1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56
57 /*
58 * FIXME: remove all knowledge of the buffer layer from the core VM
59 */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61
62 #include <asm/mman.h>
63
64 #include "swap.h"
65
66 /*
67 * Shared mappings implemented 30.11.1994. It's not fully working yet,
68 * though.
69 *
70 * Shared mappings now work. 15.8.1995 Bruno.
71 *
72 * finished 'unifying' the page and buffer cache and SMP-threaded the
73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74 *
75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76 */
77
78 /*
79 * Lock ordering:
80 *
81 * ->i_mmap_rwsem (truncate_pagecache)
82 * ->private_lock (__free_pte->block_dirty_folio)
83 * ->swap_lock (exclusive_swap_page, others)
84 * ->i_pages lock
85 *
86 * ->i_rwsem
87 * ->invalidate_lock (acquired by fs in truncate path)
88 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
89 *
90 * ->mmap_lock
91 * ->i_mmap_rwsem
92 * ->page_table_lock or pte_lock (various, mainly in memory.c)
93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
94 *
95 * ->mmap_lock
96 * ->invalidate_lock (filemap_fault)
97 * ->lock_page (filemap_fault, access_process_vm)
98 *
99 * ->i_rwsem (generic_perform_write)
100 * ->mmap_lock (fault_in_readable->do_page_fault)
101 *
102 * bdi->wb.list_lock
103 * sb_lock (fs/fs-writeback.c)
104 * ->i_pages lock (__sync_single_inode)
105 *
106 * ->i_mmap_rwsem
107 * ->anon_vma.lock (vma_merge)
108 *
109 * ->anon_vma.lock
110 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
111 *
112 * ->page_table_lock or pte_lock
113 * ->swap_lock (try_to_unmap_one)
114 * ->private_lock (try_to_unmap_one)
115 * ->i_pages lock (try_to_unmap_one)
116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)127 static void page_cache_delete(struct address_space *mapping,
128 struct folio *folio, void *shadow)
129 {
130 XA_STATE(xas, &mapping->i_pages, folio->index);
131 long nr = 1;
132
133 mapping_set_update(&xas, mapping);
134
135 xas_set_order(&xas, folio->index, folio_order(folio));
136 nr = folio_nr_pages(folio);
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146 }
147
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)148 static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150 {
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = folio_mapcount(folio);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 atomic_set(&folio->_mapcount, -1);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211
212 /*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
__filemap_remove_folio(struct folio * folio,void * shadow)217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224 }
225
filemap_free_folio(struct address_space * mapping,struct folio * folio)226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 void (*free_folio)(struct folio *);
229 int refs = 1;
230
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
234
235 if (folio_test_large(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238 }
239
240 /**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
filemap_remove_folio(struct folio * folio)248 void filemap_remove_folio(struct folio *folio)
249 {
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262 }
263
264 /*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279 {
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316 }
317
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320 {
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343
filemap_check_errors(struct address_space * mapping)344 int filemap_check_errors(struct address_space *mapping)
345 {
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357
filemap_check_and_keep_errors(struct address_space * mapping)358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366 }
367
368 /**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380 {
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394 /**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413 {
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426 {
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429
filemap_fdatawrite(struct address_space * mapping)430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438 {
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443 /**
444 * filemap_fdatawrite_range_kick - start writeback on a range
445 * @mapping: target address_space
446 * @start: index to start writeback on
447 * @end: last (inclusive) index for writeback
448 *
449 * This is a non-integrity writeback helper, to start writing back folios
450 * for the indicated range.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
filemap_fdatawrite_range_kick(struct address_space * mapping,loff_t start,loff_t end)454 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
455 loff_t end)
456 {
457 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
460
461 /**
462 * filemap_flush - mostly a non-blocking flush
463 * @mapping: target address_space
464 *
465 * This is a mostly non-blocking flush. Not suitable for data-integrity
466 * purposes - I/O may not be started against all dirty pages.
467 *
468 * Return: %0 on success, negative error code otherwise.
469 */
filemap_flush(struct address_space * mapping)470 int filemap_flush(struct address_space *mapping)
471 {
472 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
473 }
474 EXPORT_SYMBOL(filemap_flush);
475
476 /**
477 * filemap_range_has_page - check if a page exists in range.
478 * @mapping: address space within which to check
479 * @start_byte: offset in bytes where the range starts
480 * @end_byte: offset in bytes where the range ends (inclusive)
481 *
482 * Find at least one page in the range supplied, usually used to check if
483 * direct writing in this range will trigger a writeback.
484 *
485 * Return: %true if at least one page exists in the specified range,
486 * %false otherwise.
487 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)488 bool filemap_range_has_page(struct address_space *mapping,
489 loff_t start_byte, loff_t end_byte)
490 {
491 struct folio *folio;
492 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
493 pgoff_t max = end_byte >> PAGE_SHIFT;
494
495 if (end_byte < start_byte)
496 return false;
497
498 rcu_read_lock();
499 for (;;) {
500 folio = xas_find(&xas, max);
501 if (xas_retry(&xas, folio))
502 continue;
503 /* Shadow entries don't count */
504 if (xa_is_value(folio))
505 continue;
506 /*
507 * We don't need to try to pin this page; we're about to
508 * release the RCU lock anyway. It is enough to know that
509 * there was a page here recently.
510 */
511 break;
512 }
513 rcu_read_unlock();
514
515 return folio != NULL;
516 }
517 EXPORT_SYMBOL(filemap_range_has_page);
518
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)519 static void __filemap_fdatawait_range(struct address_space *mapping,
520 loff_t start_byte, loff_t end_byte)
521 {
522 pgoff_t index = start_byte >> PAGE_SHIFT;
523 pgoff_t end = end_byte >> PAGE_SHIFT;
524 struct folio_batch fbatch;
525 unsigned nr_folios;
526
527 folio_batch_init(&fbatch);
528
529 while (index <= end) {
530 unsigned i;
531
532 nr_folios = filemap_get_folios_tag(mapping, &index, end,
533 PAGECACHE_TAG_WRITEBACK, &fbatch);
534
535 if (!nr_folios)
536 break;
537
538 for (i = 0; i < nr_folios; i++) {
539 struct folio *folio = fbatch.folios[i];
540
541 folio_wait_writeback(folio);
542 }
543 folio_batch_release(&fbatch);
544 cond_resched();
545 }
546 }
547
548 /**
549 * filemap_fdatawait_range - wait for writeback to complete
550 * @mapping: address space structure to wait for
551 * @start_byte: offset in bytes where the range starts
552 * @end_byte: offset in bytes where the range ends (inclusive)
553 *
554 * Walk the list of under-writeback pages of the given address space
555 * in the given range and wait for all of them. Check error status of
556 * the address space and return it.
557 *
558 * Since the error status of the address space is cleared by this function,
559 * callers are responsible for checking the return value and handling and/or
560 * reporting the error.
561 *
562 * Return: error status of the address space.
563 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)564 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
565 loff_t end_byte)
566 {
567 __filemap_fdatawait_range(mapping, start_byte, end_byte);
568 return filemap_check_errors(mapping);
569 }
570 EXPORT_SYMBOL(filemap_fdatawait_range);
571
572 /**
573 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
574 * @mapping: address space structure to wait for
575 * @start_byte: offset in bytes where the range starts
576 * @end_byte: offset in bytes where the range ends (inclusive)
577 *
578 * Walk the list of under-writeback pages of the given address space in the
579 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
580 * this function does not clear error status of the address space.
581 *
582 * Use this function if callers don't handle errors themselves. Expected
583 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
584 * fsfreeze(8)
585 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)586 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
587 loff_t start_byte, loff_t end_byte)
588 {
589 __filemap_fdatawait_range(mapping, start_byte, end_byte);
590 return filemap_check_and_keep_errors(mapping);
591 }
592 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
593
594 /**
595 * file_fdatawait_range - wait for writeback to complete
596 * @file: file pointing to address space structure to wait for
597 * @start_byte: offset in bytes where the range starts
598 * @end_byte: offset in bytes where the range ends (inclusive)
599 *
600 * Walk the list of under-writeback pages of the address space that file
601 * refers to, in the given range and wait for all of them. Check error
602 * status of the address space vs. the file->f_wb_err cursor and return it.
603 *
604 * Since the error status of the file is advanced by this function,
605 * callers are responsible for checking the return value and handling and/or
606 * reporting the error.
607 *
608 * Return: error status of the address space vs. the file->f_wb_err cursor.
609 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)610 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
611 {
612 struct address_space *mapping = file->f_mapping;
613
614 __filemap_fdatawait_range(mapping, start_byte, end_byte);
615 return file_check_and_advance_wb_err(file);
616 }
617 EXPORT_SYMBOL(file_fdatawait_range);
618
619 /**
620 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
621 * @mapping: address space structure to wait for
622 *
623 * Walk the list of under-writeback pages of the given address space
624 * and wait for all of them. Unlike filemap_fdatawait(), this function
625 * does not clear error status of the address space.
626 *
627 * Use this function if callers don't handle errors themselves. Expected
628 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
629 * fsfreeze(8)
630 *
631 * Return: error status of the address space.
632 */
filemap_fdatawait_keep_errors(struct address_space * mapping)633 int filemap_fdatawait_keep_errors(struct address_space *mapping)
634 {
635 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
636 return filemap_check_and_keep_errors(mapping);
637 }
638 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
639
640 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)641 static bool mapping_needs_writeback(struct address_space *mapping)
642 {
643 return mapping->nrpages;
644 }
645
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)646 bool filemap_range_has_writeback(struct address_space *mapping,
647 loff_t start_byte, loff_t end_byte)
648 {
649 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
650 pgoff_t max = end_byte >> PAGE_SHIFT;
651 struct folio *folio;
652
653 if (end_byte < start_byte)
654 return false;
655
656 rcu_read_lock();
657 xas_for_each(&xas, folio, max) {
658 if (xas_retry(&xas, folio))
659 continue;
660 if (xa_is_value(folio))
661 continue;
662 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
663 folio_test_writeback(folio))
664 break;
665 }
666 rcu_read_unlock();
667 return folio != NULL;
668 }
669 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
670
671 /**
672 * filemap_write_and_wait_range - write out & wait on a file range
673 * @mapping: the address_space for the pages
674 * @lstart: offset in bytes where the range starts
675 * @lend: offset in bytes where the range ends (inclusive)
676 *
677 * Write out and wait upon file offsets lstart->lend, inclusive.
678 *
679 * Note that @lend is inclusive (describes the last byte to be written) so
680 * that this function can be used to write to the very end-of-file (end = -1).
681 *
682 * Return: error status of the address space.
683 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)684 int filemap_write_and_wait_range(struct address_space *mapping,
685 loff_t lstart, loff_t lend)
686 {
687 int err = 0, err2;
688
689 if (lend < lstart)
690 return 0;
691
692 if (mapping_needs_writeback(mapping)) {
693 err = __filemap_fdatawrite_range(mapping, lstart, lend,
694 WB_SYNC_ALL);
695 /*
696 * Even if the above returned error, the pages may be
697 * written partially (e.g. -ENOSPC), so we wait for it.
698 * But the -EIO is special case, it may indicate the worst
699 * thing (e.g. bug) happened, so we avoid waiting for it.
700 */
701 if (err != -EIO)
702 __filemap_fdatawait_range(mapping, lstart, lend);
703 }
704 err2 = filemap_check_errors(mapping);
705 if (!err)
706 err = err2;
707 return err;
708 }
709 EXPORT_SYMBOL(filemap_write_and_wait_range);
710
__filemap_set_wb_err(struct address_space * mapping,int err)711 void __filemap_set_wb_err(struct address_space *mapping, int err)
712 {
713 errseq_t eseq = errseq_set(&mapping->wb_err, err);
714
715 trace_filemap_set_wb_err(mapping, eseq);
716 }
717 EXPORT_SYMBOL(__filemap_set_wb_err);
718
719 /**
720 * file_check_and_advance_wb_err - report wb error (if any) that was previously
721 * and advance wb_err to current one
722 * @file: struct file on which the error is being reported
723 *
724 * When userland calls fsync (or something like nfsd does the equivalent), we
725 * want to report any writeback errors that occurred since the last fsync (or
726 * since the file was opened if there haven't been any).
727 *
728 * Grab the wb_err from the mapping. If it matches what we have in the file,
729 * then just quickly return 0. The file is all caught up.
730 *
731 * If it doesn't match, then take the mapping value, set the "seen" flag in
732 * it and try to swap it into place. If it works, or another task beat us
733 * to it with the new value, then update the f_wb_err and return the error
734 * portion. The error at this point must be reported via proper channels
735 * (a'la fsync, or NFS COMMIT operation, etc.).
736 *
737 * While we handle mapping->wb_err with atomic operations, the f_wb_err
738 * value is protected by the f_lock since we must ensure that it reflects
739 * the latest value swapped in for this file descriptor.
740 *
741 * Return: %0 on success, negative error code otherwise.
742 */
file_check_and_advance_wb_err(struct file * file)743 int file_check_and_advance_wb_err(struct file *file)
744 {
745 int err = 0;
746 errseq_t old = READ_ONCE(file->f_wb_err);
747 struct address_space *mapping = file->f_mapping;
748
749 /* Locklessly handle the common case where nothing has changed */
750 if (errseq_check(&mapping->wb_err, old)) {
751 /* Something changed, must use slow path */
752 spin_lock(&file->f_lock);
753 old = file->f_wb_err;
754 err = errseq_check_and_advance(&mapping->wb_err,
755 &file->f_wb_err);
756 trace_file_check_and_advance_wb_err(file, old);
757 spin_unlock(&file->f_lock);
758 }
759
760 /*
761 * We're mostly using this function as a drop in replacement for
762 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
763 * that the legacy code would have had on these flags.
764 */
765 clear_bit(AS_EIO, &mapping->flags);
766 clear_bit(AS_ENOSPC, &mapping->flags);
767 return err;
768 }
769 EXPORT_SYMBOL(file_check_and_advance_wb_err);
770
771 /**
772 * file_write_and_wait_range - write out & wait on a file range
773 * @file: file pointing to address_space with pages
774 * @lstart: offset in bytes where the range starts
775 * @lend: offset in bytes where the range ends (inclusive)
776 *
777 * Write out and wait upon file offsets lstart->lend, inclusive.
778 *
779 * Note that @lend is inclusive (describes the last byte to be written) so
780 * that this function can be used to write to the very end-of-file (end = -1).
781 *
782 * After writing out and waiting on the data, we check and advance the
783 * f_wb_err cursor to the latest value, and return any errors detected there.
784 *
785 * Return: %0 on success, negative error code otherwise.
786 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)787 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
788 {
789 int err = 0, err2;
790 struct address_space *mapping = file->f_mapping;
791
792 if (lend < lstart)
793 return 0;
794
795 if (mapping_needs_writeback(mapping)) {
796 err = __filemap_fdatawrite_range(mapping, lstart, lend,
797 WB_SYNC_ALL);
798 /* See comment of filemap_write_and_wait() */
799 if (err != -EIO)
800 __filemap_fdatawait_range(mapping, lstart, lend);
801 }
802 err2 = file_check_and_advance_wb_err(file);
803 if (!err)
804 err = err2;
805 return err;
806 }
807 EXPORT_SYMBOL(file_write_and_wait_range);
808
809 /**
810 * replace_page_cache_folio - replace a pagecache folio with a new one
811 * @old: folio to be replaced
812 * @new: folio to replace with
813 *
814 * This function replaces a folio in the pagecache with a new one. On
815 * success it acquires the pagecache reference for the new folio and
816 * drops it for the old folio. Both the old and new folios must be
817 * locked. This function does not add the new folio to the LRU, the
818 * caller must do that.
819 *
820 * The remove + add is atomic. This function cannot fail.
821 */
replace_page_cache_folio(struct folio * old,struct folio * new)822 void replace_page_cache_folio(struct folio *old, struct folio *new)
823 {
824 struct address_space *mapping = old->mapping;
825 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
826 pgoff_t offset = old->index;
827 XA_STATE(xas, &mapping->i_pages, offset);
828
829 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
830 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
831 VM_BUG_ON_FOLIO(new->mapping, new);
832
833 folio_get(new);
834 new->mapping = mapping;
835 new->index = offset;
836
837 mem_cgroup_replace_folio(old, new);
838
839 xas_lock_irq(&xas);
840 xas_store(&xas, new);
841
842 old->mapping = NULL;
843 /* hugetlb pages do not participate in page cache accounting. */
844 if (!folio_test_hugetlb(old))
845 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
846 if (!folio_test_hugetlb(new))
847 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
848 if (folio_test_swapbacked(old))
849 __lruvec_stat_sub_folio(old, NR_SHMEM);
850 if (folio_test_swapbacked(new))
851 __lruvec_stat_add_folio(new, NR_SHMEM);
852 xas_unlock_irq(&xas);
853 if (free_folio)
854 free_folio(old);
855 folio_put(old);
856 }
857 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
858
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)859 noinline int __filemap_add_folio(struct address_space *mapping,
860 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
861 {
862 XA_STATE(xas, &mapping->i_pages, index);
863 void *alloced_shadow = NULL;
864 int alloced_order = 0;
865 bool huge;
866 long nr;
867
868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
871 folio);
872 mapping_set_update(&xas, mapping);
873
874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
875 xas_set_order(&xas, index, folio_order(folio));
876 huge = folio_test_hugetlb(folio);
877 nr = folio_nr_pages(folio);
878
879 gfp &= GFP_RECLAIM_MASK;
880 folio_ref_add(folio, nr);
881 folio->mapping = mapping;
882 folio->index = xas.xa_index;
883
884 for (;;) {
885 int order = -1, split_order = 0;
886 void *entry, *old = NULL;
887
888 xas_lock_irq(&xas);
889 xas_for_each_conflict(&xas, entry) {
890 old = entry;
891 if (!xa_is_value(entry)) {
892 xas_set_err(&xas, -EEXIST);
893 goto unlock;
894 }
895 /*
896 * If a larger entry exists,
897 * it will be the first and only entry iterated.
898 */
899 if (order == -1)
900 order = xas_get_order(&xas);
901 }
902
903 /* entry may have changed before we re-acquire the lock */
904 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
905 xas_destroy(&xas);
906 alloced_order = 0;
907 }
908
909 if (old) {
910 if (order > 0 && order > folio_order(folio)) {
911 /* How to handle large swap entries? */
912 BUG_ON(shmem_mapping(mapping));
913 if (!alloced_order) {
914 split_order = order;
915 goto unlock;
916 }
917 xas_split(&xas, old, order);
918 xas_reset(&xas);
919 }
920 if (shadowp)
921 *shadowp = old;
922 }
923
924 xas_store(&xas, folio);
925 if (xas_error(&xas))
926 goto unlock;
927
928 mapping->nrpages += nr;
929
930 /* hugetlb pages do not participate in page cache accounting */
931 if (!huge) {
932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
933 if (folio_test_pmd_mappable(folio))
934 __lruvec_stat_mod_folio(folio,
935 NR_FILE_THPS, nr);
936 }
937
938 unlock:
939 xas_unlock_irq(&xas);
940
941 /* split needed, alloc here and retry. */
942 if (split_order) {
943 xas_split_alloc(&xas, old, split_order, gfp);
944 if (xas_error(&xas))
945 goto error;
946 alloced_shadow = old;
947 alloced_order = split_order;
948 xas_reset(&xas);
949 continue;
950 }
951
952 if (!xas_nomem(&xas, gfp))
953 break;
954 }
955
956 if (xas_error(&xas))
957 goto error;
958
959 trace_mm_filemap_add_to_page_cache(folio);
960 return 0;
961 error:
962 folio->mapping = NULL;
963 /* Leave page->index set: truncation relies upon it */
964 folio_put_refs(folio, nr);
965 return xas_error(&xas);
966 }
967 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
968
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)969 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
970 pgoff_t index, gfp_t gfp)
971 {
972 void *shadow = NULL;
973 int ret;
974
975 ret = mem_cgroup_charge(folio, NULL, gfp);
976 if (ret)
977 return ret;
978
979 __folio_set_locked(folio);
980 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
981 if (unlikely(ret)) {
982 mem_cgroup_uncharge(folio);
983 __folio_clear_locked(folio);
984 } else {
985 /*
986 * The folio might have been evicted from cache only
987 * recently, in which case it should be activated like
988 * any other repeatedly accessed folio.
989 * The exception is folios getting rewritten; evicting other
990 * data from the working set, only to cache data that will
991 * get overwritten with something else, is a waste of memory.
992 */
993 WARN_ON_ONCE(folio_test_active(folio));
994 if (!(gfp & __GFP_WRITE) && shadow)
995 workingset_refault(folio, shadow);
996 folio_add_lru(folio);
997 }
998 return ret;
999 }
1000 EXPORT_SYMBOL_GPL(filemap_add_folio);
1001
1002 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)1003 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1004 {
1005 int n;
1006 struct folio *folio;
1007
1008 if (cpuset_do_page_mem_spread()) {
1009 unsigned int cpuset_mems_cookie;
1010 do {
1011 cpuset_mems_cookie = read_mems_allowed_begin();
1012 n = cpuset_mem_spread_node();
1013 folio = __folio_alloc_node_noprof(gfp, order, n);
1014 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1015
1016 return folio;
1017 }
1018 return folio_alloc_noprof(gfp, order);
1019 }
1020 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1021 #endif
1022
1023 /*
1024 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1025 *
1026 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1027 *
1028 * @mapping1: the first mapping to lock
1029 * @mapping2: the second mapping to lock
1030 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1031 void filemap_invalidate_lock_two(struct address_space *mapping1,
1032 struct address_space *mapping2)
1033 {
1034 if (mapping1 > mapping2)
1035 swap(mapping1, mapping2);
1036 if (mapping1)
1037 down_write(&mapping1->invalidate_lock);
1038 if (mapping2 && mapping1 != mapping2)
1039 down_write_nested(&mapping2->invalidate_lock, 1);
1040 }
1041 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1042
1043 /*
1044 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1045 *
1046 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1047 *
1048 * @mapping1: the first mapping to unlock
1049 * @mapping2: the second mapping to unlock
1050 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1051 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1052 struct address_space *mapping2)
1053 {
1054 if (mapping1)
1055 up_write(&mapping1->invalidate_lock);
1056 if (mapping2 && mapping1 != mapping2)
1057 up_write(&mapping2->invalidate_lock);
1058 }
1059 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1060
1061 /*
1062 * In order to wait for pages to become available there must be
1063 * waitqueues associated with pages. By using a hash table of
1064 * waitqueues where the bucket discipline is to maintain all
1065 * waiters on the same queue and wake all when any of the pages
1066 * become available, and for the woken contexts to check to be
1067 * sure the appropriate page became available, this saves space
1068 * at a cost of "thundering herd" phenomena during rare hash
1069 * collisions.
1070 */
1071 #define PAGE_WAIT_TABLE_BITS 8
1072 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1073 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1074
folio_waitqueue(struct folio * folio)1075 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1076 {
1077 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1078 }
1079
pagecache_init(void)1080 void __init pagecache_init(void)
1081 {
1082 int i;
1083
1084 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1085 init_waitqueue_head(&folio_wait_table[i]);
1086
1087 page_writeback_init();
1088 }
1089
1090 /*
1091 * The page wait code treats the "wait->flags" somewhat unusually, because
1092 * we have multiple different kinds of waits, not just the usual "exclusive"
1093 * one.
1094 *
1095 * We have:
1096 *
1097 * (a) no special bits set:
1098 *
1099 * We're just waiting for the bit to be released, and when a waker
1100 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1101 * and remove it from the wait queue.
1102 *
1103 * Simple and straightforward.
1104 *
1105 * (b) WQ_FLAG_EXCLUSIVE:
1106 *
1107 * The waiter is waiting to get the lock, and only one waiter should
1108 * be woken up to avoid any thundering herd behavior. We'll set the
1109 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1110 *
1111 * This is the traditional exclusive wait.
1112 *
1113 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1114 *
1115 * The waiter is waiting to get the bit, and additionally wants the
1116 * lock to be transferred to it for fair lock behavior. If the lock
1117 * cannot be taken, we stop walking the wait queue without waking
1118 * the waiter.
1119 *
1120 * This is the "fair lock handoff" case, and in addition to setting
1121 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1122 * that it now has the lock.
1123 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1124 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1125 {
1126 unsigned int flags;
1127 struct wait_page_key *key = arg;
1128 struct wait_page_queue *wait_page
1129 = container_of(wait, struct wait_page_queue, wait);
1130
1131 if (!wake_page_match(wait_page, key))
1132 return 0;
1133
1134 /*
1135 * If it's a lock handoff wait, we get the bit for it, and
1136 * stop walking (and do not wake it up) if we can't.
1137 */
1138 flags = wait->flags;
1139 if (flags & WQ_FLAG_EXCLUSIVE) {
1140 if (test_bit(key->bit_nr, &key->folio->flags))
1141 return -1;
1142 if (flags & WQ_FLAG_CUSTOM) {
1143 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1144 return -1;
1145 flags |= WQ_FLAG_DONE;
1146 }
1147 }
1148
1149 /*
1150 * We are holding the wait-queue lock, but the waiter that
1151 * is waiting for this will be checking the flags without
1152 * any locking.
1153 *
1154 * So update the flags atomically, and wake up the waiter
1155 * afterwards to avoid any races. This store-release pairs
1156 * with the load-acquire in folio_wait_bit_common().
1157 */
1158 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1159 wake_up_state(wait->private, mode);
1160
1161 /*
1162 * Ok, we have successfully done what we're waiting for,
1163 * and we can unconditionally remove the wait entry.
1164 *
1165 * Note that this pairs with the "finish_wait()" in the
1166 * waiter, and has to be the absolute last thing we do.
1167 * After this list_del_init(&wait->entry) the wait entry
1168 * might be de-allocated and the process might even have
1169 * exited.
1170 */
1171 list_del_init_careful(&wait->entry);
1172 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1173 }
1174
folio_wake_bit(struct folio * folio,int bit_nr)1175 static void folio_wake_bit(struct folio *folio, int bit_nr)
1176 {
1177 wait_queue_head_t *q = folio_waitqueue(folio);
1178 struct wait_page_key key;
1179 unsigned long flags;
1180
1181 key.folio = folio;
1182 key.bit_nr = bit_nr;
1183 key.page_match = 0;
1184
1185 spin_lock_irqsave(&q->lock, flags);
1186 __wake_up_locked_key(q, TASK_NORMAL, &key);
1187
1188 /*
1189 * It's possible to miss clearing waiters here, when we woke our page
1190 * waiters, but the hashed waitqueue has waiters for other pages on it.
1191 * That's okay, it's a rare case. The next waker will clear it.
1192 *
1193 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1194 * other), the flag may be cleared in the course of freeing the page;
1195 * but that is not required for correctness.
1196 */
1197 if (!waitqueue_active(q) || !key.page_match)
1198 folio_clear_waiters(folio);
1199
1200 spin_unlock_irqrestore(&q->lock, flags);
1201 }
1202
1203 /*
1204 * A choice of three behaviors for folio_wait_bit_common():
1205 */
1206 enum behavior {
1207 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1208 * __folio_lock() waiting on then setting PG_locked.
1209 */
1210 SHARED, /* Hold ref to page and check the bit when woken, like
1211 * folio_wait_writeback() waiting on PG_writeback.
1212 */
1213 DROP, /* Drop ref to page before wait, no check when woken,
1214 * like folio_put_wait_locked() on PG_locked.
1215 */
1216 };
1217
1218 /*
1219 * Attempt to check (or get) the folio flag, and mark us done
1220 * if successful.
1221 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1222 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1223 struct wait_queue_entry *wait)
1224 {
1225 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1226 if (test_and_set_bit(bit_nr, &folio->flags))
1227 return false;
1228 } else if (test_bit(bit_nr, &folio->flags))
1229 return false;
1230
1231 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1232 return true;
1233 }
1234
1235 /* How many times do we accept lock stealing from under a waiter? */
1236 int sysctl_page_lock_unfairness = 5;
1237
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1239 int state, enum behavior behavior)
1240 {
1241 wait_queue_head_t *q = folio_waitqueue(folio);
1242 int unfairness = sysctl_page_lock_unfairness;
1243 struct wait_page_queue wait_page;
1244 wait_queue_entry_t *wait = &wait_page.wait;
1245 bool thrashing = false;
1246 unsigned long pflags;
1247 bool in_thrashing;
1248
1249 if (bit_nr == PG_locked &&
1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1251 delayacct_thrashing_start(&in_thrashing);
1252 psi_memstall_enter(&pflags);
1253 thrashing = true;
1254 }
1255
1256 init_wait(wait);
1257 wait->func = wake_page_function;
1258 wait_page.folio = folio;
1259 wait_page.bit_nr = bit_nr;
1260
1261 repeat:
1262 wait->flags = 0;
1263 if (behavior == EXCLUSIVE) {
1264 wait->flags = WQ_FLAG_EXCLUSIVE;
1265 if (--unfairness < 0)
1266 wait->flags |= WQ_FLAG_CUSTOM;
1267 }
1268
1269 /*
1270 * Do one last check whether we can get the
1271 * page bit synchronously.
1272 *
1273 * Do the folio_set_waiters() marking before that
1274 * to let any waker we _just_ missed know they
1275 * need to wake us up (otherwise they'll never
1276 * even go to the slow case that looks at the
1277 * page queue), and add ourselves to the wait
1278 * queue if we need to sleep.
1279 *
1280 * This part needs to be done under the queue
1281 * lock to avoid races.
1282 */
1283 spin_lock_irq(&q->lock);
1284 folio_set_waiters(folio);
1285 if (!folio_trylock_flag(folio, bit_nr, wait))
1286 __add_wait_queue_entry_tail(q, wait);
1287 spin_unlock_irq(&q->lock);
1288
1289 /*
1290 * From now on, all the logic will be based on
1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292 * see whether the page bit testing has already
1293 * been done by the wake function.
1294 *
1295 * We can drop our reference to the folio.
1296 */
1297 if (behavior == DROP)
1298 folio_put(folio);
1299
1300 /*
1301 * Note that until the "finish_wait()", or until
1302 * we see the WQ_FLAG_WOKEN flag, we need to
1303 * be very careful with the 'wait->flags', because
1304 * we may race with a waker that sets them.
1305 */
1306 for (;;) {
1307 unsigned int flags;
1308
1309 set_current_state(state);
1310
1311 /* Loop until we've been woken or interrupted */
1312 flags = smp_load_acquire(&wait->flags);
1313 if (!(flags & WQ_FLAG_WOKEN)) {
1314 if (signal_pending_state(state, current))
1315 break;
1316
1317 io_schedule();
1318 continue;
1319 }
1320
1321 /* If we were non-exclusive, we're done */
1322 if (behavior != EXCLUSIVE)
1323 break;
1324
1325 /* If the waker got the lock for us, we're done */
1326 if (flags & WQ_FLAG_DONE)
1327 break;
1328
1329 /*
1330 * Otherwise, if we're getting the lock, we need to
1331 * try to get it ourselves.
1332 *
1333 * And if that fails, we'll have to retry this all.
1334 */
1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1336 goto repeat;
1337
1338 wait->flags |= WQ_FLAG_DONE;
1339 break;
1340 }
1341
1342 /*
1343 * If a signal happened, this 'finish_wait()' may remove the last
1344 * waiter from the wait-queues, but the folio waiters bit will remain
1345 * set. That's ok. The next wakeup will take care of it, and trying
1346 * to do it here would be difficult and prone to races.
1347 */
1348 finish_wait(q, wait);
1349
1350 if (thrashing) {
1351 delayacct_thrashing_end(&in_thrashing);
1352 psi_memstall_leave(&pflags);
1353 }
1354
1355 /*
1356 * NOTE! The wait->flags weren't stable until we've done the
1357 * 'finish_wait()', and we could have exited the loop above due
1358 * to a signal, and had a wakeup event happen after the signal
1359 * test but before the 'finish_wait()'.
1360 *
1361 * So only after the finish_wait() can we reliably determine
1362 * if we got woken up or not, so we can now figure out the final
1363 * return value based on that state without races.
1364 *
1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1366 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1367 */
1368 if (behavior == EXCLUSIVE)
1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1370
1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1372 }
1373
1374 #ifdef CONFIG_MIGRATION
1375 /**
1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1377 * @entry: migration swap entry.
1378 * @ptl: already locked ptl. This function will drop the lock.
1379 *
1380 * Wait for a migration entry referencing the given page to be removed. This is
1381 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1382 * this can be called without taking a reference on the page. Instead this
1383 * should be called while holding the ptl for the migration entry referencing
1384 * the page.
1385 *
1386 * Returns after unlocking the ptl.
1387 *
1388 * This follows the same logic as folio_wait_bit_common() so see the comments
1389 * there.
1390 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1392 __releases(ptl)
1393 {
1394 struct wait_page_queue wait_page;
1395 wait_queue_entry_t *wait = &wait_page.wait;
1396 bool thrashing = false;
1397 unsigned long pflags;
1398 bool in_thrashing;
1399 wait_queue_head_t *q;
1400 struct folio *folio = pfn_swap_entry_folio(entry);
1401
1402 q = folio_waitqueue(folio);
1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1404 delayacct_thrashing_start(&in_thrashing);
1405 psi_memstall_enter(&pflags);
1406 thrashing = true;
1407 }
1408
1409 init_wait(wait);
1410 wait->func = wake_page_function;
1411 wait_page.folio = folio;
1412 wait_page.bit_nr = PG_locked;
1413 wait->flags = 0;
1414
1415 spin_lock_irq(&q->lock);
1416 folio_set_waiters(folio);
1417 if (!folio_trylock_flag(folio, PG_locked, wait))
1418 __add_wait_queue_entry_tail(q, wait);
1419 spin_unlock_irq(&q->lock);
1420
1421 /*
1422 * If a migration entry exists for the page the migration path must hold
1423 * a valid reference to the page, and it must take the ptl to remove the
1424 * migration entry. So the page is valid until the ptl is dropped.
1425 */
1426 spin_unlock(ptl);
1427
1428 for (;;) {
1429 unsigned int flags;
1430
1431 set_current_state(TASK_UNINTERRUPTIBLE);
1432
1433 /* Loop until we've been woken or interrupted */
1434 flags = smp_load_acquire(&wait->flags);
1435 if (!(flags & WQ_FLAG_WOKEN)) {
1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1437 break;
1438
1439 io_schedule();
1440 continue;
1441 }
1442 break;
1443 }
1444
1445 finish_wait(q, wait);
1446
1447 if (thrashing) {
1448 delayacct_thrashing_end(&in_thrashing);
1449 psi_memstall_leave(&pflags);
1450 }
1451 }
1452 #endif
1453
folio_wait_bit(struct folio * folio,int bit_nr)1454 void folio_wait_bit(struct folio *folio, int bit_nr)
1455 {
1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1457 }
1458 EXPORT_SYMBOL(folio_wait_bit);
1459
folio_wait_bit_killable(struct folio * folio,int bit_nr)1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1461 {
1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit_killable);
1465
1466 /**
1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1468 * @folio: The folio to wait for.
1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1470 *
1471 * The caller should hold a reference on @folio. They expect the page to
1472 * become unlocked relatively soon, but do not wish to hold up migration
1473 * (for example) by holding the reference while waiting for the folio to
1474 * come unlocked. After this function returns, the caller should not
1475 * dereference @folio.
1476 *
1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1478 */
folio_put_wait_locked(struct folio * folio,int state)1479 static int folio_put_wait_locked(struct folio *folio, int state)
1480 {
1481 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1482 }
1483
1484 /**
1485 * folio_unlock - Unlock a locked folio.
1486 * @folio: The folio.
1487 *
1488 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
folio_unlock(struct folio * folio)1493 void folio_unlock(struct folio *folio)
1494 {
1495 /* Bit 7 allows x86 to check the byte's sign bit */
1496 BUILD_BUG_ON(PG_waiters != 7);
1497 BUILD_BUG_ON(PG_locked > 7);
1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1500 folio_wake_bit(folio, PG_locked);
1501 }
1502 EXPORT_SYMBOL(folio_unlock);
1503
1504 /**
1505 * folio_end_read - End read on a folio.
1506 * @folio: The folio.
1507 * @success: True if all reads completed successfully.
1508 *
1509 * When all reads against a folio have completed, filesystems should
1510 * call this function to let the pagecache know that no more reads
1511 * are outstanding. This will unlock the folio and wake up any thread
1512 * sleeping on the lock. The folio will also be marked uptodate if all
1513 * reads succeeded.
1514 *
1515 * Context: May be called from interrupt or process context. May not be
1516 * called from NMI context.
1517 */
folio_end_read(struct folio * folio,bool success)1518 void folio_end_read(struct folio *folio, bool success)
1519 {
1520 unsigned long mask = 1 << PG_locked;
1521
1522 /* Must be in bottom byte for x86 to work */
1523 BUILD_BUG_ON(PG_uptodate > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1526
1527 if (likely(success))
1528 mask |= 1 << PG_uptodate;
1529 if (folio_xor_flags_has_waiters(folio, mask))
1530 folio_wake_bit(folio, PG_locked);
1531 }
1532 EXPORT_SYMBOL(folio_end_read);
1533
1534 /**
1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1536 * @folio: The folio.
1537 *
1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1539 * it. The folio reference held for PG_private_2 being set is released.
1540 *
1541 * This is, for example, used when a netfs folio is being written to a local
1542 * disk cache, thereby allowing writes to the cache for the same folio to be
1543 * serialised.
1544 */
folio_end_private_2(struct folio * folio)1545 void folio_end_private_2(struct folio *folio)
1546 {
1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1549 folio_wake_bit(folio, PG_private_2);
1550 folio_put(folio);
1551 }
1552 EXPORT_SYMBOL(folio_end_private_2);
1553
1554 /**
1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1556 * @folio: The folio to wait on.
1557 *
1558 * Wait for PG_private_2 to be cleared on a folio.
1559 */
folio_wait_private_2(struct folio * folio)1560 void folio_wait_private_2(struct folio *folio)
1561 {
1562 while (folio_test_private_2(folio))
1563 folio_wait_bit(folio, PG_private_2);
1564 }
1565 EXPORT_SYMBOL(folio_wait_private_2);
1566
1567 /**
1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1569 * @folio: The folio to wait on.
1570 *
1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1572 * received by the calling task.
1573 *
1574 * Return:
1575 * - 0 if successful.
1576 * - -EINTR if a fatal signal was encountered.
1577 */
folio_wait_private_2_killable(struct folio * folio)1578 int folio_wait_private_2_killable(struct folio *folio)
1579 {
1580 int ret = 0;
1581
1582 while (folio_test_private_2(folio)) {
1583 ret = folio_wait_bit_killable(folio, PG_private_2);
1584 if (ret < 0)
1585 break;
1586 }
1587
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(folio_wait_private_2_killable);
1591
1592 /*
1593 * If folio was marked as dropbehind, then pages should be dropped when writeback
1594 * completes. Do that now. If we fail, it's likely because of a big folio -
1595 * just reset dropbehind for that case and latter completions should invalidate.
1596 */
folio_end_dropbehind_write(struct folio * folio)1597 static void folio_end_dropbehind_write(struct folio *folio)
1598 {
1599 /*
1600 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1601 * but can happen if normal writeback just happens to find dirty folios
1602 * that were created as part of uncached writeback, and that writeback
1603 * would otherwise not need non-IRQ handling. Just skip the
1604 * invalidation in that case.
1605 */
1606 if (in_task() && folio_trylock(folio)) {
1607 if (folio->mapping)
1608 folio_unmap_invalidate(folio->mapping, folio, 0);
1609 folio_unlock(folio);
1610 }
1611 }
1612
1613 /**
1614 * folio_end_writeback - End writeback against a folio.
1615 * @folio: The folio.
1616 *
1617 * The folio must actually be under writeback.
1618 *
1619 * Context: May be called from process or interrupt context.
1620 */
folio_end_writeback(struct folio * folio)1621 void folio_end_writeback(struct folio *folio)
1622 {
1623 bool folio_dropbehind = false;
1624
1625 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1626
1627 /*
1628 * folio_test_clear_reclaim() could be used here but it is an
1629 * atomic operation and overkill in this particular case. Failing
1630 * to shuffle a folio marked for immediate reclaim is too mild
1631 * a gain to justify taking an atomic operation penalty at the
1632 * end of every folio writeback.
1633 */
1634 if (folio_test_reclaim(folio)) {
1635 folio_clear_reclaim(folio);
1636 folio_rotate_reclaimable(folio);
1637 }
1638
1639 /*
1640 * Writeback does not hold a folio reference of its own, relying
1641 * on truncation to wait for the clearing of PG_writeback.
1642 * But here we must make sure that the folio is not freed and
1643 * reused before the folio_wake_bit().
1644 */
1645 folio_get(folio);
1646 if (!folio_test_dirty(folio))
1647 folio_dropbehind = folio_test_clear_dropbehind(folio);
1648 if (__folio_end_writeback(folio))
1649 folio_wake_bit(folio, PG_writeback);
1650 acct_reclaim_writeback(folio);
1651
1652 if (folio_dropbehind)
1653 folio_end_dropbehind_write(folio);
1654 folio_put(folio);
1655 }
1656 EXPORT_SYMBOL(folio_end_writeback);
1657
1658 /**
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1661 */
__folio_lock(struct folio * folio)1662 void __folio_lock(struct folio *folio)
1663 {
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__folio_lock);
1668
__folio_lock_killable(struct folio * folio)1669 int __folio_lock_killable(struct folio *folio)
1670 {
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 EXCLUSIVE);
1673 }
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677 {
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1679 int ret;
1680
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
1700 }
1701
1702 /*
1703 * Return values:
1704 * 0 - folio is locked.
1705 * non-zero - folio is not locked.
1706 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1707 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1708 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1709 *
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1711 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1712 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1713 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1714 {
1715 unsigned int flags = vmf->flags;
1716
1717 if (fault_flag_allow_retry_first(flags)) {
1718 /*
1719 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1720 * released even though returning VM_FAULT_RETRY.
1721 */
1722 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1723 return VM_FAULT_RETRY;
1724
1725 release_fault_lock(vmf);
1726 if (flags & FAULT_FLAG_KILLABLE)
1727 folio_wait_locked_killable(folio);
1728 else
1729 folio_wait_locked(folio);
1730 return VM_FAULT_RETRY;
1731 }
1732 if (flags & FAULT_FLAG_KILLABLE) {
1733 bool ret;
1734
1735 ret = __folio_lock_killable(folio);
1736 if (ret) {
1737 release_fault_lock(vmf);
1738 return VM_FAULT_RETRY;
1739 }
1740 } else {
1741 __folio_lock(folio);
1742 }
1743
1744 return 0;
1745 }
1746
1747 /**
1748 * page_cache_next_miss() - Find the next gap in the page cache.
1749 * @mapping: Mapping.
1750 * @index: Index.
1751 * @max_scan: Maximum range to search.
1752 *
1753 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1754 * gap with the lowest index.
1755 *
1756 * This function may be called under the rcu_read_lock. However, this will
1757 * not atomically search a snapshot of the cache at a single point in time.
1758 * For example, if a gap is created at index 5, then subsequently a gap is
1759 * created at index 10, page_cache_next_miss covering both indices may
1760 * return 10 if called under the rcu_read_lock.
1761 *
1762 * Return: The index of the gap if found, otherwise an index outside the
1763 * range specified (in which case 'return - index >= max_scan' will be true).
1764 * In the rare case of index wrap-around, 0 will be returned.
1765 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1766 pgoff_t page_cache_next_miss(struct address_space *mapping,
1767 pgoff_t index, unsigned long max_scan)
1768 {
1769 XA_STATE(xas, &mapping->i_pages, index);
1770
1771 while (max_scan--) {
1772 void *entry = xas_next(&xas);
1773 if (!entry || xa_is_value(entry))
1774 return xas.xa_index;
1775 if (xas.xa_index == 0)
1776 return 0;
1777 }
1778
1779 return index + max_scan;
1780 }
1781 EXPORT_SYMBOL(page_cache_next_miss);
1782
1783 /**
1784 * page_cache_prev_miss() - Find the previous gap in the page cache.
1785 * @mapping: Mapping.
1786 * @index: Index.
1787 * @max_scan: Maximum range to search.
1788 *
1789 * Search the range [max(index - max_scan + 1, 0), index] for the
1790 * gap with the highest index.
1791 *
1792 * This function may be called under the rcu_read_lock. However, this will
1793 * not atomically search a snapshot of the cache at a single point in time.
1794 * For example, if a gap is created at index 10, then subsequently a gap is
1795 * created at index 5, page_cache_prev_miss() covering both indices may
1796 * return 5 if called under the rcu_read_lock.
1797 *
1798 * Return: The index of the gap if found, otherwise an index outside the
1799 * range specified (in which case 'index - return >= max_scan' will be true).
1800 * In the rare case of wrap-around, ULONG_MAX will be returned.
1801 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1802 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1803 pgoff_t index, unsigned long max_scan)
1804 {
1805 XA_STATE(xas, &mapping->i_pages, index);
1806
1807 while (max_scan--) {
1808 void *entry = xas_prev(&xas);
1809 if (!entry || xa_is_value(entry))
1810 break;
1811 if (xas.xa_index == ULONG_MAX)
1812 break;
1813 }
1814
1815 return xas.xa_index;
1816 }
1817 EXPORT_SYMBOL(page_cache_prev_miss);
1818
1819 /*
1820 * Lockless page cache protocol:
1821 * On the lookup side:
1822 * 1. Load the folio from i_pages
1823 * 2. Increment the refcount if it's not zero
1824 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1825 *
1826 * On the removal side:
1827 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1828 * B. Remove the page from i_pages
1829 * C. Return the page to the page allocator
1830 *
1831 * This means that any page may have its reference count temporarily
1832 * increased by a speculative page cache (or GUP-fast) lookup as it can
1833 * be allocated by another user before the RCU grace period expires.
1834 * Because the refcount temporarily acquired here may end up being the
1835 * last refcount on the page, any page allocation must be freeable by
1836 * folio_put().
1837 */
1838
1839 /*
1840 * filemap_get_entry - Get a page cache entry.
1841 * @mapping: the address_space to search
1842 * @index: The page cache index.
1843 *
1844 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1845 * it is returned with an increased refcount. If it is a shadow entry
1846 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1847 * it is returned without further action.
1848 *
1849 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1850 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1851 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1852 {
1853 XA_STATE(xas, &mapping->i_pages, index);
1854 struct folio *folio;
1855
1856 rcu_read_lock();
1857 repeat:
1858 xas_reset(&xas);
1859 folio = xas_load(&xas);
1860 if (xas_retry(&xas, folio))
1861 goto repeat;
1862 /*
1863 * A shadow entry of a recently evicted page, or a swap entry from
1864 * shmem/tmpfs. Return it without attempting to raise page count.
1865 */
1866 if (!folio || xa_is_value(folio))
1867 goto out;
1868
1869 if (!folio_try_get(folio))
1870 goto repeat;
1871
1872 if (unlikely(folio != xas_reload(&xas))) {
1873 folio_put(folio);
1874 goto repeat;
1875 }
1876 out:
1877 rcu_read_unlock();
1878
1879 return folio;
1880 }
1881
1882 /**
1883 * __filemap_get_folio - Find and get a reference to a folio.
1884 * @mapping: The address_space to search.
1885 * @index: The page index.
1886 * @fgp_flags: %FGP flags modify how the folio is returned.
1887 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1888 *
1889 * Looks up the page cache entry at @mapping & @index.
1890 *
1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1892 * if the %GFP flags specified for %FGP_CREAT are atomic.
1893 *
1894 * If this function returns a folio, it is returned with an increased refcount.
1895 *
1896 * Return: The found folio or an ERR_PTR() otherwise.
1897 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1898 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1899 fgf_t fgp_flags, gfp_t gfp)
1900 {
1901 struct folio *folio;
1902
1903 repeat:
1904 folio = filemap_get_entry(mapping, index);
1905 if (xa_is_value(folio))
1906 folio = NULL;
1907 if (!folio)
1908 goto no_page;
1909
1910 if (fgp_flags & FGP_LOCK) {
1911 if (fgp_flags & FGP_NOWAIT) {
1912 if (!folio_trylock(folio)) {
1913 folio_put(folio);
1914 return ERR_PTR(-EAGAIN);
1915 }
1916 } else {
1917 folio_lock(folio);
1918 }
1919
1920 /* Has the page been truncated? */
1921 if (unlikely(folio->mapping != mapping)) {
1922 folio_unlock(folio);
1923 folio_put(folio);
1924 goto repeat;
1925 }
1926 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1927 }
1928
1929 if (fgp_flags & FGP_ACCESSED)
1930 folio_mark_accessed(folio);
1931 else if (fgp_flags & FGP_WRITE) {
1932 /* Clear idle flag for buffer write */
1933 if (folio_test_idle(folio))
1934 folio_clear_idle(folio);
1935 }
1936
1937 if (fgp_flags & FGP_STABLE)
1938 folio_wait_stable(folio);
1939 no_page:
1940 if (!folio && (fgp_flags & FGP_CREAT)) {
1941 unsigned int min_order = mapping_min_folio_order(mapping);
1942 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1943 int err;
1944 index = mapping_align_index(mapping, index);
1945
1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1947 gfp |= __GFP_WRITE;
1948 if (fgp_flags & FGP_NOFS)
1949 gfp &= ~__GFP_FS;
1950 if (fgp_flags & FGP_NOWAIT) {
1951 gfp &= ~GFP_KERNEL;
1952 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1953 }
1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1955 fgp_flags |= FGP_LOCK;
1956
1957 if (order > mapping_max_folio_order(mapping))
1958 order = mapping_max_folio_order(mapping);
1959 /* If we're not aligned, allocate a smaller folio */
1960 if (index & ((1UL << order) - 1))
1961 order = __ffs(index);
1962
1963 do {
1964 gfp_t alloc_gfp = gfp;
1965
1966 err = -ENOMEM;
1967 if (order > min_order)
1968 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1969 folio = filemap_alloc_folio(alloc_gfp, order);
1970 if (!folio)
1971 continue;
1972
1973 /* Init accessed so avoid atomic mark_page_accessed later */
1974 if (fgp_flags & FGP_ACCESSED)
1975 __folio_set_referenced(folio);
1976 if (fgp_flags & FGP_DONTCACHE)
1977 __folio_set_dropbehind(folio);
1978
1979 err = filemap_add_folio(mapping, folio, index, gfp);
1980 if (!err)
1981 break;
1982 folio_put(folio);
1983 folio = NULL;
1984 } while (order-- > min_order);
1985
1986 if (err == -EEXIST)
1987 goto repeat;
1988 if (err)
1989 return ERR_PTR(err);
1990 /*
1991 * filemap_add_folio locks the page, and for mmap
1992 * we expect an unlocked page.
1993 */
1994 if (folio && (fgp_flags & FGP_FOR_MMAP))
1995 folio_unlock(folio);
1996 }
1997
1998 if (!folio)
1999 return ERR_PTR(-ENOENT);
2000 /* not an uncached lookup, clear uncached if set */
2001 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2002 folio_clear_dropbehind(folio);
2003 return folio;
2004 }
2005 EXPORT_SYMBOL(__filemap_get_folio);
2006
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2007 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2008 xa_mark_t mark)
2009 {
2010 struct folio *folio;
2011
2012 retry:
2013 if (mark == XA_PRESENT)
2014 folio = xas_find(xas, max);
2015 else
2016 folio = xas_find_marked(xas, max, mark);
2017
2018 if (xas_retry(xas, folio))
2019 goto retry;
2020 /*
2021 * A shadow entry of a recently evicted page, a swap
2022 * entry from shmem/tmpfs or a DAX entry. Return it
2023 * without attempting to raise page count.
2024 */
2025 if (!folio || xa_is_value(folio))
2026 return folio;
2027
2028 if (!folio_try_get(folio))
2029 goto reset;
2030
2031 if (unlikely(folio != xas_reload(xas))) {
2032 folio_put(folio);
2033 goto reset;
2034 }
2035
2036 return folio;
2037 reset:
2038 xas_reset(xas);
2039 goto retry;
2040 }
2041
2042 /**
2043 * find_get_entries - gang pagecache lookup
2044 * @mapping: The address_space to search
2045 * @start: The starting page cache index
2046 * @end: The final page index (inclusive).
2047 * @fbatch: Where the resulting entries are placed.
2048 * @indices: The cache indices corresponding to the entries in @entries
2049 *
2050 * find_get_entries() will search for and return a batch of entries in
2051 * the mapping. The entries are placed in @fbatch. find_get_entries()
2052 * takes a reference on any actual folios it returns.
2053 *
2054 * The entries have ascending indexes. The indices may not be consecutive
2055 * due to not-present entries or large folios.
2056 *
2057 * Any shadow entries of evicted folios, or swap entries from
2058 * shmem/tmpfs, are included in the returned array.
2059 *
2060 * Return: The number of entries which were found.
2061 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2062 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2063 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2064 {
2065 XA_STATE(xas, &mapping->i_pages, *start);
2066 struct folio *folio;
2067
2068 rcu_read_lock();
2069 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2070 indices[fbatch->nr] = xas.xa_index;
2071 if (!folio_batch_add(fbatch, folio))
2072 break;
2073 }
2074
2075 if (folio_batch_count(fbatch)) {
2076 unsigned long nr;
2077 int idx = folio_batch_count(fbatch) - 1;
2078
2079 folio = fbatch->folios[idx];
2080 if (!xa_is_value(folio))
2081 nr = folio_nr_pages(folio);
2082 else
2083 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2084 *start = round_down(indices[idx] + nr, nr);
2085 }
2086 rcu_read_unlock();
2087
2088 return folio_batch_count(fbatch);
2089 }
2090
2091 /**
2092 * find_lock_entries - Find a batch of pagecache entries.
2093 * @mapping: The address_space to search.
2094 * @start: The starting page cache index.
2095 * @end: The final page index (inclusive).
2096 * @fbatch: Where the resulting entries are placed.
2097 * @indices: The cache indices of the entries in @fbatch.
2098 *
2099 * find_lock_entries() will return a batch of entries from @mapping.
2100 * Swap, shadow and DAX entries are included. Folios are returned
2101 * locked and with an incremented refcount. Folios which are locked
2102 * by somebody else or under writeback are skipped. Folios which are
2103 * partially outside the range are not returned.
2104 *
2105 * The entries have ascending indexes. The indices may not be consecutive
2106 * due to not-present entries, large folios, folios which could not be
2107 * locked or folios under writeback.
2108 *
2109 * Return: The number of entries which were found.
2110 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2111 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2112 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2113 {
2114 XA_STATE(xas, &mapping->i_pages, *start);
2115 struct folio *folio;
2116
2117 rcu_read_lock();
2118 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2119 unsigned long base;
2120 unsigned long nr;
2121
2122 if (!xa_is_value(folio)) {
2123 nr = folio_nr_pages(folio);
2124 base = folio->index;
2125 /* Omit large folio which begins before the start */
2126 if (base < *start)
2127 goto put;
2128 /* Omit large folio which extends beyond the end */
2129 if (base + nr - 1 > end)
2130 goto put;
2131 if (!folio_trylock(folio))
2132 goto put;
2133 if (folio->mapping != mapping ||
2134 folio_test_writeback(folio))
2135 goto unlock;
2136 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2137 folio);
2138 } else {
2139 nr = 1 << xas_get_order(&xas);
2140 base = xas.xa_index & ~(nr - 1);
2141 /* Omit order>0 value which begins before the start */
2142 if (base < *start)
2143 continue;
2144 /* Omit order>0 value which extends beyond the end */
2145 if (base + nr - 1 > end)
2146 break;
2147 }
2148
2149 /* Update start now so that last update is correct on return */
2150 *start = base + nr;
2151 indices[fbatch->nr] = xas.xa_index;
2152 if (!folio_batch_add(fbatch, folio))
2153 break;
2154 continue;
2155 unlock:
2156 folio_unlock(folio);
2157 put:
2158 folio_put(folio);
2159 }
2160 rcu_read_unlock();
2161
2162 return folio_batch_count(fbatch);
2163 }
2164
2165 /**
2166 * filemap_get_folios - Get a batch of folios
2167 * @mapping: The address_space to search
2168 * @start: The starting page index
2169 * @end: The final page index (inclusive)
2170 * @fbatch: The batch to fill.
2171 *
2172 * Search for and return a batch of folios in the mapping starting at
2173 * index @start and up to index @end (inclusive). The folios are returned
2174 * in @fbatch with an elevated reference count.
2175 *
2176 * Return: The number of folios which were found.
2177 * We also update @start to index the next folio for the traversal.
2178 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2179 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2180 pgoff_t end, struct folio_batch *fbatch)
2181 {
2182 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2183 }
2184 EXPORT_SYMBOL(filemap_get_folios);
2185
2186 /**
2187 * filemap_get_folios_contig - Get a batch of contiguous folios
2188 * @mapping: The address_space to search
2189 * @start: The starting page index
2190 * @end: The final page index (inclusive)
2191 * @fbatch: The batch to fill
2192 *
2193 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2194 * except the returned folios are guaranteed to be contiguous. This may
2195 * not return all contiguous folios if the batch gets filled up.
2196 *
2197 * Return: The number of folios found.
2198 * Also update @start to be positioned for traversal of the next folio.
2199 */
2200
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2201 unsigned filemap_get_folios_contig(struct address_space *mapping,
2202 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2203 {
2204 XA_STATE(xas, &mapping->i_pages, *start);
2205 unsigned long nr;
2206 struct folio *folio;
2207
2208 rcu_read_lock();
2209
2210 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2211 folio = xas_next(&xas)) {
2212 if (xas_retry(&xas, folio))
2213 continue;
2214 /*
2215 * If the entry has been swapped out, we can stop looking.
2216 * No current caller is looking for DAX entries.
2217 */
2218 if (xa_is_value(folio))
2219 goto update_start;
2220
2221 /* If we landed in the middle of a THP, continue at its end. */
2222 if (xa_is_sibling(folio))
2223 goto update_start;
2224
2225 if (!folio_try_get(folio))
2226 goto retry;
2227
2228 if (unlikely(folio != xas_reload(&xas)))
2229 goto put_folio;
2230
2231 if (!folio_batch_add(fbatch, folio)) {
2232 nr = folio_nr_pages(folio);
2233 *start = folio->index + nr;
2234 goto out;
2235 }
2236 continue;
2237 put_folio:
2238 folio_put(folio);
2239
2240 retry:
2241 xas_reset(&xas);
2242 }
2243
2244 update_start:
2245 nr = folio_batch_count(fbatch);
2246
2247 if (nr) {
2248 folio = fbatch->folios[nr - 1];
2249 *start = folio_next_index(folio);
2250 }
2251 out:
2252 rcu_read_unlock();
2253 return folio_batch_count(fbatch);
2254 }
2255 EXPORT_SYMBOL(filemap_get_folios_contig);
2256
2257 /**
2258 * filemap_get_folios_tag - Get a batch of folios matching @tag
2259 * @mapping: The address_space to search
2260 * @start: The starting page index
2261 * @end: The final page index (inclusive)
2262 * @tag: The tag index
2263 * @fbatch: The batch to fill
2264 *
2265 * The first folio may start before @start; if it does, it will contain
2266 * @start. The final folio may extend beyond @end; if it does, it will
2267 * contain @end. The folios have ascending indices. There may be gaps
2268 * between the folios if there are indices which have no folio in the
2269 * page cache. If folios are added to or removed from the page cache
2270 * while this is running, they may or may not be found by this call.
2271 * Only returns folios that are tagged with @tag.
2272 *
2273 * Return: The number of folios found.
2274 * Also update @start to index the next folio for traversal.
2275 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2276 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2277 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2278 {
2279 XA_STATE(xas, &mapping->i_pages, *start);
2280 struct folio *folio;
2281
2282 rcu_read_lock();
2283 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2284 /*
2285 * Shadow entries should never be tagged, but this iteration
2286 * is lockless so there is a window for page reclaim to evict
2287 * a page we saw tagged. Skip over it.
2288 */
2289 if (xa_is_value(folio))
2290 continue;
2291 if (!folio_batch_add(fbatch, folio)) {
2292 unsigned long nr = folio_nr_pages(folio);
2293 *start = folio->index + nr;
2294 goto out;
2295 }
2296 }
2297 /*
2298 * We come here when there is no page beyond @end. We take care to not
2299 * overflow the index @start as it confuses some of the callers. This
2300 * breaks the iteration when there is a page at index -1 but that is
2301 * already broke anyway.
2302 */
2303 if (end == (pgoff_t)-1)
2304 *start = (pgoff_t)-1;
2305 else
2306 *start = end + 1;
2307 out:
2308 rcu_read_unlock();
2309
2310 return folio_batch_count(fbatch);
2311 }
2312 EXPORT_SYMBOL(filemap_get_folios_tag);
2313
2314 /*
2315 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2316 * a _large_ part of the i/o request. Imagine the worst scenario:
2317 *
2318 * ---R__________________________________________B__________
2319 * ^ reading here ^ bad block(assume 4k)
2320 *
2321 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2322 * => failing the whole request => read(R) => read(R+1) =>
2323 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2324 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2325 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2326 *
2327 * It is going insane. Fix it by quickly scaling down the readahead size.
2328 */
shrink_readahead_size_eio(struct file_ra_state * ra)2329 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2330 {
2331 ra->ra_pages /= 4;
2332 }
2333
2334 /*
2335 * filemap_get_read_batch - Get a batch of folios for read
2336 *
2337 * Get a batch of folios which represent a contiguous range of bytes in
2338 * the file. No exceptional entries will be returned. If @index is in
2339 * the middle of a folio, the entire folio will be returned. The last
2340 * folio in the batch may have the readahead flag set or the uptodate flag
2341 * clear so that the caller can take the appropriate action.
2342 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2343 static void filemap_get_read_batch(struct address_space *mapping,
2344 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2345 {
2346 XA_STATE(xas, &mapping->i_pages, index);
2347 struct folio *folio;
2348
2349 rcu_read_lock();
2350 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2351 if (xas_retry(&xas, folio))
2352 continue;
2353 if (xas.xa_index > max || xa_is_value(folio))
2354 break;
2355 if (xa_is_sibling(folio))
2356 break;
2357 if (!folio_try_get(folio))
2358 goto retry;
2359
2360 if (unlikely(folio != xas_reload(&xas)))
2361 goto put_folio;
2362
2363 if (!folio_batch_add(fbatch, folio))
2364 break;
2365 if (!folio_test_uptodate(folio))
2366 break;
2367 if (folio_test_readahead(folio))
2368 break;
2369 xas_advance(&xas, folio_next_index(folio) - 1);
2370 continue;
2371 put_folio:
2372 folio_put(folio);
2373 retry:
2374 xas_reset(&xas);
2375 }
2376 rcu_read_unlock();
2377 }
2378
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2379 static int filemap_read_folio(struct file *file, filler_t filler,
2380 struct folio *folio)
2381 {
2382 bool workingset = folio_test_workingset(folio);
2383 unsigned long pflags;
2384 int error;
2385
2386 /* Start the actual read. The read will unlock the page. */
2387 if (unlikely(workingset))
2388 psi_memstall_enter(&pflags);
2389 error = filler(file, folio);
2390 if (unlikely(workingset))
2391 psi_memstall_leave(&pflags);
2392 if (error)
2393 return error;
2394
2395 error = folio_wait_locked_killable(folio);
2396 if (error)
2397 return error;
2398 if (folio_test_uptodate(folio))
2399 return 0;
2400 if (file)
2401 shrink_readahead_size_eio(&file->f_ra);
2402 return -EIO;
2403 }
2404
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2405 static bool filemap_range_uptodate(struct address_space *mapping,
2406 loff_t pos, size_t count, struct folio *folio,
2407 bool need_uptodate)
2408 {
2409 if (folio_test_uptodate(folio))
2410 return true;
2411 /* pipes can't handle partially uptodate pages */
2412 if (need_uptodate)
2413 return false;
2414 if (!mapping->a_ops->is_partially_uptodate)
2415 return false;
2416 if (mapping->host->i_blkbits >= folio_shift(folio))
2417 return false;
2418
2419 if (folio_pos(folio) > pos) {
2420 count -= folio_pos(folio) - pos;
2421 pos = 0;
2422 } else {
2423 pos -= folio_pos(folio);
2424 }
2425
2426 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2427 }
2428
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2429 static int filemap_update_page(struct kiocb *iocb,
2430 struct address_space *mapping, size_t count,
2431 struct folio *folio, bool need_uptodate)
2432 {
2433 int error;
2434
2435 if (iocb->ki_flags & IOCB_NOWAIT) {
2436 if (!filemap_invalidate_trylock_shared(mapping))
2437 return -EAGAIN;
2438 } else {
2439 filemap_invalidate_lock_shared(mapping);
2440 }
2441
2442 if (!folio_trylock(folio)) {
2443 error = -EAGAIN;
2444 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2445 goto unlock_mapping;
2446 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2447 filemap_invalidate_unlock_shared(mapping);
2448 /*
2449 * This is where we usually end up waiting for a
2450 * previously submitted readahead to finish.
2451 */
2452 folio_put_wait_locked(folio, TASK_KILLABLE);
2453 return AOP_TRUNCATED_PAGE;
2454 }
2455 error = __folio_lock_async(folio, iocb->ki_waitq);
2456 if (error)
2457 goto unlock_mapping;
2458 }
2459
2460 error = AOP_TRUNCATED_PAGE;
2461 if (!folio->mapping)
2462 goto unlock;
2463
2464 error = 0;
2465 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2466 need_uptodate))
2467 goto unlock;
2468
2469 error = -EAGAIN;
2470 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2471 goto unlock;
2472
2473 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2474 folio);
2475 goto unlock_mapping;
2476 unlock:
2477 folio_unlock(folio);
2478 unlock_mapping:
2479 filemap_invalidate_unlock_shared(mapping);
2480 if (error == AOP_TRUNCATED_PAGE)
2481 folio_put(folio);
2482 return error;
2483 }
2484
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2485 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2486 {
2487 struct address_space *mapping = iocb->ki_filp->f_mapping;
2488 struct folio *folio;
2489 int error;
2490 unsigned int min_order = mapping_min_folio_order(mapping);
2491 pgoff_t index;
2492
2493 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2494 return -EAGAIN;
2495
2496 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2497 if (!folio)
2498 return -ENOMEM;
2499 if (iocb->ki_flags & IOCB_DONTCACHE)
2500 __folio_set_dropbehind(folio);
2501
2502 /*
2503 * Protect against truncate / hole punch. Grabbing invalidate_lock
2504 * here assures we cannot instantiate and bring uptodate new
2505 * pagecache folios after evicting page cache during truncate
2506 * and before actually freeing blocks. Note that we could
2507 * release invalidate_lock after inserting the folio into
2508 * the page cache as the locked folio would then be enough to
2509 * synchronize with hole punching. But there are code paths
2510 * such as filemap_update_page() filling in partially uptodate
2511 * pages or ->readahead() that need to hold invalidate_lock
2512 * while mapping blocks for IO so let's hold the lock here as
2513 * well to keep locking rules simple.
2514 */
2515 filemap_invalidate_lock_shared(mapping);
2516 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2517 error = filemap_add_folio(mapping, folio, index,
2518 mapping_gfp_constraint(mapping, GFP_KERNEL));
2519 if (error == -EEXIST)
2520 error = AOP_TRUNCATED_PAGE;
2521 if (error)
2522 goto error;
2523
2524 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2525 folio);
2526 if (error)
2527 goto error;
2528
2529 filemap_invalidate_unlock_shared(mapping);
2530 folio_batch_add(fbatch, folio);
2531 return 0;
2532 error:
2533 filemap_invalidate_unlock_shared(mapping);
2534 folio_put(folio);
2535 return error;
2536 }
2537
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2538 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2539 struct address_space *mapping, struct folio *folio,
2540 pgoff_t last_index)
2541 {
2542 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2543
2544 if (iocb->ki_flags & IOCB_NOIO)
2545 return -EAGAIN;
2546 if (iocb->ki_flags & IOCB_DONTCACHE)
2547 ractl.dropbehind = 1;
2548 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2549 return 0;
2550 }
2551
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2552 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2553 struct folio_batch *fbatch, bool need_uptodate)
2554 {
2555 struct file *filp = iocb->ki_filp;
2556 struct address_space *mapping = filp->f_mapping;
2557 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2558 pgoff_t last_index;
2559 struct folio *folio;
2560 unsigned int flags;
2561 int err = 0;
2562
2563 /* "last_index" is the index of the page beyond the end of the read */
2564 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2565 retry:
2566 if (fatal_signal_pending(current))
2567 return -EINTR;
2568
2569 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2570 if (!folio_batch_count(fbatch)) {
2571 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2572
2573 if (iocb->ki_flags & IOCB_NOIO)
2574 return -EAGAIN;
2575 if (iocb->ki_flags & IOCB_NOWAIT)
2576 flags = memalloc_noio_save();
2577 if (iocb->ki_flags & IOCB_DONTCACHE)
2578 ractl.dropbehind = 1;
2579 page_cache_sync_ra(&ractl, last_index - index);
2580 if (iocb->ki_flags & IOCB_NOWAIT)
2581 memalloc_noio_restore(flags);
2582 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2583 }
2584 if (!folio_batch_count(fbatch)) {
2585 err = filemap_create_folio(iocb, fbatch);
2586 if (err == AOP_TRUNCATED_PAGE)
2587 goto retry;
2588 return err;
2589 }
2590
2591 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2592 if (folio_test_readahead(folio)) {
2593 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2594 if (err)
2595 goto err;
2596 }
2597 if (!folio_test_uptodate(folio)) {
2598 if ((iocb->ki_flags & IOCB_WAITQ) &&
2599 folio_batch_count(fbatch) > 1)
2600 iocb->ki_flags |= IOCB_NOWAIT;
2601 err = filemap_update_page(iocb, mapping, count, folio,
2602 need_uptodate);
2603 if (err)
2604 goto err;
2605 }
2606
2607 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2608 return 0;
2609 err:
2610 if (err < 0)
2611 folio_put(folio);
2612 if (likely(--fbatch->nr))
2613 return 0;
2614 if (err == AOP_TRUNCATED_PAGE)
2615 goto retry;
2616 return err;
2617 }
2618
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2619 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2620 {
2621 unsigned int shift = folio_shift(folio);
2622
2623 return (pos1 >> shift == pos2 >> shift);
2624 }
2625
filemap_end_dropbehind_read(struct address_space * mapping,struct folio * folio)2626 static void filemap_end_dropbehind_read(struct address_space *mapping,
2627 struct folio *folio)
2628 {
2629 if (!folio_test_dropbehind(folio))
2630 return;
2631 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2632 return;
2633 if (folio_trylock(folio)) {
2634 if (folio_test_clear_dropbehind(folio))
2635 folio_unmap_invalidate(mapping, folio, 0);
2636 folio_unlock(folio);
2637 }
2638 }
2639
2640 /**
2641 * filemap_read - Read data from the page cache.
2642 * @iocb: The iocb to read.
2643 * @iter: Destination for the data.
2644 * @already_read: Number of bytes already read by the caller.
2645 *
2646 * Copies data from the page cache. If the data is not currently present,
2647 * uses the readahead and read_folio address_space operations to fetch it.
2648 *
2649 * Return: Total number of bytes copied, including those already read by
2650 * the caller. If an error happens before any bytes are copied, returns
2651 * a negative error number.
2652 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2653 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2654 ssize_t already_read)
2655 {
2656 struct file *filp = iocb->ki_filp;
2657 struct file_ra_state *ra = &filp->f_ra;
2658 struct address_space *mapping = filp->f_mapping;
2659 struct inode *inode = mapping->host;
2660 struct folio_batch fbatch;
2661 int i, error = 0;
2662 bool writably_mapped;
2663 loff_t isize, end_offset;
2664 loff_t last_pos = ra->prev_pos;
2665
2666 if (unlikely(iocb->ki_pos < 0))
2667 return -EINVAL;
2668 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2669 return 0;
2670 if (unlikely(!iov_iter_count(iter)))
2671 return 0;
2672
2673 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2674 folio_batch_init(&fbatch);
2675
2676 do {
2677 cond_resched();
2678
2679 /*
2680 * If we've already successfully copied some data, then we
2681 * can no longer safely return -EIOCBQUEUED. Hence mark
2682 * an async read NOWAIT at that point.
2683 */
2684 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2685 iocb->ki_flags |= IOCB_NOWAIT;
2686
2687 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2688 break;
2689
2690 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2691 if (error < 0)
2692 break;
2693
2694 /*
2695 * i_size must be checked after we know the pages are Uptodate.
2696 *
2697 * Checking i_size after the check allows us to calculate
2698 * the correct value for "nr", which means the zero-filled
2699 * part of the page is not copied back to userspace (unless
2700 * another truncate extends the file - this is desired though).
2701 */
2702 isize = i_size_read(inode);
2703 if (unlikely(iocb->ki_pos >= isize))
2704 goto put_folios;
2705 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2706
2707 /*
2708 * Once we start copying data, we don't want to be touching any
2709 * cachelines that might be contended:
2710 */
2711 writably_mapped = mapping_writably_mapped(mapping);
2712
2713 /*
2714 * When a read accesses the same folio several times, only
2715 * mark it as accessed the first time.
2716 */
2717 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2718 fbatch.folios[0]))
2719 folio_mark_accessed(fbatch.folios[0]);
2720
2721 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2722 struct folio *folio = fbatch.folios[i];
2723 size_t fsize = folio_size(folio);
2724 size_t offset = iocb->ki_pos & (fsize - 1);
2725 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2726 fsize - offset);
2727 size_t copied;
2728
2729 if (end_offset < folio_pos(folio))
2730 break;
2731 if (i > 0)
2732 folio_mark_accessed(folio);
2733 /*
2734 * If users can be writing to this folio using arbitrary
2735 * virtual addresses, take care of potential aliasing
2736 * before reading the folio on the kernel side.
2737 */
2738 if (writably_mapped)
2739 flush_dcache_folio(folio);
2740
2741 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2742
2743 already_read += copied;
2744 iocb->ki_pos += copied;
2745 last_pos = iocb->ki_pos;
2746
2747 if (copied < bytes) {
2748 error = -EFAULT;
2749 break;
2750 }
2751 }
2752 put_folios:
2753 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2754 struct folio *folio = fbatch.folios[i];
2755
2756 filemap_end_dropbehind_read(mapping, folio);
2757 folio_put(folio);
2758 }
2759 folio_batch_init(&fbatch);
2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2761
2762 file_accessed(filp);
2763 ra->prev_pos = last_pos;
2764 return already_read ? already_read : error;
2765 }
2766 EXPORT_SYMBOL_GPL(filemap_read);
2767
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2768 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2769 {
2770 struct address_space *mapping = iocb->ki_filp->f_mapping;
2771 loff_t pos = iocb->ki_pos;
2772 loff_t end = pos + count - 1;
2773
2774 if (iocb->ki_flags & IOCB_NOWAIT) {
2775 if (filemap_range_needs_writeback(mapping, pos, end))
2776 return -EAGAIN;
2777 return 0;
2778 }
2779
2780 return filemap_write_and_wait_range(mapping, pos, end);
2781 }
2782 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2783
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2784 int filemap_invalidate_pages(struct address_space *mapping,
2785 loff_t pos, loff_t end, bool nowait)
2786 {
2787 int ret;
2788
2789 if (nowait) {
2790 /* we could block if there are any pages in the range */
2791 if (filemap_range_has_page(mapping, pos, end))
2792 return -EAGAIN;
2793 } else {
2794 ret = filemap_write_and_wait_range(mapping, pos, end);
2795 if (ret)
2796 return ret;
2797 }
2798
2799 /*
2800 * After a write we want buffered reads to be sure to go to disk to get
2801 * the new data. We invalidate clean cached page from the region we're
2802 * about to write. We do this *before* the write so that we can return
2803 * without clobbering -EIOCBQUEUED from ->direct_IO().
2804 */
2805 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2806 end >> PAGE_SHIFT);
2807 }
2808
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2809 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2810 {
2811 struct address_space *mapping = iocb->ki_filp->f_mapping;
2812
2813 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2814 iocb->ki_pos + count - 1,
2815 iocb->ki_flags & IOCB_NOWAIT);
2816 }
2817 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2818
2819 /**
2820 * generic_file_read_iter - generic filesystem read routine
2821 * @iocb: kernel I/O control block
2822 * @iter: destination for the data read
2823 *
2824 * This is the "read_iter()" routine for all filesystems
2825 * that can use the page cache directly.
2826 *
2827 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2828 * be returned when no data can be read without waiting for I/O requests
2829 * to complete; it doesn't prevent readahead.
2830 *
2831 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2832 * requests shall be made for the read or for readahead. When no data
2833 * can be read, -EAGAIN shall be returned. When readahead would be
2834 * triggered, a partial, possibly empty read shall be returned.
2835 *
2836 * Return:
2837 * * number of bytes copied, even for partial reads
2838 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2839 */
2840 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2841 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2842 {
2843 size_t count = iov_iter_count(iter);
2844 ssize_t retval = 0;
2845
2846 if (!count)
2847 return 0; /* skip atime */
2848
2849 if (iocb->ki_flags & IOCB_DIRECT) {
2850 struct file *file = iocb->ki_filp;
2851 struct address_space *mapping = file->f_mapping;
2852 struct inode *inode = mapping->host;
2853
2854 retval = kiocb_write_and_wait(iocb, count);
2855 if (retval < 0)
2856 return retval;
2857 file_accessed(file);
2858
2859 retval = mapping->a_ops->direct_IO(iocb, iter);
2860 if (retval >= 0) {
2861 iocb->ki_pos += retval;
2862 count -= retval;
2863 }
2864 if (retval != -EIOCBQUEUED)
2865 iov_iter_revert(iter, count - iov_iter_count(iter));
2866
2867 /*
2868 * Btrfs can have a short DIO read if we encounter
2869 * compressed extents, so if there was an error, or if
2870 * we've already read everything we wanted to, or if
2871 * there was a short read because we hit EOF, go ahead
2872 * and return. Otherwise fallthrough to buffered io for
2873 * the rest of the read. Buffered reads will not work for
2874 * DAX files, so don't bother trying.
2875 */
2876 if (retval < 0 || !count || IS_DAX(inode))
2877 return retval;
2878 if (iocb->ki_pos >= i_size_read(inode))
2879 return retval;
2880 }
2881
2882 return filemap_read(iocb, iter, retval);
2883 }
2884 EXPORT_SYMBOL(generic_file_read_iter);
2885
2886 /*
2887 * Splice subpages from a folio into a pipe.
2888 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2889 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2890 struct folio *folio, loff_t fpos, size_t size)
2891 {
2892 struct page *page;
2893 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2894
2895 page = folio_page(folio, offset / PAGE_SIZE);
2896 size = min(size, folio_size(folio) - offset);
2897 offset %= PAGE_SIZE;
2898
2899 while (spliced < size && !pipe_is_full(pipe)) {
2900 struct pipe_buffer *buf = pipe_head_buf(pipe);
2901 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2902
2903 *buf = (struct pipe_buffer) {
2904 .ops = &page_cache_pipe_buf_ops,
2905 .page = page,
2906 .offset = offset,
2907 .len = part,
2908 };
2909 folio_get(folio);
2910 pipe->head++;
2911 page++;
2912 spliced += part;
2913 offset = 0;
2914 }
2915
2916 return spliced;
2917 }
2918
2919 /**
2920 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2921 * @in: The file to read from
2922 * @ppos: Pointer to the file position to read from
2923 * @pipe: The pipe to splice into
2924 * @len: The amount to splice
2925 * @flags: The SPLICE_F_* flags
2926 *
2927 * This function gets folios from a file's pagecache and splices them into the
2928 * pipe. Readahead will be called as necessary to fill more folios. This may
2929 * be used for blockdevs also.
2930 *
2931 * Return: On success, the number of bytes read will be returned and *@ppos
2932 * will be updated if appropriate; 0 will be returned if there is no more data
2933 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2934 * other negative error code will be returned on error. A short read may occur
2935 * if the pipe has insufficient space, we reach the end of the data or we hit a
2936 * hole.
2937 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2938 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2939 struct pipe_inode_info *pipe,
2940 size_t len, unsigned int flags)
2941 {
2942 struct folio_batch fbatch;
2943 struct kiocb iocb;
2944 size_t total_spliced = 0, used, npages;
2945 loff_t isize, end_offset;
2946 bool writably_mapped;
2947 int i, error = 0;
2948
2949 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2950 return 0;
2951
2952 init_sync_kiocb(&iocb, in);
2953 iocb.ki_pos = *ppos;
2954
2955 /* Work out how much data we can actually add into the pipe */
2956 used = pipe_buf_usage(pipe);
2957 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2958 len = min_t(size_t, len, npages * PAGE_SIZE);
2959
2960 folio_batch_init(&fbatch);
2961
2962 do {
2963 cond_resched();
2964
2965 if (*ppos >= i_size_read(in->f_mapping->host))
2966 break;
2967
2968 iocb.ki_pos = *ppos;
2969 error = filemap_get_pages(&iocb, len, &fbatch, true);
2970 if (error < 0)
2971 break;
2972
2973 /*
2974 * i_size must be checked after we know the pages are Uptodate.
2975 *
2976 * Checking i_size after the check allows us to calculate
2977 * the correct value for "nr", which means the zero-filled
2978 * part of the page is not copied back to userspace (unless
2979 * another truncate extends the file - this is desired though).
2980 */
2981 isize = i_size_read(in->f_mapping->host);
2982 if (unlikely(*ppos >= isize))
2983 break;
2984 end_offset = min_t(loff_t, isize, *ppos + len);
2985
2986 /*
2987 * Once we start copying data, we don't want to be touching any
2988 * cachelines that might be contended:
2989 */
2990 writably_mapped = mapping_writably_mapped(in->f_mapping);
2991
2992 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2993 struct folio *folio = fbatch.folios[i];
2994 size_t n;
2995
2996 if (folio_pos(folio) >= end_offset)
2997 goto out;
2998 folio_mark_accessed(folio);
2999
3000 /*
3001 * If users can be writing to this folio using arbitrary
3002 * virtual addresses, take care of potential aliasing
3003 * before reading the folio on the kernel side.
3004 */
3005 if (writably_mapped)
3006 flush_dcache_folio(folio);
3007
3008 n = min_t(loff_t, len, isize - *ppos);
3009 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3010 if (!n)
3011 goto out;
3012 len -= n;
3013 total_spliced += n;
3014 *ppos += n;
3015 in->f_ra.prev_pos = *ppos;
3016 if (pipe_is_full(pipe))
3017 goto out;
3018 }
3019
3020 folio_batch_release(&fbatch);
3021 } while (len);
3022
3023 out:
3024 folio_batch_release(&fbatch);
3025 file_accessed(in);
3026
3027 return total_spliced ? total_spliced : error;
3028 }
3029 EXPORT_SYMBOL(filemap_splice_read);
3030
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3031 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3032 struct address_space *mapping, struct folio *folio,
3033 loff_t start, loff_t end, bool seek_data)
3034 {
3035 const struct address_space_operations *ops = mapping->a_ops;
3036 size_t offset, bsz = i_blocksize(mapping->host);
3037
3038 if (xa_is_value(folio) || folio_test_uptodate(folio))
3039 return seek_data ? start : end;
3040 if (!ops->is_partially_uptodate)
3041 return seek_data ? end : start;
3042
3043 xas_pause(xas);
3044 rcu_read_unlock();
3045 folio_lock(folio);
3046 if (unlikely(folio->mapping != mapping))
3047 goto unlock;
3048
3049 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3050
3051 do {
3052 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3053 seek_data)
3054 break;
3055 start = (start + bsz) & ~((u64)bsz - 1);
3056 offset += bsz;
3057 } while (offset < folio_size(folio));
3058 unlock:
3059 folio_unlock(folio);
3060 rcu_read_lock();
3061 return start;
3062 }
3063
seek_folio_size(struct xa_state * xas,struct folio * folio)3064 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3065 {
3066 if (xa_is_value(folio))
3067 return PAGE_SIZE << xas_get_order(xas);
3068 return folio_size(folio);
3069 }
3070
3071 /**
3072 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3073 * @mapping: Address space to search.
3074 * @start: First byte to consider.
3075 * @end: Limit of search (exclusive).
3076 * @whence: Either SEEK_HOLE or SEEK_DATA.
3077 *
3078 * If the page cache knows which blocks contain holes and which blocks
3079 * contain data, your filesystem can use this function to implement
3080 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3081 * entirely memory-based such as tmpfs, and filesystems which support
3082 * unwritten extents.
3083 *
3084 * Return: The requested offset on success, or -ENXIO if @whence specifies
3085 * SEEK_DATA and there is no data after @start. There is an implicit hole
3086 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3087 * and @end contain data.
3088 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3089 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3090 loff_t end, int whence)
3091 {
3092 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3093 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3094 bool seek_data = (whence == SEEK_DATA);
3095 struct folio *folio;
3096
3097 if (end <= start)
3098 return -ENXIO;
3099
3100 rcu_read_lock();
3101 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3102 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3103 size_t seek_size;
3104
3105 if (start < pos) {
3106 if (!seek_data)
3107 goto unlock;
3108 start = pos;
3109 }
3110
3111 seek_size = seek_folio_size(&xas, folio);
3112 pos = round_up((u64)pos + 1, seek_size);
3113 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3114 seek_data);
3115 if (start < pos)
3116 goto unlock;
3117 if (start >= end)
3118 break;
3119 if (seek_size > PAGE_SIZE)
3120 xas_set(&xas, pos >> PAGE_SHIFT);
3121 if (!xa_is_value(folio))
3122 folio_put(folio);
3123 }
3124 if (seek_data)
3125 start = -ENXIO;
3126 unlock:
3127 rcu_read_unlock();
3128 if (folio && !xa_is_value(folio))
3129 folio_put(folio);
3130 if (start > end)
3131 return end;
3132 return start;
3133 }
3134
3135 #ifdef CONFIG_MMU
3136 #define MMAP_LOTSAMISS (100)
3137 /*
3138 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3139 * @vmf - the vm_fault for this fault.
3140 * @folio - the folio to lock.
3141 * @fpin - the pointer to the file we may pin (or is already pinned).
3142 *
3143 * This works similar to lock_folio_or_retry in that it can drop the
3144 * mmap_lock. It differs in that it actually returns the folio locked
3145 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3146 * to drop the mmap_lock then fpin will point to the pinned file and
3147 * needs to be fput()'ed at a later point.
3148 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3149 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3150 struct file **fpin)
3151 {
3152 if (folio_trylock(folio))
3153 return 1;
3154
3155 /*
3156 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3157 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3158 * is supposed to work. We have way too many special cases..
3159 */
3160 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3161 return 0;
3162
3163 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3164 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3165 if (__folio_lock_killable(folio)) {
3166 /*
3167 * We didn't have the right flags to drop the
3168 * fault lock, but all fault_handlers only check
3169 * for fatal signals if we return VM_FAULT_RETRY,
3170 * so we need to drop the fault lock here and
3171 * return 0 if we don't have a fpin.
3172 */
3173 if (*fpin == NULL)
3174 release_fault_lock(vmf);
3175 return 0;
3176 }
3177 } else
3178 __folio_lock(folio);
3179
3180 return 1;
3181 }
3182
3183 /*
3184 * Synchronous readahead happens when we don't even find a page in the page
3185 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3186 * to drop the mmap sem we return the file that was pinned in order for us to do
3187 * that. If we didn't pin a file then we return NULL. The file that is
3188 * returned needs to be fput()'ed when we're done with it.
3189 */
do_sync_mmap_readahead(struct vm_fault * vmf)3190 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3191 {
3192 struct file *file = vmf->vma->vm_file;
3193 struct file_ra_state *ra = &file->f_ra;
3194 struct address_space *mapping = file->f_mapping;
3195 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3196 struct file *fpin = NULL;
3197 unsigned long vm_flags = vmf->vma->vm_flags;
3198 unsigned int mmap_miss;
3199
3200 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3201 /* Use the readahead code, even if readahead is disabled */
3202 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3203 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3204 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3205 ra->size = HPAGE_PMD_NR;
3206 /*
3207 * Fetch two PMD folios, so we get the chance to actually
3208 * readahead, unless we've been told not to.
3209 */
3210 if (!(vm_flags & VM_RAND_READ))
3211 ra->size *= 2;
3212 ra->async_size = HPAGE_PMD_NR;
3213 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3214 return fpin;
3215 }
3216 #endif
3217
3218 /* If we don't want any read-ahead, don't bother */
3219 if (vm_flags & VM_RAND_READ)
3220 return fpin;
3221 if (!ra->ra_pages)
3222 return fpin;
3223
3224 if (vm_flags & VM_SEQ_READ) {
3225 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3226 page_cache_sync_ra(&ractl, ra->ra_pages);
3227 return fpin;
3228 }
3229
3230 /* Avoid banging the cache line if not needed */
3231 mmap_miss = READ_ONCE(ra->mmap_miss);
3232 if (mmap_miss < MMAP_LOTSAMISS * 10)
3233 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3234
3235 /*
3236 * Do we miss much more than hit in this file? If so,
3237 * stop bothering with read-ahead. It will only hurt.
3238 */
3239 if (mmap_miss > MMAP_LOTSAMISS)
3240 return fpin;
3241
3242 /*
3243 * mmap read-around
3244 */
3245 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3246 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3247 ra->size = ra->ra_pages;
3248 ra->async_size = ra->ra_pages / 4;
3249 ractl._index = ra->start;
3250 page_cache_ra_order(&ractl, ra, 0);
3251 return fpin;
3252 }
3253
3254 /*
3255 * Asynchronous readahead happens when we find the page and PG_readahead,
3256 * so we want to possibly extend the readahead further. We return the file that
3257 * was pinned if we have to drop the mmap_lock in order to do IO.
3258 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3259 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3260 struct folio *folio)
3261 {
3262 struct file *file = vmf->vma->vm_file;
3263 struct file_ra_state *ra = &file->f_ra;
3264 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3265 struct file *fpin = NULL;
3266 unsigned int mmap_miss;
3267
3268 /* If we don't want any read-ahead, don't bother */
3269 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3270 return fpin;
3271
3272 mmap_miss = READ_ONCE(ra->mmap_miss);
3273 if (mmap_miss)
3274 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3275
3276 if (folio_test_readahead(folio)) {
3277 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3278 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3279 }
3280 return fpin;
3281 }
3282
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3283 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3284 {
3285 struct vm_area_struct *vma = vmf->vma;
3286 vm_fault_t ret = 0;
3287 pte_t *ptep;
3288
3289 /*
3290 * We might have COW'ed a pagecache folio and might now have an mlocked
3291 * anon folio mapped. The original pagecache folio is not mlocked and
3292 * might have been evicted. During a read+clear/modify/write update of
3293 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3294 * temporarily clear the PTE under PT lock and might detect it here as
3295 * "none" when not holding the PT lock.
3296 *
3297 * Not rechecking the PTE under PT lock could result in an unexpected
3298 * major fault in an mlock'ed region. Recheck only for this special
3299 * scenario while holding the PT lock, to not degrade non-mlocked
3300 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3301 * the number of times we hold PT lock.
3302 */
3303 if (!(vma->vm_flags & VM_LOCKED))
3304 return 0;
3305
3306 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3307 return 0;
3308
3309 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3310 &vmf->ptl);
3311 if (unlikely(!ptep))
3312 return VM_FAULT_NOPAGE;
3313
3314 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3315 ret = VM_FAULT_NOPAGE;
3316 } else {
3317 spin_lock(vmf->ptl);
3318 if (unlikely(!pte_none(ptep_get(ptep))))
3319 ret = VM_FAULT_NOPAGE;
3320 spin_unlock(vmf->ptl);
3321 }
3322 pte_unmap(ptep);
3323 return ret;
3324 }
3325
3326 /**
3327 * filemap_fault - read in file data for page fault handling
3328 * @vmf: struct vm_fault containing details of the fault
3329 *
3330 * filemap_fault() is invoked via the vma operations vector for a
3331 * mapped memory region to read in file data during a page fault.
3332 *
3333 * The goto's are kind of ugly, but this streamlines the normal case of having
3334 * it in the page cache, and handles the special cases reasonably without
3335 * having a lot of duplicated code.
3336 *
3337 * vma->vm_mm->mmap_lock must be held on entry.
3338 *
3339 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3340 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3341 *
3342 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3343 * has not been released.
3344 *
3345 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3346 *
3347 * Return: bitwise-OR of %VM_FAULT_ codes.
3348 */
filemap_fault(struct vm_fault * vmf)3349 vm_fault_t filemap_fault(struct vm_fault *vmf)
3350 {
3351 int error;
3352 struct file *file = vmf->vma->vm_file;
3353 struct file *fpin = NULL;
3354 struct address_space *mapping = file->f_mapping;
3355 struct inode *inode = mapping->host;
3356 pgoff_t max_idx, index = vmf->pgoff;
3357 struct folio *folio;
3358 vm_fault_t ret = 0;
3359 bool mapping_locked = false;
3360
3361 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3362 if (unlikely(index >= max_idx))
3363 return VM_FAULT_SIGBUS;
3364
3365 trace_mm_filemap_fault(mapping, index);
3366
3367 /*
3368 * Do we have something in the page cache already?
3369 */
3370 folio = filemap_get_folio(mapping, index);
3371 if (likely(!IS_ERR(folio))) {
3372 /*
3373 * We found the page, so try async readahead before waiting for
3374 * the lock.
3375 */
3376 if (!(vmf->flags & FAULT_FLAG_TRIED))
3377 fpin = do_async_mmap_readahead(vmf, folio);
3378 if (unlikely(!folio_test_uptodate(folio))) {
3379 filemap_invalidate_lock_shared(mapping);
3380 mapping_locked = true;
3381 }
3382 } else {
3383 ret = filemap_fault_recheck_pte_none(vmf);
3384 if (unlikely(ret))
3385 return ret;
3386
3387 /* No page in the page cache at all */
3388 count_vm_event(PGMAJFAULT);
3389 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3390 ret = VM_FAULT_MAJOR;
3391 fpin = do_sync_mmap_readahead(vmf);
3392 retry_find:
3393 /*
3394 * See comment in filemap_create_folio() why we need
3395 * invalidate_lock
3396 */
3397 if (!mapping_locked) {
3398 filemap_invalidate_lock_shared(mapping);
3399 mapping_locked = true;
3400 }
3401 folio = __filemap_get_folio(mapping, index,
3402 FGP_CREAT|FGP_FOR_MMAP,
3403 vmf->gfp_mask);
3404 if (IS_ERR(folio)) {
3405 if (fpin)
3406 goto out_retry;
3407 filemap_invalidate_unlock_shared(mapping);
3408 return VM_FAULT_OOM;
3409 }
3410 }
3411
3412 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3413 goto out_retry;
3414
3415 /* Did it get truncated? */
3416 if (unlikely(folio->mapping != mapping)) {
3417 folio_unlock(folio);
3418 folio_put(folio);
3419 goto retry_find;
3420 }
3421 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3422
3423 /*
3424 * We have a locked folio in the page cache, now we need to check
3425 * that it's up-to-date. If not, it is going to be due to an error,
3426 * or because readahead was otherwise unable to retrieve it.
3427 */
3428 if (unlikely(!folio_test_uptodate(folio))) {
3429 /*
3430 * If the invalidate lock is not held, the folio was in cache
3431 * and uptodate and now it is not. Strange but possible since we
3432 * didn't hold the page lock all the time. Let's drop
3433 * everything, get the invalidate lock and try again.
3434 */
3435 if (!mapping_locked) {
3436 folio_unlock(folio);
3437 folio_put(folio);
3438 goto retry_find;
3439 }
3440
3441 /*
3442 * OK, the folio is really not uptodate. This can be because the
3443 * VMA has the VM_RAND_READ flag set, or because an error
3444 * arose. Let's read it in directly.
3445 */
3446 goto page_not_uptodate;
3447 }
3448
3449 /*
3450 * We've made it this far and we had to drop our mmap_lock, now is the
3451 * time to return to the upper layer and have it re-find the vma and
3452 * redo the fault.
3453 */
3454 if (fpin) {
3455 folio_unlock(folio);
3456 goto out_retry;
3457 }
3458 if (mapping_locked)
3459 filemap_invalidate_unlock_shared(mapping);
3460
3461 /*
3462 * Found the page and have a reference on it.
3463 * We must recheck i_size under page lock.
3464 */
3465 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3466 if (unlikely(index >= max_idx)) {
3467 folio_unlock(folio);
3468 folio_put(folio);
3469 return VM_FAULT_SIGBUS;
3470 }
3471
3472 vmf->page = folio_file_page(folio, index);
3473 return ret | VM_FAULT_LOCKED;
3474
3475 page_not_uptodate:
3476 /*
3477 * Umm, take care of errors if the page isn't up-to-date.
3478 * Try to re-read it _once_. We do this synchronously,
3479 * because there really aren't any performance issues here
3480 * and we need to check for errors.
3481 */
3482 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3483 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3484 if (fpin)
3485 goto out_retry;
3486 folio_put(folio);
3487
3488 if (!error || error == AOP_TRUNCATED_PAGE)
3489 goto retry_find;
3490 filemap_invalidate_unlock_shared(mapping);
3491
3492 return VM_FAULT_SIGBUS;
3493
3494 out_retry:
3495 /*
3496 * We dropped the mmap_lock, we need to return to the fault handler to
3497 * re-find the vma and come back and find our hopefully still populated
3498 * page.
3499 */
3500 if (!IS_ERR(folio))
3501 folio_put(folio);
3502 if (mapping_locked)
3503 filemap_invalidate_unlock_shared(mapping);
3504 if (fpin)
3505 fput(fpin);
3506 return ret | VM_FAULT_RETRY;
3507 }
3508 EXPORT_SYMBOL(filemap_fault);
3509
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3510 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3511 pgoff_t start)
3512 {
3513 struct mm_struct *mm = vmf->vma->vm_mm;
3514
3515 /* Huge page is mapped? No need to proceed. */
3516 if (pmd_trans_huge(*vmf->pmd)) {
3517 folio_unlock(folio);
3518 folio_put(folio);
3519 return true;
3520 }
3521
3522 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3523 struct page *page = folio_file_page(folio, start);
3524 vm_fault_t ret = do_set_pmd(vmf, page);
3525 if (!ret) {
3526 /* The page is mapped successfully, reference consumed. */
3527 folio_unlock(folio);
3528 return true;
3529 }
3530 }
3531
3532 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3533 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3534
3535 return false;
3536 }
3537
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3538 static struct folio *next_uptodate_folio(struct xa_state *xas,
3539 struct address_space *mapping, pgoff_t end_pgoff)
3540 {
3541 struct folio *folio = xas_next_entry(xas, end_pgoff);
3542 unsigned long max_idx;
3543
3544 do {
3545 if (!folio)
3546 return NULL;
3547 if (xas_retry(xas, folio))
3548 continue;
3549 if (xa_is_value(folio))
3550 continue;
3551 if (!folio_try_get(folio))
3552 continue;
3553 if (folio_test_locked(folio))
3554 goto skip;
3555 /* Has the page moved or been split? */
3556 if (unlikely(folio != xas_reload(xas)))
3557 goto skip;
3558 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3559 goto skip;
3560 if (!folio_trylock(folio))
3561 goto skip;
3562 if (folio->mapping != mapping)
3563 goto unlock;
3564 if (!folio_test_uptodate(folio))
3565 goto unlock;
3566 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3567 if (xas->xa_index >= max_idx)
3568 goto unlock;
3569 return folio;
3570 unlock:
3571 folio_unlock(folio);
3572 skip:
3573 folio_put(folio);
3574 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3575
3576 return NULL;
3577 }
3578
3579 /*
3580 * Map page range [start_page, start_page + nr_pages) of folio.
3581 * start_page is gotten from start by folio_page(folio, start)
3582 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3583 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3584 struct folio *folio, unsigned long start,
3585 unsigned long addr, unsigned int nr_pages,
3586 unsigned long *rss, unsigned int *mmap_miss)
3587 {
3588 vm_fault_t ret = 0;
3589 struct page *page = folio_page(folio, start);
3590 unsigned int count = 0;
3591 pte_t *old_ptep = vmf->pte;
3592
3593 do {
3594 if (PageHWPoison(page + count))
3595 goto skip;
3596
3597 /*
3598 * If there are too many folios that are recently evicted
3599 * in a file, they will probably continue to be evicted.
3600 * In such situation, read-ahead is only a waste of IO.
3601 * Don't decrease mmap_miss in this scenario to make sure
3602 * we can stop read-ahead.
3603 */
3604 if (!folio_test_workingset(folio))
3605 (*mmap_miss)++;
3606
3607 /*
3608 * NOTE: If there're PTE markers, we'll leave them to be
3609 * handled in the specific fault path, and it'll prohibit the
3610 * fault-around logic.
3611 */
3612 if (!pte_none(ptep_get(&vmf->pte[count])))
3613 goto skip;
3614
3615 count++;
3616 continue;
3617 skip:
3618 if (count) {
3619 set_pte_range(vmf, folio, page, count, addr);
3620 *rss += count;
3621 folio_ref_add(folio, count);
3622 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3623 ret = VM_FAULT_NOPAGE;
3624 }
3625
3626 count++;
3627 page += count;
3628 vmf->pte += count;
3629 addr += count * PAGE_SIZE;
3630 count = 0;
3631 } while (--nr_pages > 0);
3632
3633 if (count) {
3634 set_pte_range(vmf, folio, page, count, addr);
3635 *rss += count;
3636 folio_ref_add(folio, count);
3637 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3638 ret = VM_FAULT_NOPAGE;
3639 }
3640
3641 vmf->pte = old_ptep;
3642
3643 return ret;
3644 }
3645
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3646 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3647 struct folio *folio, unsigned long addr,
3648 unsigned long *rss, unsigned int *mmap_miss)
3649 {
3650 vm_fault_t ret = 0;
3651 struct page *page = &folio->page;
3652
3653 if (PageHWPoison(page))
3654 return ret;
3655
3656 /* See comment of filemap_map_folio_range() */
3657 if (!folio_test_workingset(folio))
3658 (*mmap_miss)++;
3659
3660 /*
3661 * NOTE: If there're PTE markers, we'll leave them to be
3662 * handled in the specific fault path, and it'll prohibit
3663 * the fault-around logic.
3664 */
3665 if (!pte_none(ptep_get(vmf->pte)))
3666 return ret;
3667
3668 if (vmf->address == addr)
3669 ret = VM_FAULT_NOPAGE;
3670
3671 set_pte_range(vmf, folio, page, 1, addr);
3672 (*rss)++;
3673 folio_ref_inc(folio);
3674
3675 return ret;
3676 }
3677
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3678 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3679 pgoff_t start_pgoff, pgoff_t end_pgoff)
3680 {
3681 struct vm_area_struct *vma = vmf->vma;
3682 struct file *file = vma->vm_file;
3683 struct address_space *mapping = file->f_mapping;
3684 pgoff_t file_end, last_pgoff = start_pgoff;
3685 unsigned long addr;
3686 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3687 struct folio *folio;
3688 vm_fault_t ret = 0;
3689 unsigned long rss = 0;
3690 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3691
3692 rcu_read_lock();
3693 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3694 if (!folio)
3695 goto out;
3696
3697 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3698 ret = VM_FAULT_NOPAGE;
3699 goto out;
3700 }
3701
3702 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3704 if (!vmf->pte) {
3705 folio_unlock(folio);
3706 folio_put(folio);
3707 goto out;
3708 }
3709
3710 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3711 if (end_pgoff > file_end)
3712 end_pgoff = file_end;
3713
3714 folio_type = mm_counter_file(folio);
3715 do {
3716 unsigned long end;
3717
3718 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3719 vmf->pte += xas.xa_index - last_pgoff;
3720 last_pgoff = xas.xa_index;
3721 end = folio_next_index(folio) - 1;
3722 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3723
3724 if (!folio_test_large(folio))
3725 ret |= filemap_map_order0_folio(vmf,
3726 folio, addr, &rss, &mmap_miss);
3727 else
3728 ret |= filemap_map_folio_range(vmf, folio,
3729 xas.xa_index - folio->index, addr,
3730 nr_pages, &rss, &mmap_miss);
3731
3732 folio_unlock(folio);
3733 folio_put(folio);
3734 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3735 add_mm_counter(vma->vm_mm, folio_type, rss);
3736 pte_unmap_unlock(vmf->pte, vmf->ptl);
3737 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3738 out:
3739 rcu_read_unlock();
3740
3741 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3742 if (mmap_miss >= mmap_miss_saved)
3743 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3744 else
3745 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3746
3747 return ret;
3748 }
3749 EXPORT_SYMBOL(filemap_map_pages);
3750
filemap_page_mkwrite(struct vm_fault * vmf)3751 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3752 {
3753 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3754 struct folio *folio = page_folio(vmf->page);
3755 vm_fault_t ret = VM_FAULT_LOCKED;
3756
3757 sb_start_pagefault(mapping->host->i_sb);
3758 file_update_time(vmf->vma->vm_file);
3759 folio_lock(folio);
3760 if (folio->mapping != mapping) {
3761 folio_unlock(folio);
3762 ret = VM_FAULT_NOPAGE;
3763 goto out;
3764 }
3765 /*
3766 * We mark the folio dirty already here so that when freeze is in
3767 * progress, we are guaranteed that writeback during freezing will
3768 * see the dirty folio and writeprotect it again.
3769 */
3770 folio_mark_dirty(folio);
3771 folio_wait_stable(folio);
3772 out:
3773 sb_end_pagefault(mapping->host->i_sb);
3774 return ret;
3775 }
3776
3777 const struct vm_operations_struct generic_file_vm_ops = {
3778 .fault = filemap_fault,
3779 .map_pages = filemap_map_pages,
3780 .page_mkwrite = filemap_page_mkwrite,
3781 };
3782
3783 /* This is used for a general mmap of a disk file */
3784
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3785 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3786 {
3787 struct address_space *mapping = file->f_mapping;
3788
3789 if (!mapping->a_ops->read_folio)
3790 return -ENOEXEC;
3791 file_accessed(file);
3792 vma->vm_ops = &generic_file_vm_ops;
3793 return 0;
3794 }
3795
3796 /*
3797 * This is for filesystems which do not implement ->writepage.
3798 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3799 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3800 {
3801 if (vma_is_shared_maywrite(vma))
3802 return -EINVAL;
3803 return generic_file_mmap(file, vma);
3804 }
3805 #else
filemap_page_mkwrite(struct vm_fault * vmf)3806 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3807 {
3808 return VM_FAULT_SIGBUS;
3809 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3810 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3811 {
3812 return -ENOSYS;
3813 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3814 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3815 {
3816 return -ENOSYS;
3817 }
3818 #endif /* CONFIG_MMU */
3819
3820 EXPORT_SYMBOL(filemap_page_mkwrite);
3821 EXPORT_SYMBOL(generic_file_mmap);
3822 EXPORT_SYMBOL(generic_file_readonly_mmap);
3823
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3824 static struct folio *do_read_cache_folio(struct address_space *mapping,
3825 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3826 {
3827 struct folio *folio;
3828 int err;
3829
3830 if (!filler)
3831 filler = mapping->a_ops->read_folio;
3832 repeat:
3833 folio = filemap_get_folio(mapping, index);
3834 if (IS_ERR(folio)) {
3835 folio = filemap_alloc_folio(gfp,
3836 mapping_min_folio_order(mapping));
3837 if (!folio)
3838 return ERR_PTR(-ENOMEM);
3839 index = mapping_align_index(mapping, index);
3840 err = filemap_add_folio(mapping, folio, index, gfp);
3841 if (unlikely(err)) {
3842 folio_put(folio);
3843 if (err == -EEXIST)
3844 goto repeat;
3845 /* Presumably ENOMEM for xarray node */
3846 return ERR_PTR(err);
3847 }
3848
3849 goto filler;
3850 }
3851 if (folio_test_uptodate(folio))
3852 goto out;
3853
3854 if (!folio_trylock(folio)) {
3855 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3856 goto repeat;
3857 }
3858
3859 /* Folio was truncated from mapping */
3860 if (!folio->mapping) {
3861 folio_unlock(folio);
3862 folio_put(folio);
3863 goto repeat;
3864 }
3865
3866 /* Someone else locked and filled the page in a very small window */
3867 if (folio_test_uptodate(folio)) {
3868 folio_unlock(folio);
3869 goto out;
3870 }
3871
3872 filler:
3873 err = filemap_read_folio(file, filler, folio);
3874 if (err) {
3875 folio_put(folio);
3876 if (err == AOP_TRUNCATED_PAGE)
3877 goto repeat;
3878 return ERR_PTR(err);
3879 }
3880
3881 out:
3882 folio_mark_accessed(folio);
3883 return folio;
3884 }
3885
3886 /**
3887 * read_cache_folio - Read into page cache, fill it if needed.
3888 * @mapping: The address_space to read from.
3889 * @index: The index to read.
3890 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3891 * @file: Passed to filler function, may be NULL if not required.
3892 *
3893 * Read one page into the page cache. If it succeeds, the folio returned
3894 * will contain @index, but it may not be the first page of the folio.
3895 *
3896 * If the filler function returns an error, it will be returned to the
3897 * caller.
3898 *
3899 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3900 * Return: An uptodate folio on success, ERR_PTR() on failure.
3901 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3902 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3903 filler_t filler, struct file *file)
3904 {
3905 return do_read_cache_folio(mapping, index, filler, file,
3906 mapping_gfp_mask(mapping));
3907 }
3908 EXPORT_SYMBOL(read_cache_folio);
3909
3910 /**
3911 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3912 * @mapping: The address_space for the folio.
3913 * @index: The index that the allocated folio will contain.
3914 * @gfp: The page allocator flags to use if allocating.
3915 *
3916 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3917 * any new memory allocations done using the specified allocation flags.
3918 *
3919 * The most likely error from this function is EIO, but ENOMEM is
3920 * possible and so is EINTR. If ->read_folio returns another error,
3921 * that will be returned to the caller.
3922 *
3923 * The function expects mapping->invalidate_lock to be already held.
3924 *
3925 * Return: Uptodate folio on success, ERR_PTR() on failure.
3926 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3927 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3928 pgoff_t index, gfp_t gfp)
3929 {
3930 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3931 }
3932 EXPORT_SYMBOL(mapping_read_folio_gfp);
3933
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3934 static struct page *do_read_cache_page(struct address_space *mapping,
3935 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3936 {
3937 struct folio *folio;
3938
3939 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3940 if (IS_ERR(folio))
3941 return &folio->page;
3942 return folio_file_page(folio, index);
3943 }
3944
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3945 struct page *read_cache_page(struct address_space *mapping,
3946 pgoff_t index, filler_t *filler, struct file *file)
3947 {
3948 return do_read_cache_page(mapping, index, filler, file,
3949 mapping_gfp_mask(mapping));
3950 }
3951 EXPORT_SYMBOL(read_cache_page);
3952
3953 /**
3954 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3955 * @mapping: the page's address_space
3956 * @index: the page index
3957 * @gfp: the page allocator flags to use if allocating
3958 *
3959 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3960 * any new page allocations done using the specified allocation flags.
3961 *
3962 * If the page does not get brought uptodate, return -EIO.
3963 *
3964 * The function expects mapping->invalidate_lock to be already held.
3965 *
3966 * Return: up to date page on success, ERR_PTR() on failure.
3967 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3968 struct page *read_cache_page_gfp(struct address_space *mapping,
3969 pgoff_t index,
3970 gfp_t gfp)
3971 {
3972 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3973 }
3974 EXPORT_SYMBOL(read_cache_page_gfp);
3975
3976 /*
3977 * Warn about a page cache invalidation failure during a direct I/O write.
3978 */
dio_warn_stale_pagecache(struct file * filp)3979 static void dio_warn_stale_pagecache(struct file *filp)
3980 {
3981 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3982 char pathname[128];
3983 char *path;
3984
3985 errseq_set(&filp->f_mapping->wb_err, -EIO);
3986 if (__ratelimit(&_rs)) {
3987 path = file_path(filp, pathname, sizeof(pathname));
3988 if (IS_ERR(path))
3989 path = "(unknown)";
3990 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3991 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3992 current->comm);
3993 }
3994 }
3995
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3996 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3997 {
3998 struct address_space *mapping = iocb->ki_filp->f_mapping;
3999
4000 if (mapping->nrpages &&
4001 invalidate_inode_pages2_range(mapping,
4002 iocb->ki_pos >> PAGE_SHIFT,
4003 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4004 dio_warn_stale_pagecache(iocb->ki_filp);
4005 }
4006
4007 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4008 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4009 {
4010 struct address_space *mapping = iocb->ki_filp->f_mapping;
4011 size_t write_len = iov_iter_count(from);
4012 ssize_t written;
4013
4014 /*
4015 * If a page can not be invalidated, return 0 to fall back
4016 * to buffered write.
4017 */
4018 written = kiocb_invalidate_pages(iocb, write_len);
4019 if (written) {
4020 if (written == -EBUSY)
4021 return 0;
4022 return written;
4023 }
4024
4025 written = mapping->a_ops->direct_IO(iocb, from);
4026
4027 /*
4028 * Finally, try again to invalidate clean pages which might have been
4029 * cached by non-direct readahead, or faulted in by get_user_pages()
4030 * if the source of the write was an mmap'ed region of the file
4031 * we're writing. Either one is a pretty crazy thing to do,
4032 * so we don't support it 100%. If this invalidation
4033 * fails, tough, the write still worked...
4034 *
4035 * Most of the time we do not need this since dio_complete() will do
4036 * the invalidation for us. However there are some file systems that
4037 * do not end up with dio_complete() being called, so let's not break
4038 * them by removing it completely.
4039 *
4040 * Noticeable example is a blkdev_direct_IO().
4041 *
4042 * Skip invalidation for async writes or if mapping has no pages.
4043 */
4044 if (written > 0) {
4045 struct inode *inode = mapping->host;
4046 loff_t pos = iocb->ki_pos;
4047
4048 kiocb_invalidate_post_direct_write(iocb, written);
4049 pos += written;
4050 write_len -= written;
4051 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4052 i_size_write(inode, pos);
4053 mark_inode_dirty(inode);
4054 }
4055 iocb->ki_pos = pos;
4056 }
4057 if (written != -EIOCBQUEUED)
4058 iov_iter_revert(from, write_len - iov_iter_count(from));
4059 return written;
4060 }
4061 EXPORT_SYMBOL(generic_file_direct_write);
4062
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4063 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4064 {
4065 struct file *file = iocb->ki_filp;
4066 loff_t pos = iocb->ki_pos;
4067 struct address_space *mapping = file->f_mapping;
4068 const struct address_space_operations *a_ops = mapping->a_ops;
4069 size_t chunk = mapping_max_folio_size(mapping);
4070 long status = 0;
4071 ssize_t written = 0;
4072
4073 do {
4074 struct folio *folio;
4075 size_t offset; /* Offset into folio */
4076 size_t bytes; /* Bytes to write to folio */
4077 size_t copied; /* Bytes copied from user */
4078 void *fsdata = NULL;
4079
4080 bytes = iov_iter_count(i);
4081 retry:
4082 offset = pos & (chunk - 1);
4083 bytes = min(chunk - offset, bytes);
4084 balance_dirty_pages_ratelimited(mapping);
4085
4086 /*
4087 * Bring in the user page that we will copy from _first_.
4088 * Otherwise there's a nasty deadlock on copying from the
4089 * same page as we're writing to, without it being marked
4090 * up-to-date.
4091 */
4092 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4093 status = -EFAULT;
4094 break;
4095 }
4096
4097 if (fatal_signal_pending(current)) {
4098 status = -EINTR;
4099 break;
4100 }
4101
4102 status = a_ops->write_begin(file, mapping, pos, bytes,
4103 &folio, &fsdata);
4104 if (unlikely(status < 0))
4105 break;
4106
4107 offset = offset_in_folio(folio, pos);
4108 if (bytes > folio_size(folio) - offset)
4109 bytes = folio_size(folio) - offset;
4110
4111 if (mapping_writably_mapped(mapping))
4112 flush_dcache_folio(folio);
4113
4114 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4115 flush_dcache_folio(folio);
4116
4117 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4118 folio, fsdata);
4119 if (unlikely(status != copied)) {
4120 iov_iter_revert(i, copied - max(status, 0L));
4121 if (unlikely(status < 0))
4122 break;
4123 }
4124 cond_resched();
4125
4126 if (unlikely(status == 0)) {
4127 /*
4128 * A short copy made ->write_end() reject the
4129 * thing entirely. Might be memory poisoning
4130 * halfway through, might be a race with munmap,
4131 * might be severe memory pressure.
4132 */
4133 if (chunk > PAGE_SIZE)
4134 chunk /= 2;
4135 if (copied) {
4136 bytes = copied;
4137 goto retry;
4138 }
4139 } else {
4140 pos += status;
4141 written += status;
4142 }
4143 } while (iov_iter_count(i));
4144
4145 if (!written)
4146 return status;
4147 iocb->ki_pos += written;
4148 return written;
4149 }
4150 EXPORT_SYMBOL(generic_perform_write);
4151
4152 /**
4153 * __generic_file_write_iter - write data to a file
4154 * @iocb: IO state structure (file, offset, etc.)
4155 * @from: iov_iter with data to write
4156 *
4157 * This function does all the work needed for actually writing data to a
4158 * file. It does all basic checks, removes SUID from the file, updates
4159 * modification times and calls proper subroutines depending on whether we
4160 * do direct IO or a standard buffered write.
4161 *
4162 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4163 * object which does not need locking at all.
4164 *
4165 * This function does *not* take care of syncing data in case of O_SYNC write.
4166 * A caller has to handle it. This is mainly due to the fact that we want to
4167 * avoid syncing under i_rwsem.
4168 *
4169 * Return:
4170 * * number of bytes written, even for truncated writes
4171 * * negative error code if no data has been written at all
4172 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4173 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4174 {
4175 struct file *file = iocb->ki_filp;
4176 struct address_space *mapping = file->f_mapping;
4177 struct inode *inode = mapping->host;
4178 ssize_t ret;
4179
4180 ret = file_remove_privs(file);
4181 if (ret)
4182 return ret;
4183
4184 ret = file_update_time(file);
4185 if (ret)
4186 return ret;
4187
4188 if (iocb->ki_flags & IOCB_DIRECT) {
4189 ret = generic_file_direct_write(iocb, from);
4190 /*
4191 * If the write stopped short of completing, fall back to
4192 * buffered writes. Some filesystems do this for writes to
4193 * holes, for example. For DAX files, a buffered write will
4194 * not succeed (even if it did, DAX does not handle dirty
4195 * page-cache pages correctly).
4196 */
4197 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4198 return ret;
4199 return direct_write_fallback(iocb, from, ret,
4200 generic_perform_write(iocb, from));
4201 }
4202
4203 return generic_perform_write(iocb, from);
4204 }
4205 EXPORT_SYMBOL(__generic_file_write_iter);
4206
4207 /**
4208 * generic_file_write_iter - write data to a file
4209 * @iocb: IO state structure
4210 * @from: iov_iter with data to write
4211 *
4212 * This is a wrapper around __generic_file_write_iter() to be used by most
4213 * filesystems. It takes care of syncing the file in case of O_SYNC file
4214 * and acquires i_rwsem as needed.
4215 * Return:
4216 * * negative error code if no data has been written at all of
4217 * vfs_fsync_range() failed for a synchronous write
4218 * * number of bytes written, even for truncated writes
4219 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4220 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4221 {
4222 struct file *file = iocb->ki_filp;
4223 struct inode *inode = file->f_mapping->host;
4224 ssize_t ret;
4225
4226 inode_lock(inode);
4227 ret = generic_write_checks(iocb, from);
4228 if (ret > 0)
4229 ret = __generic_file_write_iter(iocb, from);
4230 inode_unlock(inode);
4231
4232 if (ret > 0)
4233 ret = generic_write_sync(iocb, ret);
4234 return ret;
4235 }
4236 EXPORT_SYMBOL(generic_file_write_iter);
4237
4238 /**
4239 * filemap_release_folio() - Release fs-specific metadata on a folio.
4240 * @folio: The folio which the kernel is trying to free.
4241 * @gfp: Memory allocation flags (and I/O mode).
4242 *
4243 * The address_space is trying to release any data attached to a folio
4244 * (presumably at folio->private).
4245 *
4246 * This will also be called if the private_2 flag is set on a page,
4247 * indicating that the folio has other metadata associated with it.
4248 *
4249 * The @gfp argument specifies whether I/O may be performed to release
4250 * this page (__GFP_IO), and whether the call may block
4251 * (__GFP_RECLAIM & __GFP_FS).
4252 *
4253 * Return: %true if the release was successful, otherwise %false.
4254 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4255 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4256 {
4257 struct address_space * const mapping = folio->mapping;
4258
4259 BUG_ON(!folio_test_locked(folio));
4260 if (!folio_needs_release(folio))
4261 return true;
4262 if (folio_test_writeback(folio))
4263 return false;
4264
4265 if (mapping && mapping->a_ops->release_folio)
4266 return mapping->a_ops->release_folio(folio, gfp);
4267 return try_to_free_buffers(folio);
4268 }
4269 EXPORT_SYMBOL(filemap_release_folio);
4270
4271 /**
4272 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4273 * @inode: The inode to flush
4274 * @flush: Set to write back rather than simply invalidate.
4275 * @start: First byte to in range.
4276 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4277 * onwards.
4278 *
4279 * Invalidate all the folios on an inode that contribute to the specified
4280 * range, possibly writing them back first. Whilst the operation is
4281 * undertaken, the invalidate lock is held to prevent new folios from being
4282 * installed.
4283 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4284 int filemap_invalidate_inode(struct inode *inode, bool flush,
4285 loff_t start, loff_t end)
4286 {
4287 struct address_space *mapping = inode->i_mapping;
4288 pgoff_t first = start >> PAGE_SHIFT;
4289 pgoff_t last = end >> PAGE_SHIFT;
4290 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4291
4292 if (!mapping || !mapping->nrpages || end < start)
4293 goto out;
4294
4295 /* Prevent new folios from being added to the inode. */
4296 filemap_invalidate_lock(mapping);
4297
4298 if (!mapping->nrpages)
4299 goto unlock;
4300
4301 unmap_mapping_pages(mapping, first, nr, false);
4302
4303 /* Write back the data if we're asked to. */
4304 if (flush) {
4305 struct writeback_control wbc = {
4306 .sync_mode = WB_SYNC_ALL,
4307 .nr_to_write = LONG_MAX,
4308 .range_start = start,
4309 .range_end = end,
4310 };
4311
4312 filemap_fdatawrite_wbc(mapping, &wbc);
4313 }
4314
4315 /* Wait for writeback to complete on all folios and discard. */
4316 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4317
4318 unlock:
4319 filemap_invalidate_unlock(mapping);
4320 out:
4321 return filemap_check_errors(mapping);
4322 }
4323 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4324
4325 #ifdef CONFIG_CACHESTAT_SYSCALL
4326 /**
4327 * filemap_cachestat() - compute the page cache statistics of a mapping
4328 * @mapping: The mapping to compute the statistics for.
4329 * @first_index: The starting page cache index.
4330 * @last_index: The final page index (inclusive).
4331 * @cs: the cachestat struct to write the result to.
4332 *
4333 * This will query the page cache statistics of a mapping in the
4334 * page range of [first_index, last_index] (inclusive). The statistics
4335 * queried include: number of dirty pages, number of pages marked for
4336 * writeback, and the number of (recently) evicted pages.
4337 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4338 static void filemap_cachestat(struct address_space *mapping,
4339 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4340 {
4341 XA_STATE(xas, &mapping->i_pages, first_index);
4342 struct folio *folio;
4343
4344 /* Flush stats (and potentially sleep) outside the RCU read section. */
4345 mem_cgroup_flush_stats_ratelimited(NULL);
4346
4347 rcu_read_lock();
4348 xas_for_each(&xas, folio, last_index) {
4349 int order;
4350 unsigned long nr_pages;
4351 pgoff_t folio_first_index, folio_last_index;
4352
4353 /*
4354 * Don't deref the folio. It is not pinned, and might
4355 * get freed (and reused) underneath us.
4356 *
4357 * We *could* pin it, but that would be expensive for
4358 * what should be a fast and lightweight syscall.
4359 *
4360 * Instead, derive all information of interest from
4361 * the rcu-protected xarray.
4362 */
4363
4364 if (xas_retry(&xas, folio))
4365 continue;
4366
4367 order = xas_get_order(&xas);
4368 nr_pages = 1 << order;
4369 folio_first_index = round_down(xas.xa_index, 1 << order);
4370 folio_last_index = folio_first_index + nr_pages - 1;
4371
4372 /* Folios might straddle the range boundaries, only count covered pages */
4373 if (folio_first_index < first_index)
4374 nr_pages -= first_index - folio_first_index;
4375
4376 if (folio_last_index > last_index)
4377 nr_pages -= folio_last_index - last_index;
4378
4379 if (xa_is_value(folio)) {
4380 /* page is evicted */
4381 void *shadow = (void *)folio;
4382 bool workingset; /* not used */
4383
4384 cs->nr_evicted += nr_pages;
4385
4386 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4387 if (shmem_mapping(mapping)) {
4388 /* shmem file - in swap cache */
4389 swp_entry_t swp = radix_to_swp_entry(folio);
4390
4391 /* swapin error results in poisoned entry */
4392 if (non_swap_entry(swp))
4393 goto resched;
4394
4395 /*
4396 * Getting a swap entry from the shmem
4397 * inode means we beat
4398 * shmem_unuse(). rcu_read_lock()
4399 * ensures swapoff waits for us before
4400 * freeing the swapper space. However,
4401 * we can race with swapping and
4402 * invalidation, so there might not be
4403 * a shadow in the swapcache (yet).
4404 */
4405 shadow = get_shadow_from_swap_cache(swp);
4406 if (!shadow)
4407 goto resched;
4408 }
4409 #endif
4410 if (workingset_test_recent(shadow, true, &workingset, false))
4411 cs->nr_recently_evicted += nr_pages;
4412
4413 goto resched;
4414 }
4415
4416 /* page is in cache */
4417 cs->nr_cache += nr_pages;
4418
4419 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4420 cs->nr_dirty += nr_pages;
4421
4422 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4423 cs->nr_writeback += nr_pages;
4424
4425 resched:
4426 if (need_resched()) {
4427 xas_pause(&xas);
4428 cond_resched_rcu();
4429 }
4430 }
4431 rcu_read_unlock();
4432 }
4433
4434 /*
4435 * See mincore: reveal pagecache information only for files
4436 * that the calling process has write access to, or could (if
4437 * tried) open for writing.
4438 */
can_do_cachestat(struct file * f)4439 static inline bool can_do_cachestat(struct file *f)
4440 {
4441 if (f->f_mode & FMODE_WRITE)
4442 return true;
4443 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4444 return true;
4445 return file_permission(f, MAY_WRITE) == 0;
4446 }
4447
4448 /*
4449 * The cachestat(2) system call.
4450 *
4451 * cachestat() returns the page cache statistics of a file in the
4452 * bytes range specified by `off` and `len`: number of cached pages,
4453 * number of dirty pages, number of pages marked for writeback,
4454 * number of evicted pages, and number of recently evicted pages.
4455 *
4456 * An evicted page is a page that is previously in the page cache
4457 * but has been evicted since. A page is recently evicted if its last
4458 * eviction was recent enough that its reentry to the cache would
4459 * indicate that it is actively being used by the system, and that
4460 * there is memory pressure on the system.
4461 *
4462 * `off` and `len` must be non-negative integers. If `len` > 0,
4463 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4464 * we will query in the range from `off` to the end of the file.
4465 *
4466 * The `flags` argument is unused for now, but is included for future
4467 * extensibility. User should pass 0 (i.e no flag specified).
4468 *
4469 * Currently, hugetlbfs is not supported.
4470 *
4471 * Because the status of a page can change after cachestat() checks it
4472 * but before it returns to the application, the returned values may
4473 * contain stale information.
4474 *
4475 * return values:
4476 * zero - success
4477 * -EFAULT - cstat or cstat_range points to an illegal address
4478 * -EINVAL - invalid flags
4479 * -EBADF - invalid file descriptor
4480 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4481 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4482 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4483 struct cachestat_range __user *, cstat_range,
4484 struct cachestat __user *, cstat, unsigned int, flags)
4485 {
4486 CLASS(fd, f)(fd);
4487 struct address_space *mapping;
4488 struct cachestat_range csr;
4489 struct cachestat cs;
4490 pgoff_t first_index, last_index;
4491
4492 if (fd_empty(f))
4493 return -EBADF;
4494
4495 if (copy_from_user(&csr, cstat_range,
4496 sizeof(struct cachestat_range)))
4497 return -EFAULT;
4498
4499 /* hugetlbfs is not supported */
4500 if (is_file_hugepages(fd_file(f)))
4501 return -EOPNOTSUPP;
4502
4503 if (!can_do_cachestat(fd_file(f)))
4504 return -EPERM;
4505
4506 if (flags != 0)
4507 return -EINVAL;
4508
4509 first_index = csr.off >> PAGE_SHIFT;
4510 last_index =
4511 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4512 memset(&cs, 0, sizeof(struct cachestat));
4513 mapping = fd_file(f)->f_mapping;
4514 filemap_cachestat(mapping, first_index, last_index, &cs);
4515
4516 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4517 return -EFAULT;
4518
4519 return 0;
4520 }
4521 #endif /* CONFIG_CACHESTAT_SYSCALL */
4522