1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */
106
107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115 #define REXMIT_NONE 0 /* no loss recovery to do */
116 #define REXMIT_LOST 1 /* retransmit packets marked lost */
117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
clean_acked_data_enable(struct tcp_sock * tp,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct tcp_sock *tp,
123 void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 tp->tcp_clean_acked = cad;
126 static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
clean_acked_data_disable(struct tcp_sock * tp)130 void clean_acked_data_disable(struct tcp_sock *tp)
131 {
132 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 tp->tcp_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 struct bpf_sock_ops_kern sock_ops;
153
154 if (likely(!unknown_opt && !parse_all_opt))
155 return;
156
157 /* The skb will be handled in the
158 * bpf_skops_established() or
159 * bpf_skops_write_hdr_opt().
160 */
161 switch (sk->sk_state) {
162 case TCP_SYN_RECV:
163 case TCP_SYN_SENT:
164 case TCP_LISTEN:
165 return;
166 }
167
168 sock_owned_by_me(sk);
169
170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 sock_ops.is_fullsock = 1;
173 sock_ops.is_locked_tcp_sock = 1;
174 sock_ops.sk = sk;
175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
176
177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
178 }
179
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)180 static void bpf_skops_established(struct sock *sk, int bpf_op,
181 struct sk_buff *skb)
182 {
183 struct bpf_sock_ops_kern sock_ops;
184
185 sock_owned_by_me(sk);
186
187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
188 sock_ops.op = bpf_op;
189 sock_ops.is_fullsock = 1;
190 sock_ops.is_locked_tcp_sock = 1;
191 sock_ops.sk = sk;
192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
193 if (skb)
194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
195
196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
197 }
198 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
200 {
201 }
202
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)203 static void bpf_skops_established(struct sock *sk, int bpf_op,
204 struct sk_buff *skb)
205 {
206 }
207 #endif
208
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
210 unsigned int len)
211 {
212 struct net_device *dev;
213
214 rcu_read_lock();
215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 if (!dev || len >= READ_ONCE(dev->mtu))
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev ? dev->name : "Unknown driver");
219 rcu_read_unlock();
220 }
221
222 /* Adapt the MSS value used to make delayed ack decision to the
223 * real world.
224 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
226 {
227 struct inet_connection_sock *icsk = inet_csk(sk);
228 const unsigned int lss = icsk->icsk_ack.last_seg_size;
229 unsigned int len;
230
231 icsk->icsk_ack.last_seg_size = 0;
232
233 /* skb->len may jitter because of SACKs, even if peer
234 * sends good full-sized frames.
235 */
236 len = skb_shinfo(skb)->gso_size ? : skb->len;
237 if (len >= icsk->icsk_ack.rcv_mss) {
238 /* Note: divides are still a bit expensive.
239 * For the moment, only adjust scaling_ratio
240 * when we update icsk_ack.rcv_mss.
241 */
242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
244 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
245
246 do_div(val, skb->truesize);
247 tcp_sk(sk)->scaling_ratio = val ? val : 1;
248
249 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
250 struct tcp_sock *tp = tcp_sk(sk);
251
252 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
253 tcp_set_window_clamp(sk, val);
254
255 if (tp->window_clamp < tp->rcvq_space.space)
256 tp->rcvq_space.space = tp->window_clamp;
257 }
258 }
259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
260 tcp_sk(sk)->advmss);
261 /* Account for possibly-removed options */
262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
263 tcp_gro_dev_warn, sk, skb, len);
264 /* If the skb has a len of exactly 1*MSS and has the PSH bit
265 * set then it is likely the end of an application write. So
266 * more data may not be arriving soon, and yet the data sender
267 * may be waiting for an ACK if cwnd-bound or using TX zero
268 * copy. So we set ICSK_ACK_PUSHED here so that
269 * tcp_cleanup_rbuf() will send an ACK immediately if the app
270 * reads all of the data and is not ping-pong. If len > MSS
271 * then this logic does not matter (and does not hurt) because
272 * tcp_cleanup_rbuf() will always ACK immediately if the app
273 * reads data and there is more than an MSS of unACKed data.
274 */
275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 } else {
278 /* Otherwise, we make more careful check taking into account,
279 * that SACKs block is variable.
280 *
281 * "len" is invariant segment length, including TCP header.
282 */
283 len += skb->data - skb_transport_header(skb);
284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
285 /* If PSH is not set, packet should be
286 * full sized, provided peer TCP is not badly broken.
287 * This observation (if it is correct 8)) allows
288 * to handle super-low mtu links fairly.
289 */
290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
292 /* Subtract also invariant (if peer is RFC compliant),
293 * tcp header plus fixed timestamp option length.
294 * Resulting "len" is MSS free of SACK jitter.
295 */
296 len -= tcp_sk(sk)->tcp_header_len;
297 icsk->icsk_ack.last_seg_size = len;
298 if (len == lss) {
299 icsk->icsk_ack.rcv_mss = len;
300 return;
301 }
302 }
303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
306 }
307 }
308
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
310 {
311 struct inet_connection_sock *icsk = inet_csk(sk);
312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
313
314 if (quickacks == 0)
315 quickacks = 2;
316 quickacks = min(quickacks, max_quickacks);
317 if (quickacks > icsk->icsk_ack.quick)
318 icsk->icsk_ack.quick = quickacks;
319 }
320
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
322 {
323 struct inet_connection_sock *icsk = inet_csk(sk);
324
325 tcp_incr_quickack(sk, max_quickacks);
326 inet_csk_exit_pingpong_mode(sk);
327 icsk->icsk_ack.ato = TCP_ATO_MIN;
328 }
329
330 /* Send ACKs quickly, if "quick" count is not exhausted
331 * and the session is not interactive.
332 */
333
tcp_in_quickack_mode(struct sock * sk)334 static bool tcp_in_quickack_mode(struct sock *sk)
335 {
336 const struct inet_connection_sock *icsk = inet_csk(sk);
337
338 return icsk->icsk_ack.dst_quick_ack ||
339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
340 }
341
tcp_ecn_queue_cwr(struct tcp_sock * tp)342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
343 {
344 if (tcp_ecn_mode_rfc3168(tp))
345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
346 }
347
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
349 {
350 if (tcp_hdr(skb)->cwr) {
351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
352
353 /* If the sender is telling us it has entered CWR, then its
354 * cwnd may be very low (even just 1 packet), so we should ACK
355 * immediately.
356 */
357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
359 }
360 }
361
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
363 {
364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
365 }
366
tcp_data_ecn_check(struct sock * sk,const struct sk_buff * skb)367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tcp_ecn_disabled(tp))
372 return;
373
374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
375 case INET_ECN_NOT_ECT:
376 /* Funny extension: if ECT is not set on a segment,
377 * and we already seen ECT on a previous segment,
378 * it is probably a retransmit.
379 */
380 if (tp->ecn_flags & TCP_ECN_SEEN)
381 tcp_enter_quickack_mode(sk, 2);
382 break;
383 case INET_ECN_CE:
384 if (tcp_ca_needs_ecn(sk))
385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
386
387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
388 /* Better not delay acks, sender can have a very low cwnd */
389 tcp_enter_quickack_mode(sk, 2);
390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
391 }
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 default:
395 if (tcp_ca_needs_ecn(sk))
396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
397 tp->ecn_flags |= TCP_ECN_SEEN;
398 break;
399 }
400 }
401
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
403 {
404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr))
405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
406 }
407
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
409 {
410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr))
411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
412 }
413
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
415 {
416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp))
417 return true;
418 return false;
419 }
420
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
422 {
423 tp->delivered_ce += ecn_count;
424 }
425
426 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
428 bool ece_ack)
429 {
430 tp->delivered += delivered;
431 if (ece_ack)
432 tcp_count_delivered_ce(tp, delivered);
433 }
434
435 /* Buffer size and advertised window tuning.
436 *
437 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
438 */
439
tcp_sndbuf_expand(struct sock * sk)440 static void tcp_sndbuf_expand(struct sock *sk)
441 {
442 const struct tcp_sock *tp = tcp_sk(sk);
443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
444 int sndmem, per_mss;
445 u32 nr_segs;
446
447 /* Worst case is non GSO/TSO : each frame consumes one skb
448 * and skb->head is kmalloced using power of two area of memory
449 */
450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
451 MAX_TCP_HEADER +
452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453
454 per_mss = roundup_pow_of_two(per_mss) +
455 SKB_DATA_ALIGN(sizeof(struct sk_buff));
456
457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
459
460 /* Fast Recovery (RFC 5681 3.2) :
461 * Cubic needs 1.7 factor, rounded to 2 to include
462 * extra cushion (application might react slowly to EPOLLOUT)
463 */
464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
465 sndmem *= nr_segs * per_mss;
466
467 if (sk->sk_sndbuf < sndmem)
468 WRITE_ONCE(sk->sk_sndbuf,
469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
470 }
471
472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
473 *
474 * All tcp_full_space() is split to two parts: "network" buffer, allocated
475 * forward and advertised in receiver window (tp->rcv_wnd) and
476 * "application buffer", required to isolate scheduling/application
477 * latencies from network.
478 * window_clamp is maximal advertised window. It can be less than
479 * tcp_full_space(), in this case tcp_full_space() - window_clamp
480 * is reserved for "application" buffer. The less window_clamp is
481 * the smoother our behaviour from viewpoint of network, but the lower
482 * throughput and the higher sensitivity of the connection to losses. 8)
483 *
484 * rcv_ssthresh is more strict window_clamp used at "slow start"
485 * phase to predict further behaviour of this connection.
486 * It is used for two goals:
487 * - to enforce header prediction at sender, even when application
488 * requires some significant "application buffer". It is check #1.
489 * - to prevent pruning of receive queue because of misprediction
490 * of receiver window. Check #2.
491 *
492 * The scheme does not work when sender sends good segments opening
493 * window and then starts to feed us spaghetti. But it should work
494 * in common situations. Otherwise, we have to rely on queue collapsing.
495 */
496
497 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
499 unsigned int skbtruesize)
500 {
501 const struct tcp_sock *tp = tcp_sk(sk);
502 /* Optimize this! */
503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
505
506 while (tp->rcv_ssthresh <= window) {
507 if (truesize <= skb->len)
508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
509
510 truesize >>= 1;
511 window >>= 1;
512 }
513 return 0;
514 }
515
516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
517 * can play nice with us, as sk_buff and skb->head might be either
518 * freed or shared with up to MAX_SKB_FRAGS segments.
519 * Only give a boost to drivers using page frag(s) to hold the frame(s),
520 * and if no payload was pulled in skb->head before reaching us.
521 */
truesize_adjust(bool adjust,const struct sk_buff * skb)522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
523 {
524 u32 truesize = skb->truesize;
525
526 if (adjust && !skb_headlen(skb)) {
527 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
528 /* paranoid check, some drivers might be buggy */
529 if (unlikely((int)truesize < (int)skb->len))
530 truesize = skb->truesize;
531 }
532 return truesize;
533 }
534
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
536 bool adjust)
537 {
538 struct tcp_sock *tp = tcp_sk(sk);
539 int room;
540
541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
542
543 if (room <= 0)
544 return;
545
546 /* Check #1 */
547 if (!tcp_under_memory_pressure(sk)) {
548 unsigned int truesize = truesize_adjust(adjust, skb);
549 int incr;
550
551 /* Check #2. Increase window, if skb with such overhead
552 * will fit to rcvbuf in future.
553 */
554 if (tcp_win_from_space(sk, truesize) <= skb->len)
555 incr = 2 * tp->advmss;
556 else
557 incr = __tcp_grow_window(sk, skb, truesize);
558
559 if (incr) {
560 incr = max_t(int, incr, 2 * skb->len);
561 tp->rcv_ssthresh += min(room, incr);
562 inet_csk(sk)->icsk_ack.quick |= 1;
563 }
564 } else {
565 /* Under pressure:
566 * Adjust rcv_ssthresh according to reserved mem
567 */
568 tcp_adjust_rcv_ssthresh(sk);
569 }
570 }
571
572 /* 3. Try to fixup all. It is made immediately after connection enters
573 * established state.
574 */
tcp_init_buffer_space(struct sock * sk)575 static void tcp_init_buffer_space(struct sock *sk)
576 {
577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
578 struct tcp_sock *tp = tcp_sk(sk);
579 int maxwin;
580
581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
582 tcp_sndbuf_expand(sk);
583
584 tcp_mstamp_refresh(tp);
585 tp->rcvq_space.time = tp->tcp_mstamp;
586 tp->rcvq_space.seq = tp->copied_seq;
587
588 maxwin = tcp_full_space(sk);
589
590 if (tp->window_clamp >= maxwin) {
591 WRITE_ONCE(tp->window_clamp, maxwin);
592
593 if (tcp_app_win && maxwin > 4 * tp->advmss)
594 WRITE_ONCE(tp->window_clamp,
595 max(maxwin - (maxwin >> tcp_app_win),
596 4 * tp->advmss));
597 }
598
599 /* Force reservation of one segment. */
600 if (tcp_app_win &&
601 tp->window_clamp > 2 * tp->advmss &&
602 tp->window_clamp + tp->advmss > maxwin)
603 WRITE_ONCE(tp->window_clamp,
604 max(2 * tp->advmss, maxwin - tp->advmss));
605
606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
607 tp->snd_cwnd_stamp = tcp_jiffies32;
608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
609 (u32)TCP_INIT_CWND * tp->advmss);
610 }
611
612 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)613 static void tcp_clamp_window(struct sock *sk)
614 {
615 struct tcp_sock *tp = tcp_sk(sk);
616 struct inet_connection_sock *icsk = inet_csk(sk);
617 struct net *net = sock_net(sk);
618 int rmem2;
619
620 icsk->icsk_ack.quick = 0;
621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
622
623 if (sk->sk_rcvbuf < rmem2 &&
624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
625 !tcp_under_memory_pressure(sk) &&
626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
627 WRITE_ONCE(sk->sk_rcvbuf,
628 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
629 }
630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
632 }
633
634 /* Initialize RCV_MSS value.
635 * RCV_MSS is an our guess about MSS used by the peer.
636 * We haven't any direct information about the MSS.
637 * It's better to underestimate the RCV_MSS rather than overestimate.
638 * Overestimations make us ACKing less frequently than needed.
639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
640 */
tcp_initialize_rcv_mss(struct sock * sk)641 void tcp_initialize_rcv_mss(struct sock *sk)
642 {
643 const struct tcp_sock *tp = tcp_sk(sk);
644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
645
646 hint = min(hint, tp->rcv_wnd / 2);
647 hint = min(hint, TCP_MSS_DEFAULT);
648 hint = max(hint, TCP_MIN_MSS);
649
650 inet_csk(sk)->icsk_ack.rcv_mss = hint;
651 }
652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
653
654 /* Receiver "autotuning" code.
655 *
656 * The algorithm for RTT estimation w/o timestamps is based on
657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
658 * <https://public.lanl.gov/radiant/pubs.html#DRS>
659 *
660 * More detail on this code can be found at
661 * <http://staff.psc.edu/jheffner/>,
662 * though this reference is out of date. A new paper
663 * is pending.
664 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
666 {
667 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
668 long m = sample << 3;
669
670 if (old_sample == 0 || m < old_sample) {
671 new_sample = m;
672 } else {
673 /* If we sample in larger samples in the non-timestamp
674 * case, we could grossly overestimate the RTT especially
675 * with chatty applications or bulk transfer apps which
676 * are stalled on filesystem I/O.
677 *
678 * Also, since we are only going for a minimum in the
679 * non-timestamp case, we do not smooth things out
680 * else with timestamps disabled convergence takes too
681 * long.
682 */
683 if (win_dep)
684 return;
685 /* Do not use this sample if receive queue is not empty. */
686 if (tp->rcv_nxt != tp->copied_seq)
687 return;
688 new_sample = old_sample - (old_sample >> 3) + sample;
689 }
690
691 tp->rcv_rtt_est.rtt_us = new_sample;
692 }
693
tcp_rcv_rtt_measure(struct tcp_sock * tp)694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
695 {
696 u32 delta_us;
697
698 if (tp->rcv_rtt_est.time == 0)
699 goto new_measure;
700 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
701 return;
702 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
703 if (!delta_us)
704 delta_us = 1;
705 tcp_rcv_rtt_update(tp, delta_us, 1);
706
707 new_measure:
708 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
709 tp->rcv_rtt_est.time = tp->tcp_mstamp;
710 }
711
tcp_rtt_tsopt_us(const struct tcp_sock * tp,u32 min_delta)712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
713 {
714 u32 delta, delta_us;
715
716 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
717 if (tp->tcp_usec_ts)
718 return delta;
719
720 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
721 if (!delta)
722 delta = min_delta;
723 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
724 return delta_us;
725 }
726 return -1;
727 }
728
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
730 const struct sk_buff *skb)
731 {
732 struct tcp_sock *tp = tcp_sk(sk);
733
734 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
735 return;
736 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
737
738 if (TCP_SKB_CB(skb)->end_seq -
739 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
740 s32 delta = tcp_rtt_tsopt_us(tp, 0);
741
742 if (delta > 0)
743 tcp_rcv_rtt_update(tp, delta, 0);
744 }
745 }
746
tcp_rcvbuf_grow(struct sock * sk)747 static void tcp_rcvbuf_grow(struct sock *sk)
748 {
749 const struct net *net = sock_net(sk);
750 struct tcp_sock *tp = tcp_sk(sk);
751 int rcvwin, rcvbuf, cap;
752
753 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
754 (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
755 return;
756
757 /* slow start: allow the sender to double its rate. */
758 rcvwin = tp->rcvq_space.space << 1;
759
760 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
761 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
762
763 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
764
765 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
766 if (rcvbuf > sk->sk_rcvbuf) {
767 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
768 /* Make the window clamp follow along. */
769 WRITE_ONCE(tp->window_clamp,
770 tcp_win_from_space(sk, rcvbuf));
771 }
772 }
773 /*
774 * This function should be called every time data is copied to user space.
775 * It calculates the appropriate TCP receive buffer space.
776 */
tcp_rcv_space_adjust(struct sock * sk)777 void tcp_rcv_space_adjust(struct sock *sk)
778 {
779 struct tcp_sock *tp = tcp_sk(sk);
780 int time, inq, copied;
781
782 trace_tcp_rcv_space_adjust(sk);
783
784 tcp_mstamp_refresh(tp);
785 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
786 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
787 return;
788
789 /* Number of bytes copied to user in last RTT */
790 copied = tp->copied_seq - tp->rcvq_space.seq;
791 /* Number of bytes in receive queue. */
792 inq = tp->rcv_nxt - tp->copied_seq;
793 copied -= inq;
794 if (copied <= tp->rcvq_space.space)
795 goto new_measure;
796
797 trace_tcp_rcvbuf_grow(sk, time);
798
799 tp->rcvq_space.space = copied;
800
801 tcp_rcvbuf_grow(sk);
802
803 new_measure:
804 tp->rcvq_space.seq = tp->copied_seq;
805 tp->rcvq_space.time = tp->tcp_mstamp;
806 }
807
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
809 {
810 #if IS_ENABLED(CONFIG_IPV6)
811 struct inet_connection_sock *icsk = inet_csk(sk);
812
813 if (skb->protocol == htons(ETH_P_IPV6))
814 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
815 #endif
816 }
817
818 /* There is something which you must keep in mind when you analyze the
819 * behavior of the tp->ato delayed ack timeout interval. When a
820 * connection starts up, we want to ack as quickly as possible. The
821 * problem is that "good" TCP's do slow start at the beginning of data
822 * transmission. The means that until we send the first few ACK's the
823 * sender will sit on his end and only queue most of his data, because
824 * he can only send snd_cwnd unacked packets at any given time. For
825 * each ACK we send, he increments snd_cwnd and transmits more of his
826 * queue. -DaveM
827 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
829 {
830 struct tcp_sock *tp = tcp_sk(sk);
831 struct inet_connection_sock *icsk = inet_csk(sk);
832 u32 now;
833
834 inet_csk_schedule_ack(sk);
835
836 tcp_measure_rcv_mss(sk, skb);
837
838 tcp_rcv_rtt_measure(tp);
839
840 now = tcp_jiffies32;
841
842 if (!icsk->icsk_ack.ato) {
843 /* The _first_ data packet received, initialize
844 * delayed ACK engine.
845 */
846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
847 icsk->icsk_ack.ato = TCP_ATO_MIN;
848 } else {
849 int m = now - icsk->icsk_ack.lrcvtime;
850
851 if (m <= TCP_ATO_MIN / 2) {
852 /* The fastest case is the first. */
853 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
854 } else if (m < icsk->icsk_ack.ato) {
855 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
856 if (icsk->icsk_ack.ato > icsk->icsk_rto)
857 icsk->icsk_ack.ato = icsk->icsk_rto;
858 } else if (m > icsk->icsk_rto) {
859 /* Too long gap. Apparently sender failed to
860 * restart window, so that we send ACKs quickly.
861 */
862 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
863 }
864 }
865 icsk->icsk_ack.lrcvtime = now;
866 tcp_save_lrcv_flowlabel(sk, skb);
867
868 tcp_data_ecn_check(sk, skb);
869
870 if (skb->len >= 128)
871 tcp_grow_window(sk, skb, true);
872 }
873
874 /* Called to compute a smoothed rtt estimate. The data fed to this
875 * routine either comes from timestamps, or from segments that were
876 * known _not_ to have been retransmitted [see Karn/Partridge
877 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
878 * piece by Van Jacobson.
879 * NOTE: the next three routines used to be one big routine.
880 * To save cycles in the RFC 1323 implementation it was better to break
881 * it up into three procedures. -- erics
882 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
884 {
885 struct tcp_sock *tp = tcp_sk(sk);
886 long m = mrtt_us; /* RTT */
887 u32 srtt = tp->srtt_us;
888
889 /* The following amusing code comes from Jacobson's
890 * article in SIGCOMM '88. Note that rtt and mdev
891 * are scaled versions of rtt and mean deviation.
892 * This is designed to be as fast as possible
893 * m stands for "measurement".
894 *
895 * On a 1990 paper the rto value is changed to:
896 * RTO = rtt + 4 * mdev
897 *
898 * Funny. This algorithm seems to be very broken.
899 * These formulae increase RTO, when it should be decreased, increase
900 * too slowly, when it should be increased quickly, decrease too quickly
901 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
902 * does not matter how to _calculate_ it. Seems, it was trap
903 * that VJ failed to avoid. 8)
904 */
905 if (srtt != 0) {
906 m -= (srtt >> 3); /* m is now error in rtt est */
907 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
908 if (m < 0) {
909 m = -m; /* m is now abs(error) */
910 m -= (tp->mdev_us >> 2); /* similar update on mdev */
911 /* This is similar to one of Eifel findings.
912 * Eifel blocks mdev updates when rtt decreases.
913 * This solution is a bit different: we use finer gain
914 * for mdev in this case (alpha*beta).
915 * Like Eifel it also prevents growth of rto,
916 * but also it limits too fast rto decreases,
917 * happening in pure Eifel.
918 */
919 if (m > 0)
920 m >>= 3;
921 } else {
922 m -= (tp->mdev_us >> 2); /* similar update on mdev */
923 }
924 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
925 if (tp->mdev_us > tp->mdev_max_us) {
926 tp->mdev_max_us = tp->mdev_us;
927 if (tp->mdev_max_us > tp->rttvar_us)
928 tp->rttvar_us = tp->mdev_max_us;
929 }
930 if (after(tp->snd_una, tp->rtt_seq)) {
931 if (tp->mdev_max_us < tp->rttvar_us)
932 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
933 tp->rtt_seq = tp->snd_nxt;
934 tp->mdev_max_us = tcp_rto_min_us(sk);
935
936 tcp_bpf_rtt(sk, mrtt_us, srtt);
937 }
938 } else {
939 /* no previous measure. */
940 srtt = m << 3; /* take the measured time to be rtt */
941 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
942 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
943 tp->mdev_max_us = tp->rttvar_us;
944 tp->rtt_seq = tp->snd_nxt;
945
946 tcp_bpf_rtt(sk, mrtt_us, srtt);
947 }
948 tp->srtt_us = max(1U, srtt);
949 }
950
tcp_update_pacing_rate(struct sock * sk)951 static void tcp_update_pacing_rate(struct sock *sk)
952 {
953 const struct tcp_sock *tp = tcp_sk(sk);
954 u64 rate;
955
956 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
957 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
958
959 /* current rate is (cwnd * mss) / srtt
960 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
961 * In Congestion Avoidance phase, set it to 120 % the current rate.
962 *
963 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
964 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
965 * end of slow start and should slow down.
966 */
967 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
968 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
969 else
970 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
971
972 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
973
974 if (likely(tp->srtt_us))
975 do_div(rate, tp->srtt_us);
976
977 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
978 * without any lock. We want to make sure compiler wont store
979 * intermediate values in this location.
980 */
981 WRITE_ONCE(sk->sk_pacing_rate,
982 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
983 }
984
985 /* Calculate rto without backoff. This is the second half of Van Jacobson's
986 * routine referred to above.
987 */
tcp_set_rto(struct sock * sk)988 static void tcp_set_rto(struct sock *sk)
989 {
990 const struct tcp_sock *tp = tcp_sk(sk);
991 /* Old crap is replaced with new one. 8)
992 *
993 * More seriously:
994 * 1. If rtt variance happened to be less 50msec, it is hallucination.
995 * It cannot be less due to utterly erratic ACK generation made
996 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
997 * to do with delayed acks, because at cwnd>2 true delack timeout
998 * is invisible. Actually, Linux-2.4 also generates erratic
999 * ACKs in some circumstances.
1000 */
1001 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1002
1003 /* 2. Fixups made earlier cannot be right.
1004 * If we do not estimate RTO correctly without them,
1005 * all the algo is pure shit and should be replaced
1006 * with correct one. It is exactly, which we pretend to do.
1007 */
1008
1009 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1010 * guarantees that rto is higher.
1011 */
1012 tcp_bound_rto(sk);
1013 }
1014
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1016 {
1017 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1018
1019 if (!cwnd)
1020 cwnd = TCP_INIT_CWND;
1021 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1022 }
1023
1024 struct tcp_sacktag_state {
1025 /* Timestamps for earliest and latest never-retransmitted segment
1026 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1027 * but congestion control should still get an accurate delay signal.
1028 */
1029 u64 first_sackt;
1030 u64 last_sackt;
1031 u32 reord;
1032 u32 sack_delivered;
1033 int flag;
1034 unsigned int mss_now;
1035 struct rate_sample *rate;
1036 };
1037
1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1039 * and spurious retransmission information if this DSACK is unlikely caused by
1040 * sender's action:
1041 * - DSACKed sequence range is larger than maximum receiver's window.
1042 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1043 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1045 u32 end_seq, struct tcp_sacktag_state *state)
1046 {
1047 u32 seq_len, dup_segs = 1;
1048
1049 if (!before(start_seq, end_seq))
1050 return 0;
1051
1052 seq_len = end_seq - start_seq;
1053 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1054 if (seq_len > tp->max_window)
1055 return 0;
1056 if (seq_len > tp->mss_cache)
1057 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1058 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1059 state->flag |= FLAG_DSACK_TLP;
1060
1061 tp->dsack_dups += dup_segs;
1062 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1063 if (tp->dsack_dups > tp->total_retrans)
1064 return 0;
1065
1066 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1067 /* We increase the RACK ordering window in rounds where we receive
1068 * DSACKs that may have been due to reordering causing RACK to trigger
1069 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1070 * without having seen reordering, or that match TLP probes (TLP
1071 * is timer-driven, not triggered by RACK).
1072 */
1073 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1074 tp->rack.dsack_seen = 1;
1075
1076 state->flag |= FLAG_DSACKING_ACK;
1077 /* A spurious retransmission is delivered */
1078 state->sack_delivered += dup_segs;
1079
1080 return dup_segs;
1081 }
1082
1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1084 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1085 * distance is approximated in full-mss packet distance ("reordering").
1086 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1088 const int ts)
1089 {
1090 struct tcp_sock *tp = tcp_sk(sk);
1091 const u32 mss = tp->mss_cache;
1092 u32 fack, metric;
1093
1094 fack = tcp_highest_sack_seq(tp);
1095 if (!before(low_seq, fack))
1096 return;
1097
1098 metric = fack - low_seq;
1099 if ((metric > tp->reordering * mss) && mss) {
1100 #if FASTRETRANS_DEBUG > 1
1101 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1102 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1103 tp->reordering,
1104 0,
1105 tp->sacked_out,
1106 tp->undo_marker ? tp->undo_retrans : 0);
1107 #endif
1108 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1109 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1110 }
1111
1112 /* This exciting event is worth to be remembered. 8) */
1113 tp->reord_seen++;
1114 NET_INC_STATS(sock_net(sk),
1115 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1116 }
1117
1118 /* This must be called before lost_out or retrans_out are updated
1119 * on a new loss, because we want to know if all skbs previously
1120 * known to be lost have already been retransmitted, indicating
1121 * that this newly lost skb is our next skb to retransmit.
1122 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1124 {
1125 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1126 (tp->retransmit_skb_hint &&
1127 before(TCP_SKB_CB(skb)->seq,
1128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1129 tp->retransmit_skb_hint = skb;
1130 }
1131
1132 /* Sum the number of packets on the wire we have marked as lost, and
1133 * notify the congestion control module that the given skb was marked lost.
1134 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1136 {
1137 tp->lost += tcp_skb_pcount(skb);
1138 }
1139
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1141 {
1142 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1143 struct tcp_sock *tp = tcp_sk(sk);
1144
1145 if (sacked & TCPCB_SACKED_ACKED)
1146 return;
1147
1148 tcp_verify_retransmit_hint(tp, skb);
1149 if (sacked & TCPCB_LOST) {
1150 if (sacked & TCPCB_SACKED_RETRANS) {
1151 /* Account for retransmits that are lost again */
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 tp->retrans_out -= tcp_skb_pcount(skb);
1154 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1155 tcp_skb_pcount(skb));
1156 tcp_notify_skb_loss_event(tp, skb);
1157 }
1158 } else {
1159 tp->lost_out += tcp_skb_pcount(skb);
1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161 tcp_notify_skb_loss_event(tp, skb);
1162 }
1163 }
1164
1165 /* This procedure tags the retransmission queue when SACKs arrive.
1166 *
1167 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1168 * Packets in queue with these bits set are counted in variables
1169 * sacked_out, retrans_out and lost_out, correspondingly.
1170 *
1171 * Valid combinations are:
1172 * Tag InFlight Description
1173 * 0 1 - orig segment is in flight.
1174 * S 0 - nothing flies, orig reached receiver.
1175 * L 0 - nothing flies, orig lost by net.
1176 * R 2 - both orig and retransmit are in flight.
1177 * L|R 1 - orig is lost, retransmit is in flight.
1178 * S|R 1 - orig reached receiver, retrans is still in flight.
1179 * (L|S|R is logically valid, it could occur when L|R is sacked,
1180 * but it is equivalent to plain S and code short-circuits it to S.
1181 * L|S is logically invalid, it would mean -1 packet in flight 8))
1182 *
1183 * These 6 states form finite state machine, controlled by the following events:
1184 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1185 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1186 * 3. Loss detection event of two flavors:
1187 * A. Scoreboard estimator decided the packet is lost.
1188 * A'. Reno "three dupacks" marks head of queue lost.
1189 * B. SACK arrives sacking SND.NXT at the moment, when the
1190 * segment was retransmitted.
1191 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1192 *
1193 * It is pleasant to note, that state diagram turns out to be commutative,
1194 * so that we are allowed not to be bothered by order of our actions,
1195 * when multiple events arrive simultaneously. (see the function below).
1196 *
1197 * Reordering detection.
1198 * --------------------
1199 * Reordering metric is maximal distance, which a packet can be displaced
1200 * in packet stream. With SACKs we can estimate it:
1201 *
1202 * 1. SACK fills old hole and the corresponding segment was not
1203 * ever retransmitted -> reordering. Alas, we cannot use it
1204 * when segment was retransmitted.
1205 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1206 * for retransmitted and already SACKed segment -> reordering..
1207 * Both of these heuristics are not used in Loss state, when we cannot
1208 * account for retransmits accurately.
1209 *
1210 * SACK block validation.
1211 * ----------------------
1212 *
1213 * SACK block range validation checks that the received SACK block fits to
1214 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1215 * Note that SND.UNA is not included to the range though being valid because
1216 * it means that the receiver is rather inconsistent with itself reporting
1217 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1218 * perfectly valid, however, in light of RFC2018 which explicitly states
1219 * that "SACK block MUST reflect the newest segment. Even if the newest
1220 * segment is going to be discarded ...", not that it looks very clever
1221 * in case of head skb. Due to potentional receiver driven attacks, we
1222 * choose to avoid immediate execution of a walk in write queue due to
1223 * reneging and defer head skb's loss recovery to standard loss recovery
1224 * procedure that will eventually trigger (nothing forbids us doing this).
1225 *
1226 * Implements also blockage to start_seq wrap-around. Problem lies in the
1227 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1228 * there's no guarantee that it will be before snd_nxt (n). The problem
1229 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1230 * wrap (s_w):
1231 *
1232 * <- outs wnd -> <- wrapzone ->
1233 * u e n u_w e_w s n_w
1234 * | | | | | | |
1235 * |<------------+------+----- TCP seqno space --------------+---------->|
1236 * ...-- <2^31 ->| |<--------...
1237 * ...---- >2^31 ------>| |<--------...
1238 *
1239 * Current code wouldn't be vulnerable but it's better still to discard such
1240 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1241 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1242 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1243 * equal to the ideal case (infinite seqno space without wrap caused issues).
1244 *
1245 * With D-SACK the lower bound is extended to cover sequence space below
1246 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1247 * again, D-SACK block must not to go across snd_una (for the same reason as
1248 * for the normal SACK blocks, explained above). But there all simplicity
1249 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1250 * fully below undo_marker they do not affect behavior in anyway and can
1251 * therefore be safely ignored. In rare cases (which are more or less
1252 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1253 * fragmentation and packet reordering past skb's retransmission. To consider
1254 * them correctly, the acceptable range must be extended even more though
1255 * the exact amount is rather hard to quantify. However, tp->max_window can
1256 * be used as an exaggerated estimate.
1257 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1259 u32 start_seq, u32 end_seq)
1260 {
1261 /* Too far in future, or reversed (interpretation is ambiguous) */
1262 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1263 return false;
1264
1265 /* Nasty start_seq wrap-around check (see comments above) */
1266 if (!before(start_seq, tp->snd_nxt))
1267 return false;
1268
1269 /* In outstanding window? ...This is valid exit for D-SACKs too.
1270 * start_seq == snd_una is non-sensical (see comments above)
1271 */
1272 if (after(start_seq, tp->snd_una))
1273 return true;
1274
1275 if (!is_dsack || !tp->undo_marker)
1276 return false;
1277
1278 /* ...Then it's D-SACK, and must reside below snd_una completely */
1279 if (after(end_seq, tp->snd_una))
1280 return false;
1281
1282 if (!before(start_seq, tp->undo_marker))
1283 return true;
1284
1285 /* Too old */
1286 if (!after(end_seq, tp->undo_marker))
1287 return false;
1288
1289 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1290 * start_seq < undo_marker and end_seq >= undo_marker.
1291 */
1292 return !before(start_seq, end_seq - tp->max_window);
1293 }
1294
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1296 struct tcp_sack_block_wire *sp, int num_sacks,
1297 u32 prior_snd_una, struct tcp_sacktag_state *state)
1298 {
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1301 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1302 u32 dup_segs;
1303
1304 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1306 } else if (num_sacks > 1) {
1307 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1308 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1309
1310 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1311 return false;
1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1313 } else {
1314 return false;
1315 }
1316
1317 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1318 if (!dup_segs) { /* Skip dubious DSACK */
1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1320 return false;
1321 }
1322
1323 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1324
1325 /* D-SACK for already forgotten data... Do dumb counting. */
1326 if (tp->undo_marker && tp->undo_retrans > 0 &&
1327 !after(end_seq_0, prior_snd_una) &&
1328 after(end_seq_0, tp->undo_marker))
1329 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1330
1331 return true;
1332 }
1333
1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1335 * the incoming SACK may not exactly match but we can find smaller MSS
1336 * aligned portion of it that matches. Therefore we might need to fragment
1337 * which may fail and creates some hassle (caller must handle error case
1338 * returns).
1339 *
1340 * FIXME: this could be merged to shift decision code
1341 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1343 u32 start_seq, u32 end_seq)
1344 {
1345 int err;
1346 bool in_sack;
1347 unsigned int pkt_len;
1348 unsigned int mss;
1349
1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1351 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1352
1353 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1354 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1355 mss = tcp_skb_mss(skb);
1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1357
1358 if (!in_sack) {
1359 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1360 if (pkt_len < mss)
1361 pkt_len = mss;
1362 } else {
1363 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1364 if (pkt_len < mss)
1365 return -EINVAL;
1366 }
1367
1368 /* Round if necessary so that SACKs cover only full MSSes
1369 * and/or the remaining small portion (if present)
1370 */
1371 if (pkt_len > mss) {
1372 unsigned int new_len = (pkt_len / mss) * mss;
1373 if (!in_sack && new_len < pkt_len)
1374 new_len += mss;
1375 pkt_len = new_len;
1376 }
1377
1378 if (pkt_len >= skb->len && !in_sack)
1379 return 0;
1380
1381 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1382 pkt_len, mss, GFP_ATOMIC);
1383 if (err < 0)
1384 return err;
1385 }
1386
1387 return in_sack;
1388 }
1389
1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1391 static u8 tcp_sacktag_one(struct sock *sk,
1392 struct tcp_sacktag_state *state, u8 sacked,
1393 u32 start_seq, u32 end_seq,
1394 int dup_sack, int pcount,
1395 u64 xmit_time)
1396 {
1397 struct tcp_sock *tp = tcp_sk(sk);
1398
1399 /* Account D-SACK for retransmitted packet. */
1400 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1401 if (tp->undo_marker && tp->undo_retrans > 0 &&
1402 after(end_seq, tp->undo_marker))
1403 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1404 if ((sacked & TCPCB_SACKED_ACKED) &&
1405 before(start_seq, state->reord))
1406 state->reord = start_seq;
1407 }
1408
1409 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1410 if (!after(end_seq, tp->snd_una))
1411 return sacked;
1412
1413 if (!(sacked & TCPCB_SACKED_ACKED)) {
1414 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1415
1416 if (sacked & TCPCB_SACKED_RETRANS) {
1417 /* If the segment is not tagged as lost,
1418 * we do not clear RETRANS, believing
1419 * that retransmission is still in flight.
1420 */
1421 if (sacked & TCPCB_LOST) {
1422 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1423 tp->lost_out -= pcount;
1424 tp->retrans_out -= pcount;
1425 }
1426 } else {
1427 if (!(sacked & TCPCB_RETRANS)) {
1428 /* New sack for not retransmitted frame,
1429 * which was in hole. It is reordering.
1430 */
1431 if (before(start_seq,
1432 tcp_highest_sack_seq(tp)) &&
1433 before(start_seq, state->reord))
1434 state->reord = start_seq;
1435
1436 if (!after(end_seq, tp->high_seq))
1437 state->flag |= FLAG_ORIG_SACK_ACKED;
1438 if (state->first_sackt == 0)
1439 state->first_sackt = xmit_time;
1440 state->last_sackt = xmit_time;
1441 }
1442
1443 if (sacked & TCPCB_LOST) {
1444 sacked &= ~TCPCB_LOST;
1445 tp->lost_out -= pcount;
1446 }
1447 }
1448
1449 sacked |= TCPCB_SACKED_ACKED;
1450 state->flag |= FLAG_DATA_SACKED;
1451 tp->sacked_out += pcount;
1452 /* Out-of-order packets delivered */
1453 state->sack_delivered += pcount;
1454 }
1455
1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1457 * frames and clear it. undo_retrans is decreased above, L|R frames
1458 * are accounted above as well.
1459 */
1460 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1461 sacked &= ~TCPCB_SACKED_RETRANS;
1462 tp->retrans_out -= pcount;
1463 }
1464
1465 return sacked;
1466 }
1467
1468 /* Shift newly-SACKed bytes from this skb to the immediately previous
1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1470 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1472 struct sk_buff *skb,
1473 struct tcp_sacktag_state *state,
1474 unsigned int pcount, int shifted, int mss,
1475 bool dup_sack)
1476 {
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1479 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1480
1481 BUG_ON(!pcount);
1482
1483 /* Adjust counters and hints for the newly sacked sequence
1484 * range but discard the return value since prev is already
1485 * marked. We must tag the range first because the seq
1486 * advancement below implicitly advances
1487 * tcp_highest_sack_seq() when skb is highest_sack.
1488 */
1489 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1490 start_seq, end_seq, dup_sack, pcount,
1491 tcp_skb_timestamp_us(skb));
1492 tcp_rate_skb_delivered(sk, skb, state->rate);
1493
1494 TCP_SKB_CB(prev)->end_seq += shifted;
1495 TCP_SKB_CB(skb)->seq += shifted;
1496
1497 tcp_skb_pcount_add(prev, pcount);
1498 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1499 tcp_skb_pcount_add(skb, -pcount);
1500
1501 /* When we're adding to gso_segs == 1, gso_size will be zero,
1502 * in theory this shouldn't be necessary but as long as DSACK
1503 * code can come after this skb later on it's better to keep
1504 * setting gso_size to something.
1505 */
1506 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1507 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1508
1509 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1510 if (tcp_skb_pcount(skb) <= 1)
1511 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1512
1513 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1514 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1515
1516 if (skb->len > 0) {
1517 BUG_ON(!tcp_skb_pcount(skb));
1518 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1519 return false;
1520 }
1521
1522 /* Whole SKB was eaten :-) */
1523
1524 if (skb == tp->retransmit_skb_hint)
1525 tp->retransmit_skb_hint = prev;
1526
1527 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1528 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1529 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1530 TCP_SKB_CB(prev)->end_seq++;
1531
1532 if (skb == tcp_highest_sack(sk))
1533 tcp_advance_highest_sack(sk, skb);
1534
1535 tcp_skb_collapse_tstamp(prev, skb);
1536 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1537 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1538
1539 tcp_rtx_queue_unlink_and_free(skb, sk);
1540
1541 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1542
1543 return true;
1544 }
1545
1546 /* I wish gso_size would have a bit more sane initialization than
1547 * something-or-zero which complicates things
1548 */
tcp_skb_seglen(const struct sk_buff * skb)1549 static int tcp_skb_seglen(const struct sk_buff *skb)
1550 {
1551 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1552 }
1553
1554 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1555 static int skb_can_shift(const struct sk_buff *skb)
1556 {
1557 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1558 }
1559
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1560 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1561 int pcount, int shiftlen)
1562 {
1563 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1564 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1565 * to make sure not storing more than 65535 * 8 bytes per skb,
1566 * even if current MSS is bigger.
1567 */
1568 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1569 return 0;
1570 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1571 return 0;
1572 return skb_shift(to, from, shiftlen);
1573 }
1574
1575 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1576 * skb.
1577 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1578 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1579 struct tcp_sacktag_state *state,
1580 u32 start_seq, u32 end_seq,
1581 bool dup_sack)
1582 {
1583 struct tcp_sock *tp = tcp_sk(sk);
1584 struct sk_buff *prev;
1585 int mss;
1586 int pcount = 0;
1587 int len;
1588 int in_sack;
1589
1590 /* Normally R but no L won't result in plain S */
1591 if (!dup_sack &&
1592 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1593 goto fallback;
1594 if (!skb_can_shift(skb))
1595 goto fallback;
1596 /* This frame is about to be dropped (was ACKed). */
1597 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1598 goto fallback;
1599
1600 /* Can only happen with delayed DSACK + discard craziness */
1601 prev = skb_rb_prev(skb);
1602 if (!prev)
1603 goto fallback;
1604
1605 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1606 goto fallback;
1607
1608 if (!tcp_skb_can_collapse(prev, skb))
1609 goto fallback;
1610
1611 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1612 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1613
1614 if (in_sack) {
1615 len = skb->len;
1616 pcount = tcp_skb_pcount(skb);
1617 mss = tcp_skb_seglen(skb);
1618
1619 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1620 * drop this restriction as unnecessary
1621 */
1622 if (mss != tcp_skb_seglen(prev))
1623 goto fallback;
1624 } else {
1625 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1626 goto noop;
1627 /* CHECKME: This is non-MSS split case only?, this will
1628 * cause skipped skbs due to advancing loop btw, original
1629 * has that feature too
1630 */
1631 if (tcp_skb_pcount(skb) <= 1)
1632 goto noop;
1633
1634 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1635 if (!in_sack) {
1636 /* TODO: head merge to next could be attempted here
1637 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1638 * though it might not be worth of the additional hassle
1639 *
1640 * ...we can probably just fallback to what was done
1641 * previously. We could try merging non-SACKed ones
1642 * as well but it probably isn't going to buy off
1643 * because later SACKs might again split them, and
1644 * it would make skb timestamp tracking considerably
1645 * harder problem.
1646 */
1647 goto fallback;
1648 }
1649
1650 len = end_seq - TCP_SKB_CB(skb)->seq;
1651 BUG_ON(len < 0);
1652 BUG_ON(len > skb->len);
1653
1654 /* MSS boundaries should be honoured or else pcount will
1655 * severely break even though it makes things bit trickier.
1656 * Optimize common case to avoid most of the divides
1657 */
1658 mss = tcp_skb_mss(skb);
1659
1660 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1661 * drop this restriction as unnecessary
1662 */
1663 if (mss != tcp_skb_seglen(prev))
1664 goto fallback;
1665
1666 if (len == mss) {
1667 pcount = 1;
1668 } else if (len < mss) {
1669 goto noop;
1670 } else {
1671 pcount = len / mss;
1672 len = pcount * mss;
1673 }
1674 }
1675
1676 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1677 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1678 goto fallback;
1679
1680 if (!tcp_skb_shift(prev, skb, pcount, len))
1681 goto fallback;
1682 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1683 goto out;
1684
1685 /* Hole filled allows collapsing with the next as well, this is very
1686 * useful when hole on every nth skb pattern happens
1687 */
1688 skb = skb_rb_next(prev);
1689 if (!skb)
1690 goto out;
1691
1692 if (!skb_can_shift(skb) ||
1693 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1694 (mss != tcp_skb_seglen(skb)))
1695 goto out;
1696
1697 if (!tcp_skb_can_collapse(prev, skb))
1698 goto out;
1699 len = skb->len;
1700 pcount = tcp_skb_pcount(skb);
1701 if (tcp_skb_shift(prev, skb, pcount, len))
1702 tcp_shifted_skb(sk, prev, skb, state, pcount,
1703 len, mss, 0);
1704
1705 out:
1706 return prev;
1707
1708 noop:
1709 return skb;
1710
1711 fallback:
1712 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1713 return NULL;
1714 }
1715
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1716 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1717 struct tcp_sack_block *next_dup,
1718 struct tcp_sacktag_state *state,
1719 u32 start_seq, u32 end_seq,
1720 bool dup_sack_in)
1721 {
1722 struct tcp_sock *tp = tcp_sk(sk);
1723 struct sk_buff *tmp;
1724
1725 skb_rbtree_walk_from(skb) {
1726 int in_sack = 0;
1727 bool dup_sack = dup_sack_in;
1728
1729 /* queue is in-order => we can short-circuit the walk early */
1730 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1731 break;
1732
1733 if (next_dup &&
1734 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1735 in_sack = tcp_match_skb_to_sack(sk, skb,
1736 next_dup->start_seq,
1737 next_dup->end_seq);
1738 if (in_sack > 0)
1739 dup_sack = true;
1740 }
1741
1742 /* skb reference here is a bit tricky to get right, since
1743 * shifting can eat and free both this skb and the next,
1744 * so not even _safe variant of the loop is enough.
1745 */
1746 if (in_sack <= 0) {
1747 tmp = tcp_shift_skb_data(sk, skb, state,
1748 start_seq, end_seq, dup_sack);
1749 if (tmp) {
1750 if (tmp != skb) {
1751 skb = tmp;
1752 continue;
1753 }
1754
1755 in_sack = 0;
1756 } else {
1757 in_sack = tcp_match_skb_to_sack(sk, skb,
1758 start_seq,
1759 end_seq);
1760 }
1761 }
1762
1763 if (unlikely(in_sack < 0))
1764 break;
1765
1766 if (in_sack) {
1767 TCP_SKB_CB(skb)->sacked =
1768 tcp_sacktag_one(sk,
1769 state,
1770 TCP_SKB_CB(skb)->sacked,
1771 TCP_SKB_CB(skb)->seq,
1772 TCP_SKB_CB(skb)->end_seq,
1773 dup_sack,
1774 tcp_skb_pcount(skb),
1775 tcp_skb_timestamp_us(skb));
1776 tcp_rate_skb_delivered(sk, skb, state->rate);
1777 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1778 list_del_init(&skb->tcp_tsorted_anchor);
1779
1780 if (!before(TCP_SKB_CB(skb)->seq,
1781 tcp_highest_sack_seq(tp)))
1782 tcp_advance_highest_sack(sk, skb);
1783 }
1784 }
1785 return skb;
1786 }
1787
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1788 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1789 {
1790 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1791 struct sk_buff *skb;
1792
1793 while (*p) {
1794 parent = *p;
1795 skb = rb_to_skb(parent);
1796 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1797 p = &parent->rb_left;
1798 continue;
1799 }
1800 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1801 p = &parent->rb_right;
1802 continue;
1803 }
1804 return skb;
1805 }
1806 return NULL;
1807 }
1808
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1809 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1810 u32 skip_to_seq)
1811 {
1812 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1813 return skb;
1814
1815 return tcp_sacktag_bsearch(sk, skip_to_seq);
1816 }
1817
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1818 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1819 struct sock *sk,
1820 struct tcp_sack_block *next_dup,
1821 struct tcp_sacktag_state *state,
1822 u32 skip_to_seq)
1823 {
1824 if (!next_dup)
1825 return skb;
1826
1827 if (before(next_dup->start_seq, skip_to_seq)) {
1828 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1829 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1830 next_dup->start_seq, next_dup->end_seq,
1831 1);
1832 }
1833
1834 return skb;
1835 }
1836
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1837 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1838 {
1839 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1840 }
1841
1842 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1843 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1844 u32 prior_snd_una, struct tcp_sacktag_state *state)
1845 {
1846 struct tcp_sock *tp = tcp_sk(sk);
1847 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1848 TCP_SKB_CB(ack_skb)->sacked);
1849 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1850 struct tcp_sack_block sp[TCP_NUM_SACKS];
1851 struct tcp_sack_block *cache;
1852 struct sk_buff *skb;
1853 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1854 int used_sacks;
1855 bool found_dup_sack = false;
1856 int i, j;
1857 int first_sack_index;
1858
1859 state->flag = 0;
1860 state->reord = tp->snd_nxt;
1861
1862 if (!tp->sacked_out)
1863 tcp_highest_sack_reset(sk);
1864
1865 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1866 num_sacks, prior_snd_una, state);
1867
1868 /* Eliminate too old ACKs, but take into
1869 * account more or less fresh ones, they can
1870 * contain valid SACK info.
1871 */
1872 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1873 return 0;
1874
1875 if (!tp->packets_out)
1876 goto out;
1877
1878 used_sacks = 0;
1879 first_sack_index = 0;
1880 for (i = 0; i < num_sacks; i++) {
1881 bool dup_sack = !i && found_dup_sack;
1882
1883 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1884 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1885
1886 if (!tcp_is_sackblock_valid(tp, dup_sack,
1887 sp[used_sacks].start_seq,
1888 sp[used_sacks].end_seq)) {
1889 int mib_idx;
1890
1891 if (dup_sack) {
1892 if (!tp->undo_marker)
1893 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1894 else
1895 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1896 } else {
1897 /* Don't count olds caused by ACK reordering */
1898 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1899 !after(sp[used_sacks].end_seq, tp->snd_una))
1900 continue;
1901 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1902 }
1903
1904 NET_INC_STATS(sock_net(sk), mib_idx);
1905 if (i == 0)
1906 first_sack_index = -1;
1907 continue;
1908 }
1909
1910 /* Ignore very old stuff early */
1911 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1912 if (i == 0)
1913 first_sack_index = -1;
1914 continue;
1915 }
1916
1917 used_sacks++;
1918 }
1919
1920 /* order SACK blocks to allow in order walk of the retrans queue */
1921 for (i = used_sacks - 1; i > 0; i--) {
1922 for (j = 0; j < i; j++) {
1923 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1924 swap(sp[j], sp[j + 1]);
1925
1926 /* Track where the first SACK block goes to */
1927 if (j == first_sack_index)
1928 first_sack_index = j + 1;
1929 }
1930 }
1931 }
1932
1933 state->mss_now = tcp_current_mss(sk);
1934 skb = NULL;
1935 i = 0;
1936
1937 if (!tp->sacked_out) {
1938 /* It's already past, so skip checking against it */
1939 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1940 } else {
1941 cache = tp->recv_sack_cache;
1942 /* Skip empty blocks in at head of the cache */
1943 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1944 !cache->end_seq)
1945 cache++;
1946 }
1947
1948 while (i < used_sacks) {
1949 u32 start_seq = sp[i].start_seq;
1950 u32 end_seq = sp[i].end_seq;
1951 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1952 struct tcp_sack_block *next_dup = NULL;
1953
1954 if (found_dup_sack && ((i + 1) == first_sack_index))
1955 next_dup = &sp[i + 1];
1956
1957 /* Skip too early cached blocks */
1958 while (tcp_sack_cache_ok(tp, cache) &&
1959 !before(start_seq, cache->end_seq))
1960 cache++;
1961
1962 /* Can skip some work by looking recv_sack_cache? */
1963 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1964 after(end_seq, cache->start_seq)) {
1965
1966 /* Head todo? */
1967 if (before(start_seq, cache->start_seq)) {
1968 skb = tcp_sacktag_skip(skb, sk, start_seq);
1969 skb = tcp_sacktag_walk(skb, sk, next_dup,
1970 state,
1971 start_seq,
1972 cache->start_seq,
1973 dup_sack);
1974 }
1975
1976 /* Rest of the block already fully processed? */
1977 if (!after(end_seq, cache->end_seq))
1978 goto advance_sp;
1979
1980 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1981 state,
1982 cache->end_seq);
1983
1984 /* ...tail remains todo... */
1985 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1986 /* ...but better entrypoint exists! */
1987 skb = tcp_highest_sack(sk);
1988 if (!skb)
1989 break;
1990 cache++;
1991 goto walk;
1992 }
1993
1994 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1995 /* Check overlap against next cached too (past this one already) */
1996 cache++;
1997 continue;
1998 }
1999
2000 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2001 skb = tcp_highest_sack(sk);
2002 if (!skb)
2003 break;
2004 }
2005 skb = tcp_sacktag_skip(skb, sk, start_seq);
2006
2007 walk:
2008 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2009 start_seq, end_seq, dup_sack);
2010
2011 advance_sp:
2012 i++;
2013 }
2014
2015 /* Clear the head of the cache sack blocks so we can skip it next time */
2016 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2017 tp->recv_sack_cache[i].start_seq = 0;
2018 tp->recv_sack_cache[i].end_seq = 0;
2019 }
2020 for (j = 0; j < used_sacks; j++)
2021 tp->recv_sack_cache[i++] = sp[j];
2022
2023 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2024 tcp_check_sack_reordering(sk, state->reord, 0);
2025
2026 tcp_verify_left_out(tp);
2027 out:
2028
2029 #if FASTRETRANS_DEBUG > 0
2030 WARN_ON((int)tp->sacked_out < 0);
2031 WARN_ON((int)tp->lost_out < 0);
2032 WARN_ON((int)tp->retrans_out < 0);
2033 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2034 #endif
2035 return state->flag;
2036 }
2037
2038 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2039 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2040 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2041 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2042 {
2043 u32 holes;
2044
2045 holes = max(tp->lost_out, 1U);
2046 holes = min(holes, tp->packets_out);
2047
2048 if ((tp->sacked_out + holes) > tp->packets_out) {
2049 tp->sacked_out = tp->packets_out - holes;
2050 return true;
2051 }
2052 return false;
2053 }
2054
2055 /* If we receive more dupacks than we expected counting segments
2056 * in assumption of absent reordering, interpret this as reordering.
2057 * The only another reason could be bug in receiver TCP.
2058 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2059 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2060 {
2061 struct tcp_sock *tp = tcp_sk(sk);
2062
2063 if (!tcp_limit_reno_sacked(tp))
2064 return;
2065
2066 tp->reordering = min_t(u32, tp->packets_out + addend,
2067 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2068 tp->reord_seen++;
2069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2070 }
2071
2072 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2073
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2074 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2075 {
2076 if (num_dupack) {
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 u32 prior_sacked = tp->sacked_out;
2079 s32 delivered;
2080
2081 tp->sacked_out += num_dupack;
2082 tcp_check_reno_reordering(sk, 0);
2083 delivered = tp->sacked_out - prior_sacked;
2084 if (delivered > 0)
2085 tcp_count_delivered(tp, delivered, ece_ack);
2086 tcp_verify_left_out(tp);
2087 }
2088 }
2089
2090 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2091
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2092 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2093 {
2094 struct tcp_sock *tp = tcp_sk(sk);
2095
2096 if (acked > 0) {
2097 /* One ACK acked hole. The rest eat duplicate ACKs. */
2098 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2099 ece_ack);
2100 if (acked - 1 >= tp->sacked_out)
2101 tp->sacked_out = 0;
2102 else
2103 tp->sacked_out -= acked - 1;
2104 }
2105 tcp_check_reno_reordering(sk, acked);
2106 tcp_verify_left_out(tp);
2107 }
2108
tcp_reset_reno_sack(struct tcp_sock * tp)2109 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2110 {
2111 tp->sacked_out = 0;
2112 }
2113
tcp_clear_retrans(struct tcp_sock * tp)2114 void tcp_clear_retrans(struct tcp_sock *tp)
2115 {
2116 tp->retrans_out = 0;
2117 tp->lost_out = 0;
2118 tp->undo_marker = 0;
2119 tp->undo_retrans = -1;
2120 tp->sacked_out = 0;
2121 tp->rto_stamp = 0;
2122 tp->total_rto = 0;
2123 tp->total_rto_recoveries = 0;
2124 tp->total_rto_time = 0;
2125 }
2126
tcp_init_undo(struct tcp_sock * tp)2127 static inline void tcp_init_undo(struct tcp_sock *tp)
2128 {
2129 tp->undo_marker = tp->snd_una;
2130
2131 /* Retransmission still in flight may cause DSACKs later. */
2132 /* First, account for regular retransmits in flight: */
2133 tp->undo_retrans = tp->retrans_out;
2134 /* Next, account for TLP retransmits in flight: */
2135 if (tp->tlp_high_seq && tp->tlp_retrans)
2136 tp->undo_retrans++;
2137 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2138 if (!tp->undo_retrans)
2139 tp->undo_retrans = -1;
2140 }
2141
2142 /* If we detect SACK reneging, forget all SACK information
2143 * and reset tags completely, otherwise preserve SACKs. If receiver
2144 * dropped its ofo queue, we will know this due to reneging detection.
2145 */
tcp_timeout_mark_lost(struct sock * sk)2146 static void tcp_timeout_mark_lost(struct sock *sk)
2147 {
2148 struct tcp_sock *tp = tcp_sk(sk);
2149 struct sk_buff *skb, *head;
2150 bool is_reneg; /* is receiver reneging on SACKs? */
2151
2152 head = tcp_rtx_queue_head(sk);
2153 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2154 if (is_reneg) {
2155 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2156 tp->sacked_out = 0;
2157 /* Mark SACK reneging until we recover from this loss event. */
2158 tp->is_sack_reneg = 1;
2159 } else if (tcp_is_reno(tp)) {
2160 tcp_reset_reno_sack(tp);
2161 }
2162
2163 skb = head;
2164 skb_rbtree_walk_from(skb) {
2165 if (is_reneg)
2166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2167 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2168 continue; /* Don't mark recently sent ones lost yet */
2169 tcp_mark_skb_lost(sk, skb);
2170 }
2171 tcp_verify_left_out(tp);
2172 tcp_clear_all_retrans_hints(tp);
2173 }
2174
2175 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2176 void tcp_enter_loss(struct sock *sk)
2177 {
2178 const struct inet_connection_sock *icsk = inet_csk(sk);
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct net *net = sock_net(sk);
2181 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2182 u8 reordering;
2183
2184 tcp_timeout_mark_lost(sk);
2185
2186 /* Reduce ssthresh if it has not yet been made inside this window. */
2187 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2188 !after(tp->high_seq, tp->snd_una) ||
2189 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2190 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2191 tp->prior_cwnd = tcp_snd_cwnd(tp);
2192 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2193 tcp_ca_event(sk, CA_EVENT_LOSS);
2194 tcp_init_undo(tp);
2195 }
2196 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2197 tp->snd_cwnd_cnt = 0;
2198 tp->snd_cwnd_stamp = tcp_jiffies32;
2199
2200 /* Timeout in disordered state after receiving substantial DUPACKs
2201 * suggests that the degree of reordering is over-estimated.
2202 */
2203 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2204 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2205 tp->sacked_out >= reordering)
2206 tp->reordering = min_t(unsigned int, tp->reordering,
2207 reordering);
2208
2209 tcp_set_ca_state(sk, TCP_CA_Loss);
2210 tp->high_seq = tp->snd_nxt;
2211 tp->tlp_high_seq = 0;
2212 tcp_ecn_queue_cwr(tp);
2213
2214 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2215 * loss recovery is underway except recurring timeout(s) on
2216 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2217 */
2218 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2219 (new_recovery || icsk->icsk_retransmits) &&
2220 !inet_csk(sk)->icsk_mtup.probe_size;
2221 }
2222
2223 /* If ACK arrived pointing to a remembered SACK, it means that our
2224 * remembered SACKs do not reflect real state of receiver i.e.
2225 * receiver _host_ is heavily congested (or buggy).
2226 *
2227 * To avoid big spurious retransmission bursts due to transient SACK
2228 * scoreboard oddities that look like reneging, we give the receiver a
2229 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2230 * restore sanity to the SACK scoreboard. If the apparent reneging
2231 * persists until this RTO then we'll clear the SACK scoreboard.
2232 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2233 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2234 {
2235 if (*ack_flag & FLAG_SACK_RENEGING &&
2236 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2237 struct tcp_sock *tp = tcp_sk(sk);
2238 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2239 msecs_to_jiffies(10));
2240
2241 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2242 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2243 return true;
2244 }
2245 return false;
2246 }
2247
2248 /* Linux NewReno/SACK/ECN state machine.
2249 * --------------------------------------
2250 *
2251 * "Open" Normal state, no dubious events, fast path.
2252 * "Disorder" In all the respects it is "Open",
2253 * but requires a bit more attention. It is entered when
2254 * we see some SACKs or dupacks. It is split of "Open"
2255 * mainly to move some processing from fast path to slow one.
2256 * "CWR" CWND was reduced due to some Congestion Notification event.
2257 * It can be ECN, ICMP source quench, local device congestion.
2258 * "Recovery" CWND was reduced, we are fast-retransmitting.
2259 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2260 *
2261 * tcp_fastretrans_alert() is entered:
2262 * - each incoming ACK, if state is not "Open"
2263 * - when arrived ACK is unusual, namely:
2264 * * SACK
2265 * * Duplicate ACK.
2266 * * ECN ECE.
2267 *
2268 * Counting packets in flight is pretty simple.
2269 *
2270 * in_flight = packets_out - left_out + retrans_out
2271 *
2272 * packets_out is SND.NXT-SND.UNA counted in packets.
2273 *
2274 * retrans_out is number of retransmitted segments.
2275 *
2276 * left_out is number of segments left network, but not ACKed yet.
2277 *
2278 * left_out = sacked_out + lost_out
2279 *
2280 * sacked_out: Packets, which arrived to receiver out of order
2281 * and hence not ACKed. With SACKs this number is simply
2282 * amount of SACKed data. Even without SACKs
2283 * it is easy to give pretty reliable estimate of this number,
2284 * counting duplicate ACKs.
2285 *
2286 * lost_out: Packets lost by network. TCP has no explicit
2287 * "loss notification" feedback from network (for now).
2288 * It means that this number can be only _guessed_.
2289 * Actually, it is the heuristics to predict lossage that
2290 * distinguishes different algorithms.
2291 *
2292 * F.e. after RTO, when all the queue is considered as lost,
2293 * lost_out = packets_out and in_flight = retrans_out.
2294 *
2295 * Essentially, we have now a few algorithms detecting
2296 * lost packets.
2297 *
2298 * If the receiver supports SACK:
2299 *
2300 * RACK (RFC8985): RACK is a newer loss detection algorithm
2301 * (2017-) that checks timing instead of counting DUPACKs.
2302 * Essentially a packet is considered lost if it's not S/ACKed
2303 * after RTT + reordering_window, where both metrics are
2304 * dynamically measured and adjusted. This is implemented in
2305 * tcp_rack_mark_lost.
2306 *
2307 * If the receiver does not support SACK:
2308 *
2309 * NewReno (RFC6582): in Recovery we assume that one segment
2310 * is lost (classic Reno). While we are in Recovery and
2311 * a partial ACK arrives, we assume that one more packet
2312 * is lost (NewReno). This heuristics are the same in NewReno
2313 * and SACK.
2314 *
2315 * The really tricky (and requiring careful tuning) part of the algorithm
2316 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2317 * The first determines the moment _when_ we should reduce CWND and,
2318 * hence, slow down forward transmission. In fact, it determines the moment
2319 * when we decide that hole is caused by loss, rather than by a reorder.
2320 *
2321 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2322 * holes, caused by lost packets.
2323 *
2324 * And the most logically complicated part of algorithm is undo
2325 * heuristics. We detect false retransmits due to both too early
2326 * fast retransmit (reordering) and underestimated RTO, analyzing
2327 * timestamps and D-SACKs. When we detect that some segments were
2328 * retransmitted by mistake and CWND reduction was wrong, we undo
2329 * window reduction and abort recovery phase. This logic is hidden
2330 * inside several functions named tcp_try_undo_<something>.
2331 */
2332
2333 /* This function decides, when we should leave Disordered state
2334 * and enter Recovery phase, reducing congestion window.
2335 *
2336 * Main question: may we further continue forward transmission
2337 * with the same cwnd?
2338 */
tcp_time_to_recover(const struct tcp_sock * tp)2339 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2340 {
2341 /* Has loss detection marked at least one packet lost? */
2342 return tp->lost_out != 0;
2343 }
2344
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2345 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2346 {
2347 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2348 before(tp->rx_opt.rcv_tsecr, when);
2349 }
2350
2351 /* skb is spurious retransmitted if the returned timestamp echo
2352 * reply is prior to the skb transmission time
2353 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2354 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2355 const struct sk_buff *skb)
2356 {
2357 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2358 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2359 }
2360
2361 /* Nothing was retransmitted or returned timestamp is less
2362 * than timestamp of the first retransmission.
2363 */
tcp_packet_delayed(const struct tcp_sock * tp)2364 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2365 {
2366 const struct sock *sk = (const struct sock *)tp;
2367
2368 /* Received an echoed timestamp before the first retransmission? */
2369 if (tp->retrans_stamp)
2370 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2371
2372 /* We set tp->retrans_stamp upon the first retransmission of a loss
2373 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2374 * retransmission has happened yet (likely due to TSQ, which can cause
2375 * fast retransmits to be delayed). So if snd_una advanced while
2376 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2377 * not lost. But there are exceptions where we retransmit but then
2378 * clear tp->retrans_stamp, so we check for those exceptions.
2379 */
2380
2381 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2382 * clears tp->retrans_stamp when snd_una == high_seq.
2383 */
2384 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2385 return false;
2386
2387 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2388 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2389 * retransmitted.
2390 */
2391 if (sk->sk_state == TCP_SYN_SENT)
2392 return false;
2393
2394 return true; /* tp->retrans_stamp is zero; no retransmit yet */
2395 }
2396
2397 /* Undo procedures. */
2398
2399 /* We can clear retrans_stamp when there are no retransmissions in the
2400 * window. It would seem that it is trivially available for us in
2401 * tp->retrans_out, however, that kind of assumptions doesn't consider
2402 * what will happen if errors occur when sending retransmission for the
2403 * second time. ...It could the that such segment has only
2404 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2405 * the head skb is enough except for some reneging corner cases that
2406 * are not worth the effort.
2407 *
2408 * Main reason for all this complexity is the fact that connection dying
2409 * time now depends on the validity of the retrans_stamp, in particular,
2410 * that successive retransmissions of a segment must not advance
2411 * retrans_stamp under any conditions.
2412 */
tcp_any_retrans_done(const struct sock * sk)2413 static bool tcp_any_retrans_done(const struct sock *sk)
2414 {
2415 const struct tcp_sock *tp = tcp_sk(sk);
2416 struct sk_buff *skb;
2417
2418 if (tp->retrans_out)
2419 return true;
2420
2421 skb = tcp_rtx_queue_head(sk);
2422 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2423 return true;
2424
2425 return false;
2426 }
2427
2428 /* If loss recovery is finished and there are no retransmits out in the
2429 * network, then we clear retrans_stamp so that upon the next loss recovery
2430 * retransmits_timed_out() and timestamp-undo are using the correct value.
2431 */
tcp_retrans_stamp_cleanup(struct sock * sk)2432 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2433 {
2434 if (!tcp_any_retrans_done(sk))
2435 tcp_sk(sk)->retrans_stamp = 0;
2436 }
2437
DBGUNDO(struct sock * sk,const char * msg)2438 static void DBGUNDO(struct sock *sk, const char *msg)
2439 {
2440 #if FASTRETRANS_DEBUG > 1
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 struct inet_sock *inet = inet_sk(sk);
2443
2444 if (sk->sk_family == AF_INET) {
2445 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2446 msg,
2447 &inet->inet_daddr, ntohs(inet->inet_dport),
2448 tcp_snd_cwnd(tp), tcp_left_out(tp),
2449 tp->snd_ssthresh, tp->prior_ssthresh,
2450 tp->packets_out);
2451 }
2452 #if IS_ENABLED(CONFIG_IPV6)
2453 else if (sk->sk_family == AF_INET6) {
2454 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2455 msg,
2456 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2457 tcp_snd_cwnd(tp), tcp_left_out(tp),
2458 tp->snd_ssthresh, tp->prior_ssthresh,
2459 tp->packets_out);
2460 }
2461 #endif
2462 #endif
2463 }
2464
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2465 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2466 {
2467 struct tcp_sock *tp = tcp_sk(sk);
2468
2469 if (unmark_loss) {
2470 struct sk_buff *skb;
2471
2472 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2473 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2474 }
2475 tp->lost_out = 0;
2476 tcp_clear_all_retrans_hints(tp);
2477 }
2478
2479 if (tp->prior_ssthresh) {
2480 const struct inet_connection_sock *icsk = inet_csk(sk);
2481
2482 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2483
2484 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2485 tp->snd_ssthresh = tp->prior_ssthresh;
2486 tcp_ecn_withdraw_cwr(tp);
2487 }
2488 }
2489 tp->snd_cwnd_stamp = tcp_jiffies32;
2490 tp->undo_marker = 0;
2491 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2492 }
2493
tcp_may_undo(const struct tcp_sock * tp)2494 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2495 {
2496 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2497 }
2498
tcp_is_non_sack_preventing_reopen(struct sock * sk)2499 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2500 {
2501 struct tcp_sock *tp = tcp_sk(sk);
2502
2503 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2504 /* Hold old state until something *above* high_seq
2505 * is ACKed. For Reno it is MUST to prevent false
2506 * fast retransmits (RFC2582). SACK TCP is safe. */
2507 if (!tcp_any_retrans_done(sk))
2508 tp->retrans_stamp = 0;
2509 return true;
2510 }
2511 return false;
2512 }
2513
2514 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2515 static bool tcp_try_undo_recovery(struct sock *sk)
2516 {
2517 struct tcp_sock *tp = tcp_sk(sk);
2518
2519 if (tcp_may_undo(tp)) {
2520 int mib_idx;
2521
2522 /* Happy end! We did not retransmit anything
2523 * or our original transmission succeeded.
2524 */
2525 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2526 tcp_undo_cwnd_reduction(sk, false);
2527 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2528 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2529 else
2530 mib_idx = LINUX_MIB_TCPFULLUNDO;
2531
2532 NET_INC_STATS(sock_net(sk), mib_idx);
2533 } else if (tp->rack.reo_wnd_persist) {
2534 tp->rack.reo_wnd_persist--;
2535 }
2536 if (tcp_is_non_sack_preventing_reopen(sk))
2537 return true;
2538 tcp_set_ca_state(sk, TCP_CA_Open);
2539 tp->is_sack_reneg = 0;
2540 return false;
2541 }
2542
2543 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2544 static bool tcp_try_undo_dsack(struct sock *sk)
2545 {
2546 struct tcp_sock *tp = tcp_sk(sk);
2547
2548 if (tp->undo_marker && !tp->undo_retrans) {
2549 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2550 tp->rack.reo_wnd_persist + 1);
2551 DBGUNDO(sk, "D-SACK");
2552 tcp_undo_cwnd_reduction(sk, false);
2553 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2554 return true;
2555 }
2556 return false;
2557 }
2558
2559 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2560 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2561 {
2562 struct tcp_sock *tp = tcp_sk(sk);
2563
2564 if (frto_undo || tcp_may_undo(tp)) {
2565 tcp_undo_cwnd_reduction(sk, true);
2566
2567 DBGUNDO(sk, "partial loss");
2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2569 if (frto_undo)
2570 NET_INC_STATS(sock_net(sk),
2571 LINUX_MIB_TCPSPURIOUSRTOS);
2572 inet_csk(sk)->icsk_retransmits = 0;
2573 if (tcp_is_non_sack_preventing_reopen(sk))
2574 return true;
2575 if (frto_undo || tcp_is_sack(tp)) {
2576 tcp_set_ca_state(sk, TCP_CA_Open);
2577 tp->is_sack_reneg = 0;
2578 }
2579 return true;
2580 }
2581 return false;
2582 }
2583
2584 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2585 * It computes the number of packets to send (sndcnt) based on packets newly
2586 * delivered:
2587 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2588 * cwnd reductions across a full RTT.
2589 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2590 * But when SND_UNA is acked without further losses,
2591 * slow starts cwnd up to ssthresh to speed up the recovery.
2592 */
tcp_init_cwnd_reduction(struct sock * sk)2593 static void tcp_init_cwnd_reduction(struct sock *sk)
2594 {
2595 struct tcp_sock *tp = tcp_sk(sk);
2596
2597 tp->high_seq = tp->snd_nxt;
2598 tp->tlp_high_seq = 0;
2599 tp->snd_cwnd_cnt = 0;
2600 tp->prior_cwnd = tcp_snd_cwnd(tp);
2601 tp->prr_delivered = 0;
2602 tp->prr_out = 0;
2603 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2604 tcp_ecn_queue_cwr(tp);
2605 }
2606
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2607 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2608 {
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 int sndcnt = 0;
2611 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2612
2613 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2614 return;
2615
2616 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2617
2618 tp->prr_delivered += newly_acked_sacked;
2619 if (delta < 0) {
2620 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2621 tp->prior_cwnd - 1;
2622 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2623 } else {
2624 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2625 newly_acked_sacked);
2626 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2627 sndcnt++;
2628 sndcnt = min(delta, sndcnt);
2629 }
2630 /* Force a fast retransmit upon entering fast recovery */
2631 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2632 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2633 }
2634
tcp_end_cwnd_reduction(struct sock * sk)2635 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2636 {
2637 struct tcp_sock *tp = tcp_sk(sk);
2638
2639 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2640 return;
2641
2642 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2643 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2644 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2645 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2646 tp->snd_cwnd_stamp = tcp_jiffies32;
2647 }
2648 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2649 }
2650
2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2652 void tcp_enter_cwr(struct sock *sk)
2653 {
2654 struct tcp_sock *tp = tcp_sk(sk);
2655
2656 tp->prior_ssthresh = 0;
2657 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2658 tp->undo_marker = 0;
2659 tcp_init_cwnd_reduction(sk);
2660 tcp_set_ca_state(sk, TCP_CA_CWR);
2661 }
2662 }
2663 EXPORT_SYMBOL(tcp_enter_cwr);
2664
tcp_try_keep_open(struct sock * sk)2665 static void tcp_try_keep_open(struct sock *sk)
2666 {
2667 struct tcp_sock *tp = tcp_sk(sk);
2668 int state = TCP_CA_Open;
2669
2670 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2671 state = TCP_CA_Disorder;
2672
2673 if (inet_csk(sk)->icsk_ca_state != state) {
2674 tcp_set_ca_state(sk, state);
2675 tp->high_seq = tp->snd_nxt;
2676 }
2677 }
2678
tcp_try_to_open(struct sock * sk,int flag)2679 static void tcp_try_to_open(struct sock *sk, int flag)
2680 {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682
2683 tcp_verify_left_out(tp);
2684
2685 if (!tcp_any_retrans_done(sk))
2686 tp->retrans_stamp = 0;
2687
2688 if (flag & FLAG_ECE)
2689 tcp_enter_cwr(sk);
2690
2691 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2692 tcp_try_keep_open(sk);
2693 }
2694 }
2695
tcp_mtup_probe_failed(struct sock * sk)2696 static void tcp_mtup_probe_failed(struct sock *sk)
2697 {
2698 struct inet_connection_sock *icsk = inet_csk(sk);
2699
2700 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2701 icsk->icsk_mtup.probe_size = 0;
2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2703 }
2704
tcp_mtup_probe_success(struct sock * sk)2705 static void tcp_mtup_probe_success(struct sock *sk)
2706 {
2707 struct tcp_sock *tp = tcp_sk(sk);
2708 struct inet_connection_sock *icsk = inet_csk(sk);
2709 u64 val;
2710
2711 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712
2713 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2714 do_div(val, icsk->icsk_mtup.probe_size);
2715 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2716 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2717
2718 tp->snd_cwnd_cnt = 0;
2719 tp->snd_cwnd_stamp = tcp_jiffies32;
2720 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2721
2722 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2723 icsk->icsk_mtup.probe_size = 0;
2724 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2726 }
2727
2728 /* Sometimes we deduce that packets have been dropped due to reasons other than
2729 * congestion, like path MTU reductions or failed client TFO attempts. In these
2730 * cases we call this function to retransmit as many packets as cwnd allows,
2731 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2732 * non-zero value (and may do so in a later calling context due to TSQ), we
2733 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2734 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2735 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2736 * prematurely).
2737 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2738 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2739 {
2740 const struct inet_connection_sock *icsk = inet_csk(sk);
2741 struct tcp_sock *tp = tcp_sk(sk);
2742
2743 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2744 tp->high_seq = tp->snd_nxt;
2745 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2746 tp->prior_ssthresh = 0;
2747 tp->undo_marker = 0;
2748 tcp_set_ca_state(sk, TCP_CA_Loss);
2749 }
2750 tcp_xmit_retransmit_queue(sk);
2751 }
2752
2753 /* Do a simple retransmit without using the backoff mechanisms in
2754 * tcp_timer. This is used for path mtu discovery.
2755 * The socket is already locked here.
2756 */
tcp_simple_retransmit(struct sock * sk)2757 void tcp_simple_retransmit(struct sock *sk)
2758 {
2759 struct tcp_sock *tp = tcp_sk(sk);
2760 struct sk_buff *skb;
2761 int mss;
2762
2763 /* A fastopen SYN request is stored as two separate packets within
2764 * the retransmit queue, this is done by tcp_send_syn_data().
2765 * As a result simply checking the MSS of the frames in the queue
2766 * will not work for the SYN packet.
2767 *
2768 * Us being here is an indication of a path MTU issue so we can
2769 * assume that the fastopen SYN was lost and just mark all the
2770 * frames in the retransmit queue as lost. We will use an MSS of
2771 * -1 to mark all frames as lost, otherwise compute the current MSS.
2772 */
2773 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2774 mss = -1;
2775 else
2776 mss = tcp_current_mss(sk);
2777
2778 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2779 if (tcp_skb_seglen(skb) > mss)
2780 tcp_mark_skb_lost(sk, skb);
2781 }
2782
2783 if (!tp->lost_out)
2784 return;
2785
2786 if (tcp_is_reno(tp))
2787 tcp_limit_reno_sacked(tp);
2788
2789 tcp_verify_left_out(tp);
2790
2791 /* Don't muck with the congestion window here.
2792 * Reason is that we do not increase amount of _data_
2793 * in network, but units changed and effective
2794 * cwnd/ssthresh really reduced now.
2795 */
2796 tcp_non_congestion_loss_retransmit(sk);
2797 }
2798 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2799
tcp_enter_recovery(struct sock * sk,bool ece_ack)2800 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2801 {
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 int mib_idx;
2804
2805 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2806 tcp_retrans_stamp_cleanup(sk);
2807
2808 if (tcp_is_reno(tp))
2809 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2810 else
2811 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2812
2813 NET_INC_STATS(sock_net(sk), mib_idx);
2814
2815 tp->prior_ssthresh = 0;
2816 tcp_init_undo(tp);
2817
2818 if (!tcp_in_cwnd_reduction(sk)) {
2819 if (!ece_ack)
2820 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2821 tcp_init_cwnd_reduction(sk);
2822 }
2823 tcp_set_ca_state(sk, TCP_CA_Recovery);
2824 }
2825
tcp_update_rto_time(struct tcp_sock * tp)2826 static void tcp_update_rto_time(struct tcp_sock *tp)
2827 {
2828 if (tp->rto_stamp) {
2829 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2830 tp->rto_stamp = 0;
2831 }
2832 }
2833
2834 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2835 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2836 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2837 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2838 int *rexmit)
2839 {
2840 struct tcp_sock *tp = tcp_sk(sk);
2841 bool recovered = !before(tp->snd_una, tp->high_seq);
2842
2843 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2844 tcp_try_undo_loss(sk, false))
2845 return;
2846
2847 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2848 /* Step 3.b. A timeout is spurious if not all data are
2849 * lost, i.e., never-retransmitted data are (s)acked.
2850 */
2851 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2852 tcp_try_undo_loss(sk, true))
2853 return;
2854
2855 if (after(tp->snd_nxt, tp->high_seq)) {
2856 if (flag & FLAG_DATA_SACKED || num_dupack)
2857 tp->frto = 0; /* Step 3.a. loss was real */
2858 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2859 tp->high_seq = tp->snd_nxt;
2860 /* Step 2.b. Try send new data (but deferred until cwnd
2861 * is updated in tcp_ack()). Otherwise fall back to
2862 * the conventional recovery.
2863 */
2864 if (!tcp_write_queue_empty(sk) &&
2865 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2866 *rexmit = REXMIT_NEW;
2867 return;
2868 }
2869 tp->frto = 0;
2870 }
2871 }
2872
2873 if (recovered) {
2874 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2875 tcp_try_undo_recovery(sk);
2876 return;
2877 }
2878 if (tcp_is_reno(tp)) {
2879 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2880 * delivered. Lower inflight to clock out (re)transmissions.
2881 */
2882 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2883 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2884 else if (flag & FLAG_SND_UNA_ADVANCED)
2885 tcp_reset_reno_sack(tp);
2886 }
2887 *rexmit = REXMIT_LOST;
2888 }
2889
2890 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2891 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2892 {
2893 struct tcp_sock *tp = tcp_sk(sk);
2894
2895 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2896 /* Plain luck! Hole if filled with delayed
2897 * packet, rather than with a retransmit. Check reordering.
2898 */
2899 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2900
2901 /* We are getting evidence that the reordering degree is higher
2902 * than we realized. If there are no retransmits out then we
2903 * can undo. Otherwise we clock out new packets but do not
2904 * mark more packets lost or retransmit more.
2905 */
2906 if (tp->retrans_out)
2907 return true;
2908
2909 if (!tcp_any_retrans_done(sk))
2910 tp->retrans_stamp = 0;
2911
2912 DBGUNDO(sk, "partial recovery");
2913 tcp_undo_cwnd_reduction(sk, true);
2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2915 tcp_try_keep_open(sk);
2916 }
2917 return false;
2918 }
2919
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2920 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2921 {
2922 struct tcp_sock *tp = tcp_sk(sk);
2923
2924 if (tcp_rtx_queue_empty(sk))
2925 return;
2926
2927 if (unlikely(tcp_is_reno(tp))) {
2928 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2929 } else {
2930 u32 prior_retrans = tp->retrans_out;
2931
2932 if (tcp_rack_mark_lost(sk))
2933 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2934 if (prior_retrans > tp->retrans_out)
2935 *ack_flag |= FLAG_LOST_RETRANS;
2936 }
2937 }
2938
2939 /* Process an event, which can update packets-in-flight not trivially.
2940 * Main goal of this function is to calculate new estimate for left_out,
2941 * taking into account both packets sitting in receiver's buffer and
2942 * packets lost by network.
2943 *
2944 * Besides that it updates the congestion state when packet loss or ECN
2945 * is detected. But it does not reduce the cwnd, it is done by the
2946 * congestion control later.
2947 *
2948 * It does _not_ decide what to send, it is made in function
2949 * tcp_xmit_retransmit_queue().
2950 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2951 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2952 int num_dupack, int *ack_flag, int *rexmit)
2953 {
2954 struct inet_connection_sock *icsk = inet_csk(sk);
2955 struct tcp_sock *tp = tcp_sk(sk);
2956 int flag = *ack_flag;
2957 bool ece_ack = flag & FLAG_ECE;
2958
2959 if (!tp->packets_out && tp->sacked_out)
2960 tp->sacked_out = 0;
2961
2962 /* Now state machine starts.
2963 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2964 if (ece_ack)
2965 tp->prior_ssthresh = 0;
2966
2967 /* B. In all the states check for reneging SACKs. */
2968 if (tcp_check_sack_reneging(sk, ack_flag))
2969 return;
2970
2971 /* C. Check consistency of the current state. */
2972 tcp_verify_left_out(tp);
2973
2974 /* D. Check state exit conditions. State can be terminated
2975 * when high_seq is ACKed. */
2976 if (icsk->icsk_ca_state == TCP_CA_Open) {
2977 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2978 tp->retrans_stamp = 0;
2979 } else if (!before(tp->snd_una, tp->high_seq)) {
2980 switch (icsk->icsk_ca_state) {
2981 case TCP_CA_CWR:
2982 /* CWR is to be held something *above* high_seq
2983 * is ACKed for CWR bit to reach receiver. */
2984 if (tp->snd_una != tp->high_seq) {
2985 tcp_end_cwnd_reduction(sk);
2986 tcp_set_ca_state(sk, TCP_CA_Open);
2987 }
2988 break;
2989
2990 case TCP_CA_Recovery:
2991 if (tcp_is_reno(tp))
2992 tcp_reset_reno_sack(tp);
2993 if (tcp_try_undo_recovery(sk))
2994 return;
2995 tcp_end_cwnd_reduction(sk);
2996 break;
2997 }
2998 }
2999
3000 /* E. Process state. */
3001 switch (icsk->icsk_ca_state) {
3002 case TCP_CA_Recovery:
3003 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3004 if (tcp_is_reno(tp))
3005 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3006 } else if (tcp_try_undo_partial(sk, prior_snd_una))
3007 return;
3008
3009 if (tcp_try_undo_dsack(sk))
3010 tcp_try_to_open(sk, flag);
3011
3012 tcp_identify_packet_loss(sk, ack_flag);
3013 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3014 if (!tcp_time_to_recover(tp))
3015 return;
3016 /* Undo reverts the recovery state. If loss is evident,
3017 * starts a new recovery (e.g. reordering then loss);
3018 */
3019 tcp_enter_recovery(sk, ece_ack);
3020 }
3021 break;
3022 case TCP_CA_Loss:
3023 tcp_process_loss(sk, flag, num_dupack, rexmit);
3024 if (icsk->icsk_ca_state != TCP_CA_Loss)
3025 tcp_update_rto_time(tp);
3026 tcp_identify_packet_loss(sk, ack_flag);
3027 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3028 (*ack_flag & FLAG_LOST_RETRANS)))
3029 return;
3030 /* Change state if cwnd is undone or retransmits are lost */
3031 fallthrough;
3032 default:
3033 if (tcp_is_reno(tp)) {
3034 if (flag & FLAG_SND_UNA_ADVANCED)
3035 tcp_reset_reno_sack(tp);
3036 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3037 }
3038
3039 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3040 tcp_try_undo_dsack(sk);
3041
3042 tcp_identify_packet_loss(sk, ack_flag);
3043 if (!tcp_time_to_recover(tp)) {
3044 tcp_try_to_open(sk, flag);
3045 return;
3046 }
3047
3048 /* MTU probe failure: don't reduce cwnd */
3049 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3050 icsk->icsk_mtup.probe_size &&
3051 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3052 tcp_mtup_probe_failed(sk);
3053 /* Restores the reduction we did in tcp_mtup_probe() */
3054 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3055 tcp_simple_retransmit(sk);
3056 return;
3057 }
3058
3059 /* Otherwise enter Recovery state */
3060 tcp_enter_recovery(sk, ece_ack);
3061 }
3062
3063 *rexmit = REXMIT_LOST;
3064 }
3065
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3066 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3067 {
3068 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3069 struct tcp_sock *tp = tcp_sk(sk);
3070
3071 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3072 /* If the remote keeps returning delayed ACKs, eventually
3073 * the min filter would pick it up and overestimate the
3074 * prop. delay when it expires. Skip suspected delayed ACKs.
3075 */
3076 return;
3077 }
3078 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3079 rtt_us ? : jiffies_to_usecs(1));
3080 }
3081
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3082 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3083 long seq_rtt_us, long sack_rtt_us,
3084 long ca_rtt_us, struct rate_sample *rs)
3085 {
3086 const struct tcp_sock *tp = tcp_sk(sk);
3087
3088 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3089 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3090 * Karn's algorithm forbids taking RTT if some retransmitted data
3091 * is acked (RFC6298).
3092 */
3093 if (seq_rtt_us < 0)
3094 seq_rtt_us = sack_rtt_us;
3095
3096 /* RTTM Rule: A TSecr value received in a segment is used to
3097 * update the averaged RTT measurement only if the segment
3098 * acknowledges some new data, i.e., only if it advances the
3099 * left edge of the send window.
3100 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3101 */
3102 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3103 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3104 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3105
3106 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3107 if (seq_rtt_us < 0)
3108 return false;
3109
3110 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3111 * always taken together with ACK, SACK, or TS-opts. Any negative
3112 * values will be skipped with the seq_rtt_us < 0 check above.
3113 */
3114 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3115 tcp_rtt_estimator(sk, seq_rtt_us);
3116 tcp_set_rto(sk);
3117
3118 /* RFC6298: only reset backoff on valid RTT measurement. */
3119 inet_csk(sk)->icsk_backoff = 0;
3120 return true;
3121 }
3122
3123 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3124 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3125 {
3126 struct rate_sample rs;
3127 long rtt_us = -1L;
3128
3129 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3130 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3131
3132 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3133 }
3134
3135
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3137 {
3138 const struct inet_connection_sock *icsk = inet_csk(sk);
3139
3140 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3141 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3142 }
3143
3144 /* Restart timer after forward progress on connection.
3145 * RFC2988 recommends to restart timer to now+rto.
3146 */
tcp_rearm_rto(struct sock * sk)3147 void tcp_rearm_rto(struct sock *sk)
3148 {
3149 const struct inet_connection_sock *icsk = inet_csk(sk);
3150 struct tcp_sock *tp = tcp_sk(sk);
3151
3152 /* If the retrans timer is currently being used by Fast Open
3153 * for SYN-ACK retrans purpose, stay put.
3154 */
3155 if (rcu_access_pointer(tp->fastopen_rsk))
3156 return;
3157
3158 if (!tp->packets_out) {
3159 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3160 } else {
3161 u32 rto = inet_csk(sk)->icsk_rto;
3162 /* Offset the time elapsed after installing regular RTO */
3163 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3164 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3165 s64 delta_us = tcp_rto_delta_us(sk);
3166 /* delta_us may not be positive if the socket is locked
3167 * when the retrans timer fires and is rescheduled.
3168 */
3169 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3170 }
3171 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3172 }
3173 }
3174
3175 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3176 static void tcp_set_xmit_timer(struct sock *sk)
3177 {
3178 if (!tcp_schedule_loss_probe(sk, true))
3179 tcp_rearm_rto(sk);
3180 }
3181
3182 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3183 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3184 {
3185 struct tcp_sock *tp = tcp_sk(sk);
3186 u32 packets_acked;
3187
3188 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3189
3190 packets_acked = tcp_skb_pcount(skb);
3191 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3192 return 0;
3193 packets_acked -= tcp_skb_pcount(skb);
3194
3195 if (packets_acked) {
3196 BUG_ON(tcp_skb_pcount(skb) == 0);
3197 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3198 }
3199
3200 return packets_acked;
3201 }
3202
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3203 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3204 const struct sk_buff *ack_skb, u32 prior_snd_una)
3205 {
3206 const struct skb_shared_info *shinfo;
3207
3208 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3209 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3210 return;
3211
3212 shinfo = skb_shinfo(skb);
3213 if (!before(shinfo->tskey, prior_snd_una) &&
3214 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3215 tcp_skb_tsorted_save(skb) {
3216 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3217 } tcp_skb_tsorted_restore(skb);
3218 }
3219 }
3220
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222 * is before the ack sequence we can discard it as it's confirmed to have
3223 * arrived at the other end.
3224 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3225 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3226 u32 prior_fack, u32 prior_snd_una,
3227 struct tcp_sacktag_state *sack, bool ece_ack)
3228 {
3229 const struct inet_connection_sock *icsk = inet_csk(sk);
3230 u64 first_ackt, last_ackt;
3231 struct tcp_sock *tp = tcp_sk(sk);
3232 u32 prior_sacked = tp->sacked_out;
3233 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3234 struct sk_buff *skb, *next;
3235 bool fully_acked = true;
3236 long sack_rtt_us = -1L;
3237 long seq_rtt_us = -1L;
3238 long ca_rtt_us = -1L;
3239 u32 pkts_acked = 0;
3240 bool rtt_update;
3241 int flag = 0;
3242
3243 first_ackt = 0;
3244
3245 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3246 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3247 const u32 start_seq = scb->seq;
3248 u8 sacked = scb->sacked;
3249 u32 acked_pcount;
3250
3251 /* Determine how many packets and what bytes were acked, tso and else */
3252 if (after(scb->end_seq, tp->snd_una)) {
3253 if (tcp_skb_pcount(skb) == 1 ||
3254 !after(tp->snd_una, scb->seq))
3255 break;
3256
3257 acked_pcount = tcp_tso_acked(sk, skb);
3258 if (!acked_pcount)
3259 break;
3260 fully_acked = false;
3261 } else {
3262 acked_pcount = tcp_skb_pcount(skb);
3263 }
3264
3265 if (unlikely(sacked & TCPCB_RETRANS)) {
3266 if (sacked & TCPCB_SACKED_RETRANS)
3267 tp->retrans_out -= acked_pcount;
3268 flag |= FLAG_RETRANS_DATA_ACKED;
3269 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3270 last_ackt = tcp_skb_timestamp_us(skb);
3271 WARN_ON_ONCE(last_ackt == 0);
3272 if (!first_ackt)
3273 first_ackt = last_ackt;
3274
3275 if (before(start_seq, reord))
3276 reord = start_seq;
3277 if (!after(scb->end_seq, tp->high_seq))
3278 flag |= FLAG_ORIG_SACK_ACKED;
3279 }
3280
3281 if (sacked & TCPCB_SACKED_ACKED) {
3282 tp->sacked_out -= acked_pcount;
3283 } else if (tcp_is_sack(tp)) {
3284 tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 if (!tcp_skb_spurious_retrans(tp, skb))
3286 tcp_rack_advance(tp, sacked, scb->end_seq,
3287 tcp_skb_timestamp_us(skb));
3288 }
3289 if (sacked & TCPCB_LOST)
3290 tp->lost_out -= acked_pcount;
3291
3292 tp->packets_out -= acked_pcount;
3293 pkts_acked += acked_pcount;
3294 tcp_rate_skb_delivered(sk, skb, sack->rate);
3295
3296 /* Initial outgoing SYN's get put onto the write_queue
3297 * just like anything else we transmit. It is not
3298 * true data, and if we misinform our callers that
3299 * this ACK acks real data, we will erroneously exit
3300 * connection startup slow start one packet too
3301 * quickly. This is severely frowned upon behavior.
3302 */
3303 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 flag |= FLAG_DATA_ACKED;
3305 } else {
3306 flag |= FLAG_SYN_ACKED;
3307 tp->retrans_stamp = 0;
3308 }
3309
3310 if (!fully_acked)
3311 break;
3312
3313 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3314
3315 next = skb_rb_next(skb);
3316 if (unlikely(skb == tp->retransmit_skb_hint))
3317 tp->retransmit_skb_hint = NULL;
3318 tcp_highest_sack_replace(sk, skb, next);
3319 tcp_rtx_queue_unlink_and_free(skb, sk);
3320 }
3321
3322 if (!skb)
3323 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3324
3325 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3326 tp->snd_up = tp->snd_una;
3327
3328 if (skb) {
3329 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3330 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3331 flag |= FLAG_SACK_RENEGING;
3332 }
3333
3334 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3335 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3336 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3337
3338 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3339 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3340 sack->rate->prior_delivered + 1 == tp->delivered &&
3341 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3342 /* Conservatively mark a delayed ACK. It's typically
3343 * from a lone runt packet over the round trip to
3344 * a receiver w/o out-of-order or CE events.
3345 */
3346 flag |= FLAG_ACK_MAYBE_DELAYED;
3347 }
3348 }
3349 if (sack->first_sackt) {
3350 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3351 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3352 }
3353 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3354 ca_rtt_us, sack->rate);
3355
3356 if (flag & FLAG_ACKED) {
3357 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3358 if (unlikely(icsk->icsk_mtup.probe_size &&
3359 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3360 tcp_mtup_probe_success(sk);
3361 }
3362
3363 if (tcp_is_reno(tp)) {
3364 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3365
3366 /* If any of the cumulatively ACKed segments was
3367 * retransmitted, non-SACK case cannot confirm that
3368 * progress was due to original transmission due to
3369 * lack of TCPCB_SACKED_ACKED bits even if some of
3370 * the packets may have been never retransmitted.
3371 */
3372 if (flag & FLAG_RETRANS_DATA_ACKED)
3373 flag &= ~FLAG_ORIG_SACK_ACKED;
3374 } else {
3375 /* Non-retransmitted hole got filled? That's reordering */
3376 if (before(reord, prior_fack))
3377 tcp_check_sack_reordering(sk, reord, 0);
3378 }
3379 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3380 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3381 tcp_skb_timestamp_us(skb))) {
3382 /* Do not re-arm RTO if the sack RTT is measured from data sent
3383 * after when the head was last (re)transmitted. Otherwise the
3384 * timeout may continue to extend in loss recovery.
3385 */
3386 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3387 }
3388
3389 if (icsk->icsk_ca_ops->pkts_acked) {
3390 struct ack_sample sample = { .pkts_acked = pkts_acked,
3391 .rtt_us = sack->rate->rtt_us };
3392
3393 sample.in_flight = tp->mss_cache *
3394 (tp->delivered - sack->rate->prior_delivered);
3395 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3396 }
3397
3398 #if FASTRETRANS_DEBUG > 0
3399 WARN_ON((int)tp->sacked_out < 0);
3400 WARN_ON((int)tp->lost_out < 0);
3401 WARN_ON((int)tp->retrans_out < 0);
3402 if (!tp->packets_out && tcp_is_sack(tp)) {
3403 icsk = inet_csk(sk);
3404 if (tp->lost_out) {
3405 pr_debug("Leak l=%u %d\n",
3406 tp->lost_out, icsk->icsk_ca_state);
3407 tp->lost_out = 0;
3408 }
3409 if (tp->sacked_out) {
3410 pr_debug("Leak s=%u %d\n",
3411 tp->sacked_out, icsk->icsk_ca_state);
3412 tp->sacked_out = 0;
3413 }
3414 if (tp->retrans_out) {
3415 pr_debug("Leak r=%u %d\n",
3416 tp->retrans_out, icsk->icsk_ca_state);
3417 tp->retrans_out = 0;
3418 }
3419 }
3420 #endif
3421 return flag;
3422 }
3423
tcp_ack_probe(struct sock * sk)3424 static void tcp_ack_probe(struct sock *sk)
3425 {
3426 struct inet_connection_sock *icsk = inet_csk(sk);
3427 struct sk_buff *head = tcp_send_head(sk);
3428 const struct tcp_sock *tp = tcp_sk(sk);
3429
3430 /* Was it a usable window open? */
3431 if (!head)
3432 return;
3433 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3434 icsk->icsk_backoff = 0;
3435 icsk->icsk_probes_tstamp = 0;
3436 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3437 /* Socket must be waked up by subsequent tcp_data_snd_check().
3438 * This function is not for random using!
3439 */
3440 } else {
3441 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3442
3443 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3444 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3445 }
3446 }
3447
tcp_ack_is_dubious(const struct sock * sk,const int flag)3448 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3449 {
3450 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3451 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3452 }
3453
3454 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3455 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3456 {
3457 /* If reordering is high then always grow cwnd whenever data is
3458 * delivered regardless of its ordering. Otherwise stay conservative
3459 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3460 * new SACK or ECE mark may first advance cwnd here and later reduce
3461 * cwnd in tcp_fastretrans_alert() based on more states.
3462 */
3463 if (tcp_sk(sk)->reordering >
3464 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3465 return flag & FLAG_FORWARD_PROGRESS;
3466
3467 return flag & FLAG_DATA_ACKED;
3468 }
3469
3470 /* The "ultimate" congestion control function that aims to replace the rigid
3471 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3472 * It's called toward the end of processing an ACK with precise rate
3473 * information. All transmission or retransmission are delayed afterwards.
3474 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3475 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3476 int flag, const struct rate_sample *rs)
3477 {
3478 const struct inet_connection_sock *icsk = inet_csk(sk);
3479
3480 if (icsk->icsk_ca_ops->cong_control) {
3481 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3482 return;
3483 }
3484
3485 if (tcp_in_cwnd_reduction(sk)) {
3486 /* Reduce cwnd if state mandates */
3487 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3488 } else if (tcp_may_raise_cwnd(sk, flag)) {
3489 /* Advance cwnd if state allows */
3490 tcp_cong_avoid(sk, ack, acked_sacked);
3491 }
3492 tcp_update_pacing_rate(sk);
3493 }
3494
3495 /* Check that window update is acceptable.
3496 * The function assumes that snd_una<=ack<=snd_next.
3497 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3498 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3499 const u32 ack, const u32 ack_seq,
3500 const u32 nwin)
3501 {
3502 return after(ack, tp->snd_una) ||
3503 after(ack_seq, tp->snd_wl1) ||
3504 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3505 }
3506
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3507 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3508 {
3509 #ifdef CONFIG_TCP_AO
3510 struct tcp_ao_info *ao;
3511
3512 if (!static_branch_unlikely(&tcp_ao_needed.key))
3513 return;
3514
3515 ao = rcu_dereference_protected(tp->ao_info,
3516 lockdep_sock_is_held((struct sock *)tp));
3517 if (ao && ack < tp->snd_una) {
3518 ao->snd_sne++;
3519 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3520 }
3521 #endif
3522 }
3523
3524 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3525 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3526 {
3527 u32 delta = ack - tp->snd_una;
3528
3529 sock_owned_by_me((struct sock *)tp);
3530 tp->bytes_acked += delta;
3531 tcp_snd_sne_update(tp, ack);
3532 tp->snd_una = ack;
3533 }
3534
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3535 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3536 {
3537 #ifdef CONFIG_TCP_AO
3538 struct tcp_ao_info *ao;
3539
3540 if (!static_branch_unlikely(&tcp_ao_needed.key))
3541 return;
3542
3543 ao = rcu_dereference_protected(tp->ao_info,
3544 lockdep_sock_is_held((struct sock *)tp));
3545 if (ao && seq < tp->rcv_nxt) {
3546 ao->rcv_sne++;
3547 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3548 }
3549 #endif
3550 }
3551
3552 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3553 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3554 {
3555 u32 delta = seq - tp->rcv_nxt;
3556
3557 sock_owned_by_me((struct sock *)tp);
3558 tp->bytes_received += delta;
3559 tcp_rcv_sne_update(tp, seq);
3560 WRITE_ONCE(tp->rcv_nxt, seq);
3561 }
3562
3563 /* Update our send window.
3564 *
3565 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3566 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3567 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3568 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3569 u32 ack_seq)
3570 {
3571 struct tcp_sock *tp = tcp_sk(sk);
3572 int flag = 0;
3573 u32 nwin = ntohs(tcp_hdr(skb)->window);
3574
3575 if (likely(!tcp_hdr(skb)->syn))
3576 nwin <<= tp->rx_opt.snd_wscale;
3577
3578 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3579 flag |= FLAG_WIN_UPDATE;
3580 tcp_update_wl(tp, ack_seq);
3581
3582 if (tp->snd_wnd != nwin) {
3583 tp->snd_wnd = nwin;
3584
3585 /* Note, it is the only place, where
3586 * fast path is recovered for sending TCP.
3587 */
3588 tp->pred_flags = 0;
3589 tcp_fast_path_check(sk);
3590
3591 if (!tcp_write_queue_empty(sk))
3592 tcp_slow_start_after_idle_check(sk);
3593
3594 if (nwin > tp->max_window) {
3595 tp->max_window = nwin;
3596 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3597 }
3598 }
3599 }
3600
3601 tcp_snd_una_update(tp, ack);
3602
3603 return flag;
3604 }
3605
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3606 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3607 u32 *last_oow_ack_time)
3608 {
3609 /* Paired with the WRITE_ONCE() in this function. */
3610 u32 val = READ_ONCE(*last_oow_ack_time);
3611
3612 if (val) {
3613 s32 elapsed = (s32)(tcp_jiffies32 - val);
3614
3615 if (0 <= elapsed &&
3616 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3617 NET_INC_STATS(net, mib_idx);
3618 return true; /* rate-limited: don't send yet! */
3619 }
3620 }
3621
3622 /* Paired with the prior READ_ONCE() and with itself,
3623 * as we might be lockless.
3624 */
3625 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3626
3627 return false; /* not rate-limited: go ahead, send dupack now! */
3628 }
3629
3630 /* Return true if we're currently rate-limiting out-of-window ACKs and
3631 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3632 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3633 * attacks that send repeated SYNs or ACKs for the same connection. To
3634 * do this, we do not send a duplicate SYNACK or ACK if the remote
3635 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3636 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3637 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3638 int mib_idx, u32 *last_oow_ack_time)
3639 {
3640 /* Data packets without SYNs are not likely part of an ACK loop. */
3641 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3642 !tcp_hdr(skb)->syn)
3643 return false;
3644
3645 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3646 }
3647
3648 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3649 static void tcp_send_challenge_ack(struct sock *sk)
3650 {
3651 struct tcp_sock *tp = tcp_sk(sk);
3652 struct net *net = sock_net(sk);
3653 u32 count, now, ack_limit;
3654
3655 /* First check our per-socket dupack rate limit. */
3656 if (__tcp_oow_rate_limited(net,
3657 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3658 &tp->last_oow_ack_time))
3659 return;
3660
3661 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3662 if (ack_limit == INT_MAX)
3663 goto send_ack;
3664
3665 /* Then check host-wide RFC 5961 rate limit. */
3666 now = jiffies / HZ;
3667 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3668 u32 half = (ack_limit + 1) >> 1;
3669
3670 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3671 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3672 get_random_u32_inclusive(half, ack_limit + half - 1));
3673 }
3674 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3675 if (count > 0) {
3676 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3677 send_ack:
3678 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3679 tcp_send_ack(sk);
3680 }
3681 }
3682
tcp_store_ts_recent(struct tcp_sock * tp)3683 static void tcp_store_ts_recent(struct tcp_sock *tp)
3684 {
3685 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3686 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3687 }
3688
__tcp_replace_ts_recent(struct tcp_sock * tp,s32 tstamp_delta)3689 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3690 {
3691 tcp_store_ts_recent(tp);
3692 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3693 }
3694
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3695 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3696 {
3697 s32 delta;
3698
3699 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3700 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3701 * extra check below makes sure this can only happen
3702 * for pure ACK frames. -DaveM
3703 *
3704 * Not only, also it occurs for expired timestamps.
3705 */
3706
3707 if (tcp_paws_check(&tp->rx_opt, 0)) {
3708 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3709 return __tcp_replace_ts_recent(tp, delta);
3710 }
3711 }
3712
3713 return 0;
3714 }
3715
3716 /* This routine deals with acks during a TLP episode and ends an episode by
3717 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
3718 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3719 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3720 {
3721 struct tcp_sock *tp = tcp_sk(sk);
3722
3723 if (before(ack, tp->tlp_high_seq))
3724 return;
3725
3726 if (!tp->tlp_retrans) {
3727 /* TLP of new data has been acknowledged */
3728 tp->tlp_high_seq = 0;
3729 } else if (flag & FLAG_DSACK_TLP) {
3730 /* This DSACK means original and TLP probe arrived; no loss */
3731 tp->tlp_high_seq = 0;
3732 } else if (after(ack, tp->tlp_high_seq)) {
3733 /* ACK advances: there was a loss, so reduce cwnd. Reset
3734 * tlp_high_seq in tcp_init_cwnd_reduction()
3735 */
3736 tcp_init_cwnd_reduction(sk);
3737 tcp_set_ca_state(sk, TCP_CA_CWR);
3738 tcp_end_cwnd_reduction(sk);
3739 tcp_try_keep_open(sk);
3740 NET_INC_STATS(sock_net(sk),
3741 LINUX_MIB_TCPLOSSPROBERECOVERY);
3742 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3743 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3744 /* Pure dupack: original and TLP probe arrived; no loss */
3745 tp->tlp_high_seq = 0;
3746 }
3747 }
3748
tcp_in_ack_event(struct sock * sk,int flag)3749 static void tcp_in_ack_event(struct sock *sk, int flag)
3750 {
3751 const struct inet_connection_sock *icsk = inet_csk(sk);
3752
3753 if (icsk->icsk_ca_ops->in_ack_event) {
3754 u32 ack_ev_flags = 0;
3755
3756 if (flag & FLAG_WIN_UPDATE)
3757 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3758 if (flag & FLAG_SLOWPATH) {
3759 ack_ev_flags |= CA_ACK_SLOWPATH;
3760 if (flag & FLAG_ECE)
3761 ack_ev_flags |= CA_ACK_ECE;
3762 }
3763
3764 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3765 }
3766 }
3767
3768 /* Congestion control has updated the cwnd already. So if we're in
3769 * loss recovery then now we do any new sends (for FRTO) or
3770 * retransmits (for CA_Loss or CA_recovery) that make sense.
3771 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3772 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3773 {
3774 struct tcp_sock *tp = tcp_sk(sk);
3775
3776 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3777 return;
3778
3779 if (unlikely(rexmit == REXMIT_NEW)) {
3780 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3781 TCP_NAGLE_OFF);
3782 if (after(tp->snd_nxt, tp->high_seq))
3783 return;
3784 tp->frto = 0;
3785 }
3786 tcp_xmit_retransmit_queue(sk);
3787 }
3788
3789 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3790 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3791 {
3792 const struct net *net = sock_net(sk);
3793 struct tcp_sock *tp = tcp_sk(sk);
3794 u32 delivered;
3795
3796 delivered = tp->delivered - prior_delivered;
3797 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3798 if (flag & FLAG_ECE)
3799 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3800
3801 return delivered;
3802 }
3803
3804 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3805 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3806 {
3807 struct inet_connection_sock *icsk = inet_csk(sk);
3808 struct tcp_sock *tp = tcp_sk(sk);
3809 struct tcp_sacktag_state sack_state;
3810 struct rate_sample rs = { .prior_delivered = 0 };
3811 u32 prior_snd_una = tp->snd_una;
3812 bool is_sack_reneg = tp->is_sack_reneg;
3813 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3814 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3815 int num_dupack = 0;
3816 int prior_packets = tp->packets_out;
3817 u32 delivered = tp->delivered;
3818 u32 lost = tp->lost;
3819 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3820 u32 prior_fack;
3821
3822 sack_state.first_sackt = 0;
3823 sack_state.rate = &rs;
3824 sack_state.sack_delivered = 0;
3825
3826 /* We very likely will need to access rtx queue. */
3827 prefetch(sk->tcp_rtx_queue.rb_node);
3828
3829 /* If the ack is older than previous acks
3830 * then we can probably ignore it.
3831 */
3832 if (before(ack, prior_snd_una)) {
3833 u32 max_window;
3834
3835 /* do not accept ACK for bytes we never sent. */
3836 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3837 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3838 if (before(ack, prior_snd_una - max_window)) {
3839 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3840 tcp_send_challenge_ack(sk);
3841 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3842 }
3843 goto old_ack;
3844 }
3845
3846 /* If the ack includes data we haven't sent yet, discard
3847 * this segment (RFC793 Section 3.9).
3848 */
3849 if (after(ack, tp->snd_nxt))
3850 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3851
3852 if (after(ack, prior_snd_una)) {
3853 flag |= FLAG_SND_UNA_ADVANCED;
3854 icsk->icsk_retransmits = 0;
3855
3856 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3857 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3858 if (tp->tcp_clean_acked)
3859 tp->tcp_clean_acked(sk, ack);
3860 #endif
3861 }
3862
3863 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3864 rs.prior_in_flight = tcp_packets_in_flight(tp);
3865
3866 /* ts_recent update must be made after we are sure that the packet
3867 * is in window.
3868 */
3869 if (flag & FLAG_UPDATE_TS_RECENT)
3870 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3871
3872 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3873 FLAG_SND_UNA_ADVANCED) {
3874 /* Window is constant, pure forward advance.
3875 * No more checks are required.
3876 * Note, we use the fact that SND.UNA>=SND.WL2.
3877 */
3878 tcp_update_wl(tp, ack_seq);
3879 tcp_snd_una_update(tp, ack);
3880 flag |= FLAG_WIN_UPDATE;
3881
3882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3883 } else {
3884 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3885 flag |= FLAG_DATA;
3886 else
3887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3888
3889 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3890
3891 if (TCP_SKB_CB(skb)->sacked)
3892 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3893 &sack_state);
3894
3895 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3896 flag |= FLAG_ECE;
3897
3898 if (sack_state.sack_delivered)
3899 tcp_count_delivered(tp, sack_state.sack_delivered,
3900 flag & FLAG_ECE);
3901 }
3902
3903 /* This is a deviation from RFC3168 since it states that:
3904 * "When the TCP data sender is ready to set the CWR bit after reducing
3905 * the congestion window, it SHOULD set the CWR bit only on the first
3906 * new data packet that it transmits."
3907 * We accept CWR on pure ACKs to be more robust
3908 * with widely-deployed TCP implementations that do this.
3909 */
3910 tcp_ecn_accept_cwr(sk, skb);
3911
3912 /* We passed data and got it acked, remove any soft error
3913 * log. Something worked...
3914 */
3915 WRITE_ONCE(sk->sk_err_soft, 0);
3916 icsk->icsk_probes_out = 0;
3917 tp->rcv_tstamp = tcp_jiffies32;
3918 if (!prior_packets)
3919 goto no_queue;
3920
3921 /* See if we can take anything off of the retransmit queue. */
3922 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3923 &sack_state, flag & FLAG_ECE);
3924
3925 tcp_rack_update_reo_wnd(sk, &rs);
3926
3927 tcp_in_ack_event(sk, flag);
3928
3929 if (tp->tlp_high_seq)
3930 tcp_process_tlp_ack(sk, ack, flag);
3931
3932 if (tcp_ack_is_dubious(sk, flag)) {
3933 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3934 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3935 num_dupack = 1;
3936 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3937 if (!(flag & FLAG_DATA))
3938 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3939 }
3940 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3941 &rexmit);
3942 }
3943
3944 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3945 if (flag & FLAG_SET_XMIT_TIMER)
3946 tcp_set_xmit_timer(sk);
3947
3948 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3949 sk_dst_confirm(sk);
3950
3951 delivered = tcp_newly_delivered(sk, delivered, flag);
3952 lost = tp->lost - lost; /* freshly marked lost */
3953 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3954 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3955 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3956 tcp_xmit_recovery(sk, rexmit);
3957 return 1;
3958
3959 no_queue:
3960 tcp_in_ack_event(sk, flag);
3961 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3962 if (flag & FLAG_DSACKING_ACK) {
3963 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3964 &rexmit);
3965 tcp_newly_delivered(sk, delivered, flag);
3966 }
3967 /* If this ack opens up a zero window, clear backoff. It was
3968 * being used to time the probes, and is probably far higher than
3969 * it needs to be for normal retransmission.
3970 */
3971 tcp_ack_probe(sk);
3972
3973 if (tp->tlp_high_seq)
3974 tcp_process_tlp_ack(sk, ack, flag);
3975 return 1;
3976
3977 old_ack:
3978 /* If data was SACKed, tag it and see if we should send more data.
3979 * If data was DSACKed, see if we can undo a cwnd reduction.
3980 */
3981 if (TCP_SKB_CB(skb)->sacked) {
3982 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3983 &sack_state);
3984 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3985 &rexmit);
3986 tcp_newly_delivered(sk, delivered, flag);
3987 tcp_xmit_recovery(sk, rexmit);
3988 }
3989
3990 return 0;
3991 }
3992
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3993 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3994 bool syn, struct tcp_fastopen_cookie *foc,
3995 bool exp_opt)
3996 {
3997 /* Valid only in SYN or SYN-ACK with an even length. */
3998 if (!foc || !syn || len < 0 || (len & 1))
3999 return;
4000
4001 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4002 len <= TCP_FASTOPEN_COOKIE_MAX)
4003 memcpy(foc->val, cookie, len);
4004 else if (len != 0)
4005 len = -1;
4006 foc->len = len;
4007 foc->exp = exp_opt;
4008 }
4009
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4010 static bool smc_parse_options(const struct tcphdr *th,
4011 struct tcp_options_received *opt_rx,
4012 const unsigned char *ptr,
4013 int opsize)
4014 {
4015 #if IS_ENABLED(CONFIG_SMC)
4016 if (static_branch_unlikely(&tcp_have_smc)) {
4017 if (th->syn && !(opsize & 1) &&
4018 opsize >= TCPOLEN_EXP_SMC_BASE &&
4019 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4020 opt_rx->smc_ok = 1;
4021 return true;
4022 }
4023 }
4024 #endif
4025 return false;
4026 }
4027
4028 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4029 * value on success.
4030 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4031 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4032 {
4033 const unsigned char *ptr = (const unsigned char *)(th + 1);
4034 int length = (th->doff * 4) - sizeof(struct tcphdr);
4035 u16 mss = 0;
4036
4037 while (length > 0) {
4038 int opcode = *ptr++;
4039 int opsize;
4040
4041 switch (opcode) {
4042 case TCPOPT_EOL:
4043 return mss;
4044 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4045 length--;
4046 continue;
4047 default:
4048 if (length < 2)
4049 return mss;
4050 opsize = *ptr++;
4051 if (opsize < 2) /* "silly options" */
4052 return mss;
4053 if (opsize > length)
4054 return mss; /* fail on partial options */
4055 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4056 u16 in_mss = get_unaligned_be16(ptr);
4057
4058 if (in_mss) {
4059 if (user_mss && user_mss < in_mss)
4060 in_mss = user_mss;
4061 mss = in_mss;
4062 }
4063 }
4064 ptr += opsize - 2;
4065 length -= opsize;
4066 }
4067 }
4068 return mss;
4069 }
4070
4071 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4072 * But, this can also be called on packets in the established flow when
4073 * the fast version below fails.
4074 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4075 void tcp_parse_options(const struct net *net,
4076 const struct sk_buff *skb,
4077 struct tcp_options_received *opt_rx, int estab,
4078 struct tcp_fastopen_cookie *foc)
4079 {
4080 const unsigned char *ptr;
4081 const struct tcphdr *th = tcp_hdr(skb);
4082 int length = (th->doff * 4) - sizeof(struct tcphdr);
4083
4084 ptr = (const unsigned char *)(th + 1);
4085 opt_rx->saw_tstamp = 0;
4086 opt_rx->saw_unknown = 0;
4087
4088 while (length > 0) {
4089 int opcode = *ptr++;
4090 int opsize;
4091
4092 switch (opcode) {
4093 case TCPOPT_EOL:
4094 return;
4095 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4096 length--;
4097 continue;
4098 default:
4099 if (length < 2)
4100 return;
4101 opsize = *ptr++;
4102 if (opsize < 2) /* "silly options" */
4103 return;
4104 if (opsize > length)
4105 return; /* don't parse partial options */
4106 switch (opcode) {
4107 case TCPOPT_MSS:
4108 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4109 u16 in_mss = get_unaligned_be16(ptr);
4110 if (in_mss) {
4111 if (opt_rx->user_mss &&
4112 opt_rx->user_mss < in_mss)
4113 in_mss = opt_rx->user_mss;
4114 opt_rx->mss_clamp = in_mss;
4115 }
4116 }
4117 break;
4118 case TCPOPT_WINDOW:
4119 if (opsize == TCPOLEN_WINDOW && th->syn &&
4120 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4121 __u8 snd_wscale = *(__u8 *)ptr;
4122 opt_rx->wscale_ok = 1;
4123 if (snd_wscale > TCP_MAX_WSCALE) {
4124 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4125 __func__,
4126 snd_wscale,
4127 TCP_MAX_WSCALE);
4128 snd_wscale = TCP_MAX_WSCALE;
4129 }
4130 opt_rx->snd_wscale = snd_wscale;
4131 }
4132 break;
4133 case TCPOPT_TIMESTAMP:
4134 if ((opsize == TCPOLEN_TIMESTAMP) &&
4135 ((estab && opt_rx->tstamp_ok) ||
4136 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4137 opt_rx->saw_tstamp = 1;
4138 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4139 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4140 }
4141 break;
4142 case TCPOPT_SACK_PERM:
4143 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4144 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4145 opt_rx->sack_ok = TCP_SACK_SEEN;
4146 tcp_sack_reset(opt_rx);
4147 }
4148 break;
4149
4150 case TCPOPT_SACK:
4151 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4152 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4153 opt_rx->sack_ok) {
4154 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4155 }
4156 break;
4157 #ifdef CONFIG_TCP_MD5SIG
4158 case TCPOPT_MD5SIG:
4159 /* The MD5 Hash has already been
4160 * checked (see tcp_v{4,6}_rcv()).
4161 */
4162 break;
4163 #endif
4164 #ifdef CONFIG_TCP_AO
4165 case TCPOPT_AO:
4166 /* TCP AO has already been checked
4167 * (see tcp_inbound_ao_hash()).
4168 */
4169 break;
4170 #endif
4171 case TCPOPT_FASTOPEN:
4172 tcp_parse_fastopen_option(
4173 opsize - TCPOLEN_FASTOPEN_BASE,
4174 ptr, th->syn, foc, false);
4175 break;
4176
4177 case TCPOPT_EXP:
4178 /* Fast Open option shares code 254 using a
4179 * 16 bits magic number.
4180 */
4181 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4182 get_unaligned_be16(ptr) ==
4183 TCPOPT_FASTOPEN_MAGIC) {
4184 tcp_parse_fastopen_option(opsize -
4185 TCPOLEN_EXP_FASTOPEN_BASE,
4186 ptr + 2, th->syn, foc, true);
4187 break;
4188 }
4189
4190 if (smc_parse_options(th, opt_rx, ptr, opsize))
4191 break;
4192
4193 opt_rx->saw_unknown = 1;
4194 break;
4195
4196 default:
4197 opt_rx->saw_unknown = 1;
4198 }
4199 ptr += opsize-2;
4200 length -= opsize;
4201 }
4202 }
4203 }
4204 EXPORT_SYMBOL(tcp_parse_options);
4205
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4206 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4207 {
4208 const __be32 *ptr = (const __be32 *)(th + 1);
4209
4210 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4211 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4212 tp->rx_opt.saw_tstamp = 1;
4213 ++ptr;
4214 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4215 ++ptr;
4216 if (*ptr)
4217 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4218 else
4219 tp->rx_opt.rcv_tsecr = 0;
4220 return true;
4221 }
4222 return false;
4223 }
4224
4225 /* Fast parse options. This hopes to only see timestamps.
4226 * If it is wrong it falls back on tcp_parse_options().
4227 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4228 static bool tcp_fast_parse_options(const struct net *net,
4229 const struct sk_buff *skb,
4230 const struct tcphdr *th, struct tcp_sock *tp)
4231 {
4232 /* In the spirit of fast parsing, compare doff directly to constant
4233 * values. Because equality is used, short doff can be ignored here.
4234 */
4235 if (th->doff == (sizeof(*th) / 4)) {
4236 tp->rx_opt.saw_tstamp = 0;
4237 return false;
4238 } else if (tp->rx_opt.tstamp_ok &&
4239 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4240 if (tcp_parse_aligned_timestamp(tp, th))
4241 return true;
4242 }
4243
4244 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4245 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4246 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4247
4248 return true;
4249 }
4250
4251 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4252 /*
4253 * Parse Signature options
4254 */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4255 int tcp_do_parse_auth_options(const struct tcphdr *th,
4256 const u8 **md5_hash, const u8 **ao_hash)
4257 {
4258 int length = (th->doff << 2) - sizeof(*th);
4259 const u8 *ptr = (const u8 *)(th + 1);
4260 unsigned int minlen = TCPOLEN_MD5SIG;
4261
4262 if (IS_ENABLED(CONFIG_TCP_AO))
4263 minlen = sizeof(struct tcp_ao_hdr) + 1;
4264
4265 *md5_hash = NULL;
4266 *ao_hash = NULL;
4267
4268 /* If not enough data remaining, we can short cut */
4269 while (length >= minlen) {
4270 int opcode = *ptr++;
4271 int opsize;
4272
4273 switch (opcode) {
4274 case TCPOPT_EOL:
4275 return 0;
4276 case TCPOPT_NOP:
4277 length--;
4278 continue;
4279 default:
4280 opsize = *ptr++;
4281 if (opsize < 2 || opsize > length)
4282 return -EINVAL;
4283 if (opcode == TCPOPT_MD5SIG) {
4284 if (opsize != TCPOLEN_MD5SIG)
4285 return -EINVAL;
4286 if (unlikely(*md5_hash || *ao_hash))
4287 return -EEXIST;
4288 *md5_hash = ptr;
4289 } else if (opcode == TCPOPT_AO) {
4290 if (opsize <= sizeof(struct tcp_ao_hdr))
4291 return -EINVAL;
4292 if (unlikely(*md5_hash || *ao_hash))
4293 return -EEXIST;
4294 *ao_hash = ptr;
4295 }
4296 }
4297 ptr += opsize - 2;
4298 length -= opsize;
4299 }
4300 return 0;
4301 }
4302 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4303 #endif
4304
4305 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4306 *
4307 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4308 * it can pass through stack. So, the following predicate verifies that
4309 * this segment is not used for anything but congestion avoidance or
4310 * fast retransmit. Moreover, we even are able to eliminate most of such
4311 * second order effects, if we apply some small "replay" window (~RTO)
4312 * to timestamp space.
4313 *
4314 * All these measures still do not guarantee that we reject wrapped ACKs
4315 * on networks with high bandwidth, when sequence space is recycled fastly,
4316 * but it guarantees that such events will be very rare and do not affect
4317 * connection seriously. This doesn't look nice, but alas, PAWS is really
4318 * buggy extension.
4319 *
4320 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4321 * states that events when retransmit arrives after original data are rare.
4322 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4323 * the biggest problem on large power networks even with minor reordering.
4324 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4325 * up to bandwidth of 18Gigabit/sec. 8) ]
4326 */
4327
4328 /* Estimates max number of increments of remote peer TSval in
4329 * a replay window (based on our current RTO estimation).
4330 */
tcp_tsval_replay(const struct sock * sk)4331 static u32 tcp_tsval_replay(const struct sock *sk)
4332 {
4333 /* If we use usec TS resolution,
4334 * then expect the remote peer to use the same resolution.
4335 */
4336 if (tcp_sk(sk)->tcp_usec_ts)
4337 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4338
4339 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4340 * We know that some OS (including old linux) can use 1200 Hz.
4341 */
4342 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4343 }
4344
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4345 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4346 const struct sk_buff *skb)
4347 {
4348 const struct tcp_sock *tp = tcp_sk(sk);
4349 const struct tcphdr *th = tcp_hdr(skb);
4350 SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4351 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4352 u32 seq = TCP_SKB_CB(skb)->seq;
4353
4354 /* 1. Is this not a pure ACK ? */
4355 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4356 return reason;
4357
4358 /* 2. Is its sequence not the expected one ? */
4359 if (seq != tp->rcv_nxt)
4360 return before(seq, tp->rcv_nxt) ?
4361 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4362 reason;
4363
4364 /* 3. Is this not a duplicate ACK ? */
4365 if (ack != tp->snd_una)
4366 return reason;
4367
4368 /* 4. Is this updating the window ? */
4369 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4370 tp->rx_opt.snd_wscale))
4371 return reason;
4372
4373 /* 5. Is this not in the replay window ? */
4374 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4375 tcp_tsval_replay(sk))
4376 return reason;
4377
4378 return 0;
4379 }
4380
4381 /* Check segment sequence number for validity.
4382 *
4383 * Segment controls are considered valid, if the segment
4384 * fits to the window after truncation to the window. Acceptability
4385 * of data (and SYN, FIN, of course) is checked separately.
4386 * See tcp_data_queue(), for example.
4387 *
4388 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4389 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4390 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4391 * (borrowed from freebsd)
4392 */
4393
tcp_sequence(const struct sock * sk,u32 seq,u32 end_seq)4394 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4395 u32 seq, u32 end_seq)
4396 {
4397 const struct tcp_sock *tp = tcp_sk(sk);
4398
4399 if (before(end_seq, tp->rcv_wup))
4400 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4401
4402 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4403 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4404 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4405
4406 /* Only accept this packet if receive queue is empty. */
4407 if (skb_queue_len(&sk->sk_receive_queue))
4408 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4409 }
4410
4411 return SKB_NOT_DROPPED_YET;
4412 }
4413
4414
tcp_done_with_error(struct sock * sk,int err)4415 void tcp_done_with_error(struct sock *sk, int err)
4416 {
4417 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4418 WRITE_ONCE(sk->sk_err, err);
4419 smp_wmb();
4420
4421 tcp_write_queue_purge(sk);
4422 tcp_done(sk);
4423
4424 if (!sock_flag(sk, SOCK_DEAD))
4425 sk_error_report(sk);
4426 }
4427 EXPORT_IPV6_MOD(tcp_done_with_error);
4428
4429 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4430 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4431 {
4432 int err;
4433
4434 trace_tcp_receive_reset(sk);
4435
4436 /* mptcp can't tell us to ignore reset pkts,
4437 * so just ignore the return value of mptcp_incoming_options().
4438 */
4439 if (sk_is_mptcp(sk))
4440 mptcp_incoming_options(sk, skb);
4441
4442 /* We want the right error as BSD sees it (and indeed as we do). */
4443 switch (sk->sk_state) {
4444 case TCP_SYN_SENT:
4445 err = ECONNREFUSED;
4446 break;
4447 case TCP_CLOSE_WAIT:
4448 err = EPIPE;
4449 break;
4450 case TCP_CLOSE:
4451 return;
4452 default:
4453 err = ECONNRESET;
4454 }
4455 tcp_done_with_error(sk, err);
4456 }
4457
4458 /*
4459 * Process the FIN bit. This now behaves as it is supposed to work
4460 * and the FIN takes effect when it is validly part of sequence
4461 * space. Not before when we get holes.
4462 *
4463 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4464 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4465 * TIME-WAIT)
4466 *
4467 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4468 * close and we go into CLOSING (and later onto TIME-WAIT)
4469 *
4470 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4471 */
tcp_fin(struct sock * sk)4472 void tcp_fin(struct sock *sk)
4473 {
4474 struct tcp_sock *tp = tcp_sk(sk);
4475
4476 inet_csk_schedule_ack(sk);
4477
4478 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4479 sock_set_flag(sk, SOCK_DONE);
4480
4481 switch (sk->sk_state) {
4482 case TCP_SYN_RECV:
4483 case TCP_ESTABLISHED:
4484 /* Move to CLOSE_WAIT */
4485 tcp_set_state(sk, TCP_CLOSE_WAIT);
4486 inet_csk_enter_pingpong_mode(sk);
4487 break;
4488
4489 case TCP_CLOSE_WAIT:
4490 case TCP_CLOSING:
4491 /* Received a retransmission of the FIN, do
4492 * nothing.
4493 */
4494 break;
4495 case TCP_LAST_ACK:
4496 /* RFC793: Remain in the LAST-ACK state. */
4497 break;
4498
4499 case TCP_FIN_WAIT1:
4500 /* This case occurs when a simultaneous close
4501 * happens, we must ack the received FIN and
4502 * enter the CLOSING state.
4503 */
4504 tcp_send_ack(sk);
4505 tcp_set_state(sk, TCP_CLOSING);
4506 break;
4507 case TCP_FIN_WAIT2:
4508 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4509 tcp_send_ack(sk);
4510 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4511 break;
4512 default:
4513 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4514 * cases we should never reach this piece of code.
4515 */
4516 pr_err("%s: Impossible, sk->sk_state=%d\n",
4517 __func__, sk->sk_state);
4518 break;
4519 }
4520
4521 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4522 * Probably, we should reset in this case. For now drop them.
4523 */
4524 skb_rbtree_purge(&tp->out_of_order_queue);
4525 if (tcp_is_sack(tp))
4526 tcp_sack_reset(&tp->rx_opt);
4527
4528 if (!sock_flag(sk, SOCK_DEAD)) {
4529 sk->sk_state_change(sk);
4530
4531 /* Do not send POLL_HUP for half duplex close. */
4532 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4533 sk->sk_state == TCP_CLOSE)
4534 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4535 else
4536 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4537 }
4538 }
4539
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4540 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4541 u32 end_seq)
4542 {
4543 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4544 if (before(seq, sp->start_seq))
4545 sp->start_seq = seq;
4546 if (after(end_seq, sp->end_seq))
4547 sp->end_seq = end_seq;
4548 return true;
4549 }
4550 return false;
4551 }
4552
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4553 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4554 {
4555 struct tcp_sock *tp = tcp_sk(sk);
4556
4557 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4558 int mib_idx;
4559
4560 if (before(seq, tp->rcv_nxt))
4561 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4562 else
4563 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4564
4565 NET_INC_STATS(sock_net(sk), mib_idx);
4566
4567 tp->rx_opt.dsack = 1;
4568 tp->duplicate_sack[0].start_seq = seq;
4569 tp->duplicate_sack[0].end_seq = end_seq;
4570 }
4571 }
4572
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4573 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4574 {
4575 struct tcp_sock *tp = tcp_sk(sk);
4576
4577 if (!tp->rx_opt.dsack)
4578 tcp_dsack_set(sk, seq, end_seq);
4579 else
4580 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4581 }
4582
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4583 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4584 {
4585 /* When the ACK path fails or drops most ACKs, the sender would
4586 * timeout and spuriously retransmit the same segment repeatedly.
4587 * If it seems our ACKs are not reaching the other side,
4588 * based on receiving a duplicate data segment with new flowlabel
4589 * (suggesting the sender suffered an RTO), and we are not already
4590 * repathing due to our own RTO, then rehash the socket to repath our
4591 * packets.
4592 */
4593 #if IS_ENABLED(CONFIG_IPV6)
4594 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4595 skb->protocol == htons(ETH_P_IPV6) &&
4596 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4597 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4598 sk_rethink_txhash(sk))
4599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4600
4601 /* Save last flowlabel after a spurious retrans. */
4602 tcp_save_lrcv_flowlabel(sk, skb);
4603 #endif
4604 }
4605
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4606 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4607 {
4608 struct tcp_sock *tp = tcp_sk(sk);
4609
4610 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4611 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4612 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4613 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4614
4615 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4616 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4617
4618 tcp_rcv_spurious_retrans(sk, skb);
4619 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4620 end_seq = tp->rcv_nxt;
4621 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4622 }
4623 }
4624
4625 tcp_send_ack(sk);
4626 }
4627
4628 /* These routines update the SACK block as out-of-order packets arrive or
4629 * in-order packets close up the sequence space.
4630 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4631 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4632 {
4633 int this_sack;
4634 struct tcp_sack_block *sp = &tp->selective_acks[0];
4635 struct tcp_sack_block *swalk = sp + 1;
4636
4637 /* See if the recent change to the first SACK eats into
4638 * or hits the sequence space of other SACK blocks, if so coalesce.
4639 */
4640 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4641 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4642 int i;
4643
4644 /* Zap SWALK, by moving every further SACK up by one slot.
4645 * Decrease num_sacks.
4646 */
4647 tp->rx_opt.num_sacks--;
4648 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4649 sp[i] = sp[i + 1];
4650 continue;
4651 }
4652 this_sack++;
4653 swalk++;
4654 }
4655 }
4656
tcp_sack_compress_send_ack(struct sock * sk)4657 void tcp_sack_compress_send_ack(struct sock *sk)
4658 {
4659 struct tcp_sock *tp = tcp_sk(sk);
4660
4661 if (!tp->compressed_ack)
4662 return;
4663
4664 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4665 __sock_put(sk);
4666
4667 /* Since we have to send one ack finally,
4668 * substract one from tp->compressed_ack to keep
4669 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4670 */
4671 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4672 tp->compressed_ack - 1);
4673
4674 tp->compressed_ack = 0;
4675 tcp_send_ack(sk);
4676 }
4677
4678 /* Reasonable amount of sack blocks included in TCP SACK option
4679 * The max is 4, but this becomes 3 if TCP timestamps are there.
4680 * Given that SACK packets might be lost, be conservative and use 2.
4681 */
4682 #define TCP_SACK_BLOCKS_EXPECTED 2
4683
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4684 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4685 {
4686 struct tcp_sock *tp = tcp_sk(sk);
4687 struct tcp_sack_block *sp = &tp->selective_acks[0];
4688 int cur_sacks = tp->rx_opt.num_sacks;
4689 int this_sack;
4690
4691 if (!cur_sacks)
4692 goto new_sack;
4693
4694 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4695 if (tcp_sack_extend(sp, seq, end_seq)) {
4696 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4697 tcp_sack_compress_send_ack(sk);
4698 /* Rotate this_sack to the first one. */
4699 for (; this_sack > 0; this_sack--, sp--)
4700 swap(*sp, *(sp - 1));
4701 if (cur_sacks > 1)
4702 tcp_sack_maybe_coalesce(tp);
4703 return;
4704 }
4705 }
4706
4707 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4708 tcp_sack_compress_send_ack(sk);
4709
4710 /* Could not find an adjacent existing SACK, build a new one,
4711 * put it at the front, and shift everyone else down. We
4712 * always know there is at least one SACK present already here.
4713 *
4714 * If the sack array is full, forget about the last one.
4715 */
4716 if (this_sack >= TCP_NUM_SACKS) {
4717 this_sack--;
4718 tp->rx_opt.num_sacks--;
4719 sp--;
4720 }
4721 for (; this_sack > 0; this_sack--, sp--)
4722 *sp = *(sp - 1);
4723
4724 new_sack:
4725 /* Build the new head SACK, and we're done. */
4726 sp->start_seq = seq;
4727 sp->end_seq = end_seq;
4728 tp->rx_opt.num_sacks++;
4729 }
4730
4731 /* RCV.NXT advances, some SACKs should be eaten. */
4732
tcp_sack_remove(struct tcp_sock * tp)4733 static void tcp_sack_remove(struct tcp_sock *tp)
4734 {
4735 struct tcp_sack_block *sp = &tp->selective_acks[0];
4736 int num_sacks = tp->rx_opt.num_sacks;
4737 int this_sack;
4738
4739 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4740 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4741 tp->rx_opt.num_sacks = 0;
4742 return;
4743 }
4744
4745 for (this_sack = 0; this_sack < num_sacks;) {
4746 /* Check if the start of the sack is covered by RCV.NXT. */
4747 if (!before(tp->rcv_nxt, sp->start_seq)) {
4748 int i;
4749
4750 /* RCV.NXT must cover all the block! */
4751 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4752
4753 /* Zap this SACK, by moving forward any other SACKS. */
4754 for (i = this_sack+1; i < num_sacks; i++)
4755 tp->selective_acks[i-1] = tp->selective_acks[i];
4756 num_sacks--;
4757 continue;
4758 }
4759 this_sack++;
4760 sp++;
4761 }
4762 tp->rx_opt.num_sacks = num_sacks;
4763 }
4764
4765 /**
4766 * tcp_try_coalesce - try to merge skb to prior one
4767 * @sk: socket
4768 * @to: prior buffer
4769 * @from: buffer to add in queue
4770 * @fragstolen: pointer to boolean
4771 *
4772 * Before queueing skb @from after @to, try to merge them
4773 * to reduce overall memory use and queue lengths, if cost is small.
4774 * Packets in ofo or receive queues can stay a long time.
4775 * Better try to coalesce them right now to avoid future collapses.
4776 * Returns true if caller should free @from instead of queueing it
4777 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4778 static bool tcp_try_coalesce(struct sock *sk,
4779 struct sk_buff *to,
4780 struct sk_buff *from,
4781 bool *fragstolen)
4782 {
4783 int delta;
4784
4785 *fragstolen = false;
4786
4787 /* Its possible this segment overlaps with prior segment in queue */
4788 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4789 return false;
4790
4791 if (!tcp_skb_can_collapse_rx(to, from))
4792 return false;
4793
4794 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4795 return false;
4796
4797 atomic_add(delta, &sk->sk_rmem_alloc);
4798 sk_mem_charge(sk, delta);
4799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4800 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4801 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4802 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4803
4804 if (TCP_SKB_CB(from)->has_rxtstamp) {
4805 TCP_SKB_CB(to)->has_rxtstamp = true;
4806 to->tstamp = from->tstamp;
4807 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4808 }
4809
4810 return true;
4811 }
4812
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4813 static bool tcp_ooo_try_coalesce(struct sock *sk,
4814 struct sk_buff *to,
4815 struct sk_buff *from,
4816 bool *fragstolen)
4817 {
4818 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4819
4820 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4821 if (res) {
4822 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4823 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4824
4825 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4826 }
4827 return res;
4828 }
4829
4830 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4831 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4832 {
4833 sk_drops_add(sk, skb);
4834 sk_skb_reason_drop(sk, skb, reason);
4835 }
4836
4837 /* This one checks to see if we can put data from the
4838 * out_of_order queue into the receive_queue.
4839 */
tcp_ofo_queue(struct sock * sk)4840 static void tcp_ofo_queue(struct sock *sk)
4841 {
4842 struct tcp_sock *tp = tcp_sk(sk);
4843 __u32 dsack_high = tp->rcv_nxt;
4844 bool fin, fragstolen, eaten;
4845 struct sk_buff *skb, *tail;
4846 struct rb_node *p;
4847
4848 p = rb_first(&tp->out_of_order_queue);
4849 while (p) {
4850 skb = rb_to_skb(p);
4851 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4852 break;
4853
4854 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4855 __u32 dsack = dsack_high;
4856
4857 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4858 dsack = TCP_SKB_CB(skb)->end_seq;
4859 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4860 }
4861 p = rb_next(p);
4862 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4863
4864 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4865 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4866 continue;
4867 }
4868
4869 tail = skb_peek_tail(&sk->sk_receive_queue);
4870 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4871 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4872 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4873 if (!eaten)
4874 tcp_add_receive_queue(sk, skb);
4875 else
4876 kfree_skb_partial(skb, fragstolen);
4877
4878 if (unlikely(fin)) {
4879 tcp_fin(sk);
4880 /* tcp_fin() purges tp->out_of_order_queue,
4881 * so we must end this loop right now.
4882 */
4883 break;
4884 }
4885 }
4886 }
4887
4888 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4889 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4890
4891 /* Check if this incoming skb can be added to socket receive queues
4892 * while satisfying sk->sk_rcvbuf limit.
4893 */
tcp_can_ingest(const struct sock * sk,const struct sk_buff * skb)4894 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
4895 {
4896 unsigned int new_mem = atomic_read(&sk->sk_rmem_alloc) + skb->truesize;
4897
4898 return new_mem <= sk->sk_rcvbuf;
4899 }
4900
tcp_try_rmem_schedule(struct sock * sk,const struct sk_buff * skb,unsigned int size)4901 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
4902 unsigned int size)
4903 {
4904 if (!tcp_can_ingest(sk, skb) ||
4905 !sk_rmem_schedule(sk, skb, size)) {
4906
4907 if (tcp_prune_queue(sk, skb) < 0)
4908 return -1;
4909
4910 while (!sk_rmem_schedule(sk, skb, size)) {
4911 if (!tcp_prune_ofo_queue(sk, skb))
4912 return -1;
4913 }
4914 }
4915 return 0;
4916 }
4917
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4918 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4919 {
4920 struct tcp_sock *tp = tcp_sk(sk);
4921 struct rb_node **p, *parent;
4922 struct sk_buff *skb1;
4923 u32 seq, end_seq;
4924 bool fragstolen;
4925
4926 tcp_save_lrcv_flowlabel(sk, skb);
4927 tcp_data_ecn_check(sk, skb);
4928
4929 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4931 sk->sk_data_ready(sk);
4932 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4933 return;
4934 }
4935
4936 tcp_measure_rcv_mss(sk, skb);
4937 /* Disable header prediction. */
4938 tp->pred_flags = 0;
4939 inet_csk_schedule_ack(sk);
4940
4941 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4943 seq = TCP_SKB_CB(skb)->seq;
4944 end_seq = TCP_SKB_CB(skb)->end_seq;
4945
4946 p = &tp->out_of_order_queue.rb_node;
4947 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4948 /* Initial out of order segment, build 1 SACK. */
4949 if (tcp_is_sack(tp)) {
4950 tp->rx_opt.num_sacks = 1;
4951 tp->selective_acks[0].start_seq = seq;
4952 tp->selective_acks[0].end_seq = end_seq;
4953 }
4954 rb_link_node(&skb->rbnode, NULL, p);
4955 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4956 tp->ooo_last_skb = skb;
4957 goto end;
4958 }
4959
4960 /* In the typical case, we are adding an skb to the end of the list.
4961 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4962 */
4963 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4964 skb, &fragstolen)) {
4965 coalesce_done:
4966 /* For non sack flows, do not grow window to force DUPACK
4967 * and trigger fast retransmit.
4968 */
4969 if (tcp_is_sack(tp))
4970 tcp_grow_window(sk, skb, true);
4971 kfree_skb_partial(skb, fragstolen);
4972 skb = NULL;
4973 goto add_sack;
4974 }
4975 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4976 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4977 parent = &tp->ooo_last_skb->rbnode;
4978 p = &parent->rb_right;
4979 goto insert;
4980 }
4981
4982 /* Find place to insert this segment. Handle overlaps on the way. */
4983 parent = NULL;
4984 while (*p) {
4985 parent = *p;
4986 skb1 = rb_to_skb(parent);
4987 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4988 p = &parent->rb_left;
4989 continue;
4990 }
4991 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4992 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4993 /* All the bits are present. Drop. */
4994 NET_INC_STATS(sock_net(sk),
4995 LINUX_MIB_TCPOFOMERGE);
4996 tcp_drop_reason(sk, skb,
4997 SKB_DROP_REASON_TCP_OFOMERGE);
4998 skb = NULL;
4999 tcp_dsack_set(sk, seq, end_seq);
5000 goto add_sack;
5001 }
5002 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5003 /* Partial overlap. */
5004 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5005 } else {
5006 /* skb's seq == skb1's seq and skb covers skb1.
5007 * Replace skb1 with skb.
5008 */
5009 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5010 &tp->out_of_order_queue);
5011 tcp_dsack_extend(sk,
5012 TCP_SKB_CB(skb1)->seq,
5013 TCP_SKB_CB(skb1)->end_seq);
5014 NET_INC_STATS(sock_net(sk),
5015 LINUX_MIB_TCPOFOMERGE);
5016 tcp_drop_reason(sk, skb1,
5017 SKB_DROP_REASON_TCP_OFOMERGE);
5018 goto merge_right;
5019 }
5020 } else if (tcp_ooo_try_coalesce(sk, skb1,
5021 skb, &fragstolen)) {
5022 goto coalesce_done;
5023 }
5024 p = &parent->rb_right;
5025 }
5026 insert:
5027 /* Insert segment into RB tree. */
5028 rb_link_node(&skb->rbnode, parent, p);
5029 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5030
5031 merge_right:
5032 /* Remove other segments covered by skb. */
5033 while ((skb1 = skb_rb_next(skb)) != NULL) {
5034 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5035 break;
5036 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5037 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5038 end_seq);
5039 break;
5040 }
5041 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5042 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043 TCP_SKB_CB(skb1)->end_seq);
5044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5045 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5046 }
5047 /* If there is no skb after us, we are the last_skb ! */
5048 if (!skb1)
5049 tp->ooo_last_skb = skb;
5050
5051 add_sack:
5052 if (tcp_is_sack(tp))
5053 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5054 end:
5055 if (skb) {
5056 /* For non sack flows, do not grow window to force DUPACK
5057 * and trigger fast retransmit.
5058 */
5059 if (tcp_is_sack(tp))
5060 tcp_grow_window(sk, skb, false);
5061 skb_condense(skb);
5062 skb_set_owner_r(skb, sk);
5063 }
5064 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5065 if (sk->sk_socket)
5066 tcp_rcvbuf_grow(sk);
5067 }
5068
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5069 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5070 bool *fragstolen)
5071 {
5072 int eaten;
5073 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5074
5075 eaten = (tail &&
5076 tcp_try_coalesce(sk, tail,
5077 skb, fragstolen)) ? 1 : 0;
5078 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5079 if (!eaten) {
5080 tcp_add_receive_queue(sk, skb);
5081 skb_set_owner_r(skb, sk);
5082 }
5083 return eaten;
5084 }
5085
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5086 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5087 {
5088 struct sk_buff *skb;
5089 int err = -ENOMEM;
5090 int data_len = 0;
5091 bool fragstolen;
5092
5093 if (size == 0)
5094 return 0;
5095
5096 if (size > PAGE_SIZE) {
5097 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5098
5099 data_len = npages << PAGE_SHIFT;
5100 size = data_len + (size & ~PAGE_MASK);
5101 }
5102 skb = alloc_skb_with_frags(size - data_len, data_len,
5103 PAGE_ALLOC_COSTLY_ORDER,
5104 &err, sk->sk_allocation);
5105 if (!skb)
5106 goto err;
5107
5108 skb_put(skb, size - data_len);
5109 skb->data_len = data_len;
5110 skb->len = size;
5111
5112 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5114 goto err_free;
5115 }
5116
5117 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5118 if (err)
5119 goto err_free;
5120
5121 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5122 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5123 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5124
5125 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5126 WARN_ON_ONCE(fragstolen); /* should not happen */
5127 __kfree_skb(skb);
5128 }
5129 return size;
5130
5131 err_free:
5132 kfree_skb(skb);
5133 err:
5134 return err;
5135
5136 }
5137
tcp_data_ready(struct sock * sk)5138 void tcp_data_ready(struct sock *sk)
5139 {
5140 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5141 sk->sk_data_ready(sk);
5142 }
5143
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5144 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5145 {
5146 struct tcp_sock *tp = tcp_sk(sk);
5147 enum skb_drop_reason reason;
5148 bool fragstolen;
5149 int eaten;
5150
5151 /* If a subflow has been reset, the packet should not continue
5152 * to be processed, drop the packet.
5153 */
5154 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5155 __kfree_skb(skb);
5156 return;
5157 }
5158
5159 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5160 __kfree_skb(skb);
5161 return;
5162 }
5163 tcp_cleanup_skb(skb);
5164 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5165
5166 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5167 tp->rx_opt.dsack = 0;
5168
5169 /* Queue data for delivery to the user.
5170 * Packets in sequence go to the receive queue.
5171 * Out of sequence packets to the out_of_order_queue.
5172 */
5173 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5174 if (tcp_receive_window(tp) == 0) {
5175 /* Some stacks are known to send bare FIN packets
5176 * in a loop even if we send RWIN 0 in our ACK.
5177 * Accepting this FIN does not hurt memory pressure
5178 * because the FIN flag will simply be merged to the
5179 * receive queue tail skb in most cases.
5180 */
5181 if (!skb->len &&
5182 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5183 goto queue_and_out;
5184
5185 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5186 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5187 goto out_of_window;
5188 }
5189
5190 /* Ok. In sequence. In window. */
5191 queue_and_out:
5192 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5193 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5194 inet_csk(sk)->icsk_ack.pending |=
5195 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5196 inet_csk_schedule_ack(sk);
5197 sk->sk_data_ready(sk);
5198
5199 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5200 reason = SKB_DROP_REASON_PROTO_MEM;
5201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5202 goto drop;
5203 }
5204 sk_forced_mem_schedule(sk, skb->truesize);
5205 }
5206
5207 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5208 if (skb->len)
5209 tcp_event_data_recv(sk, skb);
5210 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5211 tcp_fin(sk);
5212
5213 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5214 tcp_ofo_queue(sk);
5215
5216 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5217 * gap in queue is filled.
5218 */
5219 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5220 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5221 }
5222
5223 if (tp->rx_opt.num_sacks)
5224 tcp_sack_remove(tp);
5225
5226 tcp_fast_path_check(sk);
5227
5228 if (eaten > 0)
5229 kfree_skb_partial(skb, fragstolen);
5230 if (!sock_flag(sk, SOCK_DEAD))
5231 tcp_data_ready(sk);
5232 return;
5233 }
5234
5235 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5236 tcp_rcv_spurious_retrans(sk, skb);
5237 /* A retransmit, 2nd most common case. Force an immediate ack. */
5238 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5239 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5240 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5241
5242 out_of_window:
5243 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5244 inet_csk_schedule_ack(sk);
5245 drop:
5246 tcp_drop_reason(sk, skb, reason);
5247 return;
5248 }
5249
5250 /* Out of window. F.e. zero window probe. */
5251 if (!before(TCP_SKB_CB(skb)->seq,
5252 tp->rcv_nxt + tcp_receive_window(tp))) {
5253 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5254 goto out_of_window;
5255 }
5256
5257 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5258 /* Partial packet, seq < rcv_next < end_seq */
5259 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5260
5261 /* If window is closed, drop tail of packet. But after
5262 * remembering D-SACK for its head made in previous line.
5263 */
5264 if (!tcp_receive_window(tp)) {
5265 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5266 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5267 goto out_of_window;
5268 }
5269 goto queue_and_out;
5270 }
5271
5272 tcp_data_queue_ofo(sk, skb);
5273 }
5274
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5275 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5276 {
5277 if (list)
5278 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5279
5280 return skb_rb_next(skb);
5281 }
5282
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5283 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5284 struct sk_buff_head *list,
5285 struct rb_root *root)
5286 {
5287 struct sk_buff *next = tcp_skb_next(skb, list);
5288
5289 if (list)
5290 __skb_unlink(skb, list);
5291 else
5292 rb_erase(&skb->rbnode, root);
5293
5294 __kfree_skb(skb);
5295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5296
5297 return next;
5298 }
5299
5300 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5301 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5302 {
5303 struct rb_node **p = &root->rb_node;
5304 struct rb_node *parent = NULL;
5305 struct sk_buff *skb1;
5306
5307 while (*p) {
5308 parent = *p;
5309 skb1 = rb_to_skb(parent);
5310 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5311 p = &parent->rb_left;
5312 else
5313 p = &parent->rb_right;
5314 }
5315 rb_link_node(&skb->rbnode, parent, p);
5316 rb_insert_color(&skb->rbnode, root);
5317 }
5318
5319 /* Collapse contiguous sequence of skbs head..tail with
5320 * sequence numbers start..end.
5321 *
5322 * If tail is NULL, this means until the end of the queue.
5323 *
5324 * Segments with FIN/SYN are not collapsed (only because this
5325 * simplifies code)
5326 */
5327 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5328 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5329 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5330 {
5331 struct sk_buff *skb = head, *n;
5332 struct sk_buff_head tmp;
5333 bool end_of_skbs;
5334
5335 /* First, check that queue is collapsible and find
5336 * the point where collapsing can be useful.
5337 */
5338 restart:
5339 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5340 n = tcp_skb_next(skb, list);
5341
5342 if (!skb_frags_readable(skb))
5343 goto skip_this;
5344
5345 /* No new bits? It is possible on ofo queue. */
5346 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5347 skb = tcp_collapse_one(sk, skb, list, root);
5348 if (!skb)
5349 break;
5350 goto restart;
5351 }
5352
5353 /* The first skb to collapse is:
5354 * - not SYN/FIN and
5355 * - bloated or contains data before "start" or
5356 * overlaps to the next one and mptcp allow collapsing.
5357 */
5358 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5359 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5360 before(TCP_SKB_CB(skb)->seq, start))) {
5361 end_of_skbs = false;
5362 break;
5363 }
5364
5365 if (n && n != tail && skb_frags_readable(n) &&
5366 tcp_skb_can_collapse_rx(skb, n) &&
5367 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5368 end_of_skbs = false;
5369 break;
5370 }
5371
5372 skip_this:
5373 /* Decided to skip this, advance start seq. */
5374 start = TCP_SKB_CB(skb)->end_seq;
5375 }
5376 if (end_of_skbs ||
5377 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5378 !skb_frags_readable(skb))
5379 return;
5380
5381 __skb_queue_head_init(&tmp);
5382
5383 while (before(start, end)) {
5384 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5385 struct sk_buff *nskb;
5386
5387 nskb = alloc_skb(copy, GFP_ATOMIC);
5388 if (!nskb)
5389 break;
5390
5391 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5392 skb_copy_decrypted(nskb, skb);
5393 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5394 if (list)
5395 __skb_queue_before(list, skb, nskb);
5396 else
5397 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5398 skb_set_owner_r(nskb, sk);
5399 mptcp_skb_ext_move(nskb, skb);
5400
5401 /* Copy data, releasing collapsed skbs. */
5402 while (copy > 0) {
5403 int offset = start - TCP_SKB_CB(skb)->seq;
5404 int size = TCP_SKB_CB(skb)->end_seq - start;
5405
5406 BUG_ON(offset < 0);
5407 if (size > 0) {
5408 size = min(copy, size);
5409 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5410 BUG();
5411 TCP_SKB_CB(nskb)->end_seq += size;
5412 copy -= size;
5413 start += size;
5414 }
5415 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5416 skb = tcp_collapse_one(sk, skb, list, root);
5417 if (!skb ||
5418 skb == tail ||
5419 !tcp_skb_can_collapse_rx(nskb, skb) ||
5420 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5421 !skb_frags_readable(skb))
5422 goto end;
5423 }
5424 }
5425 }
5426 end:
5427 skb_queue_walk_safe(&tmp, skb, n)
5428 tcp_rbtree_insert(root, skb);
5429 }
5430
5431 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5432 * and tcp_collapse() them until all the queue is collapsed.
5433 */
tcp_collapse_ofo_queue(struct sock * sk)5434 static void tcp_collapse_ofo_queue(struct sock *sk)
5435 {
5436 struct tcp_sock *tp = tcp_sk(sk);
5437 u32 range_truesize, sum_tiny = 0;
5438 struct sk_buff *skb, *head;
5439 u32 start, end;
5440
5441 skb = skb_rb_first(&tp->out_of_order_queue);
5442 new_range:
5443 if (!skb) {
5444 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5445 return;
5446 }
5447 start = TCP_SKB_CB(skb)->seq;
5448 end = TCP_SKB_CB(skb)->end_seq;
5449 range_truesize = skb->truesize;
5450
5451 for (head = skb;;) {
5452 skb = skb_rb_next(skb);
5453
5454 /* Range is terminated when we see a gap or when
5455 * we are at the queue end.
5456 */
5457 if (!skb ||
5458 after(TCP_SKB_CB(skb)->seq, end) ||
5459 before(TCP_SKB_CB(skb)->end_seq, start)) {
5460 /* Do not attempt collapsing tiny skbs */
5461 if (range_truesize != head->truesize ||
5462 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5463 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5464 head, skb, start, end);
5465 } else {
5466 sum_tiny += range_truesize;
5467 if (sum_tiny > sk->sk_rcvbuf >> 3)
5468 return;
5469 }
5470 goto new_range;
5471 }
5472
5473 range_truesize += skb->truesize;
5474 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5475 start = TCP_SKB_CB(skb)->seq;
5476 if (after(TCP_SKB_CB(skb)->end_seq, end))
5477 end = TCP_SKB_CB(skb)->end_seq;
5478 }
5479 }
5480
5481 /*
5482 * Clean the out-of-order queue to make room.
5483 * We drop high sequences packets to :
5484 * 1) Let a chance for holes to be filled.
5485 * This means we do not drop packets from ooo queue if their sequence
5486 * is before incoming packet sequence.
5487 * 2) not add too big latencies if thousands of packets sit there.
5488 * (But if application shrinks SO_RCVBUF, we could still end up
5489 * freeing whole queue here)
5490 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5491 *
5492 * Return true if queue has shrunk.
5493 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5494 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5495 {
5496 struct tcp_sock *tp = tcp_sk(sk);
5497 struct rb_node *node, *prev;
5498 bool pruned = false;
5499 int goal;
5500
5501 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5502 return false;
5503
5504 goal = sk->sk_rcvbuf >> 3;
5505 node = &tp->ooo_last_skb->rbnode;
5506
5507 do {
5508 struct sk_buff *skb = rb_to_skb(node);
5509
5510 /* If incoming skb would land last in ofo queue, stop pruning. */
5511 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5512 break;
5513 pruned = true;
5514 prev = rb_prev(node);
5515 rb_erase(node, &tp->out_of_order_queue);
5516 goal -= skb->truesize;
5517 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5518 tp->ooo_last_skb = rb_to_skb(prev);
5519 if (!prev || goal <= 0) {
5520 if (tcp_can_ingest(sk, in_skb) &&
5521 !tcp_under_memory_pressure(sk))
5522 break;
5523 goal = sk->sk_rcvbuf >> 3;
5524 }
5525 node = prev;
5526 } while (node);
5527
5528 if (pruned) {
5529 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5530 /* Reset SACK state. A conforming SACK implementation will
5531 * do the same at a timeout based retransmit. When a connection
5532 * is in a sad state like this, we care only about integrity
5533 * of the connection not performance.
5534 */
5535 if (tp->rx_opt.sack_ok)
5536 tcp_sack_reset(&tp->rx_opt);
5537 }
5538 return pruned;
5539 }
5540
5541 /* Reduce allocated memory if we can, trying to get
5542 * the socket within its memory limits again.
5543 *
5544 * Return less than zero if we should start dropping frames
5545 * until the socket owning process reads some of the data
5546 * to stabilize the situation.
5547 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5548 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5549 {
5550 struct tcp_sock *tp = tcp_sk(sk);
5551
5552 /* Do nothing if our queues are empty. */
5553 if (!atomic_read(&sk->sk_rmem_alloc))
5554 return -1;
5555
5556 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5557
5558 if (!tcp_can_ingest(sk, in_skb))
5559 tcp_clamp_window(sk);
5560 else if (tcp_under_memory_pressure(sk))
5561 tcp_adjust_rcv_ssthresh(sk);
5562
5563 if (tcp_can_ingest(sk, in_skb))
5564 return 0;
5565
5566 tcp_collapse_ofo_queue(sk);
5567 if (!skb_queue_empty(&sk->sk_receive_queue))
5568 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5569 skb_peek(&sk->sk_receive_queue),
5570 NULL,
5571 tp->copied_seq, tp->rcv_nxt);
5572
5573 if (tcp_can_ingest(sk, in_skb))
5574 return 0;
5575
5576 /* Collapsing did not help, destructive actions follow.
5577 * This must not ever occur. */
5578
5579 tcp_prune_ofo_queue(sk, in_skb);
5580
5581 if (tcp_can_ingest(sk, in_skb))
5582 return 0;
5583
5584 /* If we are really being abused, tell the caller to silently
5585 * drop receive data on the floor. It will get retransmitted
5586 * and hopefully then we'll have sufficient space.
5587 */
5588 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5589
5590 /* Massive buffer overcommit. */
5591 tp->pred_flags = 0;
5592 return -1;
5593 }
5594
tcp_should_expand_sndbuf(struct sock * sk)5595 static bool tcp_should_expand_sndbuf(struct sock *sk)
5596 {
5597 const struct tcp_sock *tp = tcp_sk(sk);
5598
5599 /* If the user specified a specific send buffer setting, do
5600 * not modify it.
5601 */
5602 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5603 return false;
5604
5605 /* If we are under global TCP memory pressure, do not expand. */
5606 if (tcp_under_memory_pressure(sk)) {
5607 int unused_mem = sk_unused_reserved_mem(sk);
5608
5609 /* Adjust sndbuf according to reserved mem. But make sure
5610 * it never goes below SOCK_MIN_SNDBUF.
5611 * See sk_stream_moderate_sndbuf() for more details.
5612 */
5613 if (unused_mem > SOCK_MIN_SNDBUF)
5614 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5615
5616 return false;
5617 }
5618
5619 /* If we are under soft global TCP memory pressure, do not expand. */
5620 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5621 return false;
5622
5623 /* If we filled the congestion window, do not expand. */
5624 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5625 return false;
5626
5627 return true;
5628 }
5629
tcp_new_space(struct sock * sk)5630 static void tcp_new_space(struct sock *sk)
5631 {
5632 struct tcp_sock *tp = tcp_sk(sk);
5633
5634 if (tcp_should_expand_sndbuf(sk)) {
5635 tcp_sndbuf_expand(sk);
5636 tp->snd_cwnd_stamp = tcp_jiffies32;
5637 }
5638
5639 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5640 }
5641
5642 /* Caller made space either from:
5643 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5644 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5645 *
5646 * We might be able to generate EPOLLOUT to the application if:
5647 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5648 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5649 * small enough that tcp_stream_memory_free() decides it
5650 * is time to generate EPOLLOUT.
5651 */
tcp_check_space(struct sock * sk)5652 void tcp_check_space(struct sock *sk)
5653 {
5654 /* pairs with tcp_poll() */
5655 smp_mb();
5656 if (sk->sk_socket &&
5657 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5658 tcp_new_space(sk);
5659 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5660 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5661 }
5662 }
5663
tcp_data_snd_check(struct sock * sk)5664 static inline void tcp_data_snd_check(struct sock *sk)
5665 {
5666 tcp_push_pending_frames(sk);
5667 tcp_check_space(sk);
5668 }
5669
5670 /*
5671 * Check if sending an ack is needed.
5672 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5673 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5674 {
5675 struct tcp_sock *tp = tcp_sk(sk);
5676 unsigned long rtt, delay;
5677
5678 /* More than one full frame received... */
5679 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5680 /* ... and right edge of window advances far enough.
5681 * (tcp_recvmsg() will send ACK otherwise).
5682 * If application uses SO_RCVLOWAT, we want send ack now if
5683 * we have not received enough bytes to satisfy the condition.
5684 */
5685 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5686 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5687 /* We ACK each frame or... */
5688 tcp_in_quickack_mode(sk) ||
5689 /* Protocol state mandates a one-time immediate ACK */
5690 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5691 /* If we are running from __release_sock() in user context,
5692 * Defer the ack until tcp_release_cb().
5693 */
5694 if (sock_owned_by_user_nocheck(sk) &&
5695 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5696 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5697 return;
5698 }
5699 send_now:
5700 tcp_send_ack(sk);
5701 return;
5702 }
5703
5704 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5705 tcp_send_delayed_ack(sk);
5706 return;
5707 }
5708
5709 if (!tcp_is_sack(tp) ||
5710 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5711 goto send_now;
5712
5713 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5714 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5715 tp->dup_ack_counter = 0;
5716 }
5717 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5718 tp->dup_ack_counter++;
5719 goto send_now;
5720 }
5721 tp->compressed_ack++;
5722 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5723 return;
5724
5725 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5726
5727 rtt = tp->rcv_rtt_est.rtt_us;
5728 if (tp->srtt_us && tp->srtt_us < rtt)
5729 rtt = tp->srtt_us;
5730
5731 delay = min_t(unsigned long,
5732 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5733 rtt * (NSEC_PER_USEC >> 3)/20);
5734 sock_hold(sk);
5735 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5736 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5737 HRTIMER_MODE_REL_PINNED_SOFT);
5738 }
5739
tcp_ack_snd_check(struct sock * sk)5740 static inline void tcp_ack_snd_check(struct sock *sk)
5741 {
5742 if (!inet_csk_ack_scheduled(sk)) {
5743 /* We sent a data segment already. */
5744 return;
5745 }
5746 __tcp_ack_snd_check(sk, 1);
5747 }
5748
5749 /*
5750 * This routine is only called when we have urgent data
5751 * signaled. Its the 'slow' part of tcp_urg. It could be
5752 * moved inline now as tcp_urg is only called from one
5753 * place. We handle URGent data wrong. We have to - as
5754 * BSD still doesn't use the correction from RFC961.
5755 * For 1003.1g we should support a new option TCP_STDURG to permit
5756 * either form (or just set the sysctl tcp_stdurg).
5757 */
5758
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5759 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5760 {
5761 struct tcp_sock *tp = tcp_sk(sk);
5762 u32 ptr = ntohs(th->urg_ptr);
5763
5764 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5765 ptr--;
5766 ptr += ntohl(th->seq);
5767
5768 /* Ignore urgent data that we've already seen and read. */
5769 if (after(tp->copied_seq, ptr))
5770 return;
5771
5772 /* Do not replay urg ptr.
5773 *
5774 * NOTE: interesting situation not covered by specs.
5775 * Misbehaving sender may send urg ptr, pointing to segment,
5776 * which we already have in ofo queue. We are not able to fetch
5777 * such data and will stay in TCP_URG_NOTYET until will be eaten
5778 * by recvmsg(). Seems, we are not obliged to handle such wicked
5779 * situations. But it is worth to think about possibility of some
5780 * DoSes using some hypothetical application level deadlock.
5781 */
5782 if (before(ptr, tp->rcv_nxt))
5783 return;
5784
5785 /* Do we already have a newer (or duplicate) urgent pointer? */
5786 if (tp->urg_data && !after(ptr, tp->urg_seq))
5787 return;
5788
5789 /* Tell the world about our new urgent pointer. */
5790 sk_send_sigurg(sk);
5791
5792 /* We may be adding urgent data when the last byte read was
5793 * urgent. To do this requires some care. We cannot just ignore
5794 * tp->copied_seq since we would read the last urgent byte again
5795 * as data, nor can we alter copied_seq until this data arrives
5796 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5797 *
5798 * NOTE. Double Dutch. Rendering to plain English: author of comment
5799 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5800 * and expect that both A and B disappear from stream. This is _wrong_.
5801 * Though this happens in BSD with high probability, this is occasional.
5802 * Any application relying on this is buggy. Note also, that fix "works"
5803 * only in this artificial test. Insert some normal data between A and B and we will
5804 * decline of BSD again. Verdict: it is better to remove to trap
5805 * buggy users.
5806 */
5807 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5808 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5809 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5810 tp->copied_seq++;
5811 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5812 __skb_unlink(skb, &sk->sk_receive_queue);
5813 __kfree_skb(skb);
5814 }
5815 }
5816
5817 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5818 WRITE_ONCE(tp->urg_seq, ptr);
5819
5820 /* Disable header prediction. */
5821 tp->pred_flags = 0;
5822 }
5823
5824 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5825 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5826 {
5827 struct tcp_sock *tp = tcp_sk(sk);
5828
5829 /* Check if we get a new urgent pointer - normally not. */
5830 if (unlikely(th->urg))
5831 tcp_check_urg(sk, th);
5832
5833 /* Do we wait for any urgent data? - normally not... */
5834 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5835 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5836 th->syn;
5837
5838 /* Is the urgent pointer pointing into this packet? */
5839 if (ptr < skb->len) {
5840 u8 tmp;
5841 if (skb_copy_bits(skb, ptr, &tmp, 1))
5842 BUG();
5843 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5844 if (!sock_flag(sk, SOCK_DEAD))
5845 sk->sk_data_ready(sk);
5846 }
5847 }
5848 }
5849
5850 /* Accept RST for rcv_nxt - 1 after a FIN.
5851 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5852 * FIN is sent followed by a RST packet. The RST is sent with the same
5853 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5854 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5855 * ACKs on the closed socket. In addition middleboxes can drop either the
5856 * challenge ACK or a subsequent RST.
5857 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5858 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5859 {
5860 const struct tcp_sock *tp = tcp_sk(sk);
5861
5862 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5863 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5864 TCPF_CLOSING));
5865 }
5866
5867 /* Does PAWS and seqno based validation of an incoming segment, flags will
5868 * play significant role here.
5869 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5870 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5871 const struct tcphdr *th, int syn_inerr)
5872 {
5873 struct tcp_sock *tp = tcp_sk(sk);
5874 SKB_DR(reason);
5875
5876 /* RFC1323: H1. Apply PAWS check first. */
5877 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5878 !tp->rx_opt.saw_tstamp ||
5879 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5880 goto step1;
5881
5882 reason = tcp_disordered_ack_check(sk, skb);
5883 if (!reason)
5884 goto step1;
5885 /* Reset is accepted even if it did not pass PAWS. */
5886 if (th->rst)
5887 goto step1;
5888 if (unlikely(th->syn))
5889 goto syn_challenge;
5890
5891 /* Old ACK are common, increment PAWS_OLD_ACK
5892 * and do not send a dupack.
5893 */
5894 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5895 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5896 goto discard;
5897 }
5898 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5899 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5900 LINUX_MIB_TCPACKSKIPPEDPAWS,
5901 &tp->last_oow_ack_time))
5902 tcp_send_dupack(sk, skb);
5903 goto discard;
5904
5905 step1:
5906 /* Step 1: check sequence number */
5907 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5908 if (reason) {
5909 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5910 * (RST) segments are validated by checking their SEQ-fields."
5911 * And page 69: "If an incoming segment is not acceptable,
5912 * an acknowledgment should be sent in reply (unless the RST
5913 * bit is set, if so drop the segment and return)".
5914 */
5915 if (!th->rst) {
5916 if (th->syn)
5917 goto syn_challenge;
5918
5919 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
5920 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
5921 NET_INC_STATS(sock_net(sk),
5922 LINUX_MIB_BEYOND_WINDOW);
5923 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5924 LINUX_MIB_TCPACKSKIPPEDSEQ,
5925 &tp->last_oow_ack_time))
5926 tcp_send_dupack(sk, skb);
5927 } else if (tcp_reset_check(sk, skb)) {
5928 goto reset;
5929 }
5930 goto discard;
5931 }
5932
5933 /* Step 2: check RST bit */
5934 if (th->rst) {
5935 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5936 * FIN and SACK too if available):
5937 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5938 * the right-most SACK block,
5939 * then
5940 * RESET the connection
5941 * else
5942 * Send a challenge ACK
5943 */
5944 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5945 tcp_reset_check(sk, skb))
5946 goto reset;
5947
5948 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5949 struct tcp_sack_block *sp = &tp->selective_acks[0];
5950 int max_sack = sp[0].end_seq;
5951 int this_sack;
5952
5953 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5954 ++this_sack) {
5955 max_sack = after(sp[this_sack].end_seq,
5956 max_sack) ?
5957 sp[this_sack].end_seq : max_sack;
5958 }
5959
5960 if (TCP_SKB_CB(skb)->seq == max_sack)
5961 goto reset;
5962 }
5963
5964 /* Disable TFO if RST is out-of-order
5965 * and no data has been received
5966 * for current active TFO socket
5967 */
5968 if (tp->syn_fastopen && !tp->data_segs_in &&
5969 sk->sk_state == TCP_ESTABLISHED)
5970 tcp_fastopen_active_disable(sk);
5971 tcp_send_challenge_ack(sk);
5972 SKB_DR_SET(reason, TCP_RESET);
5973 goto discard;
5974 }
5975
5976 /* step 3: check security and precedence [ignored] */
5977
5978 /* step 4: Check for a SYN
5979 * RFC 5961 4.2 : Send a challenge ack
5980 */
5981 if (th->syn) {
5982 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5983 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5984 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5985 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5986 goto pass;
5987 syn_challenge:
5988 if (syn_inerr)
5989 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5990 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5991 tcp_send_challenge_ack(sk);
5992 SKB_DR_SET(reason, TCP_INVALID_SYN);
5993 goto discard;
5994 }
5995
5996 pass:
5997 bpf_skops_parse_hdr(sk, skb);
5998
5999 return true;
6000
6001 discard:
6002 tcp_drop_reason(sk, skb, reason);
6003 return false;
6004
6005 reset:
6006 tcp_reset(sk, skb);
6007 __kfree_skb(skb);
6008 return false;
6009 }
6010
6011 /*
6012 * TCP receive function for the ESTABLISHED state.
6013 *
6014 * It is split into a fast path and a slow path. The fast path is
6015 * disabled when:
6016 * - A zero window was announced from us - zero window probing
6017 * is only handled properly in the slow path.
6018 * - Out of order segments arrived.
6019 * - Urgent data is expected.
6020 * - There is no buffer space left
6021 * - Unexpected TCP flags/window values/header lengths are received
6022 * (detected by checking the TCP header against pred_flags)
6023 * - Data is sent in both directions. Fast path only supports pure senders
6024 * or pure receivers (this means either the sequence number or the ack
6025 * value must stay constant)
6026 * - Unexpected TCP option.
6027 *
6028 * When these conditions are not satisfied it drops into a standard
6029 * receive procedure patterned after RFC793 to handle all cases.
6030 * The first three cases are guaranteed by proper pred_flags setting,
6031 * the rest is checked inline. Fast processing is turned on in
6032 * tcp_data_queue when everything is OK.
6033 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6034 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6035 {
6036 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6037 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6038 struct tcp_sock *tp = tcp_sk(sk);
6039 unsigned int len = skb->len;
6040
6041 /* TCP congestion window tracking */
6042 trace_tcp_probe(sk, skb);
6043
6044 tcp_mstamp_refresh(tp);
6045 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6046 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6047 /*
6048 * Header prediction.
6049 * The code loosely follows the one in the famous
6050 * "30 instruction TCP receive" Van Jacobson mail.
6051 *
6052 * Van's trick is to deposit buffers into socket queue
6053 * on a device interrupt, to call tcp_recv function
6054 * on the receive process context and checksum and copy
6055 * the buffer to user space. smart...
6056 *
6057 * Our current scheme is not silly either but we take the
6058 * extra cost of the net_bh soft interrupt processing...
6059 * We do checksum and copy also but from device to kernel.
6060 */
6061
6062 tp->rx_opt.saw_tstamp = 0;
6063
6064 /* pred_flags is 0xS?10 << 16 + snd_wnd
6065 * if header_prediction is to be made
6066 * 'S' will always be tp->tcp_header_len >> 2
6067 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6068 * turn it off (when there are holes in the receive
6069 * space for instance)
6070 * PSH flag is ignored.
6071 */
6072
6073 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6074 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6075 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6076 int tcp_header_len = tp->tcp_header_len;
6077 s32 delta = 0;
6078 int flag = 0;
6079
6080 /* Timestamp header prediction: tcp_header_len
6081 * is automatically equal to th->doff*4 due to pred_flags
6082 * match.
6083 */
6084
6085 /* Check timestamp */
6086 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6087 /* No? Slow path! */
6088 if (!tcp_parse_aligned_timestamp(tp, th))
6089 goto slow_path;
6090
6091 delta = tp->rx_opt.rcv_tsval -
6092 tp->rx_opt.ts_recent;
6093 /* If PAWS failed, check it more carefully in slow path */
6094 if (delta < 0)
6095 goto slow_path;
6096
6097 /* DO NOT update ts_recent here, if checksum fails
6098 * and timestamp was corrupted part, it will result
6099 * in a hung connection since we will drop all
6100 * future packets due to the PAWS test.
6101 */
6102 }
6103
6104 if (len <= tcp_header_len) {
6105 /* Bulk data transfer: sender */
6106 if (len == tcp_header_len) {
6107 /* Predicted packet is in window by definition.
6108 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6109 * Hence, check seq<=rcv_wup reduces to:
6110 */
6111 if (tcp_header_len ==
6112 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6113 tp->rcv_nxt == tp->rcv_wup)
6114 flag |= __tcp_replace_ts_recent(tp,
6115 delta);
6116
6117 /* We know that such packets are checksummed
6118 * on entry.
6119 */
6120 tcp_ack(sk, skb, flag);
6121 __kfree_skb(skb);
6122 tcp_data_snd_check(sk);
6123 /* When receiving pure ack in fast path, update
6124 * last ts ecr directly instead of calling
6125 * tcp_rcv_rtt_measure_ts()
6126 */
6127 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6128 return;
6129 } else { /* Header too small */
6130 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6131 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6132 goto discard;
6133 }
6134 } else {
6135 int eaten = 0;
6136 bool fragstolen = false;
6137
6138 if (tcp_checksum_complete(skb))
6139 goto csum_error;
6140
6141 if (after(TCP_SKB_CB(skb)->end_seq,
6142 tp->rcv_nxt + tcp_receive_window(tp)))
6143 goto validate;
6144
6145 if ((int)skb->truesize > sk->sk_forward_alloc)
6146 goto step5;
6147
6148 /* Predicted packet is in window by definition.
6149 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6150 * Hence, check seq<=rcv_wup reduces to:
6151 */
6152 if (tcp_header_len ==
6153 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6154 tp->rcv_nxt == tp->rcv_wup)
6155 flag |= __tcp_replace_ts_recent(tp,
6156 delta);
6157
6158 tcp_rcv_rtt_measure_ts(sk, skb);
6159
6160 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6161
6162 /* Bulk data transfer: receiver */
6163 tcp_cleanup_skb(skb);
6164 __skb_pull(skb, tcp_header_len);
6165 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6166
6167 tcp_event_data_recv(sk, skb);
6168
6169 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6170 /* Well, only one small jumplet in fast path... */
6171 tcp_ack(sk, skb, flag | FLAG_DATA);
6172 tcp_data_snd_check(sk);
6173 if (!inet_csk_ack_scheduled(sk))
6174 goto no_ack;
6175 } else {
6176 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6177 }
6178
6179 __tcp_ack_snd_check(sk, 0);
6180 no_ack:
6181 if (eaten)
6182 kfree_skb_partial(skb, fragstolen);
6183 tcp_data_ready(sk);
6184 return;
6185 }
6186 }
6187
6188 slow_path:
6189 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6190 goto csum_error;
6191
6192 if (!th->ack && !th->rst && !th->syn) {
6193 reason = SKB_DROP_REASON_TCP_FLAGS;
6194 goto discard;
6195 }
6196
6197 /*
6198 * Standard slow path.
6199 */
6200 validate:
6201 if (!tcp_validate_incoming(sk, skb, th, 1))
6202 return;
6203
6204 step5:
6205 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6206 if ((int)reason < 0) {
6207 reason = -reason;
6208 goto discard;
6209 }
6210 tcp_rcv_rtt_measure_ts(sk, skb);
6211
6212 /* Process urgent data. */
6213 tcp_urg(sk, skb, th);
6214
6215 /* step 7: process the segment text */
6216 tcp_data_queue(sk, skb);
6217
6218 tcp_data_snd_check(sk);
6219 tcp_ack_snd_check(sk);
6220 return;
6221
6222 csum_error:
6223 reason = SKB_DROP_REASON_TCP_CSUM;
6224 trace_tcp_bad_csum(skb);
6225 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6226 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6227
6228 discard:
6229 tcp_drop_reason(sk, skb, reason);
6230 }
6231 EXPORT_IPV6_MOD(tcp_rcv_established);
6232
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6233 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6234 {
6235 struct inet_connection_sock *icsk = inet_csk(sk);
6236 struct tcp_sock *tp = tcp_sk(sk);
6237
6238 tcp_mtup_init(sk);
6239 icsk->icsk_af_ops->rebuild_header(sk);
6240 tcp_init_metrics(sk);
6241
6242 /* Initialize the congestion window to start the transfer.
6243 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6244 * retransmitted. In light of RFC6298 more aggressive 1sec
6245 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6246 * retransmission has occurred.
6247 */
6248 if (tp->total_retrans > 1 && tp->undo_marker)
6249 tcp_snd_cwnd_set(tp, 1);
6250 else
6251 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6252 tp->snd_cwnd_stamp = tcp_jiffies32;
6253
6254 bpf_skops_established(sk, bpf_op, skb);
6255 /* Initialize congestion control unless BPF initialized it already: */
6256 if (!icsk->icsk_ca_initialized)
6257 tcp_init_congestion_control(sk);
6258 tcp_init_buffer_space(sk);
6259 }
6260
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6261 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6262 {
6263 struct tcp_sock *tp = tcp_sk(sk);
6264 struct inet_connection_sock *icsk = inet_csk(sk);
6265
6266 tcp_ao_finish_connect(sk, skb);
6267 tcp_set_state(sk, TCP_ESTABLISHED);
6268 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6269
6270 if (skb) {
6271 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6272 security_inet_conn_established(sk, skb);
6273 sk_mark_napi_id(sk, skb);
6274 }
6275
6276 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6277
6278 /* Prevent spurious tcp_cwnd_restart() on first data
6279 * packet.
6280 */
6281 tp->lsndtime = tcp_jiffies32;
6282
6283 if (sock_flag(sk, SOCK_KEEPOPEN))
6284 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6285
6286 if (!tp->rx_opt.snd_wscale)
6287 __tcp_fast_path_on(tp, tp->snd_wnd);
6288 else
6289 tp->pred_flags = 0;
6290 }
6291
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6292 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6293 struct tcp_fastopen_cookie *cookie)
6294 {
6295 struct tcp_sock *tp = tcp_sk(sk);
6296 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6297 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6298 bool syn_drop = false;
6299
6300 if (mss == tp->rx_opt.user_mss) {
6301 struct tcp_options_received opt;
6302
6303 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6304 tcp_clear_options(&opt);
6305 opt.user_mss = opt.mss_clamp = 0;
6306 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6307 mss = opt.mss_clamp;
6308 }
6309
6310 if (!tp->syn_fastopen) {
6311 /* Ignore an unsolicited cookie */
6312 cookie->len = -1;
6313 } else if (tp->total_retrans) {
6314 /* SYN timed out and the SYN-ACK neither has a cookie nor
6315 * acknowledges data. Presumably the remote received only
6316 * the retransmitted (regular) SYNs: either the original
6317 * SYN-data or the corresponding SYN-ACK was dropped.
6318 */
6319 syn_drop = (cookie->len < 0 && data);
6320 } else if (cookie->len < 0 && !tp->syn_data) {
6321 /* We requested a cookie but didn't get it. If we did not use
6322 * the (old) exp opt format then try so next time (try_exp=1).
6323 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6324 */
6325 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6326 }
6327
6328 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6329
6330 if (data) { /* Retransmit unacked data in SYN */
6331 if (tp->total_retrans)
6332 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6333 else
6334 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6335 skb_rbtree_walk_from(data)
6336 tcp_mark_skb_lost(sk, data);
6337 tcp_non_congestion_loss_retransmit(sk);
6338 NET_INC_STATS(sock_net(sk),
6339 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6340 return true;
6341 }
6342 tp->syn_data_acked = tp->syn_data;
6343 if (tp->syn_data_acked) {
6344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6345 /* SYN-data is counted as two separate packets in tcp_ack() */
6346 if (tp->delivered > 1)
6347 --tp->delivered;
6348 }
6349
6350 tcp_fastopen_add_skb(sk, synack);
6351
6352 return false;
6353 }
6354
smc_check_reset_syn(struct tcp_sock * tp)6355 static void smc_check_reset_syn(struct tcp_sock *tp)
6356 {
6357 #if IS_ENABLED(CONFIG_SMC)
6358 if (static_branch_unlikely(&tcp_have_smc)) {
6359 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6360 tp->syn_smc = 0;
6361 }
6362 #endif
6363 }
6364
tcp_try_undo_spurious_syn(struct sock * sk)6365 static void tcp_try_undo_spurious_syn(struct sock *sk)
6366 {
6367 struct tcp_sock *tp = tcp_sk(sk);
6368 u32 syn_stamp;
6369
6370 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6371 * spurious if the ACK's timestamp option echo value matches the
6372 * original SYN timestamp.
6373 */
6374 syn_stamp = tp->retrans_stamp;
6375 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6376 syn_stamp == tp->rx_opt.rcv_tsecr)
6377 tp->undo_marker = 0;
6378 }
6379
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6380 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6381 const struct tcphdr *th)
6382 {
6383 struct inet_connection_sock *icsk = inet_csk(sk);
6384 struct tcp_sock *tp = tcp_sk(sk);
6385 struct tcp_fastopen_cookie foc = { .len = -1 };
6386 int saved_clamp = tp->rx_opt.mss_clamp;
6387 bool fastopen_fail;
6388 SKB_DR(reason);
6389
6390 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6391 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6392 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6393
6394 if (th->ack) {
6395 /* rfc793:
6396 * "If the state is SYN-SENT then
6397 * first check the ACK bit
6398 * If the ACK bit is set
6399 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6400 * a reset (unless the RST bit is set, if so drop
6401 * the segment and return)"
6402 */
6403 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6404 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6405 /* Previous FIN/ACK or RST/ACK might be ignored. */
6406 if (icsk->icsk_retransmits == 0)
6407 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6408 TCP_TIMEOUT_MIN, false);
6409 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6410 goto reset_and_undo;
6411 }
6412
6413 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6414 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6415 tcp_time_stamp_ts(tp))) {
6416 NET_INC_STATS(sock_net(sk),
6417 LINUX_MIB_PAWSACTIVEREJECTED);
6418 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6419 goto reset_and_undo;
6420 }
6421
6422 /* Now ACK is acceptable.
6423 *
6424 * "If the RST bit is set
6425 * If the ACK was acceptable then signal the user "error:
6426 * connection reset", drop the segment, enter CLOSED state,
6427 * delete TCB, and return."
6428 */
6429
6430 if (th->rst) {
6431 tcp_reset(sk, skb);
6432 consume:
6433 __kfree_skb(skb);
6434 return 0;
6435 }
6436
6437 /* rfc793:
6438 * "fifth, if neither of the SYN or RST bits is set then
6439 * drop the segment and return."
6440 *
6441 * See note below!
6442 * --ANK(990513)
6443 */
6444 if (!th->syn) {
6445 SKB_DR_SET(reason, TCP_FLAGS);
6446 goto discard_and_undo;
6447 }
6448 /* rfc793:
6449 * "If the SYN bit is on ...
6450 * are acceptable then ...
6451 * (our SYN has been ACKed), change the connection
6452 * state to ESTABLISHED..."
6453 */
6454
6455 tcp_ecn_rcv_synack(tp, th);
6456
6457 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6458 tcp_try_undo_spurious_syn(sk);
6459 tcp_ack(sk, skb, FLAG_SLOWPATH);
6460
6461 /* Ok.. it's good. Set up sequence numbers and
6462 * move to established.
6463 */
6464 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6465 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6466
6467 /* RFC1323: The window in SYN & SYN/ACK segments is
6468 * never scaled.
6469 */
6470 tp->snd_wnd = ntohs(th->window);
6471
6472 if (!tp->rx_opt.wscale_ok) {
6473 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6474 WRITE_ONCE(tp->window_clamp,
6475 min(tp->window_clamp, 65535U));
6476 }
6477
6478 if (tp->rx_opt.saw_tstamp) {
6479 tp->rx_opt.tstamp_ok = 1;
6480 tp->tcp_header_len =
6481 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6482 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6483 tcp_store_ts_recent(tp);
6484 } else {
6485 tp->tcp_header_len = sizeof(struct tcphdr);
6486 }
6487
6488 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6489 tcp_initialize_rcv_mss(sk);
6490
6491 /* Remember, tcp_poll() does not lock socket!
6492 * Change state from SYN-SENT only after copied_seq
6493 * is initialized. */
6494 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6495
6496 smc_check_reset_syn(tp);
6497
6498 smp_mb();
6499
6500 tcp_finish_connect(sk, skb);
6501
6502 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6503 tcp_rcv_fastopen_synack(sk, skb, &foc);
6504
6505 if (!sock_flag(sk, SOCK_DEAD)) {
6506 sk->sk_state_change(sk);
6507 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6508 }
6509 if (fastopen_fail)
6510 return -1;
6511 if (sk->sk_write_pending ||
6512 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6513 inet_csk_in_pingpong_mode(sk)) {
6514 /* Save one ACK. Data will be ready after
6515 * several ticks, if write_pending is set.
6516 *
6517 * It may be deleted, but with this feature tcpdumps
6518 * look so _wonderfully_ clever, that I was not able
6519 * to stand against the temptation 8) --ANK
6520 */
6521 inet_csk_schedule_ack(sk);
6522 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6523 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6524 TCP_DELACK_MAX, false);
6525 goto consume;
6526 }
6527 tcp_send_ack(sk);
6528 return -1;
6529 }
6530
6531 /* No ACK in the segment */
6532
6533 if (th->rst) {
6534 /* rfc793:
6535 * "If the RST bit is set
6536 *
6537 * Otherwise (no ACK) drop the segment and return."
6538 */
6539 SKB_DR_SET(reason, TCP_RESET);
6540 goto discard_and_undo;
6541 }
6542
6543 /* PAWS check. */
6544 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6545 tcp_paws_reject(&tp->rx_opt, 0)) {
6546 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6547 goto discard_and_undo;
6548 }
6549 if (th->syn) {
6550 /* We see SYN without ACK. It is attempt of
6551 * simultaneous connect with crossed SYNs.
6552 * Particularly, it can be connect to self.
6553 */
6554 #ifdef CONFIG_TCP_AO
6555 struct tcp_ao_info *ao;
6556
6557 ao = rcu_dereference_protected(tp->ao_info,
6558 lockdep_sock_is_held(sk));
6559 if (ao) {
6560 WRITE_ONCE(ao->risn, th->seq);
6561 ao->rcv_sne = 0;
6562 }
6563 #endif
6564 tcp_set_state(sk, TCP_SYN_RECV);
6565
6566 if (tp->rx_opt.saw_tstamp) {
6567 tp->rx_opt.tstamp_ok = 1;
6568 tcp_store_ts_recent(tp);
6569 tp->tcp_header_len =
6570 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6571 } else {
6572 tp->tcp_header_len = sizeof(struct tcphdr);
6573 }
6574
6575 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6576 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6577 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6578
6579 /* RFC1323: The window in SYN & SYN/ACK segments is
6580 * never scaled.
6581 */
6582 tp->snd_wnd = ntohs(th->window);
6583 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6584 tp->max_window = tp->snd_wnd;
6585
6586 tcp_ecn_rcv_syn(tp, th);
6587
6588 tcp_mtup_init(sk);
6589 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6590 tcp_initialize_rcv_mss(sk);
6591
6592 tcp_send_synack(sk);
6593 #if 0
6594 /* Note, we could accept data and URG from this segment.
6595 * There are no obstacles to make this (except that we must
6596 * either change tcp_recvmsg() to prevent it from returning data
6597 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6598 *
6599 * However, if we ignore data in ACKless segments sometimes,
6600 * we have no reasons to accept it sometimes.
6601 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6602 * is not flawless. So, discard packet for sanity.
6603 * Uncomment this return to process the data.
6604 */
6605 return -1;
6606 #else
6607 goto consume;
6608 #endif
6609 }
6610 /* "fifth, if neither of the SYN or RST bits is set then
6611 * drop the segment and return."
6612 */
6613
6614 discard_and_undo:
6615 tcp_clear_options(&tp->rx_opt);
6616 tp->rx_opt.mss_clamp = saved_clamp;
6617 tcp_drop_reason(sk, skb, reason);
6618 return 0;
6619
6620 reset_and_undo:
6621 tcp_clear_options(&tp->rx_opt);
6622 tp->rx_opt.mss_clamp = saved_clamp;
6623 /* we can reuse/return @reason to its caller to handle the exception */
6624 return reason;
6625 }
6626
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6627 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6628 {
6629 struct tcp_sock *tp = tcp_sk(sk);
6630 struct request_sock *req;
6631
6632 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6633 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6634 */
6635 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6636 tcp_try_undo_recovery(sk);
6637
6638 tcp_update_rto_time(tp);
6639 inet_csk(sk)->icsk_retransmits = 0;
6640 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6641 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6642 * need to zero retrans_stamp here to prevent spurious
6643 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6644 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6645 * set entering CA_Recovery, for correct retransmits_timed_out() and
6646 * undo behavior.
6647 */
6648 tcp_retrans_stamp_cleanup(sk);
6649
6650 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6651 * we no longer need req so release it.
6652 */
6653 req = rcu_dereference_protected(tp->fastopen_rsk,
6654 lockdep_sock_is_held(sk));
6655 reqsk_fastopen_remove(sk, req, false);
6656
6657 /* Re-arm the timer because data may have been sent out.
6658 * This is similar to the regular data transmission case
6659 * when new data has just been ack'ed.
6660 *
6661 * (TFO) - we could try to be more aggressive and
6662 * retransmitting any data sooner based on when they
6663 * are sent out.
6664 */
6665 tcp_rearm_rto(sk);
6666 }
6667
6668 /*
6669 * This function implements the receiving procedure of RFC 793 for
6670 * all states except ESTABLISHED and TIME_WAIT.
6671 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6672 * address independent.
6673 */
6674
6675 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6676 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6677 {
6678 struct tcp_sock *tp = tcp_sk(sk);
6679 struct inet_connection_sock *icsk = inet_csk(sk);
6680 const struct tcphdr *th = tcp_hdr(skb);
6681 struct request_sock *req;
6682 int queued = 0;
6683 SKB_DR(reason);
6684
6685 switch (sk->sk_state) {
6686 case TCP_CLOSE:
6687 SKB_DR_SET(reason, TCP_CLOSE);
6688 goto discard;
6689
6690 case TCP_LISTEN:
6691 if (th->ack)
6692 return SKB_DROP_REASON_TCP_FLAGS;
6693
6694 if (th->rst) {
6695 SKB_DR_SET(reason, TCP_RESET);
6696 goto discard;
6697 }
6698 if (th->syn) {
6699 if (th->fin) {
6700 SKB_DR_SET(reason, TCP_FLAGS);
6701 goto discard;
6702 }
6703 /* It is possible that we process SYN packets from backlog,
6704 * so we need to make sure to disable BH and RCU right there.
6705 */
6706 rcu_read_lock();
6707 local_bh_disable();
6708 icsk->icsk_af_ops->conn_request(sk, skb);
6709 local_bh_enable();
6710 rcu_read_unlock();
6711
6712 consume_skb(skb);
6713 return 0;
6714 }
6715 SKB_DR_SET(reason, TCP_FLAGS);
6716 goto discard;
6717
6718 case TCP_SYN_SENT:
6719 tp->rx_opt.saw_tstamp = 0;
6720 tcp_mstamp_refresh(tp);
6721 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6722 if (queued >= 0)
6723 return queued;
6724
6725 /* Do step6 onward by hand. */
6726 tcp_urg(sk, skb, th);
6727 __kfree_skb(skb);
6728 tcp_data_snd_check(sk);
6729 return 0;
6730 }
6731
6732 tcp_mstamp_refresh(tp);
6733 tp->rx_opt.saw_tstamp = 0;
6734 req = rcu_dereference_protected(tp->fastopen_rsk,
6735 lockdep_sock_is_held(sk));
6736 if (req) {
6737 bool req_stolen;
6738
6739 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6740 sk->sk_state != TCP_FIN_WAIT1);
6741
6742 SKB_DR_SET(reason, TCP_FASTOPEN);
6743 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6744 goto discard;
6745 }
6746
6747 if (!th->ack && !th->rst && !th->syn) {
6748 SKB_DR_SET(reason, TCP_FLAGS);
6749 goto discard;
6750 }
6751 if (!tcp_validate_incoming(sk, skb, th, 0))
6752 return 0;
6753
6754 /* step 5: check the ACK field */
6755 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6756 FLAG_UPDATE_TS_RECENT |
6757 FLAG_NO_CHALLENGE_ACK);
6758
6759 if ((int)reason <= 0) {
6760 if (sk->sk_state == TCP_SYN_RECV) {
6761 /* send one RST */
6762 if (!reason)
6763 return SKB_DROP_REASON_TCP_OLD_ACK;
6764 return -reason;
6765 }
6766 /* accept old ack during closing */
6767 if ((int)reason < 0) {
6768 tcp_send_challenge_ack(sk);
6769 reason = -reason;
6770 goto discard;
6771 }
6772 }
6773 SKB_DR_SET(reason, NOT_SPECIFIED);
6774 switch (sk->sk_state) {
6775 case TCP_SYN_RECV:
6776 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6777 if (!tp->srtt_us)
6778 tcp_synack_rtt_meas(sk, req);
6779
6780 if (tp->rx_opt.tstamp_ok)
6781 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6782
6783 if (req) {
6784 tcp_rcv_synrecv_state_fastopen(sk);
6785 } else {
6786 tcp_try_undo_spurious_syn(sk);
6787 tp->retrans_stamp = 0;
6788 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6789 skb);
6790 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6791 }
6792 tcp_ao_established(sk);
6793 smp_mb();
6794 tcp_set_state(sk, TCP_ESTABLISHED);
6795 sk->sk_state_change(sk);
6796
6797 /* Note, that this wakeup is only for marginal crossed SYN case.
6798 * Passively open sockets are not waked up, because
6799 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6800 */
6801 if (sk->sk_socket)
6802 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6803
6804 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6805 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6806 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6807
6808 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6809 tcp_update_pacing_rate(sk);
6810
6811 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6812 tp->lsndtime = tcp_jiffies32;
6813
6814 tcp_initialize_rcv_mss(sk);
6815 tcp_fast_path_on(tp);
6816 if (sk->sk_shutdown & SEND_SHUTDOWN)
6817 tcp_shutdown(sk, SEND_SHUTDOWN);
6818 break;
6819
6820 case TCP_FIN_WAIT1: {
6821 int tmo;
6822
6823 if (req)
6824 tcp_rcv_synrecv_state_fastopen(sk);
6825
6826 if (tp->snd_una != tp->write_seq)
6827 break;
6828
6829 tcp_set_state(sk, TCP_FIN_WAIT2);
6830 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6831
6832 sk_dst_confirm(sk);
6833
6834 if (!sock_flag(sk, SOCK_DEAD)) {
6835 /* Wake up lingering close() */
6836 sk->sk_state_change(sk);
6837 break;
6838 }
6839
6840 if (READ_ONCE(tp->linger2) < 0) {
6841 tcp_done(sk);
6842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6843 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6844 }
6845 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6846 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6847 /* Receive out of order FIN after close() */
6848 if (tp->syn_fastopen && th->fin)
6849 tcp_fastopen_active_disable(sk);
6850 tcp_done(sk);
6851 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6852 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6853 }
6854
6855 tmo = tcp_fin_time(sk);
6856 if (tmo > TCP_TIMEWAIT_LEN) {
6857 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6858 } else if (th->fin || sock_owned_by_user(sk)) {
6859 /* Bad case. We could lose such FIN otherwise.
6860 * It is not a big problem, but it looks confusing
6861 * and not so rare event. We still can lose it now,
6862 * if it spins in bh_lock_sock(), but it is really
6863 * marginal case.
6864 */
6865 tcp_reset_keepalive_timer(sk, tmo);
6866 } else {
6867 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6868 goto consume;
6869 }
6870 break;
6871 }
6872
6873 case TCP_CLOSING:
6874 if (tp->snd_una == tp->write_seq) {
6875 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6876 goto consume;
6877 }
6878 break;
6879
6880 case TCP_LAST_ACK:
6881 if (tp->snd_una == tp->write_seq) {
6882 tcp_update_metrics(sk);
6883 tcp_done(sk);
6884 goto consume;
6885 }
6886 break;
6887 }
6888
6889 /* step 6: check the URG bit */
6890 tcp_urg(sk, skb, th);
6891
6892 /* step 7: process the segment text */
6893 switch (sk->sk_state) {
6894 case TCP_CLOSE_WAIT:
6895 case TCP_CLOSING:
6896 case TCP_LAST_ACK:
6897 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6898 /* If a subflow has been reset, the packet should not
6899 * continue to be processed, drop the packet.
6900 */
6901 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6902 goto discard;
6903 break;
6904 }
6905 fallthrough;
6906 case TCP_FIN_WAIT1:
6907 case TCP_FIN_WAIT2:
6908 /* RFC 793 says to queue data in these states,
6909 * RFC 1122 says we MUST send a reset.
6910 * BSD 4.4 also does reset.
6911 */
6912 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6913 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6914 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6915 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6916 tcp_reset(sk, skb);
6917 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6918 }
6919 }
6920 fallthrough;
6921 case TCP_ESTABLISHED:
6922 tcp_data_queue(sk, skb);
6923 queued = 1;
6924 break;
6925 }
6926
6927 /* tcp_data could move socket to TIME-WAIT */
6928 if (sk->sk_state != TCP_CLOSE) {
6929 tcp_data_snd_check(sk);
6930 tcp_ack_snd_check(sk);
6931 }
6932
6933 if (!queued) {
6934 discard:
6935 tcp_drop_reason(sk, skb, reason);
6936 }
6937 return 0;
6938
6939 consume:
6940 __kfree_skb(skb);
6941 return 0;
6942 }
6943 EXPORT_IPV6_MOD(tcp_rcv_state_process);
6944
pr_drop_req(struct request_sock * req,__u16 port,int family)6945 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6946 {
6947 struct inet_request_sock *ireq = inet_rsk(req);
6948
6949 if (family == AF_INET)
6950 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6951 &ireq->ir_rmt_addr, port);
6952 #if IS_ENABLED(CONFIG_IPV6)
6953 else if (family == AF_INET6)
6954 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6955 &ireq->ir_v6_rmt_addr, port);
6956 #endif
6957 }
6958
6959 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6960 *
6961 * If we receive a SYN packet with these bits set, it means a
6962 * network is playing bad games with TOS bits. In order to
6963 * avoid possible false congestion notifications, we disable
6964 * TCP ECN negotiation.
6965 *
6966 * Exception: tcp_ca wants ECN. This is required for DCTCP
6967 * congestion control: Linux DCTCP asserts ECT on all packets,
6968 * including SYN, which is most optimal solution; however,
6969 * others, such as FreeBSD do not.
6970 *
6971 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6972 * set, indicating the use of a future TCP extension (such as AccECN). See
6973 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6974 * extensions.
6975 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6976 static void tcp_ecn_create_request(struct request_sock *req,
6977 const struct sk_buff *skb,
6978 const struct sock *listen_sk,
6979 const struct dst_entry *dst)
6980 {
6981 const struct tcphdr *th = tcp_hdr(skb);
6982 const struct net *net = sock_net(listen_sk);
6983 bool th_ecn = th->ece && th->cwr;
6984 bool ect, ecn_ok;
6985 u32 ecn_ok_dst;
6986
6987 if (!th_ecn)
6988 return;
6989
6990 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6991 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6992 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6993
6994 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6995 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6996 tcp_bpf_ca_needs_ecn((struct sock *)req))
6997 inet_rsk(req)->ecn_ok = 1;
6998 }
6999
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7000 static void tcp_openreq_init(struct request_sock *req,
7001 const struct tcp_options_received *rx_opt,
7002 struct sk_buff *skb, const struct sock *sk)
7003 {
7004 struct inet_request_sock *ireq = inet_rsk(req);
7005
7006 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7007 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7008 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7009 tcp_rsk(req)->snt_synack = 0;
7010 tcp_rsk(req)->snt_tsval_first = 0;
7011 tcp_rsk(req)->last_oow_ack_time = 0;
7012 req->mss = rx_opt->mss_clamp;
7013 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7014 ireq->tstamp_ok = rx_opt->tstamp_ok;
7015 ireq->sack_ok = rx_opt->sack_ok;
7016 ireq->snd_wscale = rx_opt->snd_wscale;
7017 ireq->wscale_ok = rx_opt->wscale_ok;
7018 ireq->acked = 0;
7019 ireq->ecn_ok = 0;
7020 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7021 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7022 ireq->ir_mark = inet_request_mark(sk, skb);
7023 #if IS_ENABLED(CONFIG_SMC)
7024 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7025 tcp_sk(sk)->smc_hs_congested(sk));
7026 #endif
7027 }
7028
7029 /*
7030 * Return true if a syncookie should be sent
7031 */
tcp_syn_flood_action(struct sock * sk,const char * proto)7032 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7033 {
7034 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7035 const char *msg = "Dropping request";
7036 struct net *net = sock_net(sk);
7037 bool want_cookie = false;
7038 u8 syncookies;
7039
7040 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7041
7042 #ifdef CONFIG_SYN_COOKIES
7043 if (syncookies) {
7044 msg = "Sending cookies";
7045 want_cookie = true;
7046 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7047 } else
7048 #endif
7049 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7050
7051 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7052 xchg(&queue->synflood_warned, 1) == 0) {
7053 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7054 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7055 proto, inet6_rcv_saddr(sk),
7056 sk->sk_num, msg);
7057 } else {
7058 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7059 proto, &sk->sk_rcv_saddr,
7060 sk->sk_num, msg);
7061 }
7062 }
7063
7064 return want_cookie;
7065 }
7066
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7067 static void tcp_reqsk_record_syn(const struct sock *sk,
7068 struct request_sock *req,
7069 const struct sk_buff *skb)
7070 {
7071 if (tcp_sk(sk)->save_syn) {
7072 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7073 struct saved_syn *saved_syn;
7074 u32 mac_hdrlen;
7075 void *base;
7076
7077 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7078 base = skb_mac_header(skb);
7079 mac_hdrlen = skb_mac_header_len(skb);
7080 len += mac_hdrlen;
7081 } else {
7082 base = skb_network_header(skb);
7083 mac_hdrlen = 0;
7084 }
7085
7086 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7087 GFP_ATOMIC);
7088 if (saved_syn) {
7089 saved_syn->mac_hdrlen = mac_hdrlen;
7090 saved_syn->network_hdrlen = skb_network_header_len(skb);
7091 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7092 memcpy(saved_syn->data, base, len);
7093 req->saved_syn = saved_syn;
7094 }
7095 }
7096 }
7097
7098 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7099 * used for SYN cookie generation.
7100 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7101 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7102 const struct tcp_request_sock_ops *af_ops,
7103 struct sock *sk, struct tcphdr *th)
7104 {
7105 struct tcp_sock *tp = tcp_sk(sk);
7106 u16 mss;
7107
7108 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7109 !inet_csk_reqsk_queue_is_full(sk))
7110 return 0;
7111
7112 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7113 return 0;
7114
7115 if (sk_acceptq_is_full(sk)) {
7116 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7117 return 0;
7118 }
7119
7120 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7121 if (!mss)
7122 mss = af_ops->mss_clamp;
7123
7124 return mss;
7125 }
7126 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7127
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7128 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7129 const struct tcp_request_sock_ops *af_ops,
7130 struct sock *sk, struct sk_buff *skb)
7131 {
7132 struct tcp_fastopen_cookie foc = { .len = -1 };
7133 struct tcp_options_received tmp_opt;
7134 struct tcp_sock *tp = tcp_sk(sk);
7135 struct net *net = sock_net(sk);
7136 struct sock *fastopen_sk = NULL;
7137 struct request_sock *req;
7138 bool want_cookie = false;
7139 struct dst_entry *dst;
7140 struct flowi fl;
7141 u8 syncookies;
7142 u32 isn;
7143
7144 #ifdef CONFIG_TCP_AO
7145 const struct tcp_ao_hdr *aoh;
7146 #endif
7147
7148 isn = __this_cpu_read(tcp_tw_isn);
7149 if (isn) {
7150 /* TW buckets are converted to open requests without
7151 * limitations, they conserve resources and peer is
7152 * evidently real one.
7153 */
7154 __this_cpu_write(tcp_tw_isn, 0);
7155 } else {
7156 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7157
7158 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7159 want_cookie = tcp_syn_flood_action(sk,
7160 rsk_ops->slab_name);
7161 if (!want_cookie)
7162 goto drop;
7163 }
7164 }
7165
7166 if (sk_acceptq_is_full(sk)) {
7167 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7168 goto drop;
7169 }
7170
7171 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7172 if (!req)
7173 goto drop;
7174
7175 req->syncookie = want_cookie;
7176 tcp_rsk(req)->af_specific = af_ops;
7177 tcp_rsk(req)->ts_off = 0;
7178 tcp_rsk(req)->req_usec_ts = false;
7179 #if IS_ENABLED(CONFIG_MPTCP)
7180 tcp_rsk(req)->is_mptcp = 0;
7181 #endif
7182
7183 tcp_clear_options(&tmp_opt);
7184 tmp_opt.mss_clamp = af_ops->mss_clamp;
7185 tmp_opt.user_mss = tp->rx_opt.user_mss;
7186 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7187 want_cookie ? NULL : &foc);
7188
7189 if (want_cookie && !tmp_opt.saw_tstamp)
7190 tcp_clear_options(&tmp_opt);
7191
7192 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7193 tmp_opt.smc_ok = 0;
7194
7195 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7196 tcp_openreq_init(req, &tmp_opt, skb, sk);
7197 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7198
7199 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7200 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7201
7202 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7203 if (!dst)
7204 goto drop_and_free;
7205
7206 if (tmp_opt.tstamp_ok) {
7207 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7208 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7209 }
7210 if (!want_cookie && !isn) {
7211 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7212
7213 /* Kill the following clause, if you dislike this way. */
7214 if (!syncookies &&
7215 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7216 (max_syn_backlog >> 2)) &&
7217 !tcp_peer_is_proven(req, dst)) {
7218 /* Without syncookies last quarter of
7219 * backlog is filled with destinations,
7220 * proven to be alive.
7221 * It means that we continue to communicate
7222 * to destinations, already remembered
7223 * to the moment of synflood.
7224 */
7225 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7226 rsk_ops->family);
7227 goto drop_and_release;
7228 }
7229
7230 isn = af_ops->init_seq(skb);
7231 }
7232
7233 tcp_ecn_create_request(req, skb, sk, dst);
7234
7235 if (want_cookie) {
7236 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7237 if (!tmp_opt.tstamp_ok)
7238 inet_rsk(req)->ecn_ok = 0;
7239 }
7240
7241 #ifdef CONFIG_TCP_AO
7242 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7243 goto drop_and_release; /* Invalid TCP options */
7244 if (aoh) {
7245 tcp_rsk(req)->used_tcp_ao = true;
7246 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7247 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7248
7249 } else {
7250 tcp_rsk(req)->used_tcp_ao = false;
7251 }
7252 #endif
7253 tcp_rsk(req)->snt_isn = isn;
7254 tcp_rsk(req)->txhash = net_tx_rndhash();
7255 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7256 tcp_openreq_init_rwin(req, sk, dst);
7257 sk_rx_queue_set(req_to_sk(req), skb);
7258 if (!want_cookie) {
7259 tcp_reqsk_record_syn(sk, req, skb);
7260 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7261 }
7262 if (fastopen_sk) {
7263 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7264 &foc, TCP_SYNACK_FASTOPEN, skb);
7265 /* Add the child socket directly into the accept queue */
7266 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7267 reqsk_fastopen_remove(fastopen_sk, req, false);
7268 bh_unlock_sock(fastopen_sk);
7269 sock_put(fastopen_sk);
7270 goto drop_and_free;
7271 }
7272 sk->sk_data_ready(sk);
7273 bh_unlock_sock(fastopen_sk);
7274 sock_put(fastopen_sk);
7275 } else {
7276 tcp_rsk(req)->tfo_listener = false;
7277 if (!want_cookie) {
7278 req->timeout = tcp_timeout_init((struct sock *)req);
7279 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7280 req->timeout))) {
7281 reqsk_free(req);
7282 dst_release(dst);
7283 return 0;
7284 }
7285
7286 }
7287 af_ops->send_synack(sk, dst, &fl, req, &foc,
7288 !want_cookie ? TCP_SYNACK_NORMAL :
7289 TCP_SYNACK_COOKIE,
7290 skb);
7291 if (want_cookie) {
7292 reqsk_free(req);
7293 return 0;
7294 }
7295 }
7296 reqsk_put(req);
7297 return 0;
7298
7299 drop_and_release:
7300 dst_release(dst);
7301 drop_and_free:
7302 __reqsk_free(req);
7303 drop:
7304 tcp_listendrop(sk);
7305 return 0;
7306 }
7307 EXPORT_IPV6_MOD(tcp_conn_request);
7308