xref: /linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 3f90942473d25b3743a95b41af2a24a3fc8f9b79)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 #include "regd.h"
13 #include "sar.h"
14 
15 struct phy_cfg_pair {
16 	u32 addr;
17 	u32 data;
18 };
19 
20 union phy_table_tile {
21 	struct {
22 		struct rtw_phy_cond cond;
23 		struct rtw_phy_cond2 cond2;
24 	} __packed;
25 	struct phy_cfg_pair cfg;
26 };
27 
28 static const u32 db_invert_table[12][8] = {
29 	{10,		13,		16,		20,
30 	 25,		32,		40,		50},
31 	{64,		80,		101,		128,
32 	 160,		201,		256,		318},
33 	{401,		505,		635,		800,
34 	 1007,		1268,		1596,		2010},
35 	{316,		398,		501,		631,
36 	 794,		1000,		1259,		1585},
37 	{1995,		2512,		3162,		3981,
38 	 5012,		6310,		7943,		10000},
39 	{12589,		15849,		19953,		25119,
40 	 31623,		39811,		50119,		63098},
41 	{79433,		100000,		125893,		158489,
42 	 199526,	251189,		316228,		398107},
43 	{501187,	630957,		794328,		1000000,
44 	 1258925,	1584893,	1995262,	2511886},
45 	{3162278,	3981072,	5011872,	6309573,
46 	 7943282,	1000000,	12589254,	15848932},
47 	{19952623,	25118864,	31622777,	39810717,
48 	 50118723,	63095734,	79432823,	100000000},
49 	{125892541,	158489319,	199526232,	251188643,
50 	 316227766,	398107171,	501187234,	630957345},
51 	{794328235,	1000000000,	1258925412,	1584893192,
52 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
53 };
54 
55 const u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
56 
57 const u8 rtw_ofdm_rates[] = {
58 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
59 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
60 	DESC_RATE48M, DESC_RATE54M
61 };
62 
63 const u8 rtw_ht_1s_rates[] = {
64 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
65 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
66 	DESC_RATEMCS6, DESC_RATEMCS7
67 };
68 
69 const u8 rtw_ht_2s_rates[] = {
70 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
71 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
72 	DESC_RATEMCS14, DESC_RATEMCS15
73 };
74 
75 const u8 rtw_vht_1s_rates[] = {
76 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
77 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
78 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
79 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
80 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
81 };
82 
83 const u8 rtw_vht_2s_rates[] = {
84 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
85 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
86 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
87 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
88 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
89 };
90 
91 const u8 rtw_ht_3s_rates[] = {
92 	DESC_RATEMCS16, DESC_RATEMCS17, DESC_RATEMCS18,
93 	DESC_RATEMCS19, DESC_RATEMCS20, DESC_RATEMCS21,
94 	DESC_RATEMCS22, DESC_RATEMCS23
95 };
96 
97 const u8 rtw_ht_4s_rates[] = {
98 	DESC_RATEMCS24, DESC_RATEMCS25, DESC_RATEMCS26,
99 	DESC_RATEMCS27, DESC_RATEMCS28, DESC_RATEMCS29,
100 	DESC_RATEMCS30, DESC_RATEMCS31
101 };
102 
103 const u8 rtw_vht_3s_rates[] = {
104 	DESC_RATEVHT3SS_MCS0, DESC_RATEVHT3SS_MCS1,
105 	DESC_RATEVHT3SS_MCS2, DESC_RATEVHT3SS_MCS3,
106 	DESC_RATEVHT3SS_MCS4, DESC_RATEVHT3SS_MCS5,
107 	DESC_RATEVHT3SS_MCS6, DESC_RATEVHT3SS_MCS7,
108 	DESC_RATEVHT3SS_MCS8, DESC_RATEVHT3SS_MCS9
109 };
110 
111 const u8 rtw_vht_4s_rates[] = {
112 	DESC_RATEVHT4SS_MCS0, DESC_RATEVHT4SS_MCS1,
113 	DESC_RATEVHT4SS_MCS2, DESC_RATEVHT4SS_MCS3,
114 	DESC_RATEVHT4SS_MCS4, DESC_RATEVHT4SS_MCS5,
115 	DESC_RATEVHT4SS_MCS6, DESC_RATEVHT4SS_MCS7,
116 	DESC_RATEVHT4SS_MCS8, DESC_RATEVHT4SS_MCS9
117 };
118 
119 const u8 * const rtw_rate_section[RTW_RATE_SECTION_NUM] = {
120 	rtw_cck_rates, rtw_ofdm_rates,
121 	rtw_ht_1s_rates, rtw_ht_2s_rates,
122 	rtw_vht_1s_rates, rtw_vht_2s_rates,
123 	rtw_ht_3s_rates, rtw_ht_4s_rates,
124 	rtw_vht_3s_rates, rtw_vht_4s_rates
125 };
126 EXPORT_SYMBOL(rtw_rate_section);
127 
128 const u8 rtw_rate_size[RTW_RATE_SECTION_NUM] = {
129 	ARRAY_SIZE(rtw_cck_rates),
130 	ARRAY_SIZE(rtw_ofdm_rates),
131 	ARRAY_SIZE(rtw_ht_1s_rates),
132 	ARRAY_SIZE(rtw_ht_2s_rates),
133 	ARRAY_SIZE(rtw_vht_1s_rates),
134 	ARRAY_SIZE(rtw_vht_2s_rates),
135 	ARRAY_SIZE(rtw_ht_3s_rates),
136 	ARRAY_SIZE(rtw_ht_4s_rates),
137 	ARRAY_SIZE(rtw_vht_3s_rates),
138 	ARRAY_SIZE(rtw_vht_4s_rates)
139 };
140 EXPORT_SYMBOL(rtw_rate_size);
141 
142 enum rtw_phy_band_type {
143 	PHY_BAND_2G	= 0,
144 	PHY_BAND_5G	= 1,
145 };
146 
147 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
148 {
149 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
150 	u8 i, j;
151 
152 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
153 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
154 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
155 	}
156 
157 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
158 }
159 
160 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
161 {
162 	const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
163 
164 	rtw_write32_mask(rtwdev,
165 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
166 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
167 			 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
168 	rtw_write32_mask(rtwdev,
169 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
170 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
171 			 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
172 }
173 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
174 
175 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
176 {
177 	const struct rtw_chip_info *chip = rtwdev->chip;
178 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
179 
180 	/* turn off in debugfs for debug usage */
181 	if (!rtw_edcca_enabled) {
182 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
183 		rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
184 		return;
185 	}
186 
187 	switch (rtwdev->regd.dfs_region) {
188 	case NL80211_DFS_ETSI:
189 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
190 		dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
191 		break;
192 	case NL80211_DFS_JP:
193 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
194 		dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
195 		break;
196 	default:
197 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
198 		break;
199 	}
200 }
201 
202 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
203 {
204 	const struct rtw_chip_info *chip = rtwdev->chip;
205 
206 	rtw_phy_adaptivity_set_mode(rtwdev);
207 	if (chip->ops->adaptivity_init)
208 		chip->ops->adaptivity_init(rtwdev);
209 }
210 
211 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
212 {
213 	if (rtwdev->chip->ops->adaptivity)
214 		rtwdev->chip->ops->adaptivity(rtwdev);
215 }
216 
217 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
218 {
219 	const struct rtw_chip_info *chip = rtwdev->chip;
220 
221 	if (chip->ops->cfo_init)
222 		chip->ops->cfo_init(rtwdev);
223 }
224 
225 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
226 {
227 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
228 
229 	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
230 	path_div->path_a_cnt = 0;
231 	path_div->path_a_sum = 0;
232 	path_div->path_b_cnt = 0;
233 	path_div->path_b_sum = 0;
234 }
235 
236 void rtw_phy_init(struct rtw_dev *rtwdev)
237 {
238 	const struct rtw_chip_info *chip = rtwdev->chip;
239 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
240 	u32 addr, mask;
241 
242 	dm_info->fa_history[3] = 0;
243 	dm_info->fa_history[2] = 0;
244 	dm_info->fa_history[1] = 0;
245 	dm_info->fa_history[0] = 0;
246 	dm_info->igi_bitmap = 0;
247 	dm_info->igi_history[3] = 0;
248 	dm_info->igi_history[2] = 0;
249 	dm_info->igi_history[1] = 0;
250 
251 	addr = chip->dig[0].addr;
252 	mask = chip->dig[0].mask;
253 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
254 	rtw_phy_cck_pd_init(rtwdev);
255 
256 	dm_info->iqk.done = false;
257 	rtw_phy_adaptivity_init(rtwdev);
258 	rtw_phy_cfo_init(rtwdev);
259 	rtw_phy_tx_path_div_init(rtwdev);
260 }
261 EXPORT_SYMBOL(rtw_phy_init);
262 
263 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
264 {
265 	const struct rtw_chip_info *chip = rtwdev->chip;
266 	struct rtw_hal *hal = &rtwdev->hal;
267 	u32 addr, mask;
268 	u8 path;
269 
270 	if (chip->dig_cck) {
271 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
272 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
273 	}
274 
275 	for (path = 0; path < hal->rf_path_num; path++) {
276 		addr = chip->dig[path].addr;
277 		mask = chip->dig[path].mask;
278 		rtw_write32_mask(rtwdev, addr, mask, igi);
279 	}
280 }
281 
282 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
283 {
284 	const struct rtw_chip_info *chip = rtwdev->chip;
285 
286 	chip->ops->false_alarm_statistics(rtwdev);
287 }
288 
289 #define RA_FLOOR_TABLE_SIZE	7
290 #define RA_FLOOR_UP_GAP		3
291 
292 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
293 {
294 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
295 	u8 new_level = 0;
296 	int i;
297 
298 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
299 		if (i >= old_level)
300 			table[i] += RA_FLOOR_UP_GAP;
301 
302 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
303 		if (rssi < table[i]) {
304 			new_level = i;
305 			break;
306 		}
307 	}
308 
309 	return new_level;
310 }
311 
312 struct rtw_phy_stat_iter_data {
313 	struct rtw_dev *rtwdev;
314 	u8 min_rssi;
315 };
316 
317 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
318 {
319 	struct rtw_phy_stat_iter_data *iter_data = data;
320 	struct rtw_dev *rtwdev = iter_data->rtwdev;
321 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
322 	u8 rssi;
323 
324 	rssi = ewma_rssi_read(&si->avg_rssi);
325 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
326 
327 	rtw_fw_send_rssi_info(rtwdev, si);
328 
329 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
330 }
331 
332 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
333 {
334 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
335 	struct rtw_phy_stat_iter_data data = {};
336 
337 	data.rtwdev = rtwdev;
338 	data.min_rssi = U8_MAX;
339 	rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
340 
341 	dm_info->pre_min_rssi = dm_info->min_rssi;
342 	dm_info->min_rssi = data.min_rssi;
343 }
344 
345 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
346 {
347 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
348 
349 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
350 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
351 }
352 
353 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
354 {
355 	rtw_phy_stat_rssi(rtwdev);
356 	rtw_phy_stat_false_alarm(rtwdev);
357 	rtw_phy_stat_rate_cnt(rtwdev);
358 }
359 
360 #define DIG_PERF_FA_TH_LOW			250
361 #define DIG_PERF_FA_TH_HIGH			500
362 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
363 #define DIG_PERF_MAX				0x5a
364 #define DIG_PERF_MID				0x40
365 #define DIG_CVRG_FA_TH_LOW			2000
366 #define DIG_CVRG_FA_TH_HIGH			4000
367 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
368 #define DIG_CVRG_MAX				0x2a
369 #define DIG_CVRG_MID				0x26
370 #define DIG_CVRG_MIN				0x1c
371 #define DIG_RSSI_GAIN_OFFSET			15
372 
373 void rtw_phy_dig_set_max_coverage(struct rtw_dev *rtwdev)
374 {
375 	/* Lower values result in greater coverage. */
376 	rtw_dbg(rtwdev, RTW_DBG_PHY, "Setting IGI=%#x for max coverage\n",
377 		DIG_CVRG_MIN);
378 
379 	rtw_phy_dig_write(rtwdev, DIG_CVRG_MIN);
380 }
381 
382 void rtw_phy_dig_reset(struct rtw_dev *rtwdev)
383 {
384 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
385 	u8 last_igi;
386 
387 	last_igi = dm_info->igi_history[0];
388 	rtw_dbg(rtwdev, RTW_DBG_PHY, "Resetting IGI=%#x\n", last_igi);
389 
390 	rtw_phy_dig_write(rtwdev, last_igi);
391 }
392 
393 static bool
394 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
395 {
396 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
397 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
398 	u16 *fa_history;
399 	u8 *igi_history;
400 	u8 damping_rssi;
401 	u8 min_rssi;
402 	u8 diff;
403 	u8 igi_bitmap;
404 	bool damping = false;
405 
406 	min_rssi = dm_info->min_rssi;
407 	if (dm_info->damping) {
408 		damping_rssi = dm_info->damping_rssi;
409 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
410 						 damping_rssi - min_rssi;
411 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
412 			dm_info->damping = false;
413 			return false;
414 		}
415 
416 		return true;
417 	}
418 
419 	igi_history = dm_info->igi_history;
420 	fa_history = dm_info->fa_history;
421 	igi_bitmap = dm_info->igi_bitmap & 0xf;
422 	switch (igi_bitmap) {
423 	case 5:
424 		/* down -> up -> down -> up */
425 		if (igi_history[0] > igi_history[1] &&
426 		    igi_history[2] > igi_history[3] &&
427 		    igi_history[0] - igi_history[1] >= 2 &&
428 		    igi_history[2] - igi_history[3] >= 2 &&
429 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
430 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
431 			damping = true;
432 		break;
433 	case 9:
434 		/* up -> down -> down -> up */
435 		if (igi_history[0] > igi_history[1] &&
436 		    igi_history[3] > igi_history[2] &&
437 		    igi_history[0] - igi_history[1] >= 4 &&
438 		    igi_history[3] - igi_history[2] >= 2 &&
439 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
440 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
441 			damping = true;
442 		break;
443 	default:
444 		return false;
445 	}
446 
447 	if (damping) {
448 		dm_info->damping = true;
449 		dm_info->damping_cnt = 0;
450 		dm_info->damping_rssi = min_rssi;
451 	}
452 
453 	return damping;
454 }
455 
456 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
457 				     struct rtw_dm_info *dm_info,
458 				     u8 *upper, u8 *lower, bool linked)
459 {
460 	u8 dig_max, dig_min, dig_mid;
461 	u8 min_rssi;
462 
463 	if (linked) {
464 		dig_max = DIG_PERF_MAX;
465 		dig_mid = DIG_PERF_MID;
466 		dig_min = rtwdev->chip->dig_min;
467 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
468 	} else {
469 		dig_max = DIG_CVRG_MAX;
470 		dig_mid = DIG_CVRG_MID;
471 		dig_min = DIG_CVRG_MIN;
472 		min_rssi = dig_min;
473 	}
474 
475 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
476 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
477 
478 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
479 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
480 }
481 
482 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
483 				      u16 *fa_th, u8 *step, bool linked)
484 {
485 	u8 min_rssi, pre_min_rssi;
486 
487 	min_rssi = dm_info->min_rssi;
488 	pre_min_rssi = dm_info->pre_min_rssi;
489 	step[0] = 4;
490 	step[1] = 3;
491 	step[2] = 2;
492 
493 	if (linked) {
494 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
495 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
496 		fa_th[2] = DIG_PERF_FA_TH_LOW;
497 		if (pre_min_rssi > min_rssi) {
498 			step[0] = 6;
499 			step[1] = 4;
500 			step[2] = 2;
501 		}
502 	} else {
503 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
504 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
505 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
506 	}
507 }
508 
509 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
510 {
511 	u8 *igi_history;
512 	u16 *fa_history;
513 	u8 igi_bitmap;
514 	bool up;
515 
516 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
517 	igi_history = dm_info->igi_history;
518 	fa_history = dm_info->fa_history;
519 
520 	up = igi > igi_history[0];
521 	igi_bitmap |= up;
522 
523 	igi_history[3] = igi_history[2];
524 	igi_history[2] = igi_history[1];
525 	igi_history[1] = igi_history[0];
526 	igi_history[0] = igi;
527 
528 	fa_history[3] = fa_history[2];
529 	fa_history[2] = fa_history[1];
530 	fa_history[1] = fa_history[0];
531 	fa_history[0] = fa;
532 
533 	dm_info->igi_bitmap = igi_bitmap;
534 }
535 
536 static void rtw_phy_dig(struct rtw_dev *rtwdev)
537 {
538 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
539 	u8 upper_bound, lower_bound;
540 	u8 pre_igi, cur_igi;
541 	u16 fa_th[3], fa_cnt;
542 	u8 level;
543 	u8 step[3];
544 	bool linked;
545 
546 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
547 		return;
548 
549 	if (rtw_phy_dig_check_damping(dm_info))
550 		return;
551 
552 	linked = !!rtwdev->sta_cnt;
553 
554 	fa_cnt = dm_info->total_fa_cnt;
555 	pre_igi = dm_info->igi_history[0];
556 
557 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
558 
559 	/* test the false alarm count from the highest threshold level first,
560 	 * and increase it by corresponding step size
561 	 *
562 	 * note that the step size is offset by -2, compensate it afterall
563 	 */
564 	cur_igi = pre_igi;
565 	for (level = 0; level < 3; level++) {
566 		if (fa_cnt > fa_th[level]) {
567 			cur_igi += step[level];
568 			break;
569 		}
570 	}
571 	cur_igi -= 2;
572 
573 	/* calculate the upper/lower bound by the minimum rssi we have among
574 	 * the peers connected with us, meanwhile make sure the igi value does
575 	 * not beyond the hardware limitation
576 	 */
577 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
578 				 linked);
579 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
580 
581 	/* record current igi value and false alarm statistics for further
582 	 * damping checks, and record the trend of igi values
583 	 */
584 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
585 
586 	/* Mitigate beacon loss and connectivity issues, mainly (only?)
587 	 * in the 5 GHz band
588 	 */
589 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A && rtwdev->beacon_loss &&
590 	    linked && dm_info->total_fa_cnt < DIG_PERF_FA_TH_EXTRA_HIGH)
591 		cur_igi = DIG_CVRG_MIN;
592 
593 	if (cur_igi != pre_igi)
594 		rtw_phy_dig_write(rtwdev, cur_igi);
595 }
596 
597 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
598 {
599 	struct rtw_dev *rtwdev = data;
600 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
601 
602 	rtw_update_sta_info(rtwdev, si, false);
603 }
604 
605 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
606 {
607 	if (rtwdev->watch_dog_cnt & 0x3)
608 		return;
609 
610 	rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
611 }
612 
613 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
614 {
615 	u8 rate_order;
616 
617 	rate_order = rate_idx;
618 
619 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
620 		rate_order -= DESC_RATEVHT4SS_MCS0;
621 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
622 		rate_order -= DESC_RATEVHT3SS_MCS0;
623 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
624 		rate_order -= DESC_RATEVHT2SS_MCS0;
625 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
626 		rate_order -= DESC_RATEVHT1SS_MCS0;
627 	else if (rate_idx >= DESC_RATEMCS24)
628 		rate_order -= DESC_RATEMCS24;
629 	else if (rate_idx >= DESC_RATEMCS16)
630 		rate_order -= DESC_RATEMCS16;
631 	else if (rate_idx >= DESC_RATEMCS8)
632 		rate_order -= DESC_RATEMCS8;
633 	else if (rate_idx >= DESC_RATEMCS0)
634 		rate_order -= DESC_RATEMCS0;
635 	else if (rate_idx >= DESC_RATE6M)
636 		rate_order -= DESC_RATE6M;
637 	else
638 		rate_order -= DESC_RATE1M;
639 
640 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
641 		rate_order++;
642 
643 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
644 }
645 
646 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
647 {
648 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
649 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
650 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
651 	u32 mask = 0;
652 
653 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
654 	if (mask < dm_info->rrsr_mask_min)
655 		dm_info->rrsr_mask_min = mask;
656 }
657 
658 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
659 {
660 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
661 
662 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
663 	rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
664 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
665 }
666 
667 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
668 {
669 	const struct rtw_chip_info *chip = rtwdev->chip;
670 
671 	if (chip->ops->dpk_track)
672 		chip->ops->dpk_track(rtwdev);
673 }
674 
675 struct rtw_rx_addr_match_data {
676 	struct rtw_dev *rtwdev;
677 	struct ieee80211_hdr *hdr;
678 	struct rtw_rx_pkt_stat *pkt_stat;
679 	u8 *bssid;
680 };
681 
682 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
683 				     struct ieee80211_vif *vif)
684 {
685 	struct rtw_rx_addr_match_data *iter_data = data;
686 	struct rtw_dev *rtwdev = iter_data->rtwdev;
687 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
688 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
689 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
690 	u8 *bssid = iter_data->bssid;
691 	u8 i;
692 
693 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
694 		return;
695 
696 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
697 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
698 		cfo->cfo_cnt[i]++;
699 	}
700 
701 	cfo->packet_count++;
702 }
703 
704 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
705 			 struct rtw_rx_pkt_stat *pkt_stat)
706 {
707 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
708 	struct rtw_rx_addr_match_data data = {};
709 
710 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
711 	    ieee80211_is_ctl(hdr->frame_control))
712 		return;
713 
714 	data.rtwdev = rtwdev;
715 	data.hdr = hdr;
716 	data.pkt_stat = pkt_stat;
717 	data.bssid = get_hdr_bssid(hdr);
718 
719 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
720 }
721 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
722 
723 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
724 {
725 	const struct rtw_chip_info *chip = rtwdev->chip;
726 
727 	if (chip->ops->cfo_track)
728 		chip->ops->cfo_track(rtwdev);
729 }
730 
731 #define CCK_PD_FA_LV1_MIN	1000
732 #define CCK_PD_FA_LV0_MAX	500
733 
734 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
735 {
736 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
737 	u32 cck_fa_avg = dm_info->cck_fa_avg;
738 
739 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
740 		return CCK_PD_LV1;
741 
742 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
743 		return CCK_PD_LV0;
744 
745 	return CCK_PD_LV_MAX;
746 }
747 
748 #define CCK_PD_IGI_LV4_VAL 0x38
749 #define CCK_PD_IGI_LV3_VAL 0x2a
750 #define CCK_PD_IGI_LV2_VAL 0x24
751 #define CCK_PD_RSSI_LV4_VAL 32
752 #define CCK_PD_RSSI_LV3_VAL 32
753 #define CCK_PD_RSSI_LV2_VAL 24
754 
755 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
756 {
757 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
758 	u8 igi = dm_info->igi_history[0];
759 	u8 rssi = dm_info->min_rssi;
760 	u32 cck_fa_avg = dm_info->cck_fa_avg;
761 
762 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
763 		return CCK_PD_LV4;
764 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
765 		return CCK_PD_LV3;
766 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
767 		return CCK_PD_LV2;
768 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
769 		return CCK_PD_LV1;
770 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
771 		return CCK_PD_LV0;
772 
773 	return CCK_PD_LV_MAX;
774 }
775 
776 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
777 {
778 	if (!rtw_is_assoc(rtwdev))
779 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
780 	else
781 		return rtw_phy_cck_pd_lv_link(rtwdev);
782 }
783 
784 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
785 {
786 	const struct rtw_chip_info *chip = rtwdev->chip;
787 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
788 	u32 cck_fa = dm_info->cck_fa_cnt;
789 	u8 level;
790 
791 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
792 		return;
793 
794 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
795 		dm_info->cck_fa_avg = cck_fa;
796 	else
797 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
798 
799 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
800 		dm_info->igi_history[0], dm_info->min_rssi,
801 		dm_info->fa_history[0]);
802 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
803 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
804 
805 	level = rtw_phy_cck_pd_lv(rtwdev);
806 
807 	if (level >= CCK_PD_LV_MAX)
808 		return;
809 
810 	if (chip->ops->cck_pd_set)
811 		chip->ops->cck_pd_set(rtwdev, level);
812 }
813 
814 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
815 {
816 	rtwdev->chip->ops->pwr_track(rtwdev);
817 }
818 
819 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
820 {
821 	rtw_fw_update_wl_phy_info(rtwdev);
822 	rtw_phy_ra_info_update(rtwdev);
823 	rtw_phy_rrsr_update(rtwdev);
824 }
825 
826 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
827 {
828 	/* for further calculation */
829 	rtw_phy_statistics(rtwdev);
830 	rtw_phy_dig(rtwdev);
831 	rtw_phy_cck_pd(rtwdev);
832 	rtw_phy_ra_track(rtwdev);
833 	rtw_phy_tx_path_diversity(rtwdev);
834 	rtw_phy_cfo_track(rtwdev);
835 	rtw_phy_dpk_track(rtwdev);
836 	rtw_phy_pwr_track(rtwdev);
837 
838 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
839 		rtw_fw_adaptivity(rtwdev);
840 	else
841 		rtw_phy_adaptivity(rtwdev);
842 }
843 
844 #define FRAC_BITS 3
845 
846 static u8 rtw_phy_power_2_db(s8 power)
847 {
848 	if (power <= -100 || power >= 20)
849 		return 0;
850 	else if (power >= 0)
851 		return 100;
852 	else
853 		return 100 + power;
854 }
855 
856 static u64 rtw_phy_db_2_linear(u8 power_db)
857 {
858 	u8 i, j;
859 	u64 linear;
860 
861 	if (power_db > 96)
862 		power_db = 96;
863 	else if (power_db < 1)
864 		return 1;
865 
866 	/* 1dB ~ 96dB */
867 	i = (power_db - 1) >> 3;
868 	j = (power_db - 1) - (i << 3);
869 
870 	linear = db_invert_table[i][j];
871 	linear = i > 2 ? linear << FRAC_BITS : linear;
872 
873 	return linear;
874 }
875 
876 static u8 rtw_phy_linear_2_db(u64 linear)
877 {
878 	u8 i;
879 	u8 j;
880 	u32 dB;
881 
882 	for (i = 0; i < 12; i++) {
883 		for (j = 0; j < 8; j++) {
884 			if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
885 				goto cnt;
886 			else if (i > 2 && linear <= db_invert_table[i][j])
887 				goto cnt;
888 		}
889 	}
890 
891 	return 96; /* maximum 96 dB */
892 
893 cnt:
894 	if (j == 0 && i == 0)
895 		goto end;
896 
897 	if (j == 0) {
898 		if (i != 3) {
899 			if (db_invert_table[i][0] - linear >
900 			    linear - db_invert_table[i - 1][7]) {
901 				i = i - 1;
902 				j = 7;
903 			}
904 		} else {
905 			if (db_invert_table[3][0] - linear >
906 			    linear - db_invert_table[2][7]) {
907 				i = 2;
908 				j = 7;
909 			}
910 		}
911 	} else {
912 		if (db_invert_table[i][j] - linear >
913 		    linear - db_invert_table[i][j - 1]) {
914 			j = j - 1;
915 		}
916 	}
917 end:
918 	dB = (i << 3) + j + 1;
919 
920 	return dB;
921 }
922 
923 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
924 {
925 	s8 power;
926 	u8 power_db;
927 	u64 linear;
928 	u64 sum = 0;
929 	u8 path;
930 
931 	for (path = 0; path < path_num; path++) {
932 		power = rf_power[path];
933 		power_db = rtw_phy_power_2_db(power);
934 		linear = rtw_phy_db_2_linear(power_db);
935 		sum += linear;
936 	}
937 
938 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
939 	switch (path_num) {
940 	case 2:
941 		sum >>= 1;
942 		break;
943 	case 3:
944 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
945 		break;
946 	case 4:
947 		sum >>= 2;
948 		break;
949 	default:
950 		break;
951 	}
952 
953 	return rtw_phy_linear_2_db(sum);
954 }
955 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
956 
957 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
958 		    u32 addr, u32 mask)
959 {
960 	struct rtw_hal *hal = &rtwdev->hal;
961 	const struct rtw_chip_info *chip = rtwdev->chip;
962 	const u32 *base_addr = chip->rf_base_addr;
963 	u32 val, direct_addr;
964 
965 	if (rf_path >= hal->rf_phy_num) {
966 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
967 		return INV_RF_DATA;
968 	}
969 
970 	addr &= 0xff;
971 	direct_addr = base_addr[rf_path] + (addr << 2);
972 	mask &= RFREG_MASK;
973 
974 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
975 
976 	return val;
977 }
978 EXPORT_SYMBOL(rtw_phy_read_rf);
979 
980 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
981 			 u32 addr, u32 mask)
982 {
983 	struct rtw_hal *hal = &rtwdev->hal;
984 	const struct rtw_chip_info *chip = rtwdev->chip;
985 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
986 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
987 	u32 val32;
988 	u32 en_pi;
989 	u32 r_addr;
990 	u32 shift;
991 
992 	if (rf_path >= hal->rf_phy_num) {
993 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
994 		return INV_RF_DATA;
995 	}
996 
997 	if (!chip->rf_sipi_read_addr) {
998 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
999 		return INV_RF_DATA;
1000 	}
1001 
1002 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
1003 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
1004 
1005 	addr &= 0xff;
1006 
1007 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
1008 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
1009 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
1010 
1011 	/* toggle read edge of path A */
1012 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
1013 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
1014 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
1015 
1016 	udelay(120);
1017 
1018 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
1019 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
1020 
1021 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
1022 
1023 	shift = __ffs(mask);
1024 
1025 	return (val32 & mask) >> shift;
1026 }
1027 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
1028 
1029 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1030 			       u32 addr, u32 mask, u32 data)
1031 {
1032 	struct rtw_hal *hal = &rtwdev->hal;
1033 	const struct rtw_chip_info *chip = rtwdev->chip;
1034 	const u32 *sipi_addr = chip->rf_sipi_addr;
1035 	u32 data_and_addr;
1036 	u32 old_data = 0;
1037 	u32 shift;
1038 
1039 	if (rf_path >= hal->rf_phy_num) {
1040 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1041 		return false;
1042 	}
1043 
1044 	addr &= 0xff;
1045 	mask &= RFREG_MASK;
1046 
1047 	if (mask != RFREG_MASK) {
1048 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
1049 
1050 		if (old_data == INV_RF_DATA) {
1051 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
1052 			return false;
1053 		}
1054 
1055 		shift = __ffs(mask);
1056 		data = ((old_data) & (~mask)) | (data << shift);
1057 	}
1058 
1059 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
1060 
1061 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
1062 
1063 	udelay(13);
1064 
1065 	return true;
1066 }
1067 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1068 
1069 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1070 			  u32 addr, u32 mask, u32 data)
1071 {
1072 	struct rtw_hal *hal = &rtwdev->hal;
1073 	const struct rtw_chip_info *chip = rtwdev->chip;
1074 	const u32 *base_addr = chip->rf_base_addr;
1075 	u32 direct_addr;
1076 
1077 	if (rf_path >= hal->rf_phy_num) {
1078 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1079 		return false;
1080 	}
1081 
1082 	addr &= 0xff;
1083 	direct_addr = base_addr[rf_path] + (addr << 2);
1084 	mask &= RFREG_MASK;
1085 
1086 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
1087 
1088 	udelay(1);
1089 
1090 	return true;
1091 }
1092 
1093 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1094 			      u32 addr, u32 mask, u32 data)
1095 {
1096 	if (addr != 0x00)
1097 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1098 
1099 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1100 }
1101 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1102 
1103 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1104 {
1105 	struct rtw_hal *hal = &rtwdev->hal;
1106 	struct rtw_efuse *efuse = &rtwdev->efuse;
1107 	struct rtw_phy_cond cond = {};
1108 	struct rtw_phy_cond2 cond2 = {};
1109 
1110 	cond.cut = hal->cut_version ? hal->cut_version : 15;
1111 	cond.pkg = pkg ? pkg : 15;
1112 	cond.plat = 0x04;
1113 	cond.rfe = efuse->rfe_option;
1114 
1115 	switch (rtw_hci_type(rtwdev)) {
1116 	case RTW_HCI_TYPE_USB:
1117 		cond.intf = INTF_USB;
1118 		break;
1119 	case RTW_HCI_TYPE_SDIO:
1120 		cond.intf = INTF_SDIO;
1121 		break;
1122 	case RTW_HCI_TYPE_PCIE:
1123 	default:
1124 		cond.intf = INTF_PCIE;
1125 		break;
1126 	}
1127 
1128 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1129 	    rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1130 		cond.rfe = 0;
1131 		cond.rfe |= efuse->ext_lna_2g;
1132 		cond.rfe |= efuse->ext_pa_2g  << 1;
1133 		cond.rfe |= efuse->ext_lna_5g << 2;
1134 		cond.rfe |= efuse->ext_pa_5g  << 3;
1135 		cond.rfe |= efuse->btcoex     << 4;
1136 
1137 		cond2.type_alna = efuse->alna_type;
1138 		cond2.type_glna = efuse->glna_type;
1139 		cond2.type_apa = efuse->apa_type;
1140 		cond2.type_gpa = efuse->gpa_type;
1141 	}
1142 
1143 	hal->phy_cond = cond;
1144 	hal->phy_cond2 = cond2;
1145 
1146 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x cond2=0x%08x\n",
1147 		*((u32 *)&hal->phy_cond), *((u32 *)&hal->phy_cond2));
1148 }
1149 
1150 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond,
1151 			   struct rtw_phy_cond2 cond2)
1152 {
1153 	struct rtw_hal *hal = &rtwdev->hal;
1154 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1155 	struct rtw_phy_cond2 drv_cond2 = hal->phy_cond2;
1156 
1157 	if (cond.cut && cond.cut != drv_cond.cut)
1158 		return false;
1159 
1160 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1161 		return false;
1162 
1163 	if (cond.intf && cond.intf != drv_cond.intf)
1164 		return false;
1165 
1166 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1167 	    rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1168 		if (!(cond.rfe & 0x0f))
1169 			return true;
1170 
1171 		if ((cond.rfe & drv_cond.rfe) != cond.rfe)
1172 			return false;
1173 
1174 		if ((cond.rfe & BIT(0)) && cond2.type_glna != drv_cond2.type_glna)
1175 			return false;
1176 
1177 		if ((cond.rfe & BIT(1)) && cond2.type_gpa != drv_cond2.type_gpa)
1178 			return false;
1179 
1180 		if ((cond.rfe & BIT(2)) && cond2.type_alna != drv_cond2.type_alna)
1181 			return false;
1182 
1183 		if ((cond.rfe & BIT(3)) && cond2.type_apa != drv_cond2.type_apa)
1184 			return false;
1185 	} else {
1186 		if (cond.rfe != drv_cond.rfe)
1187 			return false;
1188 	}
1189 
1190 	return true;
1191 }
1192 
1193 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1194 {
1195 	const union phy_table_tile *p = tbl->data;
1196 	const union phy_table_tile *end = p + tbl->size / 2;
1197 	struct rtw_phy_cond pos_cond = {};
1198 	struct rtw_phy_cond2 pos_cond2 = {};
1199 	bool is_matched = true, is_skipped = false;
1200 
1201 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1202 
1203 	for (; p < end; p++) {
1204 		if (p->cond.pos) {
1205 			switch (p->cond.branch) {
1206 			case BRANCH_ENDIF:
1207 				is_matched = true;
1208 				is_skipped = false;
1209 				break;
1210 			case BRANCH_ELSE:
1211 				is_matched = is_skipped ? false : true;
1212 				break;
1213 			case BRANCH_IF:
1214 			case BRANCH_ELIF:
1215 			default:
1216 				pos_cond = p->cond;
1217 				pos_cond2 = p->cond2;
1218 				break;
1219 			}
1220 		} else if (p->cond.neg) {
1221 			if (!is_skipped) {
1222 				if (check_positive(rtwdev, pos_cond, pos_cond2)) {
1223 					is_matched = true;
1224 					is_skipped = true;
1225 				} else {
1226 					is_matched = false;
1227 					is_skipped = false;
1228 				}
1229 			} else {
1230 				is_matched = false;
1231 			}
1232 		} else if (is_matched) {
1233 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1234 		}
1235 	}
1236 }
1237 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1238 
1239 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1240 
1241 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1242 {
1243 	if (rtwdev->chip->is_pwr_by_rate_dec)
1244 		return bcd_to_dec_pwr_by_rate(hex, i);
1245 
1246 	return (hex >> (i * 8)) & 0xFF;
1247 }
1248 
1249 static void
1250 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1251 					 u32 addr, u32 mask, u32 val, u8 *rate,
1252 					 u8 *pwr_by_rate, u8 *rate_num)
1253 {
1254 	int i;
1255 
1256 	switch (addr) {
1257 	case 0xE00:
1258 	case 0x830:
1259 		rate[0] = DESC_RATE6M;
1260 		rate[1] = DESC_RATE9M;
1261 		rate[2] = DESC_RATE12M;
1262 		rate[3] = DESC_RATE18M;
1263 		for (i = 0; i < 4; ++i)
1264 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1265 		*rate_num = 4;
1266 		break;
1267 	case 0xE04:
1268 	case 0x834:
1269 		rate[0] = DESC_RATE24M;
1270 		rate[1] = DESC_RATE36M;
1271 		rate[2] = DESC_RATE48M;
1272 		rate[3] = DESC_RATE54M;
1273 		for (i = 0; i < 4; ++i)
1274 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1275 		*rate_num = 4;
1276 		break;
1277 	case 0xE08:
1278 		rate[0] = DESC_RATE1M;
1279 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1280 		*rate_num = 1;
1281 		break;
1282 	case 0x86C:
1283 		if (mask == 0xffffff00) {
1284 			rate[0] = DESC_RATE2M;
1285 			rate[1] = DESC_RATE5_5M;
1286 			rate[2] = DESC_RATE11M;
1287 			for (i = 1; i < 4; ++i)
1288 				pwr_by_rate[i - 1] =
1289 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1290 			*rate_num = 3;
1291 		} else if (mask == 0x000000ff) {
1292 			rate[0] = DESC_RATE11M;
1293 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1294 			*rate_num = 1;
1295 		}
1296 		break;
1297 	case 0xE10:
1298 	case 0x83C:
1299 		rate[0] = DESC_RATEMCS0;
1300 		rate[1] = DESC_RATEMCS1;
1301 		rate[2] = DESC_RATEMCS2;
1302 		rate[3] = DESC_RATEMCS3;
1303 		for (i = 0; i < 4; ++i)
1304 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1305 		*rate_num = 4;
1306 		break;
1307 	case 0xE14:
1308 	case 0x848:
1309 		rate[0] = DESC_RATEMCS4;
1310 		rate[1] = DESC_RATEMCS5;
1311 		rate[2] = DESC_RATEMCS6;
1312 		rate[3] = DESC_RATEMCS7;
1313 		for (i = 0; i < 4; ++i)
1314 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1315 		*rate_num = 4;
1316 		break;
1317 	case 0xE18:
1318 	case 0x84C:
1319 		rate[0] = DESC_RATEMCS8;
1320 		rate[1] = DESC_RATEMCS9;
1321 		rate[2] = DESC_RATEMCS10;
1322 		rate[3] = DESC_RATEMCS11;
1323 		for (i = 0; i < 4; ++i)
1324 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1325 		*rate_num = 4;
1326 		break;
1327 	case 0xE1C:
1328 	case 0x868:
1329 		rate[0] = DESC_RATEMCS12;
1330 		rate[1] = DESC_RATEMCS13;
1331 		rate[2] = DESC_RATEMCS14;
1332 		rate[3] = DESC_RATEMCS15;
1333 		for (i = 0; i < 4; ++i)
1334 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1335 		*rate_num = 4;
1336 		break;
1337 	case 0x838:
1338 		rate[0] = DESC_RATE1M;
1339 		rate[1] = DESC_RATE2M;
1340 		rate[2] = DESC_RATE5_5M;
1341 		for (i = 1; i < 4; ++i)
1342 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1343 								    val, i);
1344 		*rate_num = 3;
1345 		break;
1346 	case 0xC20:
1347 	case 0xE20:
1348 	case 0x1820:
1349 	case 0x1A20:
1350 		rate[0] = DESC_RATE1M;
1351 		rate[1] = DESC_RATE2M;
1352 		rate[2] = DESC_RATE5_5M;
1353 		rate[3] = DESC_RATE11M;
1354 		for (i = 0; i < 4; ++i)
1355 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1356 		*rate_num = 4;
1357 		break;
1358 	case 0xC24:
1359 	case 0xE24:
1360 	case 0x1824:
1361 	case 0x1A24:
1362 		rate[0] = DESC_RATE6M;
1363 		rate[1] = DESC_RATE9M;
1364 		rate[2] = DESC_RATE12M;
1365 		rate[3] = DESC_RATE18M;
1366 		for (i = 0; i < 4; ++i)
1367 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1368 		*rate_num = 4;
1369 		break;
1370 	case 0xC28:
1371 	case 0xE28:
1372 	case 0x1828:
1373 	case 0x1A28:
1374 		rate[0] = DESC_RATE24M;
1375 		rate[1] = DESC_RATE36M;
1376 		rate[2] = DESC_RATE48M;
1377 		rate[3] = DESC_RATE54M;
1378 		for (i = 0; i < 4; ++i)
1379 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1380 		*rate_num = 4;
1381 		break;
1382 	case 0xC2C:
1383 	case 0xE2C:
1384 	case 0x182C:
1385 	case 0x1A2C:
1386 		rate[0] = DESC_RATEMCS0;
1387 		rate[1] = DESC_RATEMCS1;
1388 		rate[2] = DESC_RATEMCS2;
1389 		rate[3] = DESC_RATEMCS3;
1390 		for (i = 0; i < 4; ++i)
1391 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1392 		*rate_num = 4;
1393 		break;
1394 	case 0xC30:
1395 	case 0xE30:
1396 	case 0x1830:
1397 	case 0x1A30:
1398 		rate[0] = DESC_RATEMCS4;
1399 		rate[1] = DESC_RATEMCS5;
1400 		rate[2] = DESC_RATEMCS6;
1401 		rate[3] = DESC_RATEMCS7;
1402 		for (i = 0; i < 4; ++i)
1403 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1404 		*rate_num = 4;
1405 		break;
1406 	case 0xC34:
1407 	case 0xE34:
1408 	case 0x1834:
1409 	case 0x1A34:
1410 		rate[0] = DESC_RATEMCS8;
1411 		rate[1] = DESC_RATEMCS9;
1412 		rate[2] = DESC_RATEMCS10;
1413 		rate[3] = DESC_RATEMCS11;
1414 		for (i = 0; i < 4; ++i)
1415 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1416 		*rate_num = 4;
1417 		break;
1418 	case 0xC38:
1419 	case 0xE38:
1420 	case 0x1838:
1421 	case 0x1A38:
1422 		rate[0] = DESC_RATEMCS12;
1423 		rate[1] = DESC_RATEMCS13;
1424 		rate[2] = DESC_RATEMCS14;
1425 		rate[3] = DESC_RATEMCS15;
1426 		for (i = 0; i < 4; ++i)
1427 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1428 		*rate_num = 4;
1429 		break;
1430 	case 0xC3C:
1431 	case 0xE3C:
1432 	case 0x183C:
1433 	case 0x1A3C:
1434 		rate[0] = DESC_RATEVHT1SS_MCS0;
1435 		rate[1] = DESC_RATEVHT1SS_MCS1;
1436 		rate[2] = DESC_RATEVHT1SS_MCS2;
1437 		rate[3] = DESC_RATEVHT1SS_MCS3;
1438 		for (i = 0; i < 4; ++i)
1439 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1440 		*rate_num = 4;
1441 		break;
1442 	case 0xC40:
1443 	case 0xE40:
1444 	case 0x1840:
1445 	case 0x1A40:
1446 		rate[0] = DESC_RATEVHT1SS_MCS4;
1447 		rate[1] = DESC_RATEVHT1SS_MCS5;
1448 		rate[2] = DESC_RATEVHT1SS_MCS6;
1449 		rate[3] = DESC_RATEVHT1SS_MCS7;
1450 		for (i = 0; i < 4; ++i)
1451 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1452 		*rate_num = 4;
1453 		break;
1454 	case 0xC44:
1455 	case 0xE44:
1456 	case 0x1844:
1457 	case 0x1A44:
1458 		rate[0] = DESC_RATEVHT1SS_MCS8;
1459 		rate[1] = DESC_RATEVHT1SS_MCS9;
1460 		rate[2] = DESC_RATEVHT2SS_MCS0;
1461 		rate[3] = DESC_RATEVHT2SS_MCS1;
1462 		for (i = 0; i < 4; ++i)
1463 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1464 		*rate_num = 4;
1465 		break;
1466 	case 0xC48:
1467 	case 0xE48:
1468 	case 0x1848:
1469 	case 0x1A48:
1470 		rate[0] = DESC_RATEVHT2SS_MCS2;
1471 		rate[1] = DESC_RATEVHT2SS_MCS3;
1472 		rate[2] = DESC_RATEVHT2SS_MCS4;
1473 		rate[3] = DESC_RATEVHT2SS_MCS5;
1474 		for (i = 0; i < 4; ++i)
1475 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1476 		*rate_num = 4;
1477 		break;
1478 	case 0xC4C:
1479 	case 0xE4C:
1480 	case 0x184C:
1481 	case 0x1A4C:
1482 		rate[0] = DESC_RATEVHT2SS_MCS6;
1483 		rate[1] = DESC_RATEVHT2SS_MCS7;
1484 		rate[2] = DESC_RATEVHT2SS_MCS8;
1485 		rate[3] = DESC_RATEVHT2SS_MCS9;
1486 		for (i = 0; i < 4; ++i)
1487 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1488 		*rate_num = 4;
1489 		break;
1490 	case 0xCD8:
1491 	case 0xED8:
1492 	case 0x18D8:
1493 	case 0x1AD8:
1494 		rate[0] = DESC_RATEMCS16;
1495 		rate[1] = DESC_RATEMCS17;
1496 		rate[2] = DESC_RATEMCS18;
1497 		rate[3] = DESC_RATEMCS19;
1498 		for (i = 0; i < 4; ++i)
1499 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1500 		*rate_num = 4;
1501 		break;
1502 	case 0xCDC:
1503 	case 0xEDC:
1504 	case 0x18DC:
1505 	case 0x1ADC:
1506 		rate[0] = DESC_RATEMCS20;
1507 		rate[1] = DESC_RATEMCS21;
1508 		rate[2] = DESC_RATEMCS22;
1509 		rate[3] = DESC_RATEMCS23;
1510 		for (i = 0; i < 4; ++i)
1511 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1512 		*rate_num = 4;
1513 		break;
1514 	case 0xCE0:
1515 	case 0xEE0:
1516 	case 0x18E0:
1517 	case 0x1AE0:
1518 		rate[0] = DESC_RATEVHT3SS_MCS0;
1519 		rate[1] = DESC_RATEVHT3SS_MCS1;
1520 		rate[2] = DESC_RATEVHT3SS_MCS2;
1521 		rate[3] = DESC_RATEVHT3SS_MCS3;
1522 		for (i = 0; i < 4; ++i)
1523 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1524 		*rate_num = 4;
1525 		break;
1526 	case 0xCE4:
1527 	case 0xEE4:
1528 	case 0x18E4:
1529 	case 0x1AE4:
1530 		rate[0] = DESC_RATEVHT3SS_MCS4;
1531 		rate[1] = DESC_RATEVHT3SS_MCS5;
1532 		rate[2] = DESC_RATEVHT3SS_MCS6;
1533 		rate[3] = DESC_RATEVHT3SS_MCS7;
1534 		for (i = 0; i < 4; ++i)
1535 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1536 		*rate_num = 4;
1537 		break;
1538 	case 0xCE8:
1539 	case 0xEE8:
1540 	case 0x18E8:
1541 	case 0x1AE8:
1542 		rate[0] = DESC_RATEVHT3SS_MCS8;
1543 		rate[1] = DESC_RATEVHT3SS_MCS9;
1544 		for (i = 0; i < 2; ++i)
1545 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1546 		*rate_num = 2;
1547 		break;
1548 	default:
1549 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1550 		break;
1551 	}
1552 }
1553 
1554 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1555 					   u32 band, u32 rfpath, u32 txnum,
1556 					   u32 regaddr, u32 bitmask, u32 data)
1557 {
1558 	struct rtw_hal *hal = &rtwdev->hal;
1559 	u8 rate_num = 0;
1560 	u8 rate;
1561 	u8 rates[RTW_RF_PATH_MAX] = {0};
1562 	s8 offset;
1563 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1564 	int i;
1565 
1566 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1567 						 rates, pwr_by_rate, &rate_num);
1568 
1569 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1570 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1571 		    rate_num > RTW_RF_PATH_MAX))
1572 		return;
1573 
1574 	for (i = 0; i < rate_num; i++) {
1575 		offset = pwr_by_rate[i];
1576 		rate = rates[i];
1577 		if (band == PHY_BAND_2G)
1578 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1579 		else
1580 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1581 	}
1582 }
1583 
1584 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1585 {
1586 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1587 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1588 
1589 	for (; p < end; p++) {
1590 		if (p->addr == 0xfe || p->addr == 0xffe) {
1591 			msleep(50);
1592 			continue;
1593 		}
1594 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1595 					       p->tx_num, p->addr, p->bitmask,
1596 					       p->data);
1597 	}
1598 }
1599 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1600 
1601 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1602 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1603 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1604 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1605 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1606 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1607 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1608 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1609 
1610 static int rtw_channel_to_idx(u8 band, u8 channel)
1611 {
1612 	int ch_idx;
1613 	u8 n_channel;
1614 
1615 	if (band == PHY_BAND_2G) {
1616 		ch_idx = channel - 1;
1617 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1618 	} else if (band == PHY_BAND_5G) {
1619 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1620 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1621 			if (rtw_channel_idx_5g[ch_idx] == channel)
1622 				break;
1623 	} else {
1624 		return -1;
1625 	}
1626 
1627 	if (ch_idx >= n_channel)
1628 		return -1;
1629 
1630 	return ch_idx;
1631 }
1632 
1633 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1634 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1635 {
1636 	struct rtw_hal *hal = &rtwdev->hal;
1637 	u8 max_power_index = rtwdev->chip->max_power_index;
1638 	s8 ww;
1639 	int ch_idx;
1640 
1641 	pwr_limit = clamp_t(s8, pwr_limit,
1642 			    -max_power_index, max_power_index);
1643 	ch_idx = rtw_channel_to_idx(band, ch);
1644 
1645 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1646 	    rs >= RTW_RATE_SECTION_NUM || ch_idx < 0) {
1647 		WARN(1,
1648 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1649 		     regd, band, bw, rs, ch_idx, pwr_limit);
1650 		return;
1651 	}
1652 
1653 	if (band == PHY_BAND_2G) {
1654 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1655 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1656 		ww = min_t(s8, ww, pwr_limit);
1657 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1658 	} else if (band == PHY_BAND_5G) {
1659 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1660 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1661 		ww = min_t(s8, ww, pwr_limit);
1662 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1663 	}
1664 }
1665 
1666 /* cross-reference 5G power limits if values are not assigned */
1667 static void
1668 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1669 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1670 {
1671 	struct rtw_hal *hal = &rtwdev->hal;
1672 	u8 max_power_index = rtwdev->chip->max_power_index;
1673 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1674 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1675 
1676 	if (lmt_ht == lmt_vht)
1677 		return;
1678 
1679 	if (lmt_ht == max_power_index)
1680 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1681 
1682 	else if (lmt_vht == max_power_index)
1683 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1684 }
1685 
1686 /* cross-reference power limits for ht and vht */
1687 static void
1688 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1689 {
1690 	static const u8 rs_cmp[4][2] = {
1691 		{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1692 		{RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S},
1693 		{RTW_RATE_SECTION_HT_3S, RTW_RATE_SECTION_VHT_3S},
1694 		{RTW_RATE_SECTION_HT_4S, RTW_RATE_SECTION_VHT_4S}
1695 	};
1696 	u8 rs_idx, rs_ht, rs_vht;
1697 
1698 	for (rs_idx = 0; rs_idx < 4; rs_idx++) {
1699 		rs_ht = rs_cmp[rs_idx][0];
1700 		rs_vht = rs_cmp[rs_idx][1];
1701 
1702 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1703 	}
1704 }
1705 
1706 /* cross-reference power limits for 5G channels */
1707 static void
1708 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1709 {
1710 	u8 ch_idx;
1711 
1712 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1713 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1714 }
1715 
1716 /* cross-reference power limits for 20/40M bandwidth */
1717 static void
1718 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1719 {
1720 	u8 bw;
1721 
1722 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1723 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1724 }
1725 
1726 /* cross-reference power limits */
1727 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1728 {
1729 	u8 regd;
1730 
1731 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1732 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1733 }
1734 
1735 static void
1736 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1737 {
1738 	u8 ch;
1739 
1740 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1741 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1742 			hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1743 
1744 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1745 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1746 			hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1747 }
1748 
1749 static void
1750 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1751 {
1752 	u8 bw, rs;
1753 
1754 	for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1755 		for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
1756 			__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1757 					       bw, rs);
1758 }
1759 
1760 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1761 			     const struct rtw_table *tbl)
1762 {
1763 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1764 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1765 	u32 regd_cfg_flag = 0;
1766 	u8 regd_alt;
1767 	u8 i;
1768 
1769 	for (; p < end; p++) {
1770 		regd_cfg_flag |= BIT(p->regd);
1771 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1772 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1773 	}
1774 
1775 	for (i = 0; i < RTW_REGD_MAX; i++) {
1776 		if (i == RTW_REGD_WW)
1777 			continue;
1778 
1779 		if (regd_cfg_flag & BIT(i))
1780 			continue;
1781 
1782 		rtw_dbg(rtwdev, RTW_DBG_REGD,
1783 			"txpwr regd %d does not be configured\n", i);
1784 
1785 		if (rtw_regd_has_alt(i, &regd_alt) &&
1786 		    regd_cfg_flag & BIT(regd_alt)) {
1787 			rtw_dbg(rtwdev, RTW_DBG_REGD,
1788 				"cfg txpwr regd %d by regd %d as alternative\n",
1789 				i, regd_alt);
1790 
1791 			rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1792 			continue;
1793 		}
1794 
1795 		rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1796 		rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1797 	}
1798 
1799 	rtw_xref_txpwr_lmt(rtwdev);
1800 }
1801 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1802 
1803 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1804 		     u32 addr, u32 data)
1805 {
1806 	rtw_write8(rtwdev, addr, data);
1807 }
1808 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1809 
1810 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1811 		     u32 addr, u32 data)
1812 {
1813 	rtw_write32(rtwdev, addr, data);
1814 }
1815 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1816 
1817 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1818 		    u32 addr, u32 data)
1819 {
1820 	if (addr == 0xfe)
1821 		msleep(50);
1822 	else if (addr == 0xfd)
1823 		mdelay(5);
1824 	else if (addr == 0xfc)
1825 		mdelay(1);
1826 	else if (addr == 0xfb)
1827 		usleep_range(50, 60);
1828 	else if (addr == 0xfa)
1829 		udelay(5);
1830 	else if (addr == 0xf9)
1831 		udelay(1);
1832 	else
1833 		rtw_write32(rtwdev, addr, data);
1834 }
1835 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1836 
1837 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1838 		    u32 addr, u32 data)
1839 {
1840 	if (addr == 0xffe) {
1841 		msleep(50);
1842 	} else if (addr == 0xfe) {
1843 		usleep_range(100, 110);
1844 	} else {
1845 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1846 		udelay(1);
1847 	}
1848 }
1849 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1850 
1851 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1852 {
1853 	const struct rtw_chip_info *chip = rtwdev->chip;
1854 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1855 
1856 	if (!chip->rfk_init_tbl)
1857 		return;
1858 
1859 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1860 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1861 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1862 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1863 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1864 
1865 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1866 
1867 	dpk_info->is_dpk_pwr_on = true;
1868 }
1869 
1870 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1871 {
1872 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1873 	const struct rtw_chip_info *chip = rtwdev->chip;
1874 	u8 rf_path;
1875 
1876 	rtw_load_table(rtwdev, chip->mac_tbl);
1877 	rtw_load_table(rtwdev, chip->bb_tbl);
1878 	rtw_load_table(rtwdev, chip->agc_tbl);
1879 	if (rfe_def->agc_btg_tbl)
1880 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1881 	rtw_load_rfk_table(rtwdev);
1882 
1883 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1884 		const struct rtw_table *tbl;
1885 
1886 		tbl = chip->rf_tbl[rf_path];
1887 		rtw_load_table(rtwdev, tbl);
1888 	}
1889 }
1890 EXPORT_SYMBOL(rtw_phy_load_tables);
1891 
1892 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1893 {
1894 	switch (channel) {
1895 	default:
1896 		WARN_ON(1);
1897 		fallthrough;
1898 	case 1:
1899 	case 2:
1900 	case 36:
1901 	case 38:
1902 	case 40:
1903 	case 42:
1904 		return 0;
1905 	case 3:
1906 	case 4:
1907 	case 5:
1908 	case 44:
1909 	case 46:
1910 	case 48:
1911 	case 50:
1912 		return 1;
1913 	case 6:
1914 	case 7:
1915 	case 8:
1916 	case 52:
1917 	case 54:
1918 	case 56:
1919 	case 58:
1920 		return 2;
1921 	case 9:
1922 	case 10:
1923 	case 11:
1924 	case 60:
1925 	case 62:
1926 	case 64:
1927 		return 3;
1928 	case 12:
1929 	case 13:
1930 	case 100:
1931 	case 102:
1932 	case 104:
1933 	case 106:
1934 		return 4;
1935 	case 14:
1936 		return rate <= DESC_RATE11M ? 5 : 4;
1937 	case 108:
1938 	case 110:
1939 	case 112:
1940 	case 114:
1941 		return 5;
1942 	case 116:
1943 	case 118:
1944 	case 120:
1945 	case 122:
1946 		return 6;
1947 	case 124:
1948 	case 126:
1949 	case 128:
1950 	case 130:
1951 		return 7;
1952 	case 132:
1953 	case 134:
1954 	case 136:
1955 	case 138:
1956 		return 8;
1957 	case 140:
1958 	case 142:
1959 	case 144:
1960 		return 9;
1961 	case 149:
1962 	case 151:
1963 	case 153:
1964 	case 155:
1965 		return 10;
1966 	case 157:
1967 	case 159:
1968 	case 161:
1969 		return 11;
1970 	case 165:
1971 	case 167:
1972 	case 169:
1973 	case 171:
1974 		return 12;
1975 	case 173:
1976 	case 175:
1977 	case 177:
1978 		return 13;
1979 	}
1980 }
1981 
1982 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1983 {
1984 	const struct rtw_chip_info *chip = rtwdev->chip;
1985 	s8 dpd_diff = 0;
1986 
1987 	if (!chip->en_dis_dpd)
1988 		return 0;
1989 
1990 #define RTW_DPD_RATE_CHECK(_rate)					\
1991 	case DESC_RATE ## _rate:					\
1992 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1993 		dpd_diff = -6 * chip->txgi_factor;			\
1994 	break
1995 
1996 	switch (rate) {
1997 	RTW_DPD_RATE_CHECK(6M);
1998 	RTW_DPD_RATE_CHECK(9M);
1999 	RTW_DPD_RATE_CHECK(MCS0);
2000 	RTW_DPD_RATE_CHECK(MCS1);
2001 	RTW_DPD_RATE_CHECK(MCS8);
2002 	RTW_DPD_RATE_CHECK(MCS9);
2003 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
2004 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
2005 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
2006 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
2007 	}
2008 #undef RTW_DPD_RATE_CHECK
2009 
2010 	return dpd_diff;
2011 }
2012 
2013 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
2014 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
2015 					enum rtw_bandwidth bandwidth,
2016 					u8 rate, u8 group)
2017 {
2018 	const struct rtw_chip_info *chip = rtwdev->chip;
2019 	bool above_2ss, above_3ss, above_4ss;
2020 	u8 factor = chip->txgi_factor;
2021 	bool mcs_rate;
2022 	u8 tx_power;
2023 
2024 	if (rate <= DESC_RATE11M)
2025 		tx_power = pwr_idx_2g->cck_base[group];
2026 	else
2027 		tx_power = pwr_idx_2g->bw40_base[group];
2028 
2029 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2030 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
2031 
2032 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) ||
2033 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
2034 		    rate <= DESC_RATEVHT4SS_MCS9);
2035 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) ||
2036 		    (rate >= DESC_RATEVHT2SS_MCS0);
2037 	above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) ||
2038 		    (rate >= DESC_RATEVHT3SS_MCS0);
2039 	above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) ||
2040 		    (rate >= DESC_RATEVHT4SS_MCS0);
2041 
2042 	if (!mcs_rate)
2043 		return tx_power;
2044 
2045 	switch (bandwidth) {
2046 	default:
2047 		WARN_ON(1);
2048 		fallthrough;
2049 	case RTW_CHANNEL_WIDTH_20:
2050 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
2051 		if (above_2ss)
2052 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
2053 		if (above_3ss)
2054 			tx_power += pwr_idx_2g->ht_3s_diff.bw20 * factor;
2055 		if (above_4ss)
2056 			tx_power += pwr_idx_2g->ht_4s_diff.bw20 * factor;
2057 		break;
2058 	case RTW_CHANNEL_WIDTH_40:
2059 		/* bw40 is the base power */
2060 		if (above_2ss)
2061 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
2062 		if (above_3ss)
2063 			tx_power += pwr_idx_2g->ht_3s_diff.bw40 * factor;
2064 		if (above_4ss)
2065 			tx_power += pwr_idx_2g->ht_4s_diff.bw40 * factor;
2066 		break;
2067 	}
2068 
2069 	return tx_power;
2070 }
2071 
2072 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
2073 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
2074 					enum rtw_bandwidth bandwidth,
2075 					u8 rate, u8 group)
2076 {
2077 	const struct rtw_chip_info *chip = rtwdev->chip;
2078 	bool above_2ss, above_3ss, above_4ss;
2079 	u8 factor = chip->txgi_factor;
2080 	u8 upper, lower;
2081 	bool mcs_rate;
2082 	u8 tx_power;
2083 
2084 	tx_power = pwr_idx_5g->bw40_base[group];
2085 
2086 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) ||
2087 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
2088 		    rate <= DESC_RATEVHT4SS_MCS9);
2089 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) ||
2090 		    (rate >= DESC_RATEVHT2SS_MCS0);
2091 	above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) ||
2092 		    (rate >= DESC_RATEVHT3SS_MCS0);
2093 	above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) ||
2094 		    (rate >= DESC_RATEVHT4SS_MCS0);
2095 
2096 	if (!mcs_rate) {
2097 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
2098 		return tx_power;
2099 	}
2100 
2101 	switch (bandwidth) {
2102 	default:
2103 		WARN_ON(1);
2104 		fallthrough;
2105 	case RTW_CHANNEL_WIDTH_20:
2106 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
2107 		if (above_2ss)
2108 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
2109 		if (above_3ss)
2110 			tx_power += pwr_idx_5g->ht_3s_diff.bw20 * factor;
2111 		if (above_4ss)
2112 			tx_power += pwr_idx_5g->ht_4s_diff.bw20 * factor;
2113 		break;
2114 	case RTW_CHANNEL_WIDTH_40:
2115 		/* bw40 is the base power */
2116 		if (above_2ss)
2117 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
2118 		if (above_3ss)
2119 			tx_power += pwr_idx_5g->ht_3s_diff.bw40 * factor;
2120 		if (above_4ss)
2121 			tx_power += pwr_idx_5g->ht_4s_diff.bw40 * factor;
2122 		break;
2123 	case RTW_CHANNEL_WIDTH_80:
2124 		/* the base idx of bw80 is the average of bw40+/bw40- */
2125 		lower = pwr_idx_5g->bw40_base[group];
2126 		upper = pwr_idx_5g->bw40_base[group + 1];
2127 
2128 		tx_power = (lower + upper) / 2;
2129 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
2130 		if (above_2ss)
2131 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2132 		if (above_3ss)
2133 			tx_power += pwr_idx_5g->vht_3s_diff.bw80 * factor;
2134 		if (above_4ss)
2135 			tx_power += pwr_idx_5g->vht_4s_diff.bw80 * factor;
2136 		break;
2137 	}
2138 
2139 	return tx_power;
2140 }
2141 
2142 /* return RTW_RATE_SECTION_NUM to indicate rate is invalid */
2143 static u8 rtw_phy_rate_to_rate_section(u8 rate)
2144 {
2145 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2146 		return RTW_RATE_SECTION_CCK;
2147 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2148 		return RTW_RATE_SECTION_OFDM;
2149 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2150 		return RTW_RATE_SECTION_HT_1S;
2151 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2152 		return RTW_RATE_SECTION_HT_2S;
2153 	else if (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS23)
2154 		return RTW_RATE_SECTION_HT_3S;
2155 	else if (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31)
2156 		return RTW_RATE_SECTION_HT_4S;
2157 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2158 		return RTW_RATE_SECTION_VHT_1S;
2159 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2160 		return RTW_RATE_SECTION_VHT_2S;
2161 	else if (rate >= DESC_RATEVHT3SS_MCS0 && rate <= DESC_RATEVHT3SS_MCS9)
2162 		return RTW_RATE_SECTION_VHT_3S;
2163 	else if (rate >= DESC_RATEVHT4SS_MCS0 && rate <= DESC_RATEVHT4SS_MCS9)
2164 		return RTW_RATE_SECTION_VHT_4S;
2165 	else
2166 		return RTW_RATE_SECTION_NUM;
2167 }
2168 
2169 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2170 				     enum rtw_bandwidth bw, u8 rf_path,
2171 				     u8 rate, u8 channel, u8 regd)
2172 {
2173 	struct rtw_hal *hal = &rtwdev->hal;
2174 	u8 *cch_by_bw = hal->cch_by_bw;
2175 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
2176 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2177 	int ch_idx;
2178 	u8 cur_bw, cur_ch;
2179 	s8 cur_lmt;
2180 
2181 	if (regd > RTW_REGD_WW)
2182 		return power_limit;
2183 
2184 	if (rs == RTW_RATE_SECTION_NUM)
2185 		goto err;
2186 
2187 	/* only 20M BW with cck and ofdm */
2188 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2189 		bw = RTW_CHANNEL_WIDTH_20;
2190 
2191 	/* only 20/40M BW with ht */
2192 	if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31)
2193 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2194 
2195 	/* select min power limit among [20M BW ~ current BW] */
2196 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2197 		cur_ch = cch_by_bw[cur_bw];
2198 
2199 		ch_idx = rtw_channel_to_idx(band, cur_ch);
2200 		if (ch_idx < 0)
2201 			goto err;
2202 
2203 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2204 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2205 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2206 
2207 		power_limit = min_t(s8, cur_lmt, power_limit);
2208 	}
2209 
2210 	return power_limit;
2211 
2212 err:
2213 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2214 	     band, bw, rf_path, rate, channel);
2215 	return (s8)rtwdev->chip->max_power_index;
2216 }
2217 
2218 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2219 				   u8 rf_path, u8 rate)
2220 {
2221 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2222 	struct rtw_sar_arg arg = {
2223 		.sar_band = sar_band,
2224 		.path = rf_path,
2225 		.rs = rs,
2226 	};
2227 
2228 	if (rs == RTW_RATE_SECTION_NUM)
2229 		goto err;
2230 
2231 	return rtw_query_sar(rtwdev, &arg);
2232 
2233 err:
2234 	WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2235 	     sar_band, rf_path, rate);
2236 	return (s8)rtwdev->chip->max_power_index;
2237 }
2238 
2239 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2240 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2241 {
2242 	struct rtw_hal *hal = &rtwdev->hal;
2243 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2244 	struct rtw_txpwr_idx *pwr_idx;
2245 	u8 group, band;
2246 	u8 *base = &pwr_param->pwr_base;
2247 	s8 *offset = &pwr_param->pwr_offset;
2248 	s8 *limit = &pwr_param->pwr_limit;
2249 	s8 *remnant = &pwr_param->pwr_remnant;
2250 	s8 *sar = &pwr_param->pwr_sar;
2251 
2252 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2253 	group = rtw_get_channel_group(ch, rate);
2254 
2255 	/* base power index for 2.4G/5G */
2256 	if (IS_CH_2G_BAND(ch)) {
2257 		band = PHY_BAND_2G;
2258 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2259 						      &pwr_idx->pwr_idx_2g,
2260 						      bw, rate, group);
2261 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2262 	} else {
2263 		band = PHY_BAND_5G;
2264 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2265 						      &pwr_idx->pwr_idx_5g,
2266 						      bw, rate, group);
2267 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2268 	}
2269 
2270 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2271 					    rate, ch, regd);
2272 	*remnant = rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2273 					  dm_info->txagc_remnant_ofdm[path];
2274 	*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2275 }
2276 
2277 u8
2278 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2279 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2280 {
2281 	struct rtw_power_params pwr_param = {0};
2282 	u8 tx_power;
2283 	s8 offset;
2284 
2285 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2286 				channel, regd, &pwr_param);
2287 
2288 	tx_power = pwr_param.pwr_base;
2289 	offset = min3(pwr_param.pwr_offset,
2290 		      pwr_param.pwr_limit,
2291 		      pwr_param.pwr_sar);
2292 
2293 	if (rtwdev->chip->en_dis_dpd)
2294 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2295 
2296 	tx_power += offset + pwr_param.pwr_remnant;
2297 
2298 	if (tx_power > rtwdev->chip->max_power_index)
2299 		tx_power = rtwdev->chip->max_power_index;
2300 
2301 	return tx_power;
2302 }
2303 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2304 
2305 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2306 					     u8 ch, u8 path, u8 rs)
2307 {
2308 	struct rtw_hal *hal = &rtwdev->hal;
2309 	u8 regd = rtw_regd_get(rtwdev);
2310 	const u8 *rates;
2311 	u8 size;
2312 	u8 rate;
2313 	u8 pwr_idx;
2314 	u8 bw;
2315 	int i;
2316 
2317 	if (rs >= RTW_RATE_SECTION_NUM)
2318 		return;
2319 
2320 	rates = rtw_rate_section[rs];
2321 	size = rtw_rate_size[rs];
2322 	bw = hal->current_band_width;
2323 	for (i = 0; i < size; i++) {
2324 		rate = rates[i];
2325 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2326 						     bw, ch, regd);
2327 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2328 	}
2329 }
2330 
2331 /* set tx power level by path for each rates, note that the order of the rates
2332  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2333  * power index into a four-byte power index register, and calls set_tx_agc to
2334  * write these values into hardware
2335  */
2336 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2337 					       u8 ch, u8 path)
2338 {
2339 	struct rtw_hal *hal = &rtwdev->hal;
2340 	u8 rs;
2341 
2342 	/* do not need cck rates if we are not in 2.4G */
2343 	if (hal->current_band_type == RTW_BAND_2G)
2344 		rs = RTW_RATE_SECTION_CCK;
2345 	else
2346 		rs = RTW_RATE_SECTION_OFDM;
2347 
2348 	for (; rs < RTW_RATE_SECTION_NUM; rs++)
2349 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2350 }
2351 
2352 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2353 {
2354 	const struct rtw_chip_info *chip = rtwdev->chip;
2355 	struct rtw_hal *hal = &rtwdev->hal;
2356 	u8 path;
2357 
2358 	mutex_lock(&hal->tx_power_mutex);
2359 
2360 	for (path = 0; path < hal->rf_path_num; path++)
2361 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2362 
2363 	chip->ops->set_tx_power_index(rtwdev);
2364 	mutex_unlock(&hal->tx_power_mutex);
2365 }
2366 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2367 
2368 static void
2369 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2370 					u8 rs, u8 size, const u8 *rates)
2371 {
2372 	u8 rate;
2373 	u8 base_idx, rate_idx;
2374 	s8 base_2g, base_5g;
2375 
2376 	if (size == 10) /* VHT rates */
2377 		base_idx = rates[size - 3];
2378 	else
2379 		base_idx = rates[size - 1];
2380 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2381 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2382 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2383 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2384 	for (rate = 0; rate < size; rate++) {
2385 		rate_idx = rates[rate];
2386 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2387 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2388 	}
2389 }
2390 
2391 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2392 {
2393 	u8 path, rs;
2394 
2395 	for (path = 0; path < RTW_RF_PATH_MAX; path++)
2396 		for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2397 			rtw_phy_tx_power_by_rate_config_by_path(hal, path, rs,
2398 				rtw_rate_size[rs], rtw_rate_section[rs]);
2399 }
2400 
2401 static void
2402 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2403 {
2404 	s8 base;
2405 	u8 ch;
2406 
2407 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2408 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2409 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2410 	}
2411 
2412 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2413 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2414 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2415 	}
2416 }
2417 
2418 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2419 {
2420 	u8 regd, bw, rs;
2421 
2422 	/* default at channel 1 */
2423 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2424 
2425 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2426 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2427 			for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2428 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2429 }
2430 
2431 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2432 					u8 regd, u8 bw, u8 rs)
2433 {
2434 	struct rtw_hal *hal = &rtwdev->hal;
2435 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2436 	u8 ch;
2437 
2438 	/* 2.4G channels */
2439 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2440 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2441 
2442 	/* 5G channels */
2443 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2444 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2445 }
2446 
2447 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2448 {
2449 	struct rtw_hal *hal = &rtwdev->hal;
2450 	u8 regd, path, rate, rs, bw;
2451 
2452 	/* init tx power by rate offset */
2453 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2454 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2455 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2456 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2457 		}
2458 	}
2459 
2460 	/* init tx power limit */
2461 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2462 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2463 			for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2464 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2465 							    rs);
2466 }
2467 
2468 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2469 				struct rtw_swing_table *swing_table)
2470 {
2471 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2472 	const struct rtw_pwr_track_tbl *tbl = rfe_def->pwr_track_tbl;
2473 	u8 channel = rtwdev->hal.current_channel;
2474 
2475 	if (IS_CH_2G_BAND(channel)) {
2476 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2477 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2478 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2479 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2480 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2481 			swing_table->p[RF_PATH_C] = tbl->pwrtrk_2g_cckc_p;
2482 			swing_table->n[RF_PATH_C] = tbl->pwrtrk_2g_cckc_n;
2483 			swing_table->p[RF_PATH_D] = tbl->pwrtrk_2g_cckd_p;
2484 			swing_table->n[RF_PATH_D] = tbl->pwrtrk_2g_cckd_n;
2485 		} else {
2486 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2487 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2488 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2489 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2490 			swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p;
2491 			swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n;
2492 			swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p;
2493 			swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n;
2494 		}
2495 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2496 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2497 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2498 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2499 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2500 		swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_1];
2501 		swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_1];
2502 		swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_1];
2503 		swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_1];
2504 	} else if (IS_CH_5G_BAND_3(channel)) {
2505 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2506 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2507 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2508 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2509 		swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_2];
2510 		swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_2];
2511 		swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_2];
2512 		swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_2];
2513 	} else if (IS_CH_5G_BAND_4(channel)) {
2514 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2515 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2516 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2517 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2518 		swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_3];
2519 		swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_3];
2520 		swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_3];
2521 		swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_3];
2522 	} else {
2523 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2524 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2525 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2526 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2527 		swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p;
2528 		swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n;
2529 		swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p;
2530 		swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n;
2531 	}
2532 }
2533 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2534 
2535 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2536 {
2537 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2538 
2539 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2540 	dm_info->thermal_avg[path] =
2541 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2542 }
2543 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2544 
2545 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2546 				      u8 path)
2547 {
2548 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2549 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2550 
2551 	if (avg == thermal)
2552 		return false;
2553 
2554 	return true;
2555 }
2556 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2557 
2558 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2559 {
2560 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2561 	u8 therm_avg, therm_efuse, therm_delta;
2562 
2563 	therm_avg = dm_info->thermal_avg[path];
2564 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2565 	therm_delta = abs(therm_avg - therm_efuse);
2566 
2567 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2568 }
2569 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2570 
2571 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2572 			       struct rtw_swing_table *swing_table,
2573 			       u8 tbl_path, u8 therm_path, u8 delta)
2574 {
2575 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2576 	const u8 *delta_swing_table_idx_pos;
2577 	const u8 *delta_swing_table_idx_neg;
2578 
2579 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2580 		rtw_warn(rtwdev, "power track table overflow\n");
2581 		return 0;
2582 	}
2583 
2584 	if (!swing_table) {
2585 		rtw_warn(rtwdev, "swing table not configured\n");
2586 		return 0;
2587 	}
2588 
2589 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2590 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2591 
2592 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2593 		rtw_warn(rtwdev, "invalid swing table index\n");
2594 		return 0;
2595 	}
2596 
2597 	if (dm_info->thermal_avg[therm_path] >
2598 	    rtwdev->efuse.thermal_meter[therm_path])
2599 		return delta_swing_table_idx_pos[delta];
2600 	else
2601 		return -delta_swing_table_idx_neg[delta];
2602 }
2603 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2604 
2605 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2606 {
2607 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2608 	u8 delta_lck;
2609 
2610 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2611 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2612 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2613 		return true;
2614 	}
2615 	return false;
2616 }
2617 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2618 
2619 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2620 {
2621 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2622 	u8 delta_iqk;
2623 
2624 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2625 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2626 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2627 		return true;
2628 	}
2629 	return false;
2630 }
2631 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2632 
2633 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2634 				       enum rtw_bb_path tx_path_sel_1ss)
2635 {
2636 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2637 	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2638 	const struct rtw_chip_info *chip = rtwdev->chip;
2639 
2640 	if (tx_path_sel_1ss == path_div->current_tx_path)
2641 		return;
2642 
2643 	path_div->current_tx_path = tx_path_sel_1ss;
2644 	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2645 		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2646 	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2647 				  tx_path_sel_1ss, tx_path_sel_cck, false);
2648 }
2649 
2650 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2651 {
2652 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2653 	enum rtw_bb_path path = path_div->current_tx_path;
2654 	s32 rssi_a = 0, rssi_b = 0;
2655 
2656 	if (path_div->path_a_cnt)
2657 		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2658 	else
2659 		rssi_a = 0;
2660 	if (path_div->path_b_cnt)
2661 		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2662 	else
2663 		rssi_b = 0;
2664 
2665 	if (rssi_a != rssi_b)
2666 		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2667 
2668 	path_div->path_a_cnt = 0;
2669 	path_div->path_a_sum = 0;
2670 	path_div->path_b_cnt = 0;
2671 	path_div->path_b_sum = 0;
2672 	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2673 }
2674 
2675 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2676 {
2677 	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2678 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2679 			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2680 			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2681 		return;
2682 	}
2683 	if (rtwdev->sta_cnt == 0) {
2684 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2685 		return;
2686 	}
2687 
2688 	rtw_phy_tx_path_div_select(rtwdev);
2689 }
2690 
2691 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2692 {
2693 	const struct rtw_chip_info *chip = rtwdev->chip;
2694 
2695 	if (!chip->path_div_supported)
2696 		return;
2697 
2698 	rtw_phy_tx_path_diversity_2ss(rtwdev);
2699 }
2700