin = &dst_reg->s32_min_value; 15248 s32 *dst_smax = &dst_reg->s32_max_value; 15249 s32 src_val = src_reg->s32_min_value; /* non-zero, const divisor */ 15250 s32 res1, res2; 15251 15252 /* BPF div specification: S32_MIN / -1 = S32_MIN */ 15253 if (*dst_smin == S32_MIN && src_val == -1) { 15254 /* 15255 * If the dividend range contains more than just S32_MIN, 15256 * we cannot precisely track the result, so it becomes unbounded. 15257 * e.g., [S32_MIN, S32_MIN+10]/(-1), 15258 * = {S32_MIN} U [-(S32_MIN+10), -(S32_MIN+1)] 15259 * = {S32_MIN} U [S32_MAX-9, S32_MAX] = [S32_MIN, S32_MAX] 15260 * Otherwise (if dividend is exactly S32_MIN), result remains S32_MIN. 15261 */ 15262 if (*dst_smax != S32_MIN) { 15263 *dst_smin = S32_MIN; 15264 *dst_smax = S32_MAX; 15265 } 15266 goto reset; 15267 } 15268 15269 res1 = *dst_smin / src_val; 15270 res2 = *dst_smax / src_val; 15271 *dst_smin = min(res1, res2); 15272 *dst_smax = max(res1, res2); 15273 15274 reset: 15275 /* Reset other ranges/tnum to unbounded/unknown. */ 15276 dst_reg->u32_min_value = 0; 15277 dst_reg->u32_max_value = U32_MAX; 15278 reset_reg64_and_tnum(dst_reg); 15279 } 15280 15281 static void scalar_min_max_sdiv(struct bpf_reg_state *dst_reg, 15282 struct bpf_reg_state *src_reg) 15283 { 15284 s64 *dst_smin = &dst_reg->smin_value; 15285 s64 *dst_smax = &dst_reg->smax_value; 15286 s64 src_val = src_reg->smin_value; /* non-zero, const divisor */ 15287 s64 res1, res2; 15288 15289 /* BPF div specification: S64_MIN / -1 = S64_MIN */ 15290 if (*dst_smin == S64_MIN && src_val == -1) { 15291 /* 15292 * If the dividend range contains more than just S64_MIN, 15293 * we cannot precisely track the result, so it becomes unbounded. 15294 * e.g., [S64_MIN, S64_MIN+10]/(-1), 15295 * = {S64_MIN} U [-(S64_MIN+10), -(S64_MIN+1)] 15296 * = {S64_MIN} U [S64_MAX-9, S64_MAX] = [S64_MIN, S64_MAX] 15297 * Otherwise (if dividend is exactly S64_MIN), result remains S64_MIN. 15298 */ 15299 if (*dst_smax != S64_MIN) { 15300 *dst_smin = S64_MIN; 15301 *dst_smax = S64_MAX; 15302 } 15303 goto reset; 15304 } 15305 15306 res1 = div64_s64(*dst_smin, src_val); 15307 res2 = div64_s64(*dst_smax, src_val); 15308 *dst_smin = min(res1, res2); 15309 *dst_smax = max(res1, res2); 15310 15311 reset: 15312 /* Reset other ranges/tnum to unbounded/unknown. */ 15313 dst_reg->umin_value = 0; 15314 dst_reg->umax_value = U64_MAX; 15315 reset_reg32_and_tnum(dst_reg); 15316 } 15317 15318 static void scalar32_min_max_umod(struct bpf_reg_state *dst_reg, 15319 struct bpf_reg_state *src_reg) 15320 { 15321 u32 *dst_umin = &dst_reg->u32_min_value; 15322 u32 *dst_umax = &dst_reg->u32_max_value; 15323 u32 src_val = src_reg->u32_min_value; /* non-zero, const divisor */ 15324 u32 res_max = src_val - 1; 15325 15326 /* 15327 * If dst_umax <= res_max, the result remains unchanged. 15328 * e.g., [2, 5] % 10 = [2, 5]. 15329 */ 15330 if (*dst_umax <= res_max) 15331 return; 15332 15333 *dst_umin = 0; 15334 *dst_umax = min(*dst_umax, res_max); 15335 15336 /* Reset other ranges/tnum to unbounded/unknown. */ 15337 dst_reg->s32_min_value = S32_MIN; 15338 dst_reg->s32_max_value = S32_MAX; 15339 reset_reg64_and_tnum(dst_reg); 15340 } 15341 15342 static void scalar_min_max_umod(struct bpf_reg_state *dst_reg, 15343 struct bpf_reg_state *src_reg) 15344 { 15345 u64 *dst_umin = &dst_reg->umin_value; 15346 u64 *dst_umax = &dst_reg->umax_value; 15347 u64 src_val = src_reg->umin_value; /* non-zero, const divisor */ 15348 u64 res_max = src_val - 1; 15349 15350 /* 15351 * If dst_umax <= res_max, the result remains unchanged. 15352 * e.g., [2, 5] % 10 = [2, 5]. 15353 */ 15354 if (*dst_umax <= res_max) 15355 return; 15356 15357 *dst_umin = 0; 15358 *dst_umax = min(*dst_umax, res_max); 15359 15360 /* Reset other ranges/tnum to unbounded/unknown. */ 15361 dst_reg->smin_value = S64_MIN; 15362 dst_reg->smax_value = S64_MAX; 15363 reset_reg32_and_tnum(dst_reg); 15364 } 15365 15366 static void scalar32_min_max_smod(struct bpf_reg_state *dst_reg, 15367 struct bpf_reg_state *src_reg) 15368 { 15369 s32 *dst_smin = &dst_reg->s32_min_value; 15370 s32 *dst_smax = &dst_reg->s32_max_value; 15371 s32 src_val = src_reg->s32_min_value; /* non-zero, const divisor */ 15372 15373 /* 15374 * Safe absolute value calculation: 15375 * If src_val == S32_MIN (-2147483648), src_abs becomes 2147483648. 15376 * Here use unsigned integer to avoid overflow. 15377 */ 15378 u32 src_abs = (src_val > 0) ? (u32)src_val : -(u32)src_val; 15379 15380 /* 15381 * Calculate the maximum possible absolute value of the result. 15382 * Even if src_abs is 2147483648 (S32_MIN), subtracting 1 gives 15383 * 2147483647 (S32_MAX), which fits perfectly in s32. 15384 */ 15385 s32 res_max_abs = src_abs - 1; 15386 15387 /* 15388 * If the dividend is already within the result range, 15389 * the result remains unchanged. e.g., [-2, 5] % 10 = [-2, 5]. 15390 */ 15391 if (*dst_smin >= -res_max_abs && *dst_smax <= res_max_abs) 15392 return; 15393 15394 /* General case: result has the same sign as the dividend. */ 15395 if (*dst_smin >= 0) { 15396 *dst_smin = 0; 15397 *dst_smax = min(*dst_smax, res_max_abs); 15398 } else if (*dst_smax <= 0) { 15399 *dst_smax = 0; 15400 *dst_smin = max(*dst_smin, -res_max_abs); 15401 } else { 15402 *dst_smin = -res_max_abs; 15403 *dst_smax = res_max_abs; 15404 } 15405 15406 /* Reset other ranges/tnum to unbounded/unknown. */ 15407 dst_reg->u32_min_value = 0; 15408 dst_reg->u32_max_value = U32_MAX; 15409 reset_reg64_and_tnum(dst_reg); 15410 } 15411 15412 static void scalar_min_max_smod(struct bpf_reg_state *dst_reg, 15413 struct bpf_reg_state *src_reg) 15414 { 15415 s64 *dst_smin = &dst_reg->smin_value; 15416 s64 *dst_smax = &dst_reg->smax_value; 15417 s64 src_val = src_reg->smin_value; /* non-zero, const divisor */ 15418 15419 /* 15420 * Safe absolute value calculation: 15421 * If src_val == S64_MIN (-2^63), src_abs becomes 2^63. 15422 * Here use unsigned integer to avoid overflow. 15423 */ 15424 u64 src_abs = (src_val > 0) ? (u64)src_val : -(u64)src_val; 15425 15426 /* 15427 * Calculate the maximum possible absolute value of the result. 15428 * Even if src_abs is 2^63 (S64_MIN), subtracting 1 gives 15429 * 2^63 - 1 (S64_MAX), which fits perfectly in s64. 15430 */ 15431 s64 res_max_abs = src_abs - 1; 15432 15433 /* 15434 * If the dividend is already within the result range, 15435 * the result remains unchanged. e.g., [-2, 5] % 10 = [-2, 5]. 15436 */ 15437 if (*dst_smin >= -res_max_abs && *dst_smax <= res_max_abs) 15438 return; 15439 15440 /* General case: result has the same sign as the dividend. */ 15441 if (*dst_smin >= 0) { 15442 *dst_smin = 0; 15443 *dst_smax = min(*dst_smax, res_max_abs); 15444 } else if (*dst_smax <= 0) { 15445 *dst_smax = 0; 15446 *dst_smin = max(*dst_smin, -res_max_abs); 15447 } else { 15448 *dst_smin = -res_max_abs; 15449 *dst_smax = res_max_abs; 15450 } 15451 15452 /* Reset other ranges/tnum to unbounded/unknown. */ 15453 dst_reg->umin_value = 0; 15454 dst_reg->umax_value = U64_MAX; 15455 reset_reg32_and_tnum(dst_reg); 15456 } 15457 15458 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 15459 struct bpf_reg_state *src_reg) 15460 { 15461 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15462 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15463 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15464 u32 umax_val = src_reg->u32_max_value; 15465 15466 if (src_known && dst_known) { 15467 __mark_reg32_known(dst_reg, var32_off.value); 15468 return; 15469 } 15470 15471 /* We get our minimum from the var_off, since that's inherently 15472 * bitwise. Our maximum is the minimum of the operands' maxima. 15473 */ 15474 dst_reg->u32_min_value = var32_off.value; 15475 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 15476 15477 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15478 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15479 */ 15480 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15481 dst_reg->s32_min_value = dst_reg->u32_min_value; 15482 dst_reg->s32_max_value = dst_reg->u32_max_value; 15483 } else { 15484 dst_reg->s32_min_value = S32_MIN; 15485 dst_reg->s32_max_value = S32_MAX; 15486 } 15487 } 15488 15489 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 15490 struct bpf_reg_state *src_reg) 15491 { 15492 bool src_known = tnum_is_const(src_reg->var_off); 15493 bool dst_known = tnum_is_const(dst_reg->var_off); 15494 u64 umax_val = src_reg->umax_value; 15495 15496 if (src_known && dst_known) { 15497 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15498 return; 15499 } 15500 15501 /* We get our minimum from the var_off, since that's inherently 15502 * bitwise. Our maximum is the minimum of the operands' maxima. 15503 */ 15504 dst_reg->umin_value = dst_reg->var_off.value; 15505 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 15506 15507 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15508 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15509 */ 15510 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15511 dst_reg->smin_value = dst_reg->umin_value; 15512 dst_reg->smax_value = dst_reg->umax_value; 15513 } else { 15514 dst_reg->smin_value = S64_MIN; 15515 dst_reg->smax_value = S64_MAX; 15516 } 15517 /* We may learn something more from the var_off */ 15518 __update_reg_bounds(dst_reg); 15519 } 15520 15521 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 15522 struct bpf_reg_state *src_reg) 15523 { 15524 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15525 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15526 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15527 u32 umin_val = src_reg->u32_min_value; 15528 15529 if (src_known && dst_known) { 15530 __mark_reg32_known(dst_reg, var32_off.value); 15531 return; 15532 } 15533 15534 /* We get our maximum from the var_off, and our minimum is the 15535 * maximum of the operands' minima 15536 */ 15537 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 15538 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15539 15540 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15541 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15542 */ 15543 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15544 dst_reg->s32_min_value = dst_reg->u32_min_value; 15545 dst_reg->s32_max_value = dst_reg->u32_max_value; 15546 } else { 15547 dst_reg->s32_min_value = S32_MIN; 15548 dst_reg->s32_max_value = S32_MAX; 15549 } 15550 } 15551 15552 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 15553 struct bpf_reg_state *src_reg) 15554 { 15555 bool src_known = tnum_is_const(src_reg->var_off); 15556 bool dst_known = tnum_is_const(dst_reg->var_off); 15557 u64 umin_val = src_reg->umin_value; 15558 15559 if (src_known && dst_known) { 15560 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15561 return; 15562 } 15563 15564 /* We get our maximum from the var_off, and our minimum is the 15565 * maximum of the operands' minima 15566 */ 15567 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 15568 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15569 15570 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15571 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15572 */ 15573 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15574 dst_reg->smin_value = dst_reg->umin_value; 15575 dst_reg->smax_value = dst_reg->umax_value; 15576 } else { 15577 dst_reg->smin_value = S64_MIN; 15578 dst_reg->smax_value = S64_MAX; 15579 } 15580 /* We may learn something more from the var_off */ 15581 __update_reg_bounds(dst_reg); 15582 } 15583 15584 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 15585 struct bpf_reg_state *src_reg) 15586 { 15587 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15588 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15589 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15590 15591 if (src_known && dst_known) { 15592 __mark_reg32_known(dst_reg, var32_off.value); 15593 return; 15594 } 15595 15596 /* We get both minimum and maximum from the var32_off. */ 15597 dst_reg->u32_min_value = var32_off.value; 15598 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15599 15600 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15601 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15602 */ 15603 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15604 dst_reg->s32_min_value = dst_reg->u32_min_value; 15605 dst_reg->s32_max_value = dst_reg->u32_max_value; 15606 } else { 15607 dst_reg->s32_min_value = S32_MIN; 15608 dst_reg->s32_max_value = S32_MAX; 15609 } 15610 } 15611 15612 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 15613 struct bpf_reg_state *src_reg) 15614 { 15615 bool src_known = tnum_is_const(src_reg->var_off); 15616 bool dst_known = tnum_is_const(dst_reg->var_off); 15617 15618 if (src_known && dst_known) { 15619 /* dst_reg->var_off.value has been updated earlier */ 15620 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15621 return; 15622 } 15623 15624 /* We get both minimum and maximum from the var_off. */ 15625 dst_reg->umin_value = dst_reg->var_off.value; 15626 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15627 15628 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15629 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15630 */ 15631 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15632 dst_reg->smin_value = dst_reg->umin_value; 15633 dst_reg->smax_value = dst_reg->umax_value; 15634 } else { 15635 dst_reg->smin_value = S64_MIN; 15636 dst_reg->smax_value = S64_MAX; 15637 } 15638 15639 __update_reg_bounds(dst_reg); 15640 } 15641 15642 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15643 u64 umin_val, u64 umax_val) 15644 { 15645 /* We lose all sign bit information (except what we can pick 15646 * up from var_off) 15647 */ 15648 dst_reg->s32_min_value = S32_MIN; 15649 dst_reg->s32_max_value = S32_MAX; 15650 /* If we might shift our top bit out, then we know nothing */ 15651 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 15652 dst_reg->u32_min_value = 0; 15653 dst_reg->u32_max_value = U32_MAX; 15654 } else { 15655 dst_reg->u32_min_value <<= umin_val; 15656 dst_reg->u32_max_value <<= umax_val; 15657 } 15658 } 15659 15660 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15661 struct bpf_reg_state *src_reg) 15662 { 15663 u32 umax_val = src_reg->u32_max_value; 15664 u32 umin_val = src_reg->u32_min_value; 15665 /* u32 alu operation will zext upper bits */ 15666 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15667 15668 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15669 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 15670 /* Not required but being careful mark reg64 bounds as unknown so 15671 * that we are forced to pick them up from tnum and zext later and 15672 * if some path skips this step we are still safe. 15673 */ 15674 __mark_reg64_unbounded(dst_reg); 15675 __update_reg32_bounds(dst_reg); 15676 } 15677 15678 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 15679 u64 umin_val, u64 umax_val) 15680 { 15681 /* Special case <<32 because it is a common compiler pattern to sign 15682 * extend subreg by doing <<32 s>>32. smin/smax assignments are correct 15683 * because s32 bounds don't flip sign when shifting to the left by 15684 * 32bits. 15685 */ 15686 if (umin_val == 32 && umax_val == 32) { 15687 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 15688 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 15689 } else { 15690 dst_reg->smax_value = S64_MAX; 15691 dst_reg->smin_value = S64_MIN; 15692 } 15693 15694 /* If we might shift our top bit out, then we know nothing */ 15695 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 15696 dst_reg->umin_value = 0; 15697 dst_reg->umax_value = U64_MAX; 15698 } else { 15699 dst_reg->umin_value <<= umin_val; 15700 dst_reg->umax_value <<= umax_val; 15701 } 15702 } 15703 15704 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 15705 struct bpf_reg_state *src_reg) 15706 { 15707 u64 umax_val = src_reg->umax_value; 15708 u64 umin_val = src_reg->umin_value; 15709 15710 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 15711 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 15712 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15713 15714 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 15715 /* We may learn something more from the var_off */ 15716 __update_reg_bounds(dst_reg); 15717 } 15718 15719 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 15720 struct bpf_reg_state *src_reg) 15721 { 15722 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15723 u32 umax_val = src_reg->u32_max_value; 15724 u32 umin_val = src_reg->u32_min_value; 15725 15726 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15727 * be negative, then either: 15728 * 1) src_reg might be zero, so the sign bit of the result is 15729 * unknown, so we lose our signed bounds 15730 * 2) it's known negative, thus the unsigned bounds capture the 15731 * signed bounds 15732 * 3) the signed bounds cross zero, so they tell us nothing 15733 * about the result 15734 * If the value in dst_reg is known nonnegative, then again the 15735 * unsigned bounds capture the signed bounds. 15736 * Thus, in all cases it suffices to blow away our signed bounds 15737 * and rely on inferring new ones from the unsigned bounds and 15738 * var_off of the result. 15739 */ 15740 dst_reg->s32_min_value = S32_MIN; 15741 dst_reg->s32_max_value = S32_MAX; 15742 15743 dst_reg->var_off = tnum_rshift(subreg, umin_val); 15744 dst_reg->u32_min_value >>= umax_val; 15745 dst_reg->u32_max_value >>= umin_val; 15746 15747 __mark_reg64_unbounded(dst_reg); 15748 __update_reg32_bounds(dst_reg); 15749 } 15750 15751 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 15752 struct bpf_reg_state *src_reg) 15753 { 15754 u64 umax_val = src_reg->umax_value; 15755 u64 umin_val = src_reg->umin_value; 15756 15757 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15758 * be negative, then either: 15759 * 1) src_reg might be zero, so the sign bit of the result is 15760 * unknown, so we lose our signed bounds 15761 * 2) it's known negative, thus the unsigned bounds capture the 15762 * signed bounds 15763 * 3) the signed bounds cross zero, so they tell us nothing 15764 * about the result 15765 * If the value in dst_reg is known nonnegative, then again the 15766 * unsigned bounds capture the signed bounds. 15767 * Thus, in all cases it suffices to blow away our signed bounds 15768 * and rely on inferring new ones from the unsigned bounds and 15769 * var_off of the result. 15770 */ 15771 dst_reg->smin_value = S64_MIN; 15772 dst_reg->smax_value = S64_MAX; 15773 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 15774 dst_reg->umin_value >>= umax_val; 15775 dst_reg->umax_value >>= umin_val; 15776 15777 /* Its not easy to operate on alu32 bounds here because it depends 15778 * on bits being shifted in. Take easy way out and mark unbounded 15779 * so we can recalculate later from tnum. 15780 */ 15781 __mark_reg32_unbounded(dst_reg); 15782 __update_reg_bounds(dst_reg); 15783 } 15784 15785 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15786 struct bpf_reg_state *src_reg) 15787 { 15788 u64 umin_val = src_reg->u32_min_value; 15789 15790 /* Upon reaching here, src_known is true and 15791 * umax_val is equal to umin_val. 15792 */ 15793 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15794 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15795 15796 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15797 15798 /* blow away the dst_reg umin_value/umax_value and rely on 15799 * dst_reg var_off to refine the result. 15800 */ 15801 dst_reg->u32_min_value = 0; 15802 dst_reg->u32_max_value = U32_MAX; 15803 15804 __mark_reg64_unbounded(dst_reg); 15805 __update_reg32_bounds(dst_reg); 15806 } 15807 15808 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15809 struct bpf_reg_state *src_reg) 15810 { 15811 u64 umin_val = src_reg->umin_value; 15812 15813 /* Upon reaching here, src_known is true and umax_val is equal 15814 * to umin_val. 15815 */ 15816 dst_reg->smin_value >>= umin_val; 15817 dst_reg->smax_value >>= umin_val; 15818 15819 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15820 15821 /* blow away the dst_reg umin_value/umax_value and rely on 15822 * dst_reg var_off to refine the result. 15823 */ 15824 dst_reg->umin_value = 0; 15825 dst_reg->umax_value = U64_MAX; 15826 15827 /* Its not easy to operate on alu32 bounds here because it depends 15828 * on bits being shifted in from upper 32-bits. Take easy way out 15829 * and mark unbounded so we can recalculate later from tnum. 15830 */ 15831 __mark_reg32_unbounded(dst_reg); 15832 __update_reg_bounds(dst_reg); 15833 } 15834 15835 static void scalar_byte_swap(struct bpf_reg_state *dst_reg, struct bpf_insn *insn) 15836 { 15837 /* 15838 * Byte swap operation - update var_off using tnum_bswap. 15839 * Three cases: 15840 * 1. bswap(16|32|64): opcode=0xd7 (BPF_END | BPF_ALU64 | BPF_TO_LE) 15841 * unconditional swap 15842 * 2. to_le(16|32|64): opcode=0xd4 (BPF_END | BPF_ALU | BPF_TO_LE) 15843 * swap on big-endian, truncation or no-op on little-endian 15844 * 3. to_be(16|32|64): opcode=0xdc (BPF_END | BPF_ALU | BPF_TO_BE) 15845 * swap on little-endian, truncation or no-op on big-endian 15846 */ 15847 15848 bool alu64 = BPF_CLASS(insn->code) == BPF_ALU64; 15849 bool to_le = BPF_SRC(insn->code) == BPF_TO_LE; 15850 bool is_big_endian; 15851 #ifdef CONFIG_CPU_BIG_ENDIAN 15852 is_big_endian = true; 15853 #else 15854 is_big_endian = false; 15855 #endif 15856 /* Apply bswap if alu64 or switch between big-endian and little-endian machines */ 15857 bool need_bswap = alu64 || (to_le == is_big_endian); 15858 15859 if (need_bswap) { 15860 if (insn->imm == 16) 15861 dst_reg->var_off = tnum_bswap16(dst_reg->var_off); 15862 else if (insn->imm == 32) 15863 dst_reg->var_off = tnum_bswap32(dst_reg->var_off); 15864 else if (insn->imm == 64) 15865 dst_reg->var_off = tnum_bswap64(dst_reg->var_off); 15866 /* 15867 * Byteswap scrambles the range, so we must reset bounds. 15868 * Bounds will be re-derived from the new tnum later. 15869 */ 15870 __mark_reg_unbounded(dst_reg); 15871 } 15872 /* For bswap16/32, truncate dst register to match the swapped size */ 15873 if (insn->imm == 16 || insn->imm == 32) 15874 coerce_reg_to_size(dst_reg, insn->imm / 8); 15875 } 15876 15877 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15878 const struct bpf_reg_state *src_reg) 15879 { 15880 bool src_is_const = false; 15881 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15882 15883 if (insn_bitness == 32) { 15884 if (tnum_subreg_is_const(src_reg->var_off) 15885 && src_reg->s32_min_value == src_reg->s32_max_value 15886 && src_reg->u32_min_value == src_reg->u32_max_value) 15887 src_is_const = true; 15888 } else { 15889 if (tnum_is_const(src_reg->var_off) 15890 && src_reg->smin_value == src_reg->smax_value 15891 && src_reg->umin_value == src_reg->umax_value) 15892 src_is_const = true; 15893 } 15894 15895 switch (BPF_OP(insn->code)) { 15896 case BPF_ADD: 15897 case BPF_SUB: 15898 case BPF_NEG: 15899 case BPF_AND: 15900 case BPF_XOR: 15901 case BPF_OR: 15902 case BPF_MUL: 15903 case BPF_END: 15904 return true; 15905 15906 /* 15907 * Division and modulo operators range is only safe to compute when the 15908 * divisor is a constant. 15909 */ 15910 case BPF_DIV: 15911 case BPF_MOD: 15912 return src_is_const; 15913 15914 /* Shift operators range is only computable if shift dimension operand 15915 * is a constant. Shifts greater than 31 or 63 are undefined. This 15916 * includes shifts by a negative number. 15917 */ 15918 case BPF_LSH: 15919 case BPF_RSH: 15920 case BPF_ARSH: 15921 return (src_is_const && src_reg->umax_value < insn_bitness); 15922 default: 15923 return false; 15924 } 15925 } 15926 15927 static int maybe_fork_scalars(struct bpf_verifier_env *env, struct bpf_insn *insn, 15928 struct bpf_reg_state *dst_reg) 15929 { 15930 struct bpf_verifier_state *branch; 15931 struct bpf_reg_state *regs; 15932 bool alu32; 15933 15934 if (dst_reg->smin_value == -1 && dst_reg->smax_value == 0) 15935 alu32 = false; 15936 else if (dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0) 15937 alu32 = true; 15938 else 15939 return 0; 15940 15941 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 15942 if (IS_ERR(branch)) 15943 return PTR_ERR(branch); 15944 15945 regs = branch->frame[branch->curframe]->regs; 15946 if (alu32) { 15947 __mark_reg32_known(®s[insn->dst_reg], 0); 15948 __mark_reg32_known(dst_reg, -1ull); 15949 } else { 15950 __mark_reg_known(®s[insn->dst_reg], 0); 15951 __mark_reg_known(dst_reg, -1ull); 15952 } 15953 return 0; 15954 } 15955 15956 /* WARNING: This function does calculations on 64-bit values, but the actual 15957 * execution may occur on 32-bit values. Therefore, things like bitshifts 15958 * need extra checks in the 32-bit case. 15959 */ 15960 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15961 struct bpf_insn *insn, 15962 struct bpf_reg_state *dst_reg, 15963 struct bpf_reg_state src_reg) 15964 { 15965 u8 opcode = BPF_OP(insn->code); 15966 s16 off = insn->off; 15967 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15968 int ret; 15969 15970 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15971 __mark_reg_unknown(env, dst_reg); 15972 return 0; 15973 } 15974 15975 if (sanitize_needed(opcode)) { 15976 ret = sanitize_val_alu(env, insn); 15977 if (ret < 0) 15978 return sanitize_err(env, insn, ret, NULL, NULL); 15979 } 15980 15981 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15982 * There are two classes of instructions: The first class we track both 15983 * alu32 and alu64 sign/unsigned bounds independently this provides the 15984 * greatest amount of precision when alu operations are mixed with jmp32 15985 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15986 * and BPF_OR. This is possible because these ops have fairly easy to 15987 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15988 * See alu32 verifier tests for examples. The second class of 15989 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15990 * with regards to tracking sign/unsigned bounds because the bits may 15991 * cross subreg boundaries in the alu64 case. When this happens we mark 15992 * the reg unbounded in the subreg bound space and use the resulting 15993 * tnum to calculate an approximation of the sign/unsigned bounds. 15994 */ 15995 switch (opcode) { 15996 case BPF_ADD: 15997 scalar32_min_max_add(dst_reg, &src_reg); 15998 scalar_min_max_add(dst_reg, &src_reg); 15999 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 16000 break; 16001 case BPF_SUB: 16002 scalar32_min_max_sub(dst_reg, &src_reg); 16003 scalar_min_max_sub(dst_reg, &src_reg); 16004 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 16005 break; 16006 case BPF_NEG: 16007 env->fake_reg[0] = *dst_reg; 16008 __mark_reg_known(dst_reg, 0); 16009 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); 16010 scalar_min_max_sub(dst_reg, &env->fake_reg[0]); 16011 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); 16012 break; 16013 case BPF_MUL: 16014 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 16015 scalar32_min_max_mul(dst_reg, &src_reg); 16016 scalar_min_max_mul(dst_reg, &src_reg); 16017 break; 16018 case BPF_DIV: 16019 /* BPF div specification: x / 0 = 0 */ 16020 if ((alu32 && src_reg.u32_min_value == 0) || (!alu32 && src_reg.umin_value == 0)) { 16021 ___mark_reg_known(dst_reg, 0); 16022 break; 16023 } 16024 if (alu32) 16025 if (off == 1) 16026 scalar32_min_max_sdiv(dst_reg, &src_reg); 16027 else 16028 scalar32_min_max_udiv(dst_reg, &src_reg); 16029 else 16030 if (off == 1) 16031 scalar_min_max_sdiv(dst_reg, &src_reg); 16032 else 16033 scalar_min_max_udiv(dst_reg, &src_reg); 16034 break; 16035 case BPF_MOD: 16036 /* BPF mod specification: x % 0 = x */ 16037 if ((alu32 && src_reg.u32_min_value == 0) || (!alu32 && src_reg.umin_value == 0)) 16038 break; 16039 if (alu32) 16040 if (off == 1) 16041 scalar32_min_max_smod(dst_reg, &src_reg); 16042 else 16043 scalar32_min_max_umod(dst_reg, &src_reg); 16044 else 16045 if (off == 1) 16046 scalar_min_max_smod(dst_reg, &src_reg); 16047 else 16048 scalar_min_max_umod(dst_reg, &src_reg); 16049 break; 16050 case BPF_AND: 16051 if (tnum_is_const(src_reg.var_off)) { 16052 ret = maybe_fork_scalars(env, insn, dst_reg); 16053 if (ret) 16054 return ret; 16055 } 16056 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 16057 scalar32_min_max_and(dst_reg, &src_reg); 16058 scalar_min_max_and(dst_reg, &src_reg); 16059 break; 16060 case BPF_OR: 16061 if (tnum_is_const(src_reg.var_off)) { 16062 ret = maybe_fork_scalars(env, insn, dst_reg); 16063 if (ret) 16064 return ret; 16065 } 16066 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 16067 scalar32_min_max_or(dst_reg, &src_reg); 16068 scalar_min_max_or(dst_reg, &src_reg); 16069 break; 16070 case BPF_XOR: 16071 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 16072 scalar32_min_max_xor(dst_reg, &src_reg); 16073 scalar_min_max_xor(dst_reg, &src_reg); 16074 break; 16075 case BPF_LSH: 16076 if (alu32) 16077 scalar32_min_max_lsh(dst_reg, &src_reg); 16078 else 16079 scalar_min_max_lsh(dst_reg, &src_reg); 16080 break; 16081 case BPF_RSH: 16082 if (alu32) 16083 scalar32_min_max_rsh(dst_reg, &src_reg); 16084 else 16085 scalar_min_max_rsh(dst_reg, &src_reg); 16086 break; 16087 case BPF_ARSH: 16088 if (alu32) 16089 scalar32_min_max_arsh(dst_reg, &src_reg); 16090 else 16091 scalar_min_max_arsh(dst_reg, &src_reg); 16092 break; 16093 case BPF_END: 16094 scalar_byte_swap(dst_reg, insn); 16095 break; 16096 default: 16097 break; 16098 } 16099 16100 /* 16101 * ALU32 ops are zero extended into 64bit register. 16102 * 16103 * BPF_END is already handled inside the helper (truncation), 16104 * so skip zext here to avoid unexpected zero extension. 16105 * e.g., le64: opcode=(BPF_END|BPF_ALU|BPF_TO_LE), imm=0x40 16106 * This is a 64bit byte swap operation with alu32==true, 16107 * but we should not zero extend the result. 16108 */ 16109 if (alu32 && opcode != BPF_END) 16110 zext_32_to_64(dst_reg); 16111 reg_bounds_sync(dst_reg); 16112 return 0; 16113 } 16114 16115 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 16116 * and var_off. 16117 */ 16118 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 16119 struct bpf_insn *insn) 16120 { 16121 struct bpf_verifier_state *vstate = env->cur_state; 16122 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16123 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 16124 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 16125 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 16126 u8 opcode = BPF_OP(insn->code); 16127 int err; 16128 16129 dst_reg = ®s[insn->dst_reg]; 16130 src_reg = NULL; 16131 16132 if (dst_reg->type == PTR_TO_ARENA) { 16133 struct bpf_insn_aux_data *aux = cur_aux(env); 16134 16135 if (BPF_CLASS(insn->code) == BPF_ALU64) 16136 /* 16137 * 32-bit operations zero upper bits automatically. 16138 * 64-bit operations need to be converted to 32. 16139 */ 16140 aux->needs_zext = true; 16141 16142 /* Any arithmetic operations are allowed on arena pointers */ 16143 return 0; 16144 } 16145 16146 if (dst_reg->type != SCALAR_VALUE) 16147 ptr_reg = dst_reg; 16148 16149 if (BPF_SRC(insn->code) == BPF_X) { 16150 src_reg = ®s[insn->src_reg]; 16151 if (src_reg->type != SCALAR_VALUE) { 16152 if (dst_reg->type != SCALAR_VALUE) { 16153 /* Combining two pointers by any ALU op yields 16154 * an arbitrary scalar. Disallow all math except 16155 * pointer subtraction 16156 */ 16157 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 16158 mark_reg_unknown(env, regs, insn->dst_reg); 16159 return 0; 16160 } 16161 verbose(env, "R%d pointer %s pointer prohibited\n", 16162 insn->dst_reg, 16163 bpf_alu_string[opcode >> 4]); 16164 return -EACCES; 16165 } else { 16166 /* scalar += pointer 16167 * This is legal, but we have to reverse our 16168 * src/dest handling in computing the range 16169 */ 16170 err = mark_chain_precision(env, insn->dst_reg); 16171 if (err) 16172 return err; 16173 return adjust_ptr_min_max_vals(env, insn, 16174 src_reg, dst_reg); 16175 } 16176 } else if (ptr_reg) { 16177 /* pointer += scalar */ 16178 err = mark_chain_precision(env, insn->src_reg); 16179 if (err) 16180 return err; 16181 return adjust_ptr_min_max_vals(env, insn, 16182 dst_reg, src_reg); 16183 } else if (dst_reg->precise) { 16184 /* if dst_reg is precise, src_reg should be precise as well */ 16185 err = mark_chain_precision(env, insn->src_reg); 16186 if (err) 16187 return err; 16188 } 16189 } else { 16190 /* Pretend the src is a reg with a known value, since we only 16191 * need to be able to read from this state. 16192 */ 16193 off_reg.type = SCALAR_VALUE; 16194 __mark_reg_known(&off_reg, insn->imm); 16195 src_reg = &off_reg; 16196 if (ptr_reg) /* pointer += K */ 16197 return adjust_ptr_min_max_vals(env, insn, 16198 ptr_reg, src_reg); 16199 } 16200 16201 /* Got here implies adding two SCALAR_VALUEs */ 16202 if (WARN_ON_ONCE(ptr_reg)) { 16203 print_verifier_state(env, vstate, vstate->curframe, true); 16204 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 16205 return -EFAULT; 16206 } 16207 if (WARN_ON(!src_reg)) { 16208 print_verifier_state(env, vstate, vstate->curframe, true); 16209 verbose(env, "verifier internal error: no src_reg\n"); 16210 return -EFAULT; 16211 } 16212 /* 16213 * For alu32 linked register tracking, we need to check dst_reg's 16214 * umax_value before the ALU operation. After adjust_scalar_min_max_vals(), 16215 * alu32 ops will have zero-extended the result, making umax_value <= U32_MAX. 16216 */ 16217 u64 dst_umax = dst_reg->umax_value; 16218 16219 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 16220 if (err) 16221 return err; 16222 /* 16223 * Compilers can generate the code 16224 * r1 = r2 16225 * r1 += 0x1 16226 * if r2 < 1000 goto ... 16227 * use r1 in memory access 16228 * So remember constant delta between r2 and r1 and update r1 after 16229 * 'if' condition. 16230 */ 16231 if (env->bpf_capable && 16232 (BPF_OP(insn->code) == BPF_ADD || BPF_OP(insn->code) == BPF_SUB) && 16233 dst_reg->id && is_reg_const(src_reg, alu32)) { 16234 u64 val = reg_const_value(src_reg, alu32); 16235 s32 off; 16236 16237 if (!alu32 && ((s64)val < S32_MIN || (s64)val > S32_MAX)) 16238 goto clear_id; 16239 16240 if (alu32 && (dst_umax > U32_MAX)) 16241 goto clear_id; 16242 16243 off = (s32)val; 16244 16245 if (BPF_OP(insn->code) == BPF_SUB) { 16246 /* Negating S32_MIN would overflow */ 16247 if (off == S32_MIN) 16248 goto clear_id; 16249 off = -off; 16250 } 16251 16252 if (dst_reg->id & BPF_ADD_CONST) { 16253 /* 16254 * If the register already went through rX += val 16255 * we cannot accumulate another val into rx->off. 16256 */ 16257 clear_id: 16258 dst_reg->off = 0; 16259 dst_reg->id = 0; 16260 } else { 16261 if (alu32) 16262 dst_reg->id |= BPF_ADD_CONST32; 16263 else 16264 dst_reg->id |= BPF_ADD_CONST64; 16265 dst_reg->off = off; 16266 } 16267 } else { 16268 /* 16269 * Make sure ID is cleared otherwise dst_reg min/max could be 16270 * incorrectly propagated into other registers by sync_linked_regs() 16271 */ 16272 dst_reg->id = 0; 16273 } 16274 return 0; 16275 } 16276 16277 /* check validity of 32-bit and 64-bit arithmetic operations */ 16278 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 16279 { 16280 struct bpf_reg_state *regs = cur_regs(env); 16281 u8 opcode = BPF_OP(insn->code); 16282 int err; 16283 16284 if (opcode == BPF_END || opcode == BPF_NEG) { 16285 if (opcode == BPF_NEG) { 16286 if (BPF_SRC(insn->code) != BPF_K || 16287 insn->src_reg != BPF_REG_0 || 16288 insn->off != 0 || insn->imm != 0) { 16289 verbose(env, "BPF_NEG uses reserved fields\n"); 16290 return -EINVAL; 16291 } 16292 } else { 16293 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 16294 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 16295 (BPF_CLASS(insn->code) == BPF_ALU64 && 16296 BPF_SRC(insn->code) != BPF_TO_LE)) { 16297 verbose(env, "BPF_END uses reserved fields\n"); 16298 return -EINVAL; 16299 } 16300 } 16301 16302 /* check src operand */ 16303 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16304 if (err) 16305 return err; 16306 16307 if (is_pointer_value(env, insn->dst_reg)) { 16308 verbose(env, "R%d pointer arithmetic prohibited\n", 16309 insn->dst_reg); 16310 return -EACCES; 16311 } 16312 16313 /* check dest operand */ 16314 if ((opcode == BPF_NEG || opcode == BPF_END) && 16315 regs[insn->dst_reg].type == SCALAR_VALUE) { 16316 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16317 err = err ?: adjust_scalar_min_max_vals(env, insn, 16318 ®s[insn->dst_reg], 16319 regs[insn->dst_reg]); 16320 } else { 16321 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16322 } 16323 if (err) 16324 return err; 16325 16326 } else if (opcode == BPF_MOV) { 16327 16328 if (BPF_SRC(insn->code) == BPF_X) { 16329 if (BPF_CLASS(insn->code) == BPF_ALU) { 16330 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 16331 insn->imm) { 16332 verbose(env, "BPF_MOV uses reserved fields\n"); 16333 return -EINVAL; 16334 } 16335 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 16336 if (insn->imm != 1 && insn->imm != 1u << 16) { 16337 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 16338 return -EINVAL; 16339 } 16340 if (!env->prog->aux->arena) { 16341 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 16342 return -EINVAL; 16343 } 16344 } else { 16345 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 16346 insn->off != 32) || insn->imm) { 16347 verbose(env, "BPF_MOV uses reserved fields\n"); 16348 return -EINVAL; 16349 } 16350 } 16351 16352 /* check src operand */ 16353 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16354 if (err) 16355 return err; 16356 } else { 16357 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 16358 verbose(env, "BPF_MOV uses reserved fields\n"); 16359 return -EINVAL; 16360 } 16361 } 16362 16363 /* check dest operand, mark as required later */ 16364 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16365 if (err) 16366 return err; 16367 16368 if (BPF_SRC(insn->code) == BPF_X) { 16369 struct bpf_reg_state *src_reg = regs + insn->src_reg; 16370 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 16371 16372 if (BPF_CLASS(insn->code) == BPF_ALU64) { 16373 if (insn->imm) { 16374 /* off == BPF_ADDR_SPACE_CAST */ 16375 mark_reg_unknown(env, regs, insn->dst_reg); 16376 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 16377 dst_reg->type = PTR_TO_ARENA; 16378 /* PTR_TO_ARENA is 32-bit */ 16379 dst_reg->subreg_def = env->insn_idx + 1; 16380 } 16381 } else if (insn->off == 0) { 16382 /* case: R1 = R2 16383 * copy register state to dest reg 16384 */ 16385 assign_scalar_id_before_mov(env, src_reg); 16386 copy_register_state(dst_reg, src_reg); 16387 dst_reg->subreg_def = DEF_NOT_SUBREG; 16388 } else { 16389 /* case: R1 = (s8, s16 s32)R2 */ 16390 if (is_pointer_value(env, insn->src_reg)) { 16391 verbose(env, 16392 "R%d sign-extension part of pointer\n", 16393 insn->src_reg); 16394 return -EACCES; 16395 } else if (src_reg->type == SCALAR_VALUE) { 16396 bool no_sext; 16397 16398 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 16399 if (no_sext) 16400 assign_scalar_id_before_mov(env, src_reg); 16401 copy_register_state(dst_reg, src_reg); 16402 if (!no_sext) 16403 dst_reg->id = 0; 16404 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 16405 dst_reg->subreg_def = DEF_NOT_SUBREG; 16406 } else { 16407 mark_reg_unknown(env, regs, insn->dst_reg); 16408 } 16409 } 16410 } else { 16411 /* R1 = (u32) R2 */ 16412 if (is_pointer_value(env, insn->src_reg)) { 16413 verbose(env, 16414 "R%d partial copy of pointer\n", 16415 insn->src_reg); 16416 return -EACCES; 16417 } else if (src_reg->type == SCALAR_VALUE) { 16418 if (insn->off == 0) { 16419 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 16420 16421 if (is_src_reg_u32) 16422 assign_scalar_id_before_mov(env, src_reg); 16423 copy_register_state(dst_reg, src_reg); 16424 /* Make sure ID is cleared if src_reg is not in u32 16425 * range otherwise dst_reg min/max could be incorrectly 16426 * propagated into src_reg by sync_linked_regs() 16427 */ 16428 if (!is_src_reg_u32) 16429 dst_reg->id = 0; 16430 dst_reg->subreg_def = env->insn_idx + 1; 16431 } else { 16432 /* case: W1 = (s8, s16)W2 */ 16433 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 16434 16435 if (no_sext) 16436 assign_scalar_id_before_mov(env, src_reg); 16437 copy_register_state(dst_reg, src_reg); 16438 if (!no_sext) 16439 dst_reg->id = 0; 16440 dst_reg->subreg_def = env->insn_idx + 1; 16441 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 16442 } 16443 } else { 16444 mark_reg_unknown(env, regs, 16445 insn->dst_reg); 16446 } 16447 zext_32_to_64(dst_reg); 16448 reg_bounds_sync(dst_reg); 16449 } 16450 } else { 16451 /* case: R = imm 16452 * remember the value we stored into this reg 16453 */ 16454 /* clear any state __mark_reg_known doesn't set */ 16455 mark_reg_unknown(env, regs, insn->dst_reg); 16456 regs[insn->dst_reg].type = SCALAR_VALUE; 16457 if (BPF_CLASS(insn->code) == BPF_ALU64) { 16458 __mark_reg_known(regs + insn->dst_reg, 16459 insn->imm); 16460 } else { 16461 __mark_reg_known(regs + insn->dst_reg, 16462 (u32)insn->imm); 16463 } 16464 } 16465 16466 } else if (opcode > BPF_END) { 16467 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 16468 return -EINVAL; 16469 16470 } else { /* all other ALU ops: and, sub, xor, add, ... */ 16471 16472 if (BPF_SRC(insn->code) == BPF_X) { 16473 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) || 16474 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 16475 verbose(env, "BPF_ALU uses reserved fields\n"); 16476 return -EINVAL; 16477 } 16478 /* check src1 operand */ 16479 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16480 if (err) 16481 return err; 16482 } else { 16483 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) || 16484 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 16485 verbose(env, "BPF_ALU uses reserved fields\n"); 16486 return -EINVAL; 16487 } 16488 } 16489 16490 /* check src2 operand */ 16491 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16492 if (err) 16493 return err; 16494 16495 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 16496 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 16497 verbose(env, "div by zero\n"); 16498 return -EINVAL; 16499 } 16500 16501 if ((opcode == BPF_LSH || opcode == BPF_RSH || 16502 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 16503 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 16504 16505 if (insn->imm < 0 || insn->imm >= size) { 16506 verbose(env, "invalid shift %d\n", insn->imm); 16507 return -EINVAL; 16508 } 16509 } 16510 16511 /* check dest operand */ 16512 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16513 err = err ?: adjust_reg_min_max_vals(env, insn); 16514 if (err) 16515 return err; 16516 } 16517 16518 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 16519 } 16520 16521 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 16522 struct bpf_reg_state *dst_reg, 16523 enum bpf_reg_type type, 16524 bool range_right_open) 16525 { 16526 struct bpf_func_state *state; 16527 struct bpf_reg_state *reg; 16528 int new_range; 16529 16530 if (dst_reg->off < 0 || 16531 (dst_reg->off == 0 && range_right_open)) 16532 /* This doesn't give us any range */ 16533 return; 16534 16535 if (dst_reg->umax_value > MAX_PACKET_OFF || 16536 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 16537 /* Risk of overflow. For instance, ptr + (1<<63) may be less 16538 * than pkt_end, but that's because it's also less than pkt. 16539 */ 16540 return; 16541 16542 new_range = dst_reg->off; 16543 if (range_right_open) 16544 new_range++; 16545 16546 /* Examples for register markings: 16547 * 16548 * pkt_data in dst register: 16549 * 16550 * r2 = r3; 16551 * r2 += 8; 16552 * if (r2 > pkt_end) goto <handle exception> 16553 * <access okay> 16554 * 16555 * r2 = r3; 16556 * r2 += 8; 16557 * if (r2 < pkt_end) goto <access okay> 16558 * <handle exception> 16559 * 16560 * Where: 16561 * r2 == dst_reg, pkt_end == src_reg 16562 * r2=pkt(id=n,off=8,r=0) 16563 * r3=pkt(id=n,off=0,r=0) 16564 * 16565 * pkt_data in src register: 16566 * 16567 * r2 = r3; 16568 * r2 += 8; 16569 * if (pkt_end >= r2) goto <access okay> 16570 * <handle exception> 16571 * 16572 * r2 = r3; 16573 * r2 += 8; 16574 * if (pkt_end <= r2) goto <handle exception> 16575 * <access okay> 16576 * 16577 * Where: 16578 * pkt_end == dst_reg, r2 == src_reg 16579 * r2=pkt(id=n,off=8,r=0) 16580 * r3=pkt(id=n,off=0,r=0) 16581 * 16582 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 16583 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 16584 * and [r3, r3 + 8-1) respectively is safe to access depending on 16585 * the check. 16586 */ 16587 16588 /* If our ids match, then we must have the same max_value. And we 16589 * don't care about the other reg's fixed offset, since if it's too big 16590 * the range won't allow anything. 16591 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 16592 */ 16593 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16594 if (reg->type == type && reg->id == dst_reg->id) 16595 /* keep the maximum range already checked */ 16596 reg->range = max(reg->range, new_range); 16597 })); 16598 } 16599 16600 /* 16601 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 16602 */ 16603 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16604 u8 opcode, bool is_jmp32) 16605 { 16606 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 16607 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 16608 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 16609 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 16610 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 16611 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 16612 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 16613 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 16614 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 16615 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 16616 16617 if (reg1 == reg2) { 16618 switch (opcode) { 16619 case BPF_JGE: 16620 case BPF_JLE: 16621 case BPF_JSGE: 16622 case BPF_JSLE: 16623 case BPF_JEQ: 16624 return 1; 16625 case BPF_JGT: 16626 case BPF_JLT: 16627 case BPF_JSGT: 16628 case BPF_JSLT: 16629 case BPF_JNE: 16630 return 0; 16631 case BPF_JSET: 16632 if (tnum_is_const(t1)) 16633 return t1.value != 0; 16634 else 16635 return (smin1 <= 0 && smax1 >= 0) ? -1 : 1; 16636 default: 16637 return -1; 16638 } 16639 } 16640 16641 switch (opcode) { 16642 case BPF_JEQ: 16643 /* constants, umin/umax and smin/smax checks would be 16644 * redundant in this case because they all should match 16645 */ 16646 if (tnum_is_const(t1) && tnum_is_const(t2)) 16647 return t1.value == t2.value; 16648 if (!tnum_overlap(t1, t2)) 16649 return 0; 16650 /* non-overlapping ranges */ 16651 if (umin1 > umax2 || umax1 < umin2) 16652 return 0; 16653 if (smin1 > smax2 || smax1 < smin2) 16654 return 0; 16655 if (!is_jmp32) { 16656 /* if 64-bit ranges are inconclusive, see if we can 16657 * utilize 32-bit subrange knowledge to eliminate 16658 * branches that can't be taken a priori 16659 */ 16660 if (reg1->u32_min_value > reg2->u32_max_value || 16661 reg1->u32_max_value < reg2->u32_min_value) 16662 return 0; 16663 if (reg1->s32_min_value > reg2->s32_max_value || 16664 reg1->s32_max_value < reg2->s32_min_value) 16665 return 0; 16666 } 16667 break; 16668 case BPF_JNE: 16669 /* constants, umin/umax and smin/smax checks would be 16670 * redundant in this case because they all should match 16671 */ 16672 if (tnum_is_const(t1) && tnum_is_const(t2)) 16673 return t1.value != t2.value; 16674 if (!tnum_overlap(t1, t2)) 16675 return 1; 16676 /* non-overlapping ranges */ 16677 if (umin1 > umax2 || umax1 < umin2) 16678 return 1; 16679 if (smin1 > smax2 || smax1 < smin2) 16680 return 1; 16681 if (!is_jmp32) { 16682 /* if 64-bit ranges are inconclusive, see if we can 16683 * utilize 32-bit subrange knowledge to eliminate 16684 * branches that can't be taken a priori 16685 */ 16686 if (reg1->u32_min_value > reg2->u32_max_value || 16687 reg1->u32_max_value < reg2->u32_min_value) 16688 return 1; 16689 if (reg1->s32_min_value > reg2->s32_max_value || 16690 reg1->s32_max_value < reg2->s32_min_value) 16691 return 1; 16692 } 16693 break; 16694 case BPF_JSET: 16695 if (!is_reg_const(reg2, is_jmp32)) { 16696 swap(reg1, reg2); 16697 swap(t1, t2); 16698 } 16699 if (!is_reg_const(reg2, is_jmp32)) 16700 return -1; 16701 if ((~t1.mask & t1.value) & t2.value) 16702 return 1; 16703 if (!((t1.mask | t1.value) & t2.value)) 16704 return 0; 16705 break; 16706 case BPF_JGT: 16707 if (umin1 > umax2) 16708 return 1; 16709 else if (umax1 <= umin2) 16710 return 0; 16711 break; 16712 case BPF_JSGT: 16713 if (smin1 > smax2) 16714 return 1; 16715 else if (smax1 <= smin2) 16716 return 0; 16717 break; 16718 case BPF_JLT: 16719 if (umax1 < umin2) 16720 return 1; 16721 else if (umin1 >= umax2) 16722 return 0; 16723 break; 16724 case BPF_JSLT: 16725 if (smax1 < smin2) 16726 return 1; 16727 else if (smin1 >= smax2) 16728 return 0; 16729 break; 16730 case BPF_JGE: 16731 if (umin1 >= umax2) 16732 return 1; 16733 else if (umax1 < umin2) 16734 return 0; 16735 break; 16736 case BPF_JSGE: 16737 if (smin1 >= smax2) 16738 return 1; 16739 else if (smax1 < smin2) 16740 return 0; 16741 break; 16742 case BPF_JLE: 16743 if (umax1 <= umin2) 16744 return 1; 16745 else if (umin1 > umax2) 16746 return 0; 16747 break; 16748 case BPF_JSLE: 16749 if (smax1 <= smin2) 16750 return 1; 16751 else if (smin1 > smax2) 16752 return 0; 16753 break; 16754 } 16755 16756 return -1; 16757 } 16758 16759 static int flip_opcode(u32 opcode) 16760 { 16761 /* How can we transform "a <op> b" into "b <op> a"? */ 16762 static const u8 opcode_flip[16] = { 16763 /* these stay the same */ 16764 [BPF_JEQ >> 4] = BPF_JEQ, 16765 [BPF_JNE >> 4] = BPF_JNE, 16766 [BPF_JSET >> 4] = BPF_JSET, 16767 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 16768 [BPF_JGE >> 4] = BPF_JLE, 16769 [BPF_JGT >> 4] = BPF_JLT, 16770 [BPF_JLE >> 4] = BPF_JGE, 16771 [BPF_JLT >> 4] = BPF_JGT, 16772 [BPF_JSGE >> 4] = BPF_JSLE, 16773 [BPF_JSGT >> 4] = BPF_JSLT, 16774 [BPF_JSLE >> 4] = BPF_JSGE, 16775 [BPF_JSLT >> 4] = BPF_JSGT 16776 }; 16777 return opcode_flip[opcode >> 4]; 16778 } 16779 16780 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 16781 struct bpf_reg_state *src_reg, 16782 u8 opcode) 16783 { 16784 struct bpf_reg_state *pkt; 16785 16786 if (src_reg->type == PTR_TO_PACKET_END) { 16787 pkt = dst_reg; 16788 } else if (dst_reg->type == PTR_TO_PACKET_END) { 16789 pkt = src_reg; 16790 opcode = flip_opcode(opcode); 16791 } else { 16792 return -1; 16793 } 16794 16795 if (pkt->range >= 0) 16796 return -1; 16797 16798 switch (opcode) { 16799 case BPF_JLE: 16800 /* pkt <= pkt_end */ 16801 fallthrough; 16802 case BPF_JGT: 16803 /* pkt > pkt_end */ 16804 if (pkt->range == BEYOND_PKT_END) 16805 /* pkt has at last one extra byte beyond pkt_end */ 16806 return opcode == BPF_JGT; 16807 break; 16808 case BPF_JLT: 16809 /* pkt < pkt_end */ 16810 fallthrough; 16811 case BPF_JGE: 16812 /* pkt >= pkt_end */ 16813 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 16814 return opcode == BPF_JGE; 16815 break; 16816 } 16817 return -1; 16818 } 16819 16820 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 16821 * and return: 16822 * 1 - branch will be taken and "goto target" will be executed 16823 * 0 - branch will not be taken and fall-through to next insn 16824 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 16825 * range [0,10] 16826 */ 16827 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16828 u8 opcode, bool is_jmp32) 16829 { 16830 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 16831 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 16832 16833 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 16834 u64 val; 16835 16836 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 16837 if (!is_reg_const(reg2, is_jmp32)) { 16838 opcode = flip_opcode(opcode); 16839 swap(reg1, reg2); 16840 } 16841 /* and ensure that reg2 is a constant */ 16842 if (!is_reg_const(reg2, is_jmp32)) 16843 return -1; 16844 16845 if (!reg_not_null(reg1)) 16846 return -1; 16847 16848 /* If pointer is valid tests against zero will fail so we can 16849 * use this to direct branch taken. 16850 */ 16851 val = reg_const_value(reg2, is_jmp32); 16852 if (val != 0) 16853 return -1; 16854 16855 switch (opcode) { 16856 case BPF_JEQ: 16857 return 0; 16858 case BPF_JNE: 16859 return 1; 16860 default: 16861 return -1; 16862 } 16863 } 16864 16865 /* now deal with two scalars, but not necessarily constants */ 16866 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 16867 } 16868 16869 /* Opcode that corresponds to a *false* branch condition. 16870 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 16871 */ 16872 static u8 rev_opcode(u8 opcode) 16873 { 16874 switch (opcode) { 16875 case BPF_JEQ: return BPF_JNE; 16876 case BPF_JNE: return BPF_JEQ; 16877 /* JSET doesn't have it's reverse opcode in BPF, so add 16878 * BPF_X flag to denote the reverse of that operation 16879 */ 16880 case BPF_JSET: return BPF_JSET | BPF_X; 16881 case BPF_JSET | BPF_X: return BPF_JSET; 16882 case BPF_JGE: return BPF_JLT; 16883 case BPF_JGT: return BPF_JLE; 16884 case BPF_JLE: return BPF_JGT; 16885 case BPF_JLT: return BPF_JGE; 16886 case BPF_JSGE: return BPF_JSLT; 16887 case BPF_JSGT: return BPF_JSLE; 16888 case BPF_JSLE: return BPF_JSGT; 16889 case BPF_JSLT: return BPF_JSGE; 16890 default: return 0; 16891 } 16892 } 16893 16894 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 16895 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16896 u8 opcode, bool is_jmp32) 16897 { 16898 struct tnum t; 16899 u64 val; 16900 16901 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 16902 switch (opcode) { 16903 case BPF_JGE: 16904 case BPF_JGT: 16905 case BPF_JSGE: 16906 case BPF_JSGT: 16907 opcode = flip_opcode(opcode); 16908 swap(reg1, reg2); 16909 break; 16910 default: 16911 break; 16912 } 16913 16914 switch (opcode) { 16915 case BPF_JEQ: 16916 if (is_jmp32) { 16917 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16918 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16919 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16920 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16921 reg2->u32_min_value = reg1->u32_min_value; 16922 reg2->u32_max_value = reg1->u32_max_value; 16923 reg2->s32_min_value = reg1->s32_min_value; 16924 reg2->s32_max_value = reg1->s32_max_value; 16925 16926 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 16927 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16928 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 16929 } else { 16930 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 16931 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16932 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 16933 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16934 reg2->umin_value = reg1->umin_value; 16935 reg2->umax_value = reg1->umax_value; 16936 reg2->smin_value = reg1->smin_value; 16937 reg2->smax_value = reg1->smax_value; 16938 16939 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 16940 reg2->var_off = reg1->var_off; 16941 } 16942 break; 16943 case BPF_JNE: 16944 if (!is_reg_const(reg2, is_jmp32)) 16945 swap(reg1, reg2); 16946 if (!is_reg_const(reg2, is_jmp32)) 16947 break; 16948 16949 /* try to recompute the bound of reg1 if reg2 is a const and 16950 * is exactly the edge of reg1. 16951 */ 16952 val = reg_const_value(reg2, is_jmp32); 16953 if (is_jmp32) { 16954 /* u32_min_value is not equal to 0xffffffff at this point, 16955 * because otherwise u32_max_value is 0xffffffff as well, 16956 * in such a case both reg1 and reg2 would be constants, 16957 * jump would be predicted and reg_set_min_max() won't 16958 * be called. 16959 * 16960 * Same reasoning works for all {u,s}{min,max}{32,64} cases 16961 * below. 16962 */ 16963 if (reg1->u32_min_value == (u32)val) 16964 reg1->u32_min_value++; 16965 if (reg1->u32_max_value == (u32)val) 16966 reg1->u32_max_value--; 16967 if (reg1->s32_min_value == (s32)val) 16968 reg1->s32_min_value++; 16969 if (reg1->s32_max_value == (s32)val) 16970 reg1->s32_max_value--; 16971 } else { 16972 if (reg1->umin_value == (u64)val) 16973 reg1->umin_value++; 16974 if (reg1->umax_value == (u64)val) 16975 reg1->umax_value--; 16976 if (reg1->smin_value == (s64)val) 16977 reg1->smin_value++; 16978 if (reg1->smax_value == (s64)val) 16979 reg1->smax_value--; 16980 } 16981 break; 16982 case BPF_JSET: 16983 if (!is_reg_const(reg2, is_jmp32)) 16984 swap(reg1, reg2); 16985 if (!is_reg_const(reg2, is_jmp32)) 16986 break; 16987 val = reg_const_value(reg2, is_jmp32); 16988 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16989 * requires single bit to learn something useful. E.g., if we 16990 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16991 * are actually set? We can learn something definite only if 16992 * it's a single-bit value to begin with. 16993 * 16994 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16995 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16996 * bit 1 is set, which we can readily use in adjustments. 16997 */ 16998 if (!is_power_of_2(val)) 16999 break; 17000 if (is_jmp32) { 17001 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 17002 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 17003 } else { 17004 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 17005 } 17006 break; 17007 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 17008 if (!is_reg_const(reg2, is_jmp32)) 17009 swap(reg1, reg2); 17010 if (!is_reg_const(reg2, is_jmp32)) 17011 break; 17012 val = reg_const_value(reg2, is_jmp32); 17013 /* Forget the ranges before narrowing tnums, to avoid invariant 17014 * violations if we're on a dead branch. 17015 */ 17016 __mark_reg_unbounded(reg1); 17017 if (is_jmp32) { 17018 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 17019 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 17020 } else { 17021 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 17022 } 17023 break; 17024 case BPF_JLE: 17025 if (is_jmp32) { 17026 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 17027 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 17028 } else { 17029 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 17030 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 17031 } 17032 break; 17033 case BPF_JLT: 17034 if (is_jmp32) { 17035 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 17036 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 17037 } else { 17038 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 17039 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 17040 } 17041 break; 17042 case BPF_JSLE: 17043 if (is_jmp32) { 17044 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 17045 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 17046 } else { 17047 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 17048 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 17049 } 17050 break; 17051 case BPF_JSLT: 17052 if (is_jmp32) { 17053 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 17054 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 17055 } else { 17056 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 17057 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 17058 } 17059 break; 17060 default: 17061 return; 17062 } 17063 } 17064 17065 /* Adjusts the register min/max values in the case that the dst_reg and 17066 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 17067 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 17068 * Technically we can do similar adjustments for pointers to the same object, 17069 * but we don't support that right now. 17070 */ 17071 static int reg_set_min_max(struct bpf_verifier_env *env, 17072 struct bpf_reg_state *true_reg1, 17073 struct bpf_reg_state *true_reg2, 17074 struct bpf_reg_state *false_reg1, 17075 struct bpf_reg_state *false_reg2, 17076 u8 opcode, bool is_jmp32) 17077 { 17078 int err; 17079 17080 /* If either register is a pointer, we can't learn anything about its 17081 * variable offset from the compare (unless they were a pointer into 17082 * the same object, but we don't bother with that). 17083 */ 17084 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 17085 return 0; 17086 17087 /* We compute branch direction for same SCALAR_VALUE registers in 17088 * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET) 17089 * on the same registers, we don't need to adjust the min/max values. 17090 */ 17091 if (false_reg1 == false_reg2) 17092 return 0; 17093 17094 /* fallthrough (FALSE) branch */ 17095 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 17096 reg_bounds_sync(false_reg1); 17097 reg_bounds_sync(false_reg2); 17098 17099 /* jump (TRUE) branch */ 17100 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 17101 reg_bounds_sync(true_reg1); 17102 reg_bounds_sync(true_reg2); 17103 17104 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 17105 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 17106 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 17107 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 17108 return err; 17109 } 17110 17111 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 17112 struct bpf_reg_state *reg, u32 id, 17113 bool is_null) 17114 { 17115 if (type_may_be_null(reg->type) && reg->id == id && 17116 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 17117 /* Old offset (both fixed and variable parts) should have been 17118 * known-zero, because we don't allow pointer arithmetic on 17119 * pointers that might be NULL. If we see this happening, don't 17120 * convert the register. 17121 * 17122 * But in some cases, some helpers that return local kptrs 17123 * advance offset for the returned pointer. In those cases, it 17124 * is fine to expect to see reg->off. 17125 */ 17126 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 17127 return; 17128 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 17129 WARN_ON_ONCE(reg->off)) 17130 return; 17131 17132 if (is_null) { 17133 reg->type = SCALAR_VALUE; 17134 /* We don't need id and ref_obj_id from this point 17135 * onwards anymore, thus we should better reset it, 17136 * so that state pruning has chances to take effect. 17137 */ 17138 reg->id = 0; 17139 reg->ref_obj_id = 0; 17140 17141 return; 17142 } 17143 17144 mark_ptr_not_null_reg(reg); 17145 17146 if (!reg_may_point_to_spin_lock(reg)) { 17147 /* For not-NULL ptr, reg->ref_obj_id will be reset 17148 * in release_reference(). 17149 * 17150 * reg->id is still used by spin_lock ptr. Other 17151 * than spin_lock ptr type, reg->id can be reset. 17152 */ 17153 reg->id = 0; 17154 } 17155 } 17156 } 17157 17158 /* The logic is similar to find_good_pkt_pointers(), both could eventually 17159 * be folded together at some point. 17160 */ 17161 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 17162 bool is_null) 17163 { 17164 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 17165 struct bpf_reg_state *regs = state->regs, *reg; 17166 u32 ref_obj_id = regs[regno].ref_obj_id; 17167 u32 id = regs[regno].id; 17168 17169 if (ref_obj_id && ref_obj_id == id && is_null) 17170 /* regs[regno] is in the " == NULL" branch. 17171 * No one could have freed the reference state before 17172 * doing the NULL check. 17173 */ 17174 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 17175 17176 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 17177 mark_ptr_or_null_reg(state, reg, id, is_null); 17178 })); 17179 } 17180 17181 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 17182 struct bpf_reg_state *dst_reg, 17183 struct bpf_reg_state *src_reg, 17184 struct bpf_verifier_state *this_branch, 17185 struct bpf_verifier_state *other_branch) 17186 { 17187 if (BPF_SRC(insn->code) != BPF_X) 17188 return false; 17189 17190 /* Pointers are always 64-bit. */ 17191 if (BPF_CLASS(insn->code) == BPF_JMP32) 17192 return false; 17193 17194 switch (BPF_OP(insn->code)) { 17195 case BPF_JGT: 17196 if ((dst_reg->type == PTR_TO_PACKET && 17197 src_reg->type == PTR_TO_PACKET_END) || 17198 (dst_reg->type == PTR_TO_PACKET_META && 17199 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 17200 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 17201 find_good_pkt_pointers(this_branch, dst_reg, 17202 dst_reg->type, false); 17203 mark_pkt_end(other_branch, insn->dst_reg, true); 17204 } else if ((dst_reg->type == PTR_TO_PACKET_END && 17205 src_reg->type == PTR_TO_PACKET) || 17206 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 17207 src_reg->type == PTR_TO_PACKET_META)) { 17208 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 17209 find_good_pkt_pointers(other_branch, src_reg, 17210 src_reg->type, true); 17211 mark_pkt_end(this_branch, insn->src_reg, false); 17212 } else { 17213 return false; 17214 } 17215 break; 17216 case BPF_JLT: 17217 if ((dst_reg->type == PTR_TO_PACKET && 17218 src_reg->type == PTR_TO_PACKET_END) || 17219 (dst_reg->type == PTR_TO_PACKET_META && 17220 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 17221 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 17222 find_good_pkt_pointers(other_branch, dst_reg, 17223 dst_reg->type, true); 17224 mark_pkt_end(this_branch, insn->dst_reg, false); 17225 } else if ((dst_reg->type == PTR_TO_PACKET_END && 17226 src_reg->type == PTR_TO_PACKET) || 17227 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 17228 src_reg->type == PTR_TO_PACKET_META)) { 17229 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 17230 find_good_pkt_pointers(this_branch, src_reg, 17231 src_reg->type, false); 17232 mark_pkt_end(other_branch, insn->src_reg, true); 17233 } else { 17234 return false; 17235 } 17236 break; 17237 case BPF_JGE: 17238 if ((dst_reg->type == PTR_TO_PACKET && 17239 src_reg->type == PTR_TO_PACKET_END) || 17240 (dst_reg->type == PTR_TO_PACKET_META && 17241 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 17242 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 17243 find_good_pkt_pointers(this_branch, dst_reg, 17244 dst_reg->type, true); 17245 mark_pkt_end(other_branch, insn->dst_reg, false); 17246 } else if ((dst_reg->type == PTR_TO_PACKET_END && 17247 src_reg->type == PTR_TO_PACKET) || 17248 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 17249 src_reg->type == PTR_TO_PACKET_META)) { 17250 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 17251 find_good_pkt_pointers(other_branch, src_reg, 17252 src_reg->type, false); 17253 mark_pkt_end(this_branch, insn->src_reg, true); 17254 } else { 17255 return false; 17256 } 17257 break; 17258 case BPF_JLE: 17259 if ((dst_reg->type == PTR_TO_PACKET && 17260 src_reg->type == PTR_TO_PACKET_END) || 17261 (dst_reg->type == PTR_TO_PACKET_META && 17262 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 17263 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 17264 find_good_pkt_pointers(other_branch, dst_reg, 17265 dst_reg->type, false); 17266 mark_pkt_end(this_branch, insn->dst_reg, true); 17267 } else if ((dst_reg->type == PTR_TO_PACKET_END && 17268 src_reg->type == PTR_TO_PACKET) || 17269 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 17270 src_reg->type == PTR_TO_PACKET_META)) { 17271 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 17272 find_good_pkt_pointers(this_branch, src_reg, 17273 src_reg->type, true); 17274 mark_pkt_end(other_branch, insn->src_reg, false); 17275 } else { 17276 return false; 17277 } 17278 break; 17279 default: 17280 return false; 17281 } 17282 17283 return true; 17284 } 17285 17286 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 17287 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 17288 { 17289 struct linked_reg *e; 17290 17291 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 17292 return; 17293 17294 e = linked_regs_push(reg_set); 17295 if (e) { 17296 e->frameno = frameno; 17297 e->is_reg = is_reg; 17298 e->regno = spi_or_reg; 17299 } else { 17300 reg->id = 0; 17301 } 17302 } 17303 17304 /* For all R being scalar registers or spilled scalar registers 17305 * in verifier state, save R in linked_regs if R->id == id. 17306 * If there are too many Rs sharing same id, reset id for leftover Rs. 17307 */ 17308 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 17309 struct linked_regs *linked_regs) 17310 { 17311 struct bpf_func_state *func; 17312 struct bpf_reg_state *reg; 17313 int i, j; 17314 17315 id = id & ~BPF_ADD_CONST; 17316 for (i = vstate->curframe; i >= 0; i--) { 17317 func = vstate->frame[i]; 17318 for (j = 0; j < BPF_REG_FP; j++) { 17319 reg = &func->regs[j]; 17320 __collect_linked_regs(linked_regs, reg, id, i, j, true); 17321 } 17322 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 17323 if (!is_spilled_reg(&func->stack[j])) 17324 continue; 17325 reg = &func->stack[j].spilled_ptr; 17326 __collect_linked_regs(linked_regs, reg, id, i, j, false); 17327 } 17328 } 17329 } 17330 17331 /* For all R in linked_regs, copy known_reg range into R 17332 * if R->id == known_reg->id. 17333 */ 17334 static void sync_linked_regs(struct bpf_verifier_env *env, struct bpf_verifier_state *vstate, 17335 struct bpf_reg_state *known_reg, struct linked_regs *linked_regs) 17336 { 17337 struct bpf_reg_state fake_reg; 17338 struct bpf_reg_state *reg; 17339 struct linked_reg *e; 17340 int i; 17341 17342 for (i = 0; i < linked_regs->cnt; ++i) { 17343 e = &linked_regs->entries[i]; 17344 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 17345 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 17346 if (reg->type != SCALAR_VALUE || reg == known_reg) 17347 continue; 17348 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 17349 continue; 17350 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 17351 reg->off == known_reg->off) { 17352 s32 saved_subreg_def = reg->subreg_def; 17353 17354 copy_register_state(reg, known_reg); 17355 reg->subreg_def = saved_subreg_def; 17356 } else { 17357 s32 saved_subreg_def = reg->subreg_def; 17358 s32 saved_off = reg->off; 17359 u32 saved_id = reg->id; 17360 17361 fake_reg.type = SCALAR_VALUE; 17362 __mark_reg_known(&fake_reg, (s64)reg->off - (s64)known_reg->off); 17363 17364 /* reg = known_reg; reg += delta */ 17365 copy_register_state(reg, known_reg); 17366 /* 17367 * Must preserve off, id and subreg_def flag, 17368 * otherwise another sync_linked_regs() will be incorrect. 17369 */ 17370 reg->off = saved_off; 17371 reg->id = saved_id; 17372 reg->subreg_def = saved_subreg_def; 17373 17374 scalar32_min_max_add(reg, &fake_reg); 17375 scalar_min_max_add(reg, &fake_reg); 17376 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 17377 if (known_reg->id & BPF_ADD_CONST32) 17378 zext_32_to_64(reg); 17379 reg_bounds_sync(reg); 17380 } 17381 if (e->is_reg) 17382 mark_reg_scratched(env, e->regno); 17383 else 17384 mark_stack_slot_scratched(env, e->spi); 17385 } 17386 } 17387 17388 static int check_cond_jmp_op(struct bpf_verifier_env *env, 17389 struct bpf_insn *insn, int *insn_idx) 17390 { 17391 struct bpf_verifier_state *this_branch = env->cur_state; 17392 struct bpf_verifier_state *other_branch; 17393 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 17394 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 17395 struct bpf_reg_state *eq_branch_regs; 17396 struct linked_regs linked_regs = {}; 17397 u8 opcode = BPF_OP(insn->code); 17398 int insn_flags = 0; 17399 bool is_jmp32; 17400 int pred = -1; 17401 int err; 17402 17403 /* Only conditional jumps are expected to reach here. */ 17404 if (opcode == BPF_JA || opcode > BPF_JCOND) { 17405 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 17406 return -EINVAL; 17407 } 17408 17409 if (opcode == BPF_JCOND) { 17410 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 17411 int idx = *insn_idx; 17412 17413 if (insn->code != (BPF_JMP | BPF_JCOND) || 17414 insn->src_reg != BPF_MAY_GOTO || 17415 insn->dst_reg || insn->imm) { 17416 verbose(env, "invalid may_goto imm %d\n", insn->imm); 17417 return -EINVAL; 17418 } 17419 prev_st = find_prev_entry(env, cur_st->parent, idx); 17420 17421 /* branch out 'fallthrough' insn as a new state to explore */ 17422 queued_st = push_stack(env, idx + 1, idx, false); 17423 if (IS_ERR(queued_st)) 17424 return PTR_ERR(queued_st); 17425 17426 queued_st->may_goto_depth++; 17427 if (prev_st) 17428 widen_imprecise_scalars(env, prev_st, queued_st); 17429 *insn_idx += insn->off; 17430 return 0; 17431 } 17432 17433 /* check src2 operand */ 17434 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17435 if (err) 17436 return err; 17437 17438 dst_reg = ®s[insn->dst_reg]; 17439 if (BPF_SRC(insn->code) == BPF_X) { 17440 if (insn->imm != 0) { 17441 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 17442 return -EINVAL; 17443 } 17444 17445 /* check src1 operand */ 17446 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17447 if (err) 17448 return err; 17449 17450 src_reg = ®s[insn->src_reg]; 17451 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 17452 is_pointer_value(env, insn->src_reg)) { 17453 verbose(env, "R%d pointer comparison prohibited\n", 17454 insn->src_reg); 17455 return -EACCES; 17456 } 17457 17458 if (src_reg->type == PTR_TO_STACK) 17459 insn_flags |= INSN_F_SRC_REG_STACK; 17460 if (dst_reg->type == PTR_TO_STACK) 17461 insn_flags |= INSN_F_DST_REG_STACK; 17462 } else { 17463 if (insn->src_reg != BPF_REG_0) { 17464 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 17465 return -EINVAL; 17466 } 17467 src_reg = &env->fake_reg[0]; 17468 memset(src_reg, 0, sizeof(*src_reg)); 17469 src_reg->type = SCALAR_VALUE; 17470 __mark_reg_known(src_reg, insn->imm); 17471 17472 if (dst_reg->type == PTR_TO_STACK) 17473 insn_flags |= INSN_F_DST_REG_STACK; 17474 } 17475 17476 if (insn_flags) { 17477 err = push_jmp_history(env, this_branch, insn_flags, 0); 17478 if (err) 17479 return err; 17480 } 17481 17482 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 17483 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 17484 if (pred >= 0) { 17485 /* If we get here with a dst_reg pointer type it is because 17486 * above is_branch_taken() special cased the 0 comparison. 17487 */ 17488 if (!__is_pointer_value(false, dst_reg)) 17489 err = mark_chain_precision(env, insn->dst_reg); 17490 if (BPF_SRC(insn->code) == BPF_X && !err && 17491 !__is_pointer_value(false, src_reg)) 17492 err = mark_chain_precision(env, insn->src_reg); 17493 if (err) 17494 return err; 17495 } 17496 17497 if (pred == 1) { 17498 /* Only follow the goto, ignore fall-through. If needed, push 17499 * the fall-through branch for simulation under speculative 17500 * execution. 17501 */ 17502 if (!env->bypass_spec_v1) { 17503 err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx); 17504 if (err < 0) 17505 return err; 17506 } 17507 if (env->log.level & BPF_LOG_LEVEL) 17508 print_insn_state(env, this_branch, this_branch->curframe); 17509 *insn_idx += insn->off; 17510 return 0; 17511 } else if (pred == 0) { 17512 /* Only follow the fall-through branch, since that's where the 17513 * program will go. If needed, push the goto branch for 17514 * simulation under speculative execution. 17515 */ 17516 if (!env->bypass_spec_v1) { 17517 err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1, 17518 *insn_idx); 17519 if (err < 0) 17520 return err; 17521 } 17522 if (env->log.level & BPF_LOG_LEVEL) 17523 print_insn_state(env, this_branch, this_branch->curframe); 17524 return 0; 17525 } 17526 17527 /* Push scalar registers sharing same ID to jump history, 17528 * do this before creating 'other_branch', so that both 17529 * 'this_branch' and 'other_branch' share this history 17530 * if parent state is created. 17531 */ 17532 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 17533 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 17534 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 17535 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 17536 if (linked_regs.cnt > 1) { 17537 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 17538 if (err) 17539 return err; 17540 } 17541 17542 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false); 17543 if (IS_ERR(other_branch)) 17544 return PTR_ERR(other_branch); 17545 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 17546 17547 if (BPF_SRC(insn->code) == BPF_X) { 17548 err = reg_set_min_max(env, 17549 &other_branch_regs[insn->dst_reg], 17550 &other_branch_regs[insn->src_reg], 17551 dst_reg, src_reg, opcode, is_jmp32); 17552 } else /* BPF_SRC(insn->code) == BPF_K */ { 17553 /* reg_set_min_max() can mangle the fake_reg. Make a copy 17554 * so that these are two different memory locations. The 17555 * src_reg is not used beyond here in context of K. 17556 */ 17557 memcpy(&env->fake_reg[1], &env->fake_reg[0], 17558 sizeof(env->fake_reg[0])); 17559 err = reg_set_min_max(env, 17560 &other_branch_regs[insn->dst_reg], 17561 &env->fake_reg[0], 17562 dst_reg, &env->fake_reg[1], 17563 opcode, is_jmp32); 17564 } 17565 if (err) 17566 return err; 17567 17568 if (BPF_SRC(insn->code) == BPF_X && 17569 src_reg->type == SCALAR_VALUE && src_reg->id && 17570 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 17571 sync_linked_regs(env, this_branch, src_reg, &linked_regs); 17572 sync_linked_regs(env, other_branch, &other_branch_regs[insn->src_reg], 17573 &linked_regs); 17574 } 17575 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 17576 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 17577 sync_linked_regs(env, this_branch, dst_reg, &linked_regs); 17578 sync_linked_regs(env, other_branch, &other_branch_regs[insn->dst_reg], 17579 &linked_regs); 17580 } 17581 17582 /* if one pointer register is compared to another pointer 17583 * register check if PTR_MAYBE_NULL could be lifted. 17584 * E.g. register A - maybe null 17585 * register B - not null 17586 * for JNE A, B, ... - A is not null in the false branch; 17587 * for JEQ A, B, ... - A is not null in the true branch. 17588 * 17589 * Since PTR_TO_BTF_ID points to a kernel struct that does 17590 * not need to be null checked by the BPF program, i.e., 17591 * could be null even without PTR_MAYBE_NULL marking, so 17592 * only propagate nullness when neither reg is that type. 17593 */ 17594 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 17595 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 17596 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 17597 base_type(src_reg->type) != PTR_TO_BTF_ID && 17598 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 17599 eq_branch_regs = NULL; 17600 switch (opcode) { 17601 case BPF_JEQ: 17602 eq_branch_regs = other_branch_regs; 17603 break; 17604 case BPF_JNE: 17605 eq_branch_regs = regs; 17606 break; 17607 default: 17608 /* do nothing */ 17609 break; 17610 } 17611 if (eq_branch_regs) { 17612 if (type_may_be_null(src_reg->type)) 17613 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 17614 else 17615 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 17616 } 17617 } 17618 17619 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 17620 * NOTE: these optimizations below are related with pointer comparison 17621 * which will never be JMP32. 17622 */ 17623 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 17624 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 17625 type_may_be_null(dst_reg->type)) { 17626 /* Mark all identical registers in each branch as either 17627 * safe or unknown depending R == 0 or R != 0 conditional. 17628 */ 17629 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 17630 opcode == BPF_JNE); 17631 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 17632 opcode == BPF_JEQ); 17633 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 17634 this_branch, other_branch) && 17635 is_pointer_value(env, insn->dst_reg)) { 17636 verbose(env, "R%d pointer comparison prohibited\n", 17637 insn->dst_reg); 17638 return -EACCES; 17639 } 17640 if (env->log.level & BPF_LOG_LEVEL) 17641 print_insn_state(env, this_branch, this_branch->curframe); 17642 return 0; 17643 } 17644 17645 /* verify BPF_LD_IMM64 instruction */ 17646 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 17647 { 17648 struct bpf_insn_aux_data *aux = cur_aux(env); 17649 struct bpf_reg_state *regs = cur_regs(env); 17650 struct bpf_reg_state *dst_reg; 17651 struct bpf_map *map; 17652 int err; 17653 17654 if (BPF_SIZE(insn->code) != BPF_DW) { 17655 verbose(env, "invalid BPF_LD_IMM insn\n"); 17656 return -EINVAL; 17657 } 17658 if (insn->off != 0) { 17659 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 17660 return -EINVAL; 17661 } 17662 17663 err = check_reg_arg(env, insn->dst_reg, DST_OP); 17664 if (err) 17665 return err; 17666 17667 dst_reg = ®s[insn->dst_reg]; 17668 if (insn->src_reg == 0) { 17669 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 17670 17671 dst_reg->type = SCALAR_VALUE; 17672 __mark_reg_known(®s[insn->dst_reg], imm); 17673 return 0; 17674 } 17675 17676 /* All special src_reg cases are listed below. From this point onwards 17677 * we either succeed and assign a corresponding dst_reg->type after 17678 * zeroing the offset, or fail and reject the program. 17679 */ 17680 mark_reg_known_zero(env, regs, insn->dst_reg); 17681 17682 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 17683 dst_reg->type = aux->btf_var.reg_type; 17684 switch (base_type(dst_reg->type)) { 17685 case PTR_TO_MEM: 17686 dst_reg->mem_size = aux->btf_var.mem_size; 17687 break; 17688 case PTR_TO_BTF_ID: 17689 dst_reg->btf = aux->btf_var.btf; 17690 dst_reg->btf_id = aux->btf_var.btf_id; 17691 break; 17692 default: 17693 verifier_bug(env, "pseudo btf id: unexpected dst reg type"); 17694 return -EFAULT; 17695 } 17696 return 0; 17697 } 17698 17699 if (insn->src_reg == BPF_PSEUDO_FUNC) { 17700 struct bpf_prog_aux *aux = env->prog->aux; 17701 u32 subprogno = find_subprog(env, 17702 env->insn_idx + insn->imm + 1); 17703 17704 if (!aux->func_info) { 17705 verbose(env, "missing btf func_info\n"); 17706 return -EINVAL; 17707 } 17708 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 17709 verbose(env, "callback function not static\n"); 17710 return -EINVAL; 17711 } 17712 17713 dst_reg->type = PTR_TO_FUNC; 17714 dst_reg->subprogno = subprogno; 17715 return 0; 17716 } 17717 17718 map = env->used_maps[aux->map_index]; 17719 dst_reg->map_ptr = map; 17720 17721 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 17722 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 17723 if (map->map_type == BPF_MAP_TYPE_ARENA) { 17724 __mark_reg_unknown(env, dst_reg); 17725 return 0; 17726 } 17727 dst_reg->type = PTR_TO_MAP_VALUE; 17728 dst_reg->off = aux->map_off; 17729 WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY && 17730 map->max_entries != 1); 17731 /* We want reg->id to be same (0) as map_value is not distinct */ 17732 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 17733 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 17734 dst_reg->type = CONST_PTR_TO_MAP; 17735 } else { 17736 verifier_bug(env, "unexpected src reg value for ldimm64"); 17737 return -EFAULT; 17738 } 17739 17740 return 0; 17741 } 17742 17743 static bool may_access_skb(enum bpf_prog_type type) 17744 { 17745 switch (type) { 17746 case BPF_PROG_TYPE_SOCKET_FILTER: 17747 case BPF_PROG_TYPE_SCHED_CLS: 17748 case BPF_PROG_TYPE_SCHED_ACT: 17749 return true; 17750 default: 17751 return false; 17752 } 17753 } 17754 17755 /* verify safety of LD_ABS|LD_IND instructions: 17756 * - they can only appear in the programs where ctx == skb 17757 * - since they are wrappers of function calls, they scratch R1-R5 registers, 17758 * preserve R6-R9, and store return value into R0 17759 * 17760 * Implicit input: 17761 * ctx == skb == R6 == CTX 17762 * 17763 * Explicit input: 17764 * SRC == any register 17765 * IMM == 32-bit immediate 17766 * 17767 * Output: 17768 * R0 - 8/16/32-bit skb data converted to cpu endianness 17769 */ 17770 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 17771 { 17772 struct bpf_reg_state *regs = cur_regs(env); 17773 static const int ctx_reg = BPF_REG_6; 17774 u8 mode = BPF_MODE(insn->code); 17775 int i, err; 17776 17777 if (!may_access_skb(resolve_prog_type(env->prog))) { 17778 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 17779 return -EINVAL; 17780 } 17781 17782 if (!env->ops->gen_ld_abs) { 17783 verifier_bug(env, "gen_ld_abs is null"); 17784 return -EFAULT; 17785 } 17786 17787 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 17788 BPF_SIZE(insn->code) == BPF_DW || 17789 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 17790 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 17791 return -EINVAL; 17792 } 17793 17794 /* check whether implicit source operand (register R6) is readable */ 17795 err = check_reg_arg(env, ctx_reg, SRC_OP); 17796 if (err) 17797 return err; 17798 17799 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 17800 * gen_ld_abs() may terminate the program at runtime, leading to 17801 * reference leak. 17802 */ 17803 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 17804 if (err) 17805 return err; 17806 17807 if (regs[ctx_reg].type != PTR_TO_CTX) { 17808 verbose(env, 17809 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 17810 return -EINVAL; 17811 } 17812 17813 if (mode == BPF_IND) { 17814 /* check explicit source operand */ 17815 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17816 if (err) 17817 return err; 17818 } 17819 17820 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 17821 if (err < 0) 17822 return err; 17823 17824 /* reset caller saved regs to unreadable */ 17825 for (i = 0; i < CALLER_SAVED_REGS; i++) { 17826 mark_reg_not_init(env, regs, caller_saved[i]); 17827 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 17828 } 17829 17830 /* mark destination R0 register as readable, since it contains 17831 * the value fetched from the packet. 17832 * Already marked as written above. 17833 */ 17834 mark_reg_unknown(env, regs, BPF_REG_0); 17835 /* ld_abs load up to 32-bit skb data. */ 17836 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 17837 return 0; 17838 } 17839 17840 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 17841 { 17842 const char *exit_ctx = "At program exit"; 17843 struct tnum enforce_attach_type_range = tnum_unknown; 17844 const struct bpf_prog *prog = env->prog; 17845 struct bpf_reg_state *reg = reg_state(env, regno); 17846 struct bpf_retval_range range = retval_range(0, 1); 17847 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 17848 int err; 17849 struct bpf_func_state *frame = env->cur_state->frame[0]; 17850 const bool is_subprog = frame->subprogno; 17851 bool return_32bit = false; 17852 const struct btf_type *reg_type, *ret_type = NULL; 17853 17854 /* LSM and struct_ops func-ptr's return type could be "void" */ 17855 if (!is_subprog || frame->in_exception_callback_fn) { 17856 switch (prog_type) { 17857 case BPF_PROG_TYPE_LSM: 17858 if (prog->expected_attach_type == BPF_LSM_CGROUP) 17859 /* See below, can be 0 or 0-1 depending on hook. */ 17860 break; 17861 if (!prog->aux->attach_func_proto->type) 17862 return 0; 17863 break; 17864 case BPF_PROG_TYPE_STRUCT_OPS: 17865 if (!prog->aux->attach_func_proto->type) 17866 return 0; 17867 17868 if (frame->in_exception_callback_fn) 17869 break; 17870 17871 /* Allow a struct_ops program to return a referenced kptr if it 17872 * matches the operator's return type and is in its unmodified 17873 * form. A scalar zero (i.e., a null pointer) is also allowed. 17874 */ 17875 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 17876 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 17877 prog->aux->attach_func_proto->type, 17878 NULL); 17879 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 17880 return __check_ptr_off_reg(env, reg, regno, false); 17881 break; 17882 default: 17883 break; 17884 } 17885 } 17886 17887 /* eBPF calling convention is such that R0 is used 17888 * to return the value from eBPF program. 17889 * Make sure that it's readable at this time 17890 * of bpf_exit, which means that program wrote 17891 * something into it earlier 17892 */ 17893 err = check_reg_arg(env, regno, SRC_OP); 17894 if (err) 17895 return err; 17896 17897 if (is_pointer_value(env, regno)) { 17898 verbose(env, "R%d leaks addr as return value\n", regno); 17899 return -EACCES; 17900 } 17901 17902 if (frame->in_async_callback_fn) { 17903 exit_ctx = "At async callback return"; 17904 range = frame->callback_ret_range; 17905 goto enforce_retval; 17906 } 17907 17908 if (is_subprog && !frame->in_exception_callback_fn) { 17909 if (reg->type != SCALAR_VALUE) { 17910 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 17911 regno, reg_type_str(env, reg->type)); 17912 return -EINVAL; 17913 } 17914 return 0; 17915 } 17916 17917 switch (prog_type) { 17918 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 17919 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 17920 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 17921 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 17922 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 17923 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 17924 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 17925 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 17926 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 17927 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 17928 range = retval_range(1, 1); 17929 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 17930 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 17931 range = retval_range(0, 3); 17932 break; 17933 case BPF_PROG_TYPE_CGROUP_SKB: 17934 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 17935 range = retval_range(0, 3); 17936 enforce_attach_type_range = tnum_range(2, 3); 17937 } 17938 break; 17939 case BPF_PROG_TYPE_CGROUP_SOCK: 17940 case BPF_PROG_TYPE_SOCK_OPS: 17941 case BPF_PROG_TYPE_CGROUP_DEVICE: 17942 case BPF_PROG_TYPE_CGROUP_SYSCTL: 17943 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 17944 break; 17945 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17946 if (!env->prog->aux->attach_btf_id) 17947 return 0; 17948 range = retval_range(0, 0); 17949 break; 17950 case BPF_PROG_TYPE_TRACING: 17951 switch (env->prog->expected_attach_type) { 17952 case BPF_TRACE_FENTRY: 17953 case BPF_TRACE_FEXIT: 17954 case BPF_TRACE_FSESSION: 17955 range = retval_range(0, 0); 17956 break; 17957 case BPF_TRACE_RAW_TP: 17958 case BPF_MODIFY_RETURN: 17959 return 0; 17960 case BPF_TRACE_ITER: 17961 break; 17962 default: 17963 return -ENOTSUPP; 17964 } 17965 break; 17966 case BPF_PROG_TYPE_KPROBE: 17967 switch (env->prog->expected_attach_type) { 17968 case BPF_TRACE_KPROBE_SESSION: 17969 case BPF_TRACE_UPROBE_SESSION: 17970 range = retval_range(0, 1); 17971 break; 17972 default: 17973 return 0; 17974 } 17975 break; 17976 case BPF_PROG_TYPE_SK_LOOKUP: 17977 range = retval_range(SK_DROP, SK_PASS); 17978 break; 17979 17980 case BPF_PROG_TYPE_LSM: 17981 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 17982 /* no range found, any return value is allowed */ 17983 if (!get_func_retval_range(env->prog, &range)) 17984 return 0; 17985 /* no restricted range, any return value is allowed */ 17986 if (range.minval == S32_MIN && range.maxval == S32_MAX) 17987 return 0; 17988 return_32bit = true; 17989 } else if (!env->prog->aux->attach_func_proto->type) { 17990 /* Make sure programs that attach to void 17991 * hooks don't try to modify return value. 17992 */ 17993 range = retval_range(1, 1); 17994 } 17995 break; 17996 17997 case BPF_PROG_TYPE_NETFILTER: 17998 range = retval_range(NF_DROP, NF_ACCEPT); 17999 break; 18000 case BPF_PROG_TYPE_STRUCT_OPS: 18001 if (!ret_type) 18002 return 0; 18003 range = retval_range(0, 0); 18004 break; 18005 case BPF_PROG_TYPE_EXT: 18006 /* freplace program can return anything as its return value 18007 * depends on the to-be-replaced kernel func or bpf program. 18008 */ 18009 default: 18010 return 0; 18011 } 18012 18013 enforce_retval: 18014 if (reg->type != SCALAR_VALUE) { 18015 verbose(env, "%s the register R%d is not a known value (%s)\n", 18016 exit_ctx, regno, reg_type_str(env, reg->type)); 18017 return -EINVAL; 18018 } 18019 18020 err = mark_chain_precision(env, regno); 18021 if (err) 18022 return err; 18023 18024 if (!retval_range_within(range, reg, return_32bit)) { 18025 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 18026 if (!is_subprog && 18027 prog->expected_attach_type == BPF_LSM_CGROUP && 18028 prog_type == BPF_PROG_TYPE_LSM && 18029 !prog->aux->attach_func_proto->type) 18030 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 18031 return -EINVAL; 18032 } 18033 18034 if (!tnum_is_unknown(enforce_attach_type_range) && 18035 tnum_in(enforce_attach_type_range, reg->var_off)) 18036 env->prog->enforce_expected_attach_type = 1; 18037 return 0; 18038 } 18039 18040 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 18041 { 18042 struct bpf_subprog_info *subprog; 18043 18044 subprog = bpf_find_containing_subprog(env, off); 18045 subprog->changes_pkt_data = true; 18046 } 18047 18048 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 18049 { 18050 struct bpf_subprog_info *subprog; 18051 18052 subprog = bpf_find_containing_subprog(env, off); 18053 subprog->might_sleep = true; 18054 } 18055 18056 /* 't' is an index of a call-site. 18057 * 'w' is a callee entry point. 18058 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 18059 * Rely on DFS traversal order and absence of recursive calls to guarantee that 18060 * callee's change_pkt_data marks would be correct at that moment. 18061 */ 18062 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 18063 { 18064 struct bpf_subprog_info *caller, *callee; 18065 18066 caller = bpf_find_containing_subprog(env, t); 18067 callee = bpf_find_containing_subprog(env, w); 18068 caller->changes_pkt_data |= callee->changes_pkt_data; 18069 caller->might_sleep |= callee->might_sleep; 18070 } 18071 18072 /* non-recursive DFS pseudo code 18073 * 1 procedure DFS-iterative(G,v): 18074 * 2 label v as discovered 18075 * 3 let S be a stack 18076 * 4 S.push(v) 18077 * 5 while S is not empty 18078 * 6 t <- S.peek() 18079 * 7 if t is what we're looking for: 18080 * 8 return t 18081 * 9 for all edges e in G.adjacentEdges(t) do 18082 * 10 if edge e is already labelled 18083 * 11 continue with the next edge 18084 * 12 w <- G.adjacentVertex(t,e) 18085 * 13 if vertex w is not discovered and not explored 18086 * 14 label e as tree-edge 18087 * 15 label w as discovered 18088 * 16 S.push(w) 18089 * 17 continue at 5 18090 * 18 else if vertex w is discovered 18091 * 19 label e as back-edge 18092 * 20 else 18093 * 21 // vertex w is explored 18094 * 22 label e as forward- or cross-edge 18095 * 23 label t as explored 18096 * 24 S.pop() 18097 * 18098 * convention: 18099 * 0x10 - discovered 18100 * 0x11 - discovered and fall-through edge labelled 18101 * 0x12 - discovered and fall-through and branch edges labelled 18102 * 0x20 - explored 18103 */ 18104 18105 enum { 18106 DISCOVERED = 0x10, 18107 EXPLORED = 0x20, 18108 FALLTHROUGH = 1, 18109 BRANCH = 2, 18110 }; 18111 18112 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 18113 { 18114 env->insn_aux_data[idx].prune_point = true; 18115 } 18116 18117 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 18118 { 18119 return env->insn_aux_data[insn_idx].prune_point; 18120 } 18121 18122 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 18123 { 18124 env->insn_aux_data[idx].force_checkpoint = true; 18125 } 18126 18127 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 18128 { 18129 return env->insn_aux_data[insn_idx].force_checkpoint; 18130 } 18131 18132 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 18133 { 18134 env->insn_aux_data[idx].calls_callback = true; 18135 } 18136 18137 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx) 18138 { 18139 return env->insn_aux_data[insn_idx].calls_callback; 18140 } 18141 18142 enum { 18143 DONE_EXPLORING = 0, 18144 KEEP_EXPLORING = 1, 18145 }; 18146 18147 /* t, w, e - match pseudo-code above: 18148 * t - index of current instruction 18149 * w - next instruction 18150 * e - edge 18151 */ 18152 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 18153 { 18154 int *insn_stack = env->cfg.insn_stack; 18155 int *insn_state = env->cfg.insn_state; 18156 18157 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 18158 return DONE_EXPLORING; 18159 18160 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 18161 return DONE_EXPLORING; 18162 18163 if (w < 0 || w >= env->prog->len) { 18164 verbose_linfo(env, t, "%d: ", t); 18165 verbose(env, "jump out of range from insn %d to %d\n", t, w); 18166 return -EINVAL; 18167 } 18168 18169 if (e == BRANCH) { 18170 /* mark branch target for state pruning */ 18171 mark_prune_point(env, w); 18172 mark_jmp_point(env, w); 18173 } 18174 18175 if (insn_state[w] == 0) { 18176 /* tree-edge */ 18177 insn_state[t] = DISCOVERED | e; 18178 insn_state[w] = DISCOVERED; 18179 if (env->cfg.cur_stack >= env->prog->len) 18180 return -E2BIG; 18181 insn_stack[env->cfg.cur_stack++] = w; 18182 return KEEP_EXPLORING; 18183 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 18184 if (env->bpf_capable) 18185 return DONE_EXPLORING; 18186 verbose_linfo(env, t, "%d: ", t); 18187 verbose_linfo(env, w, "%d: ", w); 18188 verbose(env, "back-edge from insn %d to %d\n", t, w); 18189 return -EINVAL; 18190 } else if (insn_state[w] == EXPLORED) { 18191 /* forward- or cross-edge */ 18192 insn_state[t] = DISCOVERED | e; 18193 } else { 18194 verifier_bug(env, "insn state internal bug"); 18195 return -EFAULT; 18196 } 18197 return DONE_EXPLORING; 18198 } 18199 18200 static int visit_func_call_insn(int t, struct bpf_insn *insns, 18201 struct bpf_verifier_env *env, 18202 bool visit_callee) 18203 { 18204 int ret, insn_sz; 18205 int w; 18206 18207 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 18208 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 18209 if (ret) 18210 return ret; 18211 18212 mark_prune_point(env, t + insn_sz); 18213 /* when we exit from subprog, we need to record non-linear history */ 18214 mark_jmp_point(env, t + insn_sz); 18215 18216 if (visit_callee) { 18217 w = t + insns[t].imm + 1; 18218 mark_prune_point(env, t); 18219 merge_callee_effects(env, t, w); 18220 ret = push_insn(t, w, BRANCH, env); 18221 } 18222 return ret; 18223 } 18224 18225 /* Bitmask with 1s for all caller saved registers */ 18226 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 18227 18228 /* True if do_misc_fixups() replaces calls to helper number 'imm', 18229 * replacement patch is presumed to follow bpf_fastcall contract 18230 * (see mark_fastcall_pattern_for_call() below). 18231 */ 18232 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 18233 { 18234 switch (imm) { 18235 #ifdef CONFIG_X86_64 18236 case BPF_FUNC_get_smp_processor_id: 18237 #ifdef CONFIG_SMP 18238 case BPF_FUNC_get_current_task_btf: 18239 case BPF_FUNC_get_current_task: 18240 #endif 18241 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 18242 #endif 18243 default: 18244 return false; 18245 } 18246 } 18247 18248 struct call_summary { 18249 u8 num_params; 18250 bool is_void; 18251 bool fastcall; 18252 }; 18253 18254 /* If @call is a kfunc or helper call, fills @cs and returns true, 18255 * otherwise returns false. 18256 */ 18257 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 18258 struct call_summary *cs) 18259 { 18260 struct bpf_kfunc_call_arg_meta meta; 18261 const struct bpf_func_proto *fn; 18262 int i; 18263 18264 if (bpf_helper_call(call)) { 18265 18266 if (get_helper_proto(env, call->imm, &fn) < 0) 18267 /* error would be reported later */ 18268 return false; 18269 cs->fastcall = fn->allow_fastcall && 18270 (verifier_inlines_helper_call(env, call->imm) || 18271 bpf_jit_inlines_helper_call(call->imm)); 18272 cs->is_void = fn->ret_type == RET_VOID; 18273 cs->num_params = 0; 18274 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 18275 if (fn->arg_type[i] == ARG_DONTCARE) 18276 break; 18277 cs->num_params++; 18278 } 18279 return true; 18280 } 18281 18282 if (bpf_pseudo_kfunc_call(call)) { 18283 int err; 18284 18285 err = fetch_kfunc_arg_meta(env, call->imm, call->off, &meta); 18286 if (err < 0) 18287 /* error would be reported later */ 18288 return false; 18289 cs->num_params = btf_type_vlen(meta.func_proto); 18290 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 18291 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 18292 return true; 18293 } 18294 18295 return false; 18296 } 18297 18298 /* LLVM define a bpf_fastcall function attribute. 18299 * This attribute means that function scratches only some of 18300 * the caller saved registers defined by ABI. 18301 * For BPF the set of such registers could be defined as follows: 18302 * - R0 is scratched only if function is non-void; 18303 * - R1-R5 are scratched only if corresponding parameter type is defined 18304 * in the function prototype. 18305 * 18306 * The contract between kernel and clang allows to simultaneously use 18307 * such functions and maintain backwards compatibility with old 18308 * kernels that don't understand bpf_fastcall calls: 18309 * 18310 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 18311 * registers are not scratched by the call; 18312 * 18313 * - as a post-processing step, clang visits each bpf_fastcall call and adds 18314 * spill/fill for every live r0-r5; 18315 * 18316 * - stack offsets used for the spill/fill are allocated as lowest 18317 * stack offsets in whole function and are not used for any other 18318 * purposes; 18319 * 18320 * - when kernel loads a program, it looks for such patterns 18321 * (bpf_fastcall function surrounded by spills/fills) and checks if 18322 * spill/fill stack offsets are used exclusively in fastcall patterns; 18323 * 18324 * - if so, and if verifier or current JIT inlines the call to the 18325 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 18326 * spill/fill pairs; 18327 * 18328 * - when old kernel loads a program, presence of spill/fill pairs 18329 * keeps BPF program valid, albeit slightly less efficient. 18330 * 18331 * For example: 18332 * 18333 * r1 = 1; 18334 * r2 = 2; 18335 * *(u64 *)(r10 - 8) = r1; r1 = 1; 18336 * *(u64 *)(r10 - 16) = r2; r2 = 2; 18337 * call %[to_be_inlined] --> call %[to_be_inlined] 18338 * r2 = *(u64 *)(r10 - 16); r0 = r1; 18339 * r1 = *(u64 *)(r10 - 8); r0 += r2; 18340 * r0 = r1; exit; 18341 * r0 += r2; 18342 * exit; 18343 * 18344 * The purpose of mark_fastcall_pattern_for_call is to: 18345 * - look for such patterns; 18346 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 18347 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 18348 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 18349 * at which bpf_fastcall spill/fill stack slots start; 18350 * - update env->subprog_info[*]->keep_fastcall_stack. 18351 * 18352 * The .fastcall_pattern and .fastcall_stack_off are used by 18353 * check_fastcall_stack_contract() to check if every stack access to 18354 * fastcall spill/fill stack slot originates from spill/fill 18355 * instructions, members of fastcall patterns. 18356 * 18357 * If such condition holds true for a subprogram, fastcall patterns could 18358 * be rewritten by remove_fastcall_spills_fills(). 18359 * Otherwise bpf_fastcall patterns are not changed in the subprogram 18360 * (code, presumably, generated by an older clang version). 18361 * 18362 * For example, it is *not* safe to remove spill/fill below: 18363 * 18364 * r1 = 1; 18365 * *(u64 *)(r10 - 8) = r1; r1 = 1; 18366 * call %[to_be_inlined] --> call %[to_be_inlined] 18367 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 18368 * r0 = *(u64 *)(r10 - 8); r0 += r1; 18369 * r0 += r1; exit; 18370 * exit; 18371 */ 18372 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 18373 struct bpf_subprog_info *subprog, 18374 int insn_idx, s16 lowest_off) 18375 { 18376 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 18377 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 18378 u32 clobbered_regs_mask; 18379 struct call_summary cs; 18380 u32 expected_regs_mask; 18381 s16 off; 18382 int i; 18383 18384 if (!get_call_summary(env, call, &cs)) 18385 return; 18386 18387 /* A bitmask specifying which caller saved registers are clobbered 18388 * by a call to a helper/kfunc *as if* this helper/kfunc follows 18389 * bpf_fastcall contract: 18390 * - includes R0 if function is non-void; 18391 * - includes R1-R5 if corresponding parameter has is described 18392 * in the function prototype. 18393 */ 18394 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 18395 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 18396 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 18397 18398 /* match pairs of form: 18399 * 18400 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 18401 * ... 18402 * call %[to_be_inlined] 18403 * ... 18404 * rX = *(u64 *)(r10 - Y) 18405 */ 18406 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 18407 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 18408 break; 18409 stx = &insns[insn_idx - i]; 18410 ldx = &insns[insn_idx + i]; 18411 /* must be a stack spill/fill pair */ 18412 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 18413 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 18414 stx->dst_reg != BPF_REG_10 || 18415 ldx->src_reg != BPF_REG_10) 18416 break; 18417 /* must be a spill/fill for the same reg */ 18418 if (stx->src_reg != ldx->dst_reg) 18419 break; 18420 /* must be one of the previously unseen registers */ 18421 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 18422 break; 18423 /* must be a spill/fill for the same expected offset, 18424 * no need to check offset alignment, BPF_DW stack access 18425 * is always 8-byte aligned. 18426 */ 18427 if (stx->off != off || ldx->off != off) 18428 break; 18429 expected_regs_mask &= ~BIT(stx->src_reg); 18430 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 18431 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 18432 } 18433 if (i == 1) 18434 return; 18435 18436 /* Conditionally set 'fastcall_spills_num' to allow forward 18437 * compatibility when more helper functions are marked as 18438 * bpf_fastcall at compile time than current kernel supports, e.g: 18439 * 18440 * 1: *(u64 *)(r10 - 8) = r1 18441 * 2: call A ;; assume A is bpf_fastcall for current kernel 18442 * 3: r1 = *(u64 *)(r10 - 8) 18443 * 4: *(u64 *)(r10 - 8) = r1 18444 * 5: call B ;; assume B is not bpf_fastcall for current kernel 18445 * 6: r1 = *(u64 *)(r10 - 8) 18446 * 18447 * There is no need to block bpf_fastcall rewrite for such program. 18448 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 18449 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 18450 * does not remove spill/fill pair {4,6}. 18451 */ 18452 if (cs.fastcall) 18453 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 18454 else 18455 subprog->keep_fastcall_stack = 1; 18456 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 18457 } 18458 18459 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 18460 { 18461 struct bpf_subprog_info *subprog = env->subprog_info; 18462 struct bpf_insn *insn; 18463 s16 lowest_off; 18464 int s, i; 18465 18466 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 18467 /* find lowest stack spill offset used in this subprog */ 18468 lowest_off = 0; 18469 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 18470 insn = env->prog->insnsi + i; 18471 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 18472 insn->dst_reg != BPF_REG_10) 18473 continue; 18474 lowest_off = min(lowest_off, insn->off); 18475 } 18476 /* use this offset to find fastcall patterns */ 18477 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 18478 insn = env->prog->insnsi + i; 18479 if (insn->code != (BPF_JMP | BPF_CALL)) 18480 continue; 18481 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 18482 } 18483 } 18484 return 0; 18485 } 18486 18487 static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem) 18488 { 18489 size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]); 18490 struct bpf_iarray *new; 18491 18492 new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT); 18493 if (!new) { 18494 /* this is what callers always want, so simplify the call site */ 18495 kvfree(old); 18496 return NULL; 18497 } 18498 18499 new->cnt = n_elem; 18500 return new; 18501 } 18502 18503 static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items) 18504 { 18505 struct bpf_insn_array_value *value; 18506 u32 i; 18507 18508 for (i = start; i <= end; i++) { 18509 value = map->ops->map_lookup_elem(map, &i); 18510 /* 18511 * map_lookup_elem of an array map will never return an error, 18512 * but not checking it makes some static analysers to worry 18513 */ 18514 if (IS_ERR(value)) 18515 return PTR_ERR(value); 18516 else if (!value) 18517 return -EINVAL; 18518 items[i - start] = value->xlated_off; 18519 } 18520 return 0; 18521 } 18522 18523 static int cmp_ptr_to_u32(const void *a, const void *b) 18524 { 18525 return *(u32 *)a - *(u32 *)b; 18526 } 18527 18528 static int sort_insn_array_uniq(u32 *items, int cnt) 18529 { 18530 int unique = 1; 18531 int i; 18532 18533 sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL); 18534 18535 for (i = 1; i < cnt; i++) 18536 if (items[i] != items[unique - 1]) 18537 items[unique++] = items[i]; 18538 18539 return unique; 18540 } 18541 18542 /* 18543 * sort_unique({map[start], ..., map[end]}) into off 18544 */ 18545 static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off) 18546 { 18547 u32 n = end - start + 1; 18548 int err; 18549 18550 err = copy_insn_array(map, start, end, off); 18551 if (err) 18552 return err; 18553 18554 return sort_insn_array_uniq(off, n); 18555 } 18556 18557 /* 18558 * Copy all unique offsets from the map 18559 */ 18560 static struct bpf_iarray *jt_from_map(struct bpf_map *map) 18561 { 18562 struct bpf_iarray *jt; 18563 int err; 18564 int n; 18565 18566 jt = iarray_realloc(NULL, map->max_entries); 18567 if (!jt) 18568 return ERR_PTR(-ENOMEM); 18569 18570 n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items); 18571 if (n < 0) { 18572 err = n; 18573 goto err_free; 18574 } 18575 if (n == 0) { 18576 err = -EINVAL; 18577 goto err_free; 18578 } 18579 jt->cnt = n; 18580 return jt; 18581 18582 err_free: 18583 kvfree(jt); 18584 return ERR_PTR(err); 18585 } 18586 18587 /* 18588 * Find and collect all maps which fit in the subprog. Return the result as one 18589 * combined jump table in jt->items (allocated with kvcalloc) 18590 */ 18591 static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env, 18592 int subprog_start, int subprog_end) 18593 { 18594 struct bpf_iarray *jt = NULL; 18595 struct bpf_map *map; 18596 struct bpf_iarray *jt_cur; 18597 int i; 18598 18599 for (i = 0; i < env->insn_array_map_cnt; i++) { 18600 /* 18601 * TODO (when needed): collect only jump tables, not static keys 18602 * or maps for indirect calls 18603 */ 18604 map = env->insn_array_maps[i]; 18605 18606 jt_cur = jt_from_map(map); 18607 if (IS_ERR(jt_cur)) { 18608 kvfree(jt); 18609 return jt_cur; 18610 } 18611 18612 /* 18613 * This is enough to check one element. The full table is 18614 * checked to fit inside the subprog later in create_jt() 18615 */ 18616 if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) { 18617 u32 old_cnt = jt ? jt->cnt : 0; 18618 jt = iarray_realloc(jt, old_cnt + jt_cur->cnt); 18619 if (!jt) { 18620 kvfree(jt_cur); 18621 return ERR_PTR(-ENOMEM); 18622 } 18623 memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2); 18624 } 18625 18626 kvfree(jt_cur); 18627 } 18628 18629 if (!jt) { 18630 verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start); 18631 return ERR_PTR(-EINVAL); 18632 } 18633 18634 jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt); 18635 return jt; 18636 } 18637 18638 static struct bpf_iarray * 18639 create_jt(int t, struct bpf_verifier_env *env) 18640 { 18641 static struct bpf_subprog_info *subprog; 18642 int subprog_start, subprog_end; 18643 struct bpf_iarray *jt; 18644 int i; 18645 18646 subprog = bpf_find_containing_subprog(env, t); 18647 subprog_start = subprog->start; 18648 subprog_end = (subprog + 1)->start; 18649 jt = jt_from_subprog(env, subprog_start, subprog_end); 18650 if (IS_ERR(jt)) 18651 return jt; 18652 18653 /* Check that the every element of the jump table fits within the given subprogram */ 18654 for (i = 0; i < jt->cnt; i++) { 18655 if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) { 18656 verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n", 18657 t, subprog_start, subprog_end); 18658 kvfree(jt); 18659 return ERR_PTR(-EINVAL); 18660 } 18661 } 18662 18663 return jt; 18664 } 18665 18666 /* "conditional jump with N edges" */ 18667 static int visit_gotox_insn(int t, struct bpf_verifier_env *env) 18668 { 18669 int *insn_stack = env->cfg.insn_stack; 18670 int *insn_state = env->cfg.insn_state; 18671 bool keep_exploring = false; 18672 struct bpf_iarray *jt; 18673 int i, w; 18674 18675 jt = env->insn_aux_data[t].jt; 18676 if (!jt) { 18677 jt = create_jt(t, env); 18678 if (IS_ERR(jt)) 18679 return PTR_ERR(jt); 18680 18681 env->insn_aux_data[t].jt = jt; 18682 } 18683 18684 mark_prune_point(env, t); 18685 for (i = 0; i < jt->cnt; i++) { 18686 w = jt->items[i]; 18687 if (w < 0 || w >= env->prog->len) { 18688 verbose(env, "indirect jump out of range from insn %d to %d\n", t, w); 18689 return -EINVAL; 18690 } 18691 18692 mark_jmp_point(env, w); 18693 18694 /* EXPLORED || DISCOVERED */ 18695 if (insn_state[w]) 18696 continue; 18697 18698 if (env->cfg.cur_stack >= env->prog->len) 18699 return -E2BIG; 18700 18701 insn_stack[env->cfg.cur_stack++] = w; 18702 insn_state[w] |= DISCOVERED; 18703 keep_exploring = true; 18704 } 18705 18706 return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING; 18707 } 18708 18709 static int visit_tailcall_insn(struct bpf_verifier_env *env, int t) 18710 { 18711 static struct bpf_subprog_info *subprog; 18712 struct bpf_iarray *jt; 18713 18714 if (env->insn_aux_data[t].jt) 18715 return 0; 18716 18717 jt = iarray_realloc(NULL, 2); 18718 if (!jt) 18719 return -ENOMEM; 18720 18721 subprog = bpf_find_containing_subprog(env, t); 18722 jt->items[0] = t + 1; 18723 jt->items[1] = subprog->exit_idx; 18724 env->insn_aux_data[t].jt = jt; 18725 return 0; 18726 } 18727 18728 /* Visits the instruction at index t and returns one of the following: 18729 * < 0 - an error occurred 18730 * DONE_EXPLORING - the instruction was fully explored 18731 * KEEP_EXPLORING - there is still work to be done before it is fully explored 18732 */ 18733 static int visit_insn(int t, struct bpf_verifier_env *env) 18734 { 18735 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 18736 int ret, off, insn_sz; 18737 18738 if (bpf_pseudo_func(insn)) 18739 return visit_func_call_insn(t, insns, env, true); 18740 18741 /* All non-branch instructions have a single fall-through edge. */ 18742 if (BPF_CLASS(insn->code) != BPF_JMP && 18743 BPF_CLASS(insn->code) != BPF_JMP32) { 18744 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 18745 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 18746 } 18747 18748 switch (BPF_OP(insn->code)) { 18749 case BPF_EXIT: 18750 return DONE_EXPLORING; 18751 18752 case BPF_CALL: 18753 if (is_async_callback_calling_insn(insn)) 18754 /* Mark this call insn as a prune point to trigger 18755 * is_state_visited() check before call itself is 18756 * processed by __check_func_call(). Otherwise new 18757 * async state will be pushed for further exploration. 18758 */ 18759 mark_prune_point(env, t); 18760 /* For functions that invoke callbacks it is not known how many times 18761 * callback would be called. Verifier models callback calling functions 18762 * by repeatedly visiting callback bodies and returning to origin call 18763 * instruction. 18764 * In order to stop such iteration verifier needs to identify when a 18765 * state identical some state from a previous iteration is reached. 18766 * Check below forces creation of checkpoint before callback calling 18767 * instruction to allow search for such identical states. 18768 */ 18769 if (is_sync_callback_calling_insn(insn)) { 18770 mark_calls_callback(env, t); 18771 mark_force_checkpoint(env, t); 18772 mark_prune_point(env, t); 18773 mark_jmp_point(env, t); 18774 } 18775 if (bpf_helper_call(insn)) { 18776 const struct bpf_func_proto *fp; 18777 18778 ret = get_helper_proto(env, insn->imm, &fp); 18779 /* If called in a non-sleepable context program will be 18780 * rejected anyway, so we should end up with precise 18781 * sleepable marks on subprogs, except for dead code 18782 * elimination. 18783 */ 18784 if (ret == 0 && fp->might_sleep) 18785 mark_subprog_might_sleep(env, t); 18786 if (bpf_helper_changes_pkt_data(insn->imm)) 18787 mark_subprog_changes_pkt_data(env, t); 18788 if (insn->imm == BPF_FUNC_tail_call) 18789 visit_tailcall_insn(env, t); 18790 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18791 struct bpf_kfunc_call_arg_meta meta; 18792 18793 ret = fetch_kfunc_arg_meta(env, insn->imm, insn->off, &meta); 18794 if (ret == 0 && is_iter_next_kfunc(&meta)) { 18795 mark_prune_point(env, t); 18796 /* Checking and saving state checkpoints at iter_next() call 18797 * is crucial for fast convergence of open-coded iterator loop 18798 * logic, so we need to force it. If we don't do that, 18799 * is_state_visited() might skip saving a checkpoint, causing 18800 * unnecessarily long sequence of not checkpointed 18801 * instructions and jumps, leading to exhaustion of jump 18802 * history buffer, and potentially other undesired outcomes. 18803 * It is expected that with correct open-coded iterators 18804 * convergence will happen quickly, so we don't run a risk of 18805 * exhausting memory. 18806 */ 18807 mark_force_checkpoint(env, t); 18808 } 18809 /* Same as helpers, if called in a non-sleepable context 18810 * program will be rejected anyway, so we should end up 18811 * with precise sleepable marks on subprogs, except for 18812 * dead code elimination. 18813 */ 18814 if (ret == 0 && is_kfunc_sleepable(&meta)) 18815 mark_subprog_might_sleep(env, t); 18816 if (ret == 0 && is_kfunc_pkt_changing(&meta)) 18817 mark_subprog_changes_pkt_data(env, t); 18818 } 18819 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 18820 18821 case BPF_JA: 18822 if (BPF_SRC(insn->code) == BPF_X) 18823 return visit_gotox_insn(t, env); 18824 18825 if (BPF_CLASS(insn->code) == BPF_JMP) 18826 off = insn->off; 18827 else 18828 off = insn->imm; 18829 18830 /* unconditional jump with single edge */ 18831 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 18832 if (ret) 18833 return ret; 18834 18835 mark_prune_point(env, t + off + 1); 18836 mark_jmp_point(env, t + off + 1); 18837 18838 return ret; 18839 18840 default: 18841 /* conditional jump with two edges */ 18842 mark_prune_point(env, t); 18843 if (is_may_goto_insn(insn)) 18844 mark_force_checkpoint(env, t); 18845 18846 ret = push_insn(t, t + 1, FALLTHROUGH, env); 18847 if (ret) 18848 return ret; 18849 18850 return push_insn(t, t + insn->off + 1, BRANCH, env); 18851 } 18852 } 18853 18854 /* non-recursive depth-first-search to detect loops in BPF program 18855 * loop == back-edge in directed graph 18856 */ 18857 static int check_cfg(struct bpf_verifier_env *env) 18858 { 18859 int insn_cnt = env->prog->len; 18860 int *insn_stack, *insn_state; 18861 int ex_insn_beg, i, ret = 0; 18862 18863 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 18864 if (!insn_state) 18865 return -ENOMEM; 18866 18867 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 18868 if (!insn_stack) { 18869 kvfree(insn_state); 18870 return -ENOMEM; 18871 } 18872 18873 ex_insn_beg = env->exception_callback_subprog 18874 ? env->subprog_info[env->exception_callback_subprog].start 18875 : 0; 18876 18877 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 18878 insn_stack[0] = 0; /* 0 is the first instruction */ 18879 env->cfg.cur_stack = 1; 18880 18881 walk_cfg: 18882 while (env->cfg.cur_stack > 0) { 18883 int t = insn_stack[env->cfg.cur_stack - 1]; 18884 18885 ret = visit_insn(t, env); 18886 switch (ret) { 18887 case DONE_EXPLORING: 18888 insn_state[t] = EXPLORED; 18889 env->cfg.cur_stack--; 18890 break; 18891 case KEEP_EXPLORING: 18892 break; 18893 default: 18894 if (ret > 0) { 18895 verifier_bug(env, "visit_insn internal bug"); 18896 ret = -EFAULT; 18897 } 18898 goto err_free; 18899 } 18900 } 18901 18902 if (env->cfg.cur_stack < 0) { 18903 verifier_bug(env, "pop stack internal bug"); 18904 ret = -EFAULT; 18905 goto err_free; 18906 } 18907 18908 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 18909 insn_state[ex_insn_beg] = DISCOVERED; 18910 insn_stack[0] = ex_insn_beg; 18911 env->cfg.cur_stack = 1; 18912 goto walk_cfg; 18913 } 18914 18915 for (i = 0; i < insn_cnt; i++) { 18916 struct bpf_insn *insn = &env->prog->insnsi[i]; 18917 18918 if (insn_state[i] != EXPLORED) { 18919 verbose(env, "unreachable insn %d\n", i); 18920 ret = -EINVAL; 18921 goto err_free; 18922 } 18923 if (bpf_is_ldimm64(insn)) { 18924 if (insn_state[i + 1] != 0) { 18925 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 18926 ret = -EINVAL; 18927 goto err_free; 18928 } 18929 i++; /* skip second half of ldimm64 */ 18930 } 18931 } 18932 ret = 0; /* cfg looks good */ 18933 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 18934 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 18935 18936 err_free: 18937 kvfree(insn_state); 18938 kvfree(insn_stack); 18939 env->cfg.insn_state = env->cfg.insn_stack = NULL; 18940 return ret; 18941 } 18942 18943 /* 18944 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range 18945 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start) 18946 * with indices of 'i' instructions in postorder. 18947 */ 18948 static int compute_postorder(struct bpf_verifier_env *env) 18949 { 18950 u32 cur_postorder, i, top, stack_sz, s; 18951 int *stack = NULL, *postorder = NULL, *state = NULL; 18952 struct bpf_iarray *succ; 18953 18954 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18955 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18956 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18957 if (!postorder || !state || !stack) { 18958 kvfree(postorder); 18959 kvfree(state); 18960 kvfree(stack); 18961 return -ENOMEM; 18962 } 18963 cur_postorder = 0; 18964 for (i = 0; i < env->subprog_cnt; i++) { 18965 env->subprog_info[i].postorder_start = cur_postorder; 18966 stack[0] = env->subprog_info[i].start; 18967 stack_sz = 1; 18968 do { 18969 top = stack[stack_sz - 1]; 18970 state[top] |= DISCOVERED; 18971 if (state[top] & EXPLORED) { 18972 postorder[cur_postorder++] = top; 18973 stack_sz--; 18974 continue; 18975 } 18976 succ = bpf_insn_successors(env, top); 18977 for (s = 0; s < succ->cnt; ++s) { 18978 if (!state[succ->items[s]]) { 18979 stack[stack_sz++] = succ->items[s]; 18980 state[succ->items[s]] |= DISCOVERED; 18981 } 18982 } 18983 state[top] |= EXPLORED; 18984 } while (stack_sz); 18985 } 18986 env->subprog_info[i].postorder_start = cur_postorder; 18987 env->cfg.insn_postorder = postorder; 18988 env->cfg.cur_postorder = cur_postorder; 18989 kvfree(stack); 18990 kvfree(state); 18991 return 0; 18992 } 18993 18994 static int check_abnormal_return(struct bpf_verifier_env *env) 18995 { 18996 int i; 18997 18998 for (i = 1; i < env->subprog_cnt; i++) { 18999 if (env->subprog_info[i].has_ld_abs) { 19000 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 19001 return -EINVAL; 19002 } 19003 if (env->subprog_info[i].has_tail_call) { 19004 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 19005 return -EINVAL; 19006 } 19007 } 19008 return 0; 19009 } 19010 19011 /* The minimum supported BTF func info size */ 19012 #define MIN_BPF_FUNCINFO_SIZE 8 19013 #define MAX_FUNCINFO_REC_SIZE 252 19014 19015 static int check_btf_func_early(struct bpf_verifier_env *env, 19016 const union bpf_attr *attr, 19017 bpfptr_t uattr) 19018 { 19019 u32 krec_size = sizeof(struct bpf_func_info); 19020 const struct btf_type *type, *func_proto; 19021 u32 i, nfuncs, urec_size, min_size; 19022 struct bpf_func_info *krecord; 19023 struct bpf_prog *prog; 19024 const struct btf *btf; 19025 u32 prev_offset = 0; 19026 bpfptr_t urecord; 19027 int ret = -ENOMEM; 19028 19029 nfuncs = attr->func_info_cnt; 19030 if (!nfuncs) { 19031 if (check_abnormal_return(env)) 19032 return -EINVAL; 19033 return 0; 19034 } 19035 19036 urec_size = attr->func_info_rec_size; 19037 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 19038 urec_size > MAX_FUNCINFO_REC_SIZE || 19039 urec_size % sizeof(u32)) { 19040 verbose(env, "invalid func info rec size %u\n", urec_size); 19041 return -EINVAL; 19042 } 19043 19044 prog = env->prog; 19045 btf = prog->aux->btf; 19046 19047 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 19048 min_size = min_t(u32, krec_size, urec_size); 19049 19050 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 19051 if (!krecord) 19052 return -ENOMEM; 19053 19054 for (i = 0; i < nfuncs; i++) { 19055 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 19056 if (ret) { 19057 if (ret == -E2BIG) { 19058 verbose(env, "nonzero tailing record in func info"); 19059 /* set the size kernel expects so loader can zero 19060 * out the rest of the record. 19061 */ 19062 if (copy_to_bpfptr_offset(uattr, 19063 offsetof(union bpf_attr, func_info_rec_size), 19064 &min_size, sizeof(min_size))) 19065 ret = -EFAULT; 19066 } 19067 goto err_free; 19068 } 19069 19070 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 19071 ret = -EFAULT; 19072 goto err_free; 19073 } 19074 19075 /* check insn_off */ 19076 ret = -EINVAL; 19077 if (i == 0) { 19078 if (krecord[i].insn_off) { 19079 verbose(env, 19080 "nonzero insn_off %u for the first func info record", 19081 krecord[i].insn_off); 19082 goto err_free; 19083 } 19084 } else if (krecord[i].insn_off <= prev_offset) { 19085 verbose(env, 19086 "same or smaller insn offset (%u) than previous func info record (%u)", 19087 krecord[i].insn_off, prev_offset); 19088 goto err_free; 19089 } 19090 19091 /* check type_id */ 19092 type = btf_type_by_id(btf, krecord[i].type_id); 19093 if (!type || !btf_type_is_func(type)) { 19094 verbose(env, "invalid type id %d in func info", 19095 krecord[i].type_id); 19096 goto err_free; 19097 } 19098 19099 func_proto = btf_type_by_id(btf, type->type); 19100 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 19101 /* btf_func_check() already verified it during BTF load */ 19102 goto err_free; 19103 19104 prev_offset = krecord[i].insn_off; 19105 bpfptr_add(&urecord, urec_size); 19106 } 19107 19108 prog->aux->func_info = krecord; 19109 prog->aux->func_info_cnt = nfuncs; 19110 return 0; 19111 19112 err_free: 19113 kvfree(krecord); 19114 return ret; 19115 } 19116 19117 static int check_btf_func(struct bpf_verifier_env *env, 19118 const union bpf_attr *attr, 19119 bpfptr_t uattr) 19120 { 19121 const struct btf_type *type, *func_proto, *ret_type; 19122 u32 i, nfuncs, urec_size; 19123 struct bpf_func_info *krecord; 19124 struct bpf_func_info_aux *info_aux = NULL; 19125 struct bpf_prog *prog; 19126 const struct btf *btf; 19127 bpfptr_t urecord; 19128 bool scalar_return; 19129 int ret = -ENOMEM; 19130 19131 nfuncs = attr->func_info_cnt; 19132 if (!nfuncs) { 19133 if (check_abnormal_return(env)) 19134 return -EINVAL; 19135 return 0; 19136 } 19137 if (nfuncs != env->subprog_cnt) { 19138 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 19139 return -EINVAL; 19140 } 19141 19142 urec_size = attr->func_info_rec_size; 19143 19144 prog = env->prog; 19145 btf = prog->aux->btf; 19146 19147 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 19148 19149 krecord = prog->aux->func_info; 19150 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 19151 if (!info_aux) 19152 return -ENOMEM; 19153 19154 for (i = 0; i < nfuncs; i++) { 19155 /* check insn_off */ 19156 ret = -EINVAL; 19157 19158 if (env->subprog_info[i].start != krecord[i].insn_off) { 19159 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 19160 goto err_free; 19161 } 19162 19163 /* Already checked type_id */ 19164 type = btf_type_by_id(btf, krecord[i].type_id); 19165 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 19166 /* Already checked func_proto */ 19167 func_proto = btf_type_by_id(btf, type->type); 19168 19169 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 19170 scalar_return = 19171 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 19172 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 19173 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 19174 goto err_free; 19175 } 19176 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 19177 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 19178 goto err_free; 19179 } 19180 19181 bpfptr_add(&urecord, urec_size); 19182 } 19183 19184 prog->aux->func_info_aux = info_aux; 19185 return 0; 19186 19187 err_free: 19188 kfree(info_aux); 19189 return ret; 19190 } 19191 19192 static void adjust_btf_func(struct bpf_verifier_env *env) 19193 { 19194 struct bpf_prog_aux *aux = env->prog->aux; 19195 int i; 19196 19197 if (!aux->func_info) 19198 return; 19199 19200 /* func_info is not available for hidden subprogs */ 19201 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 19202 aux->func_info[i].insn_off = env->subprog_info[i].start; 19203 } 19204 19205 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 19206 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 19207 19208 static int check_btf_line(struct bpf_verifier_env *env, 19209 const union bpf_attr *attr, 19210 bpfptr_t uattr) 19211 { 19212 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 19213 struct bpf_subprog_info *sub; 19214 struct bpf_line_info *linfo; 19215 struct bpf_prog *prog; 19216 const struct btf *btf; 19217 bpfptr_t ulinfo; 19218 int err; 19219 19220 nr_linfo = attr->line_info_cnt; 19221 if (!nr_linfo) 19222 return 0; 19223 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 19224 return -EINVAL; 19225 19226 rec_size = attr->line_info_rec_size; 19227 if (rec_size < MIN_BPF_LINEINFO_SIZE || 19228 rec_size > MAX_LINEINFO_REC_SIZE || 19229 rec_size & (sizeof(u32) - 1)) 19230 return -EINVAL; 19231 19232 /* Need to zero it in case the userspace may 19233 * pass in a smaller bpf_line_info object. 19234 */ 19235 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 19236 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 19237 if (!linfo) 19238 return -ENOMEM; 19239 19240 prog = env->prog; 19241 btf = prog->aux->btf; 19242 19243 s = 0; 19244 sub = env->subprog_info; 19245 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 19246 expected_size = sizeof(struct bpf_line_info); 19247 ncopy = min_t(u32, expected_size, rec_size); 19248 for (i = 0; i < nr_linfo; i++) { 19249 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 19250 if (err) { 19251 if (err == -E2BIG) { 19252 verbose(env, "nonzero tailing record in line_info"); 19253 if (copy_to_bpfptr_offset(uattr, 19254 offsetof(union bpf_attr, line_info_rec_size), 19255 &expected_size, sizeof(expected_size))) 19256 err = -EFAULT; 19257 } 19258 goto err_free; 19259 } 19260 19261 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 19262 err = -EFAULT; 19263 goto err_free; 19264 } 19265 19266 /* 19267 * Check insn_off to ensure 19268 * 1) strictly increasing AND 19269 * 2) bounded by prog->len 19270 * 19271 * The linfo[0].insn_off == 0 check logically falls into 19272 * the later "missing bpf_line_info for func..." case 19273 * because the first linfo[0].insn_off must be the 19274 * first sub also and the first sub must have 19275 * subprog_info[0].start == 0. 19276 */ 19277 if ((i && linfo[i].insn_off <= prev_offset) || 19278 linfo[i].insn_off >= prog->len) { 19279 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 19280 i, linfo[i].insn_off, prev_offset, 19281 prog->len); 19282 err = -EINVAL; 19283 goto err_free; 19284 } 19285 19286 if (!prog->insnsi[linfo[i].insn_off].code) { 19287 verbose(env, 19288 "Invalid insn code at line_info[%u].insn_off\n", 19289 i); 19290 err = -EINVAL; 19291 goto err_free; 19292 } 19293 19294 if (!btf_name_by_offset(btf, linfo[i].line_off) || 19295 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 19296 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 19297 err = -EINVAL; 19298 goto err_free; 19299 } 19300 19301 if (s != env->subprog_cnt) { 19302 if (linfo[i].insn_off == sub[s].start) { 19303 sub[s].linfo_idx = i; 19304 s++; 19305 } else if (sub[s].start < linfo[i].insn_off) { 19306 verbose(env, "missing bpf_line_info for func#%u\n", s); 19307 err = -EINVAL; 19308 goto err_free; 19309 } 19310 } 19311 19312 prev_offset = linfo[i].insn_off; 19313 bpfptr_add(&ulinfo, rec_size); 19314 } 19315 19316 if (s != env->subprog_cnt) { 19317 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 19318 env->subprog_cnt - s, s); 19319 err = -EINVAL; 19320 goto err_free; 19321 } 19322 19323 prog->aux->linfo = linfo; 19324 prog->aux->nr_linfo = nr_linfo; 19325 19326 return 0; 19327 19328 err_free: 19329 kvfree(linfo); 19330 return err; 19331 } 19332 19333 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 19334 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 19335 19336 static int check_core_relo(struct bpf_verifier_env *env, 19337 const union bpf_attr *attr, 19338 bpfptr_t uattr) 19339 { 19340 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 19341 struct bpf_core_relo core_relo = {}; 19342 struct bpf_prog *prog = env->prog; 19343 const struct btf *btf = prog->aux->btf; 19344 struct bpf_core_ctx ctx = { 19345 .log = &env->log, 19346 .btf = btf, 19347 }; 19348 bpfptr_t u_core_relo; 19349 int err; 19350 19351 nr_core_relo = attr->core_relo_cnt; 19352 if (!nr_core_relo) 19353 return 0; 19354 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 19355 return -EINVAL; 19356 19357 rec_size = attr->core_relo_rec_size; 19358 if (rec_size < MIN_CORE_RELO_SIZE || 19359 rec_size > MAX_CORE_RELO_SIZE || 19360 rec_size % sizeof(u32)) 19361 return -EINVAL; 19362 19363 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 19364 expected_size = sizeof(struct bpf_core_relo); 19365 ncopy = min_t(u32, expected_size, rec_size); 19366 19367 /* Unlike func_info and line_info, copy and apply each CO-RE 19368 * relocation record one at a time. 19369 */ 19370 for (i = 0; i < nr_core_relo; i++) { 19371 /* future proofing when sizeof(bpf_core_relo) changes */ 19372 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 19373 if (err) { 19374 if (err == -E2BIG) { 19375 verbose(env, "nonzero tailing record in core_relo"); 19376 if (copy_to_bpfptr_offset(uattr, 19377 offsetof(union bpf_attr, core_relo_rec_size), 19378 &expected_size, sizeof(expected_size))) 19379 err = -EFAULT; 19380 } 19381 break; 19382 } 19383 19384 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 19385 err = -EFAULT; 19386 break; 19387 } 19388 19389 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 19390 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 19391 i, core_relo.insn_off, prog->len); 19392 err = -EINVAL; 19393 break; 19394 } 19395 19396 err = bpf_core_apply(&ctx, &core_relo, i, 19397 &prog->insnsi[core_relo.insn_off / 8]); 19398 if (err) 19399 break; 19400 bpfptr_add(&u_core_relo, rec_size); 19401 } 19402 return err; 19403 } 19404 19405 static int check_btf_info_early(struct bpf_verifier_env *env, 19406 const union bpf_attr *attr, 19407 bpfptr_t uattr) 19408 { 19409 struct btf *btf; 19410 int err; 19411 19412 if (!attr->func_info_cnt && !attr->line_info_cnt) { 19413 if (check_abnormal_return(env)) 19414 return -EINVAL; 19415 return 0; 19416 } 19417 19418 btf = btf_get_by_fd(attr->prog_btf_fd); 19419 if (IS_ERR(btf)) 19420 return PTR_ERR(btf); 19421 if (btf_is_kernel(btf)) { 19422 btf_put(btf); 19423 return -EACCES; 19424 } 19425 env->prog->aux->btf = btf; 19426 19427 err = check_btf_func_early(env, attr, uattr); 19428 if (err) 19429 return err; 19430 return 0; 19431 } 19432 19433 static int check_btf_info(struct bpf_verifier_env *env, 19434 const union bpf_attr *attr, 19435 bpfptr_t uattr) 19436 { 19437 int err; 19438 19439 if (!attr->func_info_cnt && !attr->line_info_cnt) { 19440 if (check_abnormal_return(env)) 19441 return -EINVAL; 19442 return 0; 19443 } 19444 19445 err = check_btf_func(env, attr, uattr); 19446 if (err) 19447 return err; 19448 19449 err = check_btf_line(env, attr, uattr); 19450 if (err) 19451 return err; 19452 19453 err = check_core_relo(env, attr, uattr); 19454 if (err) 19455 return err; 19456 19457 return 0; 19458 } 19459 19460 /* check %cur's range satisfies %old's */ 19461 static bool range_within(const struct bpf_reg_state *old, 19462 const struct bpf_reg_state *cur) 19463 { 19464 return old->umin_value <= cur->umin_value && 19465 old->umax_value >= cur->umax_value && 19466 old->smin_value <= cur->smin_value && 19467 old->smax_value >= cur->smax_value && 19468 old->u32_min_value <= cur->u32_min_value && 19469 old->u32_max_value >= cur->u32_max_value && 19470 old->s32_min_value <= cur->s32_min_value && 19471 old->s32_max_value >= cur->s32_max_value; 19472 } 19473 19474 /* If in the old state two registers had the same id, then they need to have 19475 * the same id in the new state as well. But that id could be different from 19476 * the old state, so we need to track the mapping from old to new ids. 19477 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 19478 * regs with old id 5 must also have new id 9 for the new state to be safe. But 19479 * regs with a different old id could still have new id 9, we don't care about 19480 * that. 19481 * So we look through our idmap to see if this old id has been seen before. If 19482 * so, we require the new id to match; otherwise, we add the id pair to the map. 19483 */ 19484 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 19485 { 19486 struct bpf_id_pair *map = idmap->map; 19487 unsigned int i; 19488 19489 /* either both IDs should be set or both should be zero */ 19490 if (!!old_id != !!cur_id) 19491 return false; 19492 19493 if (old_id == 0) /* cur_id == 0 as well */ 19494 return true; 19495 19496 for (i = 0; i < idmap->cnt; i++) { 19497 if (map[i].old == old_id) 19498 return map[i].cur == cur_id; 19499 if (map[i].cur == cur_id) 19500 return false; 19501 } 19502 19503 /* Reached the end of known mappings; haven't seen this id before */ 19504 if (idmap->cnt < BPF_ID_MAP_SIZE) { 19505 map[idmap->cnt].old = old_id; 19506 map[idmap->cnt].cur = cur_id; 19507 idmap->cnt++; 19508 return true; 19509 } 19510 19511 /* We ran out of idmap slots, which should be impossible */ 19512 WARN_ON_ONCE(1); 19513 return false; 19514 } 19515 19516 /* 19517 * Compare scalar register IDs for state equivalence. 19518 * 19519 * When old_id == 0, the old register is independent - not linked to any 19520 * other register. Any linking in the current state only adds constraints, 19521 * making it more restrictive. Since the old state didn't rely on any ID 19522 * relationships for this register, it's always safe to accept cur regardless 19523 * of its ID. Hence, return true immediately. 19524 * 19525 * When old_id != 0 but cur_id == 0, we need to ensure that different 19526 * independent registers in cur don't incorrectly satisfy the ID matching 19527 * requirements of linked registers in old. 19528 * 19529 * Example: if old has r6.id=X and r7.id=X (linked), but cur has r6.id=0 19530 * and r7.id=0 (both independent), without temp IDs both would map old_id=X 19531 * to cur_id=0 and pass. With temp IDs: r6 maps X->temp1, r7 tries to map 19532 * X->temp2, but X is already mapped to temp1, so the check fails correctly. 19533 */ 19534 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 19535 { 19536 if (!old_id) 19537 return true; 19538 19539 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 19540 19541 return check_ids(old_id, cur_id, idmap); 19542 } 19543 19544 static void clean_func_state(struct bpf_verifier_env *env, 19545 struct bpf_func_state *st, 19546 u32 ip) 19547 { 19548 u16 live_regs = env->insn_aux_data[ip].live_regs_before; 19549 int i, j; 19550 19551 for (i = 0; i < BPF_REG_FP; i++) { 19552 /* liveness must not touch this register anymore */ 19553 if (!(live_regs & BIT(i))) 19554 /* since the register is unused, clear its state 19555 * to make further comparison simpler 19556 */ 19557 __mark_reg_not_init(env, &st->regs[i]); 19558 } 19559 19560 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 19561 if (!bpf_stack_slot_alive(env, st->frameno, i)) { 19562 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 19563 for (j = 0; j < BPF_REG_SIZE; j++) 19564 st->stack[i].slot_type[j] = STACK_INVALID; 19565 } 19566 } 19567 } 19568 19569 static void clean_verifier_state(struct bpf_verifier_env *env, 19570 struct bpf_verifier_state *st) 19571 { 19572 int i, ip; 19573 19574 bpf_live_stack_query_init(env, st); 19575 st->cleaned = true; 19576 for (i = 0; i <= st->curframe; i++) { 19577 ip = frame_insn_idx(st, i); 19578 clean_func_state(env, st->frame[i], ip); 19579 } 19580 } 19581 19582 /* the parentage chains form a tree. 19583 * the verifier states are added to state lists at given insn and 19584 * pushed into state stack for future exploration. 19585 * when the verifier reaches bpf_exit insn some of the verifier states 19586 * stored in the state lists have their final liveness state already, 19587 * but a lot of states will get revised from liveness point of view when 19588 * the verifier explores other branches. 19589 * Example: 19590 * 1: *(u64)(r10 - 8) = 1 19591 * 2: if r1 == 100 goto pc+1 19592 * 3: *(u64)(r10 - 8) = 2 19593 * 4: r0 = *(u64)(r10 - 8) 19594 * 5: exit 19595 * when the verifier reaches exit insn the stack slot -8 in the state list of 19596 * insn 2 is not yet marked alive. Then the verifier pops the other_branch 19597 * of insn 2 and goes exploring further. After the insn 4 read, liveness 19598 * analysis would propagate read mark for -8 at insn 2. 19599 * 19600 * Since the verifier pushes the branch states as it sees them while exploring 19601 * the program the condition of walking the branch instruction for the second 19602 * time means that all states below this branch were already explored and 19603 * their final liveness marks are already propagated. 19604 * Hence when the verifier completes the search of state list in is_state_visited() 19605 * we can call this clean_live_states() function to clear dead the registers and stack 19606 * slots to simplify state merging. 19607 * 19608 * Important note here that walking the same branch instruction in the callee 19609 * doesn't meant that the states are DONE. The verifier has to compare 19610 * the callsites 19611 */ 19612 19613 /* Find id in idset and increment its count, or add new entry */ 19614 static void idset_cnt_inc(struct bpf_idset *idset, u32 id) 19615 { 19616 u32 i; 19617 19618 for (i = 0; i < idset->num_ids; i++) { 19619 if (idset->entries[i].id == id) { 19620 idset->entries[i].cnt++; 19621 return; 19622 } 19623 } 19624 /* New id */ 19625 if (idset->num_ids < BPF_ID_MAP_SIZE) { 19626 idset->entries[idset->num_ids].id = id; 19627 idset->entries[idset->num_ids].cnt = 1; 19628 idset->num_ids++; 19629 } 19630 } 19631 19632 /* Find id in idset and return its count, or 0 if not found */ 19633 static u32 idset_cnt_get(struct bpf_idset *idset, u32 id) 19634 { 19635 u32 i; 19636 19637 for (i = 0; i < idset->num_ids; i++) { 19638 if (idset->entries[i].id == id) 19639 return idset->entries[i].cnt; 19640 } 19641 return 0; 19642 } 19643 19644 /* 19645 * Clear singular scalar ids in a state. 19646 * A register with a non-zero id is called singular if no other register shares 19647 * the same base id. Such registers can be treated as independent (id=0). 19648 */ 19649 static void clear_singular_ids(struct bpf_verifier_env *env, 19650 struct bpf_verifier_state *st) 19651 { 19652 struct bpf_idset *idset = &env->idset_scratch; 19653 struct bpf_func_state *func; 19654 struct bpf_reg_state *reg; 19655 19656 idset->num_ids = 0; 19657 19658 bpf_for_each_reg_in_vstate(st, func, reg, ({ 19659 if (reg->type != SCALAR_VALUE) 19660 continue; 19661 if (!reg->id) 19662 continue; 19663 idset_cnt_inc(idset, reg->id & ~BPF_ADD_CONST); 19664 })); 19665 19666 bpf_for_each_reg_in_vstate(st, func, reg, ({ 19667 if (reg->type != SCALAR_VALUE) 19668 continue; 19669 if (!reg->id) 19670 continue; 19671 if (idset_cnt_get(idset, reg->id & ~BPF_ADD_CONST) == 1) { 19672 reg->id = 0; 19673 reg->off = 0; 19674 } 19675 })); 19676 } 19677 19678 static void clean_live_states(struct bpf_verifier_env *env, int insn, 19679 struct bpf_verifier_state *cur) 19680 { 19681 struct bpf_verifier_state_list *sl; 19682 struct list_head *pos, *head; 19683 19684 head = explored_state(env, insn); 19685 list_for_each(pos, head) { 19686 sl = container_of(pos, struct bpf_verifier_state_list, node); 19687 if (sl->state.branches) 19688 continue; 19689 if (sl->state.insn_idx != insn || 19690 !same_callsites(&sl->state, cur)) 19691 continue; 19692 if (sl->state.cleaned) 19693 /* all regs in this state in all frames were already marked */ 19694 continue; 19695 if (incomplete_read_marks(env, &sl->state)) 19696 continue; 19697 clean_verifier_state(env, &sl->state); 19698 } 19699 } 19700 19701 static bool regs_exact(const struct bpf_reg_state *rold, 19702 const struct bpf_reg_state *rcur, 19703 struct bpf_idmap *idmap) 19704 { 19705 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 19706 check_ids(rold->id, rcur->id, idmap) && 19707 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 19708 } 19709 19710 enum exact_level { 19711 NOT_EXACT, 19712 EXACT, 19713 RANGE_WITHIN 19714 }; 19715 19716 /* Returns true if (rold safe implies rcur safe) */ 19717 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 19718 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 19719 enum exact_level exact) 19720 { 19721 if (exact == EXACT) 19722 return regs_exact(rold, rcur, idmap); 19723 19724 if (rold->type == NOT_INIT) 19725 /* explored state can't have used this */ 19726 return true; 19727 19728 /* Enforce that register types have to match exactly, including their 19729 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 19730 * rule. 19731 * 19732 * One can make a point that using a pointer register as unbounded 19733 * SCALAR would be technically acceptable, but this could lead to 19734 * pointer leaks because scalars are allowed to leak while pointers 19735 * are not. We could make this safe in special cases if root is 19736 * calling us, but it's probably not worth the hassle. 19737 * 19738 * Also, register types that are *not* MAYBE_NULL could technically be 19739 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 19740 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 19741 * to the same map). 19742 * However, if the old MAYBE_NULL register then got NULL checked, 19743 * doing so could have affected others with the same id, and we can't 19744 * check for that because we lost the id when we converted to 19745 * a non-MAYBE_NULL variant. 19746 * So, as a general rule we don't allow mixing MAYBE_NULL and 19747 * non-MAYBE_NULL registers as well. 19748 */ 19749 if (rold->type != rcur->type) 19750 return false; 19751 19752 switch (base_type(rold->type)) { 19753 case SCALAR_VALUE: 19754 if (env->explore_alu_limits) { 19755 /* explore_alu_limits disables tnum_in() and range_within() 19756 * logic and requires everything to be strict 19757 */ 19758 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 19759 check_scalar_ids(rold->id, rcur->id, idmap); 19760 } 19761 if (!rold->precise && exact == NOT_EXACT) 19762 return true; 19763 /* 19764 * Linked register tracking uses rold->id to detect relationships. 19765 * When rold->id == 0, the register is independent and any linking 19766 * in rcur only adds constraints. When rold->id != 0, we must verify 19767 * id mapping and (for BPF_ADD_CONST) offset consistency. 19768 * 19769 * +------------------+-----------+------------------+---------------+ 19770 * | | rold->id | rold + ADD_CONST | rold->id == 0 | 19771 * |------------------+-----------+------------------+---------------| 19772 * | rcur->id | range,ids | false | range | 19773 * | rcur + ADD_CONST | false | range,ids,off | range | 19774 * | rcur->id == 0 | range,ids | false | range | 19775 * +------------------+-----------+------------------+---------------+ 19776 * 19777 * Why check_ids() for scalar registers? 19778 * 19779 * Consider the following BPF code: 19780 * 1: r6 = ... unbound scalar, ID=a ... 19781 * 2: r7 = ... unbound scalar, ID=b ... 19782 * 3: if (r6 > r7) goto +1 19783 * 4: r6 = r7 19784 * 5: if (r6 > X) goto ... 19785 * 6: ... memory operation using r7 ... 19786 * 19787 * First verification path is [1-6]: 19788 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 19789 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 19790 * r7 <= X, because r6 and r7 share same id. 19791 * Next verification path is [1-4, 6]. 19792 * 19793 * Instruction (6) would be reached in two states: 19794 * I. r6{.id=b}, r7{.id=b} via path 1-6; 19795 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 19796 * 19797 * Use check_ids() to distinguish these states. 19798 * --- 19799 * Also verify that new value satisfies old value range knowledge. 19800 */ 19801 19802 /* ADD_CONST mismatch: different linking semantics */ 19803 if ((rold->id & BPF_ADD_CONST) && !(rcur->id & BPF_ADD_CONST)) 19804 return false; 19805 19806 if (rold->id && !(rold->id & BPF_ADD_CONST) && (rcur->id & BPF_ADD_CONST)) 19807 return false; 19808 19809 /* Both have offset linkage: offsets must match */ 19810 if ((rold->id & BPF_ADD_CONST) && rold->off != rcur->off) 19811 return false; 19812 19813 if (!check_scalar_ids(rold->id, rcur->id, idmap)) 19814 return false; 19815 19816 return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); 19817 case PTR_TO_MAP_KEY: 19818 case PTR_TO_MAP_VALUE: 19819 case PTR_TO_MEM: 19820 case PTR_TO_BUF: 19821 case PTR_TO_TP_BUFFER: 19822 /* If the new min/max/var_off satisfy the old ones and 19823 * everything else matches, we are OK. 19824 */ 19825 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 19826 range_within(rold, rcur) && 19827 tnum_in(rold->var_off, rcur->var_off) && 19828 check_ids(rold->id, rcur->id, idmap) && 19829 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 19830 case PTR_TO_PACKET_META: 19831 case PTR_TO_PACKET: 19832 /* We must have at least as much range as the old ptr 19833 * did, so that any accesses which were safe before are 19834 * still safe. This is true even if old range < old off, 19835 * since someone could have accessed through (ptr - k), or 19836 * even done ptr -= k in a register, to get a safe access. 19837 */ 19838 if (rold->range > rcur->range) 19839 return false; 19840 /* If the offsets don't match, we can't trust our alignment; 19841 * nor can we be sure that we won't fall out of range. 19842 */ 19843 if (rold->off != rcur->off) 19844 return false; 19845 /* id relations must be preserved */ 19846 if (!check_ids(rold->id, rcur->id, idmap)) 19847 return false; 19848 /* new val must satisfy old val knowledge */ 19849 return range_within(rold, rcur) && 19850 tnum_in(rold->var_off, rcur->var_off); 19851 case PTR_TO_STACK: 19852 /* two stack pointers are equal only if they're pointing to 19853 * the same stack frame, since fp-8 in foo != fp-8 in bar 19854 */ 19855 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 19856 case PTR_TO_ARENA: 19857 return true; 19858 case PTR_TO_INSN: 19859 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 19860 rold->off == rcur->off && range_within(rold, rcur) && 19861 tnum_in(rold->var_off, rcur->var_off); 19862 default: 19863 return regs_exact(rold, rcur, idmap); 19864 } 19865 } 19866 19867 static struct bpf_reg_state unbound_reg; 19868 19869 static __init int unbound_reg_init(void) 19870 { 19871 __mark_reg_unknown_imprecise(&unbound_reg); 19872 return 0; 19873 } 19874 late_initcall(unbound_reg_init); 19875 19876 static bool is_stack_all_misc(struct bpf_verifier_env *env, 19877 struct bpf_stack_state *stack) 19878 { 19879 u32 i; 19880 19881 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 19882 if ((stack->slot_type[i] == STACK_MISC) || 19883 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 19884 continue; 19885 return false; 19886 } 19887 19888 return true; 19889 } 19890 19891 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 19892 struct bpf_stack_state *stack) 19893 { 19894 if (is_spilled_scalar_reg64(stack)) 19895 return &stack->spilled_ptr; 19896 19897 if (is_stack_all_misc(env, stack)) 19898 return &unbound_reg; 19899 19900 return NULL; 19901 } 19902 19903 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 19904 struct bpf_func_state *cur, struct bpf_idmap *idmap, 19905 enum exact_level exact) 19906 { 19907 int i, spi; 19908 19909 /* walk slots of the explored stack and ignore any additional 19910 * slots in the current stack, since explored(safe) state 19911 * didn't use them 19912 */ 19913 for (i = 0; i < old->allocated_stack; i++) { 19914 struct bpf_reg_state *old_reg, *cur_reg; 19915 19916 spi = i / BPF_REG_SIZE; 19917 19918 if (exact == EXACT && 19919 (i >= cur->allocated_stack || 19920 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 19921 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 19922 return false; 19923 19924 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 19925 continue; 19926 19927 if (env->allow_uninit_stack && 19928 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 19929 continue; 19930 19931 /* explored stack has more populated slots than current stack 19932 * and these slots were used 19933 */ 19934 if (i >= cur->allocated_stack) 19935 return false; 19936 19937 /* 64-bit scalar spill vs all slots MISC and vice versa. 19938 * Load from all slots MISC produces unbound scalar. 19939 * Construct a fake register for such stack and call 19940 * regsafe() to ensure scalar ids are compared. 19941 */ 19942 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 19943 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 19944 if (old_reg && cur_reg) { 19945 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 19946 return false; 19947 i += BPF_REG_SIZE - 1; 19948 continue; 19949 } 19950 19951 /* if old state was safe with misc data in the stack 19952 * it will be safe with zero-initialized stack. 19953 * The opposite is not true 19954 */ 19955 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 19956 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 19957 continue; 19958 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 19959 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 19960 /* Ex: old explored (safe) state has STACK_SPILL in 19961 * this stack slot, but current has STACK_MISC -> 19962 * this verifier states are not equivalent, 19963 * return false to continue verification of this path 19964 */ 19965 return false; 19966 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 19967 continue; 19968 /* Both old and cur are having same slot_type */ 19969 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 19970 case STACK_SPILL: 19971 /* when explored and current stack slot are both storing 19972 * spilled registers, check that stored pointers types 19973 * are the same as well. 19974 * Ex: explored safe path could have stored 19975 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 19976 * but current path has stored: 19977 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 19978 * such verifier states are not equivalent. 19979 * return false to continue verification of this path 19980 */ 19981 if (!regsafe(env, &old->stack[spi].spilled_ptr, 19982 &cur->stack[spi].spilled_ptr, idmap, exact)) 19983 return false; 19984 break; 19985 case STACK_DYNPTR: 19986 old_reg = &old->stack[spi].spilled_ptr; 19987 cur_reg = &cur->stack[spi].spilled_ptr; 19988 if (old_reg->dynptr.type != cur_reg->dynptr.type || 19989 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 19990 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 19991 return false; 19992 break; 19993 case STACK_ITER: 19994 old_reg = &old->stack[spi].spilled_ptr; 19995 cur_reg = &cur->stack[spi].spilled_ptr; 19996 /* iter.depth is not compared between states as it 19997 * doesn't matter for correctness and would otherwise 19998 * prevent convergence; we maintain it only to prevent 19999 * infinite loop check triggering, see 20000 * iter_active_depths_differ() 20001 */ 20002 if (old_reg->iter.btf != cur_reg->iter.btf || 20003 old_reg->iter.btf_id != cur_reg->iter.btf_id || 20004 old_reg->iter.state != cur_reg->iter.state || 20005 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 20006 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 20007 return false; 20008 break; 20009 case STACK_IRQ_FLAG: 20010 old_reg = &old->stack[spi].spilled_ptr; 20011 cur_reg = &cur->stack[spi].spilled_ptr; 20012 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 20013 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 20014 return false; 20015 break; 20016 case STACK_MISC: 20017 case STACK_ZERO: 20018 case STACK_INVALID: 20019 continue; 20020 /* Ensure that new unhandled slot types return false by default */ 20021 default: 20022 return false; 20023 } 20024 } 20025 return true; 20026 } 20027 20028 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 20029 struct bpf_idmap *idmap) 20030 { 20031 int i; 20032 20033 if (old->acquired_refs != cur->acquired_refs) 20034 return false; 20035 20036 if (old->active_locks != cur->active_locks) 20037 return false; 20038 20039 if (old->active_preempt_locks != cur->active_preempt_locks) 20040 return false; 20041 20042 if (old->active_rcu_locks != cur->active_rcu_locks) 20043 return false; 20044 20045 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 20046 return false; 20047 20048 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 20049 old->active_lock_ptr != cur->active_lock_ptr) 20050 return false; 20051 20052 for (i = 0; i < old->acquired_refs; i++) { 20053 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 20054 old->refs[i].type != cur->refs[i].type) 20055 return false; 20056 switch (old->refs[i].type) { 20057 case REF_TYPE_PTR: 20058 case REF_TYPE_IRQ: 20059 break; 20060 case REF_TYPE_LOCK: 20061 case REF_TYPE_RES_LOCK: 20062 case REF_TYPE_RES_LOCK_IRQ: 20063 if (old->refs[i].ptr != cur->refs[i].ptr) 20064 return false; 20065 break; 20066 default: 20067 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 20068 return false; 20069 } 20070 } 20071 20072 return true; 20073 } 20074 20075 /* compare two verifier states 20076 * 20077 * all states stored in state_list are known to be valid, since 20078 * verifier reached 'bpf_exit' instruction through them 20079 * 20080 * this function is called when verifier exploring different branches of 20081 * execution popped from the state stack. If it sees an old state that has 20082 * more strict register state and more strict stack state then this execution 20083 * branch doesn't need to be explored further, since verifier already 20084 * concluded that more strict state leads to valid finish. 20085 * 20086 * Therefore two states are equivalent if register state is more conservative 20087 * and explored stack state is more conservative than the current one. 20088 * Example: 20089 * explored current 20090 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 20091 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 20092 * 20093 * In other words if current stack state (one being explored) has more 20094 * valid slots than old one that already passed validation, it means 20095 * the verifier can stop exploring and conclude that current state is valid too 20096 * 20097 * Similarly with registers. If explored state has register type as invalid 20098 * whereas register type in current state is meaningful, it means that 20099 * the current state will reach 'bpf_exit' instruction safely 20100 */ 20101 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 20102 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 20103 { 20104 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 20105 u16 i; 20106 20107 if (old->callback_depth > cur->callback_depth) 20108 return false; 20109 20110 for (i = 0; i < MAX_BPF_REG; i++) 20111 if (((1 << i) & live_regs) && 20112 !regsafe(env, &old->regs[i], &cur->regs[i], 20113 &env->idmap_scratch, exact)) 20114 return false; 20115 20116 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 20117 return false; 20118 20119 return true; 20120 } 20121 20122 static void reset_idmap_scratch(struct bpf_verifier_env *env) 20123 { 20124 struct bpf_idmap *idmap = &env->idmap_scratch; 20125 20126 idmap->tmp_id_gen = env->id_gen; 20127 idmap->cnt = 0; 20128 } 20129 20130 static bool states_equal(struct bpf_verifier_env *env, 20131 struct bpf_verifier_state *old, 20132 struct bpf_verifier_state *cur, 20133 enum exact_level exact) 20134 { 20135 u32 insn_idx; 20136 int i; 20137 20138 if (old->curframe != cur->curframe) 20139 return false; 20140 20141 reset_idmap_scratch(env); 20142 20143 /* Verification state from speculative execution simulation 20144 * must never prune a non-speculative execution one. 20145 */ 20146 if (old->speculative && !cur->speculative) 20147 return false; 20148 20149 if (old->in_sleepable != cur->in_sleepable) 20150 return false; 20151 20152 if (!refsafe(old, cur, &env->idmap_scratch)) 20153 return false; 20154 20155 /* for states to be equal callsites have to be the same 20156 * and all frame states need to be equivalent 20157 */ 20158 for (i = 0; i <= old->curframe; i++) { 20159 insn_idx = frame_insn_idx(old, i); 20160 if (old->frame[i]->callsite != cur->frame[i]->callsite) 20161 return false; 20162 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 20163 return false; 20164 } 20165 return true; 20166 } 20167 20168 /* find precise scalars in the previous equivalent state and 20169 * propagate them into the current state 20170 */ 20171 static int propagate_precision(struct bpf_verifier_env *env, 20172 const struct bpf_verifier_state *old, 20173 struct bpf_verifier_state *cur, 20174 bool *changed) 20175 { 20176 struct bpf_reg_state *state_reg; 20177 struct bpf_func_state *state; 20178 int i, err = 0, fr; 20179 bool first; 20180 20181 for (fr = old->curframe; fr >= 0; fr--) { 20182 state = old->frame[fr]; 20183 state_reg = state->regs; 20184 first = true; 20185 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 20186 if (state_reg->type != SCALAR_VALUE || 20187 !state_reg->precise) 20188 continue; 20189 if (env->log.level & BPF_LOG_LEVEL2) { 20190 if (first) 20191 verbose(env, "frame %d: propagating r%d", fr, i); 20192 else 20193 verbose(env, ",r%d", i); 20194 } 20195 bt_set_frame_reg(&env->bt, fr, i); 20196 first = false; 20197 } 20198 20199 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 20200 if (!is_spilled_reg(&state->stack[i])) 20201 continue; 20202 state_reg = &state->stack[i].spilled_ptr; 20203 if (state_reg->type != SCALAR_VALUE || 20204 !state_reg->precise) 20205 continue; 20206 if (env->log.level & BPF_LOG_LEVEL2) { 20207 if (first) 20208 verbose(env, "frame %d: propagating fp%d", 20209 fr, (-i - 1) * BPF_REG_SIZE); 20210 else 20211 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 20212 } 20213 bt_set_frame_slot(&env->bt, fr, i); 20214 first = false; 20215 } 20216 if (!first && (env->log.level & BPF_LOG_LEVEL2)) 20217 verbose(env, "\n"); 20218 } 20219 20220 err = __mark_chain_precision(env, cur, -1, changed); 20221 if (err < 0) 20222 return err; 20223 20224 return 0; 20225 } 20226 20227 #define MAX_BACKEDGE_ITERS 64 20228 20229 /* Propagate read and precision marks from visit->backedges[*].state->equal_state 20230 * to corresponding parent states of visit->backedges[*].state until fixed point is reached, 20231 * then free visit->backedges. 20232 * After execution of this function incomplete_read_marks() will return false 20233 * for all states corresponding to @visit->callchain. 20234 */ 20235 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) 20236 { 20237 struct bpf_scc_backedge *backedge; 20238 struct bpf_verifier_state *st; 20239 bool changed; 20240 int i, err; 20241 20242 i = 0; 20243 do { 20244 if (i++ > MAX_BACKEDGE_ITERS) { 20245 if (env->log.level & BPF_LOG_LEVEL2) 20246 verbose(env, "%s: too many iterations\n", __func__); 20247 for (backedge = visit->backedges; backedge; backedge = backedge->next) 20248 mark_all_scalars_precise(env, &backedge->state); 20249 break; 20250 } 20251 changed = false; 20252 for (backedge = visit->backedges; backedge; backedge = backedge->next) { 20253 st = &backedge->state; 20254 err = propagate_precision(env, st->equal_state, st, &changed); 20255 if (err) 20256 return err; 20257 } 20258 } while (changed); 20259 20260 free_backedges(visit); 20261 return 0; 20262 } 20263 20264 static bool states_maybe_looping(struct bpf_verifier_state *old, 20265 struct bpf_verifier_state *cur) 20266 { 20267 struct bpf_func_state *fold, *fcur; 20268 int i, fr = cur->curframe; 20269 20270 if (old->curframe != fr) 20271 return false; 20272 20273 fold = old->frame[fr]; 20274 fcur = cur->frame[fr]; 20275 for (i = 0; i < MAX_BPF_REG; i++) 20276 if (memcmp(&fold->regs[i], &fcur->regs[i], 20277 offsetof(struct bpf_reg_state, frameno))) 20278 return false; 20279 return true; 20280 } 20281 20282 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 20283 { 20284 return env->insn_aux_data[insn_idx].is_iter_next; 20285 } 20286 20287 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 20288 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 20289 * states to match, which otherwise would look like an infinite loop. So while 20290 * iter_next() calls are taken care of, we still need to be careful and 20291 * prevent erroneous and too eager declaration of "infinite loop", when 20292 * iterators are involved. 20293 * 20294 * Here's a situation in pseudo-BPF assembly form: 20295 * 20296 * 0: again: ; set up iter_next() call args 20297 * 1: r1 = &it ; <CHECKPOINT HERE> 20298 * 2: call bpf_iter_num_next ; this is iter_next() call 20299 * 3: if r0 == 0 goto done 20300 * 4: ... something useful here ... 20301 * 5: goto again ; another iteration 20302 * 6: done: 20303 * 7: r1 = &it 20304 * 8: call bpf_iter_num_destroy ; clean up iter state 20305 * 9: exit 20306 * 20307 * This is a typical loop. Let's assume that we have a prune point at 1:, 20308 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 20309 * again`, assuming other heuristics don't get in a way). 20310 * 20311 * When we first time come to 1:, let's say we have some state X. We proceed 20312 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 20313 * Now we come back to validate that forked ACTIVE state. We proceed through 20314 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 20315 * are converging. But the problem is that we don't know that yet, as this 20316 * convergence has to happen at iter_next() call site only. So if nothing is 20317 * done, at 1: verifier will use bounded loop logic and declare infinite 20318 * looping (and would be *technically* correct, if not for iterator's 20319 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 20320 * don't want that. So what we do in process_iter_next_call() when we go on 20321 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 20322 * a different iteration. So when we suspect an infinite loop, we additionally 20323 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 20324 * pretend we are not looping and wait for next iter_next() call. 20325 * 20326 * This only applies to ACTIVE state. In DRAINED state we don't expect to 20327 * loop, because that would actually mean infinite loop, as DRAINED state is 20328 * "sticky", and so we'll keep returning into the same instruction with the 20329 * same state (at least in one of possible code paths). 20330 * 20331 * This approach allows to keep infinite loop heuristic even in the face of 20332 * active iterator. E.g., C snippet below is and will be detected as 20333 * infinitely looping: 20334 * 20335 * struct bpf_iter_num it; 20336 * int *p, x; 20337 * 20338 * bpf_iter_num_new(&it, 0, 10); 20339 * while ((p = bpf_iter_num_next(&t))) { 20340 * x = p; 20341 * while (x--) {} // <<-- infinite loop here 20342 * } 20343 * 20344 */ 20345 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 20346 { 20347 struct bpf_reg_state *slot, *cur_slot; 20348 struct bpf_func_state *state; 20349 int i, fr; 20350 20351 for (fr = old->curframe; fr >= 0; fr--) { 20352 state = old->frame[fr]; 20353 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 20354 if (state->stack[i].slot_type[0] != STACK_ITER) 20355 continue; 20356 20357 slot = &state->stack[i].spilled_ptr; 20358 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 20359 continue; 20360 20361 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 20362 if (cur_slot->iter.depth != slot->iter.depth) 20363 return true; 20364 } 20365 } 20366 return false; 20367 } 20368 20369 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 20370 { 20371 struct bpf_verifier_state_list *new_sl; 20372 struct bpf_verifier_state_list *sl; 20373 struct bpf_verifier_state *cur = env->cur_state, *new; 20374 bool force_new_state, add_new_state, loop; 20375 int n, err, states_cnt = 0; 20376 struct list_head *pos, *tmp, *head; 20377 20378 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 20379 /* Avoid accumulating infinitely long jmp history */ 20380 cur->jmp_history_cnt > 40; 20381 20382 /* bpf progs typically have pruning point every 4 instructions 20383 * http://vger.kernel.org/bpfconf2019.html#session-1 20384 * Do not add new state for future pruning if the verifier hasn't seen 20385 * at least 2 jumps and at least 8 instructions. 20386 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 20387 * In tests that amounts to up to 50% reduction into total verifier 20388 * memory consumption and 20% verifier time speedup. 20389 */ 20390 add_new_state = force_new_state; 20391 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 20392 env->insn_processed - env->prev_insn_processed >= 8) 20393 add_new_state = true; 20394 20395 clean_live_states(env, insn_idx, cur); 20396 20397 loop = false; 20398 head = explored_state(env, insn_idx); 20399 list_for_each_safe(pos, tmp, head) { 20400 sl = container_of(pos, struct bpf_verifier_state_list, node); 20401 states_cnt++; 20402 if (sl->state.insn_idx != insn_idx) 20403 continue; 20404 20405 if (sl->state.branches) { 20406 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 20407 20408 if (frame->in_async_callback_fn && 20409 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 20410 /* Different async_entry_cnt means that the verifier is 20411 * processing another entry into async callback. 20412 * Seeing the same state is not an indication of infinite 20413 * loop or infinite recursion. 20414 * But finding the same state doesn't mean that it's safe 20415 * to stop processing the current state. The previous state 20416 * hasn't yet reached bpf_exit, since state.branches > 0. 20417 * Checking in_async_callback_fn alone is not enough either. 20418 * Since the verifier still needs to catch infinite loops 20419 * inside async callbacks. 20420 */ 20421 goto skip_inf_loop_check; 20422 } 20423 /* BPF open-coded iterators loop detection is special. 20424 * states_maybe_looping() logic is too simplistic in detecting 20425 * states that *might* be equivalent, because it doesn't know 20426 * about ID remapping, so don't even perform it. 20427 * See process_iter_next_call() and iter_active_depths_differ() 20428 * for overview of the logic. When current and one of parent 20429 * states are detected as equivalent, it's a good thing: we prove 20430 * convergence and can stop simulating further iterations. 20431 * It's safe to assume that iterator loop will finish, taking into 20432 * account iter_next() contract of eventually returning 20433 * sticky NULL result. 20434 * 20435 * Note, that states have to be compared exactly in this case because 20436 * read and precision marks might not be finalized inside the loop. 20437 * E.g. as in the program below: 20438 * 20439 * 1. r7 = -16 20440 * 2. r6 = bpf_get_prandom_u32() 20441 * 3. while (bpf_iter_num_next(&fp[-8])) { 20442 * 4. if (r6 != 42) { 20443 * 5. r7 = -32 20444 * 6. r6 = bpf_get_prandom_u32() 20445 * 7. continue 20446 * 8. } 20447 * 9. r0 = r10 20448 * 10. r0 += r7 20449 * 11. r8 = *(u64 *)(r0 + 0) 20450 * 12. r6 = bpf_get_prandom_u32() 20451 * 13. } 20452 * 20453 * Here verifier would first visit path 1-3, create a checkpoint at 3 20454 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 20455 * not have read or precision mark for r7 yet, thus inexact states 20456 * comparison would discard current state with r7=-32 20457 * => unsafe memory access at 11 would not be caught. 20458 */ 20459 if (is_iter_next_insn(env, insn_idx)) { 20460 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 20461 struct bpf_func_state *cur_frame; 20462 struct bpf_reg_state *iter_state, *iter_reg; 20463 int spi; 20464 20465 cur_frame = cur->frame[cur->curframe]; 20466 /* btf_check_iter_kfuncs() enforces that 20467 * iter state pointer is always the first arg 20468 */ 20469 iter_reg = &cur_frame->regs[BPF_REG_1]; 20470 /* current state is valid due to states_equal(), 20471 * so we can assume valid iter and reg state, 20472 * no need for extra (re-)validations 20473 */ 20474 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 20475 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 20476 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 20477 loop = true; 20478 goto hit; 20479 } 20480 } 20481 goto skip_inf_loop_check; 20482 } 20483 if (is_may_goto_insn_at(env, insn_idx)) { 20484 if (sl->state.may_goto_depth != cur->may_goto_depth && 20485 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 20486 loop = true; 20487 goto hit; 20488 } 20489 } 20490 if (bpf_calls_callback(env, insn_idx)) { 20491 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 20492 loop = true; 20493 goto hit; 20494 } 20495 goto skip_inf_loop_check; 20496 } 20497 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 20498 if (states_maybe_looping(&sl->state, cur) && 20499 states_equal(env, &sl->state, cur, EXACT) && 20500 !iter_active_depths_differ(&sl->state, cur) && 20501 sl->state.may_goto_depth == cur->may_goto_depth && 20502 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 20503 verbose_linfo(env, insn_idx, "; "); 20504 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 20505 verbose(env, "cur state:"); 20506 print_verifier_state(env, cur, cur->curframe, true); 20507 verbose(env, "old state:"); 20508 print_verifier_state(env, &sl->state, cur->curframe, true); 20509 return -EINVAL; 20510 } 20511 /* if the verifier is processing a loop, avoid adding new state 20512 * too often, since different loop iterations have distinct 20513 * states and may not help future pruning. 20514 * This threshold shouldn't be too low to make sure that 20515 * a loop with large bound will be rejected quickly. 20516 * The most abusive loop will be: 20517 * r1 += 1 20518 * if r1 < 1000000 goto pc-2 20519 * 1M insn_procssed limit / 100 == 10k peak states. 20520 * This threshold shouldn't be too high either, since states 20521 * at the end of the loop are likely to be useful in pruning. 20522 */ 20523 skip_inf_loop_check: 20524 if (!force_new_state && 20525 env->jmps_processed - env->prev_jmps_processed < 20 && 20526 env->insn_processed - env->prev_insn_processed < 100) 20527 add_new_state = false; 20528 goto miss; 20529 } 20530 /* See comments for mark_all_regs_read_and_precise() */ 20531 loop = incomplete_read_marks(env, &sl->state); 20532 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { 20533 hit: 20534 sl->hit_cnt++; 20535 20536 /* if previous state reached the exit with precision and 20537 * current state is equivalent to it (except precision marks) 20538 * the precision needs to be propagated back in 20539 * the current state. 20540 */ 20541 err = 0; 20542 if (is_jmp_point(env, env->insn_idx)) 20543 err = push_jmp_history(env, cur, 0, 0); 20544 err = err ? : propagate_precision(env, &sl->state, cur, NULL); 20545 if (err) 20546 return err; 20547 /* When processing iterator based loops above propagate_liveness and 20548 * propagate_precision calls are not sufficient to transfer all relevant 20549 * read and precision marks. E.g. consider the following case: 20550 * 20551 * .-> A --. Assume the states are visited in the order A, B, C. 20552 * | | | Assume that state B reaches a state equivalent to state A. 20553 * | v v At this point, state C is not processed yet, so state A 20554 * '-- B C has not received any read or precision marks from C. 20555 * Thus, marks propagated from A to B are incomplete. 20556 * 20557 * The verifier mitigates this by performing the following steps: 20558 * 20559 * - Prior to the main verification pass, strongly connected components 20560 * (SCCs) are computed over the program's control flow graph, 20561 * intraprocedurally. 20562 * 20563 * - During the main verification pass, `maybe_enter_scc()` checks 20564 * whether the current verifier state is entering an SCC. If so, an 20565 * instance of a `bpf_scc_visit` object is created, and the state 20566 * entering the SCC is recorded as the entry state. 20567 * 20568 * - This instance is associated not with the SCC itself, but with a 20569 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to 20570 * the SCC and the SCC id. See `compute_scc_callchain()`. 20571 * 20572 * - When a verification path encounters a `states_equal(..., 20573 * RANGE_WITHIN)` condition, there exists a call chain describing the 20574 * current state and a corresponding `bpf_scc_visit` instance. A copy 20575 * of the current state is created and added to 20576 * `bpf_scc_visit->backedges`. 20577 * 20578 * - When a verification path terminates, `maybe_exit_scc()` is called 20579 * from `update_branch_counts()`. For states with `branches == 0`, it 20580 * checks whether the state is the entry state of any `bpf_scc_visit` 20581 * instance. If it is, this indicates that all paths originating from 20582 * this SCC visit have been explored. `propagate_backedges()` is then 20583 * called, which propagates read and precision marks through the 20584 * backedges until a fixed point is reached. 20585 * (In the earlier example, this would propagate marks from A to B, 20586 * from C to A, and then again from A to B.) 20587 * 20588 * A note on callchains 20589 * -------------------- 20590 * 20591 * Consider the following example: 20592 * 20593 * void foo() { loop { ... SCC#1 ... } } 20594 * void main() { 20595 * A: foo(); 20596 * B: ... 20597 * C: foo(); 20598 * } 20599 * 20600 * Here, there are two distinct callchains leading to SCC#1: 20601 * - (A, SCC#1) 20602 * - (C, SCC#1) 20603 * 20604 * Each callchain identifies a separate `bpf_scc_visit` instance that 20605 * accumulates backedge states. The `propagate_{liveness,precision}()` 20606 * functions traverse the parent state of each backedge state, which 20607 * means these parent states must remain valid (i.e., not freed) while 20608 * the corresponding `bpf_scc_visit` instance exists. 20609 * 20610 * Associating `bpf_scc_visit` instances directly with SCCs instead of 20611 * callchains would break this invariant: 20612 * - States explored during `C: foo()` would contribute backedges to 20613 * SCC#1, but SCC#1 would only be exited once the exploration of 20614 * `A: foo()` completes. 20615 * - By that time, the states explored between `A: foo()` and `C: foo()` 20616 * (i.e., `B: ...`) may have already been freed, causing the parent 20617 * links for states from `C: foo()` to become invalid. 20618 */ 20619 if (loop) { 20620 struct bpf_scc_backedge *backedge; 20621 20622 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); 20623 if (!backedge) 20624 return -ENOMEM; 20625 err = copy_verifier_state(&backedge->state, cur); 20626 backedge->state.equal_state = &sl->state; 20627 backedge->state.insn_idx = insn_idx; 20628 err = err ?: add_scc_backedge(env, &sl->state, backedge); 20629 if (err) { 20630 free_verifier_state(&backedge->state, false); 20631 kfree(backedge); 20632 return err; 20633 } 20634 } 20635 return 1; 20636 } 20637 miss: 20638 /* when new state is not going to be added do not increase miss count. 20639 * Otherwise several loop iterations will remove the state 20640 * recorded earlier. The goal of these heuristics is to have 20641 * states from some iterations of the loop (some in the beginning 20642 * and some at the end) to help pruning. 20643 */ 20644 if (add_new_state) 20645 sl->miss_cnt++; 20646 /* heuristic to determine whether this state is beneficial 20647 * to keep checking from state equivalence point of view. 20648 * Higher numbers increase max_states_per_insn and verification time, 20649 * but do not meaningfully decrease insn_processed. 20650 * 'n' controls how many times state could miss before eviction. 20651 * Use bigger 'n' for checkpoints because evicting checkpoint states 20652 * too early would hinder iterator convergence. 20653 */ 20654 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 20655 if (sl->miss_cnt > sl->hit_cnt * n + n) { 20656 /* the state is unlikely to be useful. Remove it to 20657 * speed up verification 20658 */ 20659 sl->in_free_list = true; 20660 list_del(&sl->node); 20661 list_add(&sl->node, &env->free_list); 20662 env->free_list_size++; 20663 env->explored_states_size--; 20664 maybe_free_verifier_state(env, sl); 20665 } 20666 } 20667 20668 if (env->max_states_per_insn < states_cnt) 20669 env->max_states_per_insn = states_cnt; 20670 20671 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 20672 return 0; 20673 20674 if (!add_new_state) 20675 return 0; 20676 20677 /* There were no equivalent states, remember the current one. 20678 * Technically the current state is not proven to be safe yet, 20679 * but it will either reach outer most bpf_exit (which means it's safe) 20680 * or it will be rejected. When there are no loops the verifier won't be 20681 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 20682 * again on the way to bpf_exit. 20683 * When looping the sl->state.branches will be > 0 and this state 20684 * will not be considered for equivalence until branches == 0. 20685 */ 20686 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); 20687 if (!new_sl) 20688 return -ENOMEM; 20689 env->total_states++; 20690 env->explored_states_size++; 20691 update_peak_states(env); 20692 env->prev_jmps_processed = env->jmps_processed; 20693 env->prev_insn_processed = env->insn_processed; 20694 20695 /* forget precise markings we inherited, see __mark_chain_precision */ 20696 if (env->bpf_capable) 20697 mark_all_scalars_imprecise(env, cur); 20698 20699 clear_singular_ids(env, cur); 20700 20701 /* add new state to the head of linked list */ 20702 new = &new_sl->state; 20703 err = copy_verifier_state(new, cur); 20704 if (err) { 20705 free_verifier_state(new, false); 20706 kfree(new_sl); 20707 return err; 20708 } 20709 new->insn_idx = insn_idx; 20710 verifier_bug_if(new->branches != 1, env, 20711 "%s:branches_to_explore=%d insn %d", 20712 __func__, new->branches, insn_idx); 20713 err = maybe_enter_scc(env, new); 20714 if (err) { 20715 free_verifier_state(new, false); 20716 kfree(new_sl); 20717 return err; 20718 } 20719 20720 cur->parent = new; 20721 cur->first_insn_idx = insn_idx; 20722 cur->dfs_depth = new->dfs_depth + 1; 20723 clear_jmp_history(cur); 20724 list_add(&new_sl->node, head); 20725 return 0; 20726 } 20727 20728 /* Return true if it's OK to have the same insn return a different type. */ 20729 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 20730 { 20731 switch (base_type(type)) { 20732 case PTR_TO_CTX: 20733 case PTR_TO_SOCKET: 20734 case PTR_TO_SOCK_COMMON: 20735 case PTR_TO_TCP_SOCK: 20736 case PTR_TO_XDP_SOCK: 20737 case PTR_TO_BTF_ID: 20738 case PTR_TO_ARENA: 20739 return false; 20740 default: 20741 return true; 20742 } 20743 } 20744 20745 /* If an instruction was previously used with particular pointer types, then we 20746 * need to be careful to avoid cases such as the below, where it may be ok 20747 * for one branch accessing the pointer, but not ok for the other branch: 20748 * 20749 * R1 = sock_ptr 20750 * goto X; 20751 * ... 20752 * R1 = some_other_valid_ptr; 20753 * goto X; 20754 * ... 20755 * R2 = *(u32 *)(R1 + 0); 20756 */ 20757 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 20758 { 20759 return src != prev && (!reg_type_mismatch_ok(src) || 20760 !reg_type_mismatch_ok(prev)); 20761 } 20762 20763 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) 20764 { 20765 switch (base_type(type)) { 20766 case PTR_TO_MEM: 20767 case PTR_TO_BTF_ID: 20768 return true; 20769 default: 20770 return false; 20771 } 20772 } 20773 20774 static bool is_ptr_to_mem(enum bpf_reg_type type) 20775 { 20776 return base_type(type) == PTR_TO_MEM; 20777 } 20778 20779 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 20780 bool allow_trust_mismatch) 20781 { 20782 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 20783 enum bpf_reg_type merged_type; 20784 20785 if (*prev_type == NOT_INIT) { 20786 /* Saw a valid insn 20787 * dst_reg = *(u32 *)(src_reg + off) 20788 * save type to validate intersecting paths 20789 */ 20790 *prev_type = type; 20791 } else if (reg_type_mismatch(type, *prev_type)) { 20792 /* Abuser program is trying to use the same insn 20793 * dst_reg = *(u32*) (src_reg + off) 20794 * with different pointer types: 20795 * src_reg == ctx in one branch and 20796 * src_reg == stack|map in some other branch. 20797 * Reject it. 20798 */ 20799 if (allow_trust_mismatch && 20800 is_ptr_to_mem_or_btf_id(type) && 20801 is_ptr_to_mem_or_btf_id(*prev_type)) { 20802 /* 20803 * Have to support a use case when one path through 20804 * the program yields TRUSTED pointer while another 20805 * is UNTRUSTED. Fallback to UNTRUSTED to generate 20806 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 20807 * Same behavior of MEM_RDONLY flag. 20808 */ 20809 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) 20810 merged_type = PTR_TO_MEM; 20811 else 20812 merged_type = PTR_TO_BTF_ID; 20813 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) 20814 merged_type |= PTR_UNTRUSTED; 20815 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) 20816 merged_type |= MEM_RDONLY; 20817 *prev_type = merged_type; 20818 } else { 20819 verbose(env, "same insn cannot be used with different pointers\n"); 20820 return -EINVAL; 20821 } 20822 } 20823 20824 return 0; 20825 } 20826 20827 enum { 20828 PROCESS_BPF_EXIT = 1 20829 }; 20830 20831 static int process_bpf_exit_full(struct bpf_verifier_env *env, 20832 bool *do_print_state, 20833 bool exception_exit) 20834 { 20835 /* We must do check_reference_leak here before 20836 * prepare_func_exit to handle the case when 20837 * state->curframe > 0, it may be a callback function, 20838 * for which reference_state must match caller reference 20839 * state when it exits. 20840 */ 20841 int err = check_resource_leak(env, exception_exit, 20842 !env->cur_state->curframe, 20843 "BPF_EXIT instruction in main prog"); 20844 if (err) 20845 return err; 20846 20847 /* The side effect of the prepare_func_exit which is 20848 * being skipped is that it frees bpf_func_state. 20849 * Typically, process_bpf_exit will only be hit with 20850 * outermost exit. copy_verifier_state in pop_stack will 20851 * handle freeing of any extra bpf_func_state left over 20852 * from not processing all nested function exits. We 20853 * also skip return code checks as they are not needed 20854 * for exceptional exits. 20855 */ 20856 if (exception_exit) 20857 return PROCESS_BPF_EXIT; 20858 20859 if (env->cur_state->curframe) { 20860 /* exit from nested function */ 20861 err = prepare_func_exit(env, &env->insn_idx); 20862 if (err) 20863 return err; 20864 *do_print_state = true; 20865 return 0; 20866 } 20867 20868 err = check_return_code(env, BPF_REG_0, "R0"); 20869 if (err) 20870 return err; 20871 return PROCESS_BPF_EXIT; 20872 } 20873 20874 static int indirect_jump_min_max_index(struct bpf_verifier_env *env, 20875 int regno, 20876 struct bpf_map *map, 20877 u32 *pmin_index, u32 *pmax_index) 20878 { 20879 struct bpf_reg_state *reg = reg_state(env, regno); 20880 u64 min_index, max_index; 20881 const u32 size = 8; 20882 20883 if (check_add_overflow(reg->umin_value, reg->off, &min_index) || 20884 (min_index > (u64) U32_MAX * size)) { 20885 verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n", 20886 regno, reg->umin_value, reg->off); 20887 return -ERANGE; 20888 } 20889 if (check_add_overflow(reg->umax_value, reg->off, &max_index) || 20890 (max_index > (u64) U32_MAX * size)) { 20891 verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n", 20892 regno, reg->umax_value, reg->off); 20893 return -ERANGE; 20894 } 20895 20896 min_index /= size; 20897 max_index /= size; 20898 20899 if (max_index >= map->max_entries) { 20900 verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n", 20901 regno, min_index, max_index, map->max_entries); 20902 return -EINVAL; 20903 } 20904 20905 *pmin_index = min_index; 20906 *pmax_index = max_index; 20907 return 0; 20908 } 20909 20910 /* gotox *dst_reg */ 20911 static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn) 20912 { 20913 struct bpf_verifier_state *other_branch; 20914 struct bpf_reg_state *dst_reg; 20915 struct bpf_map *map; 20916 u32 min_index, max_index; 20917 int err = 0; 20918 int n; 20919 int i; 20920 20921 dst_reg = reg_state(env, insn->dst_reg); 20922 if (dst_reg->type != PTR_TO_INSN) { 20923 verbose(env, "R%d has type %s, expected PTR_TO_INSN\n", 20924 insn->dst_reg, reg_type_str(env, dst_reg->type)); 20925 return -EINVAL; 20926 } 20927 20928 map = dst_reg->map_ptr; 20929 if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg)) 20930 return -EFAULT; 20931 20932 if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env, 20933 "R%d has incorrect map type %d", insn->dst_reg, map->map_type)) 20934 return -EFAULT; 20935 20936 err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index); 20937 if (err) 20938 return err; 20939 20940 /* Ensure that the buffer is large enough */ 20941 if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) { 20942 env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf, 20943 max_index - min_index + 1); 20944 if (!env->gotox_tmp_buf) 20945 return -ENOMEM; 20946 } 20947 20948 n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items); 20949 if (n < 0) 20950 return n; 20951 if (n == 0) { 20952 verbose(env, "register R%d doesn't point to any offset in map id=%d\n", 20953 insn->dst_reg, map->id); 20954 return -EINVAL; 20955 } 20956 20957 for (i = 0; i < n - 1; i++) { 20958 other_branch = push_stack(env, env->gotox_tmp_buf->items[i], 20959 env->insn_idx, env->cur_state->speculative); 20960 if (IS_ERR(other_branch)) 20961 return PTR_ERR(other_branch); 20962 } 20963 env->insn_idx = env->gotox_tmp_buf->items[n-1]; 20964 return 0; 20965 } 20966 20967 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) 20968 { 20969 int err; 20970 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; 20971 u8 class = BPF_CLASS(insn->code); 20972 20973 if (class == BPF_ALU || class == BPF_ALU64) { 20974 err = check_alu_op(env, insn); 20975 if (err) 20976 return err; 20977 20978 } else if (class == BPF_LDX) { 20979 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 20980 20981 /* Check for reserved fields is already done in 20982 * resolve_pseudo_ldimm64(). 20983 */ 20984 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); 20985 if (err) 20986 return err; 20987 } else if (class == BPF_STX) { 20988 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 20989 err = check_atomic(env, insn); 20990 if (err) 20991 return err; 20992 env->insn_idx++; 20993 return 0; 20994 } 20995 20996 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 20997 verbose(env, "BPF_STX uses reserved fields\n"); 20998 return -EINVAL; 20999 } 21000 21001 err = check_store_reg(env, insn, false); 21002 if (err) 21003 return err; 21004 } else if (class == BPF_ST) { 21005 enum bpf_reg_type dst_reg_type; 21006 21007 if (BPF_MODE(insn->code) != BPF_MEM || 21008 insn->src_reg != BPF_REG_0) { 21009 verbose(env, "BPF_ST uses reserved fields\n"); 21010 return -EINVAL; 21011 } 21012 /* check src operand */ 21013 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 21014 if (err) 21015 return err; 21016 21017 dst_reg_type = cur_regs(env)[insn->dst_reg].type; 21018 21019 /* check that memory (dst_reg + off) is writeable */ 21020 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 21021 insn->off, BPF_SIZE(insn->code), 21022 BPF_WRITE, -1, false, false); 21023 if (err) 21024 return err; 21025 21026 err = save_aux_ptr_type(env, dst_reg_type, false); 21027 if (err) 21028 return err; 21029 } else if (class == BPF_JMP || class == BPF_JMP32) { 21030 u8 opcode = BPF_OP(insn->code); 21031 21032 env->jmps_processed++; 21033 if (opcode == BPF_CALL) { 21034 if (BPF_SRC(insn->code) != BPF_K || 21035 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && 21036 insn->off != 0) || 21037 (insn->src_reg != BPF_REG_0 && 21038 insn->src_reg != BPF_PSEUDO_CALL && 21039 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 21040 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 21041 verbose(env, "BPF_CALL uses reserved fields\n"); 21042 return -EINVAL; 21043 } 21044 21045 if (env->cur_state->active_locks) { 21046 if ((insn->src_reg == BPF_REG_0 && 21047 insn->imm != BPF_FUNC_spin_unlock) || 21048 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 21049 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 21050 verbose(env, 21051 "function calls are not allowed while holding a lock\n"); 21052 return -EINVAL; 21053 } 21054 } 21055 if (insn->src_reg == BPF_PSEUDO_CALL) { 21056 err = check_func_call(env, insn, &env->insn_idx); 21057 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 21058 err = check_kfunc_call(env, insn, &env->insn_idx); 21059 if (!err && is_bpf_throw_kfunc(insn)) 21060 return process_bpf_exit_full(env, do_print_state, true); 21061 } else { 21062 err = check_helper_call(env, insn, &env->insn_idx); 21063 } 21064 if (err) 21065 return err; 21066 21067 mark_reg_scratched(env, BPF_REG_0); 21068 } else if (opcode == BPF_JA) { 21069 if (BPF_SRC(insn->code) == BPF_X) { 21070 if (insn->src_reg != BPF_REG_0 || 21071 insn->imm != 0 || insn->off != 0) { 21072 verbose(env, "BPF_JA|BPF_X uses reserved fields\n"); 21073 return -EINVAL; 21074 } 21075 return check_indirect_jump(env, insn); 21076 } 21077 21078 if (BPF_SRC(insn->code) != BPF_K || 21079 insn->src_reg != BPF_REG_0 || 21080 insn->dst_reg != BPF_REG_0 || 21081 (class == BPF_JMP && insn->imm != 0) || 21082 (class == BPF_JMP32 && insn->off != 0)) { 21083 verbose(env, "BPF_JA uses reserved fields\n"); 21084 return -EINVAL; 21085 } 21086 21087 if (class == BPF_JMP) 21088 env->insn_idx += insn->off + 1; 21089 else 21090 env->insn_idx += insn->imm + 1; 21091 return 0; 21092 } else if (opcode == BPF_EXIT) { 21093 if (BPF_SRC(insn->code) != BPF_K || 21094 insn->imm != 0 || 21095 insn->src_reg != BPF_REG_0 || 21096 insn->dst_reg != BPF_REG_0 || 21097 class == BPF_JMP32) { 21098 verbose(env, "BPF_EXIT uses reserved fields\n"); 21099 return -EINVAL; 21100 } 21101 return process_bpf_exit_full(env, do_print_state, false); 21102 } else { 21103 err = check_cond_jmp_op(env, insn, &env->insn_idx); 21104 if (err) 21105 return err; 21106 } 21107 } else if (class == BPF_LD) { 21108 u8 mode = BPF_MODE(insn->code); 21109 21110 if (mode == BPF_ABS || mode == BPF_IND) { 21111 err = check_ld_abs(env, insn); 21112 if (err) 21113 return err; 21114 21115 } else if (mode == BPF_IMM) { 21116 err = check_ld_imm(env, insn); 21117 if (err) 21118 return err; 21119 21120 env->insn_idx++; 21121 sanitize_mark_insn_seen(env); 21122 } else { 21123 verbose(env, "invalid BPF_LD mode\n"); 21124 return -EINVAL; 21125 } 21126 } else { 21127 verbose(env, "unknown insn class %d\n", class); 21128 return -EINVAL; 21129 } 21130 21131 env->insn_idx++; 21132 return 0; 21133 } 21134 21135 static int do_check(struct bpf_verifier_env *env) 21136 { 21137 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 21138 struct bpf_verifier_state *state = env->cur_state; 21139 struct bpf_insn *insns = env->prog->insnsi; 21140 int insn_cnt = env->prog->len; 21141 bool do_print_state = false; 21142 int prev_insn_idx = -1; 21143 21144 for (;;) { 21145 struct bpf_insn *insn; 21146 struct bpf_insn_aux_data *insn_aux; 21147 int err, marks_err; 21148 21149 /* reset current history entry on each new instruction */ 21150 env->cur_hist_ent = NULL; 21151 21152 env->prev_insn_idx = prev_insn_idx; 21153 if (env->insn_idx >= insn_cnt) { 21154 verbose(env, "invalid insn idx %d insn_cnt %d\n", 21155 env->insn_idx, insn_cnt); 21156 return -EFAULT; 21157 } 21158 21159 insn = &insns[env->insn_idx]; 21160 insn_aux = &env->insn_aux_data[env->insn_idx]; 21161 21162 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 21163 verbose(env, 21164 "BPF program is too large. Processed %d insn\n", 21165 env->insn_processed); 21166 return -E2BIG; 21167 } 21168 21169 state->last_insn_idx = env->prev_insn_idx; 21170 state->insn_idx = env->insn_idx; 21171 21172 if (is_prune_point(env, env->insn_idx)) { 21173 err = is_state_visited(env, env->insn_idx); 21174 if (err < 0) 21175 return err; 21176 if (err == 1) { 21177 /* found equivalent state, can prune the search */ 21178 if (env->log.level & BPF_LOG_LEVEL) { 21179 if (do_print_state) 21180 verbose(env, "\nfrom %d to %d%s: safe\n", 21181 env->prev_insn_idx, env->insn_idx, 21182 env->cur_state->speculative ? 21183 " (speculative execution)" : ""); 21184 else 21185 verbose(env, "%d: safe\n", env->insn_idx); 21186 } 21187 goto process_bpf_exit; 21188 } 21189 } 21190 21191 if (is_jmp_point(env, env->insn_idx)) { 21192 err = push_jmp_history(env, state, 0, 0); 21193 if (err) 21194 return err; 21195 } 21196 21197 if (signal_pending(current)) 21198 return -EAGAIN; 21199 21200 if (need_resched()) 21201 cond_resched(); 21202 21203 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 21204 verbose(env, "\nfrom %d to %d%s:", 21205 env->prev_insn_idx, env->insn_idx, 21206 env->cur_state->speculative ? 21207 " (speculative execution)" : ""); 21208 print_verifier_state(env, state, state->curframe, true); 21209 do_print_state = false; 21210 } 21211 21212 if (env->log.level & BPF_LOG_LEVEL) { 21213 if (verifier_state_scratched(env)) 21214 print_insn_state(env, state, state->curframe); 21215 21216 verbose_linfo(env, env->insn_idx, "; "); 21217 env->prev_log_pos = env->log.end_pos; 21218 verbose(env, "%d: ", env->insn_idx); 21219 verbose_insn(env, insn); 21220 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 21221 env->prev_log_pos = env->log.end_pos; 21222 } 21223 21224 if (bpf_prog_is_offloaded(env->prog->aux)) { 21225 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 21226 env->prev_insn_idx); 21227 if (err) 21228 return err; 21229 } 21230 21231 sanitize_mark_insn_seen(env); 21232 prev_insn_idx = env->insn_idx; 21233 21234 /* Reduce verification complexity by stopping speculative path 21235 * verification when a nospec is encountered. 21236 */ 21237 if (state->speculative && insn_aux->nospec) 21238 goto process_bpf_exit; 21239 21240 err = bpf_reset_stack_write_marks(env, env->insn_idx); 21241 if (err) 21242 return err; 21243 err = do_check_insn(env, &do_print_state); 21244 if (err >= 0 || error_recoverable_with_nospec(err)) { 21245 marks_err = bpf_commit_stack_write_marks(env); 21246 if (marks_err) 21247 return marks_err; 21248 } 21249 if (error_recoverable_with_nospec(err) && state->speculative) { 21250 /* Prevent this speculative path from ever reaching the 21251 * insn that would have been unsafe to execute. 21252 */ 21253 insn_aux->nospec = true; 21254 /* If it was an ADD/SUB insn, potentially remove any 21255 * markings for alu sanitization. 21256 */ 21257 insn_aux->alu_state = 0; 21258 goto process_bpf_exit; 21259 } else if (err < 0) { 21260 return err; 21261 } else if (err == PROCESS_BPF_EXIT) { 21262 goto process_bpf_exit; 21263 } 21264 WARN_ON_ONCE(err); 21265 21266 if (state->speculative && insn_aux->nospec_result) { 21267 /* If we are on a path that performed a jump-op, this 21268 * may skip a nospec patched-in after the jump. This can 21269 * currently never happen because nospec_result is only 21270 * used for the write-ops 21271 * `*(size*)(dst_reg+off)=src_reg|imm32` and helper 21272 * calls. These must never skip the following insn 21273 * (i.e., bpf_insn_successors()'s opcode_info.can_jump 21274 * is false). Still, add a warning to document this in 21275 * case nospec_result is used elsewhere in the future. 21276 * 21277 * All non-branch instructions have a single 21278 * fall-through edge. For these, nospec_result should 21279 * already work. 21280 */ 21281 if (verifier_bug_if((BPF_CLASS(insn->code) == BPF_JMP || 21282 BPF_CLASS(insn->code) == BPF_JMP32) && 21283 BPF_OP(insn->code) != BPF_CALL, env, 21284 "speculation barrier after jump instruction may not have the desired effect")) 21285 return -EFAULT; 21286 process_bpf_exit: 21287 mark_verifier_state_scratched(env); 21288 err = update_branch_counts(env, env->cur_state); 21289 if (err) 21290 return err; 21291 err = bpf_update_live_stack(env); 21292 if (err) 21293 return err; 21294 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, 21295 pop_log); 21296 if (err < 0) { 21297 if (err != -ENOENT) 21298 return err; 21299 break; 21300 } else { 21301 do_print_state = true; 21302 continue; 21303 } 21304 } 21305 } 21306 21307 return 0; 21308 } 21309 21310 static int find_btf_percpu_datasec(struct btf *btf) 21311 { 21312 const struct btf_type *t; 21313 const char *tname; 21314 int i, n; 21315 21316 /* 21317 * Both vmlinux and module each have their own ".data..percpu" 21318 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 21319 * types to look at only module's own BTF types. 21320 */ 21321 n = btf_nr_types(btf); 21322 for (i = btf_named_start_id(btf, true); i < n; i++) { 21323 t = btf_type_by_id(btf, i); 21324 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 21325 continue; 21326 21327 tname = btf_name_by_offset(btf, t->name_off); 21328 if (!strcmp(tname, ".data..percpu")) 21329 return i; 21330 } 21331 21332 return -ENOENT; 21333 } 21334 21335 /* 21336 * Add btf to the used_btfs array and return the index. (If the btf was 21337 * already added, then just return the index.) Upon successful insertion 21338 * increase btf refcnt, and, if present, also refcount the corresponding 21339 * kernel module. 21340 */ 21341 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 21342 { 21343 struct btf_mod_pair *btf_mod; 21344 int i; 21345 21346 /* check whether we recorded this BTF (and maybe module) already */ 21347 for (i = 0; i < env->used_btf_cnt; i++) 21348 if (env->used_btfs[i].btf == btf) 21349 return i; 21350 21351 if (env->used_btf_cnt >= MAX_USED_BTFS) { 21352 verbose(env, "The total number of btfs per program has reached the limit of %u\n", 21353 MAX_USED_BTFS); 21354 return -E2BIG; 21355 } 21356 21357 btf_get(btf); 21358 21359 btf_mod = &env->used_btfs[env->used_btf_cnt]; 21360 btf_mod->btf = btf; 21361 btf_mod->module = NULL; 21362 21363 /* if we reference variables from kernel module, bump its refcount */ 21364 if (btf_is_module(btf)) { 21365 btf_mod->module = btf_try_get_module(btf); 21366 if (!btf_mod->module) { 21367 btf_put(btf); 21368 return -ENXIO; 21369 } 21370 } 21371 21372 return env->used_btf_cnt++; 21373 } 21374 21375 /* replace pseudo btf_id with kernel symbol address */ 21376 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 21377 struct bpf_insn *insn, 21378 struct bpf_insn_aux_data *aux, 21379 struct btf *btf) 21380 { 21381 const struct btf_var_secinfo *vsi; 21382 const struct btf_type *datasec; 21383 const struct btf_type *t; 21384 const char *sym_name; 21385 bool percpu = false; 21386 u32 type, id = insn->imm; 21387 s32 datasec_id; 21388 u64 addr; 21389 int i; 21390 21391 t = btf_type_by_id(btf, id); 21392 if (!t) { 21393 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 21394 return -ENOENT; 21395 } 21396 21397 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 21398 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 21399 return -EINVAL; 21400 } 21401 21402 sym_name = btf_name_by_offset(btf, t->name_off); 21403 addr = kallsyms_lookup_name(sym_name); 21404 if (!addr) { 21405 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 21406 sym_name); 21407 return -ENOENT; 21408 } 21409 insn[0].imm = (u32)addr; 21410 insn[1].imm = addr >> 32; 21411 21412 if (btf_type_is_func(t)) { 21413 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 21414 aux->btf_var.mem_size = 0; 21415 return 0; 21416 } 21417 21418 datasec_id = find_btf_percpu_datasec(btf); 21419 if (datasec_id > 0) { 21420 datasec = btf_type_by_id(btf, datasec_id); 21421 for_each_vsi(i, datasec, vsi) { 21422 if (vsi->type == id) { 21423 percpu = true; 21424 break; 21425 } 21426 } 21427 } 21428 21429 type = t->type; 21430 t = btf_type_skip_modifiers(btf, type, NULL); 21431 if (percpu) { 21432 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 21433 aux->btf_var.btf = btf; 21434 aux->btf_var.btf_id = type; 21435 } else if (!btf_type_is_struct(t)) { 21436 const struct btf_type *ret; 21437 const char *tname; 21438 u32 tsize; 21439 21440 /* resolve the type size of ksym. */ 21441 ret = btf_resolve_size(btf, t, &tsize); 21442 if (IS_ERR(ret)) { 21443 tname = btf_name_by_offset(btf, t->name_off); 21444 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 21445 tname, PTR_ERR(ret)); 21446 return -EINVAL; 21447 } 21448 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 21449 aux->btf_var.mem_size = tsize; 21450 } else { 21451 aux->btf_var.reg_type = PTR_TO_BTF_ID; 21452 aux->btf_var.btf = btf; 21453 aux->btf_var.btf_id = type; 21454 } 21455 21456 return 0; 21457 } 21458 21459 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 21460 struct bpf_insn *insn, 21461 struct bpf_insn_aux_data *aux) 21462 { 21463 struct btf *btf; 21464 int btf_fd; 21465 int err; 21466 21467 btf_fd = insn[1].imm; 21468 if (btf_fd) { 21469 CLASS(fd, f)(btf_fd); 21470 21471 btf = __btf_get_by_fd(f); 21472 if (IS_ERR(btf)) { 21473 verbose(env, "invalid module BTF object FD specified.\n"); 21474 return -EINVAL; 21475 } 21476 } else { 21477 if (!btf_vmlinux) { 21478 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 21479 return -EINVAL; 21480 } 21481 btf = btf_vmlinux; 21482 } 21483 21484 err = __check_pseudo_btf_id(env, insn, aux, btf); 21485 if (err) 21486 return err; 21487 21488 err = __add_used_btf(env, btf); 21489 if (err < 0) 21490 return err; 21491 return 0; 21492 } 21493 21494 static bool is_tracing_prog_type(enum bpf_prog_type type) 21495 { 21496 switch (type) { 21497 case BPF_PROG_TYPE_KPROBE: 21498 case BPF_PROG_TYPE_TRACEPOINT: 21499 case BPF_PROG_TYPE_PERF_EVENT: 21500 case BPF_PROG_TYPE_RAW_TRACEPOINT: 21501 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 21502 return true; 21503 default: 21504 return false; 21505 } 21506 } 21507 21508 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 21509 { 21510 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 21511 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 21512 } 21513 21514 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 21515 struct bpf_map *map, 21516 struct bpf_prog *prog) 21517 21518 { 21519 enum bpf_prog_type prog_type = resolve_prog_type(prog); 21520 21521 if (map->excl_prog_sha && 21522 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) { 21523 verbose(env, "program's hash doesn't match map's excl_prog_hash\n"); 21524 return -EACCES; 21525 } 21526 21527 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 21528 btf_record_has_field(map->record, BPF_RB_ROOT)) { 21529 if (is_tracing_prog_type(prog_type)) { 21530 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 21531 return -EINVAL; 21532 } 21533 } 21534 21535 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 21536 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 21537 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 21538 return -EINVAL; 21539 } 21540 21541 if (is_tracing_prog_type(prog_type)) { 21542 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 21543 return -EINVAL; 21544 } 21545 } 21546 21547 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 21548 !bpf_offload_prog_map_match(prog, map)) { 21549 verbose(env, "offload device mismatch between prog and map\n"); 21550 return -EINVAL; 21551 } 21552 21553 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 21554 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 21555 return -EINVAL; 21556 } 21557 21558 if (prog->sleepable) 21559 switch (map->map_type) { 21560 case BPF_MAP_TYPE_HASH: 21561 case BPF_MAP_TYPE_LRU_HASH: 21562 case BPF_MAP_TYPE_ARRAY: 21563 case BPF_MAP_TYPE_PERCPU_HASH: 21564 case BPF_MAP_TYPE_PERCPU_ARRAY: 21565 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 21566 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 21567 case BPF_MAP_TYPE_HASH_OF_MAPS: 21568 case BPF_MAP_TYPE_RINGBUF: 21569 case BPF_MAP_TYPE_USER_RINGBUF: 21570 case BPF_MAP_TYPE_INODE_STORAGE: 21571 case BPF_MAP_TYPE_SK_STORAGE: 21572 case BPF_MAP_TYPE_TASK_STORAGE: 21573 case BPF_MAP_TYPE_CGRP_STORAGE: 21574 case BPF_MAP_TYPE_QUEUE: 21575 case BPF_MAP_TYPE_STACK: 21576 case BPF_MAP_TYPE_ARENA: 21577 case BPF_MAP_TYPE_INSN_ARRAY: 21578 case BPF_MAP_TYPE_PROG_ARRAY: 21579 break; 21580 default: 21581 verbose(env, 21582 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 21583 return -EINVAL; 21584 } 21585 21586 if (bpf_map_is_cgroup_storage(map) && 21587 bpf_cgroup_storage_assign(env->prog->aux, map)) { 21588 verbose(env, "only one cgroup storage of each type is allowed\n"); 21589 return -EBUSY; 21590 } 21591 21592 if (map->map_type == BPF_MAP_TYPE_ARENA) { 21593 if (env->prog->aux->arena) { 21594 verbose(env, "Only one arena per program\n"); 21595 return -EBUSY; 21596 } 21597 if (!env->allow_ptr_leaks || !env->bpf_capable) { 21598 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 21599 return -EPERM; 21600 } 21601 if (!env->prog->jit_requested) { 21602 verbose(env, "JIT is required to use arena\n"); 21603 return -EOPNOTSUPP; 21604 } 21605 if (!bpf_jit_supports_arena()) { 21606 verbose(env, "JIT doesn't support arena\n"); 21607 return -EOPNOTSUPP; 21608 } 21609 env->prog->aux->arena = (void *)map; 21610 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 21611 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 21612 return -EINVAL; 21613 } 21614 } 21615 21616 return 0; 21617 } 21618 21619 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 21620 { 21621 int i, err; 21622 21623 /* check whether we recorded this map already */ 21624 for (i = 0; i < env->used_map_cnt; i++) 21625 if (env->used_maps[i] == map) 21626 return i; 21627 21628 if (env->used_map_cnt >= MAX_USED_MAPS) { 21629 verbose(env, "The total number of maps per program has reached the limit of %u\n", 21630 MAX_USED_MAPS); 21631 return -E2BIG; 21632 } 21633 21634 err = check_map_prog_compatibility(env, map, env->prog); 21635 if (err) 21636 return err; 21637 21638 if (env->prog->sleepable) 21639 atomic64_inc(&map->sleepable_refcnt); 21640 21641 /* hold the map. If the program is rejected by verifier, 21642 * the map will be released by release_maps() or it 21643 * will be used by the valid program until it's unloaded 21644 * and all maps are released in bpf_free_used_maps() 21645 */ 21646 bpf_map_inc(map); 21647 21648 env->used_maps[env->used_map_cnt++] = map; 21649 21650 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { 21651 err = bpf_insn_array_init(map, env->prog); 21652 if (err) { 21653 verbose(env, "Failed to properly initialize insn array\n"); 21654 return err; 21655 } 21656 env->insn_array_maps[env->insn_array_map_cnt++] = map; 21657 } 21658 21659 return env->used_map_cnt - 1; 21660 } 21661 21662 /* Add map behind fd to used maps list, if it's not already there, and return 21663 * its index. 21664 * Returns <0 on error, or >= 0 index, on success. 21665 */ 21666 static int add_used_map(struct bpf_verifier_env *env, int fd) 21667 { 21668 struct bpf_map *map; 21669 CLASS(fd, f)(fd); 21670 21671 map = __bpf_map_get(f); 21672 if (IS_ERR(map)) { 21673 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 21674 return PTR_ERR(map); 21675 } 21676 21677 return __add_used_map(env, map); 21678 } 21679 21680 /* find and rewrite pseudo imm in ld_imm64 instructions: 21681 * 21682 * 1. if it accesses map FD, replace it with actual map pointer. 21683 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 21684 * 21685 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 21686 */ 21687 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 21688 { 21689 struct bpf_insn *insn = env->prog->insnsi; 21690 int insn_cnt = env->prog->len; 21691 int i, err; 21692 21693 err = bpf_prog_calc_tag(env->prog); 21694 if (err) 21695 return err; 21696 21697 for (i = 0; i < insn_cnt; i++, insn++) { 21698 if (BPF_CLASS(insn->code) == BPF_LDX && 21699 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 21700 insn->imm != 0)) { 21701 verbose(env, "BPF_LDX uses reserved fields\n"); 21702 return -EINVAL; 21703 } 21704 21705 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 21706 struct bpf_insn_aux_data *aux; 21707 struct bpf_map *map; 21708 int map_idx; 21709 u64 addr; 21710 u32 fd; 21711 21712 if (i == insn_cnt - 1 || insn[1].code != 0 || 21713 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 21714 insn[1].off != 0) { 21715 verbose(env, "invalid bpf_ld_imm64 insn\n"); 21716 return -EINVAL; 21717 } 21718 21719 if (insn[0].src_reg == 0) 21720 /* valid generic load 64-bit imm */ 21721 goto next_insn; 21722 21723 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 21724 aux = &env->insn_aux_data[i]; 21725 err = check_pseudo_btf_id(env, insn, aux); 21726 if (err) 21727 return err; 21728 goto next_insn; 21729 } 21730 21731 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 21732 aux = &env->insn_aux_data[i]; 21733 aux->ptr_type = PTR_TO_FUNC; 21734 goto next_insn; 21735 } 21736 21737 /* In final convert_pseudo_ld_imm64() step, this is 21738 * converted into regular 64-bit imm load insn. 21739 */ 21740 switch (insn[0].src_reg) { 21741 case BPF_PSEUDO_MAP_VALUE: 21742 case BPF_PSEUDO_MAP_IDX_VALUE: 21743 break; 21744 case BPF_PSEUDO_MAP_FD: 21745 case BPF_PSEUDO_MAP_IDX: 21746 if (insn[1].imm == 0) 21747 break; 21748 fallthrough; 21749 default: 21750 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 21751 return -EINVAL; 21752 } 21753 21754 switch (insn[0].src_reg) { 21755 case BPF_PSEUDO_MAP_IDX_VALUE: 21756 case BPF_PSEUDO_MAP_IDX: 21757 if (bpfptr_is_null(env->fd_array)) { 21758 verbose(env, "fd_idx without fd_array is invalid\n"); 21759 return -EPROTO; 21760 } 21761 if (copy_from_bpfptr_offset(&fd, env->fd_array, 21762 insn[0].imm * sizeof(fd), 21763 sizeof(fd))) 21764 return -EFAULT; 21765 break; 21766 default: 21767 fd = insn[0].imm; 21768 break; 21769 } 21770 21771 map_idx = add_used_map(env, fd); 21772 if (map_idx < 0) 21773 return map_idx; 21774 map = env->used_maps[map_idx]; 21775 21776 aux = &env->insn_aux_data[i]; 21777 aux->map_index = map_idx; 21778 21779 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 21780 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 21781 addr = (unsigned long)map; 21782 } else { 21783 u32 off = insn[1].imm; 21784 21785 if (!map->ops->map_direct_value_addr) { 21786 verbose(env, "no direct value access support for this map type\n"); 21787 return -EINVAL; 21788 } 21789 21790 err = map->ops->map_direct_value_addr(map, &addr, off); 21791 if (err) { 21792 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 21793 map->value_size, off); 21794 return err; 21795 } 21796 21797 aux->map_off = off; 21798 addr += off; 21799 } 21800 21801 insn[0].imm = (u32)addr; 21802 insn[1].imm = addr >> 32; 21803 21804 next_insn: 21805 insn++; 21806 i++; 21807 continue; 21808 } 21809 21810 /* Basic sanity check before we invest more work here. */ 21811 if (!bpf_opcode_in_insntable(insn->code)) { 21812 verbose(env, "unknown opcode %02x\n", insn->code); 21813 return -EINVAL; 21814 } 21815 } 21816 21817 /* now all pseudo BPF_LD_IMM64 instructions load valid 21818 * 'struct bpf_map *' into a register instead of user map_fd. 21819 * These pointers will be used later by verifier to validate map access. 21820 */ 21821 return 0; 21822 } 21823 21824 /* drop refcnt of maps used by the rejected program */ 21825 static void release_maps(struct bpf_verifier_env *env) 21826 { 21827 __bpf_free_used_maps(env->prog->aux, env->used_maps, 21828 env->used_map_cnt); 21829 } 21830 21831 /* drop refcnt of maps used by the rejected program */ 21832 static void release_btfs(struct bpf_verifier_env *env) 21833 { 21834 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 21835 } 21836 21837 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 21838 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 21839 { 21840 struct bpf_insn *insn = env->prog->insnsi; 21841 int insn_cnt = env->prog->len; 21842 int i; 21843 21844 for (i = 0; i < insn_cnt; i++, insn++) { 21845 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 21846 continue; 21847 if (insn->src_reg == BPF_PSEUDO_FUNC) 21848 continue; 21849 insn->src_reg = 0; 21850 } 21851 } 21852 21853 /* single env->prog->insni[off] instruction was replaced with the range 21854 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 21855 * [0, off) and [off, end) to new locations, so the patched range stays zero 21856 */ 21857 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 21858 struct bpf_prog *new_prog, u32 off, u32 cnt) 21859 { 21860 struct bpf_insn_aux_data *data = env->insn_aux_data; 21861 struct bpf_insn *insn = new_prog->insnsi; 21862 u32 old_seen = data[off].seen; 21863 u32 prog_len; 21864 int i; 21865 21866 /* aux info at OFF always needs adjustment, no matter fast path 21867 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 21868 * original insn at old prog. 21869 */ 21870 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1); 21871 21872 if (cnt == 1) 21873 return; 21874 prog_len = new_prog->len; 21875 21876 memmove(data + off + cnt - 1, data + off, 21877 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 21878 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1)); 21879 for (i = off; i < off + cnt - 1; i++) { 21880 /* Expand insni[off]'s seen count to the patched range. */ 21881 data[i].seen = old_seen; 21882 data[i].zext_dst = insn_has_def32(insn + i); 21883 } 21884 } 21885 21886 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 21887 { 21888 int i; 21889 21890 if (len == 1) 21891 return; 21892 /* NOTE: fake 'exit' subprog should be updated as well. */ 21893 for (i = 0; i <= env->subprog_cnt; i++) { 21894 if (env->subprog_info[i].start <= off) 21895 continue; 21896 env->subprog_info[i].start += len - 1; 21897 } 21898 } 21899 21900 static void release_insn_arrays(struct bpf_verifier_env *env) 21901 { 21902 int i; 21903 21904 for (i = 0; i < env->insn_array_map_cnt; i++) 21905 bpf_insn_array_release(env->insn_array_maps[i]); 21906 } 21907 21908 static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len) 21909 { 21910 int i; 21911 21912 if (len == 1) 21913 return; 21914 21915 for (i = 0; i < env->insn_array_map_cnt; i++) 21916 bpf_insn_array_adjust(env->insn_array_maps[i], off, len); 21917 } 21918 21919 static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len) 21920 { 21921 int i; 21922 21923 for (i = 0; i < env->insn_array_map_cnt; i++) 21924 bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len); 21925 } 21926 21927 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 21928 { 21929 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 21930 int i, sz = prog->aux->size_poke_tab; 21931 struct bpf_jit_poke_descriptor *desc; 21932 21933 for (i = 0; i < sz; i++) { 21934 desc = &tab[i]; 21935 if (desc->insn_idx <= off) 21936 continue; 21937 desc->insn_idx += len - 1; 21938 } 21939 } 21940 21941 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 21942 const struct bpf_insn *patch, u32 len) 21943 { 21944 struct bpf_prog *new_prog; 21945 struct bpf_insn_aux_data *new_data = NULL; 21946 21947 if (len > 1) { 21948 new_data = vrealloc(env->insn_aux_data, 21949 array_size(env->prog->len + len - 1, 21950 sizeof(struct bpf_insn_aux_data)), 21951 GFP_KERNEL_ACCOUNT | __GFP_ZERO); 21952 if (!new_data) 21953 return NULL; 21954 21955 env->insn_aux_data = new_data; 21956 } 21957 21958 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 21959 if (IS_ERR(new_prog)) { 21960 if (PTR_ERR(new_prog) == -ERANGE) 21961 verbose(env, 21962 "insn %d cannot be patched due to 16-bit range\n", 21963 env->insn_aux_data[off].orig_idx); 21964 return NULL; 21965 } 21966 adjust_insn_aux_data(env, new_prog, off, len); 21967 adjust_subprog_starts(env, off, len); 21968 adjust_insn_arrays(env, off, len); 21969 adjust_poke_descs(new_prog, off, len); 21970 return new_prog; 21971 } 21972 21973 /* 21974 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 21975 * jump offset by 'delta'. 21976 */ 21977 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 21978 { 21979 struct bpf_insn *insn = prog->insnsi; 21980 u32 insn_cnt = prog->len, i; 21981 s32 imm; 21982 s16 off; 21983 21984 for (i = 0; i < insn_cnt; i++, insn++) { 21985 u8 code = insn->code; 21986 21987 if (tgt_idx <= i && i < tgt_idx + delta) 21988 continue; 21989 21990 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 21991 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 21992 continue; 21993 21994 if (insn->code == (BPF_JMP32 | BPF_JA)) { 21995 if (i + 1 + insn->imm != tgt_idx) 21996 continue; 21997 if (check_add_overflow(insn->imm, delta, &imm)) 21998 return -ERANGE; 21999 insn->imm = imm; 22000 } else { 22001 if (i + 1 + insn->off != tgt_idx) 22002 continue; 22003 if (check_add_overflow(insn->off, delta, &off)) 22004 return -ERANGE; 22005 insn->off = off; 22006 } 22007 } 22008 return 0; 22009 } 22010 22011 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 22012 u32 off, u32 cnt) 22013 { 22014 int i, j; 22015 22016 /* find first prog starting at or after off (first to remove) */ 22017 for (i = 0; i < env->subprog_cnt; i++) 22018 if (env->subprog_info[i].start >= off) 22019 break; 22020 /* find first prog starting at or after off + cnt (first to stay) */ 22021 for (j = i; j < env->subprog_cnt; j++) 22022 if (env->subprog_info[j].start >= off + cnt) 22023 break; 22024 /* if j doesn't start exactly at off + cnt, we are just removing 22025 * the front of previous prog 22026 */ 22027 if (env->subprog_info[j].start != off + cnt) 22028 j--; 22029 22030 if (j > i) { 22031 struct bpf_prog_aux *aux = env->prog->aux; 22032 int move; 22033 22034 /* move fake 'exit' subprog as well */ 22035 move = env->subprog_cnt + 1 - j; 22036 22037 memmove(env->subprog_info + i, 22038 env->subprog_info + j, 22039 sizeof(*env->subprog_info) * move); 22040 env->subprog_cnt -= j - i; 22041 22042 /* remove func_info */ 22043 if (aux->func_info) { 22044 move = aux->func_info_cnt - j; 22045 22046 memmove(aux->func_info + i, 22047 aux->func_info + j, 22048 sizeof(*aux->func_info) * move); 22049 aux->func_info_cnt -= j - i; 22050 /* func_info->insn_off is set after all code rewrites, 22051 * in adjust_btf_func() - no need to adjust 22052 */ 22053 } 22054 } else { 22055 /* convert i from "first prog to remove" to "first to adjust" */ 22056 if (env->subprog_info[i].start == off) 22057 i++; 22058 } 22059 22060 /* update fake 'exit' subprog as well */ 22061 for (; i <= env->subprog_cnt; i++) 22062 env->subprog_info[i].start -= cnt; 22063 22064 return 0; 22065 } 22066 22067 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 22068 u32 cnt) 22069 { 22070 struct bpf_prog *prog = env->prog; 22071 u32 i, l_off, l_cnt, nr_linfo; 22072 struct bpf_line_info *linfo; 22073 22074 nr_linfo = prog->aux->nr_linfo; 22075 if (!nr_linfo) 22076 return 0; 22077 22078 linfo = prog->aux->linfo; 22079 22080 /* find first line info to remove, count lines to be removed */ 22081 for (i = 0; i < nr_linfo; i++) 22082 if (linfo[i].insn_off >= off) 22083 break; 22084 22085 l_off = i; 22086 l_cnt = 0; 22087 for (; i < nr_linfo; i++) 22088 if (linfo[i].insn_off < off + cnt) 22089 l_cnt++; 22090 else 22091 break; 22092 22093 /* First live insn doesn't match first live linfo, it needs to "inherit" 22094 * last removed linfo. prog is already modified, so prog->len == off 22095 * means no live instructions after (tail of the program was removed). 22096 */ 22097 if (prog->len != off && l_cnt && 22098 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 22099 l_cnt--; 22100 linfo[--i].insn_off = off + cnt; 22101 } 22102 22103 /* remove the line info which refer to the removed instructions */ 22104 if (l_cnt) { 22105 memmove(linfo + l_off, linfo + i, 22106 sizeof(*linfo) * (nr_linfo - i)); 22107 22108 prog->aux->nr_linfo -= l_cnt; 22109 nr_linfo = prog->aux->nr_linfo; 22110 } 22111 22112 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 22113 for (i = l_off; i < nr_linfo; i++) 22114 linfo[i].insn_off -= cnt; 22115 22116 /* fix up all subprogs (incl. 'exit') which start >= off */ 22117 for (i = 0; i <= env->subprog_cnt; i++) 22118 if (env->subprog_info[i].linfo_idx > l_off) { 22119 /* program may have started in the removed region but 22120 * may not be fully removed 22121 */ 22122 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 22123 env->subprog_info[i].linfo_idx -= l_cnt; 22124 else 22125 env->subprog_info[i].linfo_idx = l_off; 22126 } 22127 22128 return 0; 22129 } 22130 22131 /* 22132 * Clean up dynamically allocated fields of aux data for instructions [start, ...] 22133 */ 22134 static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len) 22135 { 22136 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 22137 struct bpf_insn *insns = env->prog->insnsi; 22138 int end = start + len; 22139 int i; 22140 22141 for (i = start; i < end; i++) { 22142 if (aux_data[i].jt) { 22143 kvfree(aux_data[i].jt); 22144 aux_data[i].jt = NULL; 22145 } 22146 22147 if (bpf_is_ldimm64(&insns[i])) 22148 i++; 22149 } 22150 } 22151 22152 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 22153 { 22154 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 22155 unsigned int orig_prog_len = env->prog->len; 22156 int err; 22157 22158 if (bpf_prog_is_offloaded(env->prog->aux)) 22159 bpf_prog_offload_remove_insns(env, off, cnt); 22160 22161 /* Should be called before bpf_remove_insns, as it uses prog->insnsi */ 22162 clear_insn_aux_data(env, off, cnt); 22163 22164 err = bpf_remove_insns(env->prog, off, cnt); 22165 if (err) 22166 return err; 22167 22168 err = adjust_subprog_starts_after_remove(env, off, cnt); 22169 if (err) 22170 return err; 22171 22172 err = bpf_adj_linfo_after_remove(env, off, cnt); 22173 if (err) 22174 return err; 22175 22176 adjust_insn_arrays_after_remove(env, off, cnt); 22177 22178 memmove(aux_data + off, aux_data + off + cnt, 22179 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 22180 22181 return 0; 22182 } 22183 22184 /* The verifier does more data flow analysis than llvm and will not 22185 * explore branches that are dead at run time. Malicious programs can 22186 * have dead code too. Therefore replace all dead at-run-time code 22187 * with 'ja -1'. 22188 * 22189 * Just nops are not optimal, e.g. if they would sit at the end of the 22190 * program and through another bug we would manage to jump there, then 22191 * we'd execute beyond program memory otherwise. Returning exception 22192 * code also wouldn't work since we can have subprogs where the dead 22193 * code could be located. 22194 */ 22195 static void sanitize_dead_code(struct bpf_verifier_env *env) 22196 { 22197 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 22198 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 22199 struct bpf_insn *insn = env->prog->insnsi; 22200 const int insn_cnt = env->prog->len; 22201 int i; 22202 22203 for (i = 0; i < insn_cnt; i++) { 22204 if (aux_data[i].seen) 22205 continue; 22206 memcpy(insn + i, &trap, sizeof(trap)); 22207 aux_data[i].zext_dst = false; 22208 } 22209 } 22210 22211 static bool insn_is_cond_jump(u8 code) 22212 { 22213 u8 op; 22214 22215 op = BPF_OP(code); 22216 if (BPF_CLASS(code) == BPF_JMP32) 22217 return op != BPF_JA; 22218 22219 if (BPF_CLASS(code) != BPF_JMP) 22220 return false; 22221 22222 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 22223 } 22224 22225 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 22226 { 22227 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 22228 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 22229 struct bpf_insn *insn = env->prog->insnsi; 22230 const int insn_cnt = env->prog->len; 22231 int i; 22232 22233 for (i = 0; i < insn_cnt; i++, insn++) { 22234 if (!insn_is_cond_jump(insn->code)) 22235 continue; 22236 22237 if (!aux_data[i + 1].seen) 22238 ja.off = insn->off; 22239 else if (!aux_data[i + 1 + insn->off].seen) 22240 ja.off = 0; 22241 else 22242 continue; 22243 22244 if (bpf_prog_is_offloaded(env->prog->aux)) 22245 bpf_prog_offload_replace_insn(env, i, &ja); 22246 22247 memcpy(insn, &ja, sizeof(ja)); 22248 } 22249 } 22250 22251 static int opt_remove_dead_code(struct bpf_verifier_env *env) 22252 { 22253 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 22254 int insn_cnt = env->prog->len; 22255 int i, err; 22256 22257 for (i = 0; i < insn_cnt; i++) { 22258 int j; 22259 22260 j = 0; 22261 while (i + j < insn_cnt && !aux_data[i + j].seen) 22262 j++; 22263 if (!j) 22264 continue; 22265 22266 err = verifier_remove_insns(env, i, j); 22267 if (err) 22268 return err; 22269 insn_cnt = env->prog->len; 22270 } 22271 22272 return 0; 22273 } 22274 22275 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 22276 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 22277 22278 static int opt_remove_nops(struct bpf_verifier_env *env) 22279 { 22280 struct bpf_insn *insn = env->prog->insnsi; 22281 int insn_cnt = env->prog->len; 22282 bool is_may_goto_0, is_ja; 22283 int i, err; 22284 22285 for (i = 0; i < insn_cnt; i++) { 22286 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 22287 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 22288 22289 if (!is_may_goto_0 && !is_ja) 22290 continue; 22291 22292 err = verifier_remove_insns(env, i, 1); 22293 if (err) 22294 return err; 22295 insn_cnt--; 22296 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 22297 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 22298 } 22299 22300 return 0; 22301 } 22302 22303 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 22304 const union bpf_attr *attr) 22305 { 22306 struct bpf_insn *patch; 22307 /* use env->insn_buf as two independent buffers */ 22308 struct bpf_insn *zext_patch = env->insn_buf; 22309 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; 22310 struct bpf_insn_aux_data *aux = env->insn_aux_data; 22311 int i, patch_len, delta = 0, len = env->prog->len; 22312 struct bpf_insn *insns = env->prog->insnsi; 22313 struct bpf_prog *new_prog; 22314 bool rnd_hi32; 22315 22316 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 22317 zext_patch[1] = BPF_ZEXT_REG(0); 22318 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 22319 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 22320 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 22321 for (i = 0; i < len; i++) { 22322 int adj_idx = i + delta; 22323 struct bpf_insn insn; 22324 int load_reg; 22325 22326 insn = insns[adj_idx]; 22327 load_reg = insn_def_regno(&insn); 22328 if (!aux[adj_idx].zext_dst) { 22329 u8 code, class; 22330 u32 imm_rnd; 22331 22332 if (!rnd_hi32) 22333 continue; 22334 22335 code = insn.code; 22336 class = BPF_CLASS(code); 22337 if (load_reg == -1) 22338 continue; 22339 22340 /* NOTE: arg "reg" (the fourth one) is only used for 22341 * BPF_STX + SRC_OP, so it is safe to pass NULL 22342 * here. 22343 */ 22344 if (is_reg64(&insn, load_reg, NULL, DST_OP)) { 22345 if (class == BPF_LD && 22346 BPF_MODE(code) == BPF_IMM) 22347 i++; 22348 continue; 22349 } 22350 22351 /* ctx load could be transformed into wider load. */ 22352 if (class == BPF_LDX && 22353 aux[adj_idx].ptr_type == PTR_TO_CTX) 22354 continue; 22355 22356 imm_rnd = get_random_u32(); 22357 rnd_hi32_patch[0] = insn; 22358 rnd_hi32_patch[1].imm = imm_rnd; 22359 rnd_hi32_patch[3].dst_reg = load_reg; 22360 patch = rnd_hi32_patch; 22361 patch_len = 4; 22362 goto apply_patch_buffer; 22363 } 22364 22365 /* Add in an zero-extend instruction if a) the JIT has requested 22366 * it or b) it's a CMPXCHG. 22367 * 22368 * The latter is because: BPF_CMPXCHG always loads a value into 22369 * R0, therefore always zero-extends. However some archs' 22370 * equivalent instruction only does this load when the 22371 * comparison is successful. This detail of CMPXCHG is 22372 * orthogonal to the general zero-extension behaviour of the 22373 * CPU, so it's treated independently of bpf_jit_needs_zext. 22374 */ 22375 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 22376 continue; 22377 22378 /* Zero-extension is done by the caller. */ 22379 if (bpf_pseudo_kfunc_call(&insn)) 22380 continue; 22381 22382 if (verifier_bug_if(load_reg == -1, env, 22383 "zext_dst is set, but no reg is defined")) 22384 return -EFAULT; 22385 22386 zext_patch[0] = insn; 22387 zext_patch[1].dst_reg = load_reg; 22388 zext_patch[1].src_reg = load_reg; 22389 patch = zext_patch; 22390 patch_len = 2; 22391 apply_patch_buffer: 22392 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 22393 if (!new_prog) 22394 return -ENOMEM; 22395 env->prog = new_prog; 22396 insns = new_prog->insnsi; 22397 aux = env->insn_aux_data; 22398 delta += patch_len - 1; 22399 } 22400 22401 return 0; 22402 } 22403 22404 /* convert load instructions that access fields of a context type into a 22405 * sequence of instructions that access fields of the underlying structure: 22406 * struct __sk_buff -> struct sk_buff 22407 * struct bpf_sock_ops -> struct sock 22408 */ 22409 static int convert_ctx_accesses(struct bpf_verifier_env *env) 22410 { 22411 struct bpf_subprog_info *subprogs = env->subprog_info; 22412 const struct bpf_verifier_ops *ops = env->ops; 22413 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 22414 const int insn_cnt = env->prog->len; 22415 struct bpf_insn *epilogue_buf = env->epilogue_buf; 22416 struct bpf_insn *insn_buf = env->insn_buf; 22417 struct bpf_insn *insn; 22418 u32 target_size, size_default, off; 22419 struct bpf_prog *new_prog; 22420 enum bpf_access_type type; 22421 bool is_narrower_load; 22422 int epilogue_idx = 0; 22423 22424 if (ops->gen_epilogue) { 22425 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 22426 -(subprogs[0].stack_depth + 8)); 22427 if (epilogue_cnt >= INSN_BUF_SIZE) { 22428 verifier_bug(env, "epilogue is too long"); 22429 return -EFAULT; 22430 } else if (epilogue_cnt) { 22431 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 22432 cnt = 0; 22433 subprogs[0].stack_depth += 8; 22434 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 22435 -subprogs[0].stack_depth); 22436 insn_buf[cnt++] = env->prog->insnsi[0]; 22437 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 22438 if (!new_prog) 22439 return -ENOMEM; 22440 env->prog = new_prog; 22441 delta += cnt - 1; 22442 22443 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 22444 if (ret < 0) 22445 return ret; 22446 } 22447 } 22448 22449 if (ops->gen_prologue || env->seen_direct_write) { 22450 if (!ops->gen_prologue) { 22451 verifier_bug(env, "gen_prologue is null"); 22452 return -EFAULT; 22453 } 22454 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 22455 env->prog); 22456 if (cnt >= INSN_BUF_SIZE) { 22457 verifier_bug(env, "prologue is too long"); 22458 return -EFAULT; 22459 } else if (cnt) { 22460 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 22461 if (!new_prog) 22462 return -ENOMEM; 22463 22464 env->prog = new_prog; 22465 delta += cnt - 1; 22466 22467 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 22468 if (ret < 0) 22469 return ret; 22470 } 22471 } 22472 22473 if (delta) 22474 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 22475 22476 if (bpf_prog_is_offloaded(env->prog->aux)) 22477 return 0; 22478 22479 insn = env->prog->insnsi + delta; 22480 22481 for (i = 0; i < insn_cnt; i++, insn++) { 22482 bpf_convert_ctx_access_t convert_ctx_access; 22483 u8 mode; 22484 22485 if (env->insn_aux_data[i + delta].nospec) { 22486 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); 22487 struct bpf_insn *patch = insn_buf; 22488 22489 *patch++ = BPF_ST_NOSPEC(); 22490 *patch++ = *insn; 22491 cnt = patch - insn_buf; 22492 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22493 if (!new_prog) 22494 return -ENOMEM; 22495 22496 delta += cnt - 1; 22497 env->prog = new_prog; 22498 insn = new_prog->insnsi + i + delta; 22499 /* This can not be easily merged with the 22500 * nospec_result-case, because an insn may require a 22501 * nospec before and after itself. Therefore also do not 22502 * 'continue' here but potentially apply further 22503 * patching to insn. *insn should equal patch[1] now. 22504 */ 22505 } 22506 22507 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 22508 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 22509 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 22510 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 22511 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 22512 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 22513 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 22514 type = BPF_READ; 22515 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 22516 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 22517 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 22518 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 22519 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 22520 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 22521 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 22522 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 22523 type = BPF_WRITE; 22524 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 22525 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 22526 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 22527 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 22528 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 22529 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 22530 env->prog->aux->num_exentries++; 22531 continue; 22532 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 22533 epilogue_cnt && 22534 i + delta < subprogs[1].start) { 22535 /* Generate epilogue for the main prog */ 22536 if (epilogue_idx) { 22537 /* jump back to the earlier generated epilogue */ 22538 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 22539 cnt = 1; 22540 } else { 22541 memcpy(insn_buf, epilogue_buf, 22542 epilogue_cnt * sizeof(*epilogue_buf)); 22543 cnt = epilogue_cnt; 22544 /* epilogue_idx cannot be 0. It must have at 22545 * least one ctx ptr saving insn before the 22546 * epilogue. 22547 */ 22548 epilogue_idx = i + delta; 22549 } 22550 goto patch_insn_buf; 22551 } else { 22552 continue; 22553 } 22554 22555 if (type == BPF_WRITE && 22556 env->insn_aux_data[i + delta].nospec_result) { 22557 /* nospec_result is only used to mitigate Spectre v4 and 22558 * to limit verification-time for Spectre v1. 22559 */ 22560 struct bpf_insn *patch = insn_buf; 22561 22562 *patch++ = *insn; 22563 *patch++ = BPF_ST_NOSPEC(); 22564 cnt = patch - insn_buf; 22565 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22566 if (!new_prog) 22567 return -ENOMEM; 22568 22569 delta += cnt - 1; 22570 env->prog = new_prog; 22571 insn = new_prog->insnsi + i + delta; 22572 continue; 22573 } 22574 22575 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 22576 case PTR_TO_CTX: 22577 if (!ops->convert_ctx_access) 22578 continue; 22579 convert_ctx_access = ops->convert_ctx_access; 22580 break; 22581 case PTR_TO_SOCKET: 22582 case PTR_TO_SOCK_COMMON: 22583 convert_ctx_access = bpf_sock_convert_ctx_access; 22584 break; 22585 case PTR_TO_TCP_SOCK: 22586 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 22587 break; 22588 case PTR_TO_XDP_SOCK: 22589 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 22590 break; 22591 case PTR_TO_BTF_ID: 22592 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 22593 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 22594 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 22595 * be said once it is marked PTR_UNTRUSTED, hence we must handle 22596 * any faults for loads into such types. BPF_WRITE is disallowed 22597 * for this case. 22598 */ 22599 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 22600 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: 22601 if (type == BPF_READ) { 22602 if (BPF_MODE(insn->code) == BPF_MEM) 22603 insn->code = BPF_LDX | BPF_PROBE_MEM | 22604 BPF_SIZE((insn)->code); 22605 else 22606 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 22607 BPF_SIZE((insn)->code); 22608 env->prog->aux->num_exentries++; 22609 } 22610 continue; 22611 case PTR_TO_ARENA: 22612 if (BPF_MODE(insn->code) == BPF_MEMSX) { 22613 if (!bpf_jit_supports_insn(insn, true)) { 22614 verbose(env, "sign extending loads from arena are not supported yet\n"); 22615 return -EOPNOTSUPP; 22616 } 22617 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code); 22618 } else { 22619 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 22620 } 22621 env->prog->aux->num_exentries++; 22622 continue; 22623 default: 22624 continue; 22625 } 22626 22627 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 22628 size = BPF_LDST_BYTES(insn); 22629 mode = BPF_MODE(insn->code); 22630 22631 /* If the read access is a narrower load of the field, 22632 * convert to a 4/8-byte load, to minimum program type specific 22633 * convert_ctx_access changes. If conversion is successful, 22634 * we will apply proper mask to the result. 22635 */ 22636 is_narrower_load = size < ctx_field_size; 22637 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 22638 off = insn->off; 22639 if (is_narrower_load) { 22640 u8 size_code; 22641 22642 if (type == BPF_WRITE) { 22643 verifier_bug(env, "narrow ctx access misconfigured"); 22644 return -EFAULT; 22645 } 22646 22647 size_code = BPF_H; 22648 if (ctx_field_size == 4) 22649 size_code = BPF_W; 22650 else if (ctx_field_size == 8) 22651 size_code = BPF_DW; 22652 22653 insn->off = off & ~(size_default - 1); 22654 insn->code = BPF_LDX | BPF_MEM | size_code; 22655 } 22656 22657 target_size = 0; 22658 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 22659 &target_size); 22660 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 22661 (ctx_field_size && !target_size)) { 22662 verifier_bug(env, "error during ctx access conversion (%d)", cnt); 22663 return -EFAULT; 22664 } 22665 22666 if (is_narrower_load && size < target_size) { 22667 u8 shift = bpf_ctx_narrow_access_offset( 22668 off, size, size_default) * 8; 22669 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 22670 verifier_bug(env, "narrow ctx load misconfigured"); 22671 return -EFAULT; 22672 } 22673 if (ctx_field_size <= 4) { 22674 if (shift) 22675 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 22676 insn->dst_reg, 22677 shift); 22678 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 22679 (1 << size * 8) - 1); 22680 } else { 22681 if (shift) 22682 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 22683 insn->dst_reg, 22684 shift); 22685 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 22686 (1ULL << size * 8) - 1); 22687 } 22688 } 22689 if (mode == BPF_MEMSX) 22690 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 22691 insn->dst_reg, insn->dst_reg, 22692 size * 8, 0); 22693 22694 patch_insn_buf: 22695 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22696 if (!new_prog) 22697 return -ENOMEM; 22698 22699 delta += cnt - 1; 22700 22701 /* keep walking new program and skip insns we just inserted */ 22702 env->prog = new_prog; 22703 insn = new_prog->insnsi + i + delta; 22704 } 22705 22706 return 0; 22707 } 22708 22709 static int jit_subprogs(struct bpf_verifier_env *env) 22710 { 22711 struct bpf_prog *prog = env->prog, **func, *tmp; 22712 int i, j, subprog_start, subprog_end = 0, len, subprog; 22713 struct bpf_map *map_ptr; 22714 struct bpf_insn *insn; 22715 void *old_bpf_func; 22716 int err, num_exentries; 22717 int old_len, subprog_start_adjustment = 0; 22718 22719 if (env->subprog_cnt <= 1) 22720 return 0; 22721 22722 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22723 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 22724 continue; 22725 22726 /* Upon error here we cannot fall back to interpreter but 22727 * need a hard reject of the program. Thus -EFAULT is 22728 * propagated in any case. 22729 */ 22730 subprog = find_subprog(env, i + insn->imm + 1); 22731 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 22732 i + insn->imm + 1)) 22733 return -EFAULT; 22734 /* temporarily remember subprog id inside insn instead of 22735 * aux_data, since next loop will split up all insns into funcs 22736 */ 22737 insn->off = subprog; 22738 /* remember original imm in case JIT fails and fallback 22739 * to interpreter will be needed 22740 */ 22741 env->insn_aux_data[i].call_imm = insn->imm; 22742 /* point imm to __bpf_call_base+1 from JITs point of view */ 22743 insn->imm = 1; 22744 if (bpf_pseudo_func(insn)) { 22745 #if defined(MODULES_VADDR) 22746 u64 addr = MODULES_VADDR; 22747 #else 22748 u64 addr = VMALLOC_START; 22749 #endif 22750 /* jit (e.g. x86_64) may emit fewer instructions 22751 * if it learns a u32 imm is the same as a u64 imm. 22752 * Set close enough to possible prog address. 22753 */ 22754 insn[0].imm = (u32)addr; 22755 insn[1].imm = addr >> 32; 22756 } 22757 } 22758 22759 err = bpf_prog_alloc_jited_linfo(prog); 22760 if (err) 22761 goto out_undo_insn; 22762 22763 err = -ENOMEM; 22764 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 22765 if (!func) 22766 goto out_undo_insn; 22767 22768 for (i = 0; i < env->subprog_cnt; i++) { 22769 subprog_start = subprog_end; 22770 subprog_end = env->subprog_info[i + 1].start; 22771 22772 len = subprog_end - subprog_start; 22773 /* bpf_prog_run() doesn't call subprogs directly, 22774 * hence main prog stats include the runtime of subprogs. 22775 * subprogs don't have IDs and not reachable via prog_get_next_id 22776 * func[i]->stats will never be accessed and stays NULL 22777 */ 22778 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 22779 if (!func[i]) 22780 goto out_free; 22781 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 22782 len * sizeof(struct bpf_insn)); 22783 func[i]->type = prog->type; 22784 func[i]->len = len; 22785 if (bpf_prog_calc_tag(func[i])) 22786 goto out_free; 22787 func[i]->is_func = 1; 22788 func[i]->sleepable = prog->sleepable; 22789 func[i]->aux->func_idx = i; 22790 /* Below members will be freed only at prog->aux */ 22791 func[i]->aux->btf = prog->aux->btf; 22792 func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment; 22793 func[i]->aux->func_info = prog->aux->func_info; 22794 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 22795 func[i]->aux->poke_tab = prog->aux->poke_tab; 22796 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 22797 func[i]->aux->main_prog_aux = prog->aux; 22798 22799 for (j = 0; j < prog->aux->size_poke_tab; j++) { 22800 struct bpf_jit_poke_descriptor *poke; 22801 22802 poke = &prog->aux->poke_tab[j]; 22803 if (poke->insn_idx < subprog_end && 22804 poke->insn_idx >= subprog_start) 22805 poke->aux = func[i]->aux; 22806 } 22807 22808 func[i]->aux->name[0] = 'F'; 22809 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 22810 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 22811 func[i]->aux->jits_use_priv_stack = true; 22812 22813 func[i]->jit_requested = 1; 22814 func[i]->blinding_requested = prog->blinding_requested; 22815 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 22816 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 22817 func[i]->aux->linfo = prog->aux->linfo; 22818 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 22819 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 22820 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 22821 func[i]->aux->arena = prog->aux->arena; 22822 func[i]->aux->used_maps = env->used_maps; 22823 func[i]->aux->used_map_cnt = env->used_map_cnt; 22824 num_exentries = 0; 22825 insn = func[i]->insnsi; 22826 for (j = 0; j < func[i]->len; j++, insn++) { 22827 if (BPF_CLASS(insn->code) == BPF_LDX && 22828 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22829 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 22830 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX || 22831 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 22832 num_exentries++; 22833 if ((BPF_CLASS(insn->code) == BPF_STX || 22834 BPF_CLASS(insn->code) == BPF_ST) && 22835 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 22836 num_exentries++; 22837 if (BPF_CLASS(insn->code) == BPF_STX && 22838 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 22839 num_exentries++; 22840 } 22841 func[i]->aux->num_exentries = num_exentries; 22842 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 22843 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 22844 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 22845 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 22846 if (!i) 22847 func[i]->aux->exception_boundary = env->seen_exception; 22848 22849 /* 22850 * To properly pass the absolute subprog start to jit 22851 * all instruction adjustments should be accumulated 22852 */ 22853 old_len = func[i]->len; 22854 func[i] = bpf_int_jit_compile(func[i]); 22855 subprog_start_adjustment += func[i]->len - old_len; 22856 22857 if (!func[i]->jited) { 22858 err = -ENOTSUPP; 22859 goto out_free; 22860 } 22861 cond_resched(); 22862 } 22863 22864 /* at this point all bpf functions were successfully JITed 22865 * now populate all bpf_calls with correct addresses and 22866 * run last pass of JIT 22867 */ 22868 for (i = 0; i < env->subprog_cnt; i++) { 22869 insn = func[i]->insnsi; 22870 for (j = 0; j < func[i]->len; j++, insn++) { 22871 if (bpf_pseudo_func(insn)) { 22872 subprog = insn->off; 22873 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 22874 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 22875 continue; 22876 } 22877 if (!bpf_pseudo_call(insn)) 22878 continue; 22879 subprog = insn->off; 22880 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 22881 } 22882 22883 /* we use the aux data to keep a list of the start addresses 22884 * of the JITed images for each function in the program 22885 * 22886 * for some architectures, such as powerpc64, the imm field 22887 * might not be large enough to hold the offset of the start 22888 * address of the callee's JITed image from __bpf_call_base 22889 * 22890 * in such cases, we can lookup the start address of a callee 22891 * by using its subprog id, available from the off field of 22892 * the call instruction, as an index for this list 22893 */ 22894 func[i]->aux->func = func; 22895 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 22896 func[i]->aux->real_func_cnt = env->subprog_cnt; 22897 } 22898 for (i = 0; i < env->subprog_cnt; i++) { 22899 old_bpf_func = func[i]->bpf_func; 22900 tmp = bpf_int_jit_compile(func[i]); 22901 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 22902 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 22903 err = -ENOTSUPP; 22904 goto out_free; 22905 } 22906 cond_resched(); 22907 } 22908 22909 /* 22910 * Cleanup func[i]->aux fields which aren't required 22911 * or can become invalid in future 22912 */ 22913 for (i = 0; i < env->subprog_cnt; i++) { 22914 func[i]->aux->used_maps = NULL; 22915 func[i]->aux->used_map_cnt = 0; 22916 } 22917 22918 /* finally lock prog and jit images for all functions and 22919 * populate kallsysm. Begin at the first subprogram, since 22920 * bpf_prog_load will add the kallsyms for the main program. 22921 */ 22922 for (i = 1; i < env->subprog_cnt; i++) { 22923 err = bpf_prog_lock_ro(func[i]); 22924 if (err) 22925 goto out_free; 22926 } 22927 22928 for (i = 1; i < env->subprog_cnt; i++) 22929 bpf_prog_kallsyms_add(func[i]); 22930 22931 /* Last step: make now unused interpreter insns from main 22932 * prog consistent for later dump requests, so they can 22933 * later look the same as if they were interpreted only. 22934 */ 22935 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22936 if (bpf_pseudo_func(insn)) { 22937 insn[0].imm = env->insn_aux_data[i].call_imm; 22938 insn[1].imm = insn->off; 22939 insn->off = 0; 22940 continue; 22941 } 22942 if (!bpf_pseudo_call(insn)) 22943 continue; 22944 insn->off = env->insn_aux_data[i].call_imm; 22945 subprog = find_subprog(env, i + insn->off + 1); 22946 insn->imm = subprog; 22947 } 22948 22949 prog->jited = 1; 22950 prog->bpf_func = func[0]->bpf_func; 22951 prog->jited_len = func[0]->jited_len; 22952 prog->aux->extable = func[0]->aux->extable; 22953 prog->aux->num_exentries = func[0]->aux->num_exentries; 22954 prog->aux->func = func; 22955 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 22956 prog->aux->real_func_cnt = env->subprog_cnt; 22957 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 22958 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 22959 bpf_prog_jit_attempt_done(prog); 22960 return 0; 22961 out_free: 22962 /* We failed JIT'ing, so at this point we need to unregister poke 22963 * descriptors from subprogs, so that kernel is not attempting to 22964 * patch it anymore as we're freeing the subprog JIT memory. 22965 */ 22966 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22967 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22968 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 22969 } 22970 /* At this point we're guaranteed that poke descriptors are not 22971 * live anymore. We can just unlink its descriptor table as it's 22972 * released with the main prog. 22973 */ 22974 for (i = 0; i < env->subprog_cnt; i++) { 22975 if (!func[i]) 22976 continue; 22977 func[i]->aux->poke_tab = NULL; 22978 bpf_jit_free(func[i]); 22979 } 22980 kfree(func); 22981 out_undo_insn: 22982 /* cleanup main prog to be interpreted */ 22983 prog->jit_requested = 0; 22984 prog->blinding_requested = 0; 22985 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22986 if (!bpf_pseudo_call(insn)) 22987 continue; 22988 insn->off = 0; 22989 insn->imm = env->insn_aux_data[i].call_imm; 22990 } 22991 bpf_prog_jit_attempt_done(prog); 22992 return err; 22993 } 22994 22995 static int fixup_call_args(struct bpf_verifier_env *env) 22996 { 22997 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 22998 struct bpf_prog *prog = env->prog; 22999 struct bpf_insn *insn = prog->insnsi; 23000 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 23001 int i, depth; 23002 #endif 23003 int err = 0; 23004 23005 if (env->prog->jit_requested && 23006 !bpf_prog_is_offloaded(env->prog->aux)) { 23007 err = jit_subprogs(env); 23008 if (err == 0) 23009 return 0; 23010 if (err == -EFAULT) 23011 return err; 23012 } 23013 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 23014 if (has_kfunc_call) { 23015 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 23016 return -EINVAL; 23017 } 23018 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 23019 /* When JIT fails the progs with bpf2bpf calls and tail_calls 23020 * have to be rejected, since interpreter doesn't support them yet. 23021 */ 23022 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 23023 return -EINVAL; 23024 } 23025 for (i = 0; i < prog->len; i++, insn++) { 23026 if (bpf_pseudo_func(insn)) { 23027 /* When JIT fails the progs with callback calls 23028 * have to be rejected, since interpreter doesn't support them yet. 23029 */ 23030 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 23031 return -EINVAL; 23032 } 23033 23034 if (!bpf_pseudo_call(insn)) 23035 continue; 23036 depth = get_callee_stack_depth(env, insn, i); 23037 if (depth < 0) 23038 return depth; 23039 bpf_patch_call_args(insn, depth); 23040 } 23041 err = 0; 23042 #endif 23043 return err; 23044 } 23045 23046 /* replace a generic kfunc with a specialized version if necessary */ 23047 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx) 23048 { 23049 struct bpf_prog *prog = env->prog; 23050 bool seen_direct_write; 23051 void *xdp_kfunc; 23052 bool is_rdonly; 23053 u32 func_id = desc->func_id; 23054 u16 offset = desc->offset; 23055 unsigned long addr = desc->addr; 23056 23057 if (offset) /* return if module BTF is used */ 23058 return 0; 23059 23060 if (bpf_dev_bound_kfunc_id(func_id)) { 23061 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 23062 if (xdp_kfunc) 23063 addr = (unsigned long)xdp_kfunc; 23064 /* fallback to default kfunc when not supported by netdev */ 23065 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 23066 seen_direct_write = env->seen_direct_write; 23067 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 23068 23069 if (is_rdonly) 23070 addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 23071 23072 /* restore env->seen_direct_write to its original value, since 23073 * may_access_direct_pkt_data mutates it 23074 */ 23075 env->seen_direct_write = seen_direct_write; 23076 } else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) { 23077 if (bpf_lsm_has_d_inode_locked(prog)) 23078 addr = (unsigned long)bpf_set_dentry_xattr_locked; 23079 } else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) { 23080 if (bpf_lsm_has_d_inode_locked(prog)) 23081 addr = (unsigned long)bpf_remove_dentry_xattr_locked; 23082 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { 23083 if (!env->insn_aux_data[insn_idx].non_sleepable) 23084 addr = (unsigned long)bpf_dynptr_from_file_sleepable; 23085 } else if (func_id == special_kfunc_list[KF_bpf_arena_alloc_pages]) { 23086 if (env->insn_aux_data[insn_idx].non_sleepable) 23087 addr = (unsigned long)bpf_arena_alloc_pages_non_sleepable; 23088 } else if (func_id == special_kfunc_list[KF_bpf_arena_free_pages]) { 23089 if (env->insn_aux_data[insn_idx].non_sleepable) 23090 addr = (unsigned long)bpf_arena_free_pages_non_sleepable; 23091 } 23092 desc->addr = addr; 23093 return 0; 23094 } 23095 23096 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 23097 u16 struct_meta_reg, 23098 u16 node_offset_reg, 23099 struct bpf_insn *insn, 23100 struct bpf_insn *insn_buf, 23101 int *cnt) 23102 { 23103 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 23104 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 23105 23106 insn_buf[0] = addr[0]; 23107 insn_buf[1] = addr[1]; 23108 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 23109 insn_buf[3] = *insn; 23110 *cnt = 4; 23111 } 23112 23113 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 23114 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 23115 { 23116 struct bpf_kfunc_desc *desc; 23117 int err; 23118 23119 if (!insn->imm) { 23120 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 23121 return -EINVAL; 23122 } 23123 23124 *cnt = 0; 23125 23126 /* insn->imm has the btf func_id. Replace it with an offset relative to 23127 * __bpf_call_base, unless the JIT needs to call functions that are 23128 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 23129 */ 23130 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 23131 if (!desc) { 23132 verifier_bug(env, "kernel function descriptor not found for func_id %u", 23133 insn->imm); 23134 return -EFAULT; 23135 } 23136 23137 err = specialize_kfunc(env, desc, insn_idx); 23138 if (err) 23139 return err; 23140 23141 if (!bpf_jit_supports_far_kfunc_call()) 23142 insn->imm = BPF_CALL_IMM(desc->addr); 23143 23144 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 23145 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 23146 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 23147 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 23148 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 23149 23150 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 23151 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 23152 insn_idx); 23153 return -EFAULT; 23154 } 23155 23156 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 23157 insn_buf[1] = addr[0]; 23158 insn_buf[2] = addr[1]; 23159 insn_buf[3] = *insn; 23160 *cnt = 4; 23161 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 23162 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 23163 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 23164 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 23165 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 23166 23167 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 23168 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 23169 insn_idx); 23170 return -EFAULT; 23171 } 23172 23173 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 23174 !kptr_struct_meta) { 23175 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 23176 insn_idx); 23177 return -EFAULT; 23178 } 23179 23180 insn_buf[0] = addr[0]; 23181 insn_buf[1] = addr[1]; 23182 insn_buf[2] = *insn; 23183 *cnt = 3; 23184 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 23185 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 23186 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 23187 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 23188 int struct_meta_reg = BPF_REG_3; 23189 int node_offset_reg = BPF_REG_4; 23190 23191 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 23192 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 23193 struct_meta_reg = BPF_REG_4; 23194 node_offset_reg = BPF_REG_5; 23195 } 23196 23197 if (!kptr_struct_meta) { 23198 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 23199 insn_idx); 23200 return -EFAULT; 23201 } 23202 23203 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 23204 node_offset_reg, insn, insn_buf, cnt); 23205 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 23206 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 23207 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 23208 *cnt = 1; 23209 } else if (desc->func_id == special_kfunc_list[KF_bpf_session_is_return] && 23210 env->prog->expected_attach_type == BPF_TRACE_FSESSION) { 23211 /* 23212 * inline the bpf_session_is_return() for fsession: 23213 * bool bpf_session_is_return(void *ctx) 23214 * { 23215 * return (((u64 *)ctx)[-1] >> BPF_TRAMP_IS_RETURN_SHIFT) & 1; 23216 * } 23217 */ 23218 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23219 insn_buf[1] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_0, BPF_TRAMP_IS_RETURN_SHIFT); 23220 insn_buf[2] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1); 23221 *cnt = 3; 23222 } else if (desc->func_id == special_kfunc_list[KF_bpf_session_cookie] && 23223 env->prog->expected_attach_type == BPF_TRACE_FSESSION) { 23224 /* 23225 * inline bpf_session_cookie() for fsession: 23226 * __u64 *bpf_session_cookie(void *ctx) 23227 * { 23228 * u64 off = (((u64 *)ctx)[-1] >> BPF_TRAMP_COOKIE_INDEX_SHIFT) & 0xFF; 23229 * return &((u64 *)ctx)[-off]; 23230 * } 23231 */ 23232 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23233 insn_buf[1] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_0, BPF_TRAMP_COOKIE_INDEX_SHIFT); 23234 insn_buf[2] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF); 23235 insn_buf[3] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 23236 insn_buf[4] = BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1); 23237 insn_buf[5] = BPF_ALU64_IMM(BPF_NEG, BPF_REG_0, 0); 23238 *cnt = 6; 23239 } 23240 23241 if (env->insn_aux_data[insn_idx].arg_prog) { 23242 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 23243 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 23244 int idx = *cnt; 23245 23246 insn_buf[idx++] = ld_addrs[0]; 23247 insn_buf[idx++] = ld_addrs[1]; 23248 insn_buf[idx++] = *insn; 23249 *cnt = idx; 23250 } 23251 return 0; 23252 } 23253 23254 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 23255 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 23256 { 23257 struct bpf_subprog_info *info = env->subprog_info; 23258 int cnt = env->subprog_cnt; 23259 struct bpf_prog *prog; 23260 23261 /* We only reserve one slot for hidden subprogs in subprog_info. */ 23262 if (env->hidden_subprog_cnt) { 23263 verifier_bug(env, "only one hidden subprog supported"); 23264 return -EFAULT; 23265 } 23266 /* We're not patching any existing instruction, just appending the new 23267 * ones for the hidden subprog. Hence all of the adjustment operations 23268 * in bpf_patch_insn_data are no-ops. 23269 */ 23270 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 23271 if (!prog) 23272 return -ENOMEM; 23273 env->prog = prog; 23274 info[cnt + 1].start = info[cnt].start; 23275 info[cnt].start = prog->len - len + 1; 23276 env->subprog_cnt++; 23277 env->hidden_subprog_cnt++; 23278 return 0; 23279 } 23280 23281 /* Do various post-verification rewrites in a single program pass. 23282 * These rewrites simplify JIT and interpreter implementations. 23283 */ 23284 static int do_misc_fixups(struct bpf_verifier_env *env) 23285 { 23286 struct bpf_prog *prog = env->prog; 23287 enum bpf_attach_type eatype = prog->expected_attach_type; 23288 enum bpf_prog_type prog_type = resolve_prog_type(prog); 23289 struct bpf_insn *insn = prog->insnsi; 23290 const struct bpf_func_proto *fn; 23291 const int insn_cnt = prog->len; 23292 const struct bpf_map_ops *ops; 23293 struct bpf_insn_aux_data *aux; 23294 struct bpf_insn *insn_buf = env->insn_buf; 23295 struct bpf_prog *new_prog; 23296 struct bpf_map *map_ptr; 23297 int i, ret, cnt, delta = 0, cur_subprog = 0; 23298 struct bpf_subprog_info *subprogs = env->subprog_info; 23299 u16 stack_depth = subprogs[cur_subprog].stack_depth; 23300 u16 stack_depth_extra = 0; 23301 23302 if (env->seen_exception && !env->exception_callback_subprog) { 23303 struct bpf_insn *patch = insn_buf; 23304 23305 *patch++ = env->prog->insnsi[insn_cnt - 1]; 23306 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 23307 *patch++ = BPF_EXIT_INSN(); 23308 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); 23309 if (ret < 0) 23310 return ret; 23311 prog = env->prog; 23312 insn = prog->insnsi; 23313 23314 env->exception_callback_subprog = env->subprog_cnt - 1; 23315 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 23316 mark_subprog_exc_cb(env, env->exception_callback_subprog); 23317 } 23318 23319 for (i = 0; i < insn_cnt;) { 23320 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 23321 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 23322 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 23323 /* convert to 32-bit mov that clears upper 32-bit */ 23324 insn->code = BPF_ALU | BPF_MOV | BPF_X; 23325 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 23326 insn->off = 0; 23327 insn->imm = 0; 23328 } /* cast from as(0) to as(1) should be handled by JIT */ 23329 goto next_insn; 23330 } 23331 23332 if (env->insn_aux_data[i + delta].needs_zext) 23333 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 23334 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 23335 23336 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 23337 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 23338 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 23339 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 23340 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 23341 insn->off == 1 && insn->imm == -1) { 23342 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 23343 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 23344 struct bpf_insn *patch = insn_buf; 23345 23346 if (isdiv) 23347 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 23348 BPF_NEG | BPF_K, insn->dst_reg, 23349 0, 0, 0); 23350 else 23351 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 23352 23353 cnt = patch - insn_buf; 23354 23355 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23356 if (!new_prog) 23357 return -ENOMEM; 23358 23359 delta += cnt - 1; 23360 env->prog = prog = new_prog; 23361 insn = new_prog->insnsi + i + delta; 23362 goto next_insn; 23363 } 23364 23365 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 23366 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 23367 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 23368 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 23369 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 23370 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 23371 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 23372 bool is_sdiv = isdiv && insn->off == 1; 23373 bool is_smod = !isdiv && insn->off == 1; 23374 struct bpf_insn *patch = insn_buf; 23375 23376 if (is_sdiv) { 23377 /* [R,W]x sdiv 0 -> 0 23378 * LLONG_MIN sdiv -1 -> LLONG_MIN 23379 * INT_MIN sdiv -1 -> INT_MIN 23380 */ 23381 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 23382 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 23383 BPF_ADD | BPF_K, BPF_REG_AX, 23384 0, 0, 1); 23385 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23386 BPF_JGT | BPF_K, BPF_REG_AX, 23387 0, 4, 1); 23388 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23389 BPF_JEQ | BPF_K, BPF_REG_AX, 23390 0, 1, 0); 23391 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 23392 BPF_MOV | BPF_K, insn->dst_reg, 23393 0, 0, 0); 23394 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 23395 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 23396 BPF_NEG | BPF_K, insn->dst_reg, 23397 0, 0, 0); 23398 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23399 *patch++ = *insn; 23400 cnt = patch - insn_buf; 23401 } else if (is_smod) { 23402 /* [R,W]x mod 0 -> [R,W]x */ 23403 /* [R,W]x mod -1 -> 0 */ 23404 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 23405 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 23406 BPF_ADD | BPF_K, BPF_REG_AX, 23407 0, 0, 1); 23408 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23409 BPF_JGT | BPF_K, BPF_REG_AX, 23410 0, 3, 1); 23411 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23412 BPF_JEQ | BPF_K, BPF_REG_AX, 23413 0, 3 + (is64 ? 0 : 1), 1); 23414 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 23415 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23416 *patch++ = *insn; 23417 23418 if (!is64) { 23419 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23420 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 23421 } 23422 cnt = patch - insn_buf; 23423 } else if (isdiv) { 23424 /* [R,W]x div 0 -> 0 */ 23425 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23426 BPF_JNE | BPF_K, insn->src_reg, 23427 0, 2, 0); 23428 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); 23429 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23430 *patch++ = *insn; 23431 cnt = patch - insn_buf; 23432 } else { 23433 /* [R,W]x mod 0 -> [R,W]x */ 23434 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 23435 BPF_JEQ | BPF_K, insn->src_reg, 23436 0, 1 + (is64 ? 0 : 1), 0); 23437 *patch++ = *insn; 23438 23439 if (!is64) { 23440 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23441 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 23442 } 23443 cnt = patch - insn_buf; 23444 } 23445 23446 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23447 if (!new_prog) 23448 return -ENOMEM; 23449 23450 delta += cnt - 1; 23451 env->prog = prog = new_prog; 23452 insn = new_prog->insnsi + i + delta; 23453 goto next_insn; 23454 } 23455 23456 /* Make it impossible to de-reference a userspace address */ 23457 if (BPF_CLASS(insn->code) == BPF_LDX && 23458 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 23459 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 23460 struct bpf_insn *patch = insn_buf; 23461 u64 uaddress_limit = bpf_arch_uaddress_limit(); 23462 23463 if (!uaddress_limit) 23464 goto next_insn; 23465 23466 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 23467 if (insn->off) 23468 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 23469 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 23470 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 23471 *patch++ = *insn; 23472 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 23473 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 23474 23475 cnt = patch - insn_buf; 23476 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23477 if (!new_prog) 23478 return -ENOMEM; 23479 23480 delta += cnt - 1; 23481 env->prog = prog = new_prog; 23482 insn = new_prog->insnsi + i + delta; 23483 goto next_insn; 23484 } 23485 23486 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 23487 if (BPF_CLASS(insn->code) == BPF_LD && 23488 (BPF_MODE(insn->code) == BPF_ABS || 23489 BPF_MODE(insn->code) == BPF_IND)) { 23490 cnt = env->ops->gen_ld_abs(insn, insn_buf); 23491 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 23492 verifier_bug(env, "%d insns generated for ld_abs", cnt); 23493 return -EFAULT; 23494 } 23495 23496 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23497 if (!new_prog) 23498 return -ENOMEM; 23499 23500 delta += cnt - 1; 23501 env->prog = prog = new_prog; 23502 insn = new_prog->insnsi + i + delta; 23503 goto next_insn; 23504 } 23505 23506 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 23507 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 23508 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 23509 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 23510 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 23511 struct bpf_insn *patch = insn_buf; 23512 bool issrc, isneg, isimm; 23513 u32 off_reg; 23514 23515 aux = &env->insn_aux_data[i + delta]; 23516 if (!aux->alu_state || 23517 aux->alu_state == BPF_ALU_NON_POINTER) 23518 goto next_insn; 23519 23520 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 23521 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 23522 BPF_ALU_SANITIZE_SRC; 23523 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 23524 23525 off_reg = issrc ? insn->src_reg : insn->dst_reg; 23526 if (isimm) { 23527 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 23528 } else { 23529 if (isneg) 23530 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 23531 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 23532 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 23533 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 23534 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 23535 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 23536 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 23537 } 23538 if (!issrc) 23539 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 23540 insn->src_reg = BPF_REG_AX; 23541 if (isneg) 23542 insn->code = insn->code == code_add ? 23543 code_sub : code_add; 23544 *patch++ = *insn; 23545 if (issrc && isneg && !isimm) 23546 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 23547 cnt = patch - insn_buf; 23548 23549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23550 if (!new_prog) 23551 return -ENOMEM; 23552 23553 delta += cnt - 1; 23554 env->prog = prog = new_prog; 23555 insn = new_prog->insnsi + i + delta; 23556 goto next_insn; 23557 } 23558 23559 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 23560 int stack_off_cnt = -stack_depth - 16; 23561 23562 /* 23563 * Two 8 byte slots, depth-16 stores the count, and 23564 * depth-8 stores the start timestamp of the loop. 23565 * 23566 * The starting value of count is BPF_MAX_TIMED_LOOPS 23567 * (0xffff). Every iteration loads it and subs it by 1, 23568 * until the value becomes 0 in AX (thus, 1 in stack), 23569 * after which we call arch_bpf_timed_may_goto, which 23570 * either sets AX to 0xffff to keep looping, or to 0 23571 * upon timeout. AX is then stored into the stack. In 23572 * the next iteration, we either see 0 and break out, or 23573 * continue iterating until the next time value is 0 23574 * after subtraction, rinse and repeat. 23575 */ 23576 stack_depth_extra = 16; 23577 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 23578 if (insn->off >= 0) 23579 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 23580 else 23581 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 23582 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 23583 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 23584 /* 23585 * AX is used as an argument to pass in stack_off_cnt 23586 * (to add to r10/fp), and also as the return value of 23587 * the call to arch_bpf_timed_may_goto. 23588 */ 23589 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 23590 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 23591 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 23592 cnt = 7; 23593 23594 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23595 if (!new_prog) 23596 return -ENOMEM; 23597 23598 delta += cnt - 1; 23599 env->prog = prog = new_prog; 23600 insn = new_prog->insnsi + i + delta; 23601 goto next_insn; 23602 } else if (is_may_goto_insn(insn)) { 23603 int stack_off = -stack_depth - 8; 23604 23605 stack_depth_extra = 8; 23606 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 23607 if (insn->off >= 0) 23608 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 23609 else 23610 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 23611 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 23612 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 23613 cnt = 4; 23614 23615 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23616 if (!new_prog) 23617 return -ENOMEM; 23618 23619 delta += cnt - 1; 23620 env->prog = prog = new_prog; 23621 insn = new_prog->insnsi + i + delta; 23622 goto next_insn; 23623 } 23624 23625 if (insn->code != (BPF_JMP | BPF_CALL)) 23626 goto next_insn; 23627 if (insn->src_reg == BPF_PSEUDO_CALL) 23628 goto next_insn; 23629 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 23630 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 23631 if (ret) 23632 return ret; 23633 if (cnt == 0) 23634 goto next_insn; 23635 23636 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23637 if (!new_prog) 23638 return -ENOMEM; 23639 23640 delta += cnt - 1; 23641 env->prog = prog = new_prog; 23642 insn = new_prog->insnsi + i + delta; 23643 goto next_insn; 23644 } 23645 23646 /* Skip inlining the helper call if the JIT does it. */ 23647 if (bpf_jit_inlines_helper_call(insn->imm)) 23648 goto next_insn; 23649 23650 if (insn->imm == BPF_FUNC_get_route_realm) 23651 prog->dst_needed = 1; 23652 if (insn->imm == BPF_FUNC_get_prandom_u32) 23653 bpf_user_rnd_init_once(); 23654 if (insn->imm == BPF_FUNC_override_return) 23655 prog->kprobe_override = 1; 23656 if (insn->imm == BPF_FUNC_tail_call) { 23657 /* If we tail call into other programs, we 23658 * cannot make any assumptions since they can 23659 * be replaced dynamically during runtime in 23660 * the program array. 23661 */ 23662 prog->cb_access = 1; 23663 if (!allow_tail_call_in_subprogs(env)) 23664 prog->aux->stack_depth = MAX_BPF_STACK; 23665 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 23666 23667 /* mark bpf_tail_call as different opcode to avoid 23668 * conditional branch in the interpreter for every normal 23669 * call and to prevent accidental JITing by JIT compiler 23670 * that doesn't support bpf_tail_call yet 23671 */ 23672 insn->imm = 0; 23673 insn->code = BPF_JMP | BPF_TAIL_CALL; 23674 23675 aux = &env->insn_aux_data[i + delta]; 23676 if (env->bpf_capable && !prog->blinding_requested && 23677 prog->jit_requested && 23678 !bpf_map_key_poisoned(aux) && 23679 !bpf_map_ptr_poisoned(aux) && 23680 !bpf_map_ptr_unpriv(aux)) { 23681 struct bpf_jit_poke_descriptor desc = { 23682 .reason = BPF_POKE_REASON_TAIL_CALL, 23683 .tail_call.map = aux->map_ptr_state.map_ptr, 23684 .tail_call.key = bpf_map_key_immediate(aux), 23685 .insn_idx = i + delta, 23686 }; 23687 23688 ret = bpf_jit_add_poke_descriptor(prog, &desc); 23689 if (ret < 0) { 23690 verbose(env, "adding tail call poke descriptor failed\n"); 23691 return ret; 23692 } 23693 23694 insn->imm = ret + 1; 23695 goto next_insn; 23696 } 23697 23698 if (!bpf_map_ptr_unpriv(aux)) 23699 goto next_insn; 23700 23701 /* instead of changing every JIT dealing with tail_call 23702 * emit two extra insns: 23703 * if (index >= max_entries) goto out; 23704 * index &= array->index_mask; 23705 * to avoid out-of-bounds cpu speculation 23706 */ 23707 if (bpf_map_ptr_poisoned(aux)) { 23708 verbose(env, "tail_call abusing map_ptr\n"); 23709 return -EINVAL; 23710 } 23711 23712 map_ptr = aux->map_ptr_state.map_ptr; 23713 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 23714 map_ptr->max_entries, 2); 23715 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 23716 container_of(map_ptr, 23717 struct bpf_array, 23718 map)->index_mask); 23719 insn_buf[2] = *insn; 23720 cnt = 3; 23721 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23722 if (!new_prog) 23723 return -ENOMEM; 23724 23725 delta += cnt - 1; 23726 env->prog = prog = new_prog; 23727 insn = new_prog->insnsi + i + delta; 23728 goto next_insn; 23729 } 23730 23731 if (insn->imm == BPF_FUNC_timer_set_callback) { 23732 /* The verifier will process callback_fn as many times as necessary 23733 * with different maps and the register states prepared by 23734 * set_timer_callback_state will be accurate. 23735 * 23736 * The following use case is valid: 23737 * map1 is shared by prog1, prog2, prog3. 23738 * prog1 calls bpf_timer_init for some map1 elements 23739 * prog2 calls bpf_timer_set_callback for some map1 elements. 23740 * Those that were not bpf_timer_init-ed will return -EINVAL. 23741 * prog3 calls bpf_timer_start for some map1 elements. 23742 * Those that were not both bpf_timer_init-ed and 23743 * bpf_timer_set_callback-ed will return -EINVAL. 23744 */ 23745 struct bpf_insn ld_addrs[2] = { 23746 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 23747 }; 23748 23749 insn_buf[0] = ld_addrs[0]; 23750 insn_buf[1] = ld_addrs[1]; 23751 insn_buf[2] = *insn; 23752 cnt = 3; 23753 23754 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23755 if (!new_prog) 23756 return -ENOMEM; 23757 23758 delta += cnt - 1; 23759 env->prog = prog = new_prog; 23760 insn = new_prog->insnsi + i + delta; 23761 goto patch_call_imm; 23762 } 23763 23764 if (is_storage_get_function(insn->imm)) { 23765 if (env->insn_aux_data[i + delta].non_sleepable) 23766 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 23767 else 23768 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 23769 insn_buf[1] = *insn; 23770 cnt = 2; 23771 23772 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23773 if (!new_prog) 23774 return -ENOMEM; 23775 23776 delta += cnt - 1; 23777 env->prog = prog = new_prog; 23778 insn = new_prog->insnsi + i + delta; 23779 goto patch_call_imm; 23780 } 23781 23782 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 23783 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 23784 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 23785 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 23786 */ 23787 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 23788 insn_buf[1] = *insn; 23789 cnt = 2; 23790 23791 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23792 if (!new_prog) 23793 return -ENOMEM; 23794 23795 delta += cnt - 1; 23796 env->prog = prog = new_prog; 23797 insn = new_prog->insnsi + i + delta; 23798 goto patch_call_imm; 23799 } 23800 23801 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 23802 * and other inlining handlers are currently limited to 64 bit 23803 * only. 23804 */ 23805 if (prog->jit_requested && BITS_PER_LONG == 64 && 23806 (insn->imm == BPF_FUNC_map_lookup_elem || 23807 insn->imm == BPF_FUNC_map_update_elem || 23808 insn->imm == BPF_FUNC_map_delete_elem || 23809 insn->imm == BPF_FUNC_map_push_elem || 23810 insn->imm == BPF_FUNC_map_pop_elem || 23811 insn->imm == BPF_FUNC_map_peek_elem || 23812 insn->imm == BPF_FUNC_redirect_map || 23813 insn->imm == BPF_FUNC_for_each_map_elem || 23814 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 23815 aux = &env->insn_aux_data[i + delta]; 23816 if (bpf_map_ptr_poisoned(aux)) 23817 goto patch_call_imm; 23818 23819 map_ptr = aux->map_ptr_state.map_ptr; 23820 ops = map_ptr->ops; 23821 if (insn->imm == BPF_FUNC_map_lookup_elem && 23822 ops->map_gen_lookup) { 23823 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 23824 if (cnt == -EOPNOTSUPP) 23825 goto patch_map_ops_generic; 23826 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 23827 verifier_bug(env, "%d insns generated for map lookup", cnt); 23828 return -EFAULT; 23829 } 23830 23831 new_prog = bpf_patch_insn_data(env, i + delta, 23832 insn_buf, cnt); 23833 if (!new_prog) 23834 return -ENOMEM; 23835 23836 delta += cnt - 1; 23837 env->prog = prog = new_prog; 23838 insn = new_prog->insnsi + i + delta; 23839 goto next_insn; 23840 } 23841 23842 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 23843 (void *(*)(struct bpf_map *map, void *key))NULL)); 23844 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 23845 (long (*)(struct bpf_map *map, void *key))NULL)); 23846 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 23847 (long (*)(struct bpf_map *map, void *key, void *value, 23848 u64 flags))NULL)); 23849 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 23850 (long (*)(struct bpf_map *map, void *value, 23851 u64 flags))NULL)); 23852 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 23853 (long (*)(struct bpf_map *map, void *value))NULL)); 23854 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 23855 (long (*)(struct bpf_map *map, void *value))NULL)); 23856 BUILD_BUG_ON(!__same_type(ops->map_redirect, 23857 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 23858 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 23859 (long (*)(struct bpf_map *map, 23860 bpf_callback_t callback_fn, 23861 void *callback_ctx, 23862 u64 flags))NULL)); 23863 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 23864 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 23865 23866 patch_map_ops_generic: 23867 switch (insn->imm) { 23868 case BPF_FUNC_map_lookup_elem: 23869 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 23870 goto next_insn; 23871 case BPF_FUNC_map_update_elem: 23872 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 23873 goto next_insn; 23874 case BPF_FUNC_map_delete_elem: 23875 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 23876 goto next_insn; 23877 case BPF_FUNC_map_push_elem: 23878 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 23879 goto next_insn; 23880 case BPF_FUNC_map_pop_elem: 23881 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 23882 goto next_insn; 23883 case BPF_FUNC_map_peek_elem: 23884 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 23885 goto next_insn; 23886 case BPF_FUNC_redirect_map: 23887 insn->imm = BPF_CALL_IMM(ops->map_redirect); 23888 goto next_insn; 23889 case BPF_FUNC_for_each_map_elem: 23890 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 23891 goto next_insn; 23892 case BPF_FUNC_map_lookup_percpu_elem: 23893 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 23894 goto next_insn; 23895 } 23896 23897 goto patch_call_imm; 23898 } 23899 23900 /* Implement bpf_jiffies64 inline. */ 23901 if (prog->jit_requested && BITS_PER_LONG == 64 && 23902 insn->imm == BPF_FUNC_jiffies64) { 23903 struct bpf_insn ld_jiffies_addr[2] = { 23904 BPF_LD_IMM64(BPF_REG_0, 23905 (unsigned long)&jiffies), 23906 }; 23907 23908 insn_buf[0] = ld_jiffies_addr[0]; 23909 insn_buf[1] = ld_jiffies_addr[1]; 23910 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 23911 BPF_REG_0, 0); 23912 cnt = 3; 23913 23914 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 23915 cnt); 23916 if (!new_prog) 23917 return -ENOMEM; 23918 23919 delta += cnt - 1; 23920 env->prog = prog = new_prog; 23921 insn = new_prog->insnsi + i + delta; 23922 goto next_insn; 23923 } 23924 23925 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 23926 /* Implement bpf_get_smp_processor_id() inline. */ 23927 if (insn->imm == BPF_FUNC_get_smp_processor_id && 23928 verifier_inlines_helper_call(env, insn->imm)) { 23929 /* BPF_FUNC_get_smp_processor_id inlining is an 23930 * optimization, so if cpu_number is ever 23931 * changed in some incompatible and hard to support 23932 * way, it's fine to back out this inlining logic 23933 */ 23934 #ifdef CONFIG_SMP 23935 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 23936 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 23937 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 23938 cnt = 3; 23939 #else 23940 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 23941 cnt = 1; 23942 #endif 23943 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23944 if (!new_prog) 23945 return -ENOMEM; 23946 23947 delta += cnt - 1; 23948 env->prog = prog = new_prog; 23949 insn = new_prog->insnsi + i + delta; 23950 goto next_insn; 23951 } 23952 23953 /* Implement bpf_get_current_task() and bpf_get_current_task_btf() inline. */ 23954 if ((insn->imm == BPF_FUNC_get_current_task || insn->imm == BPF_FUNC_get_current_task_btf) && 23955 verifier_inlines_helper_call(env, insn->imm)) { 23956 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)¤t_task); 23957 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 23958 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 23959 cnt = 3; 23960 23961 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23962 if (!new_prog) 23963 return -ENOMEM; 23964 23965 delta += cnt - 1; 23966 env->prog = prog = new_prog; 23967 insn = new_prog->insnsi + i + delta; 23968 goto next_insn; 23969 } 23970 #endif 23971 /* Implement bpf_get_func_arg inline. */ 23972 if (prog_type == BPF_PROG_TYPE_TRACING && 23973 insn->imm == BPF_FUNC_get_func_arg) { 23974 if (eatype == BPF_TRACE_RAW_TP) { 23975 int nr_args = btf_type_vlen(prog->aux->attach_func_proto); 23976 23977 /* skip 'void *__data' in btf_trace_##name() and save to reg0 */ 23978 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, nr_args - 1); 23979 cnt = 1; 23980 } else { 23981 /* Load nr_args from ctx - 8 */ 23982 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23983 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF); 23984 cnt = 2; 23985 } 23986 insn_buf[cnt++] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 23987 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 23988 insn_buf[cnt++] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 23989 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 23990 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 23991 insn_buf[cnt++] = BPF_MOV64_IMM(BPF_REG_0, 0); 23992 insn_buf[cnt++] = BPF_JMP_A(1); 23993 insn_buf[cnt++] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 23994 23995 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23996 if (!new_prog) 23997 return -ENOMEM; 23998 23999 delta += cnt - 1; 24000 env->prog = prog = new_prog; 24001 insn = new_prog->insnsi + i + delta; 24002 goto next_insn; 24003 } 24004 24005 /* Implement bpf_get_func_ret inline. */ 24006 if (prog_type == BPF_PROG_TYPE_TRACING && 24007 insn->imm == BPF_FUNC_get_func_ret) { 24008 if (eatype == BPF_TRACE_FEXIT || 24009 eatype == BPF_TRACE_FSESSION || 24010 eatype == BPF_MODIFY_RETURN) { 24011 /* Load nr_args from ctx - 8 */ 24012 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 24013 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF); 24014 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 24015 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 24016 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 24017 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 24018 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 24019 cnt = 7; 24020 } else { 24021 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 24022 cnt = 1; 24023 } 24024 24025 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 24026 if (!new_prog) 24027 return -ENOMEM; 24028 24029 delta += cnt - 1; 24030 env->prog = prog = new_prog; 24031 insn = new_prog->insnsi + i + delta; 24032 goto next_insn; 24033 } 24034 24035 /* Implement get_func_arg_cnt inline. */ 24036 if (prog_type == BPF_PROG_TYPE_TRACING && 24037 insn->imm == BPF_FUNC_get_func_arg_cnt) { 24038 if (eatype == BPF_TRACE_RAW_TP) { 24039 int nr_args = btf_type_vlen(prog->aux->attach_func_proto); 24040 24041 /* skip 'void *__data' in btf_trace_##name() and save to reg0 */ 24042 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, nr_args - 1); 24043 cnt = 1; 24044 } else { 24045 /* Load nr_args from ctx - 8 */ 24046 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 24047 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF); 24048 cnt = 2; 24049 } 24050 24051 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 24052 if (!new_prog) 24053 return -ENOMEM; 24054 24055 delta += cnt - 1; 24056 env->prog = prog = new_prog; 24057 insn = new_prog->insnsi + i + delta; 24058 goto next_insn; 24059 } 24060 24061 /* Implement bpf_get_func_ip inline. */ 24062 if (prog_type == BPF_PROG_TYPE_TRACING && 24063 insn->imm == BPF_FUNC_get_func_ip) { 24064 /* Load IP address from ctx - 16 */ 24065 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 24066 24067 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 24068 if (!new_prog) 24069 return -ENOMEM; 24070 24071 env->prog = prog = new_prog; 24072 insn = new_prog->insnsi + i + delta; 24073 goto next_insn; 24074 } 24075 24076 /* Implement bpf_get_branch_snapshot inline. */ 24077 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 24078 prog->jit_requested && BITS_PER_LONG == 64 && 24079 insn->imm == BPF_FUNC_get_branch_snapshot) { 24080 /* We are dealing with the following func protos: 24081 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 24082 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 24083 */ 24084 const u32 br_entry_size = sizeof(struct perf_branch_entry); 24085 24086 /* struct perf_branch_entry is part of UAPI and is 24087 * used as an array element, so extremely unlikely to 24088 * ever grow or shrink 24089 */ 24090 BUILD_BUG_ON(br_entry_size != 24); 24091 24092 /* if (unlikely(flags)) return -EINVAL */ 24093 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 24094 24095 /* Transform size (bytes) into number of entries (cnt = size / 24). 24096 * But to avoid expensive division instruction, we implement 24097 * divide-by-3 through multiplication, followed by further 24098 * division by 8 through 3-bit right shift. 24099 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 24100 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 24101 * 24102 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 24103 */ 24104 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 24105 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 24106 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 24107 24108 /* call perf_snapshot_branch_stack implementation */ 24109 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 24110 /* if (entry_cnt == 0) return -ENOENT */ 24111 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 24112 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 24113 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 24114 insn_buf[7] = BPF_JMP_A(3); 24115 /* return -EINVAL; */ 24116 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 24117 insn_buf[9] = BPF_JMP_A(1); 24118 /* return -ENOENT; */ 24119 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 24120 cnt = 11; 24121 24122 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 24123 if (!new_prog) 24124 return -ENOMEM; 24125 24126 delta += cnt - 1; 24127 env->prog = prog = new_prog; 24128 insn = new_prog->insnsi + i + delta; 24129 goto next_insn; 24130 } 24131 24132 /* Implement bpf_kptr_xchg inline */ 24133 if (prog->jit_requested && BITS_PER_LONG == 64 && 24134 insn->imm == BPF_FUNC_kptr_xchg && 24135 bpf_jit_supports_ptr_xchg()) { 24136 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 24137 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 24138 cnt = 2; 24139 24140 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 24141 if (!new_prog) 24142 return -ENOMEM; 24143 24144 delta += cnt - 1; 24145 env->prog = prog = new_prog; 24146 insn = new_prog->insnsi + i + delta; 24147 goto next_insn; 24148 } 24149 patch_call_imm: 24150 fn = env->ops->get_func_proto(insn->imm, env->prog); 24151 /* all functions that have prototype and verifier allowed 24152 * programs to call them, must be real in-kernel functions 24153 */ 24154 if (!fn->func) { 24155 verifier_bug(env, 24156 "not inlined functions %s#%d is missing func", 24157 func_id_name(insn->imm), insn->imm); 24158 return -EFAULT; 24159 } 24160 insn->imm = fn->func - __bpf_call_base; 24161 next_insn: 24162 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 24163 subprogs[cur_subprog].stack_depth += stack_depth_extra; 24164 subprogs[cur_subprog].stack_extra = stack_depth_extra; 24165 24166 stack_depth = subprogs[cur_subprog].stack_depth; 24167 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 24168 verbose(env, "stack size %d(extra %d) is too large\n", 24169 stack_depth, stack_depth_extra); 24170 return -EINVAL; 24171 } 24172 cur_subprog++; 24173 stack_depth = subprogs[cur_subprog].stack_depth; 24174 stack_depth_extra = 0; 24175 } 24176 i++; 24177 insn++; 24178 } 24179 24180 env->prog->aux->stack_depth = subprogs[0].stack_depth; 24181 for (i = 0; i < env->subprog_cnt; i++) { 24182 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 24183 int subprog_start = subprogs[i].start; 24184 int stack_slots = subprogs[i].stack_extra / 8; 24185 int slots = delta, cnt = 0; 24186 24187 if (!stack_slots) 24188 continue; 24189 /* We need two slots in case timed may_goto is supported. */ 24190 if (stack_slots > slots) { 24191 verifier_bug(env, "stack_slots supports may_goto only"); 24192 return -EFAULT; 24193 } 24194 24195 stack_depth = subprogs[i].stack_depth; 24196 if (bpf_jit_supports_timed_may_goto()) { 24197 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 24198 BPF_MAX_TIMED_LOOPS); 24199 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 24200 } else { 24201 /* Add ST insn to subprog prologue to init extra stack */ 24202 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 24203 BPF_MAX_LOOPS); 24204 } 24205 /* Copy first actual insn to preserve it */ 24206 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 24207 24208 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 24209 if (!new_prog) 24210 return -ENOMEM; 24211 env->prog = prog = new_prog; 24212 /* 24213 * If may_goto is a first insn of a prog there could be a jmp 24214 * insn that points to it, hence adjust all such jmps to point 24215 * to insn after BPF_ST that inits may_goto count. 24216 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 24217 */ 24218 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 24219 } 24220 24221 /* Since poke tab is now finalized, publish aux to tracker. */ 24222 for (i = 0; i < prog->aux->size_poke_tab; i++) { 24223 map_ptr = prog->aux->poke_tab[i].tail_call.map; 24224 if (!map_ptr->ops->map_poke_track || 24225 !map_ptr->ops->map_poke_untrack || 24226 !map_ptr->ops->map_poke_run) { 24227 verifier_bug(env, "poke tab is misconfigured"); 24228 return -EFAULT; 24229 } 24230 24231 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 24232 if (ret < 0) { 24233 verbose(env, "tracking tail call prog failed\n"); 24234 return ret; 24235 } 24236 } 24237 24238 ret = sort_kfunc_descs_by_imm_off(env); 24239 if (ret) 24240 return ret; 24241 24242 return 0; 24243 } 24244 24245 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 24246 int position, 24247 s32 stack_base, 24248 u32 callback_subprogno, 24249 u32 *total_cnt) 24250 { 24251 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 24252 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 24253 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 24254 int reg_loop_max = BPF_REG_6; 24255 int reg_loop_cnt = BPF_REG_7; 24256 int reg_loop_ctx = BPF_REG_8; 24257 24258 struct bpf_insn *insn_buf = env->insn_buf; 24259 struct bpf_prog *new_prog; 24260 u32 callback_start; 24261 u32 call_insn_offset; 24262 s32 callback_offset; 24263 u32 cnt = 0; 24264 24265 /* This represents an inlined version of bpf_iter.c:bpf_loop, 24266 * be careful to modify this code in sync. 24267 */ 24268 24269 /* Return error and jump to the end of the patch if 24270 * expected number of iterations is too big. 24271 */ 24272 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 24273 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 24274 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 24275 /* spill R6, R7, R8 to use these as loop vars */ 24276 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 24277 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 24278 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 24279 /* initialize loop vars */ 24280 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 24281 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 24282 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 24283 /* loop header, 24284 * if reg_loop_cnt >= reg_loop_max skip the loop body 24285 */ 24286 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 24287 /* callback call, 24288 * correct callback offset would be set after patching 24289 */ 24290 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 24291 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 24292 insn_buf[cnt++] = BPF_CALL_REL(0); 24293 /* increment loop counter */ 24294 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 24295 /* jump to loop header if callback returned 0 */ 24296 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 24297 /* return value of bpf_loop, 24298 * set R0 to the number of iterations 24299 */ 24300 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 24301 /* restore original values of R6, R7, R8 */ 24302 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 24303 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 24304 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 24305 24306 *total_cnt = cnt; 24307 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 24308 if (!new_prog) 24309 return new_prog; 24310 24311 /* callback start is known only after patching */ 24312 callback_start = env->subprog_info[callback_subprogno].start; 24313 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 24314 call_insn_offset = position + 12; 24315 callback_offset = callback_start - call_insn_offset - 1; 24316 new_prog->insnsi[call_insn_offset].imm = callback_offset; 24317 24318 return new_prog; 24319 } 24320 24321 static bool is_bpf_loop_call(struct bpf_insn *insn) 24322 { 24323 return insn->code == (BPF_JMP | BPF_CALL) && 24324 insn->src_reg == 0 && 24325 insn->imm == BPF_FUNC_loop; 24326 } 24327 24328 /* For all sub-programs in the program (including main) check 24329 * insn_aux_data to see if there are bpf_loop calls that require 24330 * inlining. If such calls are found the calls are replaced with a 24331 * sequence of instructions produced by `inline_bpf_loop` function and 24332 * subprog stack_depth is increased by the size of 3 registers. 24333 * This stack space is used to spill values of the R6, R7, R8. These 24334 * registers are used to store the loop bound, counter and context 24335 * variables. 24336 */ 24337 static int optimize_bpf_loop(struct bpf_verifier_env *env) 24338 { 24339 struct bpf_subprog_info *subprogs = env->subprog_info; 24340 int i, cur_subprog = 0, cnt, delta = 0; 24341 struct bpf_insn *insn = env->prog->insnsi; 24342 int insn_cnt = env->prog->len; 24343 u16 stack_depth = subprogs[cur_subprog].stack_depth; 24344 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 24345 u16 stack_depth_extra = 0; 24346 24347 for (i = 0; i < insn_cnt; i++, insn++) { 24348 struct bpf_loop_inline_state *inline_state = 24349 &env->insn_aux_data[i + delta].loop_inline_state; 24350 24351 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 24352 struct bpf_prog *new_prog; 24353 24354 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 24355 new_prog = inline_bpf_loop(env, 24356 i + delta, 24357 -(stack_depth + stack_depth_extra), 24358 inline_state->callback_subprogno, 24359 &cnt); 24360 if (!new_prog) 24361 return -ENOMEM; 24362 24363 delta += cnt - 1; 24364 env->prog = new_prog; 24365 insn = new_prog->insnsi + i + delta; 24366 } 24367 24368 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 24369 subprogs[cur_subprog].stack_depth += stack_depth_extra; 24370 cur_subprog++; 24371 stack_depth = subprogs[cur_subprog].stack_depth; 24372 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 24373 stack_depth_extra = 0; 24374 } 24375 } 24376 24377 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 24378 24379 return 0; 24380 } 24381 24382 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 24383 * adjust subprograms stack depth when possible. 24384 */ 24385 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 24386 { 24387 struct bpf_subprog_info *subprog = env->subprog_info; 24388 struct bpf_insn_aux_data *aux = env->insn_aux_data; 24389 struct bpf_insn *insn = env->prog->insnsi; 24390 int insn_cnt = env->prog->len; 24391 u32 spills_num; 24392 bool modified = false; 24393 int i, j; 24394 24395 for (i = 0; i < insn_cnt; i++, insn++) { 24396 if (aux[i].fastcall_spills_num > 0) { 24397 spills_num = aux[i].fastcall_spills_num; 24398 /* NOPs would be removed by opt_remove_nops() */ 24399 for (j = 1; j <= spills_num; ++j) { 24400 *(insn - j) = NOP; 24401 *(insn + j) = NOP; 24402 } 24403 modified = true; 24404 } 24405 if ((subprog + 1)->start == i + 1) { 24406 if (modified && !subprog->keep_fastcall_stack) 24407 subprog->stack_depth = -subprog->fastcall_stack_off; 24408 subprog++; 24409 modified = false; 24410 } 24411 } 24412 24413 return 0; 24414 } 24415 24416 static void free_states(struct bpf_verifier_env *env) 24417 { 24418 struct bpf_verifier_state_list *sl; 24419 struct list_head *head, *pos, *tmp; 24420 struct bpf_scc_info *info; 24421 int i, j; 24422 24423 free_verifier_state(env->cur_state, true); 24424 env->cur_state = NULL; 24425 while (!pop_stack(env, NULL, NULL, false)); 24426 24427 list_for_each_safe(pos, tmp, &env->free_list) { 24428 sl = container_of(pos, struct bpf_verifier_state_list, node); 24429 free_verifier_state(&sl->state, false); 24430 kfree(sl); 24431 } 24432 INIT_LIST_HEAD(&env->free_list); 24433 24434 for (i = 0; i < env->scc_cnt; ++i) { 24435 info = env->scc_info[i]; 24436 if (!info) 24437 continue; 24438 for (j = 0; j < info->num_visits; j++) 24439 free_backedges(&info->visits[j]); 24440 kvfree(info); 24441 env->scc_info[i] = NULL; 24442 } 24443 24444 if (!env->explored_states) 24445 return; 24446 24447 for (i = 0; i < state_htab_size(env); i++) { 24448 head = &env->explored_states[i]; 24449 24450 list_for_each_safe(pos, tmp, head) { 24451 sl = container_of(pos, struct bpf_verifier_state_list, node); 24452 free_verifier_state(&sl->state, false); 24453 kfree(sl); 24454 } 24455 INIT_LIST_HEAD(&env->explored_states[i]); 24456 } 24457 } 24458 24459 static int do_check_common(struct bpf_verifier_env *env, int subprog) 24460 { 24461 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 24462 struct bpf_subprog_info *sub = subprog_info(env, subprog); 24463 struct bpf_prog_aux *aux = env->prog->aux; 24464 struct bpf_verifier_state *state; 24465 struct bpf_reg_state *regs; 24466 int ret, i; 24467 24468 env->prev_linfo = NULL; 24469 env->pass_cnt++; 24470 24471 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); 24472 if (!state) 24473 return -ENOMEM; 24474 state->curframe = 0; 24475 state->speculative = false; 24476 state->branches = 1; 24477 state->in_sleepable = env->prog->sleepable; 24478 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); 24479 if (!state->frame[0]) { 24480 kfree(state); 24481 return -ENOMEM; 24482 } 24483 env->cur_state = state; 24484 init_func_state(env, state->frame[0], 24485 BPF_MAIN_FUNC /* callsite */, 24486 0 /* frameno */, 24487 subprog); 24488 state->first_insn_idx = env->subprog_info[subprog].start; 24489 state->last_insn_idx = -1; 24490 24491 regs = state->frame[state->curframe]->regs; 24492 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 24493 const char *sub_name = subprog_name(env, subprog); 24494 struct bpf_subprog_arg_info *arg; 24495 struct bpf_reg_state *reg; 24496 24497 if (env->log.level & BPF_LOG_LEVEL) 24498 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 24499 ret = btf_prepare_func_args(env, subprog); 24500 if (ret) 24501 goto out; 24502 24503 if (subprog_is_exc_cb(env, subprog)) { 24504 state->frame[0]->in_exception_callback_fn = true; 24505 /* We have already ensured that the callback returns an integer, just 24506 * like all global subprogs. We need to determine it only has a single 24507 * scalar argument. 24508 */ 24509 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 24510 verbose(env, "exception cb only supports single integer argument\n"); 24511 ret = -EINVAL; 24512 goto out; 24513 } 24514 } 24515 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 24516 arg = &sub->args[i - BPF_REG_1]; 24517 reg = ®s[i]; 24518 24519 if (arg->arg_type == ARG_PTR_TO_CTX) { 24520 reg->type = PTR_TO_CTX; 24521 mark_reg_known_zero(env, regs, i); 24522 } else if (arg->arg_type == ARG_ANYTHING) { 24523 reg->type = SCALAR_VALUE; 24524 mark_reg_unknown(env, regs, i); 24525 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 24526 /* assume unspecial LOCAL dynptr type */ 24527 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 24528 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 24529 reg->type = PTR_TO_MEM; 24530 reg->type |= arg->arg_type & 24531 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); 24532 mark_reg_known_zero(env, regs, i); 24533 reg->mem_size = arg->mem_size; 24534 if (arg->arg_type & PTR_MAYBE_NULL) 24535 reg->id = ++env->id_gen; 24536 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 24537 reg->type = PTR_TO_BTF_ID; 24538 if (arg->arg_type & PTR_MAYBE_NULL) 24539 reg->type |= PTR_MAYBE_NULL; 24540 if (arg->arg_type & PTR_UNTRUSTED) 24541 reg->type |= PTR_UNTRUSTED; 24542 if (arg->arg_type & PTR_TRUSTED) 24543 reg->type |= PTR_TRUSTED; 24544 mark_reg_known_zero(env, regs, i); 24545 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 24546 reg->btf_id = arg->btf_id; 24547 reg->id = ++env->id_gen; 24548 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 24549 /* caller can pass either PTR_TO_ARENA or SCALAR */ 24550 mark_reg_unknown(env, regs, i); 24551 } else { 24552 verifier_bug(env, "unhandled arg#%d type %d", 24553 i - BPF_REG_1, arg->arg_type); 24554 ret = -EFAULT; 24555 goto out; 24556 } 24557 } 24558 } else { 24559 /* if main BPF program has associated BTF info, validate that 24560 * it's matching expected signature, and otherwise mark BTF 24561 * info for main program as unreliable 24562 */ 24563 if (env->prog->aux->func_info_aux) { 24564 ret = btf_prepare_func_args(env, 0); 24565 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 24566 env->prog->aux->func_info_aux[0].unreliable = true; 24567 } 24568 24569 /* 1st arg to a function */ 24570 regs[BPF_REG_1].type = PTR_TO_CTX; 24571 mark_reg_known_zero(env, regs, BPF_REG_1); 24572 } 24573 24574 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 24575 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 24576 for (i = 0; i < aux->ctx_arg_info_size; i++) 24577 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 24578 acquire_reference(env, 0) : 0; 24579 } 24580 24581 ret = do_check(env); 24582 out: 24583 if (!ret && pop_log) 24584 bpf_vlog_reset(&env->log, 0); 24585 free_states(env); 24586 return ret; 24587 } 24588 24589 /* Lazily verify all global functions based on their BTF, if they are called 24590 * from main BPF program or any of subprograms transitively. 24591 * BPF global subprogs called from dead code are not validated. 24592 * All callable global functions must pass verification. 24593 * Otherwise the whole program is rejected. 24594 * Consider: 24595 * int bar(int); 24596 * int foo(int f) 24597 * { 24598 * return bar(f); 24599 * } 24600 * int bar(int b) 24601 * { 24602 * ... 24603 * } 24604 * foo() will be verified first for R1=any_scalar_value. During verification it 24605 * will be assumed that bar() already verified successfully and call to bar() 24606 * from foo() will be checked for type match only. Later bar() will be verified 24607 * independently to check that it's safe for R1=any_scalar_value. 24608 */ 24609 static int do_check_subprogs(struct bpf_verifier_env *env) 24610 { 24611 struct bpf_prog_aux *aux = env->prog->aux; 24612 struct bpf_func_info_aux *sub_aux; 24613 int i, ret, new_cnt; 24614 24615 if (!aux->func_info) 24616 return 0; 24617 24618 /* exception callback is presumed to be always called */ 24619 if (env->exception_callback_subprog) 24620 subprog_aux(env, env->exception_callback_subprog)->called = true; 24621 24622 again: 24623 new_cnt = 0; 24624 for (i = 1; i < env->subprog_cnt; i++) { 24625 if (!subprog_is_global(env, i)) 24626 continue; 24627 24628 sub_aux = subprog_aux(env, i); 24629 if (!sub_aux->called || sub_aux->verified) 24630 continue; 24631 24632 env->insn_idx = env->subprog_info[i].start; 24633 WARN_ON_ONCE(env->insn_idx == 0); 24634 ret = do_check_common(env, i); 24635 if (ret) { 24636 return ret; 24637 } else if (env->log.level & BPF_LOG_LEVEL) { 24638 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 24639 i, subprog_name(env, i)); 24640 } 24641 24642 /* We verified new global subprog, it might have called some 24643 * more global subprogs that we haven't verified yet, so we 24644 * need to do another pass over subprogs to verify those. 24645 */ 24646 sub_aux->verified = true; 24647 new_cnt++; 24648 } 24649 24650 /* We can't loop forever as we verify at least one global subprog on 24651 * each pass. 24652 */ 24653 if (new_cnt) 24654 goto again; 24655 24656 return 0; 24657 } 24658 24659 static int do_check_main(struct bpf_verifier_env *env) 24660 { 24661 int ret; 24662 24663 env->insn_idx = 0; 24664 ret = do_check_common(env, 0); 24665 if (!ret) 24666 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 24667 return ret; 24668 } 24669 24670 24671 static void print_verification_stats(struct bpf_verifier_env *env) 24672 { 24673 int i; 24674 24675 if (env->log.level & BPF_LOG_STATS) { 24676 verbose(env, "verification time %lld usec\n", 24677 div_u64(env->verification_time, 1000)); 24678 verbose(env, "stack depth "); 24679 for (i = 0; i < env->subprog_cnt; i++) { 24680 u32 depth = env->subprog_info[i].stack_depth; 24681 24682 verbose(env, "%d", depth); 24683 if (i + 1 < env->subprog_cnt) 24684 verbose(env, "+"); 24685 } 24686 verbose(env, "\n"); 24687 } 24688 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 24689 "total_states %d peak_states %d mark_read %d\n", 24690 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 24691 env->max_states_per_insn, env->total_states, 24692 env->peak_states, env->longest_mark_read_walk); 24693 } 24694 24695 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 24696 const struct bpf_ctx_arg_aux *info, u32 cnt) 24697 { 24698 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); 24699 prog->aux->ctx_arg_info_size = cnt; 24700 24701 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 24702 } 24703 24704 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 24705 { 24706 const struct btf_type *t, *func_proto; 24707 const struct bpf_struct_ops_desc *st_ops_desc; 24708 const struct bpf_struct_ops *st_ops; 24709 const struct btf_member *member; 24710 struct bpf_prog *prog = env->prog; 24711 bool has_refcounted_arg = false; 24712 u32 btf_id, member_idx, member_off; 24713 struct btf *btf; 24714 const char *mname; 24715 int i, err; 24716 24717 if (!prog->gpl_compatible) { 24718 verbose(env, "struct ops programs must have a GPL compatible license\n"); 24719 return -EINVAL; 24720 } 24721 24722 if (!prog->aux->attach_btf_id) 24723 return -ENOTSUPP; 24724 24725 btf = prog->aux->attach_btf; 24726 if (btf_is_module(btf)) { 24727 /* Make sure st_ops is valid through the lifetime of env */ 24728 env->attach_btf_mod = btf_try_get_module(btf); 24729 if (!env->attach_btf_mod) { 24730 verbose(env, "struct_ops module %s is not found\n", 24731 btf_get_name(btf)); 24732 return -ENOTSUPP; 24733 } 24734 } 24735 24736 btf_id = prog->aux->attach_btf_id; 24737 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 24738 if (!st_ops_desc) { 24739 verbose(env, "attach_btf_id %u is not a supported struct\n", 24740 btf_id); 24741 return -ENOTSUPP; 24742 } 24743 st_ops = st_ops_desc->st_ops; 24744 24745 t = st_ops_desc->type; 24746 member_idx = prog->expected_attach_type; 24747 if (member_idx >= btf_type_vlen(t)) { 24748 verbose(env, "attach to invalid member idx %u of struct %s\n", 24749 member_idx, st_ops->name); 24750 return -EINVAL; 24751 } 24752 24753 member = &btf_type_member(t)[member_idx]; 24754 mname = btf_name_by_offset(btf, member->name_off); 24755 func_proto = btf_type_resolve_func_ptr(btf, member->type, 24756 NULL); 24757 if (!func_proto) { 24758 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 24759 mname, member_idx, st_ops->name); 24760 return -EINVAL; 24761 } 24762 24763 member_off = __btf_member_bit_offset(t, member) / 8; 24764 err = bpf_struct_ops_supported(st_ops, member_off); 24765 if (err) { 24766 verbose(env, "attach to unsupported member %s of struct %s\n", 24767 mname, st_ops->name); 24768 return err; 24769 } 24770 24771 if (st_ops->check_member) { 24772 err = st_ops->check_member(t, member, prog); 24773 24774 if (err) { 24775 verbose(env, "attach to unsupported member %s of struct %s\n", 24776 mname, st_ops->name); 24777 return err; 24778 } 24779 } 24780 24781 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 24782 verbose(env, "Private stack not supported by jit\n"); 24783 return -EACCES; 24784 } 24785 24786 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 24787 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 24788 has_refcounted_arg = true; 24789 break; 24790 } 24791 } 24792 24793 /* Tail call is not allowed for programs with refcounted arguments since we 24794 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 24795 */ 24796 for (i = 0; i < env->subprog_cnt; i++) { 24797 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 24798 verbose(env, "program with __ref argument cannot tail call\n"); 24799 return -EINVAL; 24800 } 24801 } 24802 24803 prog->aux->st_ops = st_ops; 24804 prog->aux->attach_st_ops_member_off = member_off; 24805 24806 prog->aux->attach_func_proto = func_proto; 24807 prog->aux->attach_func_name = mname; 24808 env->ops = st_ops->verifier_ops; 24809 24810 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 24811 st_ops_desc->arg_info[member_idx].cnt); 24812 } 24813 #define SECURITY_PREFIX "security_" 24814 24815 static int check_attach_modify_return(unsigned long addr, const char *func_name) 24816 { 24817 if (within_error_injection_list(addr) || 24818 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 24819 return 0; 24820 24821 return -EINVAL; 24822 } 24823 24824 /* list of non-sleepable functions that are otherwise on 24825 * ALLOW_ERROR_INJECTION list 24826 */ 24827 BTF_SET_START(btf_non_sleepable_error_inject) 24828 /* Three functions below can be called from sleepable and non-sleepable context. 24829 * Assume non-sleepable from bpf safety point of view. 24830 */ 24831 BTF_ID(func, __filemap_add_folio) 24832 #ifdef CONFIG_FAIL_PAGE_ALLOC 24833 BTF_ID(func, should_fail_alloc_page) 24834 #endif 24835 #ifdef CONFIG_FAILSLAB 24836 BTF_ID(func, should_failslab) 24837 #endif 24838 BTF_SET_END(btf_non_sleepable_error_inject) 24839 24840 static int check_non_sleepable_error_inject(u32 btf_id) 24841 { 24842 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 24843 } 24844 24845 int bpf_check_attach_target(struct bpf_verifier_log *log, 24846 const struct bpf_prog *prog, 24847 const struct bpf_prog *tgt_prog, 24848 u32 btf_id, 24849 struct bpf_attach_target_info *tgt_info) 24850 { 24851 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 24852 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 24853 char trace_symbol[KSYM_SYMBOL_LEN]; 24854 const char prefix[] = "btf_trace_"; 24855 struct bpf_raw_event_map *btp; 24856 int ret = 0, subprog = -1, i; 24857 const struct btf_type *t; 24858 bool conservative = true; 24859 const char *tname, *fname; 24860 struct btf *btf; 24861 long addr = 0; 24862 struct module *mod = NULL; 24863 24864 if (!btf_id) { 24865 bpf_log(log, "Tracing programs must provide btf_id\n"); 24866 return -EINVAL; 24867 } 24868 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 24869 if (!btf) { 24870 bpf_log(log, 24871 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 24872 return -EINVAL; 24873 } 24874 t = btf_type_by_id(btf, btf_id); 24875 if (!t) { 24876 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 24877 return -EINVAL; 24878 } 24879 tname = btf_name_by_offset(btf, t->name_off); 24880 if (!tname) { 24881 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 24882 return -EINVAL; 24883 } 24884 if (tgt_prog) { 24885 struct bpf_prog_aux *aux = tgt_prog->aux; 24886 bool tgt_changes_pkt_data; 24887 bool tgt_might_sleep; 24888 24889 if (bpf_prog_is_dev_bound(prog->aux) && 24890 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 24891 bpf_log(log, "Target program bound device mismatch"); 24892 return -EINVAL; 24893 } 24894 24895 for (i = 0; i < aux->func_info_cnt; i++) 24896 if (aux->func_info[i].type_id == btf_id) { 24897 subprog = i; 24898 break; 24899 } 24900 if (subprog == -1) { 24901 bpf_log(log, "Subprog %s doesn't exist\n", tname); 24902 return -EINVAL; 24903 } 24904 if (aux->func && aux->func[subprog]->aux->exception_cb) { 24905 bpf_log(log, 24906 "%s programs cannot attach to exception callback\n", 24907 prog_extension ? "Extension" : "FENTRY/FEXIT"); 24908 return -EINVAL; 24909 } 24910 conservative = aux->func_info_aux[subprog].unreliable; 24911 if (prog_extension) { 24912 if (conservative) { 24913 bpf_log(log, 24914 "Cannot replace static functions\n"); 24915 return -EINVAL; 24916 } 24917 if (!prog->jit_requested) { 24918 bpf_log(log, 24919 "Extension programs should be JITed\n"); 24920 return -EINVAL; 24921 } 24922 tgt_changes_pkt_data = aux->func 24923 ? aux->func[subprog]->aux->changes_pkt_data 24924 : aux->changes_pkt_data; 24925 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 24926 bpf_log(log, 24927 "Extension program changes packet data, while original does not\n"); 24928 return -EINVAL; 24929 } 24930 24931 tgt_might_sleep = aux->func 24932 ? aux->func[subprog]->aux->might_sleep 24933 : aux->might_sleep; 24934 if (prog->aux->might_sleep && !tgt_might_sleep) { 24935 bpf_log(log, 24936 "Extension program may sleep, while original does not\n"); 24937 return -EINVAL; 24938 } 24939 } 24940 if (!tgt_prog->jited) { 24941 bpf_log(log, "Can attach to only JITed progs\n"); 24942 return -EINVAL; 24943 } 24944 if (prog_tracing) { 24945 if (aux->attach_tracing_prog) { 24946 /* 24947 * Target program is an fentry/fexit which is already attached 24948 * to another tracing program. More levels of nesting 24949 * attachment are not allowed. 24950 */ 24951 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 24952 return -EINVAL; 24953 } 24954 } else if (tgt_prog->type == prog->type) { 24955 /* 24956 * To avoid potential call chain cycles, prevent attaching of a 24957 * program extension to another extension. It's ok to attach 24958 * fentry/fexit to extension program. 24959 */ 24960 bpf_log(log, "Cannot recursively attach\n"); 24961 return -EINVAL; 24962 } 24963 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 24964 prog_extension && 24965 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 24966 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT || 24967 tgt_prog->expected_attach_type == BPF_TRACE_FSESSION)) { 24968 /* Program extensions can extend all program types 24969 * except fentry/fexit. The reason is the following. 24970 * The fentry/fexit programs are used for performance 24971 * analysis, stats and can be attached to any program 24972 * type. When extension program is replacing XDP function 24973 * it is necessary to allow performance analysis of all 24974 * functions. Both original XDP program and its program 24975 * extension. Hence attaching fentry/fexit to 24976 * BPF_PROG_TYPE_EXT is allowed. If extending of 24977 * fentry/fexit was allowed it would be possible to create 24978 * long call chain fentry->extension->fentry->extension 24979 * beyond reasonable stack size. Hence extending fentry 24980 * is not allowed. 24981 */ 24982 bpf_log(log, "Cannot extend fentry/fexit/fsession\n"); 24983 return -EINVAL; 24984 } 24985 } else { 24986 if (prog_extension) { 24987 bpf_log(log, "Cannot replace kernel functions\n"); 24988 return -EINVAL; 24989 } 24990 } 24991 24992 switch (prog->expected_attach_type) { 24993 case BPF_TRACE_RAW_TP: 24994 if (tgt_prog) { 24995 bpf_log(log, 24996 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 24997 return -EINVAL; 24998 } 24999 if (!btf_type_is_typedef(t)) { 25000 bpf_log(log, "attach_btf_id %u is not a typedef\n", 25001 btf_id); 25002 return -EINVAL; 25003 } 25004 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 25005 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 25006 btf_id, tname); 25007 return -EINVAL; 25008 } 25009 tname += sizeof(prefix) - 1; 25010 25011 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 25012 * names. Thus using bpf_raw_event_map to get argument names. 25013 */ 25014 btp = bpf_get_raw_tracepoint(tname); 25015 if (!btp) 25016 return -EINVAL; 25017 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 25018 trace_symbol); 25019 bpf_put_raw_tracepoint(btp); 25020 25021 if (fname) 25022 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 25023 25024 if (!fname || ret < 0) { 25025 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 25026 prefix, tname); 25027 t = btf_type_by_id(btf, t->type); 25028 if (!btf_type_is_ptr(t)) 25029 /* should never happen in valid vmlinux build */ 25030 return -EINVAL; 25031 } else { 25032 t = btf_type_by_id(btf, ret); 25033 if (!btf_type_is_func(t)) 25034 /* should never happen in valid vmlinux build */ 25035 return -EINVAL; 25036 } 25037 25038 t = btf_type_by_id(btf, t->type); 25039 if (!btf_type_is_func_proto(t)) 25040 /* should never happen in valid vmlinux build */ 25041 return -EINVAL; 25042 25043 break; 25044 case BPF_TRACE_ITER: 25045 if (!btf_type_is_func(t)) { 25046 bpf_log(log, "attach_btf_id %u is not a function\n", 25047 btf_id); 25048 return -EINVAL; 25049 } 25050 t = btf_type_by_id(btf, t->type); 25051 if (!btf_type_is_func_proto(t)) 25052 return -EINVAL; 25053 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 25054 if (ret) 25055 return ret; 25056 break; 25057 default: 25058 if (!prog_extension) 25059 return -EINVAL; 25060 fallthrough; 25061 case BPF_MODIFY_RETURN: 25062 case BPF_LSM_MAC: 25063 case BPF_LSM_CGROUP: 25064 case BPF_TRACE_FENTRY: 25065 case BPF_TRACE_FEXIT: 25066 case BPF_TRACE_FSESSION: 25067 if (prog->expected_attach_type == BPF_TRACE_FSESSION && 25068 !bpf_jit_supports_fsession()) { 25069 bpf_log(log, "JIT does not support fsession\n"); 25070 return -EOPNOTSUPP; 25071 } 25072 if (!btf_type_is_func(t)) { 25073 bpf_log(log, "attach_btf_id %u is not a function\n", 25074 btf_id); 25075 return -EINVAL; 25076 } 25077 if (prog_extension && 25078 btf_check_type_match(log, prog, btf, t)) 25079 return -EINVAL; 25080 t = btf_type_by_id(btf, t->type); 25081 if (!btf_type_is_func_proto(t)) 25082 return -EINVAL; 25083 25084 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 25085 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 25086 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 25087 return -EINVAL; 25088 25089 if (tgt_prog && conservative) 25090 t = NULL; 25091 25092 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 25093 if (ret < 0) 25094 return ret; 25095 25096 if (tgt_prog) { 25097 if (subprog == 0) 25098 addr = (long) tgt_prog->bpf_func; 25099 else 25100 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 25101 } else { 25102 if (btf_is_module(btf)) { 25103 mod = btf_try_get_module(btf); 25104 if (mod) 25105 addr = find_kallsyms_symbol_value(mod, tname); 25106 else 25107 addr = 0; 25108 } else { 25109 addr = kallsyms_lookup_name(tname); 25110 } 25111 if (!addr) { 25112 module_put(mod); 25113 bpf_log(log, 25114 "The address of function %s cannot be found\n", 25115 tname); 25116 return -ENOENT; 25117 } 25118 } 25119 25120 if (prog->sleepable) { 25121 ret = -EINVAL; 25122 switch (prog->type) { 25123 case BPF_PROG_TYPE_TRACING: 25124 25125 /* fentry/fexit/fmod_ret progs can be sleepable if they are 25126 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 25127 */ 25128 if (!check_non_sleepable_error_inject(btf_id) && 25129 within_error_injection_list(addr)) 25130 ret = 0; 25131 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 25132 * in the fmodret id set with the KF_SLEEPABLE flag. 25133 */ 25134 else { 25135 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 25136 prog); 25137 25138 if (flags && (*flags & KF_SLEEPABLE)) 25139 ret = 0; 25140 } 25141 break; 25142 case BPF_PROG_TYPE_LSM: 25143 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 25144 * Only some of them are sleepable. 25145 */ 25146 if (bpf_lsm_is_sleepable_hook(btf_id)) 25147 ret = 0; 25148 break; 25149 default: 25150 break; 25151 } 25152 if (ret) { 25153 module_put(mod); 25154 bpf_log(log, "%s is not sleepable\n", tname); 25155 return ret; 25156 } 25157 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 25158 if (tgt_prog) { 25159 module_put(mod); 25160 bpf_log(log, "can't modify return codes of BPF programs\n"); 25161 return -EINVAL; 25162 } 25163 ret = -EINVAL; 25164 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 25165 !check_attach_modify_return(addr, tname)) 25166 ret = 0; 25167 if (ret) { 25168 module_put(mod); 25169 bpf_log(log, "%s() is not modifiable\n", tname); 25170 return ret; 25171 } 25172 } 25173 25174 break; 25175 } 25176 tgt_info->tgt_addr = addr; 25177 tgt_info->tgt_name = tname; 25178 tgt_info->tgt_type = t; 25179 tgt_info->tgt_mod = mod; 25180 return 0; 25181 } 25182 25183 BTF_SET_START(btf_id_deny) 25184 BTF_ID_UNUSED 25185 #ifdef CONFIG_SMP 25186 BTF_ID(func, ___migrate_enable) 25187 BTF_ID(func, migrate_disable) 25188 BTF_ID(func, migrate_enable) 25189 #endif 25190 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 25191 BTF_ID(func, rcu_read_unlock_strict) 25192 #endif 25193 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 25194 BTF_ID(func, preempt_count_add) 25195 BTF_ID(func, preempt_count_sub) 25196 #endif 25197 #ifdef CONFIG_PREEMPT_RCU 25198 BTF_ID(func, __rcu_read_lock) 25199 BTF_ID(func, __rcu_read_unlock) 25200 #endif 25201 BTF_SET_END(btf_id_deny) 25202 25203 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 25204 * Currently, we must manually list all __noreturn functions here. Once a more 25205 * robust solution is implemented, this workaround can be removed. 25206 */ 25207 BTF_SET_START(noreturn_deny) 25208 #ifdef CONFIG_IA32_EMULATION 25209 BTF_ID(func, __ia32_sys_exit) 25210 BTF_ID(func, __ia32_sys_exit_group) 25211 #endif 25212 #ifdef CONFIG_KUNIT 25213 BTF_ID(func, __kunit_abort) 25214 BTF_ID(func, kunit_try_catch_throw) 25215 #endif 25216 #ifdef CONFIG_MODULES 25217 BTF_ID(func, __module_put_and_kthread_exit) 25218 #endif 25219 #ifdef CONFIG_X86_64 25220 BTF_ID(func, __x64_sys_exit) 25221 BTF_ID(func, __x64_sys_exit_group) 25222 #endif 25223 BTF_ID(func, do_exit) 25224 BTF_ID(func, do_group_exit) 25225 BTF_ID(func, kthread_complete_and_exit) 25226 BTF_ID(func, kthread_exit) 25227 BTF_ID(func, make_task_dead) 25228 BTF_SET_END(noreturn_deny) 25229 25230 static bool can_be_sleepable(struct bpf_prog *prog) 25231 { 25232 if (prog->type == BPF_PROG_TYPE_TRACING) { 25233 switch (prog->expected_attach_type) { 25234 case BPF_TRACE_FENTRY: 25235 case BPF_TRACE_FEXIT: 25236 case BPF_MODIFY_RETURN: 25237 case BPF_TRACE_ITER: 25238 case BPF_TRACE_FSESSION: 25239 return true; 25240 default: 25241 return false; 25242 } 25243 } 25244 return prog->type == BPF_PROG_TYPE_LSM || 25245 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 25246 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 25247 } 25248 25249 static int check_attach_btf_id(struct bpf_verifier_env *env) 25250 { 25251 struct bpf_prog *prog = env->prog; 25252 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 25253 struct bpf_attach_target_info tgt_info = {}; 25254 u32 btf_id = prog->aux->attach_btf_id; 25255 struct bpf_trampoline *tr; 25256 int ret; 25257 u64 key; 25258 25259 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 25260 if (prog->sleepable) 25261 /* attach_btf_id checked to be zero already */ 25262 return 0; 25263 verbose(env, "Syscall programs can only be sleepable\n"); 25264 return -EINVAL; 25265 } 25266 25267 if (prog->sleepable && !can_be_sleepable(prog)) { 25268 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 25269 return -EINVAL; 25270 } 25271 25272 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 25273 return check_struct_ops_btf_id(env); 25274 25275 if (prog->type != BPF_PROG_TYPE_TRACING && 25276 prog->type != BPF_PROG_TYPE_LSM && 25277 prog->type != BPF_PROG_TYPE_EXT) 25278 return 0; 25279 25280 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 25281 if (ret) 25282 return ret; 25283 25284 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 25285 /* to make freplace equivalent to their targets, they need to 25286 * inherit env->ops and expected_attach_type for the rest of the 25287 * verification 25288 */ 25289 env->ops = bpf_verifier_ops[tgt_prog->type]; 25290 prog->expected_attach_type = tgt_prog->expected_attach_type; 25291 } 25292 25293 /* store info about the attachment target that will be used later */ 25294 prog->aux->attach_func_proto = tgt_info.tgt_type; 25295 prog->aux->attach_func_name = tgt_info.tgt_name; 25296 prog->aux->mod = tgt_info.tgt_mod; 25297 25298 if (tgt_prog) { 25299 prog->aux->saved_dst_prog_type = tgt_prog->type; 25300 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 25301 } 25302 25303 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 25304 prog->aux->attach_btf_trace = true; 25305 return 0; 25306 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 25307 return bpf_iter_prog_supported(prog); 25308 } 25309 25310 if (prog->type == BPF_PROG_TYPE_LSM) { 25311 ret = bpf_lsm_verify_prog(&env->log, prog); 25312 if (ret < 0) 25313 return ret; 25314 } else if (prog->type == BPF_PROG_TYPE_TRACING && 25315 btf_id_set_contains(&btf_id_deny, btf_id)) { 25316 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", 25317 tgt_info.tgt_name); 25318 return -EINVAL; 25319 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 25320 prog->expected_attach_type == BPF_TRACE_FSESSION || 25321 prog->expected_attach_type == BPF_MODIFY_RETURN) && 25322 btf_id_set_contains(&noreturn_deny, btf_id)) { 25323 verbose(env, "Attaching fexit/fsession/fmod_ret to __noreturn function '%s' is rejected.\n", 25324 tgt_info.tgt_name); 25325 return -EINVAL; 25326 } 25327 25328 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 25329 tr = bpf_trampoline_get(key, &tgt_info); 25330 if (!tr) 25331 return -ENOMEM; 25332 25333 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 25334 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 25335 25336 prog->aux->dst_trampoline = tr; 25337 return 0; 25338 } 25339 25340 struct btf *bpf_get_btf_vmlinux(void) 25341 { 25342 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 25343 mutex_lock(&bpf_verifier_lock); 25344 if (!btf_vmlinux) 25345 btf_vmlinux = btf_parse_vmlinux(); 25346 mutex_unlock(&bpf_verifier_lock); 25347 } 25348 return btf_vmlinux; 25349 } 25350 25351 /* 25352 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 25353 * this case expect that every file descriptor in the array is either a map or 25354 * a BTF. Everything else is considered to be trash. 25355 */ 25356 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 25357 { 25358 struct bpf_map *map; 25359 struct btf *btf; 25360 CLASS(fd, f)(fd); 25361 int err; 25362 25363 map = __bpf_map_get(f); 25364 if (!IS_ERR(map)) { 25365 err = __add_used_map(env, map); 25366 if (err < 0) 25367 return err; 25368 return 0; 25369 } 25370 25371 btf = __btf_get_by_fd(f); 25372 if (!IS_ERR(btf)) { 25373 err = __add_used_btf(env, btf); 25374 if (err < 0) 25375 return err; 25376 return 0; 25377 } 25378 25379 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 25380 return PTR_ERR(map); 25381 } 25382 25383 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 25384 { 25385 size_t size = sizeof(int); 25386 int ret; 25387 int fd; 25388 u32 i; 25389 25390 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 25391 25392 /* 25393 * The only difference between old (no fd_array_cnt is given) and new 25394 * APIs is that in the latter case the fd_array is expected to be 25395 * continuous and is scanned for map fds right away 25396 */ 25397 if (!attr->fd_array_cnt) 25398 return 0; 25399 25400 /* Check for integer overflow */ 25401 if (attr->fd_array_cnt >= (U32_MAX / size)) { 25402 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 25403 return -EINVAL; 25404 } 25405 25406 for (i = 0; i < attr->fd_array_cnt; i++) { 25407 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 25408 return -EFAULT; 25409 25410 ret = add_fd_from_fd_array(env, fd); 25411 if (ret) 25412 return ret; 25413 } 25414 25415 return 0; 25416 } 25417 25418 /* Each field is a register bitmask */ 25419 struct insn_live_regs { 25420 u16 use; /* registers read by instruction */ 25421 u16 def; /* registers written by instruction */ 25422 u16 in; /* registers that may be alive before instruction */ 25423 u16 out; /* registers that may be alive after instruction */ 25424 }; 25425 25426 /* Bitmask with 1s for all caller saved registers */ 25427 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 25428 25429 /* Compute info->{use,def} fields for the instruction */ 25430 static void compute_insn_live_regs(struct bpf_verifier_env *env, 25431 struct bpf_insn *insn, 25432 struct insn_live_regs *info) 25433 { 25434 struct call_summary cs; 25435 u8 class = BPF_CLASS(insn->code); 25436 u8 code = BPF_OP(insn->code); 25437 u8 mode = BPF_MODE(insn->code); 25438 u16 src = BIT(insn->src_reg); 25439 u16 dst = BIT(insn->dst_reg); 25440 u16 r0 = BIT(0); 25441 u16 def = 0; 25442 u16 use = 0xffff; 25443 25444 switch (class) { 25445 case BPF_LD: 25446 switch (mode) { 25447 case BPF_IMM: 25448 if (BPF_SIZE(insn->code) == BPF_DW) { 25449 def = dst; 25450 use = 0; 25451 } 25452 break; 25453 case BPF_LD | BPF_ABS: 25454 case BPF_LD | BPF_IND: 25455 /* stick with defaults */ 25456 break; 25457 } 25458 break; 25459 case BPF_LDX: 25460 switch (mode) { 25461 case BPF_MEM: 25462 case BPF_MEMSX: 25463 def = dst; 25464 use = src; 25465 break; 25466 } 25467 break; 25468 case BPF_ST: 25469 switch (mode) { 25470 case BPF_MEM: 25471 def = 0; 25472 use = dst; 25473 break; 25474 } 25475 break; 25476 case BPF_STX: 25477 switch (mode) { 25478 case BPF_MEM: 25479 def = 0; 25480 use = dst | src; 25481 break; 25482 case BPF_ATOMIC: 25483 switch (insn->imm) { 25484 case BPF_CMPXCHG: 25485 use = r0 | dst | src; 25486 def = r0; 25487 break; 25488 case BPF_LOAD_ACQ: 25489 def = dst; 25490 use = src; 25491 break; 25492 case BPF_STORE_REL: 25493 def = 0; 25494 use = dst | src; 25495 break; 25496 default: 25497 use = dst | src; 25498 if (insn->imm & BPF_FETCH) 25499 def = src; 25500 else 25501 def = 0; 25502 } 25503 break; 25504 } 25505 break; 25506 case BPF_ALU: 25507 case BPF_ALU64: 25508 switch (code) { 25509 case BPF_END: 25510 use = dst; 25511 def = dst; 25512 break; 25513 case BPF_MOV: 25514 def = dst; 25515 if (BPF_SRC(insn->code) == BPF_K) 25516 use = 0; 25517 else 25518 use = src; 25519 break; 25520 default: 25521 def = dst; 25522 if (BPF_SRC(insn->code) == BPF_K) 25523 use = dst; 25524 else 25525 use = dst | src; 25526 } 25527 break; 25528 case BPF_JMP: 25529 case BPF_JMP32: 25530 switch (code) { 25531 case BPF_JA: 25532 def = 0; 25533 if (BPF_SRC(insn->code) == BPF_X) 25534 use = dst; 25535 else 25536 use = 0; 25537 break; 25538 case BPF_JCOND: 25539 def = 0; 25540 use = 0; 25541 break; 25542 case BPF_EXIT: 25543 def = 0; 25544 use = r0; 25545 break; 25546 case BPF_CALL: 25547 def = ALL_CALLER_SAVED_REGS; 25548 use = def & ~BIT(BPF_REG_0); 25549 if (get_call_summary(env, insn, &cs)) 25550 use = GENMASK(cs.num_params, 1); 25551 break; 25552 default: 25553 def = 0; 25554 if (BPF_SRC(insn->code) == BPF_K) 25555 use = dst; 25556 else 25557 use = dst | src; 25558 } 25559 break; 25560 } 25561 25562 info->def = def; 25563 info->use = use; 25564 } 25565 25566 /* Compute may-live registers after each instruction in the program. 25567 * The register is live after the instruction I if it is read by some 25568 * instruction S following I during program execution and is not 25569 * overwritten between I and S. 25570 * 25571 * Store result in env->insn_aux_data[i].live_regs. 25572 */ 25573 static int compute_live_registers(struct bpf_verifier_env *env) 25574 { 25575 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 25576 struct bpf_insn *insns = env->prog->insnsi; 25577 struct insn_live_regs *state; 25578 int insn_cnt = env->prog->len; 25579 int err = 0, i, j; 25580 bool changed; 25581 25582 /* Use the following algorithm: 25583 * - define the following: 25584 * - I.use : a set of all registers read by instruction I; 25585 * - I.def : a set of all registers written by instruction I; 25586 * - I.in : a set of all registers that may be alive before I execution; 25587 * - I.out : a set of all registers that may be alive after I execution; 25588 * - insn_successors(I): a set of instructions S that might immediately 25589 * follow I for some program execution; 25590 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 25591 * - visit each instruction in a postorder and update 25592 * state[i].in, state[i].out as follows: 25593 * 25594 * state[i].out = U [state[s].in for S in insn_successors(i)] 25595 * state[i].in = (state[i].out / state[i].def) U state[i].use 25596 * 25597 * (where U stands for set union, / stands for set difference) 25598 * - repeat the computation while {in,out} fields changes for 25599 * any instruction. 25600 */ 25601 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); 25602 if (!state) { 25603 err = -ENOMEM; 25604 goto out; 25605 } 25606 25607 for (i = 0; i < insn_cnt; ++i) 25608 compute_insn_live_regs(env, &insns[i], &state[i]); 25609 25610 changed = true; 25611 while (changed) { 25612 changed = false; 25613 for (i = 0; i < env->cfg.cur_postorder; ++i) { 25614 int insn_idx = env->cfg.insn_postorder[i]; 25615 struct insn_live_regs *live = &state[insn_idx]; 25616 struct bpf_iarray *succ; 25617 u16 new_out = 0; 25618 u16 new_in = 0; 25619 25620 succ = bpf_insn_successors(env, insn_idx); 25621 for (int s = 0; s < succ->cnt; ++s) 25622 new_out |= state[succ->items[s]].in; 25623 new_in = (new_out & ~live->def) | live->use; 25624 if (new_out != live->out || new_in != live->in) { 25625 live->in = new_in; 25626 live->out = new_out; 25627 changed = true; 25628 } 25629 } 25630 } 25631 25632 for (i = 0; i < insn_cnt; ++i) 25633 insn_aux[i].live_regs_before = state[i].in; 25634 25635 if (env->log.level & BPF_LOG_LEVEL2) { 25636 verbose(env, "Live regs before insn:\n"); 25637 for (i = 0; i < insn_cnt; ++i) { 25638 if (env->insn_aux_data[i].scc) 25639 verbose(env, "%3d ", env->insn_aux_data[i].scc); 25640 else 25641 verbose(env, " "); 25642 verbose(env, "%3d: ", i); 25643 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 25644 if (insn_aux[i].live_regs_before & BIT(j)) 25645 verbose(env, "%d", j); 25646 else 25647 verbose(env, "."); 25648 verbose(env, " "); 25649 verbose_insn(env, &insns[i]); 25650 if (bpf_is_ldimm64(&insns[i])) 25651 i++; 25652 } 25653 } 25654 25655 out: 25656 kvfree(state); 25657 return err; 25658 } 25659 25660 /* 25661 * Compute strongly connected components (SCCs) on the CFG. 25662 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. 25663 * If instruction is a sole member of its SCC and there are no self edges, 25664 * assign it SCC number of zero. 25665 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. 25666 */ 25667 static int compute_scc(struct bpf_verifier_env *env) 25668 { 25669 const u32 NOT_ON_STACK = U32_MAX; 25670 25671 struct bpf_insn_aux_data *aux = env->insn_aux_data; 25672 const u32 insn_cnt = env->prog->len; 25673 int stack_sz, dfs_sz, err = 0; 25674 u32 *stack, *pre, *low, *dfs; 25675 u32 i, j, t, w; 25676 u32 next_preorder_num; 25677 u32 next_scc_id; 25678 bool assign_scc; 25679 struct bpf_iarray *succ; 25680 25681 next_preorder_num = 1; 25682 next_scc_id = 1; 25683 /* 25684 * - 'stack' accumulates vertices in DFS order, see invariant comment below; 25685 * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; 25686 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; 25687 * - 'dfs' DFS traversal stack, used to emulate explicit recursion. 25688 */ 25689 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 25690 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 25691 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 25692 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); 25693 if (!stack || !pre || !low || !dfs) { 25694 err = -ENOMEM; 25695 goto exit; 25696 } 25697 /* 25698 * References: 25699 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" 25700 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" 25701 * 25702 * The algorithm maintains the following invariant: 25703 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; 25704 * - then, vertex 'u' remains on stack while vertex 'v' is on stack. 25705 * 25706 * Consequently: 25707 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', 25708 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, 25709 * and thus there is an SCC (loop) containing both 'u' and 'v'. 25710 * - If 'low[v] == pre[v]', loops containing 'v' have been explored, 25711 * and 'v' can be considered the root of some SCC. 25712 * 25713 * Here is a pseudo-code for an explicitly recursive version of the algorithm: 25714 * 25715 * NOT_ON_STACK = insn_cnt + 1 25716 * pre = [0] * insn_cnt 25717 * low = [0] * insn_cnt 25718 * scc = [0] * insn_cnt 25719 * stack = [] 25720 * 25721 * next_preorder_num = 1 25722 * next_scc_id = 1 25723 * 25724 * def recur(w): 25725 * nonlocal next_preorder_num 25726 * nonlocal next_scc_id 25727 * 25728 * pre[w] = next_preorder_num 25729 * low[w] = next_preorder_num 25730 * next_preorder_num += 1 25731 * stack.append(w) 25732 * for s in successors(w): 25733 * # Note: for classic algorithm the block below should look as: 25734 * # 25735 * # if pre[s] == 0: 25736 * # recur(s) 25737 * # low[w] = min(low[w], low[s]) 25738 * # elif low[s] != NOT_ON_STACK: 25739 * # low[w] = min(low[w], pre[s]) 25740 * # 25741 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' 25742 * # does not break the invariant and makes itartive version of the algorithm 25743 * # simpler. See 'Algorithm #3' from [2]. 25744 * 25745 * # 's' not yet visited 25746 * if pre[s] == 0: 25747 * recur(s) 25748 * # if 's' is on stack, pick lowest reachable preorder number from it; 25749 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', 25750 * # so 'min' would be a noop. 25751 * low[w] = min(low[w], low[s]) 25752 * 25753 * if low[w] == pre[w]: 25754 * # 'w' is the root of an SCC, pop all vertices 25755 * # below 'w' on stack and assign same SCC to them. 25756 * while True: 25757 * t = stack.pop() 25758 * low[t] = NOT_ON_STACK 25759 * scc[t] = next_scc_id 25760 * if t == w: 25761 * break 25762 * next_scc_id += 1 25763 * 25764 * for i in range(0, insn_cnt): 25765 * if pre[i] == 0: 25766 * recur(i) 25767 * 25768 * Below implementation replaces explicit recursion with array 'dfs'. 25769 */ 25770 for (i = 0; i < insn_cnt; i++) { 25771 if (pre[i]) 25772 continue; 25773 stack_sz = 0; 25774 dfs_sz = 1; 25775 dfs[0] = i; 25776 dfs_continue: 25777 while (dfs_sz) { 25778 w = dfs[dfs_sz - 1]; 25779 if (pre[w] == 0) { 25780 low[w] = next_preorder_num; 25781 pre[w] = next_preorder_num; 25782 next_preorder_num++; 25783 stack[stack_sz++] = w; 25784 } 25785 /* Visit 'w' successors */ 25786 succ = bpf_insn_successors(env, w); 25787 for (j = 0; j < succ->cnt; ++j) { 25788 if (pre[succ->items[j]]) { 25789 low[w] = min(low[w], low[succ->items[j]]); 25790 } else { 25791 dfs[dfs_sz++] = succ->items[j]; 25792 goto dfs_continue; 25793 } 25794 } 25795 /* 25796 * Preserve the invariant: if some vertex above in the stack 25797 * is reachable from 'w', keep 'w' on the stack. 25798 */ 25799 if (low[w] < pre[w]) { 25800 dfs_sz--; 25801 goto dfs_continue; 25802 } 25803 /* 25804 * Assign SCC number only if component has two or more elements, 25805 * or if component has a self reference, or if instruction is a 25806 * callback calling function (implicit loop). 25807 */ 25808 assign_scc = stack[stack_sz - 1] != w; /* two or more elements? */ 25809 for (j = 0; j < succ->cnt; ++j) { /* self reference? */ 25810 if (succ->items[j] == w) { 25811 assign_scc = true; 25812 break; 25813 } 25814 } 25815 if (bpf_calls_callback(env, w)) /* implicit loop? */ 25816 assign_scc = true; 25817 /* Pop component elements from stack */ 25818 do { 25819 t = stack[--stack_sz]; 25820 low[t] = NOT_ON_STACK; 25821 if (assign_scc) 25822 aux[t].scc = next_scc_id; 25823 } while (t != w); 25824 if (assign_scc) 25825 next_scc_id++; 25826 dfs_sz--; 25827 } 25828 } 25829 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); 25830 if (!env->scc_info) { 25831 err = -ENOMEM; 25832 goto exit; 25833 } 25834 env->scc_cnt = next_scc_id; 25835 exit: 25836 kvfree(stack); 25837 kvfree(pre); 25838 kvfree(low); 25839 kvfree(dfs); 25840 return err; 25841 } 25842 25843 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 25844 { 25845 u64 start_time = ktime_get_ns(); 25846 struct bpf_verifier_env *env; 25847 int i, len, ret = -EINVAL, err; 25848 u32 log_true_size; 25849 bool is_priv; 25850 25851 BTF_TYPE_EMIT(enum bpf_features); 25852 25853 /* no program is valid */ 25854 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 25855 return -EINVAL; 25856 25857 /* 'struct bpf_verifier_env' can be global, but since it's not small, 25858 * allocate/free it every time bpf_check() is called 25859 */ 25860 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); 25861 if (!env) 25862 return -ENOMEM; 25863 25864 env->bt.env = env; 25865 25866 len = (*prog)->len; 25867 env->insn_aux_data = 25868 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 25869 ret = -ENOMEM; 25870 if (!env->insn_aux_data) 25871 goto err_free_env; 25872 for (i = 0; i < len; i++) 25873 env->insn_aux_data[i].orig_idx = i; 25874 env->succ = iarray_realloc(NULL, 2); 25875 if (!env->succ) 25876 goto err_free_env; 25877 env->prog = *prog; 25878 env->ops = bpf_verifier_ops[env->prog->type]; 25879 25880 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 25881 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 25882 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 25883 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 25884 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 25885 25886 bpf_get_btf_vmlinux(); 25887 25888 /* grab the mutex to protect few globals used by verifier */ 25889 if (!is_priv) 25890 mutex_lock(&bpf_verifier_lock); 25891 25892 /* user could have requested verbose verifier output 25893 * and supplied buffer to store the verification trace 25894 */ 25895 ret = bpf_vlog_init(&env->log, attr->log_level, 25896 (char __user *) (unsigned long) attr->log_buf, 25897 attr->log_size); 25898 if (ret) 25899 goto err_unlock; 25900 25901 ret = process_fd_array(env, attr, uattr); 25902 if (ret) 25903 goto skip_full_check; 25904 25905 mark_verifier_state_clean(env); 25906 25907 if (IS_ERR(btf_vmlinux)) { 25908 /* Either gcc or pahole or kernel are broken. */ 25909 verbose(env, "in-kernel BTF is malformed\n"); 25910 ret = PTR_ERR(btf_vmlinux); 25911 goto skip_full_check; 25912 } 25913 25914 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 25915 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 25916 env->strict_alignment = true; 25917 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 25918 env->strict_alignment = false; 25919 25920 if (is_priv) 25921 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 25922 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 25923 25924 env->explored_states = kvcalloc(state_htab_size(env), 25925 sizeof(struct list_head), 25926 GFP_KERNEL_ACCOUNT); 25927 ret = -ENOMEM; 25928 if (!env->explored_states) 25929 goto skip_full_check; 25930 25931 for (i = 0; i < state_htab_size(env); i++) 25932 INIT_LIST_HEAD(&env->explored_states[i]); 25933 INIT_LIST_HEAD(&env->free_list); 25934 25935 ret = check_btf_info_early(env, attr, uattr); 25936 if (ret < 0) 25937 goto skip_full_check; 25938 25939 ret = add_subprog_and_kfunc(env); 25940 if (ret < 0) 25941 goto skip_full_check; 25942 25943 ret = check_subprogs(env); 25944 if (ret < 0) 25945 goto skip_full_check; 25946 25947 ret = check_btf_info(env, attr, uattr); 25948 if (ret < 0) 25949 goto skip_full_check; 25950 25951 ret = resolve_pseudo_ldimm64(env); 25952 if (ret < 0) 25953 goto skip_full_check; 25954 25955 if (bpf_prog_is_offloaded(env->prog->aux)) { 25956 ret = bpf_prog_offload_verifier_prep(env->prog); 25957 if (ret) 25958 goto skip_full_check; 25959 } 25960 25961 ret = check_cfg(env); 25962 if (ret < 0) 25963 goto skip_full_check; 25964 25965 ret = compute_postorder(env); 25966 if (ret < 0) 25967 goto skip_full_check; 25968 25969 ret = bpf_stack_liveness_init(env); 25970 if (ret) 25971 goto skip_full_check; 25972 25973 ret = check_attach_btf_id(env); 25974 if (ret) 25975 goto skip_full_check; 25976 25977 ret = compute_scc(env); 25978 if (ret < 0) 25979 goto skip_full_check; 25980 25981 ret = compute_live_registers(env); 25982 if (ret < 0) 25983 goto skip_full_check; 25984 25985 ret = mark_fastcall_patterns(env); 25986 if (ret < 0) 25987 goto skip_full_check; 25988 25989 ret = do_check_main(env); 25990 ret = ret ?: do_check_subprogs(env); 25991 25992 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 25993 ret = bpf_prog_offload_finalize(env); 25994 25995 skip_full_check: 25996 kvfree(env->explored_states); 25997 25998 /* might decrease stack depth, keep it before passes that 25999 * allocate additional slots. 26000 */ 26001 if (ret == 0) 26002 ret = remove_fastcall_spills_fills(env); 26003 26004 if (ret == 0) 26005 ret = check_max_stack_depth(env); 26006 26007 /* instruction rewrites happen after this point */ 26008 if (ret == 0) 26009 ret = optimize_bpf_loop(env); 26010 26011 if (is_priv) { 26012 if (ret == 0) 26013 opt_hard_wire_dead_code_branches(env); 26014 if (ret == 0) 26015 ret = opt_remove_dead_code(env); 26016 if (ret == 0) 26017 ret = opt_remove_nops(env); 26018 } else { 26019 if (ret == 0) 26020 sanitize_dead_code(env); 26021 } 26022 26023 if (ret == 0) 26024 /* program is valid, convert *(u32*)(ctx + off) accesses */ 26025 ret = convert_ctx_accesses(env); 26026 26027 if (ret == 0) 26028 ret = do_misc_fixups(env); 26029 26030 /* do 32-bit optimization after insn patching has done so those patched 26031 * insns could be handled correctly. 26032 */ 26033 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 26034 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 26035 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 26036 : false; 26037 } 26038 26039 if (ret == 0) 26040 ret = fixup_call_args(env); 26041 26042 env->verification_time = ktime_get_ns() - start_time; 26043 print_verification_stats(env); 26044 env->prog->aux->verified_insns = env->insn_processed; 26045 26046 /* preserve original error even if log finalization is successful */ 26047 err = bpf_vlog_finalize(&env->log, &log_true_size); 26048 if (err) 26049 ret = err; 26050 26051 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 26052 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 26053 &log_true_size, sizeof(log_true_size))) { 26054 ret = -EFAULT; 26055 goto err_release_maps; 26056 } 26057 26058 if (ret) 26059 goto err_release_maps; 26060 26061 if (env->used_map_cnt) { 26062 /* if program passed verifier, update used_maps in bpf_prog_info */ 26063 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 26064 sizeof(env->used_maps[0]), 26065 GFP_KERNEL_ACCOUNT); 26066 26067 if (!env->prog->aux->used_maps) { 26068 ret = -ENOMEM; 26069 goto err_release_maps; 26070 } 26071 26072 memcpy(env->prog->aux->used_maps, env->used_maps, 26073 sizeof(env->used_maps[0]) * env->used_map_cnt); 26074 env->prog->aux->used_map_cnt = env->used_map_cnt; 26075 } 26076 if (env->used_btf_cnt) { 26077 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 26078 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 26079 sizeof(env->used_btfs[0]), 26080 GFP_KERNEL_ACCOUNT); 26081 if (!env->prog->aux->used_btfs) { 26082 ret = -ENOMEM; 26083 goto err_release_maps; 26084 } 26085 26086 memcpy(env->prog->aux->used_btfs, env->used_btfs, 26087 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 26088 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 26089 } 26090 if (env->used_map_cnt || env->used_btf_cnt) { 26091 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 26092 * bpf_ld_imm64 instructions 26093 */ 26094 convert_pseudo_ld_imm64(env); 26095 } 26096 26097 adjust_btf_func(env); 26098 26099 err_release_maps: 26100 if (ret) 26101 release_insn_arrays(env); 26102 if (!env->prog->aux->used_maps) 26103 /* if we didn't copy map pointers into bpf_prog_info, release 26104 * them now. Otherwise free_used_maps() will release them. 26105 */ 26106 release_maps(env); 26107 if (!env->prog->aux->used_btfs) 26108 release_btfs(env); 26109 26110 /* extension progs temporarily inherit the attach_type of their targets 26111 for verification purposes, so set it back to zero before returning 26112 */ 26113 if (env->prog->type == BPF_PROG_TYPE_EXT) 26114 env->prog->expected_attach_type = 0; 26115 26116 *prog = env->prog; 26117 26118 module_put(env->attach_btf_mod); 26119 err_unlock: 26120 if (!is_priv) 26121 mutex_unlock(&bpf_verifier_lock); 26122 clear_insn_aux_data(env, 0, env->prog->len); 26123 vfree(env->insn_aux_data); 26124 err_free_env: 26125 bpf_stack_liveness_free(env); 26126 kvfree(env->cfg.insn_postorder); 26127 kvfree(env->scc_info); 26128 kvfree(env->succ); 26129 kvfree(env->gotox_tmp_buf); 26130 kvfree(env); 26131 return ret; 26132 } 26133