1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file contains the functions which manage clocksource drivers. 4 * 5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/device.h> 11 #include <linux/clocksource.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 15 #include <linux/tick.h> 16 #include <linux/kthread.h> 17 #include <linux/prandom.h> 18 #include <linux/cpu.h> 19 20 #include "tick-internal.h" 21 #include "timekeeping_internal.h" 22 23 static void clocksource_enqueue(struct clocksource *cs); 24 25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end) 26 { 27 u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta); 28 29 if (likely(delta < cs->max_cycles)) 30 return clocksource_cyc2ns(delta, cs->mult, cs->shift); 31 32 return mul_u64_u32_shr(delta, cs->mult, cs->shift); 33 } 34 35 /** 36 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 37 * @mult: pointer to mult variable 38 * @shift: pointer to shift variable 39 * @from: frequency to convert from 40 * @to: frequency to convert to 41 * @maxsec: guaranteed runtime conversion range in seconds 42 * 43 * The function evaluates the shift/mult pair for the scaled math 44 * operations of clocksources and clockevents. 45 * 46 * @to and @from are frequency values in HZ. For clock sources @to is 47 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 48 * event @to is the counter frequency and @from is NSEC_PER_SEC. 49 * 50 * The @maxsec conversion range argument controls the time frame in 51 * seconds which must be covered by the runtime conversion with the 52 * calculated mult and shift factors. This guarantees that no 64bit 53 * overflow happens when the input value of the conversion is 54 * multiplied with the calculated mult factor. Larger ranges may 55 * reduce the conversion accuracy by choosing smaller mult and shift 56 * factors. 57 */ 58 void 59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 60 { 61 u64 tmp; 62 u32 sft, sftacc= 32; 63 64 /* 65 * Calculate the shift factor which is limiting the conversion 66 * range: 67 */ 68 tmp = ((u64)maxsec * from) >> 32; 69 while (tmp) { 70 tmp >>=1; 71 sftacc--; 72 } 73 74 /* 75 * Find the conversion shift/mult pair which has the best 76 * accuracy and fits the maxsec conversion range: 77 */ 78 for (sft = 32; sft > 0; sft--) { 79 tmp = (u64) to << sft; 80 tmp += from / 2; 81 do_div(tmp, from); 82 if ((tmp >> sftacc) == 0) 83 break; 84 } 85 *mult = tmp; 86 *shift = sft; 87 } 88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); 89 90 /*[Clocksource internal variables]--------- 91 * curr_clocksource: 92 * currently selected clocksource. 93 * suspend_clocksource: 94 * used to calculate the suspend time. 95 * clocksource_list: 96 * linked list with the registered clocksources 97 * clocksource_mutex: 98 * protects manipulations to curr_clocksource and the clocksource_list 99 * override_name: 100 * Name of the user-specified clocksource. 101 */ 102 static struct clocksource *curr_clocksource; 103 static struct clocksource *suspend_clocksource; 104 static LIST_HEAD(clocksource_list); 105 static DEFINE_MUTEX(clocksource_mutex); 106 static char override_name[CS_NAME_LEN]; 107 static int finished_booting; 108 static u64 suspend_start; 109 110 /* 111 * Interval: 0.5sec. 112 */ 113 #define WATCHDOG_INTERVAL (HZ >> 1) 114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ)) 115 116 /* 117 * Threshold: 0.0312s, when doubled: 0.0625s. 118 */ 119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5) 120 121 /* 122 * Maximum permissible delay between two readouts of the watchdog 123 * clocksource surrounding a read of the clocksource being validated. 124 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as 125 * a lower bound for cs->uncertainty_margin values when registering clocks. 126 * 127 * The default of 500 parts per million is based on NTP's limits. 128 * If a clocksource is good enough for NTP, it is good enough for us! 129 * 130 * In other words, by default, even if a clocksource is extremely 131 * precise (for example, with a sub-nanosecond period), the maximum 132 * permissible skew between the clocksource watchdog and the clocksource 133 * under test is not permitted to go below the 500ppm minimum defined 134 * by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the 135 * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option. 136 */ 137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US 138 #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US 139 #else 140 #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ) 141 #endif 142 143 /* 144 * Default for maximum permissible skew when cs->uncertainty_margin is 145 * not specified, and the lower bound even when cs->uncertainty_margin 146 * is specified. This is also the default that is used when registering 147 * clocks with unspecifed cs->uncertainty_margin, so this macro is used 148 * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels. 149 */ 150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC) 151 152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 153 static void clocksource_watchdog_work(struct work_struct *work); 154 static void clocksource_select(void); 155 156 static LIST_HEAD(watchdog_list); 157 static struct clocksource *watchdog; 158 static struct timer_list watchdog_timer; 159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 160 static DEFINE_SPINLOCK(watchdog_lock); 161 static int watchdog_running; 162 static atomic_t watchdog_reset_pending; 163 static int64_t watchdog_max_interval; 164 165 static inline void clocksource_watchdog_lock(unsigned long *flags) 166 { 167 spin_lock_irqsave(&watchdog_lock, *flags); 168 } 169 170 static inline void clocksource_watchdog_unlock(unsigned long *flags) 171 { 172 spin_unlock_irqrestore(&watchdog_lock, *flags); 173 } 174 175 static int clocksource_watchdog_kthread(void *data); 176 177 static void clocksource_watchdog_work(struct work_struct *work) 178 { 179 /* 180 * We cannot directly run clocksource_watchdog_kthread() here, because 181 * clocksource_select() calls timekeeping_notify() which uses 182 * stop_machine(). One cannot use stop_machine() from a workqueue() due 183 * lock inversions wrt CPU hotplug. 184 * 185 * Also, we only ever run this work once or twice during the lifetime 186 * of the kernel, so there is no point in creating a more permanent 187 * kthread for this. 188 * 189 * If kthread_run fails the next watchdog scan over the 190 * watchdog_list will find the unstable clock again. 191 */ 192 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 193 } 194 195 static void clocksource_change_rating(struct clocksource *cs, int rating) 196 { 197 list_del(&cs->list); 198 cs->rating = rating; 199 clocksource_enqueue(cs); 200 } 201 202 static void __clocksource_unstable(struct clocksource *cs) 203 { 204 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 205 cs->flags |= CLOCK_SOURCE_UNSTABLE; 206 207 /* 208 * If the clocksource is registered clocksource_watchdog_kthread() will 209 * re-rate and re-select. 210 */ 211 if (list_empty(&cs->list)) { 212 cs->rating = 0; 213 return; 214 } 215 216 if (cs->mark_unstable) 217 cs->mark_unstable(cs); 218 219 /* kick clocksource_watchdog_kthread() */ 220 if (finished_booting) 221 schedule_work(&watchdog_work); 222 } 223 224 /** 225 * clocksource_mark_unstable - mark clocksource unstable via watchdog 226 * @cs: clocksource to be marked unstable 227 * 228 * This function is called by the x86 TSC code to mark clocksources as unstable; 229 * it defers demotion and re-selection to a kthread. 230 */ 231 void clocksource_mark_unstable(struct clocksource *cs) 232 { 233 unsigned long flags; 234 235 spin_lock_irqsave(&watchdog_lock, flags); 236 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 237 if (!list_empty(&cs->list) && list_empty(&cs->wd_list)) 238 list_add(&cs->wd_list, &watchdog_list); 239 __clocksource_unstable(cs); 240 } 241 spin_unlock_irqrestore(&watchdog_lock, flags); 242 } 243 244 static int verify_n_cpus = 8; 245 module_param(verify_n_cpus, int, 0644); 246 247 enum wd_read_status { 248 WD_READ_SUCCESS, 249 WD_READ_UNSTABLE, 250 WD_READ_SKIP 251 }; 252 253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow) 254 { 255 int64_t md = 2 * watchdog->uncertainty_margin; 256 unsigned int nretries, max_retries; 257 int64_t wd_delay, wd_seq_delay; 258 u64 wd_end, wd_end2; 259 260 max_retries = clocksource_get_max_watchdog_retry(); 261 for (nretries = 0; nretries <= max_retries; nretries++) { 262 local_irq_disable(); 263 *wdnow = watchdog->read(watchdog); 264 *csnow = cs->read(cs); 265 wd_end = watchdog->read(watchdog); 266 wd_end2 = watchdog->read(watchdog); 267 local_irq_enable(); 268 269 wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end); 270 if (wd_delay <= md + cs->uncertainty_margin) { 271 if (nretries > 1 && nretries >= max_retries) { 272 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n", 273 smp_processor_id(), watchdog->name, nretries); 274 } 275 return WD_READ_SUCCESS; 276 } 277 278 /* 279 * Now compute delay in consecutive watchdog read to see if 280 * there is too much external interferences that cause 281 * significant delay in reading both clocksource and watchdog. 282 * 283 * If consecutive WD read-back delay > md, report 284 * system busy, reinit the watchdog and skip the current 285 * watchdog test. 286 */ 287 wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2); 288 if (wd_seq_delay > md) 289 goto skip_test; 290 } 291 292 pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n", 293 smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name); 294 return WD_READ_UNSTABLE; 295 296 skip_test: 297 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n", 298 smp_processor_id(), watchdog->name, wd_seq_delay); 299 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n", 300 cs->name, wd_delay); 301 return WD_READ_SKIP; 302 } 303 304 static u64 csnow_mid; 305 static cpumask_t cpus_ahead; 306 static cpumask_t cpus_behind; 307 static cpumask_t cpus_chosen; 308 309 static void clocksource_verify_choose_cpus(void) 310 { 311 int cpu, i, n = verify_n_cpus; 312 313 if (n < 0 || n >= num_online_cpus()) { 314 /* Check all of the CPUs. */ 315 cpumask_copy(&cpus_chosen, cpu_online_mask); 316 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); 317 return; 318 } 319 320 /* If no checking desired, or no other CPU to check, leave. */ 321 cpumask_clear(&cpus_chosen); 322 if (n == 0 || num_online_cpus() <= 1) 323 return; 324 325 /* Make sure to select at least one CPU other than the current CPU. */ 326 cpu = cpumask_any_but(cpu_online_mask, smp_processor_id()); 327 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 328 return; 329 cpumask_set_cpu(cpu, &cpus_chosen); 330 331 /* Force a sane value for the boot parameter. */ 332 if (n > nr_cpu_ids) 333 n = nr_cpu_ids; 334 335 /* 336 * Randomly select the specified number of CPUs. If the same 337 * CPU is selected multiple times, that CPU is checked only once, 338 * and no replacement CPU is selected. This gracefully handles 339 * situations where verify_n_cpus is greater than the number of 340 * CPUs that are currently online. 341 */ 342 for (i = 1; i < n; i++) { 343 cpu = cpumask_random(cpu_online_mask); 344 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids)) 345 cpumask_set_cpu(cpu, &cpus_chosen); 346 } 347 348 /* Don't verify ourselves. */ 349 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); 350 } 351 352 static void clocksource_verify_one_cpu(void *csin) 353 { 354 struct clocksource *cs = (struct clocksource *)csin; 355 356 csnow_mid = cs->read(cs); 357 } 358 359 void clocksource_verify_percpu(struct clocksource *cs) 360 { 361 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX; 362 u64 csnow_begin, csnow_end; 363 int cpu, testcpu; 364 s64 delta; 365 366 if (verify_n_cpus == 0) 367 return; 368 cpumask_clear(&cpus_ahead); 369 cpumask_clear(&cpus_behind); 370 cpus_read_lock(); 371 migrate_disable(); 372 clocksource_verify_choose_cpus(); 373 if (cpumask_empty(&cpus_chosen)) { 374 migrate_enable(); 375 cpus_read_unlock(); 376 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name); 377 return; 378 } 379 testcpu = smp_processor_id(); 380 pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", 381 cs->name, testcpu, cpumask_pr_args(&cpus_chosen)); 382 preempt_disable(); 383 for_each_cpu(cpu, &cpus_chosen) { 384 if (cpu == testcpu) 385 continue; 386 csnow_begin = cs->read(cs); 387 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1); 388 csnow_end = cs->read(cs); 389 delta = (s64)((csnow_mid - csnow_begin) & cs->mask); 390 if (delta < 0) 391 cpumask_set_cpu(cpu, &cpus_behind); 392 delta = (csnow_end - csnow_mid) & cs->mask; 393 if (delta < 0) 394 cpumask_set_cpu(cpu, &cpus_ahead); 395 cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end); 396 if (cs_nsec > cs_nsec_max) 397 cs_nsec_max = cs_nsec; 398 if (cs_nsec < cs_nsec_min) 399 cs_nsec_min = cs_nsec; 400 } 401 preempt_enable(); 402 migrate_enable(); 403 cpus_read_unlock(); 404 if (!cpumask_empty(&cpus_ahead)) 405 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n", 406 cpumask_pr_args(&cpus_ahead), testcpu, cs->name); 407 if (!cpumask_empty(&cpus_behind)) 408 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n", 409 cpumask_pr_args(&cpus_behind), testcpu, cs->name); 410 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind)) 411 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n", 412 testcpu, cs_nsec_min, cs_nsec_max, cs->name); 413 } 414 EXPORT_SYMBOL_GPL(clocksource_verify_percpu); 415 416 static inline void clocksource_reset_watchdog(void) 417 { 418 struct clocksource *cs; 419 420 list_for_each_entry(cs, &watchdog_list, wd_list) 421 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 422 } 423 424 425 static void clocksource_watchdog(struct timer_list *unused) 426 { 427 int64_t wd_nsec, cs_nsec, interval; 428 u64 csnow, wdnow, cslast, wdlast; 429 int next_cpu, reset_pending; 430 struct clocksource *cs; 431 enum wd_read_status read_ret; 432 unsigned long extra_wait = 0; 433 u32 md; 434 435 spin_lock(&watchdog_lock); 436 if (!watchdog_running) 437 goto out; 438 439 reset_pending = atomic_read(&watchdog_reset_pending); 440 441 list_for_each_entry(cs, &watchdog_list, wd_list) { 442 443 /* Clocksource already marked unstable? */ 444 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 445 if (finished_booting) 446 schedule_work(&watchdog_work); 447 continue; 448 } 449 450 read_ret = cs_watchdog_read(cs, &csnow, &wdnow); 451 452 if (read_ret == WD_READ_UNSTABLE) { 453 /* Clock readout unreliable, so give it up. */ 454 __clocksource_unstable(cs); 455 continue; 456 } 457 458 /* 459 * When WD_READ_SKIP is returned, it means the system is likely 460 * under very heavy load, where the latency of reading 461 * watchdog/clocksource is very big, and affect the accuracy of 462 * watchdog check. So give system some space and suspend the 463 * watchdog check for 5 minutes. 464 */ 465 if (read_ret == WD_READ_SKIP) { 466 /* 467 * As the watchdog timer will be suspended, and 468 * cs->last could keep unchanged for 5 minutes, reset 469 * the counters. 470 */ 471 clocksource_reset_watchdog(); 472 extra_wait = HZ * 300; 473 break; 474 } 475 476 /* Clocksource initialized ? */ 477 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 478 atomic_read(&watchdog_reset_pending)) { 479 cs->flags |= CLOCK_SOURCE_WATCHDOG; 480 cs->wd_last = wdnow; 481 cs->cs_last = csnow; 482 continue; 483 } 484 485 wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow); 486 cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow); 487 wdlast = cs->wd_last; /* save these in case we print them */ 488 cslast = cs->cs_last; 489 cs->cs_last = csnow; 490 cs->wd_last = wdnow; 491 492 if (atomic_read(&watchdog_reset_pending)) 493 continue; 494 495 /* 496 * The processing of timer softirqs can get delayed (usually 497 * on account of ksoftirqd not getting to run in a timely 498 * manner), which causes the watchdog interval to stretch. 499 * Skew detection may fail for longer watchdog intervals 500 * on account of fixed margins being used. 501 * Some clocksources, e.g. acpi_pm, cannot tolerate 502 * watchdog intervals longer than a few seconds. 503 */ 504 interval = max(cs_nsec, wd_nsec); 505 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) { 506 if (system_state > SYSTEM_SCHEDULING && 507 interval > 2 * watchdog_max_interval) { 508 watchdog_max_interval = interval; 509 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n", 510 cs_nsec, wd_nsec); 511 } 512 watchdog_timer.expires = jiffies; 513 continue; 514 } 515 516 /* Check the deviation from the watchdog clocksource. */ 517 md = cs->uncertainty_margin + watchdog->uncertainty_margin; 518 if (abs(cs_nsec - wd_nsec) > md) { 519 s64 cs_wd_msec; 520 s64 wd_msec; 521 u32 wd_rem; 522 523 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", 524 smp_processor_id(), cs->name); 525 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n", 526 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask); 527 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n", 528 cs->name, cs_nsec, csnow, cslast, cs->mask); 529 cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem); 530 wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem); 531 pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n", 532 cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec); 533 if (curr_clocksource == cs) 534 pr_warn(" '%s' is current clocksource.\n", cs->name); 535 else if (curr_clocksource) 536 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name); 537 else 538 pr_warn(" No current clocksource.\n"); 539 __clocksource_unstable(cs); 540 continue; 541 } 542 543 if (cs == curr_clocksource && cs->tick_stable) 544 cs->tick_stable(cs); 545 546 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 547 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 548 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 549 /* Mark it valid for high-res. */ 550 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 551 552 /* 553 * clocksource_done_booting() will sort it if 554 * finished_booting is not set yet. 555 */ 556 if (!finished_booting) 557 continue; 558 559 /* 560 * If this is not the current clocksource let 561 * the watchdog thread reselect it. Due to the 562 * change to high res this clocksource might 563 * be preferred now. If it is the current 564 * clocksource let the tick code know about 565 * that change. 566 */ 567 if (cs != curr_clocksource) { 568 cs->flags |= CLOCK_SOURCE_RESELECT; 569 schedule_work(&watchdog_work); 570 } else { 571 tick_clock_notify(); 572 } 573 } 574 } 575 576 /* 577 * We only clear the watchdog_reset_pending, when we did a 578 * full cycle through all clocksources. 579 */ 580 if (reset_pending) 581 atomic_dec(&watchdog_reset_pending); 582 583 /* 584 * Cycle through CPUs to check if the CPUs stay synchronized 585 * to each other. 586 */ 587 next_cpu = cpumask_next_wrap(raw_smp_processor_id(), cpu_online_mask); 588 589 /* 590 * Arm timer if not already pending: could race with concurrent 591 * pair clocksource_stop_watchdog() clocksource_start_watchdog(). 592 */ 593 if (!timer_pending(&watchdog_timer)) { 594 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait; 595 add_timer_on(&watchdog_timer, next_cpu); 596 } 597 out: 598 spin_unlock(&watchdog_lock); 599 } 600 601 static inline void clocksource_start_watchdog(void) 602 { 603 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 604 return; 605 timer_setup(&watchdog_timer, clocksource_watchdog, 0); 606 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 607 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 608 watchdog_running = 1; 609 } 610 611 static inline void clocksource_stop_watchdog(void) 612 { 613 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 614 return; 615 timer_delete(&watchdog_timer); 616 watchdog_running = 0; 617 } 618 619 static void clocksource_resume_watchdog(void) 620 { 621 atomic_inc(&watchdog_reset_pending); 622 } 623 624 static void clocksource_enqueue_watchdog(struct clocksource *cs) 625 { 626 INIT_LIST_HEAD(&cs->wd_list); 627 628 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 629 /* cs is a clocksource to be watched. */ 630 list_add(&cs->wd_list, &watchdog_list); 631 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 632 } else { 633 /* cs is a watchdog. */ 634 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 635 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 636 } 637 } 638 639 static void clocksource_select_watchdog(bool fallback) 640 { 641 struct clocksource *cs, *old_wd; 642 unsigned long flags; 643 644 spin_lock_irqsave(&watchdog_lock, flags); 645 /* save current watchdog */ 646 old_wd = watchdog; 647 if (fallback) 648 watchdog = NULL; 649 650 list_for_each_entry(cs, &clocksource_list, list) { 651 /* cs is a clocksource to be watched. */ 652 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) 653 continue; 654 655 /* Skip current if we were requested for a fallback. */ 656 if (fallback && cs == old_wd) 657 continue; 658 659 /* Pick the best watchdog. */ 660 if (!watchdog || cs->rating > watchdog->rating) 661 watchdog = cs; 662 } 663 /* If we failed to find a fallback restore the old one. */ 664 if (!watchdog) 665 watchdog = old_wd; 666 667 /* If we changed the watchdog we need to reset cycles. */ 668 if (watchdog != old_wd) 669 clocksource_reset_watchdog(); 670 671 /* Check if the watchdog timer needs to be started. */ 672 clocksource_start_watchdog(); 673 spin_unlock_irqrestore(&watchdog_lock, flags); 674 } 675 676 static void clocksource_dequeue_watchdog(struct clocksource *cs) 677 { 678 if (cs != watchdog) { 679 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 680 /* cs is a watched clocksource. */ 681 list_del_init(&cs->wd_list); 682 /* Check if the watchdog timer needs to be stopped. */ 683 clocksource_stop_watchdog(); 684 } 685 } 686 } 687 688 static int __clocksource_watchdog_kthread(void) 689 { 690 struct clocksource *cs, *tmp; 691 unsigned long flags; 692 int select = 0; 693 694 /* Do any required per-CPU skew verification. */ 695 if (curr_clocksource && 696 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE && 697 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU) 698 clocksource_verify_percpu(curr_clocksource); 699 700 spin_lock_irqsave(&watchdog_lock, flags); 701 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 702 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 703 list_del_init(&cs->wd_list); 704 clocksource_change_rating(cs, 0); 705 select = 1; 706 } 707 if (cs->flags & CLOCK_SOURCE_RESELECT) { 708 cs->flags &= ~CLOCK_SOURCE_RESELECT; 709 select = 1; 710 } 711 } 712 /* Check if the watchdog timer needs to be stopped. */ 713 clocksource_stop_watchdog(); 714 spin_unlock_irqrestore(&watchdog_lock, flags); 715 716 return select; 717 } 718 719 static int clocksource_watchdog_kthread(void *data) 720 { 721 mutex_lock(&clocksource_mutex); 722 if (__clocksource_watchdog_kthread()) 723 clocksource_select(); 724 mutex_unlock(&clocksource_mutex); 725 return 0; 726 } 727 728 static bool clocksource_is_watchdog(struct clocksource *cs) 729 { 730 return cs == watchdog; 731 } 732 733 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 734 735 static void clocksource_enqueue_watchdog(struct clocksource *cs) 736 { 737 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 738 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 739 } 740 741 static void clocksource_select_watchdog(bool fallback) { } 742 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 743 static inline void clocksource_resume_watchdog(void) { } 744 static inline int __clocksource_watchdog_kthread(void) { return 0; } 745 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 746 void clocksource_mark_unstable(struct clocksource *cs) { } 747 748 static inline void clocksource_watchdog_lock(unsigned long *flags) { } 749 static inline void clocksource_watchdog_unlock(unsigned long *flags) { } 750 751 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 752 753 static bool clocksource_is_suspend(struct clocksource *cs) 754 { 755 return cs == suspend_clocksource; 756 } 757 758 static void __clocksource_suspend_select(struct clocksource *cs) 759 { 760 /* 761 * Skip the clocksource which will be stopped in suspend state. 762 */ 763 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP)) 764 return; 765 766 /* 767 * The nonstop clocksource can be selected as the suspend clocksource to 768 * calculate the suspend time, so it should not supply suspend/resume 769 * interfaces to suspend the nonstop clocksource when system suspends. 770 */ 771 if (cs->suspend || cs->resume) { 772 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n", 773 cs->name); 774 } 775 776 /* Pick the best rating. */ 777 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating) 778 suspend_clocksource = cs; 779 } 780 781 /** 782 * clocksource_suspend_select - Select the best clocksource for suspend timing 783 * @fallback: if select a fallback clocksource 784 */ 785 static void clocksource_suspend_select(bool fallback) 786 { 787 struct clocksource *cs, *old_suspend; 788 789 old_suspend = suspend_clocksource; 790 if (fallback) 791 suspend_clocksource = NULL; 792 793 list_for_each_entry(cs, &clocksource_list, list) { 794 /* Skip current if we were requested for a fallback. */ 795 if (fallback && cs == old_suspend) 796 continue; 797 798 __clocksource_suspend_select(cs); 799 } 800 } 801 802 /** 803 * clocksource_start_suspend_timing - Start measuring the suspend timing 804 * @cs: current clocksource from timekeeping 805 * @start_cycles: current cycles from timekeeping 806 * 807 * This function will save the start cycle values of suspend timer to calculate 808 * the suspend time when resuming system. 809 * 810 * This function is called late in the suspend process from timekeeping_suspend(), 811 * that means processes are frozen, non-boot cpus and interrupts are disabled 812 * now. It is therefore possible to start the suspend timer without taking the 813 * clocksource mutex. 814 */ 815 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles) 816 { 817 if (!suspend_clocksource) 818 return; 819 820 /* 821 * If current clocksource is the suspend timer, we should use the 822 * tkr_mono.cycle_last value as suspend_start to avoid same reading 823 * from suspend timer. 824 */ 825 if (clocksource_is_suspend(cs)) { 826 suspend_start = start_cycles; 827 return; 828 } 829 830 if (suspend_clocksource->enable && 831 suspend_clocksource->enable(suspend_clocksource)) { 832 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n"); 833 return; 834 } 835 836 suspend_start = suspend_clocksource->read(suspend_clocksource); 837 } 838 839 /** 840 * clocksource_stop_suspend_timing - Stop measuring the suspend timing 841 * @cs: current clocksource from timekeeping 842 * @cycle_now: current cycles from timekeeping 843 * 844 * This function will calculate the suspend time from suspend timer. 845 * 846 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource. 847 * 848 * This function is called early in the resume process from timekeeping_resume(), 849 * that means there is only one cpu, no processes are running and the interrupts 850 * are disabled. It is therefore possible to stop the suspend timer without 851 * taking the clocksource mutex. 852 */ 853 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now) 854 { 855 u64 now, nsec = 0; 856 857 if (!suspend_clocksource) 858 return 0; 859 860 /* 861 * If current clocksource is the suspend timer, we should use the 862 * tkr_mono.cycle_last value from timekeeping as current cycle to 863 * avoid same reading from suspend timer. 864 */ 865 if (clocksource_is_suspend(cs)) 866 now = cycle_now; 867 else 868 now = suspend_clocksource->read(suspend_clocksource); 869 870 if (now > suspend_start) 871 nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now); 872 873 /* 874 * Disable the suspend timer to save power if current clocksource is 875 * not the suspend timer. 876 */ 877 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable) 878 suspend_clocksource->disable(suspend_clocksource); 879 880 return nsec; 881 } 882 883 /** 884 * clocksource_suspend - suspend the clocksource(s) 885 */ 886 void clocksource_suspend(void) 887 { 888 struct clocksource *cs; 889 890 list_for_each_entry_reverse(cs, &clocksource_list, list) 891 if (cs->suspend) 892 cs->suspend(cs); 893 } 894 895 /** 896 * clocksource_resume - resume the clocksource(s) 897 */ 898 void clocksource_resume(void) 899 { 900 struct clocksource *cs; 901 902 list_for_each_entry(cs, &clocksource_list, list) 903 if (cs->resume) 904 cs->resume(cs); 905 906 clocksource_resume_watchdog(); 907 } 908 909 /** 910 * clocksource_touch_watchdog - Update watchdog 911 * 912 * Update the watchdog after exception contexts such as kgdb so as not 913 * to incorrectly trip the watchdog. This might fail when the kernel 914 * was stopped in code which holds watchdog_lock. 915 */ 916 void clocksource_touch_watchdog(void) 917 { 918 clocksource_resume_watchdog(); 919 } 920 921 /** 922 * clocksource_max_adjustment- Returns max adjustment amount 923 * @cs: Pointer to clocksource 924 * 925 */ 926 static u32 clocksource_max_adjustment(struct clocksource *cs) 927 { 928 u64 ret; 929 /* 930 * We won't try to correct for more than 11% adjustments (110,000 ppm), 931 */ 932 ret = (u64)cs->mult * 11; 933 do_div(ret,100); 934 return (u32)ret; 935 } 936 937 /** 938 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 939 * @mult: cycle to nanosecond multiplier 940 * @shift: cycle to nanosecond divisor (power of two) 941 * @maxadj: maximum adjustment value to mult (~11%) 942 * @mask: bitmask for two's complement subtraction of non 64 bit counters 943 * @max_cyc: maximum cycle value before potential overflow (does not include 944 * any safety margin) 945 * 946 * NOTE: This function includes a safety margin of 50%, in other words, we 947 * return half the number of nanoseconds the hardware counter can technically 948 * cover. This is done so that we can potentially detect problems caused by 949 * delayed timers or bad hardware, which might result in time intervals that 950 * are larger than what the math used can handle without overflows. 951 */ 952 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) 953 { 954 u64 max_nsecs, max_cycles; 955 956 /* 957 * Calculate the maximum number of cycles that we can pass to the 958 * cyc2ns() function without overflowing a 64-bit result. 959 */ 960 max_cycles = ULLONG_MAX; 961 do_div(max_cycles, mult+maxadj); 962 963 /* 964 * The actual maximum number of cycles we can defer the clocksource is 965 * determined by the minimum of max_cycles and mask. 966 * Note: Here we subtract the maxadj to make sure we don't sleep for 967 * too long if there's a large negative adjustment. 968 */ 969 max_cycles = min(max_cycles, mask); 970 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 971 972 /* return the max_cycles value as well if requested */ 973 if (max_cyc) 974 *max_cyc = max_cycles; 975 976 /* Return 50% of the actual maximum, so we can detect bad values */ 977 max_nsecs >>= 1; 978 979 return max_nsecs; 980 } 981 982 /** 983 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles 984 * @cs: Pointer to clocksource to be updated 985 * 986 */ 987 static inline void clocksource_update_max_deferment(struct clocksource *cs) 988 { 989 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, 990 cs->maxadj, cs->mask, 991 &cs->max_cycles); 992 993 /* 994 * Threshold for detecting negative motion in clocksource_delta(). 995 * 996 * Allow for 0.875 of the counter width so that overly long idle 997 * sleeps, which go slightly over mask/2, do not trigger the 998 * negative motion detection. 999 */ 1000 cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3); 1001 } 1002 1003 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 1004 { 1005 struct clocksource *cs; 1006 1007 if (!finished_booting || list_empty(&clocksource_list)) 1008 return NULL; 1009 1010 /* 1011 * We pick the clocksource with the highest rating. If oneshot 1012 * mode is active, we pick the highres valid clocksource with 1013 * the best rating. 1014 */ 1015 list_for_each_entry(cs, &clocksource_list, list) { 1016 if (skipcur && cs == curr_clocksource) 1017 continue; 1018 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 1019 continue; 1020 return cs; 1021 } 1022 return NULL; 1023 } 1024 1025 static void __clocksource_select(bool skipcur) 1026 { 1027 bool oneshot = tick_oneshot_mode_active(); 1028 struct clocksource *best, *cs; 1029 1030 /* Find the best suitable clocksource */ 1031 best = clocksource_find_best(oneshot, skipcur); 1032 if (!best) 1033 return; 1034 1035 if (!strlen(override_name)) 1036 goto found; 1037 1038 /* Check for the override clocksource. */ 1039 list_for_each_entry(cs, &clocksource_list, list) { 1040 if (skipcur && cs == curr_clocksource) 1041 continue; 1042 if (strcmp(cs->name, override_name) != 0) 1043 continue; 1044 /* 1045 * Check to make sure we don't switch to a non-highres 1046 * capable clocksource if the tick code is in oneshot 1047 * mode (highres or nohz) 1048 */ 1049 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 1050 /* Override clocksource cannot be used. */ 1051 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 1052 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", 1053 cs->name); 1054 override_name[0] = 0; 1055 } else { 1056 /* 1057 * The override cannot be currently verified. 1058 * Deferring to let the watchdog check. 1059 */ 1060 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", 1061 cs->name); 1062 } 1063 } else 1064 /* Override clocksource can be used. */ 1065 best = cs; 1066 break; 1067 } 1068 1069 found: 1070 if (curr_clocksource != best && !timekeeping_notify(best)) { 1071 pr_info("Switched to clocksource %s\n", best->name); 1072 curr_clocksource = best; 1073 } 1074 } 1075 1076 /** 1077 * clocksource_select - Select the best clocksource available 1078 * 1079 * Private function. Must hold clocksource_mutex when called. 1080 * 1081 * Select the clocksource with the best rating, or the clocksource, 1082 * which is selected by userspace override. 1083 */ 1084 static void clocksource_select(void) 1085 { 1086 __clocksource_select(false); 1087 } 1088 1089 static void clocksource_select_fallback(void) 1090 { 1091 __clocksource_select(true); 1092 } 1093 1094 /* 1095 * clocksource_done_booting - Called near the end of core bootup 1096 * 1097 * Hack to avoid lots of clocksource churn at boot time. 1098 * We use fs_initcall because we want this to start before 1099 * device_initcall but after subsys_initcall. 1100 */ 1101 static int __init clocksource_done_booting(void) 1102 { 1103 mutex_lock(&clocksource_mutex); 1104 curr_clocksource = clocksource_default_clock(); 1105 finished_booting = 1; 1106 /* 1107 * Run the watchdog first to eliminate unstable clock sources 1108 */ 1109 __clocksource_watchdog_kthread(); 1110 clocksource_select(); 1111 mutex_unlock(&clocksource_mutex); 1112 return 0; 1113 } 1114 fs_initcall(clocksource_done_booting); 1115 1116 /* 1117 * Enqueue the clocksource sorted by rating 1118 */ 1119 static void clocksource_enqueue(struct clocksource *cs) 1120 { 1121 struct list_head *entry = &clocksource_list; 1122 struct clocksource *tmp; 1123 1124 list_for_each_entry(tmp, &clocksource_list, list) { 1125 /* Keep track of the place, where to insert */ 1126 if (tmp->rating < cs->rating) 1127 break; 1128 entry = &tmp->list; 1129 } 1130 list_add(&cs->list, entry); 1131 } 1132 1133 /** 1134 * __clocksource_update_freq_scale - Used update clocksource with new freq 1135 * @cs: clocksource to be registered 1136 * @scale: Scale factor multiplied against freq to get clocksource hz 1137 * @freq: clocksource frequency (cycles per second) divided by scale 1138 * 1139 * This should only be called from the clocksource->enable() method. 1140 * 1141 * This *SHOULD NOT* be called directly! Please use the 1142 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper 1143 * functions. 1144 */ 1145 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) 1146 { 1147 u64 sec; 1148 1149 /* 1150 * Default clocksources are *special* and self-define their mult/shift. 1151 * But, you're not special, so you should specify a freq value. 1152 */ 1153 if (freq) { 1154 /* 1155 * Calc the maximum number of seconds which we can run before 1156 * wrapping around. For clocksources which have a mask > 32-bit 1157 * we need to limit the max sleep time to have a good 1158 * conversion precision. 10 minutes is still a reasonable 1159 * amount. That results in a shift value of 24 for a 1160 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to 1161 * ~ 0.06ppm granularity for NTP. 1162 */ 1163 sec = cs->mask; 1164 do_div(sec, freq); 1165 do_div(sec, scale); 1166 if (!sec) 1167 sec = 1; 1168 else if (sec > 600 && cs->mask > UINT_MAX) 1169 sec = 600; 1170 1171 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 1172 NSEC_PER_SEC / scale, sec * scale); 1173 } 1174 1175 /* 1176 * If the uncertainty margin is not specified, calculate it. If 1177 * both scale and freq are non-zero, calculate the clock period, but 1178 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default. 1179 * However, if either of scale or freq is zero, be very conservative 1180 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value 1181 * for the uncertainty margin. Allow stupidly small uncertainty 1182 * margins to be specified by the caller for testing purposes, 1183 * but warn to discourage production use of this capability. 1184 * 1185 * Bottom line: The sum of the uncertainty margins of the 1186 * watchdog clocksource and the clocksource under test will be at 1187 * least 500ppm by default. For more information, please see the 1188 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above. 1189 */ 1190 if (scale && freq && !cs->uncertainty_margin) { 1191 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq); 1192 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW) 1193 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW; 1194 } else if (!cs->uncertainty_margin) { 1195 cs->uncertainty_margin = WATCHDOG_THRESHOLD; 1196 } 1197 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW); 1198 1199 /* 1200 * Ensure clocksources that have large 'mult' values don't overflow 1201 * when adjusted. 1202 */ 1203 cs->maxadj = clocksource_max_adjustment(cs); 1204 while (freq && ((cs->mult + cs->maxadj < cs->mult) 1205 || (cs->mult - cs->maxadj > cs->mult))) { 1206 cs->mult >>= 1; 1207 cs->shift--; 1208 cs->maxadj = clocksource_max_adjustment(cs); 1209 } 1210 1211 /* 1212 * Only warn for *special* clocksources that self-define 1213 * their mult/shift values and don't specify a freq. 1214 */ 1215 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 1216 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", 1217 cs->name); 1218 1219 clocksource_update_max_deferment(cs); 1220 1221 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", 1222 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); 1223 } 1224 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); 1225 1226 /** 1227 * __clocksource_register_scale - Used to install new clocksources 1228 * @cs: clocksource to be registered 1229 * @scale: Scale factor multiplied against freq to get clocksource hz 1230 * @freq: clocksource frequency (cycles per second) divided by scale 1231 * 1232 * Returns -EBUSY if registration fails, zero otherwise. 1233 * 1234 * This *SHOULD NOT* be called directly! Please use the 1235 * clocksource_register_hz() or clocksource_register_khz helper functions. 1236 */ 1237 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 1238 { 1239 unsigned long flags; 1240 1241 clocksource_arch_init(cs); 1242 1243 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX)) 1244 cs->id = CSID_GENERIC; 1245 if (cs->vdso_clock_mode < 0 || 1246 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) { 1247 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n", 1248 cs->name, cs->vdso_clock_mode); 1249 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE; 1250 } 1251 1252 /* Initialize mult/shift and max_idle_ns */ 1253 __clocksource_update_freq_scale(cs, scale, freq); 1254 1255 /* Add clocksource to the clocksource list */ 1256 mutex_lock(&clocksource_mutex); 1257 1258 clocksource_watchdog_lock(&flags); 1259 clocksource_enqueue(cs); 1260 clocksource_enqueue_watchdog(cs); 1261 clocksource_watchdog_unlock(&flags); 1262 1263 clocksource_select(); 1264 clocksource_select_watchdog(false); 1265 __clocksource_suspend_select(cs); 1266 mutex_unlock(&clocksource_mutex); 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 1270 1271 /* 1272 * Unbind clocksource @cs. Called with clocksource_mutex held 1273 */ 1274 static int clocksource_unbind(struct clocksource *cs) 1275 { 1276 unsigned long flags; 1277 1278 if (clocksource_is_watchdog(cs)) { 1279 /* Select and try to install a replacement watchdog. */ 1280 clocksource_select_watchdog(true); 1281 if (clocksource_is_watchdog(cs)) 1282 return -EBUSY; 1283 } 1284 1285 if (cs == curr_clocksource) { 1286 /* Select and try to install a replacement clock source */ 1287 clocksource_select_fallback(); 1288 if (curr_clocksource == cs) 1289 return -EBUSY; 1290 } 1291 1292 if (clocksource_is_suspend(cs)) { 1293 /* 1294 * Select and try to install a replacement suspend clocksource. 1295 * If no replacement suspend clocksource, we will just let the 1296 * clocksource go and have no suspend clocksource. 1297 */ 1298 clocksource_suspend_select(true); 1299 } 1300 1301 clocksource_watchdog_lock(&flags); 1302 clocksource_dequeue_watchdog(cs); 1303 list_del_init(&cs->list); 1304 clocksource_watchdog_unlock(&flags); 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * clocksource_unregister - remove a registered clocksource 1311 * @cs: clocksource to be unregistered 1312 */ 1313 int clocksource_unregister(struct clocksource *cs) 1314 { 1315 int ret = 0; 1316 1317 mutex_lock(&clocksource_mutex); 1318 if (!list_empty(&cs->list)) 1319 ret = clocksource_unbind(cs); 1320 mutex_unlock(&clocksource_mutex); 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(clocksource_unregister); 1324 1325 #ifdef CONFIG_SYSFS 1326 /** 1327 * current_clocksource_show - sysfs interface for current clocksource 1328 * @dev: unused 1329 * @attr: unused 1330 * @buf: char buffer to be filled with clocksource list 1331 * 1332 * Provides sysfs interface for listing current clocksource. 1333 */ 1334 static ssize_t current_clocksource_show(struct device *dev, 1335 struct device_attribute *attr, 1336 char *buf) 1337 { 1338 ssize_t count = 0; 1339 1340 mutex_lock(&clocksource_mutex); 1341 count = sysfs_emit(buf, "%s\n", curr_clocksource->name); 1342 mutex_unlock(&clocksource_mutex); 1343 1344 return count; 1345 } 1346 1347 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 1348 { 1349 size_t ret = cnt; 1350 1351 /* strings from sysfs write are not 0 terminated! */ 1352 if (!cnt || cnt >= CS_NAME_LEN) 1353 return -EINVAL; 1354 1355 /* strip of \n: */ 1356 if (buf[cnt-1] == '\n') 1357 cnt--; 1358 if (cnt > 0) 1359 memcpy(dst, buf, cnt); 1360 dst[cnt] = 0; 1361 return ret; 1362 } 1363 1364 /** 1365 * current_clocksource_store - interface for manually overriding clocksource 1366 * @dev: unused 1367 * @attr: unused 1368 * @buf: name of override clocksource 1369 * @count: length of buffer 1370 * 1371 * Takes input from sysfs interface for manually overriding the default 1372 * clocksource selection. 1373 */ 1374 static ssize_t current_clocksource_store(struct device *dev, 1375 struct device_attribute *attr, 1376 const char *buf, size_t count) 1377 { 1378 ssize_t ret; 1379 1380 mutex_lock(&clocksource_mutex); 1381 1382 ret = sysfs_get_uname(buf, override_name, count); 1383 if (ret >= 0) 1384 clocksource_select(); 1385 1386 mutex_unlock(&clocksource_mutex); 1387 1388 return ret; 1389 } 1390 static DEVICE_ATTR_RW(current_clocksource); 1391 1392 /** 1393 * unbind_clocksource_store - interface for manually unbinding clocksource 1394 * @dev: unused 1395 * @attr: unused 1396 * @buf: unused 1397 * @count: length of buffer 1398 * 1399 * Takes input from sysfs interface for manually unbinding a clocksource. 1400 */ 1401 static ssize_t unbind_clocksource_store(struct device *dev, 1402 struct device_attribute *attr, 1403 const char *buf, size_t count) 1404 { 1405 struct clocksource *cs; 1406 char name[CS_NAME_LEN]; 1407 ssize_t ret; 1408 1409 ret = sysfs_get_uname(buf, name, count); 1410 if (ret < 0) 1411 return ret; 1412 1413 ret = -ENODEV; 1414 mutex_lock(&clocksource_mutex); 1415 list_for_each_entry(cs, &clocksource_list, list) { 1416 if (strcmp(cs->name, name)) 1417 continue; 1418 ret = clocksource_unbind(cs); 1419 break; 1420 } 1421 mutex_unlock(&clocksource_mutex); 1422 1423 return ret ? ret : count; 1424 } 1425 static DEVICE_ATTR_WO(unbind_clocksource); 1426 1427 /** 1428 * available_clocksource_show - sysfs interface for listing clocksource 1429 * @dev: unused 1430 * @attr: unused 1431 * @buf: char buffer to be filled with clocksource list 1432 * 1433 * Provides sysfs interface for listing registered clocksources 1434 */ 1435 static ssize_t available_clocksource_show(struct device *dev, 1436 struct device_attribute *attr, 1437 char *buf) 1438 { 1439 struct clocksource *src; 1440 ssize_t count = 0; 1441 1442 mutex_lock(&clocksource_mutex); 1443 list_for_each_entry(src, &clocksource_list, list) { 1444 /* 1445 * Don't show non-HRES clocksource if the tick code is 1446 * in one shot mode (highres=on or nohz=on) 1447 */ 1448 if (!tick_oneshot_mode_active() || 1449 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 1450 count += snprintf(buf + count, 1451 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 1452 "%s ", src->name); 1453 } 1454 mutex_unlock(&clocksource_mutex); 1455 1456 count += snprintf(buf + count, 1457 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 1458 1459 return count; 1460 } 1461 static DEVICE_ATTR_RO(available_clocksource); 1462 1463 static struct attribute *clocksource_attrs[] = { 1464 &dev_attr_current_clocksource.attr, 1465 &dev_attr_unbind_clocksource.attr, 1466 &dev_attr_available_clocksource.attr, 1467 NULL 1468 }; 1469 ATTRIBUTE_GROUPS(clocksource); 1470 1471 static const struct bus_type clocksource_subsys = { 1472 .name = "clocksource", 1473 .dev_name = "clocksource", 1474 }; 1475 1476 static struct device device_clocksource = { 1477 .id = 0, 1478 .bus = &clocksource_subsys, 1479 .groups = clocksource_groups, 1480 }; 1481 1482 static int __init init_clocksource_sysfs(void) 1483 { 1484 int error = subsys_system_register(&clocksource_subsys, NULL); 1485 1486 if (!error) 1487 error = device_register(&device_clocksource); 1488 1489 return error; 1490 } 1491 1492 device_initcall(init_clocksource_sysfs); 1493 #endif /* CONFIG_SYSFS */ 1494 1495 /** 1496 * boot_override_clocksource - boot clock override 1497 * @str: override name 1498 * 1499 * Takes a clocksource= boot argument and uses it 1500 * as the clocksource override name. 1501 */ 1502 static int __init boot_override_clocksource(char* str) 1503 { 1504 mutex_lock(&clocksource_mutex); 1505 if (str) 1506 strscpy(override_name, str); 1507 mutex_unlock(&clocksource_mutex); 1508 return 1; 1509 } 1510 1511 __setup("clocksource=", boot_override_clocksource); 1512 1513 /** 1514 * boot_override_clock - Compatibility layer for deprecated boot option 1515 * @str: override name 1516 * 1517 * DEPRECATED! Takes a clock= boot argument and uses it 1518 * as the clocksource override name 1519 */ 1520 static int __init boot_override_clock(char* str) 1521 { 1522 if (!strcmp(str, "pmtmr")) { 1523 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); 1524 return boot_override_clocksource("acpi_pm"); 1525 } 1526 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); 1527 return boot_override_clocksource(str); 1528 } 1529 1530 __setup("clock=", boot_override_clock); 1531