1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 *
4 * CTU CAN FD IP Core
5 *
6 * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7 * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8 * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9 * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
10 *
11 * Project advisors:
12 * Jiri Novak <jnovak@fel.cvut.cz>
13 * Pavel Pisa <pisa@cmp.felk.cvut.cz>
14 *
15 * Department of Measurement (http://meas.fel.cvut.cz/)
16 * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17 * Czech Technical University (http://www.cvut.cz/)
18 ******************************************************************************/
19
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/bitfield.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/error.h>
33 #include <linux/pm_runtime.h>
34
35 #include "ctucanfd.h"
36 #include "ctucanfd_kregs.h"
37 #include "ctucanfd_kframe.h"
38
39 #ifdef DEBUG
40 #define ctucan_netdev_dbg(ndev, args...) \
41 netdev_dbg(ndev, args)
42 #else
43 #define ctucan_netdev_dbg(...) do { } while (0)
44 #endif
45
46 #define CTUCANFD_ID 0xCAFD
47
48 /* TX buffer rotation:
49 * - when a buffer transitions to empty state, rotate order and priorities
50 * - if more buffers seem to transition at the same time, rotate by the number of buffers
51 * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
52 * priorities that way)
53 * - at frame filling, do not rotate anything, just increment buffer modulo counter
54 */
55
56 #define CTUCANFD_FLAG_RX_FFW_BUFFERED 1
57
58 #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
59 [st] = #st
60
61 enum ctucan_txtb_status {
62 TXT_NOT_EXIST = 0x0,
63 TXT_RDY = 0x1,
64 TXT_TRAN = 0x2,
65 TXT_ABTP = 0x3,
66 TXT_TOK = 0x4,
67 TXT_ERR = 0x6,
68 TXT_ABT = 0x7,
69 TXT_ETY = 0x8,
70 };
71
72 enum ctucan_txtb_command {
73 TXT_CMD_SET_EMPTY = 0x01,
74 TXT_CMD_SET_READY = 0x02,
75 TXT_CMD_SET_ABORT = 0x04
76 };
77
78 static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
79 .name = "ctu_can_fd",
80 .tseg1_min = 2,
81 .tseg1_max = 190,
82 .tseg2_min = 1,
83 .tseg2_max = 63,
84 .sjw_max = 31,
85 .brp_min = 1,
86 .brp_max = 8,
87 .brp_inc = 1,
88 };
89
90 static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
91 .name = "ctu_can_fd",
92 .tseg1_min = 2,
93 .tseg1_max = 94,
94 .tseg2_min = 1,
95 .tseg2_max = 31,
96 .sjw_max = 31,
97 .brp_min = 1,
98 .brp_max = 2,
99 .brp_inc = 1,
100 };
101
102 static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
103 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
104 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
105 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
106 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
107 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
108 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
109 };
110
ctucan_write32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)111 static void ctucan_write32_le(struct ctucan_priv *priv,
112 enum ctu_can_fd_can_registers reg, u32 val)
113 {
114 iowrite32(val, priv->mem_base + reg);
115 }
116
ctucan_write32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)117 static void ctucan_write32_be(struct ctucan_priv *priv,
118 enum ctu_can_fd_can_registers reg, u32 val)
119 {
120 iowrite32be(val, priv->mem_base + reg);
121 }
122
ctucan_read32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)123 static u32 ctucan_read32_le(struct ctucan_priv *priv,
124 enum ctu_can_fd_can_registers reg)
125 {
126 return ioread32(priv->mem_base + reg);
127 }
128
ctucan_read32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)129 static u32 ctucan_read32_be(struct ctucan_priv *priv,
130 enum ctu_can_fd_can_registers reg)
131 {
132 return ioread32be(priv->mem_base + reg);
133 }
134
ctucan_write32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)135 static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val)
136 {
137 priv->write_reg(priv, reg, val);
138 }
139
ctucan_read32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)140 static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
141 {
142 return priv->read_reg(priv, reg);
143 }
144
ctucan_write_txt_buf(struct ctucan_priv * priv,enum ctu_can_fd_can_registers buf_base,u32 offset,u32 val)145 static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
146 u32 offset, u32 val)
147 {
148 priv->write_reg(priv, buf_base + offset, val);
149 }
150
151 #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
152 #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
153
154 /**
155 * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
156 * @state: CAN controller state code
157 *
158 * Return: Pointer to string representation of the error state
159 */
ctucan_state_to_str(enum can_state state)160 static const char *ctucan_state_to_str(enum can_state state)
161 {
162 const char *txt = NULL;
163
164 if (state >= 0 && state < CAN_STATE_MAX)
165 txt = ctucan_state_strings[state];
166 return txt ? txt : "UNKNOWN";
167 }
168
169 /**
170 * ctucan_reset() - Issues software reset request to CTU CAN FD
171 * @ndev: Pointer to net_device structure
172 *
173 * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
174 */
ctucan_reset(struct net_device * ndev)175 static int ctucan_reset(struct net_device *ndev)
176 {
177 struct ctucan_priv *priv = netdev_priv(ndev);
178 int i = 100;
179
180 ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
181 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
182
183 do {
184 u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
185 ctucan_read32(priv, CTUCANFD_DEVICE_ID));
186
187 if (device_id == 0xCAFD)
188 return 0;
189 if (!i--) {
190 netdev_warn(ndev, "device did not leave reset\n");
191 return -ETIMEDOUT;
192 }
193 usleep_range(100, 200);
194 } while (1);
195 }
196
197 /**
198 * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
199 * @ndev: Pointer to net_device structure
200 * @bt: Pointer to Bit timing structure
201 * @nominal: True - Nominal bit timing, False - Data bit timing
202 *
203 * Return: 0 - OK, -%EPERM if controller is enabled
204 */
ctucan_set_btr(struct net_device * ndev,struct can_bittiming * bt,bool nominal)205 static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
206 {
207 struct ctucan_priv *priv = netdev_priv(ndev);
208 int max_ph1_len = 31;
209 u32 btr = 0;
210 u32 prop_seg = bt->prop_seg;
211 u32 phase_seg1 = bt->phase_seg1;
212
213 if (CTU_CAN_FD_ENABLED(priv)) {
214 netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
215 return -EPERM;
216 }
217
218 if (nominal)
219 max_ph1_len = 63;
220
221 /* The timing calculation functions have only constraints on tseg1, which is prop_seg +
222 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
223 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
224 * values here.
225 */
226 if (phase_seg1 > max_ph1_len) {
227 prop_seg += phase_seg1 - max_ph1_len;
228 phase_seg1 = max_ph1_len;
229 bt->prop_seg = prop_seg;
230 bt->phase_seg1 = phase_seg1;
231 }
232
233 if (nominal) {
234 btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
235 btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
236 btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
237 btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
238 btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
239
240 ctucan_write32(priv, CTUCANFD_BTR, btr);
241 } else {
242 btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
243 btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
244 btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
245 btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
246 btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
247
248 ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
249 }
250
251 return 0;
252 }
253
254 /**
255 * ctucan_set_bittiming() - CAN set nominal bit timing routine
256 * @ndev: Pointer to net_device structure
257 *
258 * Return: 0 on success, -%EPERM on error
259 */
ctucan_set_bittiming(struct net_device * ndev)260 static int ctucan_set_bittiming(struct net_device *ndev)
261 {
262 struct ctucan_priv *priv = netdev_priv(ndev);
263 struct can_bittiming *bt = &priv->can.bittiming;
264
265 /* Note that bt may be modified here */
266 return ctucan_set_btr(ndev, bt, true);
267 }
268
269 /**
270 * ctucan_set_data_bittiming() - CAN set data bit timing routine
271 * @ndev: Pointer to net_device structure
272 *
273 * Return: 0 on success, -%EPERM on error
274 */
ctucan_set_data_bittiming(struct net_device * ndev)275 static int ctucan_set_data_bittiming(struct net_device *ndev)
276 {
277 struct ctucan_priv *priv = netdev_priv(ndev);
278 struct can_bittiming *dbt = &priv->can.data_bittiming;
279
280 /* Note that dbt may be modified here */
281 return ctucan_set_btr(ndev, dbt, false);
282 }
283
284 /**
285 * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
286 * @ndev: Pointer to net_device structure
287 *
288 * Return: 0 on success, -%EPERM if controller is enabled
289 */
ctucan_set_secondary_sample_point(struct net_device * ndev)290 static int ctucan_set_secondary_sample_point(struct net_device *ndev)
291 {
292 struct ctucan_priv *priv = netdev_priv(ndev);
293 struct can_bittiming *dbt = &priv->can.data_bittiming;
294 int ssp_offset = 0;
295 u32 ssp_cfg = 0; /* No SSP by default */
296
297 if (CTU_CAN_FD_ENABLED(priv)) {
298 netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
299 return -EPERM;
300 }
301
302 /* Use SSP for bit-rates above 1 Mbits/s */
303 if (dbt->bitrate > 1000000) {
304 /* Calculate SSP in minimal time quanta */
305 ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
306
307 if (ssp_offset > 127) {
308 netdev_warn(ndev, "SSP offset saturated to 127\n");
309 ssp_offset = 127;
310 }
311
312 ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
313 ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
314 }
315
316 ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
317
318 return 0;
319 }
320
321 /**
322 * ctucan_set_mode() - Sets CTU CAN FDs mode
323 * @priv: Pointer to private data
324 * @mode: Pointer to controller modes to be set
325 */
ctucan_set_mode(struct ctucan_priv * priv,const struct can_ctrlmode * mode)326 static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
327 {
328 u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
329
330 mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
331 (mode_reg | REG_MODE_ILBP) :
332 (mode_reg & ~REG_MODE_ILBP);
333
334 mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
335 (mode_reg | REG_MODE_BMM) :
336 (mode_reg & ~REG_MODE_BMM);
337
338 mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
339 (mode_reg | REG_MODE_FDE) :
340 (mode_reg & ~REG_MODE_FDE);
341
342 mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
343 (mode_reg | REG_MODE_ACF) :
344 (mode_reg & ~REG_MODE_ACF);
345
346 mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
347 (mode_reg | REG_MODE_NISOFD) :
348 (mode_reg & ~REG_MODE_NISOFD);
349
350 /* One shot mode supported indirectly via Retransmit limit */
351 mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
352 mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
353 (mode_reg | REG_MODE_RTRLE) :
354 (mode_reg & ~REG_MODE_RTRLE);
355
356 /* Some bits fixed:
357 * TSTM - Off, User shall not be able to change REC/TEC by hand during operation
358 */
359 mode_reg &= ~REG_MODE_TSTM;
360
361 ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
362 }
363
364 /**
365 * ctucan_chip_start() - This routine starts the driver
366 * @ndev: Pointer to net_device structure
367 *
368 * Routine expects that chip is in reset state. It setups initial
369 * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
370 * switches core to operational mode and changes controller
371 * state to %CAN_STATE_STOPPED.
372 *
373 * Return: 0 on success and failure value on error
374 */
ctucan_chip_start(struct net_device * ndev)375 static int ctucan_chip_start(struct net_device *ndev)
376 {
377 struct ctucan_priv *priv = netdev_priv(ndev);
378 u32 int_ena, int_msk;
379 u32 mode_reg;
380 int err;
381 struct can_ctrlmode mode;
382
383 priv->txb_prio = 0x01234567;
384 priv->txb_head = 0;
385 priv->txb_tail = 0;
386 ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
387
388 /* Configure bit-rates and ssp */
389 err = ctucan_set_bittiming(ndev);
390 if (err < 0)
391 return err;
392
393 err = ctucan_set_data_bittiming(ndev);
394 if (err < 0)
395 return err;
396
397 err = ctucan_set_secondary_sample_point(ndev);
398 if (err < 0)
399 return err;
400
401 /* Configure modes */
402 mode.flags = priv->can.ctrlmode;
403 mode.mask = 0xFFFFFFFF;
404 ctucan_set_mode(priv, &mode);
405
406 /* Configure interrupts */
407 int_ena = REG_INT_STAT_RBNEI |
408 REG_INT_STAT_TXBHCI |
409 REG_INT_STAT_EWLI |
410 REG_INT_STAT_FCSI;
411
412 /* Bus error reporting -> Allow Error/Arb.lost interrupts */
413 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
414 int_ena |= REG_INT_STAT_ALI |
415 REG_INT_STAT_BEI;
416 }
417
418 int_msk = ~int_ena; /* Mask all disabled interrupts */
419
420 /* It's after reset, so there is no need to clear anything */
421 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
422 ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
423
424 /* Controller enters ERROR_ACTIVE on initial FCSI */
425 priv->can.state = CAN_STATE_STOPPED;
426
427 /* Enable the controller */
428 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
429 mode_reg |= REG_MODE_ENA;
430 ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
431
432 return 0;
433 }
434
435 /**
436 * ctucan_do_set_mode() - Sets mode of the driver
437 * @ndev: Pointer to net_device structure
438 * @mode: Tells the mode of the driver
439 *
440 * This check the drivers state and calls the corresponding modes to set.
441 *
442 * Return: 0 on success and failure value on error
443 */
ctucan_do_set_mode(struct net_device * ndev,enum can_mode mode)444 static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
445 {
446 int ret;
447
448 switch (mode) {
449 case CAN_MODE_START:
450 ret = ctucan_reset(ndev);
451 if (ret < 0)
452 return ret;
453 ret = ctucan_chip_start(ndev);
454 if (ret < 0) {
455 netdev_err(ndev, "ctucan_chip_start failed!\n");
456 return ret;
457 }
458 netif_wake_queue(ndev);
459 break;
460 default:
461 ret = -EOPNOTSUPP;
462 break;
463 }
464
465 return ret;
466 }
467
468 /**
469 * ctucan_get_tx_status() - Gets status of TXT buffer
470 * @priv: Pointer to private data
471 * @buf: Buffer index (0-based)
472 *
473 * Return: Status of TXT buffer
474 */
ctucan_get_tx_status(struct ctucan_priv * priv,u8 buf)475 static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
476 {
477 u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
478 enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
479
480 return status;
481 }
482
483 /**
484 * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
485 * @priv: Pointer to private data
486 * @buf: Buffer index (0-based)
487 *
488 * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
489 * inserted to TXT Buffer
490 */
ctucan_is_txt_buf_writable(struct ctucan_priv * priv,u8 buf)491 static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
492 {
493 enum ctucan_txtb_status buf_status;
494
495 buf_status = ctucan_get_tx_status(priv, buf);
496 if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
497 return false;
498
499 return true;
500 }
501
502 /**
503 * ctucan_insert_frame() - Inserts frame to TXT buffer
504 * @priv: Pointer to private data
505 * @cf: Pointer to CAN frame to be inserted
506 * @buf: TXT Buffer index to which frame is inserted (0-based)
507 * @isfdf: True - CAN FD Frame, False - CAN 2.0 Frame
508 *
509 * Return: True - Frame inserted successfully
510 * False - Frame was not inserted due to one of:
511 * 1. TXT Buffer is not writable (it is in wrong state)
512 * 2. Invalid TXT buffer index
513 * 3. Invalid frame length
514 */
ctucan_insert_frame(struct ctucan_priv * priv,const struct canfd_frame * cf,u8 buf,bool isfdf)515 static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
516 bool isfdf)
517 {
518 u32 buf_base;
519 u32 ffw = 0;
520 u32 idw = 0;
521 unsigned int i;
522
523 if (buf >= priv->ntxbufs)
524 return false;
525
526 if (!ctucan_is_txt_buf_writable(priv, buf))
527 return false;
528
529 if (cf->len > CANFD_MAX_DLEN)
530 return false;
531
532 /* Prepare Frame format */
533 if (cf->can_id & CAN_RTR_FLAG)
534 ffw |= REG_FRAME_FORMAT_W_RTR;
535
536 if (cf->can_id & CAN_EFF_FLAG)
537 ffw |= REG_FRAME_FORMAT_W_IDE;
538
539 if (isfdf) {
540 ffw |= REG_FRAME_FORMAT_W_FDF;
541 if (cf->flags & CANFD_BRS)
542 ffw |= REG_FRAME_FORMAT_W_BRS;
543 }
544
545 ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
546
547 /* Prepare identifier */
548 if (cf->can_id & CAN_EFF_FLAG)
549 idw = cf->can_id & CAN_EFF_MASK;
550 else
551 idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
552
553 /* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
554 buf_base = (buf + 1) * 0x100;
555 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
556 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
557
558 /* Write Data payload */
559 if (!(cf->can_id & CAN_RTR_FLAG)) {
560 for (i = 0; i < cf->len; i += 4) {
561 u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
562
563 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
564 }
565 }
566
567 return true;
568 }
569
570 /**
571 * ctucan_give_txtb_cmd() - Applies command on TXT buffer
572 * @priv: Pointer to private data
573 * @cmd: Command to give
574 * @buf: Buffer index (0-based)
575 */
ctucan_give_txtb_cmd(struct ctucan_priv * priv,enum ctucan_txtb_command cmd,u8 buf)576 static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
577 {
578 u32 tx_cmd = cmd;
579
580 tx_cmd |= 1 << (buf + 8);
581 ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
582 }
583
584 /**
585 * ctucan_start_xmit() - Starts the transmission
586 * @skb: sk_buff pointer that contains data to be Txed
587 * @ndev: Pointer to net_device structure
588 *
589 * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
590 * populates its fields to start the transmission.
591 *
592 * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
593 * negative return values reserved for error cases
594 */
ctucan_start_xmit(struct sk_buff * skb,struct net_device * ndev)595 static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
596 {
597 struct ctucan_priv *priv = netdev_priv(ndev);
598 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
599 u32 txtb_id;
600 bool ok;
601 unsigned long flags;
602
603 if (can_dev_dropped_skb(ndev, skb))
604 return NETDEV_TX_OK;
605
606 if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
607 netif_stop_queue(ndev);
608 netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
609 return NETDEV_TX_BUSY;
610 }
611
612 txtb_id = priv->txb_head % priv->ntxbufs;
613 ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
614 ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
615
616 if (!ok) {
617 netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
618 kfree_skb(skb);
619 ndev->stats.tx_dropped++;
620 return NETDEV_TX_OK;
621 }
622
623 can_put_echo_skb(skb, ndev, txtb_id, 0);
624
625 spin_lock_irqsave(&priv->tx_lock, flags);
626 ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
627 priv->txb_head++;
628
629 /* Check if all TX buffers are full */
630 if (!CTU_CAN_FD_TXTNF(priv))
631 netif_stop_queue(ndev);
632
633 spin_unlock_irqrestore(&priv->tx_lock, flags);
634
635 return NETDEV_TX_OK;
636 }
637
638 /**
639 * ctucan_read_rx_frame() - Reads frame from RX FIFO
640 * @priv: Pointer to CTU CAN FD's private data
641 * @cf: Pointer to CAN frame struct
642 * @ffw: Previously read frame format word
643 *
644 * Note: Frame format word must be read separately and provided in 'ffw'.
645 */
ctucan_read_rx_frame(struct ctucan_priv * priv,struct canfd_frame * cf,u32 ffw)646 static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
647 {
648 u32 idw;
649 unsigned int i;
650 unsigned int wc;
651 unsigned int len;
652
653 idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
654 if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
655 cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
656 else
657 cf->can_id = (idw >> 18) & CAN_SFF_MASK;
658
659 /* BRS, ESI, RTR Flags */
660 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
661 if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
662 cf->flags |= CANFD_BRS;
663 if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
664 cf->flags |= CANFD_ESI;
665 } else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
666 cf->can_id |= CAN_RTR_FLAG;
667 }
668
669 wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
670
671 /* DLC */
672 if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
673 len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
674 } else {
675 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
676 len = wc << 2;
677 else
678 len = 8;
679 }
680 cf->len = len;
681 if (unlikely(len > wc * 4))
682 len = wc * 4;
683
684 /* Timestamp - Read and throw away */
685 ctucan_read32(priv, CTUCANFD_RX_DATA);
686 ctucan_read32(priv, CTUCANFD_RX_DATA);
687
688 /* Data */
689 for (i = 0; i < len; i += 4) {
690 u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
691 *(__le32 *)(cf->data + i) = cpu_to_le32(data);
692 }
693 while (unlikely(i < wc * 4)) {
694 ctucan_read32(priv, CTUCANFD_RX_DATA);
695 i += 4;
696 }
697 }
698
699 /**
700 * ctucan_rx() - Called from CAN ISR to complete the received frame processing
701 * @ndev: Pointer to net_device structure
702 *
703 * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
704 * processing and invokes "netif_receive_skb" to complete further processing.
705 * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
706 * system is out of free SKBs temporally and left code to resolve SKB allocation later,
707 * -%EAGAIN in a case of empty Rx FIFO.
708 */
ctucan_rx(struct net_device * ndev)709 static int ctucan_rx(struct net_device *ndev)
710 {
711 struct ctucan_priv *priv = netdev_priv(ndev);
712 struct net_device_stats *stats = &ndev->stats;
713 struct canfd_frame *cf;
714 struct sk_buff *skb;
715 u32 ffw;
716
717 if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
718 ffw = priv->rxfrm_first_word;
719 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
720 } else {
721 ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
722 }
723
724 if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
725 return -EAGAIN;
726
727 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
728 skb = alloc_canfd_skb(ndev, &cf);
729 else
730 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
731
732 if (unlikely(!skb)) {
733 priv->rxfrm_first_word = ffw;
734 set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
735 return 0;
736 }
737
738 ctucan_read_rx_frame(priv, cf, ffw);
739
740 stats->rx_bytes += cf->len;
741 stats->rx_packets++;
742 netif_receive_skb(skb);
743
744 return 1;
745 }
746
747 /**
748 * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
749 * @priv: Pointer to private data
750 *
751 * Returns: Fault confinement state of controller
752 */
ctucan_read_fault_state(struct ctucan_priv * priv)753 static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
754 {
755 u32 fs;
756 u32 rec_tec;
757 u32 ewl;
758
759 fs = ctucan_read32(priv, CTUCANFD_EWL);
760 rec_tec = ctucan_read32(priv, CTUCANFD_REC);
761 ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
762
763 if (FIELD_GET(REG_EWL_ERA, fs)) {
764 if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
765 ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
766 return CAN_STATE_ERROR_ACTIVE;
767 else
768 return CAN_STATE_ERROR_WARNING;
769 } else if (FIELD_GET(REG_EWL_ERP, fs)) {
770 return CAN_STATE_ERROR_PASSIVE;
771 } else if (FIELD_GET(REG_EWL_BOF, fs)) {
772 return CAN_STATE_BUS_OFF;
773 }
774
775 WARN(true, "Invalid error state");
776 return CAN_STATE_ERROR_PASSIVE;
777 }
778
779 /**
780 * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
781 * @priv: Pointer to private data
782 * @bec: Pointer to Error counter structure
783 */
ctucan_get_rec_tec(struct ctucan_priv * priv,struct can_berr_counter * bec)784 static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
785 {
786 u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
787
788 bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
789 bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
790 }
791
792 /**
793 * ctucan_err_interrupt() - Error frame ISR
794 * @ndev: net_device pointer
795 * @isr: interrupt status register value
796 *
797 * This is the CAN error interrupt and it will check the type of error and forward the error
798 * frame to upper layers.
799 */
ctucan_err_interrupt(struct net_device * ndev,u32 isr)800 static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
801 {
802 struct ctucan_priv *priv = netdev_priv(ndev);
803 struct net_device_stats *stats = &ndev->stats;
804 struct can_frame *cf;
805 struct sk_buff *skb;
806 enum can_state state;
807 struct can_berr_counter bec;
808 u32 err_capt_alc;
809 int dologerr = net_ratelimit();
810
811 ctucan_get_rec_tec(priv, &bec);
812 state = ctucan_read_fault_state(priv);
813 err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
814
815 if (dologerr)
816 netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
817 __func__, isr, bec.rxerr, bec.txerr,
818 FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
819 FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
820 FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
821 FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
822
823 skb = alloc_can_err_skb(ndev, &cf);
824
825 /* EWLI: error warning limit condition met
826 * FCSI: fault confinement state changed
827 * ALI: arbitration lost (just informative)
828 * BEI: bus error interrupt
829 */
830 if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
831 netdev_info(ndev, "state changes from %s to %s\n",
832 ctucan_state_to_str(priv->can.state),
833 ctucan_state_to_str(state));
834
835 if (priv->can.state == state)
836 netdev_warn(ndev,
837 "current and previous state is the same! (missed interrupt?)\n");
838
839 priv->can.state = state;
840 switch (state) {
841 case CAN_STATE_BUS_OFF:
842 priv->can.can_stats.bus_off++;
843 can_bus_off(ndev);
844 if (skb)
845 cf->can_id |= CAN_ERR_BUSOFF;
846 break;
847 case CAN_STATE_ERROR_PASSIVE:
848 priv->can.can_stats.error_passive++;
849 if (skb) {
850 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
851 cf->data[1] = (bec.rxerr > 127) ?
852 CAN_ERR_CRTL_RX_PASSIVE :
853 CAN_ERR_CRTL_TX_PASSIVE;
854 cf->data[6] = bec.txerr;
855 cf->data[7] = bec.rxerr;
856 }
857 break;
858 case CAN_STATE_ERROR_WARNING:
859 priv->can.can_stats.error_warning++;
860 if (skb) {
861 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
862 cf->data[1] |= (bec.txerr > bec.rxerr) ?
863 CAN_ERR_CRTL_TX_WARNING :
864 CAN_ERR_CRTL_RX_WARNING;
865 cf->data[6] = bec.txerr;
866 cf->data[7] = bec.rxerr;
867 }
868 break;
869 case CAN_STATE_ERROR_ACTIVE:
870 cf->can_id |= CAN_ERR_CNT;
871 cf->data[1] = CAN_ERR_CRTL_ACTIVE;
872 cf->data[6] = bec.txerr;
873 cf->data[7] = bec.rxerr;
874 break;
875 default:
876 netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
877 state, ctucan_state_to_str(state));
878 break;
879 }
880 }
881
882 /* Check for Arbitration Lost interrupt */
883 if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
884 if (dologerr)
885 netdev_info(ndev, "arbitration lost\n");
886 priv->can.can_stats.arbitration_lost++;
887 if (skb) {
888 cf->can_id |= CAN_ERR_LOSTARB;
889 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
890 }
891 }
892
893 /* Check for Bus Error interrupt */
894 if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
895 netdev_info(ndev, "bus error\n");
896 priv->can.can_stats.bus_error++;
897 stats->rx_errors++;
898 if (skb) {
899 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
900 cf->data[2] = CAN_ERR_PROT_UNSPEC;
901 cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
902 }
903 }
904
905 if (skb) {
906 stats->rx_packets++;
907 stats->rx_bytes += cf->can_dlc;
908 netif_rx(skb);
909 }
910 }
911
912 /**
913 * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
914 * @napi: NAPI structure pointer
915 * @quota: Max number of rx packets to be processed.
916 *
917 * This is the poll routine for rx part. It will process the packets maximux quota value.
918 *
919 * Return: Number of packets received
920 */
ctucan_rx_poll(struct napi_struct * napi,int quota)921 static int ctucan_rx_poll(struct napi_struct *napi, int quota)
922 {
923 struct net_device *ndev = napi->dev;
924 struct ctucan_priv *priv = netdev_priv(ndev);
925 int work_done = 0;
926 u32 status;
927 u32 framecnt;
928 int res = 1;
929
930 framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
931 while (framecnt && work_done < quota && res > 0) {
932 res = ctucan_rx(ndev);
933 work_done++;
934 framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
935 }
936
937 /* Check for RX FIFO Overflow */
938 status = ctucan_read32(priv, CTUCANFD_STATUS);
939 if (FIELD_GET(REG_STATUS_DOR, status)) {
940 struct net_device_stats *stats = &ndev->stats;
941 struct can_frame *cf;
942 struct sk_buff *skb;
943
944 netdev_info(ndev, "rx_poll: rx fifo overflow\n");
945 stats->rx_over_errors++;
946 stats->rx_errors++;
947 skb = alloc_can_err_skb(ndev, &cf);
948 if (skb) {
949 cf->can_id |= CAN_ERR_CRTL;
950 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
951 stats->rx_packets++;
952 stats->rx_bytes += cf->can_dlc;
953 netif_rx(skb);
954 }
955
956 /* Clear Data Overrun */
957 ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
958 }
959
960 if (!framecnt && res != 0) {
961 if (napi_complete_done(napi, work_done)) {
962 /* Clear and enable RBNEI. It is level-triggered, so
963 * there is no race condition.
964 */
965 ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
966 ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
967 }
968 }
969
970 return work_done;
971 }
972
973 /**
974 * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
975 * @ndev: net_device pointer
976 */
ctucan_rotate_txb_prio(struct net_device * ndev)977 static void ctucan_rotate_txb_prio(struct net_device *ndev)
978 {
979 struct ctucan_priv *priv = netdev_priv(ndev);
980 u32 prio = priv->txb_prio;
981
982 prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
983 ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
984 priv->txb_prio = prio;
985 ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
986 }
987
988 /**
989 * ctucan_tx_interrupt() - Tx done Isr
990 * @ndev: net_device pointer
991 */
ctucan_tx_interrupt(struct net_device * ndev)992 static void ctucan_tx_interrupt(struct net_device *ndev)
993 {
994 struct ctucan_priv *priv = netdev_priv(ndev);
995 struct net_device_stats *stats = &ndev->stats;
996 bool first = true;
997 bool some_buffers_processed;
998 unsigned long flags;
999 enum ctucan_txtb_status txtb_status;
1000 u32 txtb_id;
1001
1002 /* read tx_status
1003 * if txb[n].finished (bit 2)
1004 * if ok -> echo
1005 * if error / aborted -> ?? (find how to handle oneshot mode)
1006 * txb_tail++
1007 */
1008 do {
1009 spin_lock_irqsave(&priv->tx_lock, flags);
1010
1011 some_buffers_processed = false;
1012 while ((int)(priv->txb_head - priv->txb_tail) > 0) {
1013 txtb_id = priv->txb_tail % priv->ntxbufs;
1014 txtb_status = ctucan_get_tx_status(priv, txtb_id);
1015
1016 ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
1017
1018 switch (txtb_status) {
1019 case TXT_TOK:
1020 ctucan_netdev_dbg(ndev, "TXT_OK\n");
1021 stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
1022 stats->tx_packets++;
1023 break;
1024 case TXT_ERR:
1025 /* This indicated that retransmit limit has been reached. Obviously
1026 * we should not echo the frame, but also not indicate any kind of
1027 * error. If desired, it was already reported (possible multiple
1028 * times) on each arbitration lost.
1029 */
1030 netdev_warn(ndev, "TXB in Error state\n");
1031 can_free_echo_skb(ndev, txtb_id, NULL);
1032 stats->tx_dropped++;
1033 break;
1034 case TXT_ABT:
1035 /* Same as for TXT_ERR, only with different cause. We *could*
1036 * re-queue the frame, but multiqueue/abort is not supported yet
1037 * anyway.
1038 */
1039 netdev_warn(ndev, "TXB in Aborted state\n");
1040 can_free_echo_skb(ndev, txtb_id, NULL);
1041 stats->tx_dropped++;
1042 break;
1043 default:
1044 /* Bug only if the first buffer is not finished, otherwise it is
1045 * pretty much expected.
1046 */
1047 if (first) {
1048 netdev_err(ndev,
1049 "BUG: TXB#%u not in a finished state (0x%x)!\n",
1050 txtb_id, txtb_status);
1051 spin_unlock_irqrestore(&priv->tx_lock, flags);
1052 /* do not clear nor wake */
1053 return;
1054 }
1055 goto clear;
1056 }
1057 priv->txb_tail++;
1058 first = false;
1059 some_buffers_processed = true;
1060 /* Adjust priorities *before* marking the buffer as empty. */
1061 ctucan_rotate_txb_prio(ndev);
1062 ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
1063 }
1064 clear:
1065 spin_unlock_irqrestore(&priv->tx_lock, flags);
1066
1067 /* If no buffers were processed this time, we cannot clear - that would introduce
1068 * a race condition.
1069 */
1070 if (some_buffers_processed) {
1071 /* Clear the interrupt again. We do not want to receive again interrupt for
1072 * the buffer already handled. If it is the last finished one then it would
1073 * cause log of spurious interrupt.
1074 */
1075 ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
1076 }
1077 } while (some_buffers_processed);
1078
1079 spin_lock_irqsave(&priv->tx_lock, flags);
1080
1081 /* Check if at least one TX buffer is free */
1082 if (CTU_CAN_FD_TXTNF(priv))
1083 netif_wake_queue(ndev);
1084
1085 spin_unlock_irqrestore(&priv->tx_lock, flags);
1086 }
1087
1088 /**
1089 * ctucan_interrupt() - CAN Isr
1090 * @irq: irq number
1091 * @dev_id: device id pointer
1092 *
1093 * This is the CTU CAN FD ISR. It checks for the type of interrupt
1094 * and invokes the corresponding ISR.
1095 *
1096 * Return:
1097 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1098 */
ctucan_interrupt(int irq,void * dev_id)1099 static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
1100 {
1101 struct net_device *ndev = (struct net_device *)dev_id;
1102 struct ctucan_priv *priv = netdev_priv(ndev);
1103 u32 isr, icr;
1104 u32 imask;
1105 int irq_loops;
1106
1107 for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
1108 /* Get the interrupt status */
1109 isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
1110
1111 if (!isr)
1112 return irq_loops ? IRQ_HANDLED : IRQ_NONE;
1113
1114 /* Receive Buffer Not Empty Interrupt */
1115 if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
1116 ctucan_netdev_dbg(ndev, "RXBNEI\n");
1117 /* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1118 * another IRQ fires, RBNEI will always be 0 (masked).
1119 */
1120 icr = REG_INT_STAT_RBNEI;
1121 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
1122 ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1123 napi_schedule(&priv->napi);
1124 }
1125
1126 /* TXT Buffer HW Command Interrupt */
1127 if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1128 ctucan_netdev_dbg(ndev, "TXBHCI\n");
1129 /* Cleared inside */
1130 ctucan_tx_interrupt(ndev);
1131 }
1132
1133 /* Error interrupts */
1134 if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
1135 FIELD_GET(REG_INT_STAT_FCSI, isr) ||
1136 FIELD_GET(REG_INT_STAT_ALI, isr)) {
1137 icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
1138
1139 ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
1140 ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1141 ctucan_err_interrupt(ndev, isr);
1142 }
1143 /* Ignore RI, TI, LFI, RFI, BSI */
1144 }
1145
1146 netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
1147
1148 if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1149 int i;
1150
1151 netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
1152 priv->txb_head, priv->txb_tail);
1153 for (i = 0; i < priv->ntxbufs; i++) {
1154 u32 status = ctucan_get_tx_status(priv, i);
1155
1156 netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
1157 }
1158 }
1159
1160 imask = 0xffffffff;
1161 ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
1162 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
1163
1164 return IRQ_HANDLED;
1165 }
1166
1167 /**
1168 * ctucan_chip_stop() - Driver stop routine
1169 * @ndev: Pointer to net_device structure
1170 *
1171 * This is the drivers stop routine. It will disable the
1172 * interrupts and disable the controller.
1173 */
ctucan_chip_stop(struct net_device * ndev)1174 static void ctucan_chip_stop(struct net_device *ndev)
1175 {
1176 struct ctucan_priv *priv = netdev_priv(ndev);
1177 u32 mask = 0xffffffff;
1178 u32 mode;
1179
1180 /* Disable interrupts and disable CAN */
1181 ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
1182 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
1183 mode = ctucan_read32(priv, CTUCANFD_MODE);
1184 mode &= ~REG_MODE_ENA;
1185 ctucan_write32(priv, CTUCANFD_MODE, mode);
1186
1187 priv->can.state = CAN_STATE_STOPPED;
1188 }
1189
1190 /**
1191 * ctucan_open() - Driver open routine
1192 * @ndev: Pointer to net_device structure
1193 *
1194 * This is the driver open routine.
1195 * Return: 0 on success and failure value on error
1196 */
ctucan_open(struct net_device * ndev)1197 static int ctucan_open(struct net_device *ndev)
1198 {
1199 struct ctucan_priv *priv = netdev_priv(ndev);
1200 int ret;
1201
1202 ret = pm_runtime_get_sync(priv->dev);
1203 if (ret < 0) {
1204 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1205 __func__, ret);
1206 pm_runtime_put_noidle(priv->dev);
1207 return ret;
1208 }
1209
1210 ret = ctucan_reset(ndev);
1211 if (ret < 0)
1212 goto err_reset;
1213
1214 /* Common open */
1215 ret = open_candev(ndev);
1216 if (ret) {
1217 netdev_warn(ndev, "open_candev failed!\n");
1218 goto err_open;
1219 }
1220
1221 ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
1222 if (ret < 0) {
1223 netdev_err(ndev, "irq allocation for CAN failed\n");
1224 goto err_irq;
1225 }
1226
1227 ret = ctucan_chip_start(ndev);
1228 if (ret < 0) {
1229 netdev_err(ndev, "ctucan_chip_start failed!\n");
1230 goto err_chip_start;
1231 }
1232
1233 netdev_info(ndev, "ctu_can_fd device registered\n");
1234 napi_enable(&priv->napi);
1235 netif_start_queue(ndev);
1236
1237 return 0;
1238
1239 err_chip_start:
1240 free_irq(ndev->irq, ndev);
1241 err_irq:
1242 close_candev(ndev);
1243 err_open:
1244 err_reset:
1245 pm_runtime_put(priv->dev);
1246
1247 return ret;
1248 }
1249
1250 /**
1251 * ctucan_close() - Driver close routine
1252 * @ndev: Pointer to net_device structure
1253 *
1254 * Return: 0 always
1255 */
ctucan_close(struct net_device * ndev)1256 static int ctucan_close(struct net_device *ndev)
1257 {
1258 struct ctucan_priv *priv = netdev_priv(ndev);
1259
1260 netif_stop_queue(ndev);
1261 napi_disable(&priv->napi);
1262 ctucan_chip_stop(ndev);
1263 free_irq(ndev->irq, ndev);
1264 close_candev(ndev);
1265
1266 pm_runtime_put(priv->dev);
1267
1268 return 0;
1269 }
1270
1271 /**
1272 * ctucan_get_berr_counter() - error counter routine
1273 * @ndev: Pointer to net_device structure
1274 * @bec: Pointer to can_berr_counter structure
1275 *
1276 * This is the driver error counter routine.
1277 * Return: 0 on success and failure value on error
1278 */
ctucan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1279 static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
1280 {
1281 struct ctucan_priv *priv = netdev_priv(ndev);
1282 int ret;
1283
1284 ret = pm_runtime_get_sync(priv->dev);
1285 if (ret < 0) {
1286 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
1287 pm_runtime_put_noidle(priv->dev);
1288 return ret;
1289 }
1290
1291 ctucan_get_rec_tec(priv, bec);
1292 pm_runtime_put(priv->dev);
1293
1294 return 0;
1295 }
1296
1297 static const struct net_device_ops ctucan_netdev_ops = {
1298 .ndo_open = ctucan_open,
1299 .ndo_stop = ctucan_close,
1300 .ndo_start_xmit = ctucan_start_xmit,
1301 .ndo_change_mtu = can_change_mtu,
1302 };
1303
1304 static const struct ethtool_ops ctucan_ethtool_ops = {
1305 .get_ts_info = ethtool_op_get_ts_info,
1306 };
1307
ctucan_suspend(struct device * dev)1308 int ctucan_suspend(struct device *dev)
1309 {
1310 struct net_device *ndev = dev_get_drvdata(dev);
1311 struct ctucan_priv *priv = netdev_priv(ndev);
1312
1313 if (netif_running(ndev)) {
1314 netif_stop_queue(ndev);
1315 netif_device_detach(ndev);
1316 }
1317
1318 priv->can.state = CAN_STATE_SLEEPING;
1319
1320 return 0;
1321 }
1322 EXPORT_SYMBOL(ctucan_suspend);
1323
ctucan_resume(struct device * dev)1324 int ctucan_resume(struct device *dev)
1325 {
1326 struct net_device *ndev = dev_get_drvdata(dev);
1327 struct ctucan_priv *priv = netdev_priv(ndev);
1328
1329 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1330
1331 if (netif_running(ndev)) {
1332 netif_device_attach(ndev);
1333 netif_start_queue(ndev);
1334 }
1335
1336 return 0;
1337 }
1338 EXPORT_SYMBOL(ctucan_resume);
1339
ctucan_probe_common(struct device * dev,void __iomem * addr,int irq,unsigned int ntxbufs,unsigned long can_clk_rate,int pm_enable_call,void (* set_drvdata_fnc)(struct device * dev,struct net_device * ndev))1340 int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
1341 unsigned long can_clk_rate, int pm_enable_call,
1342 void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
1343 {
1344 struct ctucan_priv *priv;
1345 struct net_device *ndev;
1346 int ret;
1347
1348 /* Create a CAN device instance */
1349 ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
1350 if (!ndev)
1351 return -ENOMEM;
1352
1353 priv = netdev_priv(ndev);
1354 spin_lock_init(&priv->tx_lock);
1355 INIT_LIST_HEAD(&priv->peers_on_pdev);
1356 priv->ntxbufs = ntxbufs;
1357 priv->dev = dev;
1358 priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
1359 priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
1360 priv->can.do_set_mode = ctucan_do_set_mode;
1361
1362 /* Needed for timing adjustment to be performed as soon as possible */
1363 priv->can.do_set_bittiming = ctucan_set_bittiming;
1364 priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
1365
1366 priv->can.do_get_berr_counter = ctucan_get_berr_counter;
1367 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
1368 | CAN_CTRLMODE_LISTENONLY
1369 | CAN_CTRLMODE_FD
1370 | CAN_CTRLMODE_PRESUME_ACK
1371 | CAN_CTRLMODE_BERR_REPORTING
1372 | CAN_CTRLMODE_FD_NON_ISO
1373 | CAN_CTRLMODE_ONE_SHOT;
1374 priv->mem_base = addr;
1375
1376 /* Get IRQ for the device */
1377 ndev->irq = irq;
1378 ndev->flags |= IFF_ECHO; /* We support local echo */
1379
1380 if (set_drvdata_fnc)
1381 set_drvdata_fnc(dev, ndev);
1382 SET_NETDEV_DEV(ndev, dev);
1383 ndev->netdev_ops = &ctucan_netdev_ops;
1384 ndev->ethtool_ops = &ctucan_ethtool_ops;
1385
1386 /* Getting the can_clk info */
1387 if (!can_clk_rate) {
1388 priv->can_clk = devm_clk_get(dev, NULL);
1389 if (IS_ERR(priv->can_clk)) {
1390 dev_err(dev, "Device clock not found.\n");
1391 ret = PTR_ERR(priv->can_clk);
1392 goto err_free;
1393 }
1394 can_clk_rate = clk_get_rate(priv->can_clk);
1395 }
1396
1397 priv->write_reg = ctucan_write32_le;
1398 priv->read_reg = ctucan_read32_le;
1399
1400 if (pm_enable_call)
1401 pm_runtime_enable(dev);
1402 ret = pm_runtime_get_sync(dev);
1403 if (ret < 0) {
1404 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1405 __func__, ret);
1406 pm_runtime_put_noidle(priv->dev);
1407 goto err_pmdisable;
1408 }
1409
1410 /* Check for big-endianity and set according IO-accessors */
1411 if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1412 priv->write_reg = ctucan_write32_be;
1413 priv->read_reg = ctucan_read32_be;
1414 if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1415 netdev_err(ndev, "CTU_CAN_FD signature not found\n");
1416 ret = -ENODEV;
1417 goto err_deviceoff;
1418 }
1419 }
1420
1421 ret = ctucan_reset(ndev);
1422 if (ret < 0)
1423 goto err_deviceoff;
1424
1425 priv->can.clock.freq = can_clk_rate;
1426
1427 netif_napi_add(ndev, &priv->napi, ctucan_rx_poll);
1428
1429 ret = register_candev(ndev);
1430 if (ret) {
1431 dev_err(dev, "fail to register failed (err=%d)\n", ret);
1432 goto err_deviceoff;
1433 }
1434
1435 pm_runtime_put(dev);
1436
1437 netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1438 priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
1439
1440 return 0;
1441
1442 err_deviceoff:
1443 pm_runtime_put(priv->dev);
1444 err_pmdisable:
1445 if (pm_enable_call)
1446 pm_runtime_disable(dev);
1447 err_free:
1448 list_del_init(&priv->peers_on_pdev);
1449 free_candev(ndev);
1450 return ret;
1451 }
1452 EXPORT_SYMBOL(ctucan_probe_common);
1453
1454 MODULE_LICENSE("GPL");
1455 MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1456 MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1457 MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1458 MODULE_DESCRIPTION("CTU CAN FD interface");
1459