1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/hex.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/key.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-integrity.h> 21 #include <linux/crc32.h> 22 #include <linux/mempool.h> 23 #include <linux/slab.h> 24 #include <linux/crypto.h> 25 #include <linux/fips.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/backing-dev.h> 29 #include <linux/atomic.h> 30 #include <linux/scatterlist.h> 31 #include <linux/rbtree.h> 32 #include <linux/ctype.h> 33 #include <asm/page.h> 34 #include <linux/unaligned.h> 35 #include <crypto/hash.h> 36 #include <crypto/md5.h> 37 #include <crypto/skcipher.h> 38 #include <crypto/aead.h> 39 #include <crypto/authenc.h> 40 #include <crypto/utils.h> 41 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 42 #include <linux/key-type.h> 43 #include <keys/user-type.h> 44 #include <keys/encrypted-type.h> 45 #include <keys/trusted-type.h> 46 47 #include <linux/device-mapper.h> 48 49 #include "dm-audit.h" 50 51 #define DM_MSG_PREFIX "crypt" 52 53 static DEFINE_IDA(workqueue_ida); 54 55 /* 56 * context holding the current state of a multi-part conversion 57 */ 58 struct convert_context { 59 struct completion restart; 60 struct bio *bio_in; 61 struct bvec_iter iter_in; 62 struct bio *bio_out; 63 struct bvec_iter iter_out; 64 atomic_t cc_pending; 65 unsigned int tag_offset; 66 u64 cc_sector; 67 union { 68 struct skcipher_request *req; 69 struct aead_request *req_aead; 70 } r; 71 bool aead_recheck; 72 bool aead_failed; 73 74 }; 75 76 /* 77 * per bio private data 78 */ 79 struct dm_crypt_io { 80 struct crypt_config *cc; 81 struct bio *base_bio; 82 u8 *integrity_metadata; 83 bool integrity_metadata_from_pool:1; 84 85 struct work_struct work; 86 87 struct convert_context ctx; 88 89 atomic_t io_pending; 90 blk_status_t error; 91 sector_t sector; 92 93 struct bvec_iter saved_bi_iter; 94 95 struct rb_node rb_node; 96 } CRYPTO_MINALIGN_ATTR; 97 98 struct dm_crypt_request { 99 struct convert_context *ctx; 100 struct scatterlist sg_in[4]; 101 struct scatterlist sg_out[4]; 102 u64 iv_sector; 103 }; 104 105 struct crypt_config; 106 107 struct crypt_iv_operations { 108 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 109 const char *opts); 110 void (*dtr)(struct crypt_config *cc); 111 int (*init)(struct crypt_config *cc); 112 int (*wipe)(struct crypt_config *cc); 113 int (*generator)(struct crypt_config *cc, u8 *iv, 114 struct dm_crypt_request *dmreq); 115 int (*post)(struct crypt_config *cc, u8 *iv, 116 struct dm_crypt_request *dmreq); 117 }; 118 119 struct iv_benbi_private { 120 int shift; 121 }; 122 123 #define LMK_SEED_SIZE 64 /* hash + 0 */ 124 struct iv_lmk_private { 125 u8 *seed; 126 }; 127 128 #define TCW_WHITENING_SIZE 16 129 struct iv_tcw_private { 130 u8 *iv_seed; 131 u8 *whitening; 132 }; 133 134 #define ELEPHANT_MAX_KEY_SIZE 32 135 struct iv_elephant_private { 136 struct crypto_skcipher *tfm; 137 }; 138 139 /* 140 * Crypt: maps a linear range of a block device 141 * and encrypts / decrypts at the same time. 142 */ 143 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 144 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 145 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 146 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 147 148 enum cipher_flags { 149 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 150 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 151 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 152 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 153 }; 154 155 /* 156 * The fields in here must be read only after initialization. 157 */ 158 struct crypt_config { 159 struct dm_dev *dev; 160 sector_t start; 161 162 struct percpu_counter n_allocated_pages; 163 164 struct workqueue_struct *io_queue; 165 struct workqueue_struct *crypt_queue; 166 167 spinlock_t write_thread_lock; 168 struct task_struct *write_thread; 169 struct rb_root write_tree; 170 171 char *cipher_string; 172 char *cipher_auth; 173 char *key_string; 174 175 const struct crypt_iv_operations *iv_gen_ops; 176 union { 177 struct iv_benbi_private benbi; 178 struct iv_lmk_private lmk; 179 struct iv_tcw_private tcw; 180 struct iv_elephant_private elephant; 181 } iv_gen_private; 182 u64 iv_offset; 183 unsigned int iv_size; 184 unsigned short sector_size; 185 unsigned char sector_shift; 186 187 union { 188 struct crypto_skcipher **tfms; 189 struct crypto_aead **tfms_aead; 190 } cipher_tfm; 191 unsigned int tfms_count; 192 int workqueue_id; 193 unsigned long cipher_flags; 194 195 /* 196 * Layout of each crypto request: 197 * 198 * struct skcipher_request 199 * context 200 * padding 201 * struct dm_crypt_request 202 * padding 203 * IV 204 * 205 * The padding is added so that dm_crypt_request and the IV are 206 * correctly aligned. 207 */ 208 unsigned int dmreq_start; 209 210 unsigned int per_bio_data_size; 211 212 unsigned long flags; 213 unsigned int key_size; 214 unsigned int key_parts; /* independent parts in key buffer */ 215 unsigned int key_extra_size; /* additional keys length */ 216 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 217 218 unsigned int integrity_tag_size; 219 unsigned int integrity_iv_size; 220 unsigned int used_tag_size; 221 unsigned int tuple_size; 222 223 /* 224 * pool for per bio private data, crypto requests, 225 * encryption requeusts/buffer pages and integrity tags 226 */ 227 unsigned int tag_pool_max_sectors; 228 mempool_t tag_pool; 229 mempool_t req_pool; 230 mempool_t page_pool; 231 232 struct bio_set bs; 233 struct mutex bio_alloc_lock; 234 235 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 236 u8 key[] __counted_by(key_size); 237 }; 238 239 #define MIN_IOS 64 240 #define MAX_TAG_SIZE 480 241 #define POOL_ENTRY_SIZE 512 242 243 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 244 static unsigned int dm_crypt_clients_n; 245 static volatile unsigned long dm_crypt_pages_per_client; 246 #define DM_CRYPT_MEMORY_PERCENT 2 247 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 248 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 249 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 250 251 static unsigned int max_read_size = 0; 252 module_param(max_read_size, uint, 0644); 253 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 254 static unsigned int max_write_size = 0; 255 module_param(max_write_size, uint, 0644); 256 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 257 258 static unsigned get_max_request_sectors(struct dm_target *ti, struct bio *bio, bool no_split) 259 { 260 struct crypt_config *cc = ti->private; 261 unsigned val, sector_align; 262 bool wrt = op_is_write(bio_op(bio)); 263 264 if (no_split) { 265 val = -1; 266 } else if (wrt) { 267 val = min_not_zero(READ_ONCE(max_write_size), 268 DM_CRYPT_DEFAULT_MAX_WRITE_SIZE); 269 } else { 270 val = min_not_zero(READ_ONCE(max_read_size), 271 DM_CRYPT_DEFAULT_MAX_READ_SIZE); 272 } 273 274 if (wrt || cc->used_tag_size) 275 val = min(val, BIO_MAX_VECS << PAGE_SHIFT); 276 277 sector_align = max(bdev_logical_block_size(cc->dev->bdev), 278 (unsigned)cc->sector_size); 279 val = round_down(val, sector_align); 280 if (unlikely(!val)) 281 val = sector_align; 282 return val >> SECTOR_SHIFT; 283 } 284 285 static void crypt_endio(struct bio *clone); 286 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 287 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 288 struct scatterlist *sg); 289 290 static bool crypt_integrity_aead(struct crypt_config *cc); 291 292 /* 293 * Use this to access cipher attributes that are independent of the key. 294 */ 295 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 296 { 297 return cc->cipher_tfm.tfms[0]; 298 } 299 300 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 301 { 302 return cc->cipher_tfm.tfms_aead[0]; 303 } 304 305 /* 306 * Different IV generation algorithms: 307 * 308 * plain: the initial vector is the 32-bit little-endian version of the sector 309 * number, padded with zeros if necessary. 310 * 311 * plain64: the initial vector is the 64-bit little-endian version of the sector 312 * number, padded with zeros if necessary. 313 * 314 * plain64be: the initial vector is the 64-bit big-endian version of the sector 315 * number, padded with zeros if necessary. 316 * 317 * essiv: "encrypted sector|salt initial vector", the sector number is 318 * encrypted with the bulk cipher using a salt as key. The salt 319 * should be derived from the bulk cipher's key via hashing. 320 * 321 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 322 * (needed for LRW-32-AES and possible other narrow block modes) 323 * 324 * null: the initial vector is always zero. Provides compatibility with 325 * obsolete loop_fish2 devices. Do not use for new devices. 326 * 327 * lmk: Compatible implementation of the block chaining mode used 328 * by the Loop-AES block device encryption system 329 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 330 * It operates on full 512 byte sectors and uses CBC 331 * with an IV derived from the sector number, the data and 332 * optionally extra IV seed. 333 * This means that after decryption the first block 334 * of sector must be tweaked according to decrypted data. 335 * Loop-AES can use three encryption schemes: 336 * version 1: is plain aes-cbc mode 337 * version 2: uses 64 multikey scheme with lmk IV generator 338 * version 3: the same as version 2 with additional IV seed 339 * (it uses 65 keys, last key is used as IV seed) 340 * 341 * tcw: Compatible implementation of the block chaining mode used 342 * by the TrueCrypt device encryption system (prior to version 4.1). 343 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 344 * It operates on full 512 byte sectors and uses CBC 345 * with an IV derived from initial key and the sector number. 346 * In addition, whitening value is applied on every sector, whitening 347 * is calculated from initial key, sector number and mixed using CRC32. 348 * Note that this encryption scheme is vulnerable to watermarking attacks 349 * and should be used for old compatible containers access only. 350 * 351 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 352 * The IV is encrypted little-endian byte-offset (with the same key 353 * and cipher as the volume). 354 * 355 * elephant: The extended version of eboiv with additional Elephant diffuser 356 * used with Bitlocker CBC mode. 357 * This mode was used in older Windows systems 358 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 359 */ 360 361 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 362 struct dm_crypt_request *dmreq) 363 { 364 memset(iv, 0, cc->iv_size); 365 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 366 367 return 0; 368 } 369 370 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 371 struct dm_crypt_request *dmreq) 372 { 373 memset(iv, 0, cc->iv_size); 374 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 375 376 return 0; 377 } 378 379 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 380 struct dm_crypt_request *dmreq) 381 { 382 memset(iv, 0, cc->iv_size); 383 /* iv_size is at least of size u64; usually it is 16 bytes */ 384 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 385 386 return 0; 387 } 388 389 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 390 struct dm_crypt_request *dmreq) 391 { 392 /* 393 * ESSIV encryption of the IV is now handled by the crypto API, 394 * so just pass the plain sector number here. 395 */ 396 memset(iv, 0, cc->iv_size); 397 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 398 399 return 0; 400 } 401 402 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 403 const char *opts) 404 { 405 unsigned int bs; 406 int log; 407 408 if (crypt_integrity_aead(cc)) 409 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 410 else 411 bs = crypto_skcipher_blocksize(any_tfm(cc)); 412 log = ilog2(bs); 413 414 /* 415 * We need to calculate how far we must shift the sector count 416 * to get the cipher block count, we use this shift in _gen. 417 */ 418 if (1 << log != bs) { 419 ti->error = "cypher blocksize is not a power of 2"; 420 return -EINVAL; 421 } 422 423 if (log > 9) { 424 ti->error = "cypher blocksize is > 512"; 425 return -EINVAL; 426 } 427 428 cc->iv_gen_private.benbi.shift = 9 - log; 429 430 return 0; 431 } 432 433 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 434 { 435 } 436 437 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 438 struct dm_crypt_request *dmreq) 439 { 440 __be64 val; 441 442 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 443 444 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 445 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 446 447 return 0; 448 } 449 450 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 451 struct dm_crypt_request *dmreq) 452 { 453 memset(iv, 0, cc->iv_size); 454 455 return 0; 456 } 457 458 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 459 { 460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 461 462 kfree_sensitive(lmk->seed); 463 lmk->seed = NULL; 464 } 465 466 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 467 const char *opts) 468 { 469 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 470 471 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 472 ti->error = "Unsupported sector size for LMK"; 473 return -EINVAL; 474 } 475 476 if (fips_enabled) { 477 ti->error = "LMK support is disabled due to FIPS"; 478 /* ... because it uses MD5. */ 479 return -EINVAL; 480 } 481 482 /* No seed in LMK version 2 */ 483 if (cc->key_parts == cc->tfms_count) { 484 lmk->seed = NULL; 485 return 0; 486 } 487 488 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 489 if (!lmk->seed) { 490 ti->error = "Error kmallocing seed storage in LMK"; 491 return -ENOMEM; 492 } 493 494 return 0; 495 } 496 497 static int crypt_iv_lmk_init(struct crypt_config *cc) 498 { 499 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 500 int subkey_size = cc->key_size / cc->key_parts; 501 502 /* LMK seed is on the position of LMK_KEYS + 1 key */ 503 if (lmk->seed) 504 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 505 MD5_DIGEST_SIZE); 506 507 return 0; 508 } 509 510 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 511 { 512 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 513 514 if (lmk->seed) 515 memset(lmk->seed, 0, LMK_SEED_SIZE); 516 517 return 0; 518 } 519 520 static void crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 521 struct dm_crypt_request *dmreq, u8 *data) 522 { 523 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 524 struct md5_ctx ctx; 525 __le32 buf[4]; 526 527 md5_init(&ctx); 528 529 if (lmk->seed) 530 md5_update(&ctx, lmk->seed, LMK_SEED_SIZE); 531 532 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 533 md5_update(&ctx, data + 16, 16 * 31); 534 535 /* Sector is cropped to 56 bits here */ 536 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 537 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 538 buf[2] = cpu_to_le32(4024); 539 buf[3] = 0; 540 md5_update(&ctx, (u8 *)buf, sizeof(buf)); 541 542 /* No MD5 padding here */ 543 cpu_to_le32_array(ctx.state.h, ARRAY_SIZE(ctx.state.h)); 544 memcpy(iv, ctx.state.h, cc->iv_size); 545 } 546 547 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 548 struct dm_crypt_request *dmreq) 549 { 550 struct scatterlist *sg; 551 u8 *src; 552 553 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 554 sg = crypt_get_sg_data(cc, dmreq->sg_in); 555 src = kmap_local_page(sg_page(sg)); 556 crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 557 kunmap_local(src); 558 } else 559 memset(iv, 0, cc->iv_size); 560 return 0; 561 } 562 563 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 564 struct dm_crypt_request *dmreq) 565 { 566 struct scatterlist *sg; 567 u8 *dst; 568 569 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 570 return 0; 571 572 sg = crypt_get_sg_data(cc, dmreq->sg_out); 573 dst = kmap_local_page(sg_page(sg)); 574 crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 575 576 /* Tweak the first block of plaintext sector */ 577 crypto_xor(dst + sg->offset, iv, cc->iv_size); 578 579 kunmap_local(dst); 580 return 0; 581 } 582 583 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 584 { 585 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 586 587 kfree_sensitive(tcw->iv_seed); 588 tcw->iv_seed = NULL; 589 kfree_sensitive(tcw->whitening); 590 tcw->whitening = NULL; 591 } 592 593 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 594 const char *opts) 595 { 596 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 597 598 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 599 ti->error = "Unsupported sector size for TCW"; 600 return -EINVAL; 601 } 602 603 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 604 ti->error = "Wrong key size for TCW"; 605 return -EINVAL; 606 } 607 608 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 609 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 610 if (!tcw->iv_seed || !tcw->whitening) { 611 crypt_iv_tcw_dtr(cc); 612 ti->error = "Error allocating seed storage in TCW"; 613 return -ENOMEM; 614 } 615 616 return 0; 617 } 618 619 static int crypt_iv_tcw_init(struct crypt_config *cc) 620 { 621 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 622 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 623 624 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 625 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 626 TCW_WHITENING_SIZE); 627 628 return 0; 629 } 630 631 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 632 { 633 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 634 635 memset(tcw->iv_seed, 0, cc->iv_size); 636 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 637 638 return 0; 639 } 640 641 static void crypt_iv_tcw_whitening(struct crypt_config *cc, 642 struct dm_crypt_request *dmreq, u8 *data) 643 { 644 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 645 __le64 sector = cpu_to_le64(dmreq->iv_sector); 646 u8 buf[TCW_WHITENING_SIZE]; 647 int i; 648 649 /* xor whitening with sector number */ 650 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 651 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 652 653 /* calculate crc32 for every 32bit part and xor it */ 654 for (i = 0; i < 4; i++) 655 put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]); 656 crypto_xor(&buf[0], &buf[12], 4); 657 crypto_xor(&buf[4], &buf[8], 4); 658 659 /* apply whitening (8 bytes) to whole sector */ 660 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 661 crypto_xor(data + i * 8, buf, 8); 662 memzero_explicit(buf, sizeof(buf)); 663 } 664 665 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 666 struct dm_crypt_request *dmreq) 667 { 668 struct scatterlist *sg; 669 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 670 __le64 sector = cpu_to_le64(dmreq->iv_sector); 671 u8 *src; 672 673 /* Remove whitening from ciphertext */ 674 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 675 sg = crypt_get_sg_data(cc, dmreq->sg_in); 676 src = kmap_local_page(sg_page(sg)); 677 crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 678 kunmap_local(src); 679 } 680 681 /* Calculate IV */ 682 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 683 if (cc->iv_size > 8) 684 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 685 cc->iv_size - 8); 686 687 return 0; 688 } 689 690 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 691 struct dm_crypt_request *dmreq) 692 { 693 struct scatterlist *sg; 694 u8 *dst; 695 696 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 697 return 0; 698 699 /* Apply whitening on ciphertext */ 700 sg = crypt_get_sg_data(cc, dmreq->sg_out); 701 dst = kmap_local_page(sg_page(sg)); 702 crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 703 kunmap_local(dst); 704 705 return 0; 706 } 707 708 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 709 struct dm_crypt_request *dmreq) 710 { 711 /* Used only for writes, there must be an additional space to store IV */ 712 get_random_bytes(iv, cc->iv_size); 713 return 0; 714 } 715 716 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 717 const char *opts) 718 { 719 if (crypt_integrity_aead(cc)) { 720 ti->error = "AEAD transforms not supported for EBOIV"; 721 return -EINVAL; 722 } 723 724 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 725 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 726 return -EINVAL; 727 } 728 729 return 0; 730 } 731 732 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 733 struct dm_crypt_request *dmreq) 734 { 735 struct crypto_skcipher *tfm = any_tfm(cc); 736 struct skcipher_request *req; 737 struct scatterlist src, dst; 738 DECLARE_CRYPTO_WAIT(wait); 739 unsigned int reqsize; 740 int err; 741 u8 *buf; 742 743 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 744 reqsize = ALIGN(reqsize, __alignof__(__le64)); 745 746 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 747 if (!req) 748 return -ENOMEM; 749 750 skcipher_request_set_tfm(req, tfm); 751 752 buf = (u8 *)req + reqsize; 753 memset(buf, 0, cc->iv_size); 754 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 755 756 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 757 sg_init_one(&dst, iv, cc->iv_size); 758 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 759 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 760 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 761 kfree_sensitive(req); 762 763 return err; 764 } 765 766 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 767 { 768 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 769 770 crypto_free_skcipher(elephant->tfm); 771 elephant->tfm = NULL; 772 } 773 774 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 775 const char *opts) 776 { 777 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 778 int r; 779 780 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 781 CRYPTO_ALG_ALLOCATES_MEMORY); 782 if (IS_ERR(elephant->tfm)) { 783 r = PTR_ERR(elephant->tfm); 784 elephant->tfm = NULL; 785 return r; 786 } 787 788 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 789 if (r) 790 crypt_iv_elephant_dtr(cc); 791 return r; 792 } 793 794 static void diffuser_disk_to_cpu(u32 *d, size_t n) 795 { 796 #ifndef __LITTLE_ENDIAN 797 int i; 798 799 for (i = 0; i < n; i++) 800 d[i] = le32_to_cpu((__le32)d[i]); 801 #endif 802 } 803 804 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 805 { 806 #ifndef __LITTLE_ENDIAN 807 int i; 808 809 for (i = 0; i < n; i++) 810 d[i] = cpu_to_le32((u32)d[i]); 811 #endif 812 } 813 814 static void diffuser_a_decrypt(u32 *d, size_t n) 815 { 816 int i, i1, i2, i3; 817 818 for (i = 0; i < 5; i++) { 819 i1 = 0; 820 i2 = n - 2; 821 i3 = n - 5; 822 823 while (i1 < (n - 1)) { 824 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 825 i1++; i2++; i3++; 826 827 if (i3 >= n) 828 i3 -= n; 829 830 d[i1] += d[i2] ^ d[i3]; 831 i1++; i2++; i3++; 832 833 if (i2 >= n) 834 i2 -= n; 835 836 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 837 i1++; i2++; i3++; 838 839 d[i1] += d[i2] ^ d[i3]; 840 i1++; i2++; i3++; 841 } 842 } 843 } 844 845 static void diffuser_a_encrypt(u32 *d, size_t n) 846 { 847 int i, i1, i2, i3; 848 849 for (i = 0; i < 5; i++) { 850 i1 = n - 1; 851 i2 = n - 2 - 1; 852 i3 = n - 5 - 1; 853 854 while (i1 > 0) { 855 d[i1] -= d[i2] ^ d[i3]; 856 i1--; i2--; i3--; 857 858 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 859 i1--; i2--; i3--; 860 861 if (i2 < 0) 862 i2 += n; 863 864 d[i1] -= d[i2] ^ d[i3]; 865 i1--; i2--; i3--; 866 867 if (i3 < 0) 868 i3 += n; 869 870 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 871 i1--; i2--; i3--; 872 } 873 } 874 } 875 876 static void diffuser_b_decrypt(u32 *d, size_t n) 877 { 878 int i, i1, i2, i3; 879 880 for (i = 0; i < 3; i++) { 881 i1 = 0; 882 i2 = 2; 883 i3 = 5; 884 885 while (i1 < (n - 1)) { 886 d[i1] += d[i2] ^ d[i3]; 887 i1++; i2++; i3++; 888 889 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 890 i1++; i2++; i3++; 891 892 if (i2 >= n) 893 i2 -= n; 894 895 d[i1] += d[i2] ^ d[i3]; 896 i1++; i2++; i3++; 897 898 if (i3 >= n) 899 i3 -= n; 900 901 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 902 i1++; i2++; i3++; 903 } 904 } 905 } 906 907 static void diffuser_b_encrypt(u32 *d, size_t n) 908 { 909 int i, i1, i2, i3; 910 911 for (i = 0; i < 3; i++) { 912 i1 = n - 1; 913 i2 = 2 - 1; 914 i3 = 5 - 1; 915 916 while (i1 > 0) { 917 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 918 i1--; i2--; i3--; 919 920 if (i3 < 0) 921 i3 += n; 922 923 d[i1] -= d[i2] ^ d[i3]; 924 i1--; i2--; i3--; 925 926 if (i2 < 0) 927 i2 += n; 928 929 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 930 i1--; i2--; i3--; 931 932 d[i1] -= d[i2] ^ d[i3]; 933 i1--; i2--; i3--; 934 } 935 } 936 } 937 938 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 939 { 940 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 941 u8 *es, *ks, *data, *data2, *data_offset; 942 struct skcipher_request *req; 943 struct scatterlist *sg, *sg2, src, dst; 944 DECLARE_CRYPTO_WAIT(wait); 945 int i, r; 946 947 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 948 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 949 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 950 951 if (!req || !es || !ks) { 952 r = -ENOMEM; 953 goto out; 954 } 955 956 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 957 958 /* E(Ks, e(s)) */ 959 sg_init_one(&src, es, 16); 960 sg_init_one(&dst, ks, 16); 961 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 962 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 963 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 964 if (r) 965 goto out; 966 967 /* E(Ks, e'(s)) */ 968 es[15] = 0x80; 969 sg_init_one(&dst, &ks[16], 16); 970 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 971 if (r) 972 goto out; 973 974 sg = crypt_get_sg_data(cc, dmreq->sg_out); 975 data = kmap_local_page(sg_page(sg)); 976 data_offset = data + sg->offset; 977 978 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 979 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 980 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 981 data2 = kmap_local_page(sg_page(sg2)); 982 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 983 kunmap_local(data2); 984 } 985 986 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 987 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 988 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 989 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 990 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 991 } 992 993 for (i = 0; i < (cc->sector_size / 32); i++) 994 crypto_xor(data_offset + i * 32, ks, 32); 995 996 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 997 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 998 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 999 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1000 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1001 } 1002 1003 kunmap_local(data); 1004 out: 1005 kfree_sensitive(ks); 1006 kfree_sensitive(es); 1007 skcipher_request_free(req); 1008 return r; 1009 } 1010 1011 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1012 struct dm_crypt_request *dmreq) 1013 { 1014 int r; 1015 1016 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1017 r = crypt_iv_elephant(cc, dmreq); 1018 if (r) 1019 return r; 1020 } 1021 1022 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1023 } 1024 1025 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1026 struct dm_crypt_request *dmreq) 1027 { 1028 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1029 return crypt_iv_elephant(cc, dmreq); 1030 1031 return 0; 1032 } 1033 1034 static int crypt_iv_elephant_init(struct crypt_config *cc) 1035 { 1036 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1037 int key_offset = cc->key_size - cc->key_extra_size; 1038 1039 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1040 } 1041 1042 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1043 { 1044 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1045 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1046 1047 memset(key, 0, cc->key_extra_size); 1048 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1049 } 1050 1051 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1052 .generator = crypt_iv_plain_gen 1053 }; 1054 1055 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1056 .generator = crypt_iv_plain64_gen 1057 }; 1058 1059 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1060 .generator = crypt_iv_plain64be_gen 1061 }; 1062 1063 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1064 .generator = crypt_iv_essiv_gen 1065 }; 1066 1067 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1068 .ctr = crypt_iv_benbi_ctr, 1069 .dtr = crypt_iv_benbi_dtr, 1070 .generator = crypt_iv_benbi_gen 1071 }; 1072 1073 static const struct crypt_iv_operations crypt_iv_null_ops = { 1074 .generator = crypt_iv_null_gen 1075 }; 1076 1077 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1078 .ctr = crypt_iv_lmk_ctr, 1079 .dtr = crypt_iv_lmk_dtr, 1080 .init = crypt_iv_lmk_init, 1081 .wipe = crypt_iv_lmk_wipe, 1082 .generator = crypt_iv_lmk_gen, 1083 .post = crypt_iv_lmk_post 1084 }; 1085 1086 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1087 .ctr = crypt_iv_tcw_ctr, 1088 .dtr = crypt_iv_tcw_dtr, 1089 .init = crypt_iv_tcw_init, 1090 .wipe = crypt_iv_tcw_wipe, 1091 .generator = crypt_iv_tcw_gen, 1092 .post = crypt_iv_tcw_post 1093 }; 1094 1095 static const struct crypt_iv_operations crypt_iv_random_ops = { 1096 .generator = crypt_iv_random_gen 1097 }; 1098 1099 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1100 .ctr = crypt_iv_eboiv_ctr, 1101 .generator = crypt_iv_eboiv_gen 1102 }; 1103 1104 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1105 .ctr = crypt_iv_elephant_ctr, 1106 .dtr = crypt_iv_elephant_dtr, 1107 .init = crypt_iv_elephant_init, 1108 .wipe = crypt_iv_elephant_wipe, 1109 .generator = crypt_iv_elephant_gen, 1110 .post = crypt_iv_elephant_post 1111 }; 1112 1113 /* 1114 * Integrity extensions 1115 */ 1116 static bool crypt_integrity_aead(struct crypt_config *cc) 1117 { 1118 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1119 } 1120 1121 static bool crypt_integrity_hmac(struct crypt_config *cc) 1122 { 1123 return crypt_integrity_aead(cc) && cc->key_mac_size; 1124 } 1125 1126 /* Get sg containing data */ 1127 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1128 struct scatterlist *sg) 1129 { 1130 if (unlikely(crypt_integrity_aead(cc))) 1131 return &sg[2]; 1132 1133 return sg; 1134 } 1135 1136 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1137 { 1138 struct bio_integrity_payload *bip; 1139 unsigned int tag_len; 1140 int ret; 1141 1142 if (!bio_sectors(bio) || !io->cc->tuple_size) 1143 return 0; 1144 1145 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1146 if (IS_ERR(bip)) 1147 return PTR_ERR(bip); 1148 1149 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1150 1151 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 1152 1153 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1154 tag_len, offset_in_page(io->integrity_metadata)); 1155 if (unlikely(ret != tag_len)) 1156 return -ENOMEM; 1157 1158 return 0; 1159 } 1160 1161 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1162 { 1163 #ifdef CONFIG_BLK_DEV_INTEGRITY 1164 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1165 struct mapped_device *md = dm_table_get_md(ti->table); 1166 1167 /* We require an underlying device with non-PI metadata */ 1168 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1169 ti->error = "Integrity profile not supported."; 1170 return -EINVAL; 1171 } 1172 1173 if (bi->metadata_size < cc->used_tag_size) { 1174 ti->error = "Integrity profile tag size mismatch."; 1175 return -EINVAL; 1176 } 1177 cc->tuple_size = bi->metadata_size; 1178 if (1 << bi->interval_exp != cc->sector_size) { 1179 ti->error = "Integrity profile sector size mismatch."; 1180 return -EINVAL; 1181 } 1182 1183 if (crypt_integrity_aead(cc)) { 1184 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1185 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1186 cc->integrity_tag_size, cc->integrity_iv_size); 1187 1188 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1189 ti->error = "Integrity AEAD auth tag size is not supported."; 1190 return -EINVAL; 1191 } 1192 } else if (cc->integrity_iv_size) 1193 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1194 cc->integrity_iv_size); 1195 1196 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1197 ti->error = "Not enough space for integrity tag in the profile."; 1198 return -EINVAL; 1199 } 1200 1201 return 0; 1202 #else 1203 ti->error = "Integrity profile not supported."; 1204 return -EINVAL; 1205 #endif 1206 } 1207 1208 static void crypt_convert_init(struct crypt_config *cc, 1209 struct convert_context *ctx, 1210 struct bio *bio_out, struct bio *bio_in, 1211 sector_t sector) 1212 { 1213 ctx->bio_in = bio_in; 1214 ctx->bio_out = bio_out; 1215 if (bio_in) 1216 ctx->iter_in = bio_in->bi_iter; 1217 if (bio_out) 1218 ctx->iter_out = bio_out->bi_iter; 1219 ctx->cc_sector = sector + cc->iv_offset; 1220 ctx->tag_offset = 0; 1221 init_completion(&ctx->restart); 1222 } 1223 1224 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1225 void *req) 1226 { 1227 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1228 } 1229 1230 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1231 { 1232 return (void *)((char *)dmreq - cc->dmreq_start); 1233 } 1234 1235 static u8 *iv_of_dmreq(struct crypt_config *cc, 1236 struct dm_crypt_request *dmreq) 1237 { 1238 if (crypt_integrity_aead(cc)) 1239 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1240 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1241 else 1242 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1243 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1244 } 1245 1246 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1247 struct dm_crypt_request *dmreq) 1248 { 1249 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1250 } 1251 1252 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1253 struct dm_crypt_request *dmreq) 1254 { 1255 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1256 1257 return (__le64 *) ptr; 1258 } 1259 1260 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1261 struct dm_crypt_request *dmreq) 1262 { 1263 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1264 cc->iv_size + sizeof(uint64_t); 1265 1266 return (unsigned int *)ptr; 1267 } 1268 1269 static void *tag_from_dmreq(struct crypt_config *cc, 1270 struct dm_crypt_request *dmreq) 1271 { 1272 struct convert_context *ctx = dmreq->ctx; 1273 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1274 1275 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1276 cc->tuple_size]; 1277 } 1278 1279 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1280 struct dm_crypt_request *dmreq) 1281 { 1282 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1283 } 1284 1285 static int crypt_convert_block_aead(struct crypt_config *cc, 1286 struct convert_context *ctx, 1287 struct aead_request *req, 1288 unsigned int tag_offset) 1289 { 1290 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1291 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1292 struct dm_crypt_request *dmreq; 1293 u8 *iv, *org_iv, *tag_iv, *tag; 1294 __le64 *sector; 1295 int r = 0; 1296 1297 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1298 1299 /* Reject unexpected unaligned bio. */ 1300 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1301 return -EIO; 1302 1303 dmreq = dmreq_of_req(cc, req); 1304 dmreq->iv_sector = ctx->cc_sector; 1305 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1306 dmreq->iv_sector >>= cc->sector_shift; 1307 dmreq->ctx = ctx; 1308 1309 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1310 1311 sector = org_sector_of_dmreq(cc, dmreq); 1312 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1313 1314 iv = iv_of_dmreq(cc, dmreq); 1315 org_iv = org_iv_of_dmreq(cc, dmreq); 1316 tag = tag_from_dmreq(cc, dmreq); 1317 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1318 1319 /* AEAD request: 1320 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1321 * | (authenticated) | (auth+encryption) | | 1322 * | sector_LE | IV | sector in/out | tag in/out | 1323 */ 1324 sg_init_table(dmreq->sg_in, 4); 1325 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1326 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1327 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1328 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1329 1330 sg_init_table(dmreq->sg_out, 4); 1331 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1332 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1333 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1334 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1335 1336 if (cc->iv_gen_ops) { 1337 /* For READs use IV stored in integrity metadata */ 1338 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1339 memcpy(org_iv, tag_iv, cc->iv_size); 1340 } else { 1341 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1342 if (r < 0) 1343 return r; 1344 /* Store generated IV in integrity metadata */ 1345 if (cc->integrity_iv_size) 1346 memcpy(tag_iv, org_iv, cc->iv_size); 1347 } 1348 /* Working copy of IV, to be modified in crypto API */ 1349 memcpy(iv, org_iv, cc->iv_size); 1350 } 1351 1352 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1353 if (bio_data_dir(ctx->bio_in) == WRITE) { 1354 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1355 cc->sector_size, iv); 1356 r = crypto_aead_encrypt(req); 1357 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1358 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1359 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1360 } else { 1361 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1362 cc->sector_size + cc->integrity_tag_size, iv); 1363 r = crypto_aead_decrypt(req); 1364 } 1365 1366 if (r == -EBADMSG) { 1367 sector_t s = le64_to_cpu(*sector); 1368 1369 ctx->aead_failed = true; 1370 if (ctx->aead_recheck) { 1371 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1372 ctx->bio_in->bi_bdev, s); 1373 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1374 ctx->bio_in, s, 0); 1375 } 1376 } 1377 1378 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1379 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1380 1381 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1382 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1383 1384 return r; 1385 } 1386 1387 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1388 struct convert_context *ctx, 1389 struct skcipher_request *req, 1390 unsigned int tag_offset) 1391 { 1392 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1393 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1394 struct scatterlist *sg_in, *sg_out; 1395 struct dm_crypt_request *dmreq; 1396 u8 *iv, *org_iv, *tag_iv; 1397 __le64 *sector; 1398 int r = 0; 1399 1400 /* Reject unexpected unaligned bio. */ 1401 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1402 return -EIO; 1403 1404 dmreq = dmreq_of_req(cc, req); 1405 dmreq->iv_sector = ctx->cc_sector; 1406 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1407 dmreq->iv_sector >>= cc->sector_shift; 1408 dmreq->ctx = ctx; 1409 1410 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1411 1412 iv = iv_of_dmreq(cc, dmreq); 1413 org_iv = org_iv_of_dmreq(cc, dmreq); 1414 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1415 1416 sector = org_sector_of_dmreq(cc, dmreq); 1417 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1418 1419 /* For skcipher we use only the first sg item */ 1420 sg_in = &dmreq->sg_in[0]; 1421 sg_out = &dmreq->sg_out[0]; 1422 1423 sg_init_table(sg_in, 1); 1424 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1425 1426 sg_init_table(sg_out, 1); 1427 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1428 1429 if (cc->iv_gen_ops) { 1430 /* For READs use IV stored in integrity metadata */ 1431 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1432 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1433 } else { 1434 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1435 if (r < 0) 1436 return r; 1437 /* Data can be already preprocessed in generator */ 1438 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1439 sg_in = sg_out; 1440 /* Store generated IV in integrity metadata */ 1441 if (cc->integrity_iv_size) 1442 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1443 } 1444 /* Working copy of IV, to be modified in crypto API */ 1445 memcpy(iv, org_iv, cc->iv_size); 1446 } 1447 1448 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1449 1450 if (bio_data_dir(ctx->bio_in) == WRITE) 1451 r = crypto_skcipher_encrypt(req); 1452 else 1453 r = crypto_skcipher_decrypt(req); 1454 1455 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1456 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1457 1458 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1459 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1460 1461 return r; 1462 } 1463 1464 static void kcryptd_async_done(void *async_req, int error); 1465 1466 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1467 struct convert_context *ctx) 1468 { 1469 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1470 1471 if (!ctx->r.req) { 1472 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1473 if (!ctx->r.req) 1474 return -ENOMEM; 1475 } 1476 1477 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1478 1479 /* 1480 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1481 * requests if driver request queue is full. 1482 */ 1483 skcipher_request_set_callback(ctx->r.req, 1484 CRYPTO_TFM_REQ_MAY_BACKLOG, 1485 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1486 1487 return 0; 1488 } 1489 1490 static int crypt_alloc_req_aead(struct crypt_config *cc, 1491 struct convert_context *ctx) 1492 { 1493 if (!ctx->r.req_aead) { 1494 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1495 if (!ctx->r.req_aead) 1496 return -ENOMEM; 1497 } 1498 1499 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1500 1501 /* 1502 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1503 * requests if driver request queue is full. 1504 */ 1505 aead_request_set_callback(ctx->r.req_aead, 1506 CRYPTO_TFM_REQ_MAY_BACKLOG, 1507 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1508 1509 return 0; 1510 } 1511 1512 static int crypt_alloc_req(struct crypt_config *cc, 1513 struct convert_context *ctx) 1514 { 1515 if (crypt_integrity_aead(cc)) 1516 return crypt_alloc_req_aead(cc, ctx); 1517 else 1518 return crypt_alloc_req_skcipher(cc, ctx); 1519 } 1520 1521 static void crypt_free_req_skcipher(struct crypt_config *cc, 1522 struct skcipher_request *req, struct bio *base_bio) 1523 { 1524 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1525 1526 if ((struct skcipher_request *)(io + 1) != req) 1527 mempool_free(req, &cc->req_pool); 1528 } 1529 1530 static void crypt_free_req_aead(struct crypt_config *cc, 1531 struct aead_request *req, struct bio *base_bio) 1532 { 1533 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1534 1535 if ((struct aead_request *)(io + 1) != req) 1536 mempool_free(req, &cc->req_pool); 1537 } 1538 1539 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1540 { 1541 if (crypt_integrity_aead(cc)) 1542 crypt_free_req_aead(cc, req, base_bio); 1543 else 1544 crypt_free_req_skcipher(cc, req, base_bio); 1545 } 1546 1547 /* 1548 * Encrypt / decrypt data from one bio to another one (can be the same one) 1549 */ 1550 static blk_status_t crypt_convert(struct crypt_config *cc, 1551 struct convert_context *ctx, bool atomic, bool reset_pending) 1552 { 1553 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1554 int r; 1555 1556 /* 1557 * if reset_pending is set we are dealing with the bio for the first time, 1558 * else we're continuing to work on the previous bio, so don't mess with 1559 * the cc_pending counter 1560 */ 1561 if (reset_pending) 1562 atomic_set(&ctx->cc_pending, 1); 1563 1564 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1565 1566 r = crypt_alloc_req(cc, ctx); 1567 if (r) { 1568 complete(&ctx->restart); 1569 return BLK_STS_DEV_RESOURCE; 1570 } 1571 1572 atomic_inc(&ctx->cc_pending); 1573 1574 if (crypt_integrity_aead(cc)) 1575 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); 1576 else 1577 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); 1578 1579 switch (r) { 1580 /* 1581 * The request was queued by a crypto driver 1582 * but the driver request queue is full, let's wait. 1583 */ 1584 case -EBUSY: 1585 if (in_interrupt()) { 1586 if (try_wait_for_completion(&ctx->restart)) { 1587 /* 1588 * we don't have to block to wait for completion, 1589 * so proceed 1590 */ 1591 } else { 1592 /* 1593 * we can't wait for completion without blocking 1594 * exit and continue processing in a workqueue 1595 */ 1596 ctx->r.req = NULL; 1597 ctx->tag_offset++; 1598 ctx->cc_sector += sector_step; 1599 return BLK_STS_DEV_RESOURCE; 1600 } 1601 } else { 1602 wait_for_completion(&ctx->restart); 1603 } 1604 reinit_completion(&ctx->restart); 1605 fallthrough; 1606 /* 1607 * The request is queued and processed asynchronously, 1608 * completion function kcryptd_async_done() will be called. 1609 */ 1610 case -EINPROGRESS: 1611 ctx->r.req = NULL; 1612 ctx->tag_offset++; 1613 ctx->cc_sector += sector_step; 1614 continue; 1615 /* 1616 * The request was already processed (synchronously). 1617 */ 1618 case 0: 1619 atomic_dec(&ctx->cc_pending); 1620 ctx->cc_sector += sector_step; 1621 ctx->tag_offset++; 1622 if (!atomic) 1623 cond_resched(); 1624 continue; 1625 /* 1626 * There was a data integrity error. 1627 */ 1628 case -EBADMSG: 1629 atomic_dec(&ctx->cc_pending); 1630 return BLK_STS_PROTECTION; 1631 /* 1632 * There was an error while processing the request. 1633 */ 1634 default: 1635 atomic_dec(&ctx->cc_pending); 1636 return BLK_STS_IOERR; 1637 } 1638 } 1639 1640 return 0; 1641 } 1642 1643 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1644 1645 /* 1646 * Generate a new unfragmented bio with the given size 1647 * This should never violate the device limitations (but if it did then block 1648 * core should split the bio as needed). 1649 * 1650 * This function may be called concurrently. If we allocate from the mempool 1651 * concurrently, there is a possibility of deadlock. For example, if we have 1652 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1653 * the mempool concurrently, it may deadlock in a situation where both processes 1654 * have allocated 128 pages and the mempool is exhausted. 1655 * 1656 * In order to avoid this scenario we allocate the pages under a mutex. 1657 * 1658 * In order to not degrade performance with excessive locking, we try 1659 * non-blocking allocations without a mutex first but on failure we fallback 1660 * to blocking allocations with a mutex. 1661 * 1662 * In order to reduce allocation overhead, we try to allocate compound pages in 1663 * the first pass. If they are not available, we fall back to the mempool. 1664 */ 1665 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1666 { 1667 struct crypt_config *cc = io->cc; 1668 struct bio *clone; 1669 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1670 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1671 unsigned int remaining_size; 1672 unsigned int order = MAX_PAGE_ORDER; 1673 1674 retry: 1675 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1676 mutex_lock(&cc->bio_alloc_lock); 1677 1678 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1679 GFP_NOIO, &cc->bs); 1680 clone->bi_private = io; 1681 clone->bi_end_io = crypt_endio; 1682 clone->bi_ioprio = io->base_bio->bi_ioprio; 1683 clone->bi_iter.bi_sector = cc->start + io->sector; 1684 1685 remaining_size = size; 1686 1687 while (remaining_size) { 1688 struct page *pages; 1689 unsigned size_to_add; 1690 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1691 order = min(order, remaining_order); 1692 1693 while (order > 0) { 1694 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1695 (1 << order) > dm_crypt_pages_per_client)) 1696 goto decrease_order; 1697 pages = alloc_pages(gfp_mask 1698 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1699 order); 1700 if (likely(pages != NULL)) { 1701 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1702 goto have_pages; 1703 } 1704 decrease_order: 1705 order--; 1706 } 1707 1708 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1709 if (!pages) { 1710 crypt_free_buffer_pages(cc, clone); 1711 bio_put(clone); 1712 gfp_mask |= __GFP_DIRECT_RECLAIM; 1713 order = 0; 1714 goto retry; 1715 } 1716 1717 have_pages: 1718 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1719 __bio_add_page(clone, pages, size_to_add, 0); 1720 remaining_size -= size_to_add; 1721 } 1722 1723 /* Allocate space for integrity tags */ 1724 if (dm_crypt_integrity_io_alloc(io, clone)) { 1725 crypt_free_buffer_pages(cc, clone); 1726 bio_put(clone); 1727 clone = NULL; 1728 } 1729 1730 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1731 mutex_unlock(&cc->bio_alloc_lock); 1732 1733 return clone; 1734 } 1735 1736 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1737 { 1738 struct folio_iter fi; 1739 1740 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1741 bio_for_each_folio_all(fi, clone) { 1742 if (folio_test_large(fi.folio)) { 1743 percpu_counter_sub(&cc->n_allocated_pages, 1744 folio_nr_pages(fi.folio)); 1745 folio_put(fi.folio); 1746 } else { 1747 mempool_free(&fi.folio->page, &cc->page_pool); 1748 } 1749 } 1750 } 1751 } 1752 1753 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1754 struct bio *bio, sector_t sector) 1755 { 1756 io->cc = cc; 1757 io->base_bio = bio; 1758 io->sector = sector; 1759 io->error = 0; 1760 io->ctx.aead_recheck = false; 1761 io->ctx.aead_failed = false; 1762 io->ctx.r.req = NULL; 1763 io->integrity_metadata = NULL; 1764 io->integrity_metadata_from_pool = false; 1765 atomic_set(&io->io_pending, 0); 1766 } 1767 1768 static void crypt_inc_pending(struct dm_crypt_io *io) 1769 { 1770 atomic_inc(&io->io_pending); 1771 } 1772 1773 static void kcryptd_queue_read(struct dm_crypt_io *io); 1774 1775 /* 1776 * One of the bios was finished. Check for completion of 1777 * the whole request and correctly clean up the buffer. 1778 */ 1779 static void crypt_dec_pending(struct dm_crypt_io *io) 1780 { 1781 struct crypt_config *cc = io->cc; 1782 struct bio *base_bio = io->base_bio; 1783 blk_status_t error = io->error; 1784 1785 if (!atomic_dec_and_test(&io->io_pending)) 1786 return; 1787 1788 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1789 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1790 io->ctx.aead_recheck = true; 1791 io->ctx.aead_failed = false; 1792 io->error = 0; 1793 kcryptd_queue_read(io); 1794 return; 1795 } 1796 1797 if (io->ctx.r.req) 1798 crypt_free_req(cc, io->ctx.r.req, base_bio); 1799 1800 if (unlikely(io->integrity_metadata_from_pool)) 1801 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1802 else 1803 kfree(io->integrity_metadata); 1804 1805 base_bio->bi_status = error; 1806 1807 bio_endio(base_bio); 1808 } 1809 1810 /* 1811 * kcryptd/kcryptd_io: 1812 * 1813 * Needed because it would be very unwise to do decryption in an 1814 * interrupt context. 1815 * 1816 * kcryptd performs the actual encryption or decryption. 1817 * 1818 * kcryptd_io performs the IO submission. 1819 * 1820 * They must be separated as otherwise the final stages could be 1821 * starved by new requests which can block in the first stages due 1822 * to memory allocation. 1823 * 1824 * The work is done per CPU global for all dm-crypt instances. 1825 * They should not depend on each other and do not block. 1826 */ 1827 static void crypt_endio(struct bio *clone) 1828 { 1829 struct dm_crypt_io *io = clone->bi_private; 1830 struct crypt_config *cc = io->cc; 1831 unsigned int rw = bio_data_dir(clone); 1832 blk_status_t error = clone->bi_status; 1833 1834 if (io->ctx.aead_recheck && !error) { 1835 kcryptd_queue_crypt(io); 1836 return; 1837 } 1838 1839 /* 1840 * free the processed pages 1841 */ 1842 if (rw == WRITE || io->ctx.aead_recheck) 1843 crypt_free_buffer_pages(cc, clone); 1844 1845 bio_put(clone); 1846 1847 if (rw == READ && !error) { 1848 kcryptd_queue_crypt(io); 1849 return; 1850 } 1851 1852 if (unlikely(error)) 1853 io->error = error; 1854 1855 crypt_dec_pending(io); 1856 } 1857 1858 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1859 1860 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1861 { 1862 struct crypt_config *cc = io->cc; 1863 struct bio *clone; 1864 1865 if (io->ctx.aead_recheck) { 1866 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1867 return 1; 1868 crypt_inc_pending(io); 1869 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1870 if (unlikely(!clone)) { 1871 crypt_dec_pending(io); 1872 return 1; 1873 } 1874 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1875 io->saved_bi_iter = clone->bi_iter; 1876 dm_submit_bio_remap(io->base_bio, clone); 1877 return 0; 1878 } 1879 1880 /* 1881 * We need the original biovec array in order to decrypt the whole bio 1882 * data *afterwards* -- thanks to immutable biovecs we don't need to 1883 * worry about the block layer modifying the biovec array; so leverage 1884 * bio_alloc_clone(). 1885 */ 1886 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1887 if (!clone) 1888 return 1; 1889 1890 clone->bi_iter.bi_sector = cc->start + io->sector; 1891 clone->bi_private = io; 1892 clone->bi_end_io = crypt_endio; 1893 1894 crypt_inc_pending(io); 1895 1896 if (dm_crypt_integrity_io_alloc(io, clone)) { 1897 crypt_dec_pending(io); 1898 bio_put(clone); 1899 return 1; 1900 } 1901 1902 dm_submit_bio_remap(io->base_bio, clone); 1903 return 0; 1904 } 1905 1906 static void kcryptd_io_read_work(struct work_struct *work) 1907 { 1908 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1909 1910 crypt_inc_pending(io); 1911 if (kcryptd_io_read(io, GFP_NOIO)) 1912 io->error = BLK_STS_RESOURCE; 1913 crypt_dec_pending(io); 1914 } 1915 1916 static void kcryptd_queue_read(struct dm_crypt_io *io) 1917 { 1918 struct crypt_config *cc = io->cc; 1919 1920 INIT_WORK(&io->work, kcryptd_io_read_work); 1921 queue_work(cc->io_queue, &io->work); 1922 } 1923 1924 static void kcryptd_io_write(struct dm_crypt_io *io) 1925 { 1926 struct bio *clone = io->ctx.bio_out; 1927 1928 dm_submit_bio_remap(io->base_bio, clone); 1929 } 1930 1931 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1932 1933 static int dmcrypt_write(void *data) 1934 { 1935 struct crypt_config *cc = data; 1936 struct dm_crypt_io *io; 1937 1938 while (1) { 1939 struct rb_root write_tree; 1940 struct blk_plug plug; 1941 1942 spin_lock_irq(&cc->write_thread_lock); 1943 continue_locked: 1944 1945 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1946 goto pop_from_list; 1947 1948 set_current_state(TASK_INTERRUPTIBLE); 1949 1950 spin_unlock_irq(&cc->write_thread_lock); 1951 1952 if (unlikely(kthread_should_stop())) { 1953 set_current_state(TASK_RUNNING); 1954 break; 1955 } 1956 1957 schedule(); 1958 1959 spin_lock_irq(&cc->write_thread_lock); 1960 goto continue_locked; 1961 1962 pop_from_list: 1963 write_tree = cc->write_tree; 1964 cc->write_tree = RB_ROOT; 1965 spin_unlock_irq(&cc->write_thread_lock); 1966 1967 BUG_ON(rb_parent(write_tree.rb_node)); 1968 1969 /* 1970 * Note: we cannot walk the tree here with rb_next because 1971 * the structures may be freed when kcryptd_io_write is called. 1972 */ 1973 blk_start_plug(&plug); 1974 do { 1975 io = crypt_io_from_node(rb_first(&write_tree)); 1976 rb_erase(&io->rb_node, &write_tree); 1977 kcryptd_io_write(io); 1978 cond_resched(); 1979 } while (!RB_EMPTY_ROOT(&write_tree)); 1980 blk_finish_plug(&plug); 1981 } 1982 return 0; 1983 } 1984 1985 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1986 { 1987 struct bio *clone = io->ctx.bio_out; 1988 struct crypt_config *cc = io->cc; 1989 unsigned long flags; 1990 sector_t sector; 1991 struct rb_node **rbp, *parent; 1992 1993 if (unlikely(io->error)) { 1994 crypt_free_buffer_pages(cc, clone); 1995 bio_put(clone); 1996 crypt_dec_pending(io); 1997 return; 1998 } 1999 2000 /* crypt_convert should have filled the clone bio */ 2001 BUG_ON(io->ctx.iter_out.bi_size); 2002 2003 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2004 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2005 dm_submit_bio_remap(io->base_bio, clone); 2006 return; 2007 } 2008 2009 spin_lock_irqsave(&cc->write_thread_lock, flags); 2010 if (RB_EMPTY_ROOT(&cc->write_tree)) 2011 wake_up_process(cc->write_thread); 2012 rbp = &cc->write_tree.rb_node; 2013 parent = NULL; 2014 sector = io->sector; 2015 while (*rbp) { 2016 parent = *rbp; 2017 if (sector < crypt_io_from_node(parent)->sector) 2018 rbp = &(*rbp)->rb_left; 2019 else 2020 rbp = &(*rbp)->rb_right; 2021 } 2022 rb_link_node(&io->rb_node, parent, rbp); 2023 rb_insert_color(&io->rb_node, &cc->write_tree); 2024 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2025 } 2026 2027 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2028 struct convert_context *ctx) 2029 2030 { 2031 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2032 return false; 2033 2034 /* 2035 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2036 * constraints so they do not need to be issued inline by 2037 * kcryptd_crypt_write_convert(). 2038 */ 2039 switch (bio_op(ctx->bio_in)) { 2040 case REQ_OP_WRITE: 2041 case REQ_OP_WRITE_ZEROES: 2042 return true; 2043 default: 2044 return false; 2045 } 2046 } 2047 2048 static void kcryptd_crypt_write_continue(struct work_struct *work) 2049 { 2050 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2051 struct crypt_config *cc = io->cc; 2052 struct convert_context *ctx = &io->ctx; 2053 int crypt_finished; 2054 blk_status_t r; 2055 2056 wait_for_completion(&ctx->restart); 2057 reinit_completion(&ctx->restart); 2058 2059 r = crypt_convert(cc, &io->ctx, false, false); 2060 if (r) 2061 io->error = r; 2062 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2063 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2064 /* Wait for completion signaled by kcryptd_async_done() */ 2065 wait_for_completion(&ctx->restart); 2066 crypt_finished = 1; 2067 } 2068 2069 /* Encryption was already finished, submit io now */ 2070 if (crypt_finished) 2071 kcryptd_crypt_write_io_submit(io, 0); 2072 2073 crypt_dec_pending(io); 2074 } 2075 2076 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2077 { 2078 struct crypt_config *cc = io->cc; 2079 struct convert_context *ctx = &io->ctx; 2080 struct bio *clone; 2081 int crypt_finished; 2082 blk_status_t r; 2083 2084 /* 2085 * Prevent io from disappearing until this function completes. 2086 */ 2087 crypt_inc_pending(io); 2088 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); 2089 2090 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2091 if (unlikely(!clone)) { 2092 io->error = BLK_STS_IOERR; 2093 goto dec; 2094 } 2095 2096 io->ctx.bio_out = clone; 2097 io->ctx.iter_out = clone->bi_iter; 2098 2099 if (crypt_integrity_aead(cc)) { 2100 bio_copy_data(clone, io->base_bio); 2101 io->ctx.bio_in = clone; 2102 io->ctx.iter_in = clone->bi_iter; 2103 } 2104 2105 crypt_inc_pending(io); 2106 r = crypt_convert(cc, ctx, 2107 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2108 /* 2109 * Crypto API backlogged the request, because its queue was full 2110 * and we're in softirq context, so continue from a workqueue 2111 * (TODO: is it actually possible to be in softirq in the write path?) 2112 */ 2113 if (r == BLK_STS_DEV_RESOURCE) { 2114 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2115 queue_work(cc->crypt_queue, &io->work); 2116 return; 2117 } 2118 if (r) 2119 io->error = r; 2120 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2121 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2122 /* Wait for completion signaled by kcryptd_async_done() */ 2123 wait_for_completion(&ctx->restart); 2124 crypt_finished = 1; 2125 } 2126 2127 /* Encryption was already finished, submit io now */ 2128 if (crypt_finished) 2129 kcryptd_crypt_write_io_submit(io, 0); 2130 2131 dec: 2132 crypt_dec_pending(io); 2133 } 2134 2135 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2136 { 2137 if (io->ctx.aead_recheck) { 2138 if (!io->error) { 2139 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2140 bio_copy_data(io->base_bio, io->ctx.bio_in); 2141 } 2142 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2143 bio_put(io->ctx.bio_in); 2144 } 2145 crypt_dec_pending(io); 2146 } 2147 2148 static void kcryptd_crypt_read_continue(struct work_struct *work) 2149 { 2150 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2151 struct crypt_config *cc = io->cc; 2152 blk_status_t r; 2153 2154 wait_for_completion(&io->ctx.restart); 2155 reinit_completion(&io->ctx.restart); 2156 2157 r = crypt_convert(cc, &io->ctx, false, false); 2158 if (r) 2159 io->error = r; 2160 2161 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2162 kcryptd_crypt_read_done(io); 2163 2164 crypt_dec_pending(io); 2165 } 2166 2167 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2168 { 2169 struct crypt_config *cc = io->cc; 2170 blk_status_t r; 2171 2172 crypt_inc_pending(io); 2173 2174 if (io->ctx.aead_recheck) { 2175 r = crypt_convert(cc, &io->ctx, 2176 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2177 } else { 2178 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2179 io->sector); 2180 2181 r = crypt_convert(cc, &io->ctx, 2182 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2183 } 2184 /* 2185 * Crypto API backlogged the request, because its queue was full 2186 * and we're in softirq context, so continue from a workqueue 2187 */ 2188 if (r == BLK_STS_DEV_RESOURCE) { 2189 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2190 queue_work(cc->crypt_queue, &io->work); 2191 return; 2192 } 2193 if (r) 2194 io->error = r; 2195 2196 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2197 kcryptd_crypt_read_done(io); 2198 2199 crypt_dec_pending(io); 2200 } 2201 2202 static void kcryptd_async_done(void *data, int error) 2203 { 2204 struct dm_crypt_request *dmreq = data; 2205 struct convert_context *ctx = dmreq->ctx; 2206 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2207 struct crypt_config *cc = io->cc; 2208 2209 /* 2210 * A request from crypto driver backlog is going to be processed now, 2211 * finish the completion and continue in crypt_convert(). 2212 * (Callback will be called for the second time for this request.) 2213 */ 2214 if (error == -EINPROGRESS) { 2215 complete(&ctx->restart); 2216 return; 2217 } 2218 2219 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2220 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2221 2222 if (error == -EBADMSG) { 2223 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2224 2225 ctx->aead_failed = true; 2226 if (ctx->aead_recheck) { 2227 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2228 ctx->bio_in->bi_bdev, s); 2229 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2230 ctx->bio_in, s, 0); 2231 } 2232 io->error = BLK_STS_PROTECTION; 2233 } else if (error < 0) 2234 io->error = BLK_STS_IOERR; 2235 2236 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2237 2238 if (!atomic_dec_and_test(&ctx->cc_pending)) 2239 return; 2240 2241 /* 2242 * The request is fully completed: for inline writes, let 2243 * kcryptd_crypt_write_convert() do the IO submission. 2244 */ 2245 if (bio_data_dir(io->base_bio) == READ) { 2246 kcryptd_crypt_read_done(io); 2247 return; 2248 } 2249 2250 if (kcryptd_crypt_write_inline(cc, ctx)) { 2251 complete(&ctx->restart); 2252 return; 2253 } 2254 2255 kcryptd_crypt_write_io_submit(io, 1); 2256 } 2257 2258 static void kcryptd_crypt(struct work_struct *work) 2259 { 2260 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2261 2262 if (bio_data_dir(io->base_bio) == READ) 2263 kcryptd_crypt_read_convert(io); 2264 else 2265 kcryptd_crypt_write_convert(io); 2266 } 2267 2268 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2269 { 2270 struct crypt_config *cc = io->cc; 2271 2272 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2273 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2274 /* 2275 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2276 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2277 * it is being executed with irqs disabled. 2278 */ 2279 if (in_hardirq() || irqs_disabled()) { 2280 INIT_WORK(&io->work, kcryptd_crypt); 2281 queue_work(system_bh_wq, &io->work); 2282 return; 2283 } else { 2284 kcryptd_crypt(&io->work); 2285 return; 2286 } 2287 } 2288 2289 INIT_WORK(&io->work, kcryptd_crypt); 2290 queue_work(cc->crypt_queue, &io->work); 2291 } 2292 2293 static void crypt_free_tfms_aead(struct crypt_config *cc) 2294 { 2295 if (!cc->cipher_tfm.tfms_aead) 2296 return; 2297 2298 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2299 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2300 cc->cipher_tfm.tfms_aead[0] = NULL; 2301 } 2302 2303 kfree(cc->cipher_tfm.tfms_aead); 2304 cc->cipher_tfm.tfms_aead = NULL; 2305 } 2306 2307 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2308 { 2309 unsigned int i; 2310 2311 if (!cc->cipher_tfm.tfms) 2312 return; 2313 2314 for (i = 0; i < cc->tfms_count; i++) 2315 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2316 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2317 cc->cipher_tfm.tfms[i] = NULL; 2318 } 2319 2320 kfree(cc->cipher_tfm.tfms); 2321 cc->cipher_tfm.tfms = NULL; 2322 } 2323 2324 static void crypt_free_tfms(struct crypt_config *cc) 2325 { 2326 if (crypt_integrity_aead(cc)) 2327 crypt_free_tfms_aead(cc); 2328 else 2329 crypt_free_tfms_skcipher(cc); 2330 } 2331 2332 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2333 { 2334 unsigned int i; 2335 int err; 2336 2337 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2338 sizeof(struct crypto_skcipher *), 2339 GFP_KERNEL); 2340 if (!cc->cipher_tfm.tfms) 2341 return -ENOMEM; 2342 2343 for (i = 0; i < cc->tfms_count; i++) { 2344 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2345 CRYPTO_ALG_ALLOCATES_MEMORY); 2346 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2347 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2348 crypt_free_tfms(cc); 2349 return err; 2350 } 2351 } 2352 2353 /* 2354 * dm-crypt performance can vary greatly depending on which crypto 2355 * algorithm implementation is used. Help people debug performance 2356 * problems by logging the ->cra_driver_name. 2357 */ 2358 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2359 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2360 return 0; 2361 } 2362 2363 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2364 { 2365 int err; 2366 2367 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2368 if (!cc->cipher_tfm.tfms) 2369 return -ENOMEM; 2370 2371 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2372 CRYPTO_ALG_ALLOCATES_MEMORY); 2373 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2374 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2375 crypt_free_tfms(cc); 2376 return err; 2377 } 2378 2379 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2380 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2381 return 0; 2382 } 2383 2384 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2385 { 2386 if (crypt_integrity_aead(cc)) 2387 return crypt_alloc_tfms_aead(cc, ciphermode); 2388 else 2389 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2390 } 2391 2392 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2393 { 2394 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2395 } 2396 2397 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2398 { 2399 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2400 } 2401 2402 /* 2403 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2404 * the key must be for some reason in special format. 2405 * This funcion converts cc->key to this special format. 2406 */ 2407 static void crypt_copy_authenckey(char *p, const void *key, 2408 unsigned int enckeylen, unsigned int authkeylen) 2409 { 2410 struct crypto_authenc_key_param *param; 2411 struct rtattr *rta; 2412 2413 rta = (struct rtattr *)p; 2414 param = RTA_DATA(rta); 2415 param->enckeylen = cpu_to_be32(enckeylen); 2416 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2417 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2418 p += RTA_SPACE(sizeof(*param)); 2419 memcpy(p, key + enckeylen, authkeylen); 2420 p += authkeylen; 2421 memcpy(p, key, enckeylen); 2422 } 2423 2424 static int crypt_setkey(struct crypt_config *cc) 2425 { 2426 unsigned int subkey_size; 2427 int err = 0, i, r; 2428 2429 /* Ignore extra keys (which are used for IV etc) */ 2430 subkey_size = crypt_subkey_size(cc); 2431 2432 if (crypt_integrity_hmac(cc)) { 2433 if (subkey_size < cc->key_mac_size) 2434 return -EINVAL; 2435 2436 crypt_copy_authenckey(cc->authenc_key, cc->key, 2437 subkey_size - cc->key_mac_size, 2438 cc->key_mac_size); 2439 } 2440 2441 for (i = 0; i < cc->tfms_count; i++) { 2442 if (crypt_integrity_hmac(cc)) 2443 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2444 cc->authenc_key, crypt_authenckey_size(cc)); 2445 else if (crypt_integrity_aead(cc)) 2446 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2447 cc->key + (i * subkey_size), 2448 subkey_size); 2449 else 2450 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2451 cc->key + (i * subkey_size), 2452 subkey_size); 2453 if (r) 2454 err = r; 2455 } 2456 2457 if (crypt_integrity_hmac(cc)) 2458 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2459 2460 return err; 2461 } 2462 2463 #ifdef CONFIG_KEYS 2464 2465 static bool contains_whitespace(const char *str) 2466 { 2467 while (*str) 2468 if (isspace(*str++)) 2469 return true; 2470 return false; 2471 } 2472 2473 static int set_key_user(struct crypt_config *cc, struct key *key) 2474 { 2475 const struct user_key_payload *ukp; 2476 2477 ukp = user_key_payload_locked(key); 2478 if (!ukp) 2479 return -EKEYREVOKED; 2480 2481 if (cc->key_size != ukp->datalen) 2482 return -EINVAL; 2483 2484 memcpy(cc->key, ukp->data, cc->key_size); 2485 2486 return 0; 2487 } 2488 2489 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2490 { 2491 const struct encrypted_key_payload *ekp; 2492 2493 ekp = key->payload.data[0]; 2494 if (!ekp) 2495 return -EKEYREVOKED; 2496 2497 if (cc->key_size != ekp->decrypted_datalen) 2498 return -EINVAL; 2499 2500 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2501 2502 return 0; 2503 } 2504 2505 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2506 { 2507 const struct trusted_key_payload *tkp; 2508 2509 tkp = key->payload.data[0]; 2510 if (!tkp) 2511 return -EKEYREVOKED; 2512 2513 if (cc->key_size != tkp->key_len) 2514 return -EINVAL; 2515 2516 memcpy(cc->key, tkp->key, cc->key_size); 2517 2518 return 0; 2519 } 2520 2521 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2522 { 2523 char *new_key_string, *key_desc; 2524 int ret; 2525 struct key_type *type; 2526 struct key *key; 2527 int (*set_key)(struct crypt_config *cc, struct key *key); 2528 2529 /* 2530 * Reject key_string with whitespace. dm core currently lacks code for 2531 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2532 */ 2533 if (contains_whitespace(key_string)) { 2534 DMERR("whitespace chars not allowed in key string"); 2535 return -EINVAL; 2536 } 2537 2538 /* look for next ':' separating key_type from key_description */ 2539 key_desc = strchr(key_string, ':'); 2540 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2541 return -EINVAL; 2542 2543 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2544 type = &key_type_logon; 2545 set_key = set_key_user; 2546 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2547 type = &key_type_user; 2548 set_key = set_key_user; 2549 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2550 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2551 type = &key_type_encrypted; 2552 set_key = set_key_encrypted; 2553 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2554 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2555 type = &key_type_trusted; 2556 set_key = set_key_trusted; 2557 } else { 2558 return -EINVAL; 2559 } 2560 2561 new_key_string = kstrdup(key_string, GFP_KERNEL); 2562 if (!new_key_string) 2563 return -ENOMEM; 2564 2565 key = request_key(type, key_desc + 1, NULL); 2566 if (IS_ERR(key)) { 2567 ret = PTR_ERR(key); 2568 goto free_new_key_string; 2569 } 2570 2571 down_read(&key->sem); 2572 ret = set_key(cc, key); 2573 up_read(&key->sem); 2574 key_put(key); 2575 if (ret < 0) 2576 goto free_new_key_string; 2577 2578 /* clear the flag since following operations may invalidate previously valid key */ 2579 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2580 2581 ret = crypt_setkey(cc); 2582 if (ret) 2583 goto free_new_key_string; 2584 2585 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2586 kfree_sensitive(cc->key_string); 2587 cc->key_string = new_key_string; 2588 return 0; 2589 2590 free_new_key_string: 2591 kfree_sensitive(new_key_string); 2592 return ret; 2593 } 2594 2595 static int get_key_size(char **key_string) 2596 { 2597 char *colon, dummy; 2598 int ret; 2599 2600 if (*key_string[0] != ':') 2601 return strlen(*key_string) >> 1; 2602 2603 /* look for next ':' in key string */ 2604 colon = strpbrk(*key_string + 1, ":"); 2605 if (!colon) 2606 return -EINVAL; 2607 2608 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2609 return -EINVAL; 2610 2611 *key_string = colon; 2612 2613 /* remaining key string should be :<logon|user>:<key_desc> */ 2614 2615 return ret; 2616 } 2617 2618 #else 2619 2620 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2621 { 2622 return -EINVAL; 2623 } 2624 2625 static int get_key_size(char **key_string) 2626 { 2627 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2628 } 2629 2630 #endif /* CONFIG_KEYS */ 2631 2632 static int crypt_set_key(struct crypt_config *cc, char *key) 2633 { 2634 int r = -EINVAL; 2635 int key_string_len = strlen(key); 2636 2637 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2638 if (!cc->key_size && strcmp(key, "-")) 2639 goto out; 2640 2641 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2642 if (key[0] == ':') { 2643 r = crypt_set_keyring_key(cc, key + 1); 2644 goto out; 2645 } 2646 2647 /* clear the flag since following operations may invalidate previously valid key */ 2648 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2649 2650 /* wipe references to any kernel keyring key */ 2651 kfree_sensitive(cc->key_string); 2652 cc->key_string = NULL; 2653 2654 /* Decode key from its hex representation. */ 2655 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2656 goto out; 2657 2658 r = crypt_setkey(cc); 2659 if (!r) 2660 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2661 2662 out: 2663 /* Hex key string not needed after here, so wipe it. */ 2664 memset(key, '0', key_string_len); 2665 2666 return r; 2667 } 2668 2669 static int crypt_wipe_key(struct crypt_config *cc) 2670 { 2671 int r; 2672 2673 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2674 get_random_bytes(&cc->key, cc->key_size); 2675 2676 /* Wipe IV private keys */ 2677 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2678 r = cc->iv_gen_ops->wipe(cc); 2679 if (r) 2680 return r; 2681 } 2682 2683 kfree_sensitive(cc->key_string); 2684 cc->key_string = NULL; 2685 r = crypt_setkey(cc); 2686 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2687 2688 return r; 2689 } 2690 2691 static void crypt_calculate_pages_per_client(void) 2692 { 2693 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2694 2695 if (!dm_crypt_clients_n) 2696 return; 2697 2698 pages /= dm_crypt_clients_n; 2699 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2700 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2701 dm_crypt_pages_per_client = pages; 2702 } 2703 2704 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2705 { 2706 struct crypt_config *cc = pool_data; 2707 struct page *page; 2708 2709 /* 2710 * Note, percpu_counter_read_positive() may over (and under) estimate 2711 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2712 * but avoids potential spinlock contention of an exact result. 2713 */ 2714 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2715 likely(gfp_mask & __GFP_NORETRY)) 2716 return NULL; 2717 2718 page = alloc_page(gfp_mask); 2719 if (likely(page != NULL)) 2720 percpu_counter_add(&cc->n_allocated_pages, 1); 2721 2722 return page; 2723 } 2724 2725 static void crypt_page_free(void *page, void *pool_data) 2726 { 2727 struct crypt_config *cc = pool_data; 2728 2729 __free_page(page); 2730 percpu_counter_sub(&cc->n_allocated_pages, 1); 2731 } 2732 2733 static void crypt_dtr(struct dm_target *ti) 2734 { 2735 struct crypt_config *cc = ti->private; 2736 2737 ti->private = NULL; 2738 2739 if (!cc) 2740 return; 2741 2742 if (cc->write_thread) 2743 kthread_stop(cc->write_thread); 2744 2745 if (cc->io_queue) 2746 destroy_workqueue(cc->io_queue); 2747 if (cc->crypt_queue) 2748 destroy_workqueue(cc->crypt_queue); 2749 2750 if (cc->workqueue_id) 2751 ida_free(&workqueue_ida, cc->workqueue_id); 2752 2753 crypt_free_tfms(cc); 2754 2755 bioset_exit(&cc->bs); 2756 2757 mempool_exit(&cc->page_pool); 2758 mempool_exit(&cc->req_pool); 2759 mempool_exit(&cc->tag_pool); 2760 2761 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2762 percpu_counter_destroy(&cc->n_allocated_pages); 2763 2764 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2765 cc->iv_gen_ops->dtr(cc); 2766 2767 if (cc->dev) 2768 dm_put_device(ti, cc->dev); 2769 2770 kfree_sensitive(cc->cipher_string); 2771 kfree_sensitive(cc->key_string); 2772 kfree_sensitive(cc->cipher_auth); 2773 kfree_sensitive(cc->authenc_key); 2774 2775 mutex_destroy(&cc->bio_alloc_lock); 2776 2777 /* Must zero key material before freeing */ 2778 kfree_sensitive(cc); 2779 2780 spin_lock(&dm_crypt_clients_lock); 2781 WARN_ON(!dm_crypt_clients_n); 2782 dm_crypt_clients_n--; 2783 crypt_calculate_pages_per_client(); 2784 spin_unlock(&dm_crypt_clients_lock); 2785 2786 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2787 } 2788 2789 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2790 { 2791 struct crypt_config *cc = ti->private; 2792 2793 if (crypt_integrity_aead(cc)) 2794 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2795 else 2796 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2797 2798 if (cc->iv_size) 2799 /* at least a 64 bit sector number should fit in our buffer */ 2800 cc->iv_size = max(cc->iv_size, 2801 (unsigned int)(sizeof(u64) / sizeof(u8))); 2802 else if (ivmode) { 2803 DMWARN("Selected cipher does not support IVs"); 2804 ivmode = NULL; 2805 } 2806 2807 /* Choose ivmode, see comments at iv code. */ 2808 if (ivmode == NULL) 2809 cc->iv_gen_ops = NULL; 2810 else if (strcmp(ivmode, "plain") == 0) 2811 cc->iv_gen_ops = &crypt_iv_plain_ops; 2812 else if (strcmp(ivmode, "plain64") == 0) 2813 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2814 else if (strcmp(ivmode, "plain64be") == 0) 2815 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2816 else if (strcmp(ivmode, "essiv") == 0) 2817 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2818 else if (strcmp(ivmode, "benbi") == 0) 2819 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2820 else if (strcmp(ivmode, "null") == 0) 2821 cc->iv_gen_ops = &crypt_iv_null_ops; 2822 else if (strcmp(ivmode, "eboiv") == 0) 2823 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2824 else if (strcmp(ivmode, "elephant") == 0) { 2825 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2826 cc->key_parts = 2; 2827 cc->key_extra_size = cc->key_size / 2; 2828 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2829 return -EINVAL; 2830 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2831 } else if (strcmp(ivmode, "lmk") == 0) { 2832 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2833 /* 2834 * Version 2 and 3 is recognised according 2835 * to length of provided multi-key string. 2836 * If present (version 3), last key is used as IV seed. 2837 * All keys (including IV seed) are always the same size. 2838 */ 2839 if (cc->key_size % cc->key_parts) { 2840 cc->key_parts++; 2841 cc->key_extra_size = cc->key_size / cc->key_parts; 2842 } 2843 } else if (strcmp(ivmode, "tcw") == 0) { 2844 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2845 cc->key_parts += 2; /* IV + whitening */ 2846 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2847 } else if (strcmp(ivmode, "random") == 0) { 2848 cc->iv_gen_ops = &crypt_iv_random_ops; 2849 /* Need storage space in integrity fields. */ 2850 cc->integrity_iv_size = cc->iv_size; 2851 } else { 2852 ti->error = "Invalid IV mode"; 2853 return -EINVAL; 2854 } 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2861 * The HMAC is needed to calculate tag size (HMAC digest size). 2862 * This should be probably done by crypto-api calls (once available...) 2863 */ 2864 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2865 { 2866 char *start, *end, *mac_alg = NULL; 2867 struct crypto_ahash *mac; 2868 2869 if (!strstarts(cipher_api, "authenc(")) 2870 return 0; 2871 2872 start = strchr(cipher_api, '('); 2873 end = strchr(cipher_api, ','); 2874 if (!start || !end || ++start > end) 2875 return -EINVAL; 2876 2877 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2878 if (!mac_alg) 2879 return -ENOMEM; 2880 2881 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2882 kfree(mac_alg); 2883 2884 if (IS_ERR(mac)) 2885 return PTR_ERR(mac); 2886 2887 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2888 cc->key_mac_size = crypto_ahash_digestsize(mac); 2889 crypto_free_ahash(mac); 2890 2891 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2892 if (!cc->authenc_key) 2893 return -ENOMEM; 2894 2895 return 0; 2896 } 2897 2898 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2899 char **ivmode, char **ivopts) 2900 { 2901 struct crypt_config *cc = ti->private; 2902 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2903 int ret = -EINVAL; 2904 2905 cc->tfms_count = 1; 2906 2907 /* 2908 * New format (capi: prefix) 2909 * capi:cipher_api_spec-iv:ivopts 2910 */ 2911 tmp = &cipher_in[strlen("capi:")]; 2912 2913 /* Separate IV options if present, it can contain another '-' in hash name */ 2914 *ivopts = strrchr(tmp, ':'); 2915 if (*ivopts) { 2916 **ivopts = '\0'; 2917 (*ivopts)++; 2918 } 2919 /* Parse IV mode */ 2920 *ivmode = strrchr(tmp, '-'); 2921 if (*ivmode) { 2922 **ivmode = '\0'; 2923 (*ivmode)++; 2924 } 2925 /* The rest is crypto API spec */ 2926 cipher_api = tmp; 2927 2928 /* Alloc AEAD, can be used only in new format. */ 2929 if (crypt_integrity_aead(cc)) { 2930 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2931 if (ret < 0) { 2932 ti->error = "Invalid AEAD cipher spec"; 2933 return ret; 2934 } 2935 } 2936 2937 if (*ivmode && !strcmp(*ivmode, "lmk")) 2938 cc->tfms_count = 64; 2939 2940 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2941 if (!*ivopts) { 2942 ti->error = "Digest algorithm missing for ESSIV mode"; 2943 return -EINVAL; 2944 } 2945 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2946 cipher_api, *ivopts); 2947 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2948 ti->error = "Cannot allocate cipher string"; 2949 return -ENOMEM; 2950 } 2951 cipher_api = buf; 2952 } 2953 2954 cc->key_parts = cc->tfms_count; 2955 2956 /* Allocate cipher */ 2957 ret = crypt_alloc_tfms(cc, cipher_api); 2958 if (ret < 0) { 2959 ti->error = "Error allocating crypto tfm"; 2960 return ret; 2961 } 2962 2963 if (crypt_integrity_aead(cc)) 2964 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2965 else 2966 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2967 2968 return 0; 2969 } 2970 2971 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 2972 char **ivmode, char **ivopts) 2973 { 2974 struct crypt_config *cc = ti->private; 2975 char *tmp, *cipher, *chainmode, *keycount; 2976 char *cipher_api = NULL; 2977 int ret = -EINVAL; 2978 char dummy; 2979 2980 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 2981 ti->error = "Bad cipher specification"; 2982 return -EINVAL; 2983 } 2984 2985 /* 2986 * Legacy dm-crypt cipher specification 2987 * cipher[:keycount]-mode-iv:ivopts 2988 */ 2989 tmp = cipher_in; 2990 keycount = strsep(&tmp, "-"); 2991 cipher = strsep(&keycount, ":"); 2992 2993 if (!keycount) 2994 cc->tfms_count = 1; 2995 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 2996 !is_power_of_2(cc->tfms_count)) { 2997 ti->error = "Bad cipher key count specification"; 2998 return -EINVAL; 2999 } 3000 cc->key_parts = cc->tfms_count; 3001 3002 chainmode = strsep(&tmp, "-"); 3003 *ivmode = strsep(&tmp, ":"); 3004 *ivopts = tmp; 3005 3006 /* 3007 * For compatibility with the original dm-crypt mapping format, if 3008 * only the cipher name is supplied, use cbc-plain. 3009 */ 3010 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3011 chainmode = "cbc"; 3012 *ivmode = "plain"; 3013 } 3014 3015 if (strcmp(chainmode, "ecb") && !*ivmode) { 3016 ti->error = "IV mechanism required"; 3017 return -EINVAL; 3018 } 3019 3020 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3021 if (!cipher_api) 3022 goto bad_mem; 3023 3024 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3025 if (!*ivopts) { 3026 ti->error = "Digest algorithm missing for ESSIV mode"; 3027 kfree(cipher_api); 3028 return -EINVAL; 3029 } 3030 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3031 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3032 } else { 3033 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3034 "%s(%s)", chainmode, cipher); 3035 } 3036 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3037 kfree(cipher_api); 3038 goto bad_mem; 3039 } 3040 3041 /* Allocate cipher */ 3042 ret = crypt_alloc_tfms(cc, cipher_api); 3043 if (ret < 0) { 3044 ti->error = "Error allocating crypto tfm"; 3045 kfree(cipher_api); 3046 return ret; 3047 } 3048 kfree(cipher_api); 3049 3050 return 0; 3051 bad_mem: 3052 ti->error = "Cannot allocate cipher strings"; 3053 return -ENOMEM; 3054 } 3055 3056 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3057 { 3058 struct crypt_config *cc = ti->private; 3059 char *ivmode = NULL, *ivopts = NULL; 3060 int ret; 3061 3062 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3063 if (!cc->cipher_string) { 3064 ti->error = "Cannot allocate cipher strings"; 3065 return -ENOMEM; 3066 } 3067 3068 if (strstarts(cipher_in, "capi:")) 3069 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3070 else 3071 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3072 if (ret) 3073 return ret; 3074 3075 /* Initialize IV */ 3076 ret = crypt_ctr_ivmode(ti, ivmode); 3077 if (ret < 0) 3078 return ret; 3079 3080 /* Initialize and set key */ 3081 ret = crypt_set_key(cc, key); 3082 if (ret < 0) { 3083 ti->error = "Error decoding and setting key"; 3084 return ret; 3085 } 3086 3087 /* Allocate IV */ 3088 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3089 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3090 if (ret < 0) { 3091 ti->error = "Error creating IV"; 3092 return ret; 3093 } 3094 } 3095 3096 /* Initialize IV (set keys for ESSIV etc) */ 3097 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3098 ret = cc->iv_gen_ops->init(cc); 3099 if (ret < 0) { 3100 ti->error = "Error initialising IV"; 3101 return ret; 3102 } 3103 } 3104 3105 /* wipe the kernel key payload copy */ 3106 if (cc->key_string) 3107 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3108 3109 return ret; 3110 } 3111 3112 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3113 { 3114 struct crypt_config *cc = ti->private; 3115 struct dm_arg_set as; 3116 static const struct dm_arg _args[] = { 3117 {0, 9, "Invalid number of feature args"}, 3118 }; 3119 unsigned int opt_params, val; 3120 const char *opt_string, *sval; 3121 char dummy; 3122 int ret; 3123 3124 /* Optional parameters */ 3125 as.argc = argc; 3126 as.argv = argv; 3127 3128 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3129 if (ret) 3130 return ret; 3131 3132 while (opt_params--) { 3133 opt_string = dm_shift_arg(&as); 3134 if (!opt_string) { 3135 ti->error = "Not enough feature arguments"; 3136 return -EINVAL; 3137 } 3138 3139 if (!strcasecmp(opt_string, "allow_discards")) 3140 ti->num_discard_bios = 1; 3141 3142 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3143 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3144 else if (!strcasecmp(opt_string, "high_priority")) 3145 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3146 3147 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3148 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3149 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3150 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3151 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3152 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3153 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3154 if (val == 0 || val > MAX_TAG_SIZE) { 3155 ti->error = "Invalid integrity arguments"; 3156 return -EINVAL; 3157 } 3158 cc->used_tag_size = val; 3159 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3160 if (!strcasecmp(sval, "aead")) { 3161 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3162 } else if (strcasecmp(sval, "none")) { 3163 ti->error = "Unknown integrity profile"; 3164 return -EINVAL; 3165 } 3166 3167 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3168 if (!cc->cipher_auth) 3169 return -ENOMEM; 3170 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3171 if (!val) { 3172 ti->error = "Invalid integrity_key_size argument"; 3173 return -EINVAL; 3174 } 3175 cc->key_mac_size = val; 3176 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3177 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3178 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3179 cc->sector_size > 4096 || 3180 (cc->sector_size & (cc->sector_size - 1))) { 3181 ti->error = "Invalid feature value for sector_size"; 3182 return -EINVAL; 3183 } 3184 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3185 ti->error = "Device size is not multiple of sector_size feature"; 3186 return -EINVAL; 3187 } 3188 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3189 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3190 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3191 else { 3192 ti->error = "Invalid feature arguments"; 3193 return -EINVAL; 3194 } 3195 } 3196 3197 return 0; 3198 } 3199 3200 #ifdef CONFIG_BLK_DEV_ZONED 3201 static int crypt_report_zones(struct dm_target *ti, 3202 struct dm_report_zones_args *args, unsigned int nr_zones) 3203 { 3204 struct crypt_config *cc = ti->private; 3205 3206 return dm_report_zones(cc->dev->bdev, cc->start, 3207 cc->start + dm_target_offset(ti, args->next_sector), 3208 args, nr_zones); 3209 } 3210 #else 3211 #define crypt_report_zones NULL 3212 #endif 3213 3214 /* 3215 * Construct an encryption mapping: 3216 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3217 */ 3218 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3219 { 3220 struct crypt_config *cc; 3221 const char *devname = dm_table_device_name(ti->table); 3222 int key_size, wq_id; 3223 unsigned int align_mask; 3224 unsigned int common_wq_flags; 3225 unsigned long long tmpll; 3226 int ret; 3227 size_t iv_size_padding, additional_req_size; 3228 char dummy; 3229 3230 if (argc < 5) { 3231 ti->error = "Not enough arguments"; 3232 return -EINVAL; 3233 } 3234 3235 key_size = get_key_size(&argv[1]); 3236 if (key_size < 0) { 3237 ti->error = "Cannot parse key size"; 3238 return -EINVAL; 3239 } 3240 3241 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3242 if (!cc) { 3243 ti->error = "Cannot allocate encryption context"; 3244 return -ENOMEM; 3245 } 3246 cc->key_size = key_size; 3247 cc->sector_size = (1 << SECTOR_SHIFT); 3248 cc->sector_shift = 0; 3249 3250 ti->private = cc; 3251 3252 spin_lock(&dm_crypt_clients_lock); 3253 dm_crypt_clients_n++; 3254 crypt_calculate_pages_per_client(); 3255 spin_unlock(&dm_crypt_clients_lock); 3256 3257 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3258 if (ret < 0) 3259 goto bad; 3260 3261 /* Optional parameters need to be read before cipher constructor */ 3262 if (argc > 5) { 3263 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3264 if (ret) 3265 goto bad; 3266 } 3267 3268 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3269 if (ret < 0) 3270 goto bad; 3271 3272 if (crypt_integrity_aead(cc)) { 3273 cc->dmreq_start = sizeof(struct aead_request); 3274 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3275 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3276 } else { 3277 cc->dmreq_start = sizeof(struct skcipher_request); 3278 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3279 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3280 } 3281 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3282 3283 if (align_mask < CRYPTO_MINALIGN) { 3284 /* Allocate the padding exactly */ 3285 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3286 & align_mask; 3287 } else { 3288 /* 3289 * If the cipher requires greater alignment than kmalloc 3290 * alignment, we don't know the exact position of the 3291 * initialization vector. We must assume worst case. 3292 */ 3293 iv_size_padding = align_mask; 3294 } 3295 3296 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3297 additional_req_size = sizeof(struct dm_crypt_request) + 3298 iv_size_padding + cc->iv_size + 3299 cc->iv_size + 3300 sizeof(uint64_t) + 3301 sizeof(unsigned int); 3302 3303 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3304 if (ret) { 3305 ti->error = "Cannot allocate crypt request mempool"; 3306 goto bad; 3307 } 3308 3309 cc->per_bio_data_size = ti->per_io_data_size = 3310 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3311 ARCH_DMA_MINALIGN); 3312 3313 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3314 if (ret) { 3315 ti->error = "Cannot allocate page mempool"; 3316 goto bad; 3317 } 3318 3319 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3320 if (ret) { 3321 ti->error = "Cannot allocate crypt bioset"; 3322 goto bad; 3323 } 3324 3325 mutex_init(&cc->bio_alloc_lock); 3326 3327 ret = -EINVAL; 3328 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3329 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3330 ti->error = "Invalid iv_offset sector"; 3331 goto bad; 3332 } 3333 cc->iv_offset = tmpll; 3334 3335 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3336 if (ret) { 3337 ti->error = "Device lookup failed"; 3338 goto bad; 3339 } 3340 3341 ret = -EINVAL; 3342 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3343 ti->error = "Invalid device sector"; 3344 goto bad; 3345 } 3346 cc->start = tmpll; 3347 3348 if (bdev_is_zoned(cc->dev->bdev)) { 3349 /* 3350 * For zoned block devices, we need to preserve the issuer write 3351 * ordering. To do so, disable write workqueues and force inline 3352 * encryption completion. 3353 */ 3354 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3355 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3356 3357 /* 3358 * All zone append writes to a zone of a zoned block device will 3359 * have the same BIO sector, the start of the zone. When the 3360 * cypher IV mode uses sector values, all data targeting a 3361 * zone will be encrypted using the first sector numbers of the 3362 * zone. This will not result in write errors but will 3363 * cause most reads to fail as reads will use the sector values 3364 * for the actual data locations, resulting in IV mismatch. 3365 * To avoid this problem, ask DM core to emulate zone append 3366 * operations with regular writes. 3367 */ 3368 DMDEBUG("Zone append operations will be emulated"); 3369 ti->emulate_zone_append = true; 3370 } 3371 3372 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3373 ret = crypt_integrity_ctr(cc, ti); 3374 if (ret) 3375 goto bad; 3376 3377 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3378 if (!cc->tag_pool_max_sectors) 3379 cc->tag_pool_max_sectors = 1; 3380 3381 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3382 cc->tag_pool_max_sectors * cc->tuple_size); 3383 if (ret) { 3384 ti->error = "Cannot allocate integrity tags mempool"; 3385 goto bad; 3386 } 3387 3388 cc->tag_pool_max_sectors <<= cc->sector_shift; 3389 } 3390 3391 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3392 if (wq_id < 0) { 3393 ti->error = "Couldn't get workqueue id"; 3394 ret = wq_id; 3395 goto bad; 3396 } 3397 cc->workqueue_id = wq_id; 3398 3399 ret = -ENOMEM; 3400 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3401 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3402 common_wq_flags |= WQ_HIGHPRI; 3403 3404 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", 3405 common_wq_flags | WQ_PERCPU, 1, 3406 devname, wq_id); 3407 if (!cc->io_queue) { 3408 ti->error = "Couldn't create kcryptd io queue"; 3409 goto bad; 3410 } 3411 3412 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3413 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3414 common_wq_flags | WQ_CPU_INTENSIVE | WQ_PERCPU, 3415 1, devname, wq_id); 3416 } else { 3417 /* 3418 * While crypt_queue is certainly CPU intensive, the use of 3419 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3420 */ 3421 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3422 common_wq_flags | WQ_UNBOUND, 3423 num_online_cpus(), devname, wq_id); 3424 } 3425 if (!cc->crypt_queue) { 3426 ti->error = "Couldn't create kcryptd queue"; 3427 goto bad; 3428 } 3429 3430 spin_lock_init(&cc->write_thread_lock); 3431 cc->write_tree = RB_ROOT; 3432 3433 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3434 if (IS_ERR(cc->write_thread)) { 3435 ret = PTR_ERR(cc->write_thread); 3436 cc->write_thread = NULL; 3437 ti->error = "Couldn't spawn write thread"; 3438 goto bad; 3439 } 3440 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3441 set_user_nice(cc->write_thread, MIN_NICE); 3442 3443 ti->num_flush_bios = 1; 3444 ti->limit_swap_bios = true; 3445 ti->accounts_remapped_io = true; 3446 3447 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3448 return 0; 3449 3450 bad: 3451 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3452 crypt_dtr(ti); 3453 return ret; 3454 } 3455 3456 static int crypt_map(struct dm_target *ti, struct bio *bio) 3457 { 3458 struct dm_crypt_io *io; 3459 struct crypt_config *cc = ti->private; 3460 unsigned max_sectors; 3461 bool no_split; 3462 3463 /* 3464 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3465 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3466 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3467 */ 3468 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3469 bio_op(bio) == REQ_OP_DISCARD)) { 3470 bio_set_dev(bio, cc->dev->bdev); 3471 if (bio_sectors(bio)) 3472 bio->bi_iter.bi_sector = cc->start + 3473 dm_target_offset(ti, bio->bi_iter.bi_sector); 3474 return DM_MAPIO_REMAPPED; 3475 } 3476 3477 /* 3478 * Check if bio is too large, split as needed. 3479 * 3480 * For zoned devices, splitting write operations creates the 3481 * risk of deadlocking queue freeze operations with zone write 3482 * plugging BIO work when the reminder of a split BIO is 3483 * issued. So always allow the entire BIO to proceed. 3484 */ 3485 no_split = (ti->emulate_zone_append && op_is_write(bio_op(bio))) || 3486 (bio->bi_opf & REQ_ATOMIC); 3487 max_sectors = get_max_request_sectors(ti, bio, no_split); 3488 if (unlikely(bio_sectors(bio) > max_sectors)) { 3489 if (unlikely(no_split)) 3490 return DM_MAPIO_KILL; 3491 dm_accept_partial_bio(bio, max_sectors); 3492 } 3493 3494 /* 3495 * Ensure that bio is a multiple of internal sector encryption size 3496 * and is aligned to this size as defined in IO hints. 3497 */ 3498 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3499 return DM_MAPIO_KILL; 3500 3501 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3502 return DM_MAPIO_KILL; 3503 3504 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3505 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3506 3507 if (cc->tuple_size) { 3508 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3509 3510 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3511 io->integrity_metadata = NULL; 3512 else 3513 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3514 3515 if (unlikely(!io->integrity_metadata)) { 3516 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3517 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3518 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3519 io->integrity_metadata_from_pool = true; 3520 } 3521 } 3522 3523 if (crypt_integrity_aead(cc)) 3524 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3525 else 3526 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3527 3528 if (bio_data_dir(io->base_bio) == READ) { 3529 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3530 kcryptd_queue_read(io); 3531 } else 3532 kcryptd_queue_crypt(io); 3533 3534 return DM_MAPIO_SUBMITTED; 3535 } 3536 3537 static char hex2asc(unsigned char c) 3538 { 3539 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3540 } 3541 3542 static void crypt_status(struct dm_target *ti, status_type_t type, 3543 unsigned int status_flags, char *result, unsigned int maxlen) 3544 { 3545 struct crypt_config *cc = ti->private; 3546 unsigned int i, sz = 0; 3547 int num_feature_args = 0; 3548 3549 switch (type) { 3550 case STATUSTYPE_INFO: 3551 result[0] = '\0'; 3552 break; 3553 3554 case STATUSTYPE_TABLE: 3555 DMEMIT("%s ", cc->cipher_string); 3556 3557 if (cc->key_size > 0) { 3558 if (cc->key_string) 3559 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3560 else { 3561 for (i = 0; i < cc->key_size; i++) { 3562 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3563 hex2asc(cc->key[i] & 0xf)); 3564 } 3565 } 3566 } else 3567 DMEMIT("-"); 3568 3569 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3570 cc->dev->name, (unsigned long long)cc->start); 3571 3572 num_feature_args += !!ti->num_discard_bios; 3573 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3574 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3575 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3576 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3577 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3578 num_feature_args += !!cc->used_tag_size; 3579 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3580 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3581 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3582 if (num_feature_args) { 3583 DMEMIT(" %d", num_feature_args); 3584 if (ti->num_discard_bios) 3585 DMEMIT(" allow_discards"); 3586 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3587 DMEMIT(" same_cpu_crypt"); 3588 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3589 DMEMIT(" high_priority"); 3590 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3591 DMEMIT(" submit_from_crypt_cpus"); 3592 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3593 DMEMIT(" no_read_workqueue"); 3594 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3595 DMEMIT(" no_write_workqueue"); 3596 if (cc->used_tag_size) 3597 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3598 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3599 DMEMIT(" sector_size:%d", cc->sector_size); 3600 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3601 DMEMIT(" iv_large_sectors"); 3602 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3603 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3604 } 3605 break; 3606 3607 case STATUSTYPE_IMA: 3608 DMEMIT_TARGET_NAME_VERSION(ti->type); 3609 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3610 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3611 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3612 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3613 'y' : 'n'); 3614 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3615 'y' : 'n'); 3616 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3617 'y' : 'n'); 3618 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3619 'y' : 'n'); 3620 3621 if (cc->used_tag_size) 3622 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3623 cc->used_tag_size, cc->cipher_auth); 3624 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3625 DMEMIT(",sector_size=%d", cc->sector_size); 3626 if (cc->cipher_string) 3627 DMEMIT(",cipher_string=%s", cc->cipher_string); 3628 3629 DMEMIT(",key_size=%u", cc->key_size); 3630 DMEMIT(",key_parts=%u", cc->key_parts); 3631 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3632 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3633 DMEMIT(";"); 3634 break; 3635 } 3636 } 3637 3638 static void crypt_postsuspend(struct dm_target *ti) 3639 { 3640 struct crypt_config *cc = ti->private; 3641 3642 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3643 } 3644 3645 static int crypt_preresume(struct dm_target *ti) 3646 { 3647 struct crypt_config *cc = ti->private; 3648 3649 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3650 DMERR("aborting resume - crypt key is not set."); 3651 return -EAGAIN; 3652 } 3653 3654 return 0; 3655 } 3656 3657 static void crypt_resume(struct dm_target *ti) 3658 { 3659 struct crypt_config *cc = ti->private; 3660 3661 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3662 } 3663 3664 /* Message interface 3665 * key set <key> 3666 * key wipe 3667 */ 3668 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3669 char *result, unsigned int maxlen) 3670 { 3671 struct crypt_config *cc = ti->private; 3672 int key_size, ret = -EINVAL; 3673 3674 if (argc < 2) 3675 goto error; 3676 3677 if (!strcasecmp(argv[0], "key")) { 3678 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3679 DMWARN("not suspended during key manipulation."); 3680 return -EINVAL; 3681 } 3682 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3683 /* The key size may not be changed. */ 3684 key_size = get_key_size(&argv[2]); 3685 if (key_size < 0 || cc->key_size != key_size) { 3686 memset(argv[2], '0', strlen(argv[2])); 3687 return -EINVAL; 3688 } 3689 3690 ret = crypt_set_key(cc, argv[2]); 3691 if (ret) 3692 return ret; 3693 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3694 ret = cc->iv_gen_ops->init(cc); 3695 /* wipe the kernel key payload copy */ 3696 if (cc->key_string) 3697 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3698 return ret; 3699 } 3700 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3701 return crypt_wipe_key(cc); 3702 } 3703 3704 error: 3705 DMWARN("unrecognised message received."); 3706 return -EINVAL; 3707 } 3708 3709 static int crypt_iterate_devices(struct dm_target *ti, 3710 iterate_devices_callout_fn fn, void *data) 3711 { 3712 struct crypt_config *cc = ti->private; 3713 3714 return fn(ti, cc->dev, cc->start, ti->len, data); 3715 } 3716 3717 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3718 { 3719 struct crypt_config *cc = ti->private; 3720 3721 limits->logical_block_size = 3722 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3723 limits->physical_block_size = 3724 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3725 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3726 limits->dma_alignment = limits->logical_block_size - 1; 3727 3728 /* 3729 * For zoned dm-crypt targets, there will be no internal splitting of 3730 * write BIOs to avoid exceeding BIO_MAX_VECS vectors per BIO. But 3731 * without respecting this limit, crypt_alloc_buffer() will trigger a 3732 * BUG(). Avoid this by forcing DM core to split write BIOs to this 3733 * limit. 3734 */ 3735 if (ti->emulate_zone_append) 3736 limits->max_hw_sectors = min(limits->max_hw_sectors, 3737 BIO_MAX_VECS << PAGE_SECTORS_SHIFT); 3738 3739 limits->atomic_write_hw_unit_max = min(limits->atomic_write_hw_unit_max, 3740 BIO_MAX_VECS << PAGE_SHIFT); 3741 limits->atomic_write_hw_max = min(limits->atomic_write_hw_max, 3742 BIO_MAX_VECS << PAGE_SHIFT); 3743 } 3744 3745 static struct target_type crypt_target = { 3746 .name = "crypt", 3747 .version = {1, 29, 0}, 3748 .module = THIS_MODULE, 3749 .ctr = crypt_ctr, 3750 .dtr = crypt_dtr, 3751 .features = DM_TARGET_ZONED_HM | DM_TARGET_ATOMIC_WRITES, 3752 .report_zones = crypt_report_zones, 3753 .map = crypt_map, 3754 .status = crypt_status, 3755 .postsuspend = crypt_postsuspend, 3756 .preresume = crypt_preresume, 3757 .resume = crypt_resume, 3758 .message = crypt_message, 3759 .iterate_devices = crypt_iterate_devices, 3760 .io_hints = crypt_io_hints, 3761 }; 3762 module_dm(crypt); 3763 3764 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3765 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3766 MODULE_LICENSE("GPL"); 3767