xref: /linux/kernel/time/clocksource.c (revision f2d282e1dfb3d8cb95b5ccdea43f2411f27201db)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 static void clocksource_enqueue(struct clocksource *cs);
24 
25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
26 {
27 	u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
28 
29 	if (likely(delta < cs->max_cycles))
30 		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
31 
32 	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
33 }
34 
35 /**
36  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37  * @mult:	pointer to mult variable
38  * @shift:	pointer to shift variable
39  * @from:	frequency to convert from
40  * @to:		frequency to convert to
41  * @maxsec:	guaranteed runtime conversion range in seconds
42  *
43  * The function evaluates the shift/mult pair for the scaled math
44  * operations of clocksources and clockevents.
45  *
46  * @to and @from are frequency values in HZ. For clock sources @to is
47  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48  * event @to is the counter frequency and @from is NSEC_PER_SEC.
49  *
50  * The @maxsec conversion range argument controls the time frame in
51  * seconds which must be covered by the runtime conversion with the
52  * calculated mult and shift factors. This guarantees that no 64bit
53  * overflow happens when the input value of the conversion is
54  * multiplied with the calculated mult factor. Larger ranges may
55  * reduce the conversion accuracy by choosing smaller mult and shift
56  * factors.
57  */
58 void
59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
60 {
61 	u64 tmp;
62 	u32 sft, sftacc= 32;
63 
64 	/*
65 	 * Calculate the shift factor which is limiting the conversion
66 	 * range:
67 	 */
68 	tmp = ((u64)maxsec * from) >> 32;
69 	while (tmp) {
70 		tmp >>=1;
71 		sftacc--;
72 	}
73 
74 	/*
75 	 * Find the conversion shift/mult pair which has the best
76 	 * accuracy and fits the maxsec conversion range:
77 	 */
78 	for (sft = 32; sft > 0; sft--) {
79 		tmp = (u64) to << sft;
80 		tmp += from / 2;
81 		do_div(tmp, from);
82 		if ((tmp >> sftacc) == 0)
83 			break;
84 	}
85 	*mult = tmp;
86 	*shift = sft;
87 }
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
89 
90 /*[Clocksource internal variables]---------
91  * curr_clocksource:
92  *	currently selected clocksource.
93  * suspend_clocksource:
94  *	used to calculate the suspend time.
95  * clocksource_list:
96  *	linked list with the registered clocksources
97  * clocksource_mutex:
98  *	protects manipulations to curr_clocksource and the clocksource_list
99  * override_name:
100  *	Name of the user-specified clocksource.
101  */
102 static struct clocksource *curr_clocksource;
103 static struct clocksource *suspend_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 static u64 suspend_start;
109 
110 /*
111  * Interval: 0.5sec.
112  */
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
115 
116 /*
117  * Threshold: 0.0312s, when doubled: 0.0625s.
118  */
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
120 
121 /*
122  * Maximum permissible delay between two readouts of the watchdog
123  * clocksource surrounding a read of the clocksource being validated.
124  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
125  * a lower bound for cs->uncertainty_margin values when registering clocks.
126  *
127  * The default of 500 parts per million is based on NTP's limits.
128  * If a clocksource is good enough for NTP, it is good enough for us!
129  *
130  * In other words, by default, even if a clocksource is extremely
131  * precise (for example, with a sub-nanosecond period), the maximum
132  * permissible skew between the clocksource watchdog and the clocksource
133  * under test is not permitted to go below the 500ppm minimum defined
134  * by MAX_SKEW_USEC.  This 500ppm minimum may be overridden using the
135  * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
136  */
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
139 #else
140 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
141 #endif
142 
143 /*
144  * Default for maximum permissible skew when cs->uncertainty_margin is
145  * not specified, and the lower bound even when cs->uncertainty_margin
146  * is specified.  This is also the default that is used when registering
147  * clocks with unspecifed cs->uncertainty_margin, so this macro is used
148  * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
149  */
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
151 
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct *work);
154 static void clocksource_select(void);
155 
156 static LIST_HEAD(watchdog_list);
157 static struct clocksource *watchdog;
158 static struct timer_list watchdog_timer;
159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
160 static DEFINE_SPINLOCK(watchdog_lock);
161 static int watchdog_running;
162 static atomic_t watchdog_reset_pending;
163 static int64_t watchdog_max_interval;
164 
165 static inline void clocksource_watchdog_lock(unsigned long *flags)
166 {
167 	spin_lock_irqsave(&watchdog_lock, *flags);
168 }
169 
170 static inline void clocksource_watchdog_unlock(unsigned long *flags)
171 {
172 	spin_unlock_irqrestore(&watchdog_lock, *flags);
173 }
174 
175 static int clocksource_watchdog_kthread(void *data);
176 
177 static void clocksource_watchdog_work(struct work_struct *work)
178 {
179 	/*
180 	 * We cannot directly run clocksource_watchdog_kthread() here, because
181 	 * clocksource_select() calls timekeeping_notify() which uses
182 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 	 * lock inversions wrt CPU hotplug.
184 	 *
185 	 * Also, we only ever run this work once or twice during the lifetime
186 	 * of the kernel, so there is no point in creating a more permanent
187 	 * kthread for this.
188 	 *
189 	 * If kthread_run fails the next watchdog scan over the
190 	 * watchdog_list will find the unstable clock again.
191 	 */
192 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
193 }
194 
195 static void clocksource_change_rating(struct clocksource *cs, int rating)
196 {
197 	list_del(&cs->list);
198 	cs->rating = rating;
199 	clocksource_enqueue(cs);
200 }
201 
202 static void __clocksource_unstable(struct clocksource *cs)
203 {
204 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
205 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
206 
207 	/*
208 	 * If the clocksource is registered clocksource_watchdog_kthread() will
209 	 * re-rate and re-select.
210 	 */
211 	if (list_empty(&cs->list)) {
212 		cs->rating = 0;
213 		return;
214 	}
215 
216 	if (cs->mark_unstable)
217 		cs->mark_unstable(cs);
218 
219 	/* kick clocksource_watchdog_kthread() */
220 	if (finished_booting)
221 		schedule_work(&watchdog_work);
222 }
223 
224 /**
225  * clocksource_mark_unstable - mark clocksource unstable via watchdog
226  * @cs:		clocksource to be marked unstable
227  *
228  * This function is called by the x86 TSC code to mark clocksources as unstable;
229  * it defers demotion and re-selection to a kthread.
230  */
231 void clocksource_mark_unstable(struct clocksource *cs)
232 {
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&watchdog_lock, flags);
236 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
237 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
238 			list_add(&cs->wd_list, &watchdog_list);
239 		__clocksource_unstable(cs);
240 	}
241 	spin_unlock_irqrestore(&watchdog_lock, flags);
242 }
243 
244 static int verify_n_cpus = 8;
245 module_param(verify_n_cpus, int, 0644);
246 
247 enum wd_read_status {
248 	WD_READ_SUCCESS,
249 	WD_READ_UNSTABLE,
250 	WD_READ_SKIP
251 };
252 
253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
254 {
255 	int64_t md = 2 * watchdog->uncertainty_margin;
256 	unsigned int nretries, max_retries;
257 	int64_t wd_delay, wd_seq_delay;
258 	u64 wd_end, wd_end2;
259 
260 	max_retries = clocksource_get_max_watchdog_retry();
261 	for (nretries = 0; nretries <= max_retries; nretries++) {
262 		local_irq_disable();
263 		*wdnow = watchdog->read(watchdog);
264 		*csnow = cs->read(cs);
265 		wd_end = watchdog->read(watchdog);
266 		wd_end2 = watchdog->read(watchdog);
267 		local_irq_enable();
268 
269 		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
270 		if (wd_delay <= md + cs->uncertainty_margin) {
271 			if (nretries > 1 && nretries >= max_retries) {
272 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 					smp_processor_id(), watchdog->name, nretries);
274 			}
275 			return WD_READ_SUCCESS;
276 		}
277 
278 		/*
279 		 * Now compute delay in consecutive watchdog read to see if
280 		 * there is too much external interferences that cause
281 		 * significant delay in reading both clocksource and watchdog.
282 		 *
283 		 * If consecutive WD read-back delay > md, report
284 		 * system busy, reinit the watchdog and skip the current
285 		 * watchdog test.
286 		 */
287 		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
288 		if (wd_seq_delay > md)
289 			goto skip_test;
290 	}
291 
292 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
294 	return WD_READ_UNSTABLE;
295 
296 skip_test:
297 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 		smp_processor_id(), watchdog->name, wd_seq_delay);
299 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
300 		cs->name, wd_delay);
301 	return WD_READ_SKIP;
302 }
303 
304 static u64 csnow_mid;
305 static cpumask_t cpus_ahead;
306 static cpumask_t cpus_behind;
307 static cpumask_t cpus_chosen;
308 
309 static void clocksource_verify_choose_cpus(void)
310 {
311 	int cpu, i, n = verify_n_cpus;
312 
313 	if (n < 0 || n >= num_online_cpus()) {
314 		/* Check all of the CPUs. */
315 		cpumask_copy(&cpus_chosen, cpu_online_mask);
316 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 		return;
318 	}
319 
320 	/* If no checking desired, or no other CPU to check, leave. */
321 	cpumask_clear(&cpus_chosen);
322 	if (n == 0 || num_online_cpus() <= 1)
323 		return;
324 
325 	/* Make sure to select at least one CPU other than the current CPU. */
326 	cpu = cpumask_any_but(cpu_online_mask, smp_processor_id());
327 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
328 		return;
329 	cpumask_set_cpu(cpu, &cpus_chosen);
330 
331 	/* Force a sane value for the boot parameter. */
332 	if (n > nr_cpu_ids)
333 		n = nr_cpu_ids;
334 
335 	/*
336 	 * Randomly select the specified number of CPUs.  If the same
337 	 * CPU is selected multiple times, that CPU is checked only once,
338 	 * and no replacement CPU is selected.  This gracefully handles
339 	 * situations where verify_n_cpus is greater than the number of
340 	 * CPUs that are currently online.
341 	 */
342 	for (i = 1; i < n; i++) {
343 		cpu = cpumask_random(cpu_online_mask);
344 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
345 			cpumask_set_cpu(cpu, &cpus_chosen);
346 	}
347 
348 	/* Don't verify ourselves. */
349 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
350 }
351 
352 static void clocksource_verify_one_cpu(void *csin)
353 {
354 	struct clocksource *cs = (struct clocksource *)csin;
355 
356 	csnow_mid = cs->read(cs);
357 }
358 
359 void clocksource_verify_percpu(struct clocksource *cs)
360 {
361 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
362 	u64 csnow_begin, csnow_end;
363 	int cpu, testcpu;
364 	s64 delta;
365 
366 	if (verify_n_cpus == 0)
367 		return;
368 	cpumask_clear(&cpus_ahead);
369 	cpumask_clear(&cpus_behind);
370 	cpus_read_lock();
371 	migrate_disable();
372 	clocksource_verify_choose_cpus();
373 	if (cpumask_empty(&cpus_chosen)) {
374 		migrate_enable();
375 		cpus_read_unlock();
376 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
377 		return;
378 	}
379 	testcpu = smp_processor_id();
380 	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
381 		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
382 	preempt_disable();
383 	for_each_cpu(cpu, &cpus_chosen) {
384 		if (cpu == testcpu)
385 			continue;
386 		csnow_begin = cs->read(cs);
387 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
388 		csnow_end = cs->read(cs);
389 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
390 		if (delta < 0)
391 			cpumask_set_cpu(cpu, &cpus_behind);
392 		delta = (csnow_end - csnow_mid) & cs->mask;
393 		if (delta < 0)
394 			cpumask_set_cpu(cpu, &cpus_ahead);
395 		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
396 		if (cs_nsec > cs_nsec_max)
397 			cs_nsec_max = cs_nsec;
398 		if (cs_nsec < cs_nsec_min)
399 			cs_nsec_min = cs_nsec;
400 	}
401 	preempt_enable();
402 	migrate_enable();
403 	cpus_read_unlock();
404 	if (!cpumask_empty(&cpus_ahead))
405 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
406 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
407 	if (!cpumask_empty(&cpus_behind))
408 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
409 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
410 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
411 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
412 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
413 }
414 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
415 
416 static inline void clocksource_reset_watchdog(void)
417 {
418 	struct clocksource *cs;
419 
420 	list_for_each_entry(cs, &watchdog_list, wd_list)
421 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
422 }
423 
424 
425 static void clocksource_watchdog(struct timer_list *unused)
426 {
427 	int64_t wd_nsec, cs_nsec, interval;
428 	u64 csnow, wdnow, cslast, wdlast;
429 	int next_cpu, reset_pending;
430 	struct clocksource *cs;
431 	enum wd_read_status read_ret;
432 	unsigned long extra_wait = 0;
433 	u32 md;
434 
435 	spin_lock(&watchdog_lock);
436 	if (!watchdog_running)
437 		goto out;
438 
439 	reset_pending = atomic_read(&watchdog_reset_pending);
440 
441 	list_for_each_entry(cs, &watchdog_list, wd_list) {
442 
443 		/* Clocksource already marked unstable? */
444 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
445 			if (finished_booting)
446 				schedule_work(&watchdog_work);
447 			continue;
448 		}
449 
450 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
451 
452 		if (read_ret == WD_READ_UNSTABLE) {
453 			/* Clock readout unreliable, so give it up. */
454 			__clocksource_unstable(cs);
455 			continue;
456 		}
457 
458 		/*
459 		 * When WD_READ_SKIP is returned, it means the system is likely
460 		 * under very heavy load, where the latency of reading
461 		 * watchdog/clocksource is very big, and affect the accuracy of
462 		 * watchdog check. So give system some space and suspend the
463 		 * watchdog check for 5 minutes.
464 		 */
465 		if (read_ret == WD_READ_SKIP) {
466 			/*
467 			 * As the watchdog timer will be suspended, and
468 			 * cs->last could keep unchanged for 5 minutes, reset
469 			 * the counters.
470 			 */
471 			clocksource_reset_watchdog();
472 			extra_wait = HZ * 300;
473 			break;
474 		}
475 
476 		/* Clocksource initialized ? */
477 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
478 		    atomic_read(&watchdog_reset_pending)) {
479 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
480 			cs->wd_last = wdnow;
481 			cs->cs_last = csnow;
482 			continue;
483 		}
484 
485 		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
486 		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
487 		wdlast = cs->wd_last; /* save these in case we print them */
488 		cslast = cs->cs_last;
489 		cs->cs_last = csnow;
490 		cs->wd_last = wdnow;
491 
492 		if (atomic_read(&watchdog_reset_pending))
493 			continue;
494 
495 		/*
496 		 * The processing of timer softirqs can get delayed (usually
497 		 * on account of ksoftirqd not getting to run in a timely
498 		 * manner), which causes the watchdog interval to stretch.
499 		 * Skew detection may fail for longer watchdog intervals
500 		 * on account of fixed margins being used.
501 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
502 		 * watchdog intervals longer than a few seconds.
503 		 */
504 		interval = max(cs_nsec, wd_nsec);
505 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
506 			if (system_state > SYSTEM_SCHEDULING &&
507 			    interval > 2 * watchdog_max_interval) {
508 				watchdog_max_interval = interval;
509 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
510 					cs_nsec, wd_nsec);
511 			}
512 			watchdog_timer.expires = jiffies;
513 			continue;
514 		}
515 
516 		/* Check the deviation from the watchdog clocksource. */
517 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
518 		if (abs(cs_nsec - wd_nsec) > md) {
519 			s64 cs_wd_msec;
520 			s64 wd_msec;
521 			u32 wd_rem;
522 
523 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
524 				smp_processor_id(), cs->name);
525 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
526 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
527 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
528 				cs->name, cs_nsec, csnow, cslast, cs->mask);
529 			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
530 			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
531 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
532 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
533 			if (curr_clocksource == cs)
534 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
535 			else if (curr_clocksource)
536 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
537 			else
538 				pr_warn("                      No current clocksource.\n");
539 			__clocksource_unstable(cs);
540 			continue;
541 		}
542 
543 		if (cs == curr_clocksource && cs->tick_stable)
544 			cs->tick_stable(cs);
545 
546 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
547 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
548 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
549 			/* Mark it valid for high-res. */
550 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
551 
552 			/*
553 			 * clocksource_done_booting() will sort it if
554 			 * finished_booting is not set yet.
555 			 */
556 			if (!finished_booting)
557 				continue;
558 
559 			/*
560 			 * If this is not the current clocksource let
561 			 * the watchdog thread reselect it. Due to the
562 			 * change to high res this clocksource might
563 			 * be preferred now. If it is the current
564 			 * clocksource let the tick code know about
565 			 * that change.
566 			 */
567 			if (cs != curr_clocksource) {
568 				cs->flags |= CLOCK_SOURCE_RESELECT;
569 				schedule_work(&watchdog_work);
570 			} else {
571 				tick_clock_notify();
572 			}
573 		}
574 	}
575 
576 	/*
577 	 * We only clear the watchdog_reset_pending, when we did a
578 	 * full cycle through all clocksources.
579 	 */
580 	if (reset_pending)
581 		atomic_dec(&watchdog_reset_pending);
582 
583 	/*
584 	 * Cycle through CPUs to check if the CPUs stay synchronized
585 	 * to each other.
586 	 */
587 	next_cpu = cpumask_next_wrap(raw_smp_processor_id(), cpu_online_mask);
588 
589 	/*
590 	 * Arm timer if not already pending: could race with concurrent
591 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
592 	 */
593 	if (!timer_pending(&watchdog_timer)) {
594 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
595 		add_timer_on(&watchdog_timer, next_cpu);
596 	}
597 out:
598 	spin_unlock(&watchdog_lock);
599 }
600 
601 static inline void clocksource_start_watchdog(void)
602 {
603 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
604 		return;
605 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
606 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
607 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
608 	watchdog_running = 1;
609 }
610 
611 static inline void clocksource_stop_watchdog(void)
612 {
613 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
614 		return;
615 	timer_delete(&watchdog_timer);
616 	watchdog_running = 0;
617 }
618 
619 static void clocksource_resume_watchdog(void)
620 {
621 	atomic_inc(&watchdog_reset_pending);
622 }
623 
624 static void clocksource_enqueue_watchdog(struct clocksource *cs)
625 {
626 	INIT_LIST_HEAD(&cs->wd_list);
627 
628 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
629 		/* cs is a clocksource to be watched. */
630 		list_add(&cs->wd_list, &watchdog_list);
631 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
632 	} else {
633 		/* cs is a watchdog. */
634 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
635 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
636 	}
637 }
638 
639 static void clocksource_select_watchdog(bool fallback)
640 {
641 	struct clocksource *cs, *old_wd;
642 	unsigned long flags;
643 
644 	spin_lock_irqsave(&watchdog_lock, flags);
645 	/* save current watchdog */
646 	old_wd = watchdog;
647 	if (fallback)
648 		watchdog = NULL;
649 
650 	list_for_each_entry(cs, &clocksource_list, list) {
651 		/* cs is a clocksource to be watched. */
652 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
653 			continue;
654 
655 		/* Skip current if we were requested for a fallback. */
656 		if (fallback && cs == old_wd)
657 			continue;
658 
659 		/* Pick the best watchdog. */
660 		if (!watchdog || cs->rating > watchdog->rating)
661 			watchdog = cs;
662 	}
663 	/* If we failed to find a fallback restore the old one. */
664 	if (!watchdog)
665 		watchdog = old_wd;
666 
667 	/* If we changed the watchdog we need to reset cycles. */
668 	if (watchdog != old_wd)
669 		clocksource_reset_watchdog();
670 
671 	/* Check if the watchdog timer needs to be started. */
672 	clocksource_start_watchdog();
673 	spin_unlock_irqrestore(&watchdog_lock, flags);
674 }
675 
676 static void clocksource_dequeue_watchdog(struct clocksource *cs)
677 {
678 	if (cs != watchdog) {
679 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
680 			/* cs is a watched clocksource. */
681 			list_del_init(&cs->wd_list);
682 			/* Check if the watchdog timer needs to be stopped. */
683 			clocksource_stop_watchdog();
684 		}
685 	}
686 }
687 
688 static int __clocksource_watchdog_kthread(void)
689 {
690 	struct clocksource *cs, *tmp;
691 	unsigned long flags;
692 	int select = 0;
693 
694 	/* Do any required per-CPU skew verification. */
695 	if (curr_clocksource &&
696 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
697 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
698 		clocksource_verify_percpu(curr_clocksource);
699 
700 	spin_lock_irqsave(&watchdog_lock, flags);
701 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
702 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
703 			list_del_init(&cs->wd_list);
704 			clocksource_change_rating(cs, 0);
705 			select = 1;
706 		}
707 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
708 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
709 			select = 1;
710 		}
711 	}
712 	/* Check if the watchdog timer needs to be stopped. */
713 	clocksource_stop_watchdog();
714 	spin_unlock_irqrestore(&watchdog_lock, flags);
715 
716 	return select;
717 }
718 
719 static int clocksource_watchdog_kthread(void *data)
720 {
721 	mutex_lock(&clocksource_mutex);
722 	if (__clocksource_watchdog_kthread())
723 		clocksource_select();
724 	mutex_unlock(&clocksource_mutex);
725 	return 0;
726 }
727 
728 static bool clocksource_is_watchdog(struct clocksource *cs)
729 {
730 	return cs == watchdog;
731 }
732 
733 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
734 
735 static void clocksource_enqueue_watchdog(struct clocksource *cs)
736 {
737 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
738 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
739 }
740 
741 static void clocksource_select_watchdog(bool fallback) { }
742 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
743 static inline void clocksource_resume_watchdog(void) { }
744 static inline int __clocksource_watchdog_kthread(void) { return 0; }
745 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
746 void clocksource_mark_unstable(struct clocksource *cs) { }
747 
748 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
749 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
750 
751 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
752 
753 static bool clocksource_is_suspend(struct clocksource *cs)
754 {
755 	return cs == suspend_clocksource;
756 }
757 
758 static void __clocksource_suspend_select(struct clocksource *cs)
759 {
760 	/*
761 	 * Skip the clocksource which will be stopped in suspend state.
762 	 */
763 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
764 		return;
765 
766 	/*
767 	 * The nonstop clocksource can be selected as the suspend clocksource to
768 	 * calculate the suspend time, so it should not supply suspend/resume
769 	 * interfaces to suspend the nonstop clocksource when system suspends.
770 	 */
771 	if (cs->suspend || cs->resume) {
772 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
773 			cs->name);
774 	}
775 
776 	/* Pick the best rating. */
777 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
778 		suspend_clocksource = cs;
779 }
780 
781 /**
782  * clocksource_suspend_select - Select the best clocksource for suspend timing
783  * @fallback:	if select a fallback clocksource
784  */
785 static void clocksource_suspend_select(bool fallback)
786 {
787 	struct clocksource *cs, *old_suspend;
788 
789 	old_suspend = suspend_clocksource;
790 	if (fallback)
791 		suspend_clocksource = NULL;
792 
793 	list_for_each_entry(cs, &clocksource_list, list) {
794 		/* Skip current if we were requested for a fallback. */
795 		if (fallback && cs == old_suspend)
796 			continue;
797 
798 		__clocksource_suspend_select(cs);
799 	}
800 }
801 
802 /**
803  * clocksource_start_suspend_timing - Start measuring the suspend timing
804  * @cs:			current clocksource from timekeeping
805  * @start_cycles:	current cycles from timekeeping
806  *
807  * This function will save the start cycle values of suspend timer to calculate
808  * the suspend time when resuming system.
809  *
810  * This function is called late in the suspend process from timekeeping_suspend(),
811  * that means processes are frozen, non-boot cpus and interrupts are disabled
812  * now. It is therefore possible to start the suspend timer without taking the
813  * clocksource mutex.
814  */
815 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
816 {
817 	if (!suspend_clocksource)
818 		return;
819 
820 	/*
821 	 * If current clocksource is the suspend timer, we should use the
822 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
823 	 * from suspend timer.
824 	 */
825 	if (clocksource_is_suspend(cs)) {
826 		suspend_start = start_cycles;
827 		return;
828 	}
829 
830 	if (suspend_clocksource->enable &&
831 	    suspend_clocksource->enable(suspend_clocksource)) {
832 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
833 		return;
834 	}
835 
836 	suspend_start = suspend_clocksource->read(suspend_clocksource);
837 }
838 
839 /**
840  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
841  * @cs:		current clocksource from timekeeping
842  * @cycle_now:	current cycles from timekeeping
843  *
844  * This function will calculate the suspend time from suspend timer.
845  *
846  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
847  *
848  * This function is called early in the resume process from timekeeping_resume(),
849  * that means there is only one cpu, no processes are running and the interrupts
850  * are disabled. It is therefore possible to stop the suspend timer without
851  * taking the clocksource mutex.
852  */
853 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
854 {
855 	u64 now, nsec = 0;
856 
857 	if (!suspend_clocksource)
858 		return 0;
859 
860 	/*
861 	 * If current clocksource is the suspend timer, we should use the
862 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
863 	 * avoid same reading from suspend timer.
864 	 */
865 	if (clocksource_is_suspend(cs))
866 		now = cycle_now;
867 	else
868 		now = suspend_clocksource->read(suspend_clocksource);
869 
870 	if (now > suspend_start)
871 		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
872 
873 	/*
874 	 * Disable the suspend timer to save power if current clocksource is
875 	 * not the suspend timer.
876 	 */
877 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
878 		suspend_clocksource->disable(suspend_clocksource);
879 
880 	return nsec;
881 }
882 
883 /**
884  * clocksource_suspend - suspend the clocksource(s)
885  */
886 void clocksource_suspend(void)
887 {
888 	struct clocksource *cs;
889 
890 	list_for_each_entry_reverse(cs, &clocksource_list, list)
891 		if (cs->suspend)
892 			cs->suspend(cs);
893 }
894 
895 /**
896  * clocksource_resume - resume the clocksource(s)
897  */
898 void clocksource_resume(void)
899 {
900 	struct clocksource *cs;
901 
902 	list_for_each_entry(cs, &clocksource_list, list)
903 		if (cs->resume)
904 			cs->resume(cs);
905 
906 	clocksource_resume_watchdog();
907 }
908 
909 /**
910  * clocksource_touch_watchdog - Update watchdog
911  *
912  * Update the watchdog after exception contexts such as kgdb so as not
913  * to incorrectly trip the watchdog. This might fail when the kernel
914  * was stopped in code which holds watchdog_lock.
915  */
916 void clocksource_touch_watchdog(void)
917 {
918 	clocksource_resume_watchdog();
919 }
920 
921 /**
922  * clocksource_max_adjustment- Returns max adjustment amount
923  * @cs:         Pointer to clocksource
924  *
925  */
926 static u32 clocksource_max_adjustment(struct clocksource *cs)
927 {
928 	u64 ret;
929 	/*
930 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
931 	 */
932 	ret = (u64)cs->mult * 11;
933 	do_div(ret,100);
934 	return (u32)ret;
935 }
936 
937 /**
938  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
939  * @mult:	cycle to nanosecond multiplier
940  * @shift:	cycle to nanosecond divisor (power of two)
941  * @maxadj:	maximum adjustment value to mult (~11%)
942  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
943  * @max_cyc:	maximum cycle value before potential overflow (does not include
944  *		any safety margin)
945  *
946  * NOTE: This function includes a safety margin of 50%, in other words, we
947  * return half the number of nanoseconds the hardware counter can technically
948  * cover. This is done so that we can potentially detect problems caused by
949  * delayed timers or bad hardware, which might result in time intervals that
950  * are larger than what the math used can handle without overflows.
951  */
952 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
953 {
954 	u64 max_nsecs, max_cycles;
955 
956 	/*
957 	 * Calculate the maximum number of cycles that we can pass to the
958 	 * cyc2ns() function without overflowing a 64-bit result.
959 	 */
960 	max_cycles = ULLONG_MAX;
961 	do_div(max_cycles, mult+maxadj);
962 
963 	/*
964 	 * The actual maximum number of cycles we can defer the clocksource is
965 	 * determined by the minimum of max_cycles and mask.
966 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
967 	 * too long if there's a large negative adjustment.
968 	 */
969 	max_cycles = min(max_cycles, mask);
970 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
971 
972 	/* return the max_cycles value as well if requested */
973 	if (max_cyc)
974 		*max_cyc = max_cycles;
975 
976 	/* Return 50% of the actual maximum, so we can detect bad values */
977 	max_nsecs >>= 1;
978 
979 	return max_nsecs;
980 }
981 
982 /**
983  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
984  * @cs:         Pointer to clocksource to be updated
985  *
986  */
987 static inline void clocksource_update_max_deferment(struct clocksource *cs)
988 {
989 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
990 						cs->maxadj, cs->mask,
991 						&cs->max_cycles);
992 
993 	/*
994 	 * Threshold for detecting negative motion in clocksource_delta().
995 	 *
996 	 * Allow for 0.875 of the counter width so that overly long idle
997 	 * sleeps, which go slightly over mask/2, do not trigger the
998 	 * negative motion detection.
999 	 */
1000 	cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
1001 }
1002 
1003 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
1004 {
1005 	struct clocksource *cs;
1006 
1007 	if (!finished_booting || list_empty(&clocksource_list))
1008 		return NULL;
1009 
1010 	/*
1011 	 * We pick the clocksource with the highest rating. If oneshot
1012 	 * mode is active, we pick the highres valid clocksource with
1013 	 * the best rating.
1014 	 */
1015 	list_for_each_entry(cs, &clocksource_list, list) {
1016 		if (skipcur && cs == curr_clocksource)
1017 			continue;
1018 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1019 			continue;
1020 		return cs;
1021 	}
1022 	return NULL;
1023 }
1024 
1025 static void __clocksource_select(bool skipcur)
1026 {
1027 	bool oneshot = tick_oneshot_mode_active();
1028 	struct clocksource *best, *cs;
1029 
1030 	/* Find the best suitable clocksource */
1031 	best = clocksource_find_best(oneshot, skipcur);
1032 	if (!best)
1033 		return;
1034 
1035 	if (!strlen(override_name))
1036 		goto found;
1037 
1038 	/* Check for the override clocksource. */
1039 	list_for_each_entry(cs, &clocksource_list, list) {
1040 		if (skipcur && cs == curr_clocksource)
1041 			continue;
1042 		if (strcmp(cs->name, override_name) != 0)
1043 			continue;
1044 		/*
1045 		 * Check to make sure we don't switch to a non-highres
1046 		 * capable clocksource if the tick code is in oneshot
1047 		 * mode (highres or nohz)
1048 		 */
1049 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1050 			/* Override clocksource cannot be used. */
1051 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1052 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1053 					cs->name);
1054 				override_name[0] = 0;
1055 			} else {
1056 				/*
1057 				 * The override cannot be currently verified.
1058 				 * Deferring to let the watchdog check.
1059 				 */
1060 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1061 					cs->name);
1062 			}
1063 		} else
1064 			/* Override clocksource can be used. */
1065 			best = cs;
1066 		break;
1067 	}
1068 
1069 found:
1070 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1071 		pr_info("Switched to clocksource %s\n", best->name);
1072 		curr_clocksource = best;
1073 	}
1074 }
1075 
1076 /**
1077  * clocksource_select - Select the best clocksource available
1078  *
1079  * Private function. Must hold clocksource_mutex when called.
1080  *
1081  * Select the clocksource with the best rating, or the clocksource,
1082  * which is selected by userspace override.
1083  */
1084 static void clocksource_select(void)
1085 {
1086 	__clocksource_select(false);
1087 }
1088 
1089 static void clocksource_select_fallback(void)
1090 {
1091 	__clocksource_select(true);
1092 }
1093 
1094 /*
1095  * clocksource_done_booting - Called near the end of core bootup
1096  *
1097  * Hack to avoid lots of clocksource churn at boot time.
1098  * We use fs_initcall because we want this to start before
1099  * device_initcall but after subsys_initcall.
1100  */
1101 static int __init clocksource_done_booting(void)
1102 {
1103 	mutex_lock(&clocksource_mutex);
1104 	curr_clocksource = clocksource_default_clock();
1105 	finished_booting = 1;
1106 	/*
1107 	 * Run the watchdog first to eliminate unstable clock sources
1108 	 */
1109 	__clocksource_watchdog_kthread();
1110 	clocksource_select();
1111 	mutex_unlock(&clocksource_mutex);
1112 	return 0;
1113 }
1114 fs_initcall(clocksource_done_booting);
1115 
1116 /*
1117  * Enqueue the clocksource sorted by rating
1118  */
1119 static void clocksource_enqueue(struct clocksource *cs)
1120 {
1121 	struct list_head *entry = &clocksource_list;
1122 	struct clocksource *tmp;
1123 
1124 	list_for_each_entry(tmp, &clocksource_list, list) {
1125 		/* Keep track of the place, where to insert */
1126 		if (tmp->rating < cs->rating)
1127 			break;
1128 		entry = &tmp->list;
1129 	}
1130 	list_add(&cs->list, entry);
1131 }
1132 
1133 /**
1134  * __clocksource_update_freq_scale - Used update clocksource with new freq
1135  * @cs:		clocksource to be registered
1136  * @scale:	Scale factor multiplied against freq to get clocksource hz
1137  * @freq:	clocksource frequency (cycles per second) divided by scale
1138  *
1139  * This should only be called from the clocksource->enable() method.
1140  *
1141  * This *SHOULD NOT* be called directly! Please use the
1142  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1143  * functions.
1144  */
1145 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1146 {
1147 	u64 sec;
1148 
1149 	/*
1150 	 * Default clocksources are *special* and self-define their mult/shift.
1151 	 * But, you're not special, so you should specify a freq value.
1152 	 */
1153 	if (freq) {
1154 		/*
1155 		 * Calc the maximum number of seconds which we can run before
1156 		 * wrapping around. For clocksources which have a mask > 32-bit
1157 		 * we need to limit the max sleep time to have a good
1158 		 * conversion precision. 10 minutes is still a reasonable
1159 		 * amount. That results in a shift value of 24 for a
1160 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1161 		 * ~ 0.06ppm granularity for NTP.
1162 		 */
1163 		sec = cs->mask;
1164 		do_div(sec, freq);
1165 		do_div(sec, scale);
1166 		if (!sec)
1167 			sec = 1;
1168 		else if (sec > 600 && cs->mask > UINT_MAX)
1169 			sec = 600;
1170 
1171 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1172 				       NSEC_PER_SEC / scale, sec * scale);
1173 	}
1174 
1175 	/*
1176 	 * If the uncertainty margin is not specified, calculate it.  If
1177 	 * both scale and freq are non-zero, calculate the clock period, but
1178 	 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1179 	 * However, if either of scale or freq is zero, be very conservative
1180 	 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1181 	 * for the uncertainty margin.  Allow stupidly small uncertainty
1182 	 * margins to be specified by the caller for testing purposes,
1183 	 * but warn to discourage production use of this capability.
1184 	 *
1185 	 * Bottom line:  The sum of the uncertainty margins of the
1186 	 * watchdog clocksource and the clocksource under test will be at
1187 	 * least 500ppm by default.  For more information, please see the
1188 	 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1189 	 */
1190 	if (scale && freq && !cs->uncertainty_margin) {
1191 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1192 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1193 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1194 	} else if (!cs->uncertainty_margin) {
1195 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1196 	}
1197 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1198 
1199 	/*
1200 	 * Ensure clocksources that have large 'mult' values don't overflow
1201 	 * when adjusted.
1202 	 */
1203 	cs->maxadj = clocksource_max_adjustment(cs);
1204 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1205 		|| (cs->mult - cs->maxadj > cs->mult))) {
1206 		cs->mult >>= 1;
1207 		cs->shift--;
1208 		cs->maxadj = clocksource_max_adjustment(cs);
1209 	}
1210 
1211 	/*
1212 	 * Only warn for *special* clocksources that self-define
1213 	 * their mult/shift values and don't specify a freq.
1214 	 */
1215 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1216 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1217 		cs->name);
1218 
1219 	clocksource_update_max_deferment(cs);
1220 
1221 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1222 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1223 }
1224 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1225 
1226 /**
1227  * __clocksource_register_scale - Used to install new clocksources
1228  * @cs:		clocksource to be registered
1229  * @scale:	Scale factor multiplied against freq to get clocksource hz
1230  * @freq:	clocksource frequency (cycles per second) divided by scale
1231  *
1232  * Returns -EBUSY if registration fails, zero otherwise.
1233  *
1234  * This *SHOULD NOT* be called directly! Please use the
1235  * clocksource_register_hz() or clocksource_register_khz helper functions.
1236  */
1237 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1238 {
1239 	unsigned long flags;
1240 
1241 	clocksource_arch_init(cs);
1242 
1243 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1244 		cs->id = CSID_GENERIC;
1245 	if (cs->vdso_clock_mode < 0 ||
1246 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1247 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1248 			cs->name, cs->vdso_clock_mode);
1249 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1250 	}
1251 
1252 	/* Initialize mult/shift and max_idle_ns */
1253 	__clocksource_update_freq_scale(cs, scale, freq);
1254 
1255 	/* Add clocksource to the clocksource list */
1256 	mutex_lock(&clocksource_mutex);
1257 
1258 	clocksource_watchdog_lock(&flags);
1259 	clocksource_enqueue(cs);
1260 	clocksource_enqueue_watchdog(cs);
1261 	clocksource_watchdog_unlock(&flags);
1262 
1263 	clocksource_select();
1264 	clocksource_select_watchdog(false);
1265 	__clocksource_suspend_select(cs);
1266 	mutex_unlock(&clocksource_mutex);
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1270 
1271 /*
1272  * Unbind clocksource @cs. Called with clocksource_mutex held
1273  */
1274 static int clocksource_unbind(struct clocksource *cs)
1275 {
1276 	unsigned long flags;
1277 
1278 	if (clocksource_is_watchdog(cs)) {
1279 		/* Select and try to install a replacement watchdog. */
1280 		clocksource_select_watchdog(true);
1281 		if (clocksource_is_watchdog(cs))
1282 			return -EBUSY;
1283 	}
1284 
1285 	if (cs == curr_clocksource) {
1286 		/* Select and try to install a replacement clock source */
1287 		clocksource_select_fallback();
1288 		if (curr_clocksource == cs)
1289 			return -EBUSY;
1290 	}
1291 
1292 	if (clocksource_is_suspend(cs)) {
1293 		/*
1294 		 * Select and try to install a replacement suspend clocksource.
1295 		 * If no replacement suspend clocksource, we will just let the
1296 		 * clocksource go and have no suspend clocksource.
1297 		 */
1298 		clocksource_suspend_select(true);
1299 	}
1300 
1301 	clocksource_watchdog_lock(&flags);
1302 	clocksource_dequeue_watchdog(cs);
1303 	list_del_init(&cs->list);
1304 	clocksource_watchdog_unlock(&flags);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * clocksource_unregister - remove a registered clocksource
1311  * @cs:	clocksource to be unregistered
1312  */
1313 int clocksource_unregister(struct clocksource *cs)
1314 {
1315 	int ret = 0;
1316 
1317 	mutex_lock(&clocksource_mutex);
1318 	if (!list_empty(&cs->list))
1319 		ret = clocksource_unbind(cs);
1320 	mutex_unlock(&clocksource_mutex);
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL(clocksource_unregister);
1324 
1325 #ifdef CONFIG_SYSFS
1326 /**
1327  * current_clocksource_show - sysfs interface for current clocksource
1328  * @dev:	unused
1329  * @attr:	unused
1330  * @buf:	char buffer to be filled with clocksource list
1331  *
1332  * Provides sysfs interface for listing current clocksource.
1333  */
1334 static ssize_t current_clocksource_show(struct device *dev,
1335 					struct device_attribute *attr,
1336 					char *buf)
1337 {
1338 	ssize_t count = 0;
1339 
1340 	mutex_lock(&clocksource_mutex);
1341 	count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1342 	mutex_unlock(&clocksource_mutex);
1343 
1344 	return count;
1345 }
1346 
1347 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1348 {
1349 	size_t ret = cnt;
1350 
1351 	/* strings from sysfs write are not 0 terminated! */
1352 	if (!cnt || cnt >= CS_NAME_LEN)
1353 		return -EINVAL;
1354 
1355 	/* strip of \n: */
1356 	if (buf[cnt-1] == '\n')
1357 		cnt--;
1358 	if (cnt > 0)
1359 		memcpy(dst, buf, cnt);
1360 	dst[cnt] = 0;
1361 	return ret;
1362 }
1363 
1364 /**
1365  * current_clocksource_store - interface for manually overriding clocksource
1366  * @dev:	unused
1367  * @attr:	unused
1368  * @buf:	name of override clocksource
1369  * @count:	length of buffer
1370  *
1371  * Takes input from sysfs interface for manually overriding the default
1372  * clocksource selection.
1373  */
1374 static ssize_t current_clocksource_store(struct device *dev,
1375 					 struct device_attribute *attr,
1376 					 const char *buf, size_t count)
1377 {
1378 	ssize_t ret;
1379 
1380 	mutex_lock(&clocksource_mutex);
1381 
1382 	ret = sysfs_get_uname(buf, override_name, count);
1383 	if (ret >= 0)
1384 		clocksource_select();
1385 
1386 	mutex_unlock(&clocksource_mutex);
1387 
1388 	return ret;
1389 }
1390 static DEVICE_ATTR_RW(current_clocksource);
1391 
1392 /**
1393  * unbind_clocksource_store - interface for manually unbinding clocksource
1394  * @dev:	unused
1395  * @attr:	unused
1396  * @buf:	unused
1397  * @count:	length of buffer
1398  *
1399  * Takes input from sysfs interface for manually unbinding a clocksource.
1400  */
1401 static ssize_t unbind_clocksource_store(struct device *dev,
1402 					struct device_attribute *attr,
1403 					const char *buf, size_t count)
1404 {
1405 	struct clocksource *cs;
1406 	char name[CS_NAME_LEN];
1407 	ssize_t ret;
1408 
1409 	ret = sysfs_get_uname(buf, name, count);
1410 	if (ret < 0)
1411 		return ret;
1412 
1413 	ret = -ENODEV;
1414 	mutex_lock(&clocksource_mutex);
1415 	list_for_each_entry(cs, &clocksource_list, list) {
1416 		if (strcmp(cs->name, name))
1417 			continue;
1418 		ret = clocksource_unbind(cs);
1419 		break;
1420 	}
1421 	mutex_unlock(&clocksource_mutex);
1422 
1423 	return ret ? ret : count;
1424 }
1425 static DEVICE_ATTR_WO(unbind_clocksource);
1426 
1427 /**
1428  * available_clocksource_show - sysfs interface for listing clocksource
1429  * @dev:	unused
1430  * @attr:	unused
1431  * @buf:	char buffer to be filled with clocksource list
1432  *
1433  * Provides sysfs interface for listing registered clocksources
1434  */
1435 static ssize_t available_clocksource_show(struct device *dev,
1436 					  struct device_attribute *attr,
1437 					  char *buf)
1438 {
1439 	struct clocksource *src;
1440 	ssize_t count = 0;
1441 
1442 	mutex_lock(&clocksource_mutex);
1443 	list_for_each_entry(src, &clocksource_list, list) {
1444 		/*
1445 		 * Don't show non-HRES clocksource if the tick code is
1446 		 * in one shot mode (highres=on or nohz=on)
1447 		 */
1448 		if (!tick_oneshot_mode_active() ||
1449 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1450 			count += snprintf(buf + count,
1451 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1452 				  "%s ", src->name);
1453 	}
1454 	mutex_unlock(&clocksource_mutex);
1455 
1456 	count += snprintf(buf + count,
1457 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1458 
1459 	return count;
1460 }
1461 static DEVICE_ATTR_RO(available_clocksource);
1462 
1463 static struct attribute *clocksource_attrs[] = {
1464 	&dev_attr_current_clocksource.attr,
1465 	&dev_attr_unbind_clocksource.attr,
1466 	&dev_attr_available_clocksource.attr,
1467 	NULL
1468 };
1469 ATTRIBUTE_GROUPS(clocksource);
1470 
1471 static const struct bus_type clocksource_subsys = {
1472 	.name = "clocksource",
1473 	.dev_name = "clocksource",
1474 };
1475 
1476 static struct device device_clocksource = {
1477 	.id	= 0,
1478 	.bus	= &clocksource_subsys,
1479 	.groups	= clocksource_groups,
1480 };
1481 
1482 static int __init init_clocksource_sysfs(void)
1483 {
1484 	int error = subsys_system_register(&clocksource_subsys, NULL);
1485 
1486 	if (!error)
1487 		error = device_register(&device_clocksource);
1488 
1489 	return error;
1490 }
1491 
1492 device_initcall(init_clocksource_sysfs);
1493 #endif /* CONFIG_SYSFS */
1494 
1495 /**
1496  * boot_override_clocksource - boot clock override
1497  * @str:	override name
1498  *
1499  * Takes a clocksource= boot argument and uses it
1500  * as the clocksource override name.
1501  */
1502 static int __init boot_override_clocksource(char* str)
1503 {
1504 	mutex_lock(&clocksource_mutex);
1505 	if (str)
1506 		strscpy(override_name, str);
1507 	mutex_unlock(&clocksource_mutex);
1508 	return 1;
1509 }
1510 
1511 __setup("clocksource=", boot_override_clocksource);
1512 
1513 /**
1514  * boot_override_clock - Compatibility layer for deprecated boot option
1515  * @str:	override name
1516  *
1517  * DEPRECATED! Takes a clock= boot argument and uses it
1518  * as the clocksource override name
1519  */
1520 static int __init boot_override_clock(char* str)
1521 {
1522 	if (!strcmp(str, "pmtmr")) {
1523 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1524 		return boot_override_clocksource("acpi_pm");
1525 	}
1526 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1527 	return boot_override_clocksource(str);
1528 }
1529 
1530 __setup("clock=", boot_override_clock);
1531