1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __NET_CFG80211_H 3 #define __NET_CFG80211_H 4 /* 5 * 802.11 device and configuration interface 6 * 7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2015-2017 Intel Deutschland GmbH 10 * Copyright (C) 2018-2026 Intel Corporation 11 */ 12 13 #include <linux/ethtool.h> 14 #include <uapi/linux/rfkill.h> 15 #include <linux/netdevice.h> 16 #include <linux/debugfs.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/netlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/nl80211.h> 22 #include <linux/if_ether.h> 23 #include <linux/ieee80211.h> 24 #include <linux/net.h> 25 #include <linux/rfkill.h> 26 #include <net/regulatory.h> 27 28 /** 29 * DOC: Introduction 30 * 31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges 32 * userspace and drivers, and offers some utility functionality associated 33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used 34 * by all modern wireless drivers in Linux, so that they offer a consistent 35 * API through nl80211. For backward compatibility, cfg80211 also offers 36 * wireless extensions to userspace, but hides them from drivers completely. 37 * 38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum 39 * use restrictions. 40 */ 41 42 43 /** 44 * DOC: Device registration 45 * 46 * In order for a driver to use cfg80211, it must register the hardware device 47 * with cfg80211. This happens through a number of hardware capability structs 48 * described below. 49 * 50 * The fundamental structure for each device is the 'wiphy', of which each 51 * instance describes a physical wireless device connected to the system. Each 52 * such wiphy can have zero, one, or many virtual interfaces associated with 53 * it, which need to be identified as such by pointing the network interface's 54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes 55 * the wireless part of the interface. Normally this struct is embedded in the 56 * network interface's private data area. Drivers can optionally allow creating 57 * or destroying virtual interfaces on the fly, but without at least one or the 58 * ability to create some the wireless device isn't useful. 59 * 60 * Each wiphy structure contains device capability information, and also has 61 * a pointer to the various operations the driver offers. The definitions and 62 * structures here describe these capabilities in detail. 63 */ 64 65 struct wiphy; 66 67 /* 68 * wireless hardware capability structures 69 */ 70 71 /** 72 * enum ieee80211_channel_flags - channel flags 73 * 74 * Channel flags set by the regulatory control code. 75 * 76 * @IEEE80211_CHAN_DISABLED: This channel is disabled. 77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes 78 * sending probe requests or beaconing. 79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this 80 * channel. 81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. 82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel 83 * is not permitted. 84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel 85 * is not permitted. 86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel. 87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band, 88 * this flag indicates that an 80 MHz channel cannot use this 89 * channel as the control or any of the secondary channels. 90 * This may be due to the driver or due to regulatory bandwidth 91 * restrictions. 92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band, 93 * this flag indicates that an 160 MHz channel cannot use this 94 * channel as the control or any of the secondary channels. 95 * This may be due to the driver or due to regulatory bandwidth 96 * restrictions. 97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY 98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT 99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted 100 * on this channel. 101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted 102 * on this channel. 103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel. 104 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band, 105 * this flag indicates that a 320 MHz channel cannot use this 106 * channel as the control or any of the secondary channels. 107 * This may be due to the driver or due to regulatory bandwidth 108 * restrictions. 109 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel. 110 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT 111 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP 112 * not permitted using this channel 113 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP 114 * not permitted using this channel 115 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor 116 * mode even in the presence of other (regulatory) restrictions, 117 * even if it is otherwise disabled. 118 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation 119 * with very low power (VLP), even if otherwise set to NO_IR. 120 * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel, 121 * even if otherwise set to NO_IR. 122 * @IEEE80211_CHAN_S1G_NO_PRIMARY: Prevents the channel for use as an S1G 123 * primary channel. Does not prevent the wider operating channel 124 * described by the chandef from being used. In order for a 2MHz primary 125 * to be used, both 1MHz subchannels shall not contain this flag. 126 * @IEEE80211_CHAN_NO_4MHZ: 4 MHz bandwidth is not permitted on this channel. 127 * @IEEE80211_CHAN_NO_8MHZ: 8 MHz bandwidth is not permitted on this channel. 128 * @IEEE80211_CHAN_NO_16MHZ: 16 MHz bandwidth is not permitted on this channel. 129 * @IEEE80211_CHAN_NO_UHR: UHR operation is not permitted on this channel. 130 */ 131 enum ieee80211_channel_flags { 132 IEEE80211_CHAN_DISABLED = BIT(0), 133 IEEE80211_CHAN_NO_IR = BIT(1), 134 IEEE80211_CHAN_PSD = BIT(2), 135 IEEE80211_CHAN_RADAR = BIT(3), 136 IEEE80211_CHAN_NO_HT40PLUS = BIT(4), 137 IEEE80211_CHAN_NO_HT40MINUS = BIT(5), 138 IEEE80211_CHAN_NO_OFDM = BIT(6), 139 IEEE80211_CHAN_NO_80MHZ = BIT(7), 140 IEEE80211_CHAN_NO_160MHZ = BIT(8), 141 IEEE80211_CHAN_INDOOR_ONLY = BIT(9), 142 IEEE80211_CHAN_IR_CONCURRENT = BIT(10), 143 IEEE80211_CHAN_NO_20MHZ = BIT(11), 144 IEEE80211_CHAN_NO_10MHZ = BIT(12), 145 IEEE80211_CHAN_NO_HE = BIT(13), 146 /* can use free bits here */ 147 IEEE80211_CHAN_NO_UHR = BIT(18), 148 IEEE80211_CHAN_NO_320MHZ = BIT(19), 149 IEEE80211_CHAN_NO_EHT = BIT(20), 150 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21), 151 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22), 152 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23), 153 IEEE80211_CHAN_CAN_MONITOR = BIT(24), 154 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25), 155 IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY = BIT(26), 156 IEEE80211_CHAN_S1G_NO_PRIMARY = BIT(27), 157 IEEE80211_CHAN_NO_4MHZ = BIT(28), 158 IEEE80211_CHAN_NO_8MHZ = BIT(29), 159 IEEE80211_CHAN_NO_16MHZ = BIT(30), 160 }; 161 162 #define IEEE80211_CHAN_NO_HT40 \ 163 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) 164 165 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000 166 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000) 167 168 /** 169 * struct ieee80211_channel - channel definition 170 * 171 * This structure describes a single channel for use 172 * with cfg80211. 173 * 174 * @center_freq: center frequency in MHz 175 * @freq_offset: offset from @center_freq, in KHz 176 * @hw_value: hardware-specific value for the channel 177 * @flags: channel flags from &enum ieee80211_channel_flags. 178 * @orig_flags: channel flags at registration time, used by regulatory 179 * code to support devices with additional restrictions 180 * @band: band this channel belongs to. 181 * @max_antenna_gain: maximum antenna gain in dBi 182 * @max_power: maximum transmission power (in dBm) 183 * @max_reg_power: maximum regulatory transmission power (in dBm) 184 * @beacon_found: helper to regulatory code to indicate when a beacon 185 * has been found on this channel. Use regulatory_hint_found_beacon() 186 * to enable this, this is useful only on 5 GHz band. 187 * @orig_mag: internal use 188 * @orig_mpwr: internal use 189 * @dfs_state: current state of this channel. Only relevant if radar is required 190 * on this channel. 191 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered. 192 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels. 193 * @psd: power spectral density (in dBm) 194 */ 195 struct ieee80211_channel { 196 enum nl80211_band band; 197 u32 center_freq; 198 u16 freq_offset; 199 u16 hw_value; 200 u32 flags; 201 int max_antenna_gain; 202 int max_power; 203 int max_reg_power; 204 bool beacon_found; 205 u32 orig_flags; 206 int orig_mag, orig_mpwr; 207 enum nl80211_dfs_state dfs_state; 208 unsigned long dfs_state_entered; 209 unsigned int dfs_cac_ms; 210 s8 psd; 211 }; 212 213 /** 214 * enum ieee80211_rate_flags - rate flags 215 * 216 * Hardware/specification flags for rates. These are structured 217 * in a way that allows using the same bitrate structure for 218 * different bands/PHY modes. 219 * 220 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short 221 * preamble on this bitrate; only relevant in 2.4GHz band and 222 * with CCK rates. 223 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate 224 * when used with 802.11a (on the 5 GHz band); filled by the 225 * core code when registering the wiphy. 226 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate 227 * when used with 802.11b (on the 2.4 GHz band); filled by the 228 * core code when registering the wiphy. 229 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate 230 * when used with 802.11g (on the 2.4 GHz band); filled by the 231 * core code when registering the wiphy. 232 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. 233 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode 234 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode 235 */ 236 enum ieee80211_rate_flags { 237 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0), 238 IEEE80211_RATE_MANDATORY_A = BIT(1), 239 IEEE80211_RATE_MANDATORY_B = BIT(2), 240 IEEE80211_RATE_MANDATORY_G = BIT(3), 241 IEEE80211_RATE_ERP_G = BIT(4), 242 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5), 243 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6), 244 }; 245 246 /** 247 * enum ieee80211_bss_type - BSS type filter 248 * 249 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS 250 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS 251 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS 252 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS 253 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type 254 */ 255 enum ieee80211_bss_type { 256 IEEE80211_BSS_TYPE_ESS, 257 IEEE80211_BSS_TYPE_PBSS, 258 IEEE80211_BSS_TYPE_IBSS, 259 IEEE80211_BSS_TYPE_MBSS, 260 IEEE80211_BSS_TYPE_ANY 261 }; 262 263 /** 264 * enum ieee80211_privacy - BSS privacy filter 265 * 266 * @IEEE80211_PRIVACY_ON: privacy bit set 267 * @IEEE80211_PRIVACY_OFF: privacy bit clear 268 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting 269 */ 270 enum ieee80211_privacy { 271 IEEE80211_PRIVACY_ON, 272 IEEE80211_PRIVACY_OFF, 273 IEEE80211_PRIVACY_ANY 274 }; 275 276 #define IEEE80211_PRIVACY(x) \ 277 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF) 278 279 /** 280 * struct ieee80211_rate - bitrate definition 281 * 282 * This structure describes a bitrate that an 802.11 PHY can 283 * operate with. The two values @hw_value and @hw_value_short 284 * are only for driver use when pointers to this structure are 285 * passed around. 286 * 287 * @flags: rate-specific flags from &enum ieee80211_rate_flags 288 * @bitrate: bitrate in units of 100 Kbps 289 * @hw_value: driver/hardware value for this rate 290 * @hw_value_short: driver/hardware value for this rate when 291 * short preamble is used 292 */ 293 struct ieee80211_rate { 294 u32 flags; 295 u16 bitrate; 296 u16 hw_value, hw_value_short; 297 }; 298 299 /** 300 * struct ieee80211_he_obss_pd - AP settings for spatial reuse 301 * 302 * @enable: is the feature enabled. 303 * @sr_ctrl: The SR Control field of SRP element. 304 * @non_srg_max_offset: non-SRG maximum tx power offset 305 * @min_offset: minimal tx power offset an associated station shall use 306 * @max_offset: maximum tx power offset an associated station shall use 307 * @bss_color_bitmap: bitmap that indicates the BSS color values used by 308 * members of the SRG 309 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values 310 * used by members of the SRG 311 */ 312 struct ieee80211_he_obss_pd { 313 bool enable; 314 u8 sr_ctrl; 315 u8 non_srg_max_offset; 316 u8 min_offset; 317 u8 max_offset; 318 u8 bss_color_bitmap[8]; 319 u8 partial_bssid_bitmap[8]; 320 }; 321 322 /** 323 * struct cfg80211_he_bss_color - AP settings for BSS coloring 324 * 325 * @color: the current color. 326 * @enabled: HE BSS color is used 327 * @partial: define the AID equation. 328 */ 329 struct cfg80211_he_bss_color { 330 u8 color; 331 bool enabled; 332 bool partial; 333 }; 334 335 /** 336 * struct ieee80211_sta_ht_cap - STA's HT capabilities 337 * 338 * This structure describes most essential parameters needed 339 * to describe 802.11n HT capabilities for an STA. 340 * 341 * @ht_supported: is HT supported by the STA 342 * @cap: HT capabilities map as described in 802.11n spec 343 * @ampdu_factor: Maximum A-MPDU length factor 344 * @ampdu_density: Minimum A-MPDU spacing 345 * @mcs: Supported MCS rates 346 */ 347 struct ieee80211_sta_ht_cap { 348 u16 cap; /* use IEEE80211_HT_CAP_ */ 349 bool ht_supported; 350 u8 ampdu_factor; 351 u8 ampdu_density; 352 struct ieee80211_mcs_info mcs; 353 }; 354 355 /** 356 * struct ieee80211_sta_vht_cap - STA's VHT capabilities 357 * 358 * This structure describes most essential parameters needed 359 * to describe 802.11ac VHT capabilities for an STA. 360 * 361 * @vht_supported: is VHT supported by the STA 362 * @cap: VHT capabilities map as described in 802.11ac spec 363 * @vht_mcs: Supported VHT MCS rates 364 */ 365 struct ieee80211_sta_vht_cap { 366 bool vht_supported; 367 u32 cap; /* use IEEE80211_VHT_CAP_ */ 368 struct ieee80211_vht_mcs_info vht_mcs; 369 }; 370 371 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25 372 373 /** 374 * struct ieee80211_sta_he_cap - STA's HE capabilities 375 * 376 * This structure describes most essential parameters needed 377 * to describe 802.11ax HE capabilities for a STA. 378 * 379 * @has_he: true iff HE data is valid. 380 * @he_cap_elem: Fixed portion of the HE capabilities element. 381 * @he_mcs_nss_supp: The supported NSS/MCS combinations. 382 * @ppe_thres: Holds the PPE Thresholds data. 383 */ 384 struct ieee80211_sta_he_cap { 385 bool has_he; 386 struct ieee80211_he_cap_elem he_cap_elem; 387 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp; 388 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN]; 389 }; 390 391 /** 392 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS 393 * 394 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS 395 * and NSS Set field" 396 * 397 * @only_20mhz: MCS/NSS support for 20 MHz-only STA. 398 * @bw: MCS/NSS support for 80, 160 and 320 MHz 399 * @bw._80: MCS/NSS support for BW <= 80 MHz 400 * @bw._160: MCS/NSS support for BW = 160 MHz 401 * @bw._320: MCS/NSS support for BW = 320 MHz 402 */ 403 struct ieee80211_eht_mcs_nss_supp { 404 union { 405 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz; 406 struct { 407 struct ieee80211_eht_mcs_nss_supp_bw _80; 408 struct ieee80211_eht_mcs_nss_supp_bw _160; 409 struct ieee80211_eht_mcs_nss_supp_bw _320; 410 } __packed bw; 411 } __packed; 412 } __packed; 413 414 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32 415 416 /** 417 * struct ieee80211_sta_eht_cap - STA's EHT capabilities 418 * 419 * This structure describes most essential parameters needed 420 * to describe 802.11be EHT capabilities for a STA. 421 * 422 * @has_eht: true iff EHT data is valid. 423 * @eht_cap_elem: Fixed portion of the eht capabilities element. 424 * @eht_mcs_nss_supp: The supported NSS/MCS combinations. 425 * @eht_ppe_thres: Holds the PPE Thresholds data. 426 */ 427 struct ieee80211_sta_eht_cap { 428 bool has_eht; 429 struct ieee80211_eht_cap_elem_fixed eht_cap_elem; 430 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp; 431 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN]; 432 }; 433 434 /** 435 * struct ieee80211_sta_uhr_cap - STA's UHR capabilities 436 * @has_uhr: true iff UHR is supported and data is valid 437 * @mac: fixed MAC capabilities 438 * @phy: fixed PHY capabilities 439 */ 440 struct ieee80211_sta_uhr_cap { 441 bool has_uhr; 442 struct ieee80211_uhr_cap_mac mac; 443 struct ieee80211_uhr_cap_phy phy; 444 }; 445 446 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */ 447 #ifdef __CHECKER__ 448 /* 449 * This is used to mark the sband->iftype_data pointer which is supposed 450 * to be an array with special access semantics (per iftype), but a lot 451 * of code got it wrong in the past, so with this marking sparse will be 452 * noisy when the pointer is used directly. 453 */ 454 # define __iftd __attribute__((noderef, address_space(__iftype_data))) 455 #else 456 # define __iftd 457 #endif /* __CHECKER__ */ 458 459 /** 460 * struct ieee80211_sband_iftype_data - sband data per interface type 461 * 462 * This structure encapsulates sband data that is relevant for the 463 * interface types defined in @types_mask. Each type in the 464 * @types_mask must be unique across all instances of iftype_data. 465 * 466 * @types_mask: interface types mask 467 * @he_cap: holds the HE capabilities 468 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a 469 * 6 GHz band channel (and 0 may be valid value). 470 * @eht_cap: STA's EHT capabilities 471 * @uhr_cap: STA's UHR capabilities 472 * @vendor_elems: vendor element(s) to advertise 473 * @vendor_elems.data: vendor element(s) data 474 * @vendor_elems.len: vendor element(s) length 475 */ 476 struct ieee80211_sband_iftype_data { 477 u16 types_mask; 478 struct ieee80211_sta_he_cap he_cap; 479 struct ieee80211_he_6ghz_capa he_6ghz_capa; 480 struct ieee80211_sta_eht_cap eht_cap; 481 struct ieee80211_sta_uhr_cap uhr_cap; 482 struct { 483 const u8 *data; 484 unsigned int len; 485 } vendor_elems; 486 }; 487 488 /** 489 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations 490 * 491 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz 492 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz 493 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz 494 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz 495 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz 496 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz 497 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz 498 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and 499 * 2.16GHz+2.16GHz 500 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and 501 * 4.32GHz + 4.32GHz 502 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and 503 * 4.32GHz + 4.32GHz 504 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz 505 * and 4.32GHz + 4.32GHz 506 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz, 507 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz 508 */ 509 enum ieee80211_edmg_bw_config { 510 IEEE80211_EDMG_BW_CONFIG_4 = 4, 511 IEEE80211_EDMG_BW_CONFIG_5 = 5, 512 IEEE80211_EDMG_BW_CONFIG_6 = 6, 513 IEEE80211_EDMG_BW_CONFIG_7 = 7, 514 IEEE80211_EDMG_BW_CONFIG_8 = 8, 515 IEEE80211_EDMG_BW_CONFIG_9 = 9, 516 IEEE80211_EDMG_BW_CONFIG_10 = 10, 517 IEEE80211_EDMG_BW_CONFIG_11 = 11, 518 IEEE80211_EDMG_BW_CONFIG_12 = 12, 519 IEEE80211_EDMG_BW_CONFIG_13 = 13, 520 IEEE80211_EDMG_BW_CONFIG_14 = 14, 521 IEEE80211_EDMG_BW_CONFIG_15 = 15, 522 }; 523 524 /** 525 * struct ieee80211_edmg - EDMG configuration 526 * 527 * This structure describes most essential parameters needed 528 * to describe 802.11ay EDMG configuration 529 * 530 * @channels: bitmap that indicates the 2.16 GHz channel(s) 531 * that are allowed to be used for transmissions. 532 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc. 533 * Set to 0 indicate EDMG not supported. 534 * @bw_config: Channel BW Configuration subfield encodes 535 * the allowed channel bandwidth configurations 536 */ 537 struct ieee80211_edmg { 538 u8 channels; 539 enum ieee80211_edmg_bw_config bw_config; 540 }; 541 542 /** 543 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities 544 * 545 * This structure describes most essential parameters needed 546 * to describe 802.11ah S1G capabilities for a STA. 547 * 548 * @s1g: is STA an S1G STA 549 * @cap: S1G capabilities information 550 * @nss_mcs: Supported NSS MCS set 551 */ 552 struct ieee80211_sta_s1g_cap { 553 bool s1g; 554 u8 cap[10]; /* use S1G_CAPAB_ */ 555 u8 nss_mcs[5]; 556 }; 557 558 /** 559 * struct ieee80211_supported_band - frequency band definition 560 * 561 * This structure describes a frequency band a wiphy 562 * is able to operate in. 563 * 564 * @channels: Array of channels the hardware can operate with 565 * in this band. 566 * @band: the band this structure represents 567 * @n_channels: Number of channels in @channels 568 * @bitrates: Array of bitrates the hardware can operate with 569 * in this band. Must be sorted to give a valid "supported 570 * rates" IE, i.e. CCK rates first, then OFDM. 571 * @n_bitrates: Number of bitrates in @bitrates 572 * @ht_cap: HT capabilities in this band 573 * @vht_cap: VHT capabilities in this band 574 * @s1g_cap: S1G capabilities in this band 575 * @edmg_cap: EDMG capabilities in this band 576 * @s1g_cap: S1G capabilities in this band (S1G band only, of course) 577 * @n_iftype_data: number of iftype data entries 578 * @iftype_data: interface type data entries. Note that the bits in 579 * @types_mask inside this structure cannot overlap (i.e. only 580 * one occurrence of each type is allowed across all instances of 581 * iftype_data). 582 */ 583 struct ieee80211_supported_band { 584 struct ieee80211_channel *channels; 585 struct ieee80211_rate *bitrates; 586 enum nl80211_band band; 587 int n_channels; 588 int n_bitrates; 589 struct ieee80211_sta_ht_cap ht_cap; 590 struct ieee80211_sta_vht_cap vht_cap; 591 struct ieee80211_sta_s1g_cap s1g_cap; 592 struct ieee80211_edmg edmg_cap; 593 u16 n_iftype_data; 594 const struct ieee80211_sband_iftype_data __iftd *iftype_data; 595 }; 596 597 /** 598 * _ieee80211_set_sband_iftype_data - set sband iftype data array 599 * @sband: the sband to initialize 600 * @iftd: the iftype data array pointer 601 * @n_iftd: the length of the iftype data array 602 * 603 * Set the sband iftype data array; use this where the length cannot 604 * be derived from the ARRAY_SIZE() of the argument, but prefer 605 * ieee80211_set_sband_iftype_data() where it can be used. 606 */ 607 static inline void 608 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband, 609 const struct ieee80211_sband_iftype_data *iftd, 610 u16 n_iftd) 611 { 612 sband->iftype_data = (const void __iftd __force *)iftd; 613 sband->n_iftype_data = n_iftd; 614 } 615 616 /** 617 * ieee80211_set_sband_iftype_data - set sband iftype data array 618 * @sband: the sband to initialize 619 * @iftd: the iftype data array 620 */ 621 #define ieee80211_set_sband_iftype_data(sband, iftd) \ 622 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd)) 623 624 /** 625 * for_each_sband_iftype_data - iterate sband iftype data entries 626 * @sband: the sband whose iftype_data array to iterate 627 * @i: iterator counter 628 * @iftd: iftype data pointer to set 629 */ 630 #define for_each_sband_iftype_data(sband, i, iftd) \ 631 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \ 632 i < (sband)->n_iftype_data; \ 633 i++, iftd = (const void __force *)&(sband)->iftype_data[i]) 634 635 /** 636 * ieee80211_get_sband_iftype_data - return sband data for a given iftype 637 * @sband: the sband to search for the STA on 638 * @iftype: enum nl80211_iftype 639 * 640 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found 641 */ 642 static inline const struct ieee80211_sband_iftype_data * 643 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband, 644 u8 iftype) 645 { 646 const struct ieee80211_sband_iftype_data *data; 647 int i; 648 649 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 650 return NULL; 651 652 if (iftype == NL80211_IFTYPE_AP_VLAN) 653 iftype = NL80211_IFTYPE_AP; 654 655 for_each_sband_iftype_data(sband, i, data) { 656 if (data->types_mask & BIT(iftype)) 657 return data; 658 } 659 660 return NULL; 661 } 662 663 /** 664 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype 665 * @sband: the sband to search for the iftype on 666 * @iftype: enum nl80211_iftype 667 * 668 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found 669 */ 670 static inline const struct ieee80211_sta_he_cap * 671 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband, 672 u8 iftype) 673 { 674 const struct ieee80211_sband_iftype_data *data = 675 ieee80211_get_sband_iftype_data(sband, iftype); 676 677 if (data && data->he_cap.has_he) 678 return &data->he_cap; 679 680 return NULL; 681 } 682 683 /** 684 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities 685 * @sband: the sband to search for the STA on 686 * @iftype: the iftype to search for 687 * 688 * Return: the 6GHz capabilities 689 */ 690 static inline __le16 691 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband, 692 enum nl80211_iftype iftype) 693 { 694 const struct ieee80211_sband_iftype_data *data = 695 ieee80211_get_sband_iftype_data(sband, iftype); 696 697 if (WARN_ON(!data || !data->he_cap.has_he)) 698 return 0; 699 700 return data->he_6ghz_capa.capa; 701 } 702 703 /** 704 * ieee80211_get_eht_iftype_cap - return EHT capabilities for an sband's iftype 705 * @sband: the sband to search for the iftype on 706 * @iftype: enum nl80211_iftype 707 * 708 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found 709 */ 710 static inline const struct ieee80211_sta_eht_cap * 711 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband, 712 enum nl80211_iftype iftype) 713 { 714 const struct ieee80211_sband_iftype_data *data = 715 ieee80211_get_sband_iftype_data(sband, iftype); 716 717 if (data && data->eht_cap.has_eht) 718 return &data->eht_cap; 719 720 return NULL; 721 } 722 723 /** 724 * ieee80211_get_uhr_iftype_cap - return UHR capabilities for an sband's iftype 725 * @sband: the sband to search for the iftype on 726 * @iftype: enum nl80211_iftype 727 * 728 * Return: pointer to the struct ieee80211_sta_uhr_cap, or NULL is none found 729 */ 730 static inline const struct ieee80211_sta_uhr_cap * 731 ieee80211_get_uhr_iftype_cap(const struct ieee80211_supported_band *sband, 732 enum nl80211_iftype iftype) 733 { 734 const struct ieee80211_sband_iftype_data *data = 735 ieee80211_get_sband_iftype_data(sband, iftype); 736 737 if (data && data->uhr_cap.has_uhr) 738 return &data->uhr_cap; 739 740 return NULL; 741 } 742 743 /** 744 * wiphy_read_of_freq_limits - read frequency limits from device tree 745 * 746 * @wiphy: the wireless device to get extra limits for 747 * 748 * Some devices may have extra limitations specified in DT. This may be useful 749 * for chipsets that normally support more bands but are limited due to board 750 * design (e.g. by antennas or external power amplifier). 751 * 752 * This function reads info from DT and uses it to *modify* channels (disable 753 * unavailable ones). It's usually a *bad* idea to use it in drivers with 754 * shared channel data as DT limitations are device specific. You should make 755 * sure to call it only if channels in wiphy are copied and can be modified 756 * without affecting other devices. 757 * 758 * As this function access device node it has to be called after set_wiphy_dev. 759 * It also modifies channels so they have to be set first. 760 * If using this helper, call it before wiphy_register(). 761 */ 762 #ifdef CONFIG_OF 763 void wiphy_read_of_freq_limits(struct wiphy *wiphy); 764 #else /* CONFIG_OF */ 765 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy) 766 { 767 } 768 #endif /* !CONFIG_OF */ 769 770 771 /* 772 * Wireless hardware/device configuration structures and methods 773 */ 774 775 /** 776 * DOC: Actions and configuration 777 * 778 * Each wireless device and each virtual interface offer a set of configuration 779 * operations and other actions that are invoked by userspace. Each of these 780 * actions is described in the operations structure, and the parameters these 781 * operations use are described separately. 782 * 783 * Additionally, some operations are asynchronous and expect to get status 784 * information via some functions that drivers need to call. 785 * 786 * Scanning and BSS list handling with its associated functionality is described 787 * in a separate chapter. 788 */ 789 790 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\ 791 WLAN_USER_POSITION_LEN) 792 793 /** 794 * struct vif_params - describes virtual interface parameters 795 * @flags: monitor interface flags, unchanged if 0, otherwise 796 * %MONITOR_FLAG_CHANGED will be set 797 * @use_4addr: use 4-address frames 798 * @macaddr: address to use for this virtual interface. 799 * If this parameter is set to zero address the driver may 800 * determine the address as needed. 801 * This feature is only fully supported by drivers that enable the 802 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating 803 ** only p2p devices with specified MAC. 804 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets 805 * belonging to that MU-MIMO groupID; %NULL if not changed 806 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring 807 * MU-MIMO packets going to the specified station; %NULL if not changed 808 */ 809 struct vif_params { 810 u32 flags; 811 int use_4addr; 812 u8 macaddr[ETH_ALEN]; 813 const u8 *vht_mumimo_groups; 814 const u8 *vht_mumimo_follow_addr; 815 }; 816 817 /** 818 * struct key_params - key information 819 * 820 * Information about a key 821 * 822 * @key: key material 823 * @key_len: length of key material 824 * @cipher: cipher suite selector 825 * @seq: sequence counter (IV/PN), must be in little endian, 826 * length given by @seq_len. 827 * @seq_len: length of @seq. 828 * @vlan_id: vlan_id for VLAN group key (if nonzero) 829 * @mode: key install mode (RX_TX, NO_TX or SET_TX) 830 */ 831 struct key_params { 832 const u8 *key; 833 const u8 *seq; 834 int key_len; 835 int seq_len; 836 u16 vlan_id; 837 u32 cipher; 838 enum nl80211_key_mode mode; 839 }; 840 841 /** 842 * struct cfg80211_chan_def - channel definition 843 * @chan: the (control) channel 844 * @width: channel width 845 * @center_freq1: center frequency of first segment 846 * @center_freq2: center frequency of second segment 847 * (only with 80+80 MHz) 848 * @edmg: define the EDMG channels configuration. 849 * If edmg is requested (i.e. the .channels member is non-zero), 850 * chan will define the primary channel and all other 851 * parameters are ignored. 852 * @freq1_offset: offset from @center_freq1, in KHz 853 * @punctured: mask of the punctured 20 MHz subchannels, with 854 * bits turned on being disabled (punctured); numbered 855 * from lower to higher frequency (like in the spec) 856 * @s1g_primary_2mhz: Indicates if the control channel pointed to 857 * by 'chan' exists as a 1MHz primary subchannel within an 858 * S1G 2MHz primary channel. 859 */ 860 struct cfg80211_chan_def { 861 struct ieee80211_channel *chan; 862 enum nl80211_chan_width width; 863 u32 center_freq1; 864 u32 center_freq2; 865 struct ieee80211_edmg edmg; 866 u16 freq1_offset; 867 u16 punctured; 868 bool s1g_primary_2mhz; 869 }; 870 871 /* 872 * cfg80211_bitrate_mask - masks for bitrate control 873 */ 874 struct cfg80211_bitrate_mask { 875 struct { 876 u32 legacy; 877 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN]; 878 u16 vht_mcs[NL80211_VHT_NSS_MAX]; 879 u16 he_mcs[NL80211_HE_NSS_MAX]; 880 u16 eht_mcs[NL80211_EHT_NSS_MAX]; 881 enum nl80211_txrate_gi gi; 882 enum nl80211_he_gi he_gi; 883 enum nl80211_eht_gi eht_gi; 884 enum nl80211_he_ltf he_ltf; 885 enum nl80211_eht_ltf eht_ltf; 886 } control[NUM_NL80211_BANDS]; 887 }; 888 889 890 /** 891 * struct cfg80211_tid_cfg - TID specific configuration 892 * @config_override: Flag to notify driver to reset TID configuration 893 * of the peer. 894 * @tids: bitmap of TIDs to modify 895 * @mask: bitmap of attributes indicating which parameter changed, 896 * similar to &nl80211_tid_config_supp. 897 * @noack: noack configuration value for the TID 898 * @retry_long: retry count value 899 * @retry_short: retry count value 900 * @ampdu: Enable/Disable MPDU aggregation 901 * @rtscts: Enable/Disable RTS/CTS 902 * @amsdu: Enable/Disable MSDU aggregation 903 * @txrate_type: Tx bitrate mask type 904 * @txrate_mask: Tx bitrate to be applied for the TID 905 */ 906 struct cfg80211_tid_cfg { 907 bool config_override; 908 u8 tids; 909 u64 mask; 910 enum nl80211_tid_config noack; 911 u8 retry_long, retry_short; 912 enum nl80211_tid_config ampdu; 913 enum nl80211_tid_config rtscts; 914 enum nl80211_tid_config amsdu; 915 enum nl80211_tx_rate_setting txrate_type; 916 struct cfg80211_bitrate_mask txrate_mask; 917 }; 918 919 /** 920 * struct cfg80211_tid_config - TID configuration 921 * @peer: Station's MAC address 922 * @n_tid_conf: Number of TID specific configurations to be applied 923 * @tid_conf: Configuration change info 924 */ 925 struct cfg80211_tid_config { 926 const u8 *peer; 927 u32 n_tid_conf; 928 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf); 929 }; 930 931 /** 932 * struct cfg80211_fils_aad - FILS AAD data 933 * @macaddr: STA MAC address 934 * @kek: FILS KEK 935 * @kek_len: FILS KEK length 936 * @snonce: STA Nonce 937 * @anonce: AP Nonce 938 */ 939 struct cfg80211_fils_aad { 940 const u8 *macaddr; 941 const u8 *kek; 942 u8 kek_len; 943 const u8 *snonce; 944 const u8 *anonce; 945 }; 946 947 /** 948 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping 949 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all 950 * addresses. 951 * @enable: if set, enable HW timestamping for the specified MAC address. 952 * Otherwise disable HW timestamping for the specified MAC address. 953 */ 954 struct cfg80211_set_hw_timestamp { 955 const u8 *macaddr; 956 bool enable; 957 }; 958 959 /** 960 * cfg80211_get_chandef_type - return old channel type from chandef 961 * @chandef: the channel definition 962 * 963 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given 964 * chandef, which must have a bandwidth allowing this conversion. 965 */ 966 static inline enum nl80211_channel_type 967 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef) 968 { 969 switch (chandef->width) { 970 case NL80211_CHAN_WIDTH_20_NOHT: 971 return NL80211_CHAN_NO_HT; 972 case NL80211_CHAN_WIDTH_20: 973 return NL80211_CHAN_HT20; 974 case NL80211_CHAN_WIDTH_40: 975 if (chandef->center_freq1 > chandef->chan->center_freq) 976 return NL80211_CHAN_HT40PLUS; 977 return NL80211_CHAN_HT40MINUS; 978 default: 979 WARN_ON(1); 980 return NL80211_CHAN_NO_HT; 981 } 982 } 983 984 /** 985 * cfg80211_chandef_create - create channel definition using channel type 986 * @chandef: the channel definition struct to fill 987 * @channel: the control channel 988 * @chantype: the channel type 989 * 990 * Given a channel type, create a channel definition. 991 */ 992 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 993 struct ieee80211_channel *channel, 994 enum nl80211_channel_type chantype); 995 996 /** 997 * cfg80211_chandef_identical - check if two channel definitions are identical 998 * @chandef1: first channel definition 999 * @chandef2: second channel definition 1000 * 1001 * Return: %true if the channels defined by the channel definitions are 1002 * identical, %false otherwise. 1003 */ 1004 static inline bool 1005 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1, 1006 const struct cfg80211_chan_def *chandef2) 1007 { 1008 return (chandef1->chan == chandef2->chan && 1009 chandef1->width == chandef2->width && 1010 chandef1->center_freq1 == chandef2->center_freq1 && 1011 chandef1->freq1_offset == chandef2->freq1_offset && 1012 chandef1->center_freq2 == chandef2->center_freq2 && 1013 chandef1->punctured == chandef2->punctured && 1014 chandef1->s1g_primary_2mhz == chandef2->s1g_primary_2mhz); 1015 } 1016 1017 /** 1018 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel 1019 * 1020 * @chandef: the channel definition 1021 * 1022 * Return: %true if EDMG defined, %false otherwise. 1023 */ 1024 static inline bool 1025 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef) 1026 { 1027 return chandef->edmg.channels || chandef->edmg.bw_config; 1028 } 1029 1030 /** 1031 * cfg80211_chandef_is_s1g - check if chandef represents an S1G channel 1032 * @chandef: the channel definition 1033 * 1034 * Return: %true if S1G. 1035 */ 1036 static inline bool 1037 cfg80211_chandef_is_s1g(const struct cfg80211_chan_def *chandef) 1038 { 1039 return chandef->chan->band == NL80211_BAND_S1GHZ; 1040 } 1041 1042 /** 1043 * cfg80211_chandef_compatible - check if two channel definitions are compatible 1044 * @chandef1: first channel definition 1045 * @chandef2: second channel definition 1046 * 1047 * Return: %NULL if the given channel definitions are incompatible, 1048 * chandef1 or chandef2 otherwise. 1049 */ 1050 const struct cfg80211_chan_def * 1051 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1, 1052 const struct cfg80211_chan_def *chandef2); 1053 1054 1055 /** 1056 * nl80211_chan_width_to_mhz - get the channel width in MHz 1057 * @chan_width: the channel width from &enum nl80211_chan_width 1058 * 1059 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width 1060 * is valid. -1 otherwise. 1061 */ 1062 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width); 1063 1064 /** 1065 * cfg80211_chandef_get_width - return chandef width in MHz 1066 * @c: chandef to return bandwidth for 1067 * Return: channel width in MHz for the given chandef; note that it returns 1068 * 80 for 80+80 configurations 1069 */ 1070 static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) 1071 { 1072 return nl80211_chan_width_to_mhz(c->width); 1073 } 1074 1075 /** 1076 * cfg80211_chandef_valid - check if a channel definition is valid 1077 * @chandef: the channel definition to check 1078 * Return: %true if the channel definition is valid. %false otherwise. 1079 */ 1080 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef); 1081 1082 /** 1083 * cfg80211_chandef_usable - check if secondary channels can be used 1084 * @wiphy: the wiphy to validate against 1085 * @chandef: the channel definition to check 1086 * @prohibited_flags: the regulatory channel flags that must not be set 1087 * Return: %true if secondary channels are usable. %false otherwise. 1088 */ 1089 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1090 const struct cfg80211_chan_def *chandef, 1091 u32 prohibited_flags); 1092 1093 /** 1094 * cfg80211_chandef_dfs_required - checks if radar detection is required 1095 * @wiphy: the wiphy to validate against 1096 * @chandef: the channel definition to check 1097 * @iftype: the interface type as specified in &enum nl80211_iftype 1098 * Returns: 1099 * 1 if radar detection is required, 0 if it is not, < 0 on error 1100 */ 1101 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 1102 const struct cfg80211_chan_def *chandef, 1103 enum nl80211_iftype iftype); 1104 1105 /** 1106 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we 1107 * can/need start CAC on such channel 1108 * @wiphy: the wiphy to validate against 1109 * @chandef: the channel definition to check 1110 * 1111 * Return: true if all channels available and at least 1112 * one channel requires CAC (NL80211_DFS_USABLE) 1113 */ 1114 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 1115 const struct cfg80211_chan_def *chandef); 1116 1117 /** 1118 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given 1119 * channel definition 1120 * @wiphy: the wiphy to validate against 1121 * @chandef: the channel definition to check 1122 * 1123 * Returns: DFS CAC time (in ms) which applies for this channel definition 1124 */ 1125 unsigned int 1126 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 1127 const struct cfg80211_chan_def *chandef); 1128 1129 /** 1130 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq 1131 * @chandef: chandef to calculate for 1132 * @primary_chan_width: primary channel width to calculate center for 1133 * @punctured: punctured sub-channel bitmap, will be recalculated 1134 * according to the new bandwidth, can be %NULL 1135 * 1136 * Returns: the primary 40/80/160 MHz channel center frequency, or -1 1137 * for errors, updating the punctured bitmap 1138 */ 1139 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef, 1140 enum nl80211_chan_width primary_chan_width, 1141 u16 *punctured); 1142 1143 /** 1144 * nl80211_send_chandef - sends the channel definition. 1145 * @msg: the msg to send channel definition 1146 * @chandef: the channel definition to check 1147 * 1148 * Returns: 0 if sent the channel definition to msg, < 0 on error 1149 **/ 1150 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef); 1151 1152 /** 1153 * ieee80211_chandef_max_power - maximum transmission power for the chandef 1154 * 1155 * In some regulations, the transmit power may depend on the configured channel 1156 * bandwidth which may be defined as dBm/MHz. This function returns the actual 1157 * max_power for non-standard (20 MHz) channels. 1158 * 1159 * @chandef: channel definition for the channel 1160 * 1161 * Returns: maximum allowed transmission power in dBm for the chandef 1162 */ 1163 static inline int 1164 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef) 1165 { 1166 switch (chandef->width) { 1167 case NL80211_CHAN_WIDTH_5: 1168 return min(chandef->chan->max_reg_power - 6, 1169 chandef->chan->max_power); 1170 case NL80211_CHAN_WIDTH_10: 1171 return min(chandef->chan->max_reg_power - 3, 1172 chandef->chan->max_power); 1173 default: 1174 break; 1175 } 1176 return chandef->chan->max_power; 1177 } 1178 1179 /** 1180 * cfg80211_any_usable_channels - check for usable channels 1181 * @wiphy: the wiphy to check for 1182 * @band_mask: which bands to check on 1183 * @prohibited_flags: which channels to not consider usable, 1184 * %IEEE80211_CHAN_DISABLED is always taken into account 1185 * 1186 * Return: %true if usable channels found, %false otherwise 1187 */ 1188 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1189 unsigned long band_mask, 1190 u32 prohibited_flags); 1191 1192 /** 1193 * enum survey_info_flags - survey information flags 1194 * 1195 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in 1196 * @SURVEY_INFO_IN_USE: channel is currently being used 1197 * @SURVEY_INFO_TIME: active time (in ms) was filled in 1198 * @SURVEY_INFO_TIME_BUSY: busy time was filled in 1199 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in 1200 * @SURVEY_INFO_TIME_RX: receive time was filled in 1201 * @SURVEY_INFO_TIME_TX: transmit time was filled in 1202 * @SURVEY_INFO_TIME_SCAN: scan time was filled in 1203 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in 1204 * 1205 * Used by the driver to indicate which info in &struct survey_info 1206 * it has filled in during the get_survey(). 1207 */ 1208 enum survey_info_flags { 1209 SURVEY_INFO_NOISE_DBM = BIT(0), 1210 SURVEY_INFO_IN_USE = BIT(1), 1211 SURVEY_INFO_TIME = BIT(2), 1212 SURVEY_INFO_TIME_BUSY = BIT(3), 1213 SURVEY_INFO_TIME_EXT_BUSY = BIT(4), 1214 SURVEY_INFO_TIME_RX = BIT(5), 1215 SURVEY_INFO_TIME_TX = BIT(6), 1216 SURVEY_INFO_TIME_SCAN = BIT(7), 1217 SURVEY_INFO_TIME_BSS_RX = BIT(8), 1218 }; 1219 1220 /** 1221 * struct survey_info - channel survey response 1222 * 1223 * @channel: the channel this survey record reports, may be %NULL for a single 1224 * record to report global statistics 1225 * @filled: bitflag of flags from &enum survey_info_flags 1226 * @noise: channel noise in dBm. This and all following fields are 1227 * optional 1228 * @time: amount of time in ms the radio was turn on (on the channel) 1229 * @time_busy: amount of time the primary channel was sensed busy 1230 * @time_ext_busy: amount of time the extension channel was sensed busy 1231 * @time_rx: amount of time the radio spent receiving data 1232 * @time_tx: amount of time the radio spent transmitting data 1233 * @time_scan: amount of time the radio spent for scanning 1234 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS 1235 * 1236 * Used by dump_survey() to report back per-channel survey information. 1237 * 1238 * This structure can later be expanded with things like 1239 * channel duty cycle etc. 1240 */ 1241 struct survey_info { 1242 struct ieee80211_channel *channel; 1243 u64 time; 1244 u64 time_busy; 1245 u64 time_ext_busy; 1246 u64 time_rx; 1247 u64 time_tx; 1248 u64 time_scan; 1249 u64 time_bss_rx; 1250 u32 filled; 1251 s8 noise; 1252 }; 1253 1254 #define CFG80211_MAX_NUM_AKM_SUITES 10 1255 1256 /** 1257 * struct cfg80211_crypto_settings - Crypto settings 1258 * @wpa_versions: indicates which, if any, WPA versions are enabled 1259 * (from enum nl80211_wpa_versions) 1260 * @cipher_group: group key cipher suite (or 0 if unset) 1261 * @n_ciphers_pairwise: number of AP supported unicast ciphers 1262 * @ciphers_pairwise: unicast key cipher suites 1263 * @n_akm_suites: number of AKM suites 1264 * @akm_suites: AKM suites 1265 * @control_port: Whether user space controls IEEE 802.1X port, i.e., 1266 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 1267 * required to assume that the port is unauthorized until authorized by 1268 * user space. Otherwise, port is marked authorized by default. 1269 * @control_port_ethertype: the control port protocol that should be 1270 * allowed through even on unauthorized ports 1271 * @control_port_no_encrypt: TRUE to prevent encryption of control port 1272 * protocol frames. 1273 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 1274 * port frames over NL80211 instead of the network interface. 1275 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control 1276 * port for mac80211 1277 * @psk: PSK (for devices supporting 4-way-handshake offload) 1278 * @sae_pwd: password for SAE authentication (for devices supporting SAE 1279 * offload) 1280 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload) 1281 * @sae_pwe: The mechanisms allowed for SAE PWE derivation: 1282 * 1283 * NL80211_SAE_PWE_UNSPECIFIED 1284 * Not-specified, used to indicate userspace did not specify any 1285 * preference. The driver should follow its internal policy in 1286 * such a scenario. 1287 * 1288 * NL80211_SAE_PWE_HUNT_AND_PECK 1289 * Allow hunting-and-pecking loop only 1290 * 1291 * NL80211_SAE_PWE_HASH_TO_ELEMENT 1292 * Allow hash-to-element only 1293 * 1294 * NL80211_SAE_PWE_BOTH 1295 * Allow either hunting-and-pecking loop or hash-to-element 1296 */ 1297 struct cfg80211_crypto_settings { 1298 u32 wpa_versions; 1299 u32 cipher_group; 1300 int n_ciphers_pairwise; 1301 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; 1302 int n_akm_suites; 1303 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES]; 1304 bool control_port; 1305 __be16 control_port_ethertype; 1306 bool control_port_no_encrypt; 1307 bool control_port_over_nl80211; 1308 bool control_port_no_preauth; 1309 const u8 *psk; 1310 const u8 *sae_pwd; 1311 u8 sae_pwd_len; 1312 enum nl80211_sae_pwe_mechanism sae_pwe; 1313 }; 1314 1315 /** 1316 * struct cfg80211_mbssid_config - AP settings for multi bssid 1317 * 1318 * @tx_wdev: pointer to the transmitted interface in the MBSSID set 1319 * @tx_link_id: link ID of the transmitted profile in an MLD. 1320 * @index: index of this AP in the multi bssid group. 1321 * @ema: set to true if the beacons should be sent out in EMA mode. 1322 */ 1323 struct cfg80211_mbssid_config { 1324 struct wireless_dev *tx_wdev; 1325 u8 tx_link_id; 1326 u8 index; 1327 bool ema; 1328 }; 1329 1330 /** 1331 * struct cfg80211_mbssid_elems - Multiple BSSID elements 1332 * 1333 * @cnt: Number of elements in array %elems. 1334 * 1335 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames. 1336 * @elem.data: Data for multiple BSSID elements. 1337 * @elem.len: Length of data. 1338 */ 1339 struct cfg80211_mbssid_elems { 1340 u8 cnt; 1341 struct { 1342 const u8 *data; 1343 size_t len; 1344 } elem[] __counted_by(cnt); 1345 }; 1346 1347 /** 1348 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements 1349 * 1350 * @cnt: Number of elements in array %elems. 1351 * 1352 * @elem: Array of RNR element(s) to be added into Beacon frames. 1353 * @elem.data: Data for RNR elements. 1354 * @elem.len: Length of data. 1355 */ 1356 struct cfg80211_rnr_elems { 1357 u8 cnt; 1358 struct { 1359 const u8 *data; 1360 size_t len; 1361 } elem[] __counted_by(cnt); 1362 }; 1363 1364 /** 1365 * struct cfg80211_beacon_data - beacon data 1366 * @link_id: the link ID for the AP MLD link sending this beacon 1367 * @head: head portion of beacon (before TIM IE) 1368 * or %NULL if not changed 1369 * @tail: tail portion of beacon (after TIM IE) 1370 * or %NULL if not changed 1371 * @head_len: length of @head 1372 * @tail_len: length of @tail 1373 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL 1374 * @beacon_ies_len: length of beacon_ies in octets 1375 * @proberesp_ies: extra information element(s) to add into Probe Response 1376 * frames or %NULL 1377 * @proberesp_ies_len: length of proberesp_ies in octets 1378 * @assocresp_ies: extra information element(s) to add into (Re)Association 1379 * Response frames or %NULL 1380 * @assocresp_ies_len: length of assocresp_ies in octets 1381 * @probe_resp_len: length of probe response template (@probe_resp) 1382 * @probe_resp: probe response template (AP mode only) 1383 * @mbssid_ies: multiple BSSID elements 1384 * @rnr_ies: reduced neighbor report elements 1385 * @ftm_responder: enable FTM responder functionality; -1 for no change 1386 * (which also implies no change in LCI/civic location data) 1387 * @lci: Measurement Report element content, starting with Measurement Token 1388 * (measurement type 8) 1389 * @civicloc: Measurement Report element content, starting with Measurement 1390 * Token (measurement type 11) 1391 * @lci_len: LCI data length 1392 * @civicloc_len: Civic location data length 1393 * @he_bss_color: BSS Color settings 1394 * @he_bss_color_valid: indicates whether bss color 1395 * attribute is present in beacon data or not. 1396 */ 1397 struct cfg80211_beacon_data { 1398 unsigned int link_id; 1399 1400 const u8 *head, *tail; 1401 const u8 *beacon_ies; 1402 const u8 *proberesp_ies; 1403 const u8 *assocresp_ies; 1404 const u8 *probe_resp; 1405 const u8 *lci; 1406 const u8 *civicloc; 1407 struct cfg80211_mbssid_elems *mbssid_ies; 1408 struct cfg80211_rnr_elems *rnr_ies; 1409 s8 ftm_responder; 1410 1411 size_t head_len, tail_len; 1412 size_t beacon_ies_len; 1413 size_t proberesp_ies_len; 1414 size_t assocresp_ies_len; 1415 size_t probe_resp_len; 1416 size_t lci_len; 1417 size_t civicloc_len; 1418 struct cfg80211_he_bss_color he_bss_color; 1419 bool he_bss_color_valid; 1420 }; 1421 1422 struct mac_address { 1423 u8 addr[ETH_ALEN]; 1424 }; 1425 1426 /** 1427 * struct cfg80211_acl_data - Access control list data 1428 * 1429 * @acl_policy: ACL policy to be applied on the station's 1430 * entry specified by mac_addr 1431 * @n_acl_entries: Number of MAC address entries passed 1432 * @mac_addrs: List of MAC addresses of stations to be used for ACL 1433 */ 1434 struct cfg80211_acl_data { 1435 enum nl80211_acl_policy acl_policy; 1436 int n_acl_entries; 1437 1438 /* Keep it last */ 1439 struct mac_address mac_addrs[] __counted_by(n_acl_entries); 1440 }; 1441 1442 /** 1443 * struct cfg80211_fils_discovery - FILS discovery parameters from 1444 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail. 1445 * 1446 * @update: Set to true if the feature configuration should be updated. 1447 * @min_interval: Minimum packet interval in TUs (0 - 10000) 1448 * @max_interval: Maximum packet interval in TUs (0 - 10000) 1449 * @tmpl_len: Template length 1450 * @tmpl: Template data for FILS discovery frame including the action 1451 * frame headers. 1452 */ 1453 struct cfg80211_fils_discovery { 1454 bool update; 1455 u32 min_interval; 1456 u32 max_interval; 1457 size_t tmpl_len; 1458 const u8 *tmpl; 1459 }; 1460 1461 /** 1462 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe 1463 * response parameters in 6GHz. 1464 * 1465 * @update: Set to true if the feature configuration should be updated. 1466 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned 1467 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive 1468 * scanning 1469 * @tmpl_len: Template length 1470 * @tmpl: Template data for probe response 1471 */ 1472 struct cfg80211_unsol_bcast_probe_resp { 1473 bool update; 1474 u32 interval; 1475 size_t tmpl_len; 1476 const u8 *tmpl; 1477 }; 1478 1479 /** 1480 * struct cfg80211_s1g_short_beacon - S1G short beacon data. 1481 * 1482 * @update: Set to true if the feature configuration should be updated. 1483 * @short_head: Short beacon head. 1484 * @short_tail: Short beacon tail. 1485 * @short_head_len: Short beacon head len. 1486 * @short_tail_len: Short beacon tail len. 1487 */ 1488 struct cfg80211_s1g_short_beacon { 1489 bool update; 1490 const u8 *short_head; 1491 const u8 *short_tail; 1492 size_t short_head_len; 1493 size_t short_tail_len; 1494 }; 1495 1496 /** 1497 * struct cfg80211_ap_settings - AP configuration 1498 * 1499 * Used to configure an AP interface. 1500 * 1501 * @chandef: defines the channel to use 1502 * @beacon: beacon data 1503 * @beacon_interval: beacon interval 1504 * @dtim_period: DTIM period 1505 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from 1506 * user space) 1507 * @ssid_len: length of @ssid 1508 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames 1509 * @crypto: crypto settings 1510 * @privacy: the BSS uses privacy 1511 * @auth_type: Authentication type (algorithm) 1512 * @inactivity_timeout: time in seconds to determine station's inactivity. 1513 * @p2p_ctwindow: P2P CT Window 1514 * @p2p_opp_ps: P2P opportunistic PS 1515 * @acl: ACL configuration used by the drivers which has support for 1516 * MAC address based access control 1517 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG 1518 * networks. 1519 * @beacon_rate: bitrate to be used for beacons 1520 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled) 1521 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled) 1522 * @he_cap: HE capabilities (or %NULL if HE isn't enabled) 1523 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled) 1524 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled) 1525 * @uhr_oper: UHR operation (or %NULL if UHR isn't enabled) 1526 * @ht_required: stations must support HT 1527 * @vht_required: stations must support VHT 1528 * @twt_responder: Enable Target Wait Time 1529 * @he_required: stations must support HE 1530 * @sae_h2e_required: stations must support direct H2E technique in SAE 1531 * @flags: flags, as defined in &enum nl80211_ap_settings_flags 1532 * @he_obss_pd: OBSS Packet Detection settings 1533 * @he_oper: HE operation IE (or %NULL if HE isn't enabled) 1534 * @fils_discovery: FILS discovery transmission parameters 1535 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1536 * @mbssid_config: AP settings for multiple bssid 1537 * @s1g_long_beacon_period: S1G long beacon period 1538 * @s1g_short_beacon: S1G short beacon data 1539 */ 1540 struct cfg80211_ap_settings { 1541 struct cfg80211_chan_def chandef; 1542 1543 struct cfg80211_beacon_data beacon; 1544 1545 int beacon_interval, dtim_period; 1546 const u8 *ssid; 1547 size_t ssid_len; 1548 enum nl80211_hidden_ssid hidden_ssid; 1549 struct cfg80211_crypto_settings crypto; 1550 bool privacy; 1551 enum nl80211_auth_type auth_type; 1552 int inactivity_timeout; 1553 u8 p2p_ctwindow; 1554 bool p2p_opp_ps; 1555 const struct cfg80211_acl_data *acl; 1556 bool pbss; 1557 struct cfg80211_bitrate_mask beacon_rate; 1558 1559 const struct ieee80211_ht_cap *ht_cap; 1560 const struct ieee80211_vht_cap *vht_cap; 1561 const struct ieee80211_he_cap_elem *he_cap; 1562 const struct ieee80211_he_operation *he_oper; 1563 const struct ieee80211_eht_cap_elem *eht_cap; 1564 const struct ieee80211_eht_operation *eht_oper; 1565 const struct ieee80211_uhr_operation *uhr_oper; 1566 bool ht_required, vht_required, he_required, sae_h2e_required; 1567 bool twt_responder; 1568 u32 flags; 1569 struct ieee80211_he_obss_pd he_obss_pd; 1570 struct cfg80211_fils_discovery fils_discovery; 1571 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1572 struct cfg80211_mbssid_config mbssid_config; 1573 u8 s1g_long_beacon_period; 1574 struct cfg80211_s1g_short_beacon s1g_short_beacon; 1575 }; 1576 1577 1578 /** 1579 * struct cfg80211_ap_update - AP configuration update 1580 * 1581 * Subset of &struct cfg80211_ap_settings, for updating a running AP. 1582 * 1583 * @beacon: beacon data 1584 * @fils_discovery: FILS discovery transmission parameters 1585 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1586 * @s1g_short_beacon: S1G short beacon data 1587 */ 1588 struct cfg80211_ap_update { 1589 struct cfg80211_beacon_data beacon; 1590 struct cfg80211_fils_discovery fils_discovery; 1591 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1592 struct cfg80211_s1g_short_beacon s1g_short_beacon; 1593 }; 1594 1595 /** 1596 * struct cfg80211_csa_settings - channel switch settings 1597 * 1598 * Used for channel switch 1599 * 1600 * @chandef: defines the channel to use after the switch 1601 * @beacon_csa: beacon data while performing the switch 1602 * @counter_offsets_beacon: offsets of the counters within the beacon (tail) 1603 * @counter_offsets_presp: offsets of the counters within the probe response 1604 * @n_counter_offsets_beacon: number of csa counters the beacon (tail) 1605 * @n_counter_offsets_presp: number of csa counters in the probe response 1606 * @beacon_after: beacon data to be used on the new channel 1607 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1608 * @radar_required: whether radar detection is required on the new channel 1609 * @block_tx: whether transmissions should be blocked while changing 1610 * @count: number of beacons until switch 1611 * @link_id: defines the link on which channel switch is expected during 1612 * MLO. 0 in case of non-MLO. 1613 */ 1614 struct cfg80211_csa_settings { 1615 struct cfg80211_chan_def chandef; 1616 struct cfg80211_beacon_data beacon_csa; 1617 const u16 *counter_offsets_beacon; 1618 const u16 *counter_offsets_presp; 1619 unsigned int n_counter_offsets_beacon; 1620 unsigned int n_counter_offsets_presp; 1621 struct cfg80211_beacon_data beacon_after; 1622 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1623 bool radar_required; 1624 bool block_tx; 1625 u8 count; 1626 u8 link_id; 1627 }; 1628 1629 /** 1630 * struct cfg80211_color_change_settings - color change settings 1631 * 1632 * Used for bss color change 1633 * 1634 * @beacon_color_change: beacon data while performing the color countdown 1635 * @counter_offset_beacon: offsets of the counters within the beacon (tail) 1636 * @counter_offset_presp: offsets of the counters within the probe response 1637 * @beacon_next: beacon data to be used after the color change 1638 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1639 * @count: number of beacons until the color change 1640 * @color: the color used after the change 1641 * @link_id: defines the link on which color change is expected during MLO. 1642 * 0 in case of non-MLO. 1643 */ 1644 struct cfg80211_color_change_settings { 1645 struct cfg80211_beacon_data beacon_color_change; 1646 u16 counter_offset_beacon; 1647 u16 counter_offset_presp; 1648 struct cfg80211_beacon_data beacon_next; 1649 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1650 u8 count; 1651 u8 color; 1652 u8 link_id; 1653 }; 1654 1655 /** 1656 * struct iface_combination_params - input parameters for interface combinations 1657 * 1658 * Used to pass interface combination parameters 1659 * 1660 * @radio_idx: wiphy radio index or -1 for global 1661 * @num_different_channels: the number of different channels we want 1662 * to use for verification 1663 * @radar_detect: a bitmap where each bit corresponds to a channel 1664 * width where radar detection is needed, as in the definition of 1665 * &struct ieee80211_iface_combination.@radar_detect_widths 1666 * @iftype_num: array with the number of interfaces of each interface 1667 * type. The index is the interface type as specified in &enum 1668 * nl80211_iftype. 1669 * @new_beacon_int: set this to the beacon interval of a new interface 1670 * that's not operating yet, if such is to be checked as part of 1671 * the verification 1672 */ 1673 struct iface_combination_params { 1674 int radio_idx; 1675 int num_different_channels; 1676 u8 radar_detect; 1677 int iftype_num[NUM_NL80211_IFTYPES]; 1678 u32 new_beacon_int; 1679 }; 1680 1681 /** 1682 * enum station_parameters_apply_mask - station parameter values to apply 1683 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp) 1684 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability 1685 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state 1686 * 1687 * Not all station parameters have in-band "no change" signalling, 1688 * for those that don't these flags will are used. 1689 */ 1690 enum station_parameters_apply_mask { 1691 STATION_PARAM_APPLY_UAPSD = BIT(0), 1692 STATION_PARAM_APPLY_CAPABILITY = BIT(1), 1693 STATION_PARAM_APPLY_PLINK_STATE = BIT(2), 1694 }; 1695 1696 /** 1697 * struct sta_txpwr - station txpower configuration 1698 * 1699 * Used to configure txpower for station. 1700 * 1701 * @power: tx power (in dBm) to be used for sending data traffic. If tx power 1702 * is not provided, the default per-interface tx power setting will be 1703 * overriding. Driver should be picking up the lowest tx power, either tx 1704 * power per-interface or per-station. 1705 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power 1706 * will be less than or equal to specified from userspace, whereas if TPC 1707 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power. 1708 * NL80211_TX_POWER_FIXED is not a valid configuration option for 1709 * per peer TPC. 1710 */ 1711 struct sta_txpwr { 1712 s16 power; 1713 enum nl80211_tx_power_setting type; 1714 }; 1715 1716 /** 1717 * struct link_station_parameters - link station parameters 1718 * 1719 * Used to change and create a new link station. 1720 * 1721 * @mld_mac: MAC address of the station 1722 * @link_id: the link id (-1 for non-MLD station) 1723 * @link_mac: MAC address of the link 1724 * @supported_rates: supported rates in IEEE 802.11 format 1725 * (or NULL for no change) 1726 * @supported_rates_len: number of supported rates 1727 * @ht_capa: HT capabilities of station 1728 * @vht_capa: VHT capabilities of station 1729 * @opmode_notif: operating mode field from Operating Mode Notification 1730 * @opmode_notif_used: information if operating mode field is used 1731 * @he_capa: HE capabilities of station 1732 * @he_capa_len: the length of the HE capabilities 1733 * @txpwr: transmit power for an associated station 1734 * @txpwr_set: txpwr field is set 1735 * @he_6ghz_capa: HE 6 GHz Band capabilities of station 1736 * @eht_capa: EHT capabilities of station 1737 * @eht_capa_len: the length of the EHT capabilities 1738 * @s1g_capa: S1G capabilities of station 1739 * @uhr_capa: UHR capabilities of the station 1740 * @uhr_capa_len: the length of the UHR capabilities 1741 */ 1742 struct link_station_parameters { 1743 const u8 *mld_mac; 1744 int link_id; 1745 const u8 *link_mac; 1746 const u8 *supported_rates; 1747 u8 supported_rates_len; 1748 const struct ieee80211_ht_cap *ht_capa; 1749 const struct ieee80211_vht_cap *vht_capa; 1750 u8 opmode_notif; 1751 bool opmode_notif_used; 1752 const struct ieee80211_he_cap_elem *he_capa; 1753 u8 he_capa_len; 1754 struct sta_txpwr txpwr; 1755 bool txpwr_set; 1756 const struct ieee80211_he_6ghz_capa *he_6ghz_capa; 1757 const struct ieee80211_eht_cap_elem *eht_capa; 1758 u8 eht_capa_len; 1759 const struct ieee80211_s1g_cap *s1g_capa; 1760 const struct ieee80211_uhr_cap *uhr_capa; 1761 u8 uhr_capa_len; 1762 }; 1763 1764 /** 1765 * struct link_station_del_parameters - link station deletion parameters 1766 * 1767 * Used to delete a link station entry (or all stations). 1768 * 1769 * @mld_mac: MAC address of the station 1770 * @link_id: the link id 1771 */ 1772 struct link_station_del_parameters { 1773 const u8 *mld_mac; 1774 u32 link_id; 1775 }; 1776 1777 /** 1778 * struct cfg80211_ttlm_params: TID to link mapping parameters 1779 * 1780 * Used for setting a TID to link mapping. 1781 * 1782 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314 1783 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1784 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314 1785 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1786 */ 1787 struct cfg80211_ttlm_params { 1788 u16 dlink[8]; 1789 u16 ulink[8]; 1790 }; 1791 1792 /** 1793 * struct station_parameters - station parameters 1794 * 1795 * Used to change and create a new station. 1796 * 1797 * @vlan: vlan interface station should belong to 1798 * @sta_flags_mask: station flags that changed 1799 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1800 * @sta_flags_set: station flags values 1801 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1802 * @listen_interval: listen interval or -1 for no change 1803 * @aid: AID or zero for no change 1804 * @vlan_id: VLAN ID for station (if nonzero) 1805 * @peer_aid: mesh peer AID or zero for no change 1806 * @plink_action: plink action to take 1807 * @plink_state: set the peer link state for a station 1808 * @uapsd_queues: bitmap of queues configured for uapsd. same format 1809 * as the AC bitmap in the QoS info field 1810 * @max_sp: max Service Period. same format as the MAX_SP in the 1811 * QoS info field (but already shifted down) 1812 * @sta_modify_mask: bitmap indicating which parameters changed 1813 * (for those that don't have a natural "no change" value), 1814 * see &enum station_parameters_apply_mask 1815 * @local_pm: local link-specific mesh power save mode (no change when set 1816 * to unknown) 1817 * @capability: station capability 1818 * @ext_capab: extended capabilities of the station 1819 * @ext_capab_len: number of extended capabilities 1820 * @supported_channels: supported channels in IEEE 802.11 format 1821 * @supported_channels_len: number of supported channels 1822 * @supported_oper_classes: supported oper classes in IEEE 802.11 format 1823 * @supported_oper_classes_len: number of supported operating classes 1824 * @support_p2p_ps: information if station supports P2P PS mechanism 1825 * @airtime_weight: airtime scheduler weight for this station 1826 * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is 1827 * present/updated 1828 * @eml_cap: EML capabilities of this station 1829 * @link_sta_params: link related params. 1830 * @epp_peer: EPP peer indication 1831 */ 1832 struct station_parameters { 1833 struct net_device *vlan; 1834 u32 sta_flags_mask, sta_flags_set; 1835 u32 sta_modify_mask; 1836 int listen_interval; 1837 u16 aid; 1838 u16 vlan_id; 1839 u16 peer_aid; 1840 u8 plink_action; 1841 u8 plink_state; 1842 u8 uapsd_queues; 1843 u8 max_sp; 1844 enum nl80211_mesh_power_mode local_pm; 1845 u16 capability; 1846 const u8 *ext_capab; 1847 u8 ext_capab_len; 1848 const u8 *supported_channels; 1849 u8 supported_channels_len; 1850 const u8 *supported_oper_classes; 1851 u8 supported_oper_classes_len; 1852 int support_p2p_ps; 1853 u16 airtime_weight; 1854 bool eml_cap_present; 1855 u16 eml_cap; 1856 struct link_station_parameters link_sta_params; 1857 bool epp_peer; 1858 }; 1859 1860 /** 1861 * struct station_del_parameters - station deletion parameters 1862 * 1863 * Used to delete a station entry (or all stations). 1864 * 1865 * @mac: MAC address of the station to remove or NULL to remove all stations 1866 * @subtype: Management frame subtype to use for indicating removal 1867 * (10 = Disassociation, 12 = Deauthentication) 1868 * @reason_code: Reason code for the Disassociation/Deauthentication frame 1869 * @link_id: Link ID indicating a link that stations to be flushed must be 1870 * using; valid only for MLO, but can also be -1 for MLO to really 1871 * remove all stations. 1872 */ 1873 struct station_del_parameters { 1874 const u8 *mac; 1875 u8 subtype; 1876 u16 reason_code; 1877 int link_id; 1878 }; 1879 1880 /** 1881 * enum cfg80211_station_type - the type of station being modified 1882 * @CFG80211_STA_AP_CLIENT: client of an AP interface 1883 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still 1884 * unassociated (update properties for this type of client is permitted) 1885 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has 1886 * the AP MLME in the device 1887 * @CFG80211_STA_AP_STA: AP station on managed interface 1888 * @CFG80211_STA_IBSS: IBSS station 1889 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry 1890 * while TDLS setup is in progress, it moves out of this state when 1891 * being marked authorized; use this only if TDLS with external setup is 1892 * supported/used) 1893 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active 1894 * entry that is operating, has been marked authorized by userspace) 1895 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed) 1896 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed) 1897 */ 1898 enum cfg80211_station_type { 1899 CFG80211_STA_AP_CLIENT, 1900 CFG80211_STA_AP_CLIENT_UNASSOC, 1901 CFG80211_STA_AP_MLME_CLIENT, 1902 CFG80211_STA_AP_STA, 1903 CFG80211_STA_IBSS, 1904 CFG80211_STA_TDLS_PEER_SETUP, 1905 CFG80211_STA_TDLS_PEER_ACTIVE, 1906 CFG80211_STA_MESH_PEER_KERNEL, 1907 CFG80211_STA_MESH_PEER_USER, 1908 }; 1909 1910 /** 1911 * cfg80211_check_station_change - validate parameter changes 1912 * @wiphy: the wiphy this operates on 1913 * @params: the new parameters for a station 1914 * @statype: the type of station being modified 1915 * 1916 * Utility function for the @change_station driver method. Call this function 1917 * with the appropriate station type looking up the station (and checking that 1918 * it exists). It will verify whether the station change is acceptable. 1919 * 1920 * Return: 0 if the change is acceptable, otherwise an error code. Note that 1921 * it may modify the parameters for backward compatibility reasons, so don't 1922 * use them before calling this. 1923 */ 1924 int cfg80211_check_station_change(struct wiphy *wiphy, 1925 struct station_parameters *params, 1926 enum cfg80211_station_type statype); 1927 1928 /** 1929 * enum rate_info_flags - bitrate info flags 1930 * 1931 * Used by the driver to indicate the specific rate transmission 1932 * type for 802.11n transmissions. 1933 * 1934 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS 1935 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS 1936 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval 1937 * @RATE_INFO_FLAGS_DMG: 60GHz MCS 1938 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information 1939 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode 1940 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS 1941 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information 1942 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS 1943 * @RATE_INFO_FLAGS_UHR_MCS: UHR MCS information 1944 * @RATE_INFO_FLAGS_UHR_ELR_MCS: UHR ELR MCS was used 1945 * (set together with @RATE_INFO_FLAGS_UHR_MCS) 1946 * @RATE_INFO_FLAGS_UHR_IM: UHR Interference Mitigation 1947 * was used 1948 */ 1949 enum rate_info_flags { 1950 RATE_INFO_FLAGS_MCS = BIT(0), 1951 RATE_INFO_FLAGS_VHT_MCS = BIT(1), 1952 RATE_INFO_FLAGS_SHORT_GI = BIT(2), 1953 RATE_INFO_FLAGS_DMG = BIT(3), 1954 RATE_INFO_FLAGS_HE_MCS = BIT(4), 1955 RATE_INFO_FLAGS_EDMG = BIT(5), 1956 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6), 1957 RATE_INFO_FLAGS_EHT_MCS = BIT(7), 1958 RATE_INFO_FLAGS_S1G_MCS = BIT(8), 1959 RATE_INFO_FLAGS_UHR_MCS = BIT(9), 1960 RATE_INFO_FLAGS_UHR_ELR_MCS = BIT(10), 1961 RATE_INFO_FLAGS_UHR_IM = BIT(11), 1962 }; 1963 1964 /** 1965 * enum rate_info_bw - rate bandwidth information 1966 * 1967 * Used by the driver to indicate the rate bandwidth. 1968 * 1969 * @RATE_INFO_BW_5: 5 MHz bandwidth 1970 * @RATE_INFO_BW_10: 10 MHz bandwidth 1971 * @RATE_INFO_BW_20: 20 MHz bandwidth 1972 * @RATE_INFO_BW_40: 40 MHz bandwidth 1973 * @RATE_INFO_BW_80: 80 MHz bandwidth 1974 * @RATE_INFO_BW_160: 160 MHz bandwidth 1975 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation 1976 * @RATE_INFO_BW_320: 320 MHz bandwidth 1977 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT/UHR RU allocation 1978 * @RATE_INFO_BW_1: 1 MHz bandwidth 1979 * @RATE_INFO_BW_2: 2 MHz bandwidth 1980 * @RATE_INFO_BW_4: 4 MHz bandwidth 1981 * @RATE_INFO_BW_8: 8 MHz bandwidth 1982 * @RATE_INFO_BW_16: 16 MHz bandwidth 1983 */ 1984 enum rate_info_bw { 1985 RATE_INFO_BW_20 = 0, 1986 RATE_INFO_BW_5, 1987 RATE_INFO_BW_10, 1988 RATE_INFO_BW_40, 1989 RATE_INFO_BW_80, 1990 RATE_INFO_BW_160, 1991 RATE_INFO_BW_HE_RU, 1992 RATE_INFO_BW_320, 1993 RATE_INFO_BW_EHT_RU, 1994 RATE_INFO_BW_1, 1995 RATE_INFO_BW_2, 1996 RATE_INFO_BW_4, 1997 RATE_INFO_BW_8, 1998 RATE_INFO_BW_16, 1999 }; 2000 2001 /** 2002 * struct rate_info - bitrate information 2003 * 2004 * Information about a receiving or transmitting bitrate 2005 * 2006 * @flags: bitflag of flags from &enum rate_info_flags 2007 * @legacy: bitrate in 100kbit/s for 802.11abg 2008 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G/UHR rate 2009 * @nss: number of streams (VHT & HE only) 2010 * @bw: bandwidth (from &enum rate_info_bw) 2011 * @he_gi: HE guard interval (from &enum nl80211_he_gi) 2012 * @he_dcm: HE DCM value 2013 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc, 2014 * only valid if bw is %RATE_INFO_BW_HE_RU) 2015 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4) 2016 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi) 2017 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc, 2018 * only valid if bw is %RATE_INFO_BW_EHT_RU) 2019 */ 2020 struct rate_info { 2021 u16 flags; 2022 u16 legacy; 2023 u8 mcs; 2024 u8 nss; 2025 u8 bw; 2026 u8 he_gi; 2027 u8 he_dcm; 2028 u8 he_ru_alloc; 2029 u8 n_bonded_ch; 2030 u8 eht_gi; 2031 u8 eht_ru_alloc; 2032 }; 2033 2034 /** 2035 * enum bss_param_flags - bitrate info flags 2036 * 2037 * Used by the driver to indicate the specific rate transmission 2038 * type for 802.11n transmissions. 2039 * 2040 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled 2041 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled 2042 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled 2043 */ 2044 enum bss_param_flags { 2045 BSS_PARAM_FLAGS_CTS_PROT = BIT(0), 2046 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1), 2047 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2), 2048 }; 2049 2050 /** 2051 * struct sta_bss_parameters - BSS parameters for the attached station 2052 * 2053 * Information about the currently associated BSS 2054 * 2055 * @flags: bitflag of flags from &enum bss_param_flags 2056 * @dtim_period: DTIM period for the BSS 2057 * @beacon_interval: beacon interval 2058 */ 2059 struct sta_bss_parameters { 2060 u8 flags; 2061 u8 dtim_period; 2062 u16 beacon_interval; 2063 }; 2064 2065 /** 2066 * struct cfg80211_txq_stats - TXQ statistics for this TID 2067 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to 2068 * indicate the relevant values in this struct are filled 2069 * @backlog_bytes: total number of bytes currently backlogged 2070 * @backlog_packets: total number of packets currently backlogged 2071 * @flows: number of new flows seen 2072 * @drops: total number of packets dropped 2073 * @ecn_marks: total number of packets marked with ECN CE 2074 * @overlimit: number of drops due to queue space overflow 2075 * @overmemory: number of drops due to memory limit overflow 2076 * @collisions: number of hash collisions 2077 * @tx_bytes: total number of bytes dequeued 2078 * @tx_packets: total number of packets dequeued 2079 * @max_flows: maximum number of flows supported 2080 */ 2081 struct cfg80211_txq_stats { 2082 u32 filled; 2083 u32 backlog_bytes; 2084 u32 backlog_packets; 2085 u32 flows; 2086 u32 drops; 2087 u32 ecn_marks; 2088 u32 overlimit; 2089 u32 overmemory; 2090 u32 collisions; 2091 u32 tx_bytes; 2092 u32 tx_packets; 2093 u32 max_flows; 2094 }; 2095 2096 /** 2097 * struct cfg80211_tid_stats - per-TID statistics 2098 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to 2099 * indicate the relevant values in this struct are filled 2100 * @rx_msdu: number of received MSDUs 2101 * @tx_msdu: number of (attempted) transmitted MSDUs 2102 * @tx_msdu_retries: number of retries (not counting the first) for 2103 * transmitted MSDUs 2104 * @tx_msdu_failed: number of failed transmitted MSDUs 2105 * @txq_stats: TXQ statistics 2106 */ 2107 struct cfg80211_tid_stats { 2108 u32 filled; 2109 u64 rx_msdu; 2110 u64 tx_msdu; 2111 u64 tx_msdu_retries; 2112 u64 tx_msdu_failed; 2113 struct cfg80211_txq_stats txq_stats; 2114 }; 2115 2116 #define IEEE80211_MAX_CHAINS 4 2117 2118 /** 2119 * struct link_station_info - link station information 2120 * 2121 * Link station information filled by driver for get_station() and 2122 * dump_station(). 2123 * @filled: bit flag of flags using the bits of &enum nl80211_sta_info to 2124 * indicate the relevant values in this struct for them 2125 * @connected_time: time(in secs) since a link of station is last connected 2126 * @inactive_time: time since last activity for link station(tx/rx) 2127 * in milliseconds 2128 * @assoc_at: bootime (ns) of the last association of link of station 2129 * @rx_bytes: bytes (size of MPDUs) received from this link of station 2130 * @tx_bytes: bytes (size of MPDUs) transmitted to this link of station 2131 * @signal: The signal strength, type depends on the wiphy's signal_type. 2132 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2133 * @signal_avg: Average signal strength, type depends on the wiphy's 2134 * signal_type. For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_ 2135 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg 2136 * @chain_signal: per-chain signal strength of last received packet in dBm 2137 * @chain_signal_avg: per-chain signal strength average in dBm 2138 * @txrate: current unicast bitrate from this link of station 2139 * @rxrate: current unicast bitrate to this link of station 2140 * @rx_packets: packets (MSDUs & MMPDUs) received from this link of station 2141 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this link of station 2142 * @tx_retries: cumulative retry counts (MPDUs) for this link of station 2143 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK) 2144 * @rx_dropped_misc: Dropped for un-specified reason. 2145 * @bss_param: current BSS parameters 2146 * @beacon_loss_count: Number of times beacon loss event has triggered. 2147 * @expected_throughput: expected throughput in kbps (including 802.11 headers) 2148 * towards this station. 2149 * @rx_beacon: number of beacons received from this peer 2150 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received 2151 * from this peer 2152 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer 2153 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer 2154 * @airtime_weight: current airtime scheduling weight 2155 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last 2156 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs. 2157 * Note that this doesn't use the @filled bit, but is used if non-NULL. 2158 * @ack_signal: signal strength (in dBm) of the last ACK frame. 2159 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has 2160 * been sent. 2161 * @rx_mpdu_count: number of MPDUs received from this station 2162 * @fcs_err_count: number of packets (MPDUs) received from this station with 2163 * an FCS error. This counter should be incremented only when TA of the 2164 * received packet with an FCS error matches the peer MAC address. 2165 * @addr: For MLO STA connection, filled with address of the link of station. 2166 */ 2167 struct link_station_info { 2168 u64 filled; 2169 u32 connected_time; 2170 u32 inactive_time; 2171 u64 assoc_at; 2172 u64 rx_bytes; 2173 u64 tx_bytes; 2174 s8 signal; 2175 s8 signal_avg; 2176 2177 u8 chains; 2178 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2179 s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; 2180 2181 struct rate_info txrate; 2182 struct rate_info rxrate; 2183 u32 rx_packets; 2184 u32 tx_packets; 2185 u32 tx_retries; 2186 u32 tx_failed; 2187 u32 rx_dropped_misc; 2188 struct sta_bss_parameters bss_param; 2189 2190 u32 beacon_loss_count; 2191 2192 u32 expected_throughput; 2193 2194 u64 tx_duration; 2195 u64 rx_duration; 2196 u64 rx_beacon; 2197 u8 rx_beacon_signal_avg; 2198 2199 u16 airtime_weight; 2200 2201 s8 ack_signal; 2202 s8 avg_ack_signal; 2203 struct cfg80211_tid_stats *pertid; 2204 2205 u32 rx_mpdu_count; 2206 u32 fcs_err_count; 2207 2208 u8 addr[ETH_ALEN] __aligned(2); 2209 }; 2210 2211 /** 2212 * struct station_info - station information 2213 * 2214 * Station information filled by driver for get_station() and dump_station. 2215 * 2216 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to 2217 * indicate the relevant values in this struct for them 2218 * @connected_time: time(in secs) since a station is last connected 2219 * @inactive_time: time since last station activity (tx/rx) in milliseconds 2220 * @assoc_at: bootime (ns) of the last association 2221 * @rx_bytes: bytes (size of MPDUs) received from this station 2222 * @tx_bytes: bytes (size of MPDUs) transmitted to this station 2223 * @signal: The signal strength, type depends on the wiphy's signal_type. 2224 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2225 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type. 2226 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2227 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg 2228 * @chain_signal: per-chain signal strength of last received packet in dBm 2229 * @chain_signal_avg: per-chain signal strength average in dBm 2230 * @txrate: current unicast bitrate from this station 2231 * @rxrate: current unicast bitrate to this station 2232 * @rx_packets: packets (MSDUs & MMPDUs) received from this station 2233 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station 2234 * @tx_retries: cumulative retry counts (MPDUs) 2235 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK) 2236 * @rx_dropped_misc: Dropped for un-specified reason. 2237 * @bss_param: current BSS parameters 2238 * @generation: generation number for nl80211 dumps. 2239 * This number should increase every time the list of stations 2240 * changes, i.e. when a station is added or removed, so that 2241 * userspace can tell whether it got a consistent snapshot. 2242 * @beacon_loss_count: Number of times beacon loss event has triggered. 2243 * @assoc_req_ies: IEs from (Re)Association Request. 2244 * This is used only when in AP mode with drivers that do not use 2245 * user space MLME/SME implementation. The information is provided for 2246 * the cfg80211_new_sta() calls to notify user space of the IEs. 2247 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets. 2248 * @sta_flags: station flags mask & values 2249 * @t_offset: Time offset of the station relative to this host. 2250 * @llid: mesh local link id 2251 * @plid: mesh peer link id 2252 * @plink_state: mesh peer link state 2253 * @connected_to_gate: true if mesh STA has a path to mesh gate 2254 * @connected_to_as: true if mesh STA has a path to authentication server 2255 * @airtime_link_metric: mesh airtime link metric. 2256 * @local_pm: local mesh STA power save mode 2257 * @peer_pm: peer mesh STA power save mode 2258 * @nonpeer_pm: non-peer mesh STA power save mode 2259 * @expected_throughput: expected throughput in kbps (including 802.11 headers) 2260 * towards this station. 2261 * @rx_beacon: number of beacons received from this peer 2262 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received 2263 * from this peer 2264 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer 2265 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer 2266 * @airtime_weight: current airtime scheduling weight 2267 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last 2268 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs. 2269 * Note that this doesn't use the @filled bit, but is used if non-NULL. 2270 * @ack_signal: signal strength (in dBm) of the last ACK frame. 2271 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has 2272 * been sent. 2273 * @rx_mpdu_count: number of MPDUs received from this station 2274 * @fcs_err_count: number of packets (MPDUs) received from this station with 2275 * an FCS error. This counter should be incremented only when TA of the 2276 * received packet with an FCS error matches the peer MAC address. 2277 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled 2278 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP 2279 * MLD's MLME/SME is offload to driver. Drivers won't fill this 2280 * information in cfg80211_del_sta_sinfo(), get_station() and 2281 * dump_station() callbacks. 2282 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station 2283 * completed (re)association. This information filled for both MLO 2284 * and non-MLO STA connections when the AP affiliated with an MLD. 2285 * @mld_addr: For MLO STA connection, filled with MLD address of the station. 2286 * For non-MLO STA connection, filled with all zeros. 2287 * @assoc_resp_ies: IEs from (Re)Association Response. 2288 * This is used only when in AP mode with drivers that do not use user 2289 * space MLME/SME implementation. The information is provided only for the 2290 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't 2291 * fill this information in cfg80211_del_sta_sinfo(), get_station() and 2292 * dump_station() callbacks. User space needs this information to determine 2293 * the accepted and rejected affiliated links of the connected station. 2294 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets. 2295 * @valid_links: bitmap of valid links, or 0 for non-MLO. Drivers fill this 2296 * information in cfg80211_new_sta(), cfg80211_del_sta_sinfo(), 2297 * get_station() and dump_station() callbacks. 2298 * @links: reference to Link sta entries for MLO STA, all link specific 2299 * information is accessed through links[link_id]. 2300 */ 2301 struct station_info { 2302 u64 filled; 2303 u32 connected_time; 2304 u32 inactive_time; 2305 u64 assoc_at; 2306 u64 rx_bytes; 2307 u64 tx_bytes; 2308 s8 signal; 2309 s8 signal_avg; 2310 2311 u8 chains; 2312 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2313 s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; 2314 2315 struct rate_info txrate; 2316 struct rate_info rxrate; 2317 u32 rx_packets; 2318 u32 tx_packets; 2319 u32 tx_retries; 2320 u32 tx_failed; 2321 u32 rx_dropped_misc; 2322 struct sta_bss_parameters bss_param; 2323 struct nl80211_sta_flag_update sta_flags; 2324 2325 int generation; 2326 2327 u32 beacon_loss_count; 2328 2329 const u8 *assoc_req_ies; 2330 size_t assoc_req_ies_len; 2331 2332 s64 t_offset; 2333 u16 llid; 2334 u16 plid; 2335 u8 plink_state; 2336 u8 connected_to_gate; 2337 u8 connected_to_as; 2338 u32 airtime_link_metric; 2339 enum nl80211_mesh_power_mode local_pm; 2340 enum nl80211_mesh_power_mode peer_pm; 2341 enum nl80211_mesh_power_mode nonpeer_pm; 2342 2343 u32 expected_throughput; 2344 2345 u16 airtime_weight; 2346 2347 s8 ack_signal; 2348 s8 avg_ack_signal; 2349 struct cfg80211_tid_stats *pertid; 2350 2351 u64 tx_duration; 2352 u64 rx_duration; 2353 u64 rx_beacon; 2354 u8 rx_beacon_signal_avg; 2355 2356 u32 rx_mpdu_count; 2357 u32 fcs_err_count; 2358 2359 bool mlo_params_valid; 2360 u8 assoc_link_id; 2361 u8 mld_addr[ETH_ALEN] __aligned(2); 2362 const u8 *assoc_resp_ies; 2363 size_t assoc_resp_ies_len; 2364 2365 u16 valid_links; 2366 struct link_station_info *links[IEEE80211_MLD_MAX_NUM_LINKS]; 2367 }; 2368 2369 /** 2370 * struct cfg80211_sar_sub_specs - sub specs limit 2371 * @power: power limitation in 0.25dbm 2372 * @freq_range_index: index the power limitation applies to 2373 */ 2374 struct cfg80211_sar_sub_specs { 2375 s32 power; 2376 u32 freq_range_index; 2377 }; 2378 2379 /** 2380 * struct cfg80211_sar_specs - sar limit specs 2381 * @type: it's set with power in 0.25dbm or other types 2382 * @num_sub_specs: number of sar sub specs 2383 * @sub_specs: memory to hold the sar sub specs 2384 */ 2385 struct cfg80211_sar_specs { 2386 enum nl80211_sar_type type; 2387 u32 num_sub_specs; 2388 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs); 2389 }; 2390 2391 2392 /** 2393 * struct cfg80211_sar_freq_ranges - sar frequency ranges 2394 * @start_freq: start range edge frequency 2395 * @end_freq: end range edge frequency 2396 */ 2397 struct cfg80211_sar_freq_ranges { 2398 u32 start_freq; 2399 u32 end_freq; 2400 }; 2401 2402 /** 2403 * struct cfg80211_sar_capa - sar limit capability 2404 * @type: it's set via power in 0.25dbm or other types 2405 * @num_freq_ranges: number of frequency ranges 2406 * @freq_ranges: memory to hold the freq ranges. 2407 * 2408 * Note: WLAN driver may append new ranges or split an existing 2409 * range to small ones and then append them. 2410 */ 2411 struct cfg80211_sar_capa { 2412 enum nl80211_sar_type type; 2413 u32 num_freq_ranges; 2414 const struct cfg80211_sar_freq_ranges *freq_ranges; 2415 }; 2416 2417 #if IS_ENABLED(CONFIG_CFG80211) 2418 /** 2419 * cfg80211_get_station - retrieve information about a given station 2420 * @dev: the device where the station is supposed to be connected to 2421 * @mac_addr: the mac address of the station of interest 2422 * @sinfo: pointer to the structure to fill with the information 2423 * 2424 * Return: 0 on success and sinfo is filled with the available information 2425 * otherwise returns a negative error code and the content of sinfo has to be 2426 * considered undefined. 2427 */ 2428 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2429 struct station_info *sinfo); 2430 #else 2431 static inline int cfg80211_get_station(struct net_device *dev, 2432 const u8 *mac_addr, 2433 struct station_info *sinfo) 2434 { 2435 return -ENOENT; 2436 } 2437 #endif 2438 2439 /** 2440 * enum monitor_flags - monitor flags 2441 * 2442 * Monitor interface configuration flags. Note that these must be the bits 2443 * according to the nl80211 flags. 2444 * 2445 * @MONITOR_FLAG_CHANGED: set if the flags were changed 2446 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS 2447 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP 2448 * @MONITOR_FLAG_CONTROL: pass control frames 2449 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering 2450 * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused 2451 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address 2452 * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames 2453 */ 2454 enum monitor_flags { 2455 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID), 2456 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL), 2457 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL), 2458 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL), 2459 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS), 2460 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES), 2461 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE), 2462 MONITOR_FLAG_SKIP_TX = BIT(NL80211_MNTR_FLAG_SKIP_TX), 2463 }; 2464 2465 /** 2466 * enum mpath_info_flags - mesh path information flags 2467 * 2468 * Used by the driver to indicate which info in &struct mpath_info it has filled 2469 * in during get_station() or dump_station(). 2470 * 2471 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled 2472 * @MPATH_INFO_SN: @sn filled 2473 * @MPATH_INFO_METRIC: @metric filled 2474 * @MPATH_INFO_EXPTIME: @exptime filled 2475 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled 2476 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled 2477 * @MPATH_INFO_FLAGS: @flags filled 2478 * @MPATH_INFO_HOP_COUNT: @hop_count filled 2479 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled 2480 */ 2481 enum mpath_info_flags { 2482 MPATH_INFO_FRAME_QLEN = BIT(0), 2483 MPATH_INFO_SN = BIT(1), 2484 MPATH_INFO_METRIC = BIT(2), 2485 MPATH_INFO_EXPTIME = BIT(3), 2486 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4), 2487 MPATH_INFO_DISCOVERY_RETRIES = BIT(5), 2488 MPATH_INFO_FLAGS = BIT(6), 2489 MPATH_INFO_HOP_COUNT = BIT(7), 2490 MPATH_INFO_PATH_CHANGE = BIT(8), 2491 }; 2492 2493 /** 2494 * struct mpath_info - mesh path information 2495 * 2496 * Mesh path information filled by driver for get_mpath() and dump_mpath(). 2497 * 2498 * @filled: bitfield of flags from &enum mpath_info_flags 2499 * @frame_qlen: number of queued frames for this destination 2500 * @sn: target sequence number 2501 * @metric: metric (cost) of this mesh path 2502 * @exptime: expiration time for the mesh path from now, in msecs 2503 * @flags: mesh path flags from &enum mesh_path_flags 2504 * @discovery_timeout: total mesh path discovery timeout, in msecs 2505 * @discovery_retries: mesh path discovery retries 2506 * @generation: generation number for nl80211 dumps. 2507 * This number should increase every time the list of mesh paths 2508 * changes, i.e. when a station is added or removed, so that 2509 * userspace can tell whether it got a consistent snapshot. 2510 * @hop_count: hops to destination 2511 * @path_change_count: total number of path changes to destination 2512 */ 2513 struct mpath_info { 2514 u32 filled; 2515 u32 frame_qlen; 2516 u32 sn; 2517 u32 metric; 2518 u32 exptime; 2519 u32 discovery_timeout; 2520 u8 discovery_retries; 2521 u8 flags; 2522 u8 hop_count; 2523 u32 path_change_count; 2524 2525 int generation; 2526 }; 2527 2528 /** 2529 * enum wiphy_bss_param_flags - bit positions for supported bss parameters. 2530 * 2531 * @WIPHY_BSS_PARAM_CTS_PROT: support changing CTS protection. 2532 * @WIPHY_BSS_PARAM_SHORT_PREAMBLE: support changing short preamble usage. 2533 * @WIPHY_BSS_PARAM_SHORT_SLOT_TIME: support changing short slot time usage. 2534 * @WIPHY_BSS_PARAM_BASIC_RATES: support reconfiguring basic rates. 2535 * @WIPHY_BSS_PARAM_AP_ISOLATE: support changing AP isolation. 2536 * @WIPHY_BSS_PARAM_HT_OPMODE: support changing HT operating mode. 2537 * @WIPHY_BSS_PARAM_P2P_CTWINDOW: support reconfiguring ctwindow. 2538 * @WIPHY_BSS_PARAM_P2P_OPPPS: support changing P2P opportunistic power-save. 2539 */ 2540 enum wiphy_bss_param_flags { 2541 WIPHY_BSS_PARAM_CTS_PROT = BIT(0), 2542 WIPHY_BSS_PARAM_SHORT_PREAMBLE = BIT(1), 2543 WIPHY_BSS_PARAM_SHORT_SLOT_TIME = BIT(2), 2544 WIPHY_BSS_PARAM_BASIC_RATES = BIT(3), 2545 WIPHY_BSS_PARAM_AP_ISOLATE = BIT(4), 2546 WIPHY_BSS_PARAM_HT_OPMODE = BIT(5), 2547 WIPHY_BSS_PARAM_P2P_CTWINDOW = BIT(6), 2548 WIPHY_BSS_PARAM_P2P_OPPPS = BIT(7), 2549 }; 2550 2551 /** 2552 * struct bss_parameters - BSS parameters 2553 * 2554 * Used to change BSS parameters (mainly for AP mode). 2555 * 2556 * @link_id: link_id or -1 for non-MLD 2557 * @use_cts_prot: Whether to use CTS protection 2558 * (0 = no, 1 = yes, -1 = do not change) 2559 * @use_short_preamble: Whether the use of short preambles is allowed 2560 * (0 = no, 1 = yes, -1 = do not change) 2561 * @use_short_slot_time: Whether the use of short slot time is allowed 2562 * (0 = no, 1 = yes, -1 = do not change) 2563 * @basic_rates: basic rates in IEEE 802.11 format 2564 * (or NULL for no change) 2565 * @basic_rates_len: number of basic rates 2566 * @ap_isolate: do not forward packets between connected stations 2567 * (0 = no, 1 = yes, -1 = do not change) 2568 * @ht_opmode: HT Operation mode 2569 * (u16 = opmode, -1 = do not change) 2570 * @p2p_ctwindow: P2P CT Window (-1 = no change) 2571 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change) 2572 */ 2573 struct bss_parameters { 2574 int link_id; 2575 int use_cts_prot; 2576 int use_short_preamble; 2577 int use_short_slot_time; 2578 const u8 *basic_rates; 2579 u8 basic_rates_len; 2580 int ap_isolate; 2581 int ht_opmode; 2582 s8 p2p_ctwindow, p2p_opp_ps; 2583 }; 2584 2585 /** 2586 * struct mesh_config - 802.11s mesh configuration 2587 * 2588 * These parameters can be changed while the mesh is active. 2589 * 2590 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used 2591 * by the Mesh Peering Open message 2592 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units 2593 * used by the Mesh Peering Open message 2594 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by 2595 * the mesh peering management to close a mesh peering 2596 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this 2597 * mesh interface 2598 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can 2599 * be sent to establish a new peer link instance in a mesh 2600 * @dot11MeshTTL: the value of TTL field set at a source mesh STA 2601 * @element_ttl: the value of TTL field set at a mesh STA for path selection 2602 * elements 2603 * @auto_open_plinks: whether we should automatically open peer links when we 2604 * detect compatible mesh peers 2605 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to 2606 * synchronize to for 11s default synchronization method 2607 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ 2608 * that an originator mesh STA can send to a particular path target 2609 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds 2610 * @min_discovery_timeout: the minimum length of time to wait until giving up on 2611 * a path discovery in milliseconds 2612 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs 2613 * receiving a PREQ shall consider the forwarding information from the 2614 * root to be valid. (TU = time unit) 2615 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during 2616 * which a mesh STA can send only one action frame containing a PREQ 2617 * element 2618 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during 2619 * which a mesh STA can send only one Action frame containing a PERR 2620 * element 2621 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that 2622 * it takes for an HWMP information element to propagate across the mesh 2623 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA 2624 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root 2625 * announcements are transmitted 2626 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh 2627 * station has access to a broader network beyond the MBSS. (This is 2628 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true 2629 * only means that the station will announce others it's a mesh gate, but 2630 * not necessarily using the gate announcement protocol. Still keeping the 2631 * same nomenclature to be in sync with the spec) 2632 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding 2633 * entity (default is TRUE - forwarding entity) 2634 * @rssi_threshold: the threshold for average signal strength of candidate 2635 * station to establish a peer link 2636 * @ht_opmode: mesh HT protection mode 2637 * 2638 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs 2639 * receiving a proactive PREQ shall consider the forwarding information to 2640 * the root mesh STA to be valid. 2641 * 2642 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive 2643 * PREQs are transmitted. 2644 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs) 2645 * during which a mesh STA can send only one Action frame containing 2646 * a PREQ element for root path confirmation. 2647 * @power_mode: The default mesh power save mode which will be the initial 2648 * setting for new peer links. 2649 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake 2650 * after transmitting its beacon. 2651 * @plink_timeout: If no tx activity is seen from a STA we've established 2652 * peering with for longer than this time (in seconds), then remove it 2653 * from the STA's list of peers. Default is 30 minutes. 2654 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA 2655 * will advertise that it is connected to a authentication server 2656 * in the mesh formation field. 2657 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is 2658 * connected to a mesh gate in mesh formation info. If false, the 2659 * value in mesh formation is determined by the presence of root paths 2660 * in the mesh path table 2661 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP 2662 * for HWMP) if the destination is a direct neighbor. Note that this might 2663 * not be the optimal decision as a multi-hop route might be better. So 2664 * if using this setting you will likely also want to disable 2665 * dot11MeshForwarding and use another mesh routing protocol on top. 2666 */ 2667 struct mesh_config { 2668 u16 dot11MeshRetryTimeout; 2669 u16 dot11MeshConfirmTimeout; 2670 u16 dot11MeshHoldingTimeout; 2671 u16 dot11MeshMaxPeerLinks; 2672 u8 dot11MeshMaxRetries; 2673 u8 dot11MeshTTL; 2674 u8 element_ttl; 2675 bool auto_open_plinks; 2676 u32 dot11MeshNbrOffsetMaxNeighbor; 2677 u8 dot11MeshHWMPmaxPREQretries; 2678 u32 path_refresh_time; 2679 u16 min_discovery_timeout; 2680 u32 dot11MeshHWMPactivePathTimeout; 2681 u16 dot11MeshHWMPpreqMinInterval; 2682 u16 dot11MeshHWMPperrMinInterval; 2683 u16 dot11MeshHWMPnetDiameterTraversalTime; 2684 u8 dot11MeshHWMPRootMode; 2685 bool dot11MeshConnectedToMeshGate; 2686 bool dot11MeshConnectedToAuthServer; 2687 u16 dot11MeshHWMPRannInterval; 2688 bool dot11MeshGateAnnouncementProtocol; 2689 bool dot11MeshForwarding; 2690 s32 rssi_threshold; 2691 u16 ht_opmode; 2692 u32 dot11MeshHWMPactivePathToRootTimeout; 2693 u16 dot11MeshHWMProotInterval; 2694 u16 dot11MeshHWMPconfirmationInterval; 2695 enum nl80211_mesh_power_mode power_mode; 2696 u16 dot11MeshAwakeWindowDuration; 2697 u32 plink_timeout; 2698 bool dot11MeshNolearn; 2699 }; 2700 2701 /** 2702 * struct mesh_setup - 802.11s mesh setup configuration 2703 * @chandef: defines the channel to use 2704 * @mesh_id: the mesh ID 2705 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes 2706 * @sync_method: which synchronization method to use 2707 * @path_sel_proto: which path selection protocol to use 2708 * @path_metric: which metric to use 2709 * @auth_id: which authentication method this mesh is using 2710 * @ie: vendor information elements (optional) 2711 * @ie_len: length of vendor information elements 2712 * @is_authenticated: this mesh requires authentication 2713 * @is_secure: this mesh uses security 2714 * @user_mpm: userspace handles all MPM functions 2715 * @dtim_period: DTIM period to use 2716 * @beacon_interval: beacon interval to use 2717 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a] 2718 * @basic_rates: basic rates to use when creating the mesh 2719 * @beacon_rate: bitrate to be used for beacons 2720 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 2721 * changes the channel when a radar is detected. This is required 2722 * to operate on DFS channels. 2723 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 2724 * port frames over NL80211 instead of the network interface. 2725 * 2726 * These parameters are fixed when the mesh is created. 2727 */ 2728 struct mesh_setup { 2729 struct cfg80211_chan_def chandef; 2730 const u8 *mesh_id; 2731 u8 mesh_id_len; 2732 u8 sync_method; 2733 u8 path_sel_proto; 2734 u8 path_metric; 2735 u8 auth_id; 2736 const u8 *ie; 2737 u8 ie_len; 2738 bool is_authenticated; 2739 bool is_secure; 2740 bool user_mpm; 2741 u8 dtim_period; 2742 u16 beacon_interval; 2743 int mcast_rate[NUM_NL80211_BANDS]; 2744 u32 basic_rates; 2745 struct cfg80211_bitrate_mask beacon_rate; 2746 bool userspace_handles_dfs; 2747 bool control_port_over_nl80211; 2748 }; 2749 2750 /** 2751 * struct ocb_setup - 802.11p OCB mode setup configuration 2752 * @chandef: defines the channel to use 2753 * 2754 * These parameters are fixed when connecting to the network 2755 */ 2756 struct ocb_setup { 2757 struct cfg80211_chan_def chandef; 2758 }; 2759 2760 /** 2761 * struct ieee80211_txq_params - TX queue parameters 2762 * @ac: AC identifier 2763 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled 2764 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range 2765 * 1..32767] 2766 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range 2767 * 1..32767] 2768 * @aifs: Arbitration interframe space [0..255] 2769 * @link_id: link_id or -1 for non-MLD 2770 */ 2771 struct ieee80211_txq_params { 2772 enum nl80211_ac ac; 2773 u16 txop; 2774 u16 cwmin; 2775 u16 cwmax; 2776 u8 aifs; 2777 int link_id; 2778 }; 2779 2780 /** 2781 * DOC: Scanning and BSS list handling 2782 * 2783 * The scanning process itself is fairly simple, but cfg80211 offers quite 2784 * a bit of helper functionality. To start a scan, the scan operation will 2785 * be invoked with a scan definition. This scan definition contains the 2786 * channels to scan, and the SSIDs to send probe requests for (including the 2787 * wildcard, if desired). A passive scan is indicated by having no SSIDs to 2788 * probe. Additionally, a scan request may contain extra information elements 2789 * that should be added to the probe request. The IEs are guaranteed to be 2790 * well-formed, and will not exceed the maximum length the driver advertised 2791 * in the wiphy structure. 2792 * 2793 * When scanning finds a BSS, cfg80211 needs to be notified of that, because 2794 * it is responsible for maintaining the BSS list; the driver should not 2795 * maintain a list itself. For this notification, various functions exist. 2796 * 2797 * Since drivers do not maintain a BSS list, there are also a number of 2798 * functions to search for a BSS and obtain information about it from the 2799 * BSS structure cfg80211 maintains. The BSS list is also made available 2800 * to userspace. 2801 */ 2802 2803 /** 2804 * struct cfg80211_ssid - SSID description 2805 * @ssid: the SSID 2806 * @ssid_len: length of the ssid 2807 */ 2808 struct cfg80211_ssid { 2809 u8 ssid[IEEE80211_MAX_SSID_LEN]; 2810 u8 ssid_len; 2811 }; 2812 2813 /** 2814 * struct cfg80211_scan_info - information about completed scan 2815 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the 2816 * wireless device that requested the scan is connected to. If this 2817 * information is not available, this field is left zero. 2818 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set. 2819 * @aborted: set to true if the scan was aborted for any reason, 2820 * userspace will be notified of that 2821 */ 2822 struct cfg80211_scan_info { 2823 u64 scan_start_tsf; 2824 u8 tsf_bssid[ETH_ALEN] __aligned(2); 2825 bool aborted; 2826 }; 2827 2828 /** 2829 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only 2830 * 2831 * @short_ssid: short ssid to scan for 2832 * @bssid: bssid to scan for 2833 * @channel_idx: idx of the channel in the channel array in the scan request 2834 * which the above info is relevant to 2835 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU 2836 * @short_ssid_valid: @short_ssid is valid and can be used 2837 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait 2838 * 20 TUs before starting to send probe requests. 2839 * @psd_20: The AP's 20 MHz PSD value. 2840 */ 2841 struct cfg80211_scan_6ghz_params { 2842 u32 short_ssid; 2843 u32 channel_idx; 2844 u8 bssid[ETH_ALEN]; 2845 bool unsolicited_probe; 2846 bool short_ssid_valid; 2847 bool psc_no_listen; 2848 s8 psd_20; 2849 }; 2850 2851 /** 2852 * struct cfg80211_scan_request - scan request description 2853 * 2854 * @ssids: SSIDs to scan for (active scan only) 2855 * @n_ssids: number of SSIDs 2856 * @channels: channels to scan on. 2857 * @n_channels: total number of channels to scan 2858 * @ie: optional information element(s) to add into Probe Request or %NULL 2859 * @ie_len: length of ie in octets 2860 * @duration: how long to listen on each channel, in TUs. If 2861 * %duration_mandatory is not set, this is the maximum dwell time and 2862 * the actual dwell time may be shorter. 2863 * @duration_mandatory: if set, the scan duration must be as specified by the 2864 * %duration field. 2865 * @flags: control flags from &enum nl80211_scan_flags 2866 * @rates: bitmap of rates to advertise for each band 2867 * @wiphy: the wiphy this was for 2868 * @scan_start: time (in jiffies) when the scan started 2869 * @wdev: the wireless device to scan for 2870 * @no_cck: used to send probe requests at non CCK rate in 2GHz band 2871 * @mac_addr: MAC address used with randomisation 2872 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2873 * are 0 in the mask should be randomised, bits that are 1 should 2874 * be taken from the @mac_addr 2875 * @scan_6ghz: relevant for split scan request only, 2876 * true if this is a 6 GHz scan request 2877 * @first_part: %true if this is the first part of a split scan request or a 2878 * scan that was not split. May be %true for a @scan_6ghz scan if no other 2879 * channels were requested 2880 * @n_6ghz_params: number of 6 GHz params 2881 * @scan_6ghz_params: 6 GHz params 2882 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID) 2883 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be 2884 * used for TSF reporting. Can be set to -1 to indicate no preference. 2885 */ 2886 struct cfg80211_scan_request { 2887 struct cfg80211_ssid *ssids; 2888 int n_ssids; 2889 u32 n_channels; 2890 const u8 *ie; 2891 size_t ie_len; 2892 u16 duration; 2893 bool duration_mandatory; 2894 u32 flags; 2895 2896 u32 rates[NUM_NL80211_BANDS]; 2897 2898 struct wireless_dev *wdev; 2899 2900 u8 mac_addr[ETH_ALEN] __aligned(2); 2901 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 2902 u8 bssid[ETH_ALEN] __aligned(2); 2903 struct wiphy *wiphy; 2904 unsigned long scan_start; 2905 bool no_cck; 2906 bool scan_6ghz; 2907 bool first_part; 2908 u32 n_6ghz_params; 2909 struct cfg80211_scan_6ghz_params *scan_6ghz_params; 2910 s8 tsf_report_link_id; 2911 2912 /* keep last */ 2913 struct ieee80211_channel *channels[]; 2914 }; 2915 2916 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask) 2917 { 2918 int i; 2919 2920 get_random_bytes(buf, ETH_ALEN); 2921 for (i = 0; i < ETH_ALEN; i++) { 2922 buf[i] &= ~mask[i]; 2923 buf[i] |= addr[i] & mask[i]; 2924 } 2925 } 2926 2927 /** 2928 * struct cfg80211_match_set - sets of attributes to match 2929 * 2930 * @ssid: SSID to be matched; may be zero-length in case of BSSID match 2931 * or no match (RSSI only) 2932 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match 2933 * or no match (RSSI only) 2934 * @rssi_thold: don't report scan results below this threshold (in s32 dBm) 2935 */ 2936 struct cfg80211_match_set { 2937 struct cfg80211_ssid ssid; 2938 u8 bssid[ETH_ALEN]; 2939 s32 rssi_thold; 2940 }; 2941 2942 /** 2943 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan 2944 * 2945 * @interval: interval between scheduled scan iterations. In seconds. 2946 * @iterations: number of scan iterations in this scan plan. Zero means 2947 * infinite loop. 2948 * The last scan plan will always have this parameter set to zero, 2949 * all other scan plans will have a finite number of iterations. 2950 */ 2951 struct cfg80211_sched_scan_plan { 2952 u32 interval; 2953 u32 iterations; 2954 }; 2955 2956 /** 2957 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment. 2958 * 2959 * @band: band of BSS which should match for RSSI level adjustment. 2960 * @delta: value of RSSI level adjustment. 2961 */ 2962 struct cfg80211_bss_select_adjust { 2963 enum nl80211_band band; 2964 s8 delta; 2965 }; 2966 2967 /** 2968 * struct cfg80211_sched_scan_request - scheduled scan request description 2969 * 2970 * @reqid: identifies this request. 2971 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans) 2972 * @n_ssids: number of SSIDs 2973 * @n_channels: total number of channels to scan 2974 * @ie: optional information element(s) to add into Probe Request or %NULL 2975 * @ie_len: length of ie in octets 2976 * @flags: control flags from &enum nl80211_scan_flags 2977 * @match_sets: sets of parameters to be matched for a scan result 2978 * entry to be considered valid and to be passed to the host 2979 * (others are filtered out). 2980 * If omitted, all results are passed. 2981 * @n_match_sets: number of match sets 2982 * @report_results: indicates that results were reported for this request 2983 * @wiphy: the wiphy this was for 2984 * @dev: the interface 2985 * @scan_start: start time of the scheduled scan 2986 * @channels: channels to scan 2987 * @min_rssi_thold: for drivers only supporting a single threshold, this 2988 * contains the minimum over all matchsets 2989 * @mac_addr: MAC address used with randomisation 2990 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2991 * are 0 in the mask should be randomised, bits that are 1 should 2992 * be taken from the @mac_addr 2993 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest 2994 * index must be executed first. 2995 * @n_scan_plans: number of scan plans, at least 1. 2996 * @rcu_head: RCU callback used to free the struct 2997 * @owner_nlportid: netlink portid of owner (if this should is a request 2998 * owned by a particular socket) 2999 * @nl_owner_dead: netlink owner socket was closed - this request be freed 3000 * @list: for keeping list of requests. 3001 * @delay: delay in seconds to use before starting the first scan 3002 * cycle. The driver may ignore this parameter and start 3003 * immediately (or at any other time), if this feature is not 3004 * supported. 3005 * @relative_rssi_set: Indicates whether @relative_rssi is set or not. 3006 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result 3007 * reporting in connected state to cases where a matching BSS is determined 3008 * to have better or slightly worse RSSI than the current connected BSS. 3009 * The relative RSSI threshold values are ignored in disconnected state. 3010 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong 3011 * to the specified band while deciding whether a better BSS is reported 3012 * using @relative_rssi. If delta is a negative number, the BSSs that 3013 * belong to the specified band will be penalized by delta dB in relative 3014 * comparisons. 3015 */ 3016 struct cfg80211_sched_scan_request { 3017 u64 reqid; 3018 struct cfg80211_ssid *ssids; 3019 int n_ssids; 3020 u32 n_channels; 3021 const u8 *ie; 3022 size_t ie_len; 3023 u32 flags; 3024 struct cfg80211_match_set *match_sets; 3025 int n_match_sets; 3026 s32 min_rssi_thold; 3027 u32 delay; 3028 struct cfg80211_sched_scan_plan *scan_plans; 3029 int n_scan_plans; 3030 3031 u8 mac_addr[ETH_ALEN] __aligned(2); 3032 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 3033 3034 bool relative_rssi_set; 3035 s8 relative_rssi; 3036 struct cfg80211_bss_select_adjust rssi_adjust; 3037 3038 /* internal */ 3039 struct wiphy *wiphy; 3040 struct net_device *dev; 3041 unsigned long scan_start; 3042 bool report_results; 3043 struct rcu_head rcu_head; 3044 u32 owner_nlportid; 3045 bool nl_owner_dead; 3046 struct list_head list; 3047 3048 /* keep last */ 3049 struct ieee80211_channel *channels[] __counted_by(n_channels); 3050 }; 3051 3052 /** 3053 * enum cfg80211_signal_type - signal type 3054 * 3055 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available 3056 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) 3057 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100 3058 */ 3059 enum cfg80211_signal_type { 3060 CFG80211_SIGNAL_TYPE_NONE, 3061 CFG80211_SIGNAL_TYPE_MBM, 3062 CFG80211_SIGNAL_TYPE_UNSPEC, 3063 }; 3064 3065 /** 3066 * struct cfg80211_inform_bss - BSS inform data 3067 * @chan: channel the frame was received on 3068 * @signal: signal strength value, according to the wiphy's 3069 * signal type 3070 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was 3071 * received; should match the time when the frame was actually 3072 * received by the device (not just by the host, in case it was 3073 * buffered on the device) and be accurate to about 10ms. 3074 * If the frame isn't buffered, just passing the return value of 3075 * ktime_get_boottime_ns() is likely appropriate. 3076 * @parent_tsf: the time at the start of reception of the first octet of the 3077 * timestamp field of the frame. The time is the TSF of the BSS specified 3078 * by %parent_bssid. 3079 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to 3080 * the BSS that requested the scan in which the beacon/probe was received. 3081 * @chains: bitmask for filled values in @chain_signal. 3082 * @chain_signal: per-chain signal strength of last received BSS in dBm. 3083 * @restrict_use: restrict usage, if not set, assume @use_for is 3084 * %NL80211_BSS_USE_FOR_NORMAL. 3085 * @use_for: bitmap of possible usage for this BSS, see 3086 * &enum nl80211_bss_use_for 3087 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 3088 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 3089 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 3090 * @drv_data: Data to be passed through to @inform_bss 3091 */ 3092 struct cfg80211_inform_bss { 3093 struct ieee80211_channel *chan; 3094 s32 signal; 3095 u64 boottime_ns; 3096 u64 parent_tsf; 3097 u8 parent_bssid[ETH_ALEN] __aligned(2); 3098 u8 chains; 3099 s8 chain_signal[IEEE80211_MAX_CHAINS]; 3100 3101 u8 restrict_use:1, use_for:7; 3102 u8 cannot_use_reasons; 3103 3104 void *drv_data; 3105 }; 3106 3107 /** 3108 * struct cfg80211_bss_ies - BSS entry IE data 3109 * @tsf: TSF contained in the frame that carried these IEs 3110 * @rcu_head: internal use, for freeing 3111 * @len: length of the IEs 3112 * @from_beacon: these IEs are known to come from a beacon 3113 * @data: IE data 3114 */ 3115 struct cfg80211_bss_ies { 3116 u64 tsf; 3117 struct rcu_head rcu_head; 3118 int len; 3119 bool from_beacon; 3120 u8 data[]; 3121 }; 3122 3123 /** 3124 * struct cfg80211_bss - BSS description 3125 * 3126 * This structure describes a BSS (which may also be a mesh network) 3127 * for use in scan results and similar. 3128 * 3129 * @channel: channel this BSS is on 3130 * @bssid: BSSID of the BSS 3131 * @beacon_interval: the beacon interval as from the frame 3132 * @capability: the capability field in host byte order 3133 * @ies: the information elements (Note that there is no guarantee that these 3134 * are well-formed!); this is a pointer to either the beacon_ies or 3135 * proberesp_ies depending on whether Probe Response frame has been 3136 * received. It is always non-%NULL. 3137 * @beacon_ies: the information elements from the last Beacon frame 3138 * (implementation note: if @hidden_beacon_bss is set this struct doesn't 3139 * own the beacon_ies, but they're just pointers to the ones from the 3140 * @hidden_beacon_bss struct) 3141 * @proberesp_ies: the information elements from the last Probe Response frame 3142 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame, 3143 * cannot rely on it having valid data 3144 * @hidden_beacon_bss: in case this BSS struct represents a probe response from 3145 * a BSS that hides the SSID in its beacon, this points to the BSS struct 3146 * that holds the beacon data. @beacon_ies is still valid, of course, and 3147 * points to the same data as hidden_beacon_bss->beacon_ies in that case. 3148 * @transmitted_bss: pointer to the transmitted BSS, if this is a 3149 * non-transmitted one (multi-BSSID support) 3150 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one 3151 * (multi-BSSID support) 3152 * @signal: signal strength value (type depends on the wiphy's signal_type) 3153 * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot 3154 * @chains: bitmask for filled values in @chain_signal. 3155 * @chain_signal: per-chain signal strength of last received BSS in dBm. 3156 * @bssid_index: index in the multiple BSS set 3157 * @max_bssid_indicator: max number of members in the BSS set 3158 * @use_for: bitmap of possible usage for this BSS, see 3159 * &enum nl80211_bss_use_for 3160 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 3161 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 3162 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 3163 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes 3164 */ 3165 struct cfg80211_bss { 3166 struct ieee80211_channel *channel; 3167 3168 const struct cfg80211_bss_ies __rcu *ies; 3169 const struct cfg80211_bss_ies __rcu *beacon_ies; 3170 const struct cfg80211_bss_ies __rcu *proberesp_ies; 3171 3172 struct cfg80211_bss *hidden_beacon_bss; 3173 struct cfg80211_bss *transmitted_bss; 3174 struct list_head nontrans_list; 3175 3176 s32 signal; 3177 3178 u64 ts_boottime; 3179 3180 u16 beacon_interval; 3181 u16 capability; 3182 3183 u8 bssid[ETH_ALEN]; 3184 u8 chains; 3185 s8 chain_signal[IEEE80211_MAX_CHAINS]; 3186 3187 u8 proberesp_ecsa_stuck:1; 3188 3189 u8 bssid_index; 3190 u8 max_bssid_indicator; 3191 3192 u8 use_for; 3193 u8 cannot_use_reasons; 3194 3195 u8 priv[] __aligned(sizeof(void *)); 3196 }; 3197 3198 /** 3199 * ieee80211_bss_get_elem - find element with given ID 3200 * @bss: the bss to search 3201 * @id: the element ID 3202 * 3203 * Note that the return value is an RCU-protected pointer, so 3204 * rcu_read_lock() must be held when calling this function. 3205 * Return: %NULL if not found. 3206 */ 3207 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id); 3208 3209 /** 3210 * ieee80211_bss_get_ie - find IE with given ID 3211 * @bss: the bss to search 3212 * @id: the element ID 3213 * 3214 * Note that the return value is an RCU-protected pointer, so 3215 * rcu_read_lock() must be held when calling this function. 3216 * Return: %NULL if not found. 3217 */ 3218 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id) 3219 { 3220 return (const void *)ieee80211_bss_get_elem(bss, id); 3221 } 3222 3223 3224 /** 3225 * struct cfg80211_auth_request - Authentication request data 3226 * 3227 * This structure provides information needed to complete IEEE 802.11 3228 * authentication. 3229 * 3230 * @bss: The BSS to authenticate with, the callee must obtain a reference 3231 * to it if it needs to keep it. 3232 * @supported_selectors: List of selectors that should be assumed to be 3233 * supported by the station. 3234 * SAE_H2E must be assumed supported if set to %NULL. 3235 * @supported_selectors_len: Length of supported_selectors in octets. 3236 * @auth_type: Authentication type (algorithm) 3237 * @ie: Extra IEs to add to Authentication frame or %NULL 3238 * @ie_len: Length of ie buffer in octets 3239 * @key_len: length of WEP key for shared key authentication 3240 * @key_idx: index of WEP key for shared key authentication 3241 * @key: WEP key for shared key authentication 3242 * @auth_data: Fields and elements in Authentication frames. This contains 3243 * the authentication frame body (non-IE and IE data), excluding the 3244 * Authentication algorithm number, i.e., starting at the Authentication 3245 * transaction sequence number field. 3246 * @auth_data_len: Length of auth_data buffer in octets 3247 * @link_id: if >= 0, indicates authentication should be done as an MLD, 3248 * the interface address is included as the MLD address and the 3249 * necessary link (with the given link_id) will be created (and 3250 * given an MLD address) by the driver 3251 * @ap_mld_addr: AP MLD address in case of authentication request with 3252 * an AP MLD, valid iff @link_id >= 0 3253 */ 3254 struct cfg80211_auth_request { 3255 struct cfg80211_bss *bss; 3256 const u8 *ie; 3257 size_t ie_len; 3258 const u8 *supported_selectors; 3259 u8 supported_selectors_len; 3260 enum nl80211_auth_type auth_type; 3261 const u8 *key; 3262 u8 key_len; 3263 s8 key_idx; 3264 const u8 *auth_data; 3265 size_t auth_data_len; 3266 s8 link_id; 3267 const u8 *ap_mld_addr; 3268 }; 3269 3270 /** 3271 * struct cfg80211_assoc_link - per-link information for MLO association 3272 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss; 3273 * if this is %NULL for a link, that link is not requested 3274 * @elems: extra elements for the per-STA profile for this link 3275 * @elems_len: length of the elements 3276 * @error: per-link error code, must be <= 0. If there is an error, then the 3277 * operation as a whole must fail. 3278 */ 3279 struct cfg80211_assoc_link { 3280 struct cfg80211_bss *bss; 3281 const u8 *elems; 3282 size_t elems_len; 3283 int error; 3284 }; 3285 3286 /** 3287 * struct cfg80211_ml_reconf_req - MLO link reconfiguration request 3288 * @add_links: data for links to add, see &struct cfg80211_assoc_link 3289 * @rem_links: bitmap of links to remove 3290 * @ext_mld_capa_ops: extended MLD capabilities and operations set by 3291 * userspace for the ML reconfiguration action frame 3292 */ 3293 struct cfg80211_ml_reconf_req { 3294 struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS]; 3295 u16 rem_links; 3296 u16 ext_mld_capa_ops; 3297 }; 3298 3299 /** 3300 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association. 3301 * 3302 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n) 3303 * @ASSOC_REQ_DISABLE_VHT: Disable VHT 3304 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association 3305 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external 3306 * authentication capability. Drivers can offload authentication to 3307 * userspace if this flag is set. Only applicable for cfg80211_connect() 3308 * request (connect callback). 3309 * @ASSOC_REQ_DISABLE_HE: Disable HE 3310 * @ASSOC_REQ_DISABLE_EHT: Disable EHT 3311 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links. 3312 * Drivers shall disable MLO features for the current association if this 3313 * flag is not set. 3314 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any) 3315 * @ASSOC_REQ_DISABLE_UHR: Disable UHR 3316 */ 3317 enum cfg80211_assoc_req_flags { 3318 ASSOC_REQ_DISABLE_HT = BIT(0), 3319 ASSOC_REQ_DISABLE_VHT = BIT(1), 3320 ASSOC_REQ_USE_RRM = BIT(2), 3321 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3), 3322 ASSOC_REQ_DISABLE_HE = BIT(4), 3323 ASSOC_REQ_DISABLE_EHT = BIT(5), 3324 CONNECT_REQ_MLO_SUPPORT = BIT(6), 3325 ASSOC_REQ_SPP_AMSDU = BIT(7), 3326 ASSOC_REQ_DISABLE_UHR = BIT(8), 3327 }; 3328 3329 /** 3330 * struct cfg80211_assoc_request - (Re)Association request data 3331 * 3332 * This structure provides information needed to complete IEEE 802.11 3333 * (re)association. 3334 * @bss: The BSS to associate with. If the call is successful the driver is 3335 * given a reference that it must give back to cfg80211_send_rx_assoc() 3336 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new 3337 * association requests while already associating must be rejected. 3338 * This also applies to the @links.bss parameter, which is used instead 3339 * of this one (it is %NULL) for MLO associations. 3340 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL 3341 * @ie_len: Length of ie buffer in octets 3342 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association 3343 * @crypto: crypto settings 3344 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3345 * to indicate a request to reassociate within the ESS instead of a request 3346 * do the initial association with the ESS. When included, this is set to 3347 * the BSSID of the current association, i.e., to the value that is 3348 * included in the Current AP address field of the Reassociation Request 3349 * frame. 3350 * @flags: See &enum cfg80211_assoc_req_flags 3351 * @supported_selectors: supported BSS selectors in IEEE 802.11 format 3352 * (or %NULL for no change). 3353 * If %NULL, then support for SAE_H2E should be assumed. 3354 * @supported_selectors_len: number of supported BSS selectors 3355 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3356 * will be used in ht_capa. Un-supported values will be ignored. 3357 * @ht_capa_mask: The bits of ht_capa which are to be used. 3358 * @vht_capa: VHT capability override 3359 * @vht_capa_mask: VHT capability mask indicating which fields to use 3360 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or 3361 * %NULL if FILS is not used. 3362 * @fils_kek_len: Length of fils_kek in octets 3363 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association 3364 * Request/Response frame or %NULL if FILS is not used. This field starts 3365 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce. 3366 * @s1g_capa: S1G capability override 3367 * @s1g_capa_mask: S1G capability override mask 3368 * @links: per-link information for MLO connections 3369 * @link_id: >= 0 for MLO connections, where links are given, and indicates 3370 * the link on which the association request should be sent 3371 * @ap_mld_addr: AP MLD address in case of MLO association request, 3372 * valid iff @link_id >= 0 3373 * @ext_mld_capa_ops: extended MLD capabilities and operations set by 3374 * userspace for the association 3375 */ 3376 struct cfg80211_assoc_request { 3377 struct cfg80211_bss *bss; 3378 const u8 *ie, *prev_bssid; 3379 size_t ie_len; 3380 struct cfg80211_crypto_settings crypto; 3381 bool use_mfp; 3382 u32 flags; 3383 const u8 *supported_selectors; 3384 u8 supported_selectors_len; 3385 struct ieee80211_ht_cap ht_capa; 3386 struct ieee80211_ht_cap ht_capa_mask; 3387 struct ieee80211_vht_cap vht_capa, vht_capa_mask; 3388 const u8 *fils_kek; 3389 size_t fils_kek_len; 3390 const u8 *fils_nonces; 3391 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask; 3392 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS]; 3393 const u8 *ap_mld_addr; 3394 s8 link_id; 3395 u16 ext_mld_capa_ops; 3396 }; 3397 3398 /** 3399 * struct cfg80211_deauth_request - Deauthentication request data 3400 * 3401 * This structure provides information needed to complete IEEE 802.11 3402 * deauthentication. 3403 * 3404 * @bssid: the BSSID or AP MLD address to deauthenticate from 3405 * @ie: Extra IEs to add to Deauthentication frame or %NULL 3406 * @ie_len: Length of ie buffer in octets 3407 * @reason_code: The reason code for the deauthentication 3408 * @local_state_change: if set, change local state only and 3409 * do not set a deauth frame 3410 */ 3411 struct cfg80211_deauth_request { 3412 const u8 *bssid; 3413 const u8 *ie; 3414 size_t ie_len; 3415 u16 reason_code; 3416 bool local_state_change; 3417 }; 3418 3419 /** 3420 * struct cfg80211_disassoc_request - Disassociation request data 3421 * 3422 * This structure provides information needed to complete IEEE 802.11 3423 * disassociation. 3424 * 3425 * @ap_addr: the BSSID or AP MLD address to disassociate from 3426 * @ie: Extra IEs to add to Disassociation frame or %NULL 3427 * @ie_len: Length of ie buffer in octets 3428 * @reason_code: The reason code for the disassociation 3429 * @local_state_change: This is a request for a local state only, i.e., no 3430 * Disassociation frame is to be transmitted. 3431 */ 3432 struct cfg80211_disassoc_request { 3433 const u8 *ap_addr; 3434 const u8 *ie; 3435 size_t ie_len; 3436 u16 reason_code; 3437 bool local_state_change; 3438 }; 3439 3440 /** 3441 * struct cfg80211_ibss_params - IBSS parameters 3442 * 3443 * This structure defines the IBSS parameters for the join_ibss() 3444 * method. 3445 * 3446 * @ssid: The SSID, will always be non-null. 3447 * @ssid_len: The length of the SSID, will always be non-zero. 3448 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not 3449 * search for IBSSs with a different BSSID. 3450 * @chandef: defines the channel to use if no other IBSS to join can be found 3451 * @channel_fixed: The channel should be fixed -- do not search for 3452 * IBSSs to join on other channels. 3453 * @ie: information element(s) to include in the beacon 3454 * @ie_len: length of that 3455 * @beacon_interval: beacon interval to use 3456 * @privacy: this is a protected network, keys will be configured 3457 * after joining 3458 * @control_port: whether user space controls IEEE 802.1X port, i.e., 3459 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 3460 * required to assume that the port is unauthorized until authorized by 3461 * user space. Otherwise, port is marked authorized by default. 3462 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 3463 * port frames over NL80211 instead of the network interface. 3464 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 3465 * changes the channel when a radar is detected. This is required 3466 * to operate on DFS channels. 3467 * @basic_rates: bitmap of basic rates to use when creating the IBSS 3468 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 3469 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3470 * will be used in ht_capa. Un-supported values will be ignored. 3471 * @ht_capa_mask: The bits of ht_capa which are to be used. 3472 * @wep_keys: static WEP keys, if not NULL points to an array of 3473 * CFG80211_MAX_WEP_KEYS WEP keys 3474 * @wep_tx_key: key index (0..3) of the default TX static WEP key 3475 */ 3476 struct cfg80211_ibss_params { 3477 const u8 *ssid; 3478 const u8 *bssid; 3479 struct cfg80211_chan_def chandef; 3480 const u8 *ie; 3481 u8 ssid_len, ie_len; 3482 u16 beacon_interval; 3483 u32 basic_rates; 3484 bool channel_fixed; 3485 bool privacy; 3486 bool control_port; 3487 bool control_port_over_nl80211; 3488 bool userspace_handles_dfs; 3489 int mcast_rate[NUM_NL80211_BANDS]; 3490 struct ieee80211_ht_cap ht_capa; 3491 struct ieee80211_ht_cap ht_capa_mask; 3492 struct key_params *wep_keys; 3493 int wep_tx_key; 3494 }; 3495 3496 /** 3497 * struct cfg80211_bss_selection - connection parameters for BSS selection. 3498 * 3499 * @behaviour: requested BSS selection behaviour. 3500 * @param: parameters for requestion behaviour. 3501 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF. 3502 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST. 3503 */ 3504 struct cfg80211_bss_selection { 3505 enum nl80211_bss_select_attr behaviour; 3506 union { 3507 enum nl80211_band band_pref; 3508 struct cfg80211_bss_select_adjust adjust; 3509 } param; 3510 }; 3511 3512 /** 3513 * struct cfg80211_connect_params - Connection parameters 3514 * 3515 * This structure provides information needed to complete IEEE 802.11 3516 * authentication and association. 3517 * 3518 * @channel: The channel to use or %NULL if not specified (auto-select based 3519 * on scan results) 3520 * @channel_hint: The channel of the recommended BSS for initial connection or 3521 * %NULL if not specified 3522 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan 3523 * results) 3524 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or 3525 * %NULL if not specified. Unlike the @bssid parameter, the driver is 3526 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS 3527 * to use. 3528 * @ssid: SSID 3529 * @ssid_len: Length of ssid in octets 3530 * @auth_type: Authentication type (algorithm) 3531 * @ie: IEs for association request 3532 * @ie_len: Length of assoc_ie in octets 3533 * @privacy: indicates whether privacy-enabled APs should be used 3534 * @mfp: indicate whether management frame protection is used 3535 * @crypto: crypto settings 3536 * @key_len: length of WEP key for shared key authentication 3537 * @key_idx: index of WEP key for shared key authentication 3538 * @key: WEP key for shared key authentication 3539 * @flags: See &enum cfg80211_assoc_req_flags 3540 * @bg_scan_period: Background scan period in seconds 3541 * or -1 to indicate that default value is to be used. 3542 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3543 * will be used in ht_capa. Un-supported values will be ignored. 3544 * @ht_capa_mask: The bits of ht_capa which are to be used. 3545 * @vht_capa: VHT Capability overrides 3546 * @vht_capa_mask: The bits of vht_capa which are to be used. 3547 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG 3548 * networks. 3549 * @bss_select: criteria to be used for BSS selection. 3550 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3551 * to indicate a request to reassociate within the ESS instead of a request 3552 * do the initial association with the ESS. When included, this is set to 3553 * the BSSID of the current association, i.e., to the value that is 3554 * included in the Current AP address field of the Reassociation Request 3555 * frame. 3556 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the 3557 * NAI or %NULL if not specified. This is used to construct FILS wrapped 3558 * data IE. 3559 * @fils_erp_username_len: Length of @fils_erp_username in octets. 3560 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or 3561 * %NULL if not specified. This specifies the domain name of ER server and 3562 * is used to construct FILS wrapped data IE. 3563 * @fils_erp_realm_len: Length of @fils_erp_realm in octets. 3564 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP 3565 * messages. This is also used to construct FILS wrapped data IE. 3566 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional 3567 * keys in FILS or %NULL if not specified. 3568 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets. 3569 * @want_1x: indicates user-space supports and wants to use 802.1X driver 3570 * offload of 4-way handshake. 3571 * @edmg: define the EDMG channels. 3572 * This may specify multiple channels and bonding options for the driver 3573 * to choose from, based on BSS configuration. 3574 */ 3575 struct cfg80211_connect_params { 3576 struct ieee80211_channel *channel; 3577 struct ieee80211_channel *channel_hint; 3578 const u8 *bssid; 3579 const u8 *bssid_hint; 3580 const u8 *ssid; 3581 size_t ssid_len; 3582 enum nl80211_auth_type auth_type; 3583 const u8 *ie; 3584 size_t ie_len; 3585 bool privacy; 3586 enum nl80211_mfp mfp; 3587 struct cfg80211_crypto_settings crypto; 3588 const u8 *key; 3589 u8 key_len, key_idx; 3590 u32 flags; 3591 int bg_scan_period; 3592 struct ieee80211_ht_cap ht_capa; 3593 struct ieee80211_ht_cap ht_capa_mask; 3594 struct ieee80211_vht_cap vht_capa; 3595 struct ieee80211_vht_cap vht_capa_mask; 3596 bool pbss; 3597 struct cfg80211_bss_selection bss_select; 3598 const u8 *prev_bssid; 3599 const u8 *fils_erp_username; 3600 size_t fils_erp_username_len; 3601 const u8 *fils_erp_realm; 3602 size_t fils_erp_realm_len; 3603 u16 fils_erp_next_seq_num; 3604 const u8 *fils_erp_rrk; 3605 size_t fils_erp_rrk_len; 3606 bool want_1x; 3607 struct ieee80211_edmg edmg; 3608 }; 3609 3610 /** 3611 * enum cfg80211_connect_params_changed - Connection parameters being updated 3612 * 3613 * This enum provides information of all connect parameters that 3614 * have to be updated as part of update_connect_params() call. 3615 * 3616 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated 3617 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm, 3618 * username, erp sequence number and rrk) are updated 3619 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated 3620 */ 3621 enum cfg80211_connect_params_changed { 3622 UPDATE_ASSOC_IES = BIT(0), 3623 UPDATE_FILS_ERP_INFO = BIT(1), 3624 UPDATE_AUTH_TYPE = BIT(2), 3625 }; 3626 3627 /** 3628 * enum wiphy_params_flags - set_wiphy_params bitfield values 3629 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed 3630 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed 3631 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed 3632 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed 3633 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed 3634 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled 3635 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed 3636 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed 3637 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum 3638 */ 3639 enum wiphy_params_flags { 3640 WIPHY_PARAM_RETRY_SHORT = BIT(0), 3641 WIPHY_PARAM_RETRY_LONG = BIT(1), 3642 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2), 3643 WIPHY_PARAM_RTS_THRESHOLD = BIT(3), 3644 WIPHY_PARAM_COVERAGE_CLASS = BIT(4), 3645 WIPHY_PARAM_DYN_ACK = BIT(5), 3646 WIPHY_PARAM_TXQ_LIMIT = BIT(6), 3647 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7), 3648 WIPHY_PARAM_TXQ_QUANTUM = BIT(8), 3649 }; 3650 3651 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256 3652 3653 /* The per TXQ device queue limit in airtime */ 3654 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000 3655 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000 3656 3657 /* The per interface airtime threshold to switch to lower queue limit */ 3658 #define IEEE80211_AQL_THRESHOLD 24000 3659 3660 /** 3661 * struct cfg80211_pmksa - PMK Security Association 3662 * 3663 * This structure is passed to the set/del_pmksa() method for PMKSA 3664 * caching. 3665 * 3666 * @bssid: The AP's BSSID (may be %NULL). 3667 * @pmkid: The identifier to refer a PMKSA. 3668 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key 3669 * derivation by a FILS STA. Otherwise, %NULL. 3670 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on 3671 * the hash algorithm used to generate this. 3672 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS 3673 * cache identifier (may be %NULL). 3674 * @ssid_len: Length of the @ssid in octets. 3675 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the 3676 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be 3677 * %NULL). 3678 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds 3679 * (dot11RSNAConfigPMKLifetime) or 0 if not specified. 3680 * The configured PMKSA must not be used for PMKSA caching after 3681 * expiration and any keys derived from this PMK become invalid on 3682 * expiration, i.e., the current association must be dropped if the PMK 3683 * used for it expires. 3684 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of 3685 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified. 3686 * Drivers are expected to trigger a full authentication instead of using 3687 * this PMKSA for caching when reassociating to a new BSS after this 3688 * threshold to generate a new PMK before the current one expires. 3689 */ 3690 struct cfg80211_pmksa { 3691 const u8 *bssid; 3692 const u8 *pmkid; 3693 const u8 *pmk; 3694 size_t pmk_len; 3695 const u8 *ssid; 3696 size_t ssid_len; 3697 const u8 *cache_id; 3698 u32 pmk_lifetime; 3699 u8 pmk_reauth_threshold; 3700 }; 3701 3702 /** 3703 * struct cfg80211_pkt_pattern - packet pattern 3704 * @mask: bitmask where to match pattern and where to ignore bytes, 3705 * one bit per byte, in same format as nl80211 3706 * @pattern: bytes to match where bitmask is 1 3707 * @pattern_len: length of pattern (in bytes) 3708 * @pkt_offset: packet offset (in bytes) 3709 * 3710 * Internal note: @mask and @pattern are allocated in one chunk of 3711 * memory, free @mask only! 3712 */ 3713 struct cfg80211_pkt_pattern { 3714 const u8 *mask, *pattern; 3715 int pattern_len; 3716 int pkt_offset; 3717 }; 3718 3719 /** 3720 * struct cfg80211_wowlan_tcp - TCP connection parameters 3721 * 3722 * @sock: (internal) socket for source port allocation 3723 * @src: source IP address 3724 * @dst: destination IP address 3725 * @dst_mac: destination MAC address 3726 * @src_port: source port 3727 * @dst_port: destination port 3728 * @payload_len: data payload length 3729 * @payload: data payload buffer 3730 * @payload_seq: payload sequence stamping configuration 3731 * @data_interval: interval at which to send data packets 3732 * @wake_len: wakeup payload match length 3733 * @wake_data: wakeup payload match data 3734 * @wake_mask: wakeup payload match mask 3735 * @tokens_size: length of the tokens buffer 3736 * @payload_tok: payload token usage configuration 3737 */ 3738 struct cfg80211_wowlan_tcp { 3739 struct socket *sock; 3740 __be32 src, dst; 3741 u16 src_port, dst_port; 3742 u8 dst_mac[ETH_ALEN]; 3743 int payload_len; 3744 const u8 *payload; 3745 struct nl80211_wowlan_tcp_data_seq payload_seq; 3746 u32 data_interval; 3747 u32 wake_len; 3748 const u8 *wake_data, *wake_mask; 3749 u32 tokens_size; 3750 /* must be last, variable member */ 3751 struct nl80211_wowlan_tcp_data_token payload_tok; 3752 }; 3753 3754 /** 3755 * struct cfg80211_wowlan - Wake on Wireless-LAN support info 3756 * 3757 * This structure defines the enabled WoWLAN triggers for the device. 3758 * @any: wake up on any activity -- special trigger if device continues 3759 * operating as normal during suspend 3760 * @disconnect: wake up if getting disconnected 3761 * @magic_pkt: wake up on receiving magic packet 3762 * @patterns: wake up on receiving packet matching a pattern 3763 * @n_patterns: number of patterns 3764 * @gtk_rekey_failure: wake up on GTK rekey failure 3765 * @eap_identity_req: wake up on EAP identity request packet 3766 * @four_way_handshake: wake up on 4-way handshake 3767 * @rfkill_release: wake up when rfkill is released 3768 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h. 3769 * NULL if not configured. 3770 * @nd_config: configuration for the scan to be used for net detect wake. 3771 */ 3772 struct cfg80211_wowlan { 3773 bool any, disconnect, magic_pkt, gtk_rekey_failure, 3774 eap_identity_req, four_way_handshake, 3775 rfkill_release; 3776 struct cfg80211_pkt_pattern *patterns; 3777 struct cfg80211_wowlan_tcp *tcp; 3778 int n_patterns; 3779 struct cfg80211_sched_scan_request *nd_config; 3780 }; 3781 3782 /** 3783 * struct cfg80211_coalesce_rules - Coalesce rule parameters 3784 * 3785 * This structure defines coalesce rule for the device. 3786 * @delay: maximum coalescing delay in msecs. 3787 * @condition: condition for packet coalescence. 3788 * see &enum nl80211_coalesce_condition. 3789 * @patterns: array of packet patterns 3790 * @n_patterns: number of patterns 3791 */ 3792 struct cfg80211_coalesce_rules { 3793 int delay; 3794 enum nl80211_coalesce_condition condition; 3795 struct cfg80211_pkt_pattern *patterns; 3796 int n_patterns; 3797 }; 3798 3799 /** 3800 * struct cfg80211_coalesce - Packet coalescing settings 3801 * 3802 * This structure defines coalescing settings. 3803 * @rules: array of coalesce rules 3804 * @n_rules: number of rules 3805 */ 3806 struct cfg80211_coalesce { 3807 int n_rules; 3808 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules); 3809 }; 3810 3811 /** 3812 * struct cfg80211_wowlan_nd_match - information about the match 3813 * 3814 * @ssid: SSID of the match that triggered the wake up 3815 * @n_channels: Number of channels where the match occurred. This 3816 * value may be zero if the driver can't report the channels. 3817 * @channels: center frequencies of the channels where a match 3818 * occurred (in MHz) 3819 */ 3820 struct cfg80211_wowlan_nd_match { 3821 struct cfg80211_ssid ssid; 3822 int n_channels; 3823 u32 channels[] __counted_by(n_channels); 3824 }; 3825 3826 /** 3827 * struct cfg80211_wowlan_nd_info - net detect wake up information 3828 * 3829 * @n_matches: Number of match information instances provided in 3830 * @matches. This value may be zero if the driver can't provide 3831 * match information. 3832 * @matches: Array of pointers to matches containing information about 3833 * the matches that triggered the wake up. 3834 */ 3835 struct cfg80211_wowlan_nd_info { 3836 int n_matches; 3837 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches); 3838 }; 3839 3840 /** 3841 * struct cfg80211_wowlan_wakeup - wakeup report 3842 * @disconnect: woke up by getting disconnected 3843 * @magic_pkt: woke up by receiving magic packet 3844 * @gtk_rekey_failure: woke up by GTK rekey failure 3845 * @eap_identity_req: woke up by EAP identity request packet 3846 * @four_way_handshake: woke up by 4-way handshake 3847 * @rfkill_release: woke up by rfkill being released 3848 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern 3849 * @packet_present_len: copied wakeup packet data 3850 * @packet_len: original wakeup packet length 3851 * @packet: The packet causing the wakeup, if any. 3852 * @packet_80211: For pattern match, magic packet and other data 3853 * frame triggers an 802.3 frame should be reported, for 3854 * disconnect due to deauth 802.11 frame. This indicates which 3855 * it is. 3856 * @tcp_match: TCP wakeup packet received 3857 * @tcp_connlost: TCP connection lost or failed to establish 3858 * @tcp_nomoretokens: TCP data ran out of tokens 3859 * @net_detect: if not %NULL, woke up because of net detect 3860 * @unprot_deauth_disassoc: woke up due to unprotected deauth or 3861 * disassoc frame (in MFP). 3862 */ 3863 struct cfg80211_wowlan_wakeup { 3864 bool disconnect, magic_pkt, gtk_rekey_failure, 3865 eap_identity_req, four_way_handshake, 3866 rfkill_release, packet_80211, 3867 tcp_match, tcp_connlost, tcp_nomoretokens, 3868 unprot_deauth_disassoc; 3869 s32 pattern_idx; 3870 u32 packet_present_len, packet_len; 3871 const void *packet; 3872 struct cfg80211_wowlan_nd_info *net_detect; 3873 }; 3874 3875 /** 3876 * struct cfg80211_gtk_rekey_data - rekey data 3877 * @kek: key encryption key (@kek_len bytes) 3878 * @kck: key confirmation key (@kck_len bytes) 3879 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes) 3880 * @kek_len: length of kek 3881 * @kck_len: length of kck 3882 * @akm: akm (oui, id) 3883 */ 3884 struct cfg80211_gtk_rekey_data { 3885 const u8 *kek, *kck, *replay_ctr; 3886 u32 akm; 3887 u8 kek_len, kck_len; 3888 }; 3889 3890 /** 3891 * struct cfg80211_update_ft_ies_params - FT IE Information 3892 * 3893 * This structure provides information needed to update the fast transition IE 3894 * 3895 * @md: The Mobility Domain ID, 2 Octet value 3896 * @ie: Fast Transition IEs 3897 * @ie_len: Length of ft_ie in octets 3898 */ 3899 struct cfg80211_update_ft_ies_params { 3900 u16 md; 3901 const u8 *ie; 3902 size_t ie_len; 3903 }; 3904 3905 /** 3906 * struct cfg80211_mgmt_tx_params - mgmt tx parameters 3907 * 3908 * This structure provides information needed to transmit a mgmt frame 3909 * 3910 * @chan: channel to use 3911 * @offchan: indicates whether off channel operation is required 3912 * @wait: duration for ROC 3913 * @buf: buffer to transmit 3914 * @len: buffer length 3915 * @no_cck: don't use cck rates for this frame 3916 * @dont_wait_for_ack: tells the low level not to wait for an ack 3917 * @n_csa_offsets: length of csa_offsets array 3918 * @csa_offsets: array of all the csa offsets in the frame 3919 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note 3920 * that the link ID isn't validated (much), it's in range but the 3921 * link might not exist (or be used by the receiver STA) 3922 */ 3923 struct cfg80211_mgmt_tx_params { 3924 struct ieee80211_channel *chan; 3925 bool offchan; 3926 unsigned int wait; 3927 const u8 *buf; 3928 size_t len; 3929 bool no_cck; 3930 bool dont_wait_for_ack; 3931 int n_csa_offsets; 3932 const u16 *csa_offsets; 3933 int link_id; 3934 }; 3935 3936 /** 3937 * struct cfg80211_dscp_exception - DSCP exception 3938 * 3939 * @dscp: DSCP value that does not adhere to the user priority range definition 3940 * @up: user priority value to which the corresponding DSCP value belongs 3941 */ 3942 struct cfg80211_dscp_exception { 3943 u8 dscp; 3944 u8 up; 3945 }; 3946 3947 /** 3948 * struct cfg80211_dscp_range - DSCP range definition for user priority 3949 * 3950 * @low: lowest DSCP value of this user priority range, inclusive 3951 * @high: highest DSCP value of this user priority range, inclusive 3952 */ 3953 struct cfg80211_dscp_range { 3954 u8 low; 3955 u8 high; 3956 }; 3957 3958 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */ 3959 #define IEEE80211_QOS_MAP_MAX_EX 21 3960 #define IEEE80211_QOS_MAP_LEN_MIN 16 3961 #define IEEE80211_QOS_MAP_LEN_MAX \ 3962 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX) 3963 3964 /** 3965 * struct cfg80211_qos_map - QoS Map Information 3966 * 3967 * This struct defines the Interworking QoS map setting for DSCP values 3968 * 3969 * @num_des: number of DSCP exceptions (0..21) 3970 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from 3971 * the user priority DSCP range definition 3972 * @up: DSCP range definition for a particular user priority 3973 */ 3974 struct cfg80211_qos_map { 3975 u8 num_des; 3976 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX]; 3977 struct cfg80211_dscp_range up[8]; 3978 }; 3979 3980 /** 3981 * struct cfg80211_nan_band_config - NAN band specific configuration 3982 * 3983 * @chan: Pointer to the IEEE 802.11 channel structure. The channel to be used 3984 * for NAN operations on this band. For 2.4 GHz band, this is always 3985 * channel 6. For 5 GHz band, the channel is either 44 or 149, according 3986 * to the regulatory constraints. If chan pointer is NULL the entire band 3987 * configuration entry is considered invalid and should not be used. 3988 * @rssi_close: RSSI close threshold used for NAN state transition algorithm 3989 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State 3990 * Transition" of Wi-Fi Aware Specification v4.0. If not 3991 * specified (set to 0), default device value is used. The value should 3992 * be greater than -60 dBm. 3993 * @rssi_middle: RSSI middle threshold used for NAN state transition algorithm. 3994 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State 3995 * Transition" of Wi-Fi Aware Specification v4.0. If not 3996 * specified (set to 0), default device value is used. The value should be 3997 * greater than -75 dBm and less than rssi_close. 3998 * @awake_dw_interval: Committed DW interval. Valid values range: 0-5. 0 3999 * indicates no wakeup for DW and can't be used on 2.4GHz band, otherwise 4000 * 2^(n-1). 4001 * @disable_scan: If true, the device will not scan this band for cluster 4002 * merge. Disabling scan on 2.4 GHz band is not allowed. 4003 */ 4004 struct cfg80211_nan_band_config { 4005 struct ieee80211_channel *chan; 4006 s8 rssi_close; 4007 s8 rssi_middle; 4008 u8 awake_dw_interval; 4009 bool disable_scan; 4010 }; 4011 4012 /** 4013 * struct cfg80211_nan_conf - NAN configuration 4014 * 4015 * This struct defines NAN configuration parameters 4016 * 4017 * @master_pref: master preference (1 - 255) 4018 * @bands: operating bands, a bitmap of &enum nl80211_band values. 4019 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set 4020 * (i.e. BIT(NL80211_BAND_2GHZ)). 4021 * @cluster_id: cluster ID used for NAN synchronization. This is a MAC address 4022 * that can take a value from 50-6F-9A-01-00-00 to 50-6F-9A-01-FF-FF. 4023 * If NULL, the device will pick a random Cluster ID. 4024 * @scan_period: period (in seconds) between NAN scans. 4025 * @scan_dwell_time: dwell time (in milliseconds) for NAN scans. 4026 * @discovery_beacon_interval: interval (in TUs) for discovery beacons. 4027 * @enable_dw_notification: flag to enable/disable discovery window 4028 * notifications. 4029 * @band_cfgs: array of band specific configurations, indexed by 4030 * &enum nl80211_band values. 4031 * @extra_nan_attrs: pointer to additional NAN attributes. 4032 * @extra_nan_attrs_len: length of the additional NAN attributes. 4033 * @vendor_elems: pointer to vendor-specific elements. 4034 * @vendor_elems_len: length of the vendor-specific elements. 4035 */ 4036 struct cfg80211_nan_conf { 4037 u8 master_pref; 4038 u8 bands; 4039 const u8 *cluster_id; 4040 u16 scan_period; 4041 u16 scan_dwell_time; 4042 u8 discovery_beacon_interval; 4043 bool enable_dw_notification; 4044 struct cfg80211_nan_band_config band_cfgs[NUM_NL80211_BANDS]; 4045 const u8 *extra_nan_attrs; 4046 u16 extra_nan_attrs_len; 4047 const u8 *vendor_elems; 4048 u16 vendor_elems_len; 4049 }; 4050 4051 /** 4052 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN 4053 * configuration 4054 * 4055 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference 4056 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands 4057 * @CFG80211_NAN_CONF_CHANGED_CONFIG: changed additional configuration. 4058 * When this flag is set, it indicates that some additional attribute(s) 4059 * (other then master_pref and bands) have been changed. In this case, 4060 * all the unchanged attributes will be properly configured to their 4061 * previous values. The driver doesn't need to store any 4062 * previous configuration besides master_pref and bands. 4063 */ 4064 enum cfg80211_nan_conf_changes { 4065 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0), 4066 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1), 4067 CFG80211_NAN_CONF_CHANGED_CONFIG = BIT(2), 4068 }; 4069 4070 /** 4071 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter 4072 * 4073 * @filter: the content of the filter 4074 * @len: the length of the filter 4075 */ 4076 struct cfg80211_nan_func_filter { 4077 const u8 *filter; 4078 u8 len; 4079 }; 4080 4081 /** 4082 * struct cfg80211_nan_func - a NAN function 4083 * 4084 * @type: &enum nl80211_nan_function_type 4085 * @service_id: the service ID of the function 4086 * @publish_type: &nl80211_nan_publish_type 4087 * @close_range: if true, the range should be limited. Threshold is 4088 * implementation specific. 4089 * @publish_bcast: if true, the solicited publish should be broadcasted 4090 * @subscribe_active: if true, the subscribe is active 4091 * @followup_id: the instance ID for follow up 4092 * @followup_reqid: the requester instance ID for follow up 4093 * @followup_dest: MAC address of the recipient of the follow up 4094 * @ttl: time to live counter in DW. 4095 * @serv_spec_info: Service Specific Info 4096 * @serv_spec_info_len: Service Specific Info length 4097 * @srf_include: if true, SRF is inclusive 4098 * @srf_bf: Bloom Filter 4099 * @srf_bf_len: Bloom Filter length 4100 * @srf_bf_idx: Bloom Filter index 4101 * @srf_macs: SRF MAC addresses 4102 * @srf_num_macs: number of MAC addresses in SRF 4103 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter 4104 * @tx_filters: filters that should be transmitted in the SDF. 4105 * @num_rx_filters: length of &rx_filters. 4106 * @num_tx_filters: length of &tx_filters. 4107 * @instance_id: driver allocated id of the function. 4108 * @cookie: unique NAN function identifier. 4109 */ 4110 struct cfg80211_nan_func { 4111 enum nl80211_nan_function_type type; 4112 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN]; 4113 u8 publish_type; 4114 bool close_range; 4115 bool publish_bcast; 4116 bool subscribe_active; 4117 u8 followup_id; 4118 u8 followup_reqid; 4119 struct mac_address followup_dest; 4120 u32 ttl; 4121 const u8 *serv_spec_info; 4122 u8 serv_spec_info_len; 4123 bool srf_include; 4124 const u8 *srf_bf; 4125 u8 srf_bf_len; 4126 u8 srf_bf_idx; 4127 struct mac_address *srf_macs; 4128 int srf_num_macs; 4129 struct cfg80211_nan_func_filter *rx_filters; 4130 struct cfg80211_nan_func_filter *tx_filters; 4131 u8 num_tx_filters; 4132 u8 num_rx_filters; 4133 u8 instance_id; 4134 u64 cookie; 4135 }; 4136 4137 /** 4138 * struct cfg80211_pmk_conf - PMK configuration 4139 * 4140 * @aa: authenticator address 4141 * @pmk_len: PMK length in bytes. 4142 * @pmk: the PMK material 4143 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK 4144 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field 4145 * holds PMK-R0. 4146 */ 4147 struct cfg80211_pmk_conf { 4148 const u8 *aa; 4149 u8 pmk_len; 4150 const u8 *pmk; 4151 const u8 *pmk_r0_name; 4152 }; 4153 4154 /** 4155 * struct cfg80211_external_auth_params - Trigger External authentication. 4156 * 4157 * Commonly used across the external auth request and event interfaces. 4158 * 4159 * @action: action type / trigger for external authentication. Only significant 4160 * for the authentication request event interface (driver to user space). 4161 * @bssid: BSSID of the peer with which the authentication has 4162 * to happen. Used by both the authentication request event and 4163 * authentication response command interface. 4164 * @ssid: SSID of the AP. Used by both the authentication request event and 4165 * authentication response command interface. 4166 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the 4167 * authentication request event interface. 4168 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication, 4169 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you 4170 * the real status code for failures. Used only for the authentication 4171 * response command interface (user space to driver). 4172 * @pmkid: The identifier to refer a PMKSA. 4173 * @mld_addr: MLD address of the peer. Used by the authentication request event 4174 * interface. Driver indicates this to enable MLO during the authentication 4175 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT 4176 * flag capability in NL80211_CMD_CONNECT to know whether the user space 4177 * supports enabling MLO during the authentication offload. 4178 * User space should use the address of the interface (on which the 4179 * authentication request event reported) as self MLD address. User space 4180 * and driver should use MLD addresses in RA, TA and BSSID fields of 4181 * authentication frames sent or received via cfg80211. The driver 4182 * translates the MLD addresses to/from link addresses based on the link 4183 * chosen for the authentication. 4184 */ 4185 struct cfg80211_external_auth_params { 4186 enum nl80211_external_auth_action action; 4187 u8 bssid[ETH_ALEN] __aligned(2); 4188 struct cfg80211_ssid ssid; 4189 unsigned int key_mgmt_suite; 4190 u16 status; 4191 const u8 *pmkid; 4192 u8 mld_addr[ETH_ALEN] __aligned(2); 4193 }; 4194 4195 /** 4196 * struct cfg80211_ftm_responder_stats - FTM responder statistics 4197 * 4198 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to 4199 * indicate the relevant values in this struct for them 4200 * @success_num: number of FTM sessions in which all frames were successfully 4201 * answered 4202 * @partial_num: number of FTM sessions in which part of frames were 4203 * successfully answered 4204 * @failed_num: number of failed FTM sessions 4205 * @asap_num: number of ASAP FTM sessions 4206 * @non_asap_num: number of non-ASAP FTM sessions 4207 * @total_duration_ms: total sessions durations - gives an indication 4208 * of how much time the responder was busy 4209 * @unknown_triggers_num: number of unknown FTM triggers - triggers from 4210 * initiators that didn't finish successfully the negotiation phase with 4211 * the responder 4212 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks 4213 * for a new scheduling although it already has scheduled FTM slot 4214 * @out_of_window_triggers_num: total FTM triggers out of scheduled window 4215 */ 4216 struct cfg80211_ftm_responder_stats { 4217 u32 filled; 4218 u32 success_num; 4219 u32 partial_num; 4220 u32 failed_num; 4221 u32 asap_num; 4222 u32 non_asap_num; 4223 u64 total_duration_ms; 4224 u32 unknown_triggers_num; 4225 u32 reschedule_requests_num; 4226 u32 out_of_window_triggers_num; 4227 }; 4228 4229 /** 4230 * struct cfg80211_pmsr_ftm_result - FTM result 4231 * @failure_reason: if this measurement failed (PMSR status is 4232 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise 4233 * reason than just "failure" 4234 * @burst_index: if reporting partial results, this is the index 4235 * in [0 .. num_bursts-1] of the burst that's being reported 4236 * @num_ftmr_attempts: number of FTM request frames transmitted 4237 * @num_ftmr_successes: number of FTM request frames acked 4238 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY, 4239 * fill this to indicate in how many seconds a retry is deemed possible 4240 * by the responder 4241 * @num_bursts_exp: actual number of bursts exponent negotiated 4242 * @burst_duration: actual burst duration negotiated 4243 * @ftms_per_burst: actual FTMs per burst negotiated 4244 * @burst_period: actual burst period negotiated in units of 100ms 4245 * @lci_len: length of LCI information (if present) 4246 * @civicloc_len: length of civic location information (if present) 4247 * @lci: LCI data (may be %NULL) 4248 * @civicloc: civic location data (may be %NULL) 4249 * @rssi_avg: average RSSI over FTM action frames reported 4250 * @rssi_spread: spread of the RSSI over FTM action frames reported 4251 * @tx_rate: bitrate for transmitted FTM action frame response 4252 * @rx_rate: bitrate of received FTM action frame 4253 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg) 4254 * @rtt_variance: variance of RTTs measured (note that standard deviation is 4255 * the square root of the variance) 4256 * @rtt_spread: spread of the RTTs measured 4257 * @dist_avg: average of distances (mm) measured 4258 * (must have either this or @rtt_avg) 4259 * @dist_variance: variance of distances measured (see also @rtt_variance) 4260 * @dist_spread: spread of distances measured (see also @rtt_spread) 4261 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid 4262 * @num_ftmr_successes_valid: @num_ftmr_successes is valid 4263 * @rssi_avg_valid: @rssi_avg is valid 4264 * @rssi_spread_valid: @rssi_spread is valid 4265 * @tx_rate_valid: @tx_rate is valid 4266 * @rx_rate_valid: @rx_rate is valid 4267 * @rtt_avg_valid: @rtt_avg is valid 4268 * @rtt_variance_valid: @rtt_variance is valid 4269 * @rtt_spread_valid: @rtt_spread is valid 4270 * @dist_avg_valid: @dist_avg is valid 4271 * @dist_variance_valid: @dist_variance is valid 4272 * @dist_spread_valid: @dist_spread is valid 4273 */ 4274 struct cfg80211_pmsr_ftm_result { 4275 const u8 *lci; 4276 const u8 *civicloc; 4277 unsigned int lci_len; 4278 unsigned int civicloc_len; 4279 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason; 4280 u32 num_ftmr_attempts, num_ftmr_successes; 4281 s16 burst_index; 4282 u8 busy_retry_time; 4283 u8 num_bursts_exp; 4284 u8 burst_duration; 4285 u8 ftms_per_burst; 4286 u16 burst_period; 4287 s32 rssi_avg; 4288 s32 rssi_spread; 4289 struct rate_info tx_rate, rx_rate; 4290 s64 rtt_avg; 4291 s64 rtt_variance; 4292 s64 rtt_spread; 4293 s64 dist_avg; 4294 s64 dist_variance; 4295 s64 dist_spread; 4296 4297 u16 num_ftmr_attempts_valid:1, 4298 num_ftmr_successes_valid:1, 4299 rssi_avg_valid:1, 4300 rssi_spread_valid:1, 4301 tx_rate_valid:1, 4302 rx_rate_valid:1, 4303 rtt_avg_valid:1, 4304 rtt_variance_valid:1, 4305 rtt_spread_valid:1, 4306 dist_avg_valid:1, 4307 dist_variance_valid:1, 4308 dist_spread_valid:1; 4309 }; 4310 4311 /** 4312 * struct cfg80211_pmsr_result - peer measurement result 4313 * @addr: address of the peer 4314 * @host_time: host time (use ktime_get_boottime() adjust to the time when the 4315 * measurement was made) 4316 * @ap_tsf: AP's TSF at measurement time 4317 * @status: status of the measurement 4318 * @final: if reporting partial results, mark this as the last one; if not 4319 * reporting partial results always set this flag 4320 * @ap_tsf_valid: indicates the @ap_tsf value is valid 4321 * @type: type of the measurement reported, note that we only support reporting 4322 * one type at a time, but you can report multiple results separately and 4323 * they're all aggregated for userspace. 4324 * @ftm: FTM result 4325 */ 4326 struct cfg80211_pmsr_result { 4327 u64 host_time, ap_tsf; 4328 enum nl80211_peer_measurement_status status; 4329 4330 u8 addr[ETH_ALEN]; 4331 4332 u8 final:1, 4333 ap_tsf_valid:1; 4334 4335 enum nl80211_peer_measurement_type type; 4336 4337 union { 4338 struct cfg80211_pmsr_ftm_result ftm; 4339 }; 4340 }; 4341 4342 /** 4343 * struct cfg80211_pmsr_ftm_request_peer - FTM request data 4344 * @requested: indicates FTM is requested 4345 * @preamble: frame preamble to use 4346 * @burst_period: burst period to use 4347 * @asap: indicates to use ASAP mode 4348 * @num_bursts_exp: number of bursts exponent 4349 * @burst_duration: burst duration. If @trigger_based or @non_trigger_based is 4350 * set, this is the burst duration in milliseconds, and zero means the 4351 * device should pick an appropriate value based on @ftms_per_burst. 4352 * @ftms_per_burst: number of FTMs per burst 4353 * @ftmr_retries: number of retries for FTM request 4354 * @request_lci: request LCI information 4355 * @request_civicloc: request civic location information 4356 * @trigger_based: use trigger based ranging for the measurement 4357 * If neither @trigger_based nor @non_trigger_based is set, 4358 * EDCA based ranging will be used. 4359 * @non_trigger_based: use non trigger based ranging for the measurement 4360 * If neither @trigger_based nor @non_trigger_based is set, 4361 * EDCA based ranging will be used. 4362 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either 4363 * @trigger_based or @non_trigger_based is set. 4364 * @rsta: Operate as the RSTA in the measurement. Only valid if @lmr_feedback 4365 * and either @trigger_based or @non_trigger_based is set. 4366 * @bss_color: the bss color of the responder. Optional. Set to zero to 4367 * indicate the driver should set the BSS color. Only valid if 4368 * @non_trigger_based or @trigger_based is set. 4369 * 4370 * See also nl80211 for the respective attribute documentation. 4371 */ 4372 struct cfg80211_pmsr_ftm_request_peer { 4373 enum nl80211_preamble preamble; 4374 u16 burst_period; 4375 u8 requested:1, 4376 asap:1, 4377 request_lci:1, 4378 request_civicloc:1, 4379 trigger_based:1, 4380 non_trigger_based:1, 4381 lmr_feedback:1, 4382 rsta:1; 4383 u8 num_bursts_exp; 4384 u8 burst_duration; 4385 u8 ftms_per_burst; 4386 u8 ftmr_retries; 4387 u8 bss_color; 4388 }; 4389 4390 /** 4391 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request 4392 * @addr: MAC address 4393 * @chandef: channel to use 4394 * @report_ap_tsf: report the associated AP's TSF 4395 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer 4396 */ 4397 struct cfg80211_pmsr_request_peer { 4398 u8 addr[ETH_ALEN]; 4399 struct cfg80211_chan_def chandef; 4400 u8 report_ap_tsf:1; 4401 struct cfg80211_pmsr_ftm_request_peer ftm; 4402 }; 4403 4404 /** 4405 * struct cfg80211_pmsr_request - peer measurement request 4406 * @cookie: cookie, set by cfg80211 4407 * @nl_portid: netlink portid - used by cfg80211 4408 * @drv_data: driver data for this request, if required for aborting, 4409 * not otherwise freed or anything by cfg80211 4410 * @mac_addr: MAC address used for (randomised) request 4411 * @mac_addr_mask: MAC address mask used for randomisation, bits that 4412 * are 0 in the mask should be randomised, bits that are 1 should 4413 * be taken from the @mac_addr 4414 * @list: used by cfg80211 to hold on to the request 4415 * @timeout: timeout (in milliseconds) for the whole operation, if 4416 * zero it means there's no timeout 4417 * @n_peers: number of peers to do measurements with 4418 * @peers: per-peer measurement request data 4419 */ 4420 struct cfg80211_pmsr_request { 4421 u64 cookie; 4422 void *drv_data; 4423 u32 n_peers; 4424 u32 nl_portid; 4425 4426 u32 timeout; 4427 4428 u8 mac_addr[ETH_ALEN] __aligned(2); 4429 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 4430 4431 struct list_head list; 4432 4433 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers); 4434 }; 4435 4436 /** 4437 * struct cfg80211_update_owe_info - OWE Information 4438 * 4439 * This structure provides information needed for the drivers to offload OWE 4440 * (Opportunistic Wireless Encryption) processing to the user space. 4441 * 4442 * Commonly used across update_owe_info request and event interfaces. 4443 * 4444 * @peer: MAC address of the peer device for which the OWE processing 4445 * has to be done. 4446 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info 4447 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space 4448 * cannot give you the real status code for failures. Used only for 4449 * OWE update request command interface (user space to driver). 4450 * @ie: IEs obtained from the peer or constructed by the user space. These are 4451 * the IEs of the remote peer in the event from the host driver and 4452 * the constructed IEs by the user space in the request interface. 4453 * @ie_len: Length of IEs in octets. 4454 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested 4455 * by peer. This will be filled by driver for both MLO and non-MLO station 4456 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it 4457 * will be -1. Used only with OWE update event (driver to user space). 4458 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO 4459 * connection, it will be all zeros. This is applicable only when 4460 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only 4461 * with OWE update event (driver to user space). 4462 */ 4463 struct cfg80211_update_owe_info { 4464 u8 peer[ETH_ALEN] __aligned(2); 4465 u16 status; 4466 const u8 *ie; 4467 size_t ie_len; 4468 int assoc_link_id; 4469 u8 peer_mld_addr[ETH_ALEN] __aligned(2); 4470 }; 4471 4472 /** 4473 * struct mgmt_frame_regs - management frame registrations data 4474 * @global_stypes: bitmap of management frame subtypes registered 4475 * for the entire device 4476 * @interface_stypes: bitmap of management frame subtypes registered 4477 * for the given interface 4478 * @global_mcast_stypes: mcast RX is needed globally for these subtypes 4479 * @interface_mcast_stypes: mcast RX is needed on this interface 4480 * for these subtypes 4481 */ 4482 struct mgmt_frame_regs { 4483 u32 global_stypes, interface_stypes; 4484 u32 global_mcast_stypes, interface_mcast_stypes; 4485 }; 4486 4487 /** 4488 * struct cfg80211_ops - backend description for wireless configuration 4489 * 4490 * This struct is registered by fullmac card drivers and/or wireless stacks 4491 * in order to handle configuration requests on their interfaces. 4492 * 4493 * All callbacks except where otherwise noted should return 0 4494 * on success or a negative error code. 4495 * 4496 * All operations are invoked with the wiphy mutex held. The RTNL may be 4497 * held in addition (due to wireless extensions) but this cannot be relied 4498 * upon except in cases where documented below. Note that due to ordering, 4499 * the RTNL also cannot be acquired in any handlers. 4500 * 4501 * @suspend: wiphy device needs to be suspended. The variable @wow will 4502 * be %NULL or contain the enabled Wake-on-Wireless triggers that are 4503 * configured for the device. 4504 * @resume: wiphy device needs to be resumed 4505 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback 4506 * to call device_set_wakeup_enable() to enable/disable wakeup from 4507 * the device. 4508 * 4509 * @add_virtual_intf: create a new virtual interface with the given name, 4510 * must set the struct wireless_dev's iftype. Beware: You must create 4511 * the new netdev in the wiphy's network namespace! Returns the struct 4512 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must 4513 * also set the address member in the wdev. 4514 * This additionally holds the RTNL to be able to do netdev changes. 4515 * 4516 * @del_virtual_intf: remove the virtual interface 4517 * This additionally holds the RTNL to be able to do netdev changes. 4518 * 4519 * @change_virtual_intf: change type/configuration of virtual interface, 4520 * keep the struct wireless_dev's iftype updated. 4521 * This additionally holds the RTNL to be able to do netdev changes. 4522 * 4523 * @add_intf_link: Add a new MLO link to the given interface. Note that 4524 * the wdev->link[] data structure has been updated, so the new link 4525 * address is available. 4526 * @del_intf_link: Remove an MLO link from the given interface. 4527 * 4528 * @add_key: add a key with the given parameters. @mac_addr will be %NULL 4529 * when adding a group key. @link_id will be -1 for non-MLO connection. 4530 * For MLO connection, @link_id will be >= 0 for group key and -1 for 4531 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key. 4532 * 4533 * @get_key: get information about the key with the given parameters. 4534 * @mac_addr will be %NULL when requesting information for a group 4535 * key. All pointers given to the @callback function need not be valid 4536 * after it returns. This function should return an error if it is 4537 * not possible to retrieve the key, -ENOENT if it doesn't exist. 4538 * @link_id will be -1 for non-MLO connection. For MLO connection, 4539 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr 4540 * will be peer's MLD address for MLO pairwise key. 4541 * 4542 * @del_key: remove a key given the @mac_addr (%NULL for a group key) 4543 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will 4544 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0 4545 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD 4546 * address for MLO pairwise key. 4547 * 4548 * @set_default_key: set the default key on an interface. @link_id will be >= 0 4549 * for MLO connection and -1 for non-MLO connection. 4550 * 4551 * @set_default_mgmt_key: set the default management frame key on an interface. 4552 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4553 * 4554 * @set_default_beacon_key: set the default Beacon frame key on an interface. 4555 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4556 * 4557 * @set_rekey_data: give the data necessary for GTK rekeying to the driver 4558 * 4559 * @start_ap: Start acting in AP mode defined by the parameters. 4560 * @change_beacon: Change the beacon parameters for an access point mode 4561 * interface. This should reject the call when AP mode wasn't started. 4562 * @stop_ap: Stop being an AP, including stopping beaconing. 4563 * 4564 * @add_station: Add a new station. 4565 * @del_station: Remove a station 4566 * @change_station: Modify a given station. Note that flags changes are not much 4567 * validated in cfg80211, in particular the auth/assoc/authorized flags 4568 * might come to the driver in invalid combinations -- make sure to check 4569 * them, also against the existing state! Drivers must call 4570 * cfg80211_check_station_change() to validate the information. 4571 * @get_station: get station information for the station identified by @mac 4572 * @dump_station: dump station callback -- resume dump at index @idx 4573 * 4574 * @add_mpath: add a fixed mesh path 4575 * @del_mpath: delete a given mesh path 4576 * @change_mpath: change a given mesh path 4577 * @get_mpath: get a mesh path for the given parameters 4578 * @dump_mpath: dump mesh path callback -- resume dump at index @idx 4579 * @get_mpp: get a mesh proxy path for the given parameters 4580 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx 4581 * @join_mesh: join the mesh network with the specified parameters 4582 * (invoked with the wireless_dev mutex held) 4583 * @leave_mesh: leave the current mesh network 4584 * (invoked with the wireless_dev mutex held) 4585 * 4586 * @get_mesh_config: Get the current mesh configuration 4587 * 4588 * @update_mesh_config: Update mesh parameters on a running mesh. 4589 * The mask is a bitfield which tells us which parameters to 4590 * set, and which to leave alone. 4591 * 4592 * @change_bss: Modify parameters for a given BSS. 4593 * 4594 * @inform_bss: Called by cfg80211 while being informed about new BSS data 4595 * for every BSS found within the reported data or frame. This is called 4596 * from within the cfg8011 inform_bss handlers while holding the bss_lock. 4597 * The data parameter is passed through from drv_data inside 4598 * struct cfg80211_inform_bss. 4599 * The new IE data for the BSS is explicitly passed. 4600 * 4601 * @set_txq_params: Set TX queue parameters 4602 * 4603 * @libertas_set_mesh_channel: Only for backward compatibility for libertas, 4604 * as it doesn't implement join_mesh and needs to set the channel to 4605 * join the mesh instead. 4606 * 4607 * @set_monitor_channel: Set the monitor mode channel for the device. If other 4608 * interfaces are active this callback should reject the configuration. 4609 * If no interfaces are active or the device is down, the channel should 4610 * be stored for when a monitor interface becomes active. 4611 * 4612 * @scan: Request to do a scan. If returning zero, the scan request is given 4613 * the driver, and will be valid until passed to cfg80211_scan_done(). 4614 * For scan results, call cfg80211_inform_bss(); you can call this outside 4615 * the scan/scan_done bracket too. 4616 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall 4617 * indicate the status of the scan through cfg80211_scan_done(). 4618 * 4619 * @auth: Request to authenticate with the specified peer 4620 * (invoked with the wireless_dev mutex held) 4621 * @assoc: Request to (re)associate with the specified peer 4622 * (invoked with the wireless_dev mutex held) 4623 * @deauth: Request to deauthenticate from the specified peer 4624 * (invoked with the wireless_dev mutex held) 4625 * @disassoc: Request to disassociate from the specified peer 4626 * (invoked with the wireless_dev mutex held) 4627 * 4628 * @connect: Connect to the ESS with the specified parameters. When connected, 4629 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code 4630 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call 4631 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code 4632 * from the AP or cfg80211_connect_timeout() if no frame with status code 4633 * was received. 4634 * The driver is allowed to roam to other BSSes within the ESS when the 4635 * other BSS matches the connect parameters. When such roaming is initiated 4636 * by the driver, the driver is expected to verify that the target matches 4637 * the configured security parameters and to use Reassociation Request 4638 * frame instead of Association Request frame. 4639 * The connect function can also be used to request the driver to perform a 4640 * specific roam when connected to an ESS. In that case, the prev_bssid 4641 * parameter is set to the BSSID of the currently associated BSS as an 4642 * indication of requesting reassociation. 4643 * In both the driver-initiated and new connect() call initiated roaming 4644 * cases, the result of roaming is indicated with a call to 4645 * cfg80211_roamed(). (invoked with the wireless_dev mutex held) 4646 * @update_connect_params: Update the connect parameters while connected to a 4647 * BSS. The updated parameters can be used by driver/firmware for 4648 * subsequent BSS selection (roaming) decisions and to form the 4649 * Authentication/(Re)Association Request frames. This call does not 4650 * request an immediate disassociation or reassociation with the current 4651 * BSS, i.e., this impacts only subsequent (re)associations. The bits in 4652 * changed are defined in &enum cfg80211_connect_params_changed. 4653 * (invoked with the wireless_dev mutex held) 4654 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if 4655 * connection is in progress. Once done, call cfg80211_disconnected() in 4656 * case connection was already established (invoked with the 4657 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout(). 4658 * 4659 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call 4660 * cfg80211_ibss_joined(), also call that function when changing BSSID due 4661 * to a merge. 4662 * (invoked with the wireless_dev mutex held) 4663 * @leave_ibss: Leave the IBSS. 4664 * (invoked with the wireless_dev mutex held) 4665 * 4666 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or 4667 * MESH mode) 4668 * 4669 * @set_wiphy_params: Notify that wiphy parameters have changed; 4670 * @changed bitfield (see &enum wiphy_params_flags) describes which values 4671 * have changed. The actual parameter values are available in 4672 * struct wiphy. If returning an error, no value should be changed. 4673 * 4674 * @set_tx_power: set the transmit power according to the parameters, 4675 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The 4676 * wdev may be %NULL if power was set for the wiphy, and will 4677 * always be %NULL unless the driver supports per-vif TX power 4678 * (as advertised by the nl80211 feature flag.) 4679 * @get_tx_power: store the current TX power into the dbm variable; 4680 * return 0 if successful 4681 * 4682 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting 4683 * functions to adjust rfkill hw state 4684 * 4685 * @dump_survey: get site survey information. 4686 * 4687 * @remain_on_channel: Request the driver to remain awake on the specified 4688 * channel for the specified duration to complete an off-channel 4689 * operation (e.g., public action frame exchange). When the driver is 4690 * ready on the requested channel, it must indicate this with an event 4691 * notification by calling cfg80211_ready_on_channel(). 4692 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. 4693 * This allows the operation to be terminated prior to timeout based on 4694 * the duration value. 4695 * @mgmt_tx: Transmit a management frame. 4696 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management 4697 * frame on another channel 4698 * 4699 * @testmode_cmd: run a test mode command; @wdev may be %NULL 4700 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be 4701 * used by the function, but 0 and 1 must not be touched. Additionally, 4702 * return error codes other than -ENOBUFS and -ENOENT will terminate the 4703 * dump and return to userspace with an error, so be careful. If any data 4704 * was passed in from userspace then the data/len arguments will be present 4705 * and point to the data contained in %NL80211_ATTR_TESTDATA. 4706 * 4707 * @set_bitrate_mask: set the bitrate mask configuration 4708 * 4709 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac 4710 * devices running firmwares capable of generating the (re) association 4711 * RSN IE. It allows for faster roaming between WPA2 BSSIDs. 4712 * @del_pmksa: Delete a cached PMKID. 4713 * @flush_pmksa: Flush all cached PMKIDs. 4714 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 4715 * allows the driver to adjust the dynamic ps timeout value. 4716 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. 4717 * After configuration, the driver should (soon) send an event indicating 4718 * the current level is above/below the configured threshold; this may 4719 * need some care when the configuration is changed (without first being 4720 * disabled.) 4721 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the 4722 * connection quality monitor. An event is to be sent only when the 4723 * signal level is found to be outside the two values. The driver should 4724 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented. 4725 * If it is provided then there's no point providing @set_cqm_rssi_config. 4726 * @set_cqm_txe_config: Configure connection quality monitor TX error 4727 * thresholds. 4728 * @sched_scan_start: Tell the driver to start a scheduled scan. 4729 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with 4730 * given request id. This call must stop the scheduled scan and be ready 4731 * for starting a new one before it returns, i.e. @sched_scan_start may be 4732 * called immediately after that again and should not fail in that case. 4733 * The driver should not call cfg80211_sched_scan_stopped() for a requested 4734 * stop (when this method returns 0). 4735 * 4736 * @update_mgmt_frame_registrations: Notify the driver that management frame 4737 * registrations were updated. The callback is allowed to sleep. 4738 * 4739 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 4740 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 4741 * reject TX/RX mask combinations they cannot support by returning -EINVAL 4742 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 4743 * 4744 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 4745 * 4746 * @tdls_mgmt: Transmit a TDLS management frame. 4747 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup). 4748 * 4749 * @probe_client: probe an associated client, must return a cookie that it 4750 * later passes to cfg80211_probe_status(). 4751 * 4752 * @set_noack_map: Set the NoAck Map for the TIDs. 4753 * 4754 * @get_channel: Get the current operating channel for the virtual interface. 4755 * For monitor interfaces, it should return %NULL unless there's a single 4756 * current monitoring channel. 4757 * 4758 * @start_p2p_device: Start the given P2P device. 4759 * @stop_p2p_device: Stop the given P2P device. 4760 * 4761 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode. 4762 * Parameters include ACL policy, an array of MAC address of stations 4763 * and the number of MAC addresses. If there is already a list in driver 4764 * this new list replaces the existing one. Driver has to clear its ACL 4765 * when number of MAC addresses entries is passed as 0. Drivers which 4766 * advertise the support for MAC based ACL have to implement this callback. 4767 * 4768 * @start_radar_detection: Start radar detection in the driver. 4769 * 4770 * @end_cac: End running CAC, probably because a related CAC 4771 * was finished on another phy. 4772 * 4773 * @update_ft_ies: Provide updated Fast BSS Transition information to the 4774 * driver. If the SME is in the driver/firmware, this information can be 4775 * used in building Authentication and Reassociation Request frames. 4776 * 4777 * @crit_proto_start: Indicates a critical protocol needs more link reliability 4778 * for a given duration (milliseconds). The protocol is provided so the 4779 * driver can take the most appropriate actions. 4780 * @crit_proto_stop: Indicates critical protocol no longer needs increased link 4781 * reliability. This operation can not fail. 4782 * @set_coalesce: Set coalesce parameters. 4783 * 4784 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is 4785 * responsible for veryfing if the switch is possible. Since this is 4786 * inherently tricky driver may decide to disconnect an interface later 4787 * with cfg80211_stop_iface(). This doesn't mean driver can accept 4788 * everything. It should do it's best to verify requests and reject them 4789 * as soon as possible. 4790 * 4791 * @set_qos_map: Set QoS mapping information to the driver 4792 * 4793 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the 4794 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width 4795 * changes during the lifetime of the BSS. 4796 * 4797 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device 4798 * with the given parameters; action frame exchange has been handled by 4799 * userspace so this just has to modify the TX path to take the TS into 4800 * account. 4801 * If the admitted time is 0 just validate the parameters to make sure 4802 * the session can be created at all; it is valid to just always return 4803 * success for that but that may result in inefficient behaviour (handshake 4804 * with the peer followed by immediate teardown when the addition is later 4805 * rejected) 4806 * @del_tx_ts: remove an existing TX TS 4807 * 4808 * @join_ocb: join the OCB network with the specified parameters 4809 * (invoked with the wireless_dev mutex held) 4810 * @leave_ocb: leave the current OCB network 4811 * (invoked with the wireless_dev mutex held) 4812 * 4813 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver 4814 * is responsible for continually initiating channel-switching operations 4815 * and returning to the base channel for communication with the AP. 4816 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both 4817 * peers must be on the base channel when the call completes. 4818 * @start_nan: Start the NAN interface. 4819 * @stop_nan: Stop the NAN interface. 4820 * @add_nan_func: Add a NAN function. Returns negative value on failure. 4821 * On success @nan_func ownership is transferred to the driver and 4822 * it may access it outside of the scope of this function. The driver 4823 * should free the @nan_func when no longer needed by calling 4824 * cfg80211_free_nan_func(). 4825 * On success the driver should assign an instance_id in the 4826 * provided @nan_func. 4827 * @del_nan_func: Delete a NAN function. 4828 * @nan_change_conf: changes NAN configuration. The changed parameters must 4829 * be specified in @changes (using &enum cfg80211_nan_conf_changes); 4830 * All other parameters must be ignored. 4831 * 4832 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS 4833 * 4834 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this 4835 * function should return phy stats, and interface stats otherwise. 4836 * 4837 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake. 4838 * If not deleted through @del_pmk the PMK remains valid until disconnect 4839 * upon which the driver should clear it. 4840 * (invoked with the wireless_dev mutex held) 4841 * @del_pmk: delete the previously configured PMK for the given authenticator. 4842 * (invoked with the wireless_dev mutex held) 4843 * 4844 * @external_auth: indicates result of offloaded authentication processing from 4845 * user space 4846 * 4847 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter 4848 * tells the driver that the frame should not be encrypted. 4849 * 4850 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available. 4851 * Statistics should be cumulative, currently no way to reset is provided. 4852 * @start_pmsr: start peer measurement (e.g. FTM) 4853 * @abort_pmsr: abort peer measurement 4854 * 4855 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME 4856 * but offloading OWE processing to the user space will get the updated 4857 * DH IE through this interface. 4858 * 4859 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame 4860 * and overrule HWMP path selection algorithm. 4861 * @set_tid_config: TID specific configuration, this can be peer or BSS specific 4862 * This callback may sleep. 4863 * @reset_tid_config: Reset TID specific configuration for the peer, for the 4864 * given TIDs. This callback may sleep. 4865 * 4866 * @set_sar_specs: Update the SAR (TX power) settings. 4867 * 4868 * @color_change: Initiate a color change. 4869 * 4870 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use 4871 * those to decrypt (Re)Association Request and encrypt (Re)Association 4872 * Response frame. 4873 * 4874 * @set_radar_background: Configure dedicated offchannel chain available for 4875 * radar/CAC detection on some hw. This chain can't be used to transmit 4876 * or receive frames and it is bounded to a running wdev. 4877 * Background radar/CAC detection allows to avoid the CAC downtime 4878 * switching to a different channel during CAC detection on the selected 4879 * radar channel. 4880 * The caller is expected to set chandef pointer to NULL in order to 4881 * disable background CAC/radar detection. 4882 * @add_link_station: Add a link to a station. 4883 * @mod_link_station: Modify a link of a station. 4884 * @del_link_station: Remove a link of a station. 4885 * 4886 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames. 4887 * @set_ttlm: set the TID to link mapping. 4888 * @set_epcs: Enable/Disable EPCS for station mode. 4889 * @get_radio_mask: get bitmask of radios in use. 4890 * (invoked with the wiphy mutex held) 4891 * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML 4892 * reconfiguration, i.e., add and/or remove links to/from the 4893 * association using ML reconfiguration action frames. Successfully added 4894 * links will be added to the set of valid links. Successfully removed 4895 * links will be removed from the set of valid links. The driver must 4896 * indicate removed links by calling cfg80211_links_removed() and added 4897 * links by calling cfg80211_mlo_reconf_add_done(). When calling 4898 * cfg80211_mlo_reconf_add_done() the bss pointer must be given for each 4899 * link for which MLO reconfiguration 'add' operation was requested. 4900 */ 4901 struct cfg80211_ops { 4902 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); 4903 int (*resume)(struct wiphy *wiphy); 4904 void (*set_wakeup)(struct wiphy *wiphy, bool enabled); 4905 4906 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, 4907 const char *name, 4908 unsigned char name_assign_type, 4909 enum nl80211_iftype type, 4910 struct vif_params *params); 4911 int (*del_virtual_intf)(struct wiphy *wiphy, 4912 struct wireless_dev *wdev); 4913 int (*change_virtual_intf)(struct wiphy *wiphy, 4914 struct net_device *dev, 4915 enum nl80211_iftype type, 4916 struct vif_params *params); 4917 4918 int (*add_intf_link)(struct wiphy *wiphy, 4919 struct wireless_dev *wdev, 4920 unsigned int link_id); 4921 void (*del_intf_link)(struct wiphy *wiphy, 4922 struct wireless_dev *wdev, 4923 unsigned int link_id); 4924 4925 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, 4926 int link_id, u8 key_index, bool pairwise, 4927 const u8 *mac_addr, struct key_params *params); 4928 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, 4929 int link_id, u8 key_index, bool pairwise, 4930 const u8 *mac_addr, void *cookie, 4931 void (*callback)(void *cookie, struct key_params*)); 4932 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, 4933 int link_id, u8 key_index, bool pairwise, 4934 const u8 *mac_addr); 4935 int (*set_default_key)(struct wiphy *wiphy, 4936 struct net_device *netdev, int link_id, 4937 u8 key_index, bool unicast, bool multicast); 4938 int (*set_default_mgmt_key)(struct wiphy *wiphy, 4939 struct net_device *netdev, int link_id, 4940 u8 key_index); 4941 int (*set_default_beacon_key)(struct wiphy *wiphy, 4942 struct net_device *netdev, 4943 int link_id, 4944 u8 key_index); 4945 4946 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, 4947 struct cfg80211_ap_settings *settings); 4948 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, 4949 struct cfg80211_ap_update *info); 4950 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev, 4951 unsigned int link_id); 4952 4953 4954 int (*add_station)(struct wiphy *wiphy, struct net_device *dev, 4955 const u8 *mac, 4956 struct station_parameters *params); 4957 int (*del_station)(struct wiphy *wiphy, struct net_device *dev, 4958 struct station_del_parameters *params); 4959 int (*change_station)(struct wiphy *wiphy, struct net_device *dev, 4960 const u8 *mac, 4961 struct station_parameters *params); 4962 int (*get_station)(struct wiphy *wiphy, struct net_device *dev, 4963 const u8 *mac, struct station_info *sinfo); 4964 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, 4965 int idx, u8 *mac, struct station_info *sinfo); 4966 4967 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, 4968 const u8 *dst, const u8 *next_hop); 4969 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, 4970 const u8 *dst); 4971 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, 4972 const u8 *dst, const u8 *next_hop); 4973 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, 4974 u8 *dst, u8 *next_hop, struct mpath_info *pinfo); 4975 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, 4976 int idx, u8 *dst, u8 *next_hop, 4977 struct mpath_info *pinfo); 4978 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev, 4979 u8 *dst, u8 *mpp, struct mpath_info *pinfo); 4980 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev, 4981 int idx, u8 *dst, u8 *mpp, 4982 struct mpath_info *pinfo); 4983 int (*get_mesh_config)(struct wiphy *wiphy, 4984 struct net_device *dev, 4985 struct mesh_config *conf); 4986 int (*update_mesh_config)(struct wiphy *wiphy, 4987 struct net_device *dev, u32 mask, 4988 const struct mesh_config *nconf); 4989 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, 4990 const struct mesh_config *conf, 4991 const struct mesh_setup *setup); 4992 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); 4993 4994 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev, 4995 struct ocb_setup *setup); 4996 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev); 4997 4998 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, 4999 struct bss_parameters *params); 5000 5001 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss, 5002 const struct cfg80211_bss_ies *ies, void *data); 5003 5004 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev, 5005 struct ieee80211_txq_params *params); 5006 5007 int (*libertas_set_mesh_channel)(struct wiphy *wiphy, 5008 struct net_device *dev, 5009 struct ieee80211_channel *chan); 5010 5011 int (*set_monitor_channel)(struct wiphy *wiphy, 5012 struct net_device *dev, 5013 struct cfg80211_chan_def *chandef); 5014 5015 int (*scan)(struct wiphy *wiphy, 5016 struct cfg80211_scan_request *request); 5017 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev); 5018 5019 int (*auth)(struct wiphy *wiphy, struct net_device *dev, 5020 struct cfg80211_auth_request *req); 5021 int (*assoc)(struct wiphy *wiphy, struct net_device *dev, 5022 struct cfg80211_assoc_request *req); 5023 int (*deauth)(struct wiphy *wiphy, struct net_device *dev, 5024 struct cfg80211_deauth_request *req); 5025 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, 5026 struct cfg80211_disassoc_request *req); 5027 5028 int (*connect)(struct wiphy *wiphy, struct net_device *dev, 5029 struct cfg80211_connect_params *sme); 5030 int (*update_connect_params)(struct wiphy *wiphy, 5031 struct net_device *dev, 5032 struct cfg80211_connect_params *sme, 5033 u32 changed); 5034 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, 5035 u16 reason_code); 5036 5037 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, 5038 struct cfg80211_ibss_params *params); 5039 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); 5040 5041 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, 5042 int rate[NUM_NL80211_BANDS]); 5043 5044 int (*set_wiphy_params)(struct wiphy *wiphy, int radio_idx, 5045 u32 changed); 5046 5047 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 5048 int radio_idx, 5049 enum nl80211_tx_power_setting type, int mbm); 5050 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 5051 int radio_idx, unsigned int link_id, int *dbm); 5052 5053 void (*rfkill_poll)(struct wiphy *wiphy); 5054 5055 #ifdef CONFIG_NL80211_TESTMODE 5056 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev, 5057 void *data, int len); 5058 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb, 5059 struct netlink_callback *cb, 5060 void *data, int len); 5061 #endif 5062 5063 int (*set_bitrate_mask)(struct wiphy *wiphy, 5064 struct net_device *dev, 5065 unsigned int link_id, 5066 const u8 *peer, 5067 const struct cfg80211_bitrate_mask *mask); 5068 5069 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, 5070 int idx, struct survey_info *info); 5071 5072 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 5073 struct cfg80211_pmksa *pmksa); 5074 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 5075 struct cfg80211_pmksa *pmksa); 5076 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); 5077 5078 int (*remain_on_channel)(struct wiphy *wiphy, 5079 struct wireless_dev *wdev, 5080 struct ieee80211_channel *chan, 5081 unsigned int duration, 5082 u64 *cookie); 5083 int (*cancel_remain_on_channel)(struct wiphy *wiphy, 5084 struct wireless_dev *wdev, 5085 u64 cookie); 5086 5087 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev, 5088 struct cfg80211_mgmt_tx_params *params, 5089 u64 *cookie); 5090 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, 5091 struct wireless_dev *wdev, 5092 u64 cookie); 5093 5094 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, 5095 bool enabled, int timeout); 5096 5097 int (*set_cqm_rssi_config)(struct wiphy *wiphy, 5098 struct net_device *dev, 5099 s32 rssi_thold, u32 rssi_hyst); 5100 5101 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy, 5102 struct net_device *dev, 5103 s32 rssi_low, s32 rssi_high); 5104 5105 int (*set_cqm_txe_config)(struct wiphy *wiphy, 5106 struct net_device *dev, 5107 u32 rate, u32 pkts, u32 intvl); 5108 5109 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy, 5110 struct wireless_dev *wdev, 5111 struct mgmt_frame_regs *upd); 5112 5113 int (*set_antenna)(struct wiphy *wiphy, int radio_idx, 5114 u32 tx_ant, u32 rx_ant); 5115 int (*get_antenna)(struct wiphy *wiphy, int radio_idx, 5116 u32 *tx_ant, u32 *rx_ant); 5117 5118 int (*sched_scan_start)(struct wiphy *wiphy, 5119 struct net_device *dev, 5120 struct cfg80211_sched_scan_request *request); 5121 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev, 5122 u64 reqid); 5123 5124 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev, 5125 struct cfg80211_gtk_rekey_data *data); 5126 5127 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev, 5128 const u8 *peer, int link_id, 5129 u8 action_code, u8 dialog_token, u16 status_code, 5130 u32 peer_capability, bool initiator, 5131 const u8 *buf, size_t len); 5132 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, 5133 const u8 *peer, enum nl80211_tdls_operation oper); 5134 5135 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, 5136 const u8 *peer, u64 *cookie); 5137 5138 int (*set_noack_map)(struct wiphy *wiphy, 5139 struct net_device *dev, 5140 u16 noack_map); 5141 5142 int (*get_channel)(struct wiphy *wiphy, 5143 struct wireless_dev *wdev, 5144 unsigned int link_id, 5145 struct cfg80211_chan_def *chandef); 5146 5147 int (*start_p2p_device)(struct wiphy *wiphy, 5148 struct wireless_dev *wdev); 5149 void (*stop_p2p_device)(struct wiphy *wiphy, 5150 struct wireless_dev *wdev); 5151 5152 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, 5153 const struct cfg80211_acl_data *params); 5154 5155 int (*start_radar_detection)(struct wiphy *wiphy, 5156 struct net_device *dev, 5157 struct cfg80211_chan_def *chandef, 5158 u32 cac_time_ms, int link_id); 5159 void (*end_cac)(struct wiphy *wiphy, 5160 struct net_device *dev, unsigned int link_id); 5161 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, 5162 struct cfg80211_update_ft_ies_params *ftie); 5163 int (*crit_proto_start)(struct wiphy *wiphy, 5164 struct wireless_dev *wdev, 5165 enum nl80211_crit_proto_id protocol, 5166 u16 duration); 5167 void (*crit_proto_stop)(struct wiphy *wiphy, 5168 struct wireless_dev *wdev); 5169 int (*set_coalesce)(struct wiphy *wiphy, 5170 struct cfg80211_coalesce *coalesce); 5171 5172 int (*channel_switch)(struct wiphy *wiphy, 5173 struct net_device *dev, 5174 struct cfg80211_csa_settings *params); 5175 5176 int (*set_qos_map)(struct wiphy *wiphy, 5177 struct net_device *dev, 5178 struct cfg80211_qos_map *qos_map); 5179 5180 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev, 5181 unsigned int link_id, 5182 struct cfg80211_chan_def *chandef); 5183 5184 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 5185 u8 tsid, const u8 *peer, u8 user_prio, 5186 u16 admitted_time); 5187 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 5188 u8 tsid, const u8 *peer); 5189 5190 int (*tdls_channel_switch)(struct wiphy *wiphy, 5191 struct net_device *dev, 5192 const u8 *addr, u8 oper_class, 5193 struct cfg80211_chan_def *chandef); 5194 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy, 5195 struct net_device *dev, 5196 const u8 *addr); 5197 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev, 5198 struct cfg80211_nan_conf *conf); 5199 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev); 5200 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 5201 struct cfg80211_nan_func *nan_func); 5202 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 5203 u64 cookie); 5204 int (*nan_change_conf)(struct wiphy *wiphy, 5205 struct wireless_dev *wdev, 5206 struct cfg80211_nan_conf *conf, 5207 u32 changes); 5208 5209 int (*set_multicast_to_unicast)(struct wiphy *wiphy, 5210 struct net_device *dev, 5211 const bool enabled); 5212 5213 int (*get_txq_stats)(struct wiphy *wiphy, 5214 struct wireless_dev *wdev, 5215 struct cfg80211_txq_stats *txqstats); 5216 5217 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev, 5218 const struct cfg80211_pmk_conf *conf); 5219 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev, 5220 const u8 *aa); 5221 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev, 5222 struct cfg80211_external_auth_params *params); 5223 5224 int (*tx_control_port)(struct wiphy *wiphy, 5225 struct net_device *dev, 5226 const u8 *buf, size_t len, 5227 const u8 *dest, const __be16 proto, 5228 const bool noencrypt, int link_id, 5229 u64 *cookie); 5230 5231 int (*get_ftm_responder_stats)(struct wiphy *wiphy, 5232 struct net_device *dev, 5233 struct cfg80211_ftm_responder_stats *ftm_stats); 5234 5235 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 5236 struct cfg80211_pmsr_request *request); 5237 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 5238 struct cfg80211_pmsr_request *request); 5239 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev, 5240 struct cfg80211_update_owe_info *owe_info); 5241 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev, 5242 const u8 *buf, size_t len); 5243 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev, 5244 struct cfg80211_tid_config *tid_conf); 5245 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev, 5246 const u8 *peer, u8 tids); 5247 int (*set_sar_specs)(struct wiphy *wiphy, 5248 struct cfg80211_sar_specs *sar); 5249 int (*color_change)(struct wiphy *wiphy, 5250 struct net_device *dev, 5251 struct cfg80211_color_change_settings *params); 5252 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev, 5253 struct cfg80211_fils_aad *fils_aad); 5254 int (*set_radar_background)(struct wiphy *wiphy, 5255 struct cfg80211_chan_def *chandef); 5256 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev, 5257 struct link_station_parameters *params); 5258 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev, 5259 struct link_station_parameters *params); 5260 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev, 5261 struct link_station_del_parameters *params); 5262 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev, 5263 struct cfg80211_set_hw_timestamp *hwts); 5264 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev, 5265 struct cfg80211_ttlm_params *params); 5266 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev); 5267 int (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev, 5268 struct cfg80211_ml_reconf_req *req); 5269 int (*set_epcs)(struct wiphy *wiphy, struct net_device *dev, 5270 bool val); 5271 }; 5272 5273 /* 5274 * wireless hardware and networking interfaces structures 5275 * and registration/helper functions 5276 */ 5277 5278 /** 5279 * enum wiphy_flags - wiphy capability flags 5280 * 5281 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split 5282 * into two, first for legacy bands and second for 6 GHz. 5283 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this 5284 * wiphy at all 5285 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled 5286 * by default -- this flag will be set depending on the kernel's default 5287 * on wiphy_new(), but can be changed by the driver if it has a good 5288 * reason to override the default 5289 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station 5290 * on a VLAN interface). This flag also serves an extra purpose of 5291 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype. 5292 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station 5293 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the 5294 * control port protocol ethertype. The device also honours the 5295 * control_port_no_encrypt flag. 5296 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. 5297 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing 5298 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. 5299 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the 5300 * firmware. 5301 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP. 5302 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation. 5303 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z) 5304 * link setup/discovery operations internally. Setup, discovery and 5305 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT 5306 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be 5307 * used for asking the driver/firmware to perform a TDLS operation. 5308 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME 5309 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes 5310 * when there are virtual interfaces in AP mode by calling 5311 * cfg80211_report_obss_beacon(). 5312 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device 5313 * responds to probe-requests in hardware. 5314 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX. 5315 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call. 5316 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels. 5317 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in 5318 * beaconing mode (AP, IBSS, Mesh, ...). 5319 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys 5320 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs, 5321 * in order to not have them reachable in normal drivers, until we have 5322 * complete feature/interface combinations/etc. advertisement. No driver 5323 * should set this flag for now. 5324 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys. 5325 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for 5326 * NL80211_REGDOM_SET_BY_DRIVER. 5327 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver 5328 * set this flag to update channels on beacon hints. 5329 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link 5330 * of an NSTR mobile AP MLD. 5331 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device 5332 */ 5333 enum wiphy_flags { 5334 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0), 5335 WIPHY_FLAG_SUPPORTS_MLO = BIT(1), 5336 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2), 5337 WIPHY_FLAG_NETNS_OK = BIT(3), 5338 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), 5339 WIPHY_FLAG_4ADDR_AP = BIT(5), 5340 WIPHY_FLAG_4ADDR_STATION = BIT(6), 5341 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), 5342 WIPHY_FLAG_IBSS_RSN = BIT(8), 5343 WIPHY_FLAG_DISABLE_WEXT = BIT(9), 5344 WIPHY_FLAG_MESH_AUTH = BIT(10), 5345 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11), 5346 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12), 5347 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13), 5348 WIPHY_FLAG_AP_UAPSD = BIT(14), 5349 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15), 5350 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16), 5351 WIPHY_FLAG_HAVE_AP_SME = BIT(17), 5352 WIPHY_FLAG_REPORTS_OBSS = BIT(18), 5353 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19), 5354 WIPHY_FLAG_OFFCHAN_TX = BIT(20), 5355 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21), 5356 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22), 5357 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23), 5358 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24), 5359 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25), 5360 }; 5361 5362 /** 5363 * struct ieee80211_iface_limit - limit on certain interface types 5364 * @max: maximum number of interfaces of these types 5365 * @types: interface types (bits) 5366 */ 5367 struct ieee80211_iface_limit { 5368 u16 max; 5369 u16 types; 5370 }; 5371 5372 /** 5373 * struct ieee80211_iface_combination - possible interface combination 5374 * 5375 * With this structure the driver can describe which interface 5376 * combinations it supports concurrently. When set in a struct wiphy_radio, 5377 * the combinations refer to combinations of interfaces currently active on 5378 * that radio. 5379 * 5380 * Examples: 5381 * 5382 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: 5383 * 5384 * .. code-block:: c 5385 * 5386 * struct ieee80211_iface_limit limits1[] = { 5387 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5388 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), }, 5389 * }; 5390 * struct ieee80211_iface_combination combination1 = { 5391 * .limits = limits1, 5392 * .n_limits = ARRAY_SIZE(limits1), 5393 * .max_interfaces = 2, 5394 * .beacon_int_infra_match = true, 5395 * }; 5396 * 5397 * 5398 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: 5399 * 5400 * .. code-block:: c 5401 * 5402 * struct ieee80211_iface_limit limits2[] = { 5403 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | 5404 * BIT(NL80211_IFTYPE_P2P_GO), }, 5405 * }; 5406 * struct ieee80211_iface_combination combination2 = { 5407 * .limits = limits2, 5408 * .n_limits = ARRAY_SIZE(limits2), 5409 * .max_interfaces = 8, 5410 * .num_different_channels = 1, 5411 * }; 5412 * 5413 * 5414 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. 5415 * 5416 * This allows for an infrastructure connection and three P2P connections. 5417 * 5418 * .. code-block:: c 5419 * 5420 * struct ieee80211_iface_limit limits3[] = { 5421 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5422 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | 5423 * BIT(NL80211_IFTYPE_P2P_CLIENT), }, 5424 * }; 5425 * struct ieee80211_iface_combination combination3 = { 5426 * .limits = limits3, 5427 * .n_limits = ARRAY_SIZE(limits3), 5428 * .max_interfaces = 4, 5429 * .num_different_channels = 2, 5430 * }; 5431 * 5432 */ 5433 struct ieee80211_iface_combination { 5434 /** 5435 * @limits: 5436 * limits for the given interface types 5437 */ 5438 const struct ieee80211_iface_limit *limits; 5439 5440 /** 5441 * @num_different_channels: 5442 * can use up to this many different channels 5443 */ 5444 u32 num_different_channels; 5445 5446 /** 5447 * @max_interfaces: 5448 * maximum number of interfaces in total allowed in this group 5449 */ 5450 u16 max_interfaces; 5451 5452 /** 5453 * @n_limits: 5454 * number of limitations 5455 */ 5456 u8 n_limits; 5457 5458 /** 5459 * @beacon_int_infra_match: 5460 * In this combination, the beacon intervals between infrastructure 5461 * and AP types must match. This is required only in special cases. 5462 */ 5463 bool beacon_int_infra_match; 5464 5465 /** 5466 * @radar_detect_widths: 5467 * bitmap of channel widths supported for radar detection 5468 */ 5469 u8 radar_detect_widths; 5470 5471 /** 5472 * @radar_detect_regions: 5473 * bitmap of regions supported for radar detection 5474 */ 5475 u8 radar_detect_regions; 5476 5477 /** 5478 * @beacon_int_min_gcd: 5479 * This interface combination supports different beacon intervals. 5480 * 5481 * = 0 5482 * all beacon intervals for different interface must be same. 5483 * > 0 5484 * any beacon interval for the interface part of this combination AND 5485 * GCD of all beacon intervals from beaconing interfaces of this 5486 * combination must be greater or equal to this value. 5487 */ 5488 u32 beacon_int_min_gcd; 5489 }; 5490 5491 struct ieee80211_txrx_stypes { 5492 u16 tx, rx; 5493 }; 5494 5495 /** 5496 * enum wiphy_wowlan_support_flags - WoWLAN support flags 5497 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" 5498 * trigger that keeps the device operating as-is and 5499 * wakes up the host on any activity, for example a 5500 * received packet that passed filtering; note that the 5501 * packet should be preserved in that case 5502 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet 5503 * (see nl80211.h) 5504 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect 5505 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep 5506 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure 5507 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request 5508 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure 5509 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release 5510 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection 5511 */ 5512 enum wiphy_wowlan_support_flags { 5513 WIPHY_WOWLAN_ANY = BIT(0), 5514 WIPHY_WOWLAN_MAGIC_PKT = BIT(1), 5515 WIPHY_WOWLAN_DISCONNECT = BIT(2), 5516 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3), 5517 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4), 5518 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5), 5519 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6), 5520 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7), 5521 WIPHY_WOWLAN_NET_DETECT = BIT(8), 5522 }; 5523 5524 struct wiphy_wowlan_tcp_support { 5525 const struct nl80211_wowlan_tcp_data_token_feature *tok; 5526 u32 data_payload_max; 5527 u32 data_interval_max; 5528 u32 wake_payload_max; 5529 bool seq; 5530 }; 5531 5532 /** 5533 * struct wiphy_wowlan_support - WoWLAN support data 5534 * @flags: see &enum wiphy_wowlan_support_flags 5535 * @n_patterns: number of supported wakeup patterns 5536 * (see nl80211.h for the pattern definition) 5537 * @pattern_max_len: maximum length of each pattern 5538 * @pattern_min_len: minimum length of each pattern 5539 * @max_pkt_offset: maximum Rx packet offset 5540 * @max_nd_match_sets: maximum number of matchsets for net-detect, 5541 * similar, but not necessarily identical, to max_match_sets for 5542 * scheduled scans. 5543 * See &struct cfg80211_sched_scan_request.@match_sets for more 5544 * details. 5545 * @tcp: TCP wakeup support information 5546 */ 5547 struct wiphy_wowlan_support { 5548 u32 flags; 5549 int n_patterns; 5550 int pattern_max_len; 5551 int pattern_min_len; 5552 int max_pkt_offset; 5553 int max_nd_match_sets; 5554 const struct wiphy_wowlan_tcp_support *tcp; 5555 }; 5556 5557 /** 5558 * struct wiphy_coalesce_support - coalesce support data 5559 * @n_rules: maximum number of coalesce rules 5560 * @max_delay: maximum supported coalescing delay in msecs 5561 * @n_patterns: number of supported patterns in a rule 5562 * (see nl80211.h for the pattern definition) 5563 * @pattern_max_len: maximum length of each pattern 5564 * @pattern_min_len: minimum length of each pattern 5565 * @max_pkt_offset: maximum Rx packet offset 5566 */ 5567 struct wiphy_coalesce_support { 5568 int n_rules; 5569 int max_delay; 5570 int n_patterns; 5571 int pattern_max_len; 5572 int pattern_min_len; 5573 int max_pkt_offset; 5574 }; 5575 5576 /** 5577 * enum wiphy_vendor_command_flags - validation flags for vendor commands 5578 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev 5579 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev 5580 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running 5581 * (must be combined with %_WDEV or %_NETDEV) 5582 */ 5583 enum wiphy_vendor_command_flags { 5584 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0), 5585 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1), 5586 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2), 5587 }; 5588 5589 /** 5590 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags 5591 * 5592 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed 5593 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed 5594 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed 5595 * 5596 */ 5597 enum wiphy_opmode_flag { 5598 STA_OPMODE_MAX_BW_CHANGED = BIT(0), 5599 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1), 5600 STA_OPMODE_N_SS_CHANGED = BIT(2), 5601 }; 5602 5603 /** 5604 * struct sta_opmode_info - Station's ht/vht operation mode information 5605 * @changed: contains value from &enum wiphy_opmode_flag 5606 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station 5607 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station 5608 * @rx_nss: new rx_nss value of a station 5609 */ 5610 5611 struct sta_opmode_info { 5612 u32 changed; 5613 enum nl80211_smps_mode smps_mode; 5614 enum nl80211_chan_width bw; 5615 u8 rx_nss; 5616 }; 5617 5618 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA)) 5619 5620 /** 5621 * struct wiphy_vendor_command - vendor command definition 5622 * @info: vendor command identifying information, as used in nl80211 5623 * @flags: flags, see &enum wiphy_vendor_command_flags 5624 * @doit: callback for the operation, note that wdev is %NULL if the 5625 * flags didn't ask for a wdev and non-%NULL otherwise; the data 5626 * pointer may be %NULL if userspace provided no data at all 5627 * @dumpit: dump callback, for transferring bigger/multiple items. The 5628 * @storage points to cb->args[5], ie. is preserved over the multiple 5629 * dumpit calls. 5630 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA. 5631 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the 5632 * attribute is just raw data (e.g. a firmware command). 5633 * @maxattr: highest attribute number in policy 5634 * It's recommended to not have the same sub command with both @doit and 5635 * @dumpit, so that userspace can assume certain ones are get and others 5636 * are used with dump requests. 5637 */ 5638 struct wiphy_vendor_command { 5639 struct nl80211_vendor_cmd_info info; 5640 u32 flags; 5641 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5642 const void *data, int data_len); 5643 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5644 struct sk_buff *skb, const void *data, int data_len, 5645 unsigned long *storage); 5646 const struct nla_policy *policy; 5647 unsigned int maxattr; 5648 }; 5649 5650 /** 5651 * struct wiphy_iftype_ext_capab - extended capabilities per interface type 5652 * @iftype: interface type 5653 * @extended_capabilities: extended capabilities supported by the driver, 5654 * additional capabilities might be supported by userspace; these are the 5655 * 802.11 extended capabilities ("Extended Capabilities element") and are 5656 * in the same format as in the information element. See IEEE Std 5657 * 802.11-2012 8.4.2.29 for the defined fields. 5658 * @extended_capabilities_mask: mask of the valid values 5659 * @extended_capabilities_len: length of the extended capabilities 5660 * @eml_capabilities: EML capabilities (for MLO) 5661 * @mld_capa_and_ops: MLD capabilities and operations (for MLO) 5662 */ 5663 struct wiphy_iftype_ext_capab { 5664 enum nl80211_iftype iftype; 5665 const u8 *extended_capabilities; 5666 const u8 *extended_capabilities_mask; 5667 u8 extended_capabilities_len; 5668 u16 eml_capabilities; 5669 u16 mld_capa_and_ops; 5670 }; 5671 5672 /** 5673 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability 5674 * @wiphy: the wiphy to look up from 5675 * @type: the interface type to look up 5676 * 5677 * Return: The extended capability for the given interface @type, may be %NULL 5678 */ 5679 const struct wiphy_iftype_ext_capab * 5680 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type); 5681 5682 /** 5683 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities 5684 * @max_peers: maximum number of peers in a single measurement 5685 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement 5686 * @randomize_mac_addr: can randomize MAC address for measurement 5687 * @ftm: FTM measurement data 5688 * @ftm.supported: FTM measurement is supported 5689 * @ftm.asap: ASAP-mode is supported 5690 * @ftm.non_asap: non-ASAP-mode is supported 5691 * @ftm.request_lci: can request LCI data 5692 * @ftm.request_civicloc: can request civic location data 5693 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble) 5694 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width) 5695 * @ftm.max_bursts_exponent: maximum burst exponent supported 5696 * (set to -1 if not limited; note that setting this will necessarily 5697 * forbid using the value 15 to let the responder pick) 5698 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if 5699 * not limited) 5700 * @ftm.trigger_based: trigger based ranging measurement is supported 5701 * @ftm.non_trigger_based: non trigger based ranging measurement is supported 5702 * @ftm.support_6ghz: supports ranging in 6 GHz band 5703 * @ftm.max_tx_ltf_rep: maximum number of TX LTF repetitions supported (0 means 5704 * only one LTF, no repetitions) 5705 * @ftm.max_rx_ltf_rep: maximum number of RX LTF repetitions supported (0 means 5706 * only one LTF, no repetitions) 5707 * @ftm.max_tx_sts: maximum number of TX STS supported (zero based) 5708 * @ftm.max_rx_sts: maximum number of RX STS supported (zero based) 5709 * @ftm.max_total_ltf_tx: maximum total number of LTFs that can be transmitted 5710 * (0 means unknown) 5711 * @ftm.max_total_ltf_rx: maximum total number of LTFs that can be received 5712 * (0 means unknown) 5713 * @ftm.support_rsta: supports operating as RSTA in PMSR FTM request 5714 */ 5715 struct cfg80211_pmsr_capabilities { 5716 unsigned int max_peers; 5717 u8 report_ap_tsf:1, 5718 randomize_mac_addr:1; 5719 5720 struct { 5721 u32 preambles; 5722 u32 bandwidths; 5723 s8 max_bursts_exponent; 5724 u8 max_ftms_per_burst; 5725 u8 supported:1, 5726 asap:1, 5727 non_asap:1, 5728 request_lci:1, 5729 request_civicloc:1, 5730 trigger_based:1, 5731 non_trigger_based:1, 5732 support_6ghz:1; 5733 u8 max_tx_ltf_rep; 5734 u8 max_rx_ltf_rep; 5735 u8 max_tx_sts; 5736 u8 max_rx_sts; 5737 u8 max_total_ltf_tx; 5738 u8 max_total_ltf_rx; 5739 u8 support_rsta:1; 5740 } ftm; 5741 }; 5742 5743 /** 5744 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm 5745 * suites for interface types defined in @iftypes_mask. Each type in the 5746 * @iftypes_mask must be unique across all instances of iftype_akm_suites. 5747 * 5748 * @iftypes_mask: bitmask of interfaces types 5749 * @akm_suites: points to an array of supported akm suites 5750 * @n_akm_suites: number of supported AKM suites 5751 */ 5752 struct wiphy_iftype_akm_suites { 5753 u16 iftypes_mask; 5754 const u32 *akm_suites; 5755 int n_akm_suites; 5756 }; 5757 5758 /** 5759 * struct wiphy_radio_cfg - physical radio config of a wiphy 5760 * This structure describes the configurations of a physical radio in a 5761 * wiphy. It is used to denote per-radio attributes belonging to a wiphy. 5762 * 5763 * @rts_threshold: RTS threshold (dot11RTSThreshold); 5764 * -1 (default) = RTS/CTS disabled 5765 * @radio_debugfsdir: Pointer to debugfs directory containing the radio- 5766 * specific parameters. 5767 * NULL (default) = Debugfs directory not created 5768 */ 5769 struct wiphy_radio_cfg { 5770 u32 rts_threshold; 5771 struct dentry *radio_debugfsdir; 5772 }; 5773 5774 /** 5775 * struct wiphy_radio_freq_range - wiphy frequency range 5776 * @start_freq: start range edge frequency (kHz) 5777 * @end_freq: end range edge frequency (kHz) 5778 */ 5779 struct wiphy_radio_freq_range { 5780 u32 start_freq; 5781 u32 end_freq; 5782 }; 5783 5784 5785 /** 5786 * struct wiphy_radio - physical radio of a wiphy 5787 * This structure describes a physical radio belonging to a wiphy. 5788 * It is used to describe concurrent-channel capabilities. Only one channel 5789 * can be active on the radio described by struct wiphy_radio. 5790 * 5791 * @freq_range: frequency range that the radio can operate on. 5792 * @n_freq_range: number of elements in @freq_range 5793 * 5794 * @iface_combinations: Valid interface combinations array, should not 5795 * list single interface types. 5796 * @n_iface_combinations: number of entries in @iface_combinations array. 5797 * 5798 * @antenna_mask: bitmask of antennas connected to this radio. 5799 */ 5800 struct wiphy_radio { 5801 const struct wiphy_radio_freq_range *freq_range; 5802 int n_freq_range; 5803 5804 const struct ieee80211_iface_combination *iface_combinations; 5805 int n_iface_combinations; 5806 5807 u32 antenna_mask; 5808 }; 5809 5810 /** 5811 * enum wiphy_nan_flags - NAN capabilities 5812 * 5813 * @WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC: Device supports NAN configurable 5814 * synchronization. 5815 * @WIPHY_NAN_FLAGS_USERSPACE_DE: Device doesn't support DE offload. 5816 */ 5817 enum wiphy_nan_flags { 5818 WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC = BIT(0), 5819 WIPHY_NAN_FLAGS_USERSPACE_DE = BIT(1), 5820 }; 5821 5822 /** 5823 * struct wiphy_nan_capa - NAN capabilities 5824 * 5825 * This structure describes the NAN capabilities of a wiphy. 5826 * 5827 * @flags: NAN capabilities flags, see &enum wiphy_nan_flags 5828 * @op_mode: NAN operation mode, as defined in Wi-Fi Aware (TM) specification 5829 * Table 81. 5830 * @n_antennas: number of antennas supported by the device for Tx/Rx. Lower 5831 * nibble indicates the number of TX antennas and upper nibble indicates the 5832 * number of RX antennas. Value 0 indicates the information is not 5833 * available. 5834 * @max_channel_switch_time: maximum channel switch time in milliseconds. 5835 * @dev_capabilities: NAN device capabilities as defined in Wi-Fi Aware (TM) 5836 * specification Table 79 (Capabilities field). 5837 */ 5838 struct wiphy_nan_capa { 5839 u32 flags; 5840 u8 op_mode; 5841 u8 n_antennas; 5842 u16 max_channel_switch_time; 5843 u8 dev_capabilities; 5844 }; 5845 5846 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff 5847 5848 /** 5849 * struct wiphy - wireless hardware description 5850 * @mtx: mutex for the data (structures) of this device 5851 * @reg_notifier: the driver's regulatory notification callback, 5852 * note that if your driver uses wiphy_apply_custom_regulatory() 5853 * the reg_notifier's request can be passed as NULL 5854 * @regd: the driver's regulatory domain, if one was requested via 5855 * the regulatory_hint() API. This can be used by the driver 5856 * on the reg_notifier() if it chooses to ignore future 5857 * regulatory domain changes caused by other drivers. 5858 * @signal_type: signal type reported in &struct cfg80211_bss. 5859 * @cipher_suites: supported cipher suites 5860 * @n_cipher_suites: number of supported cipher suites 5861 * @akm_suites: supported AKM suites. These are the default AKMs supported if 5862 * the supported AKMs not advertized for a specific interface type in 5863 * iftype_akm_suites. 5864 * @n_akm_suites: number of supported AKM suites 5865 * @iftype_akm_suites: array of supported akm suites info per interface type. 5866 * Note that the bits in @iftypes_mask inside this structure cannot 5867 * overlap (i.e. only one occurrence of each type is allowed across all 5868 * instances of iftype_akm_suites). 5869 * @num_iftype_akm_suites: number of interface types for which supported akm 5870 * suites are specified separately. 5871 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) 5872 * @retry_long: Retry limit for long frames (dot11LongRetryLimit) 5873 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); 5874 * -1 = fragmentation disabled, only odd values >= 256 used 5875 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled 5876 * @_net: the network namespace this wiphy currently lives in 5877 * @perm_addr: permanent MAC address of this device 5878 * @addr_mask: If the device supports multiple MAC addresses by masking, 5879 * set this to a mask with variable bits set to 1, e.g. if the last 5880 * four bits are variable then set it to 00-00-00-00-00-0f. The actual 5881 * variable bits shall be determined by the interfaces added, with 5882 * interfaces not matching the mask being rejected to be brought up. 5883 * @n_addresses: number of addresses in @addresses. 5884 * @addresses: If the device has more than one address, set this pointer 5885 * to a list of addresses (6 bytes each). The first one will be used 5886 * by default for perm_addr. In this case, the mask should be set to 5887 * all-zeroes. In this case it is assumed that the device can handle 5888 * the same number of arbitrary MAC addresses. 5889 * @registered: protects ->resume and ->suspend sysfs callbacks against 5890 * unregister hardware 5891 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>). 5892 * It will be renamed automatically on wiphy renames 5893 * @dev: (virtual) struct device for this wiphy. The item in 5894 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev() 5895 * (see below). 5896 * @wext: wireless extension handlers 5897 * @priv: driver private data (sized according to wiphy_new() parameter) 5898 * @interface_modes: bitmask of interfaces types valid for this wiphy, 5899 * must be set by driver 5900 * @iface_combinations: Valid interface combinations array, should not 5901 * list single interface types. 5902 * @n_iface_combinations: number of entries in @iface_combinations array. 5903 * @software_iftypes: bitmask of software interface types, these are not 5904 * subject to any restrictions since they are purely managed in SW. 5905 * @flags: wiphy flags, see &enum wiphy_flags 5906 * @regulatory_flags: wiphy regulatory flags, see 5907 * &enum ieee80211_regulatory_flags 5908 * @features: features advertised to nl80211, see &enum nl80211_feature_flags. 5909 * @ext_features: extended features advertised to nl80211, see 5910 * &enum nl80211_ext_feature_index. 5911 * @bss_priv_size: each BSS struct has private data allocated with it, 5912 * this variable determines its size 5913 * @max_scan_ssids: maximum number of SSIDs the device can scan for in 5914 * any given scan 5915 * @max_sched_scan_reqs: maximum number of scheduled scan requests that 5916 * the device can run concurrently. 5917 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan 5918 * for in any given scheduled scan 5919 * @max_match_sets: maximum number of match sets the device can handle 5920 * when performing a scheduled scan, 0 if filtering is not 5921 * supported. 5922 * @max_scan_ie_len: maximum length of user-controlled IEs device can 5923 * add to probe request frames transmitted during a scan, must not 5924 * include fixed IEs like supported rates 5925 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled 5926 * scans 5927 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number 5928 * of iterations) for scheduled scan supported by the device. 5929 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a 5930 * single scan plan supported by the device. 5931 * @max_sched_scan_plan_iterations: maximum number of iterations for a single 5932 * scan plan supported by the device. 5933 * @coverage_class: current coverage class 5934 * @fw_version: firmware version for ethtool reporting 5935 * @hw_version: hardware version for ethtool reporting 5936 * @max_num_pmkids: maximum number of PMKIDs supported by device 5937 * @privid: a pointer that drivers can use to identify if an arbitrary 5938 * wiphy is theirs, e.g. in global notifiers 5939 * @bands: information about bands/channels supported by this device 5940 * 5941 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or 5942 * transmitted through nl80211, points to an array indexed by interface 5943 * type 5944 * 5945 * @available_antennas_tx: bitmap of antennas which are available to be 5946 * configured as TX antennas. Antenna configuration commands will be 5947 * rejected unless this or @available_antennas_rx is set. 5948 * 5949 * @available_antennas_rx: bitmap of antennas which are available to be 5950 * configured as RX antennas. Antenna configuration commands will be 5951 * rejected unless this or @available_antennas_tx is set. 5952 * 5953 * @probe_resp_offload: 5954 * Bitmap of supported protocols for probe response offloading. 5955 * See &enum nl80211_probe_resp_offload_support_attr. Only valid 5956 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. 5957 * 5958 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation 5959 * may request, if implemented. 5960 * 5961 * @wowlan: WoWLAN support information 5962 * @wowlan_config: current WoWLAN configuration; this should usually not be 5963 * used since access to it is necessarily racy, use the parameter passed 5964 * to the suspend() operation instead. 5965 * 5966 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features. 5967 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden. 5968 * If null, then none can be over-ridden. 5969 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden. 5970 * If null, then none can be over-ridden. 5971 * 5972 * @wdev_list: the list of associated (virtual) interfaces; this list must 5973 * not be modified by the driver, but can be read with RTNL/RCU protection. 5974 * 5975 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device 5976 * supports for ACL. 5977 * 5978 * @extended_capabilities: extended capabilities supported by the driver, 5979 * additional capabilities might be supported by userspace; these are 5980 * the 802.11 extended capabilities ("Extended Capabilities element") 5981 * and are in the same format as in the information element. See 5982 * 802.11-2012 8.4.2.29 for the defined fields. These are the default 5983 * extended capabilities to be used if the capabilities are not specified 5984 * for a specific interface type in iftype_ext_capab. 5985 * @extended_capabilities_mask: mask of the valid values 5986 * @extended_capabilities_len: length of the extended capabilities 5987 * @iftype_ext_capab: array of extended capabilities per interface type 5988 * @num_iftype_ext_capab: number of interface types for which extended 5989 * capabilities are specified separately. 5990 * @coalesce: packet coalescing support information 5991 * 5992 * @vendor_commands: array of vendor commands supported by the hardware 5993 * @n_vendor_commands: number of vendor commands 5994 * @vendor_events: array of vendor events supported by the hardware 5995 * @n_vendor_events: number of vendor events 5996 * 5997 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode 5998 * (including P2P GO) or 0 to indicate no such limit is advertised. The 5999 * driver is allowed to advertise a theoretical limit that it can reach in 6000 * some cases, but may not always reach. 6001 * 6002 * @max_num_csa_counters: Number of supported csa_counters in beacons 6003 * and probe responses. This value should be set if the driver 6004 * wishes to limit the number of csa counters. Default (0) means 6005 * infinite. 6006 * @bss_param_support: bitmask indicating which bss_parameters as defined in 6007 * &struct bss_parameters the driver can actually handle in the 6008 * .change_bss() callback. The bit positions are defined in &enum 6009 * wiphy_bss_param_flags. 6010 * 6011 * @bss_select_support: bitmask indicating the BSS selection criteria supported 6012 * by the driver in the .connect() callback. The bit position maps to the 6013 * attribute indices defined in &enum nl80211_bss_select_attr. 6014 * 6015 * @nan_supported_bands: bands supported by the device in NAN mode, a 6016 * bitmap of &enum nl80211_band values. For instance, for 6017 * NL80211_BAND_2GHZ, bit 0 would be set 6018 * (i.e. BIT(NL80211_BAND_2GHZ)). 6019 * @nan_capa: NAN capabilities 6020 * 6021 * @txq_limit: configuration of internal TX queue frame limit 6022 * @txq_memory_limit: configuration internal TX queue memory limit 6023 * @txq_quantum: configuration of internal TX queue scheduler quantum 6024 * 6025 * @tx_queue_len: allow setting transmit queue len for drivers not using 6026 * wake_tx_queue 6027 * 6028 * @support_mbssid: can HW support association with nontransmitted AP 6029 * @support_only_he_mbssid: don't parse MBSSID elements if it is not 6030 * HE AP, in order to avoid compatibility issues. 6031 * @support_mbssid must be set for this to have any effect. 6032 * 6033 * @pmsr_capa: peer measurement capabilities 6034 * 6035 * @tid_config_support: describes the per-TID config support that the 6036 * device has 6037 * @tid_config_support.vif: bitmap of attributes (configurations) 6038 * supported by the driver for each vif 6039 * @tid_config_support.peer: bitmap of attributes (configurations) 6040 * supported by the driver for each peer 6041 * @tid_config_support.max_retry: maximum supported retry count for 6042 * long/short retry configuration 6043 * 6044 * @max_data_retry_count: maximum supported per TID retry count for 6045 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and 6046 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes 6047 * @sar_capa: SAR control capabilities 6048 * @rfkill: a pointer to the rfkill structure 6049 * 6050 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver 6051 * in a multiple BSSID set. This field must be set to a non-zero value 6052 * by the driver to advertise MBSSID support. 6053 * @ema_max_profile_periodicity: maximum profile periodicity supported by 6054 * the driver. Setting this field to a non-zero value indicates that the 6055 * driver supports enhanced multi-BSSID advertisements (EMA AP). 6056 * @max_num_akm_suites: maximum number of AKM suites allowed for 6057 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and 6058 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by 6059 * driver. If set by driver minimum allowed value is 6060 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with 6061 * legacy userspace and maximum allowed value is 6062 * CFG80211_MAX_NUM_AKM_SUITES. 6063 * 6064 * @hw_timestamp_max_peers: maximum number of peers that the driver supports 6065 * enabling HW timestamping for concurrently. Setting this field to a 6066 * non-zero value indicates that the driver supports HW timestamping. 6067 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver 6068 * supports enabling HW timestamping for all peers (i.e. no need to 6069 * specify a mac address). 6070 * 6071 * @radio_cfg: configuration of radios belonging to a muli-radio wiphy. This 6072 * struct contains a list of all radio specific attributes and should be 6073 * used only for multi-radio wiphy. 6074 * 6075 * @radio: radios belonging to this wiphy 6076 * @n_radio: number of radios 6077 */ 6078 struct wiphy { 6079 struct mutex mtx; 6080 6081 /* assign these fields before you register the wiphy */ 6082 6083 u8 perm_addr[ETH_ALEN]; 6084 u8 addr_mask[ETH_ALEN]; 6085 6086 struct mac_address *addresses; 6087 6088 const struct ieee80211_txrx_stypes *mgmt_stypes; 6089 6090 const struct ieee80211_iface_combination *iface_combinations; 6091 int n_iface_combinations; 6092 u16 software_iftypes; 6093 6094 u16 n_addresses; 6095 6096 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ 6097 u16 interface_modes; 6098 6099 u16 max_acl_mac_addrs; 6100 6101 u32 flags, regulatory_flags, features; 6102 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)]; 6103 6104 u32 ap_sme_capa; 6105 6106 enum cfg80211_signal_type signal_type; 6107 6108 int bss_priv_size; 6109 u8 max_scan_ssids; 6110 u8 max_sched_scan_reqs; 6111 u8 max_sched_scan_ssids; 6112 u8 max_match_sets; 6113 u16 max_scan_ie_len; 6114 u16 max_sched_scan_ie_len; 6115 u32 max_sched_scan_plans; 6116 u32 max_sched_scan_plan_interval; 6117 u32 max_sched_scan_plan_iterations; 6118 6119 int n_cipher_suites; 6120 const u32 *cipher_suites; 6121 6122 int n_akm_suites; 6123 const u32 *akm_suites; 6124 6125 const struct wiphy_iftype_akm_suites *iftype_akm_suites; 6126 unsigned int num_iftype_akm_suites; 6127 6128 u8 retry_short; 6129 u8 retry_long; 6130 u32 frag_threshold; 6131 u32 rts_threshold; 6132 u8 coverage_class; 6133 6134 char fw_version[ETHTOOL_FWVERS_LEN]; 6135 u32 hw_version; 6136 6137 #ifdef CONFIG_PM 6138 const struct wiphy_wowlan_support *wowlan; 6139 struct cfg80211_wowlan *wowlan_config; 6140 #endif 6141 6142 u16 max_remain_on_channel_duration; 6143 6144 u8 max_num_pmkids; 6145 6146 u32 available_antennas_tx; 6147 u32 available_antennas_rx; 6148 6149 u32 probe_resp_offload; 6150 6151 const u8 *extended_capabilities, *extended_capabilities_mask; 6152 u8 extended_capabilities_len; 6153 6154 const struct wiphy_iftype_ext_capab *iftype_ext_capab; 6155 unsigned int num_iftype_ext_capab; 6156 6157 const void *privid; 6158 6159 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS]; 6160 6161 void (*reg_notifier)(struct wiphy *wiphy, 6162 struct regulatory_request *request); 6163 6164 struct wiphy_radio_cfg *radio_cfg; 6165 6166 /* fields below are read-only, assigned by cfg80211 */ 6167 6168 const struct ieee80211_regdomain __rcu *regd; 6169 6170 struct device dev; 6171 6172 bool registered; 6173 6174 struct dentry *debugfsdir; 6175 6176 const struct ieee80211_ht_cap *ht_capa_mod_mask; 6177 const struct ieee80211_vht_cap *vht_capa_mod_mask; 6178 6179 struct list_head wdev_list; 6180 6181 possible_net_t _net; 6182 6183 #ifdef CONFIG_CFG80211_WEXT 6184 const struct iw_handler_def *wext; 6185 #endif 6186 6187 const struct wiphy_coalesce_support *coalesce; 6188 6189 const struct wiphy_vendor_command *vendor_commands; 6190 const struct nl80211_vendor_cmd_info *vendor_events; 6191 int n_vendor_commands, n_vendor_events; 6192 6193 u16 max_ap_assoc_sta; 6194 6195 u8 max_num_csa_counters; 6196 6197 u32 bss_param_support; 6198 u32 bss_select_support; 6199 6200 u8 nan_supported_bands; 6201 struct wiphy_nan_capa nan_capa; 6202 6203 u32 txq_limit; 6204 u32 txq_memory_limit; 6205 u32 txq_quantum; 6206 6207 unsigned long tx_queue_len; 6208 6209 u8 support_mbssid:1, 6210 support_only_he_mbssid:1; 6211 6212 const struct cfg80211_pmsr_capabilities *pmsr_capa; 6213 6214 struct { 6215 u64 peer, vif; 6216 u8 max_retry; 6217 } tid_config_support; 6218 6219 u8 max_data_retry_count; 6220 6221 const struct cfg80211_sar_capa *sar_capa; 6222 6223 struct rfkill *rfkill; 6224 6225 u8 mbssid_max_interfaces; 6226 u8 ema_max_profile_periodicity; 6227 u16 max_num_akm_suites; 6228 6229 u16 hw_timestamp_max_peers; 6230 6231 int n_radio; 6232 const struct wiphy_radio *radio; 6233 6234 char priv[] __aligned(NETDEV_ALIGN); 6235 }; 6236 6237 static inline struct net *wiphy_net(struct wiphy *wiphy) 6238 { 6239 return read_pnet(&wiphy->_net); 6240 } 6241 6242 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) 6243 { 6244 write_pnet(&wiphy->_net, net); 6245 } 6246 6247 /** 6248 * wiphy_priv - return priv from wiphy 6249 * 6250 * @wiphy: the wiphy whose priv pointer to return 6251 * Return: The priv of @wiphy. 6252 */ 6253 static inline void *wiphy_priv(struct wiphy *wiphy) 6254 { 6255 BUG_ON(!wiphy); 6256 return &wiphy->priv; 6257 } 6258 6259 /** 6260 * priv_to_wiphy - return the wiphy containing the priv 6261 * 6262 * @priv: a pointer previously returned by wiphy_priv 6263 * Return: The wiphy of @priv. 6264 */ 6265 static inline struct wiphy *priv_to_wiphy(void *priv) 6266 { 6267 BUG_ON(!priv); 6268 return container_of(priv, struct wiphy, priv); 6269 } 6270 6271 /** 6272 * set_wiphy_dev - set device pointer for wiphy 6273 * 6274 * @wiphy: The wiphy whose device to bind 6275 * @dev: The device to parent it to 6276 */ 6277 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) 6278 { 6279 wiphy->dev.parent = dev; 6280 } 6281 6282 /** 6283 * wiphy_dev - get wiphy dev pointer 6284 * 6285 * @wiphy: The wiphy whose device struct to look up 6286 * Return: The dev of @wiphy. 6287 */ 6288 static inline struct device *wiphy_dev(struct wiphy *wiphy) 6289 { 6290 return wiphy->dev.parent; 6291 } 6292 6293 /** 6294 * wiphy_name - get wiphy name 6295 * 6296 * @wiphy: The wiphy whose name to return 6297 * Return: The name of @wiphy. 6298 */ 6299 static inline const char *wiphy_name(const struct wiphy *wiphy) 6300 { 6301 return dev_name(&wiphy->dev); 6302 } 6303 6304 /** 6305 * wiphy_new_nm - create a new wiphy for use with cfg80211 6306 * 6307 * @ops: The configuration operations for this device 6308 * @sizeof_priv: The size of the private area to allocate 6309 * @requested_name: Request a particular name. 6310 * NULL is valid value, and means use the default phy%d naming. 6311 * 6312 * Create a new wiphy and associate the given operations with it. 6313 * @sizeof_priv bytes are allocated for private use. 6314 * 6315 * Return: A pointer to the new wiphy. This pointer must be 6316 * assigned to each netdev's ieee80211_ptr for proper operation. 6317 */ 6318 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv, 6319 const char *requested_name); 6320 6321 /** 6322 * wiphy_new - create a new wiphy for use with cfg80211 6323 * 6324 * @ops: The configuration operations for this device 6325 * @sizeof_priv: The size of the private area to allocate 6326 * 6327 * Create a new wiphy and associate the given operations with it. 6328 * @sizeof_priv bytes are allocated for private use. 6329 * 6330 * Return: A pointer to the new wiphy. This pointer must be 6331 * assigned to each netdev's ieee80211_ptr for proper operation. 6332 */ 6333 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops, 6334 int sizeof_priv) 6335 { 6336 return wiphy_new_nm(ops, sizeof_priv, NULL); 6337 } 6338 6339 /** 6340 * wiphy_register - register a wiphy with cfg80211 6341 * 6342 * @wiphy: The wiphy to register. 6343 * 6344 * Return: A non-negative wiphy index or a negative error code. 6345 */ 6346 int wiphy_register(struct wiphy *wiphy); 6347 6348 /* this is a define for better error reporting (file/line) */ 6349 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx) 6350 6351 /** 6352 * rcu_dereference_wiphy - rcu_dereference with debug checking 6353 * @wiphy: the wiphy to check the locking on 6354 * @p: The pointer to read, prior to dereferencing 6355 * 6356 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() 6357 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference(). 6358 */ 6359 #define rcu_dereference_wiphy(wiphy, p) \ 6360 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx)) 6361 6362 /** 6363 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx 6364 * @wiphy: the wiphy to check the locking on 6365 * @p: The pointer to read, prior to dereferencing 6366 * 6367 * Return: the value of the specified RCU-protected pointer, but omit the 6368 * READ_ONCE(), because caller holds the wiphy mutex used for updates. 6369 */ 6370 #define wiphy_dereference(wiphy, p) \ 6371 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx)) 6372 6373 /** 6374 * get_wiphy_regdom - get custom regdomain for the given wiphy 6375 * @wiphy: the wiphy to get the regdomain from 6376 * 6377 * Context: Requires any of RTNL, wiphy mutex or RCU protection. 6378 * 6379 * Return: pointer to the regulatory domain associated with the wiphy 6380 */ 6381 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy); 6382 6383 /** 6384 * wiphy_unregister - deregister a wiphy from cfg80211 6385 * 6386 * @wiphy: The wiphy to unregister. 6387 * 6388 * After this call, no more requests can be made with this priv 6389 * pointer, but the call may sleep to wait for an outstanding 6390 * request that is being handled. 6391 */ 6392 void wiphy_unregister(struct wiphy *wiphy); 6393 6394 /** 6395 * wiphy_free - free wiphy 6396 * 6397 * @wiphy: The wiphy to free 6398 */ 6399 void wiphy_free(struct wiphy *wiphy); 6400 6401 /* internal structs */ 6402 struct cfg80211_conn; 6403 struct cfg80211_internal_bss; 6404 struct cfg80211_cached_keys; 6405 struct cfg80211_cqm_config; 6406 6407 /** 6408 * wiphy_lock - lock the wiphy 6409 * @wiphy: the wiphy to lock 6410 * 6411 * This is needed around registering and unregistering netdevs that 6412 * aren't created through cfg80211 calls, since that requires locking 6413 * in cfg80211 when the notifiers is called, but that cannot 6414 * differentiate which way it's called. 6415 * 6416 * It can also be used by drivers for their own purposes. 6417 * 6418 * When cfg80211 ops are called, the wiphy is already locked. 6419 * 6420 * Note that this makes sure that no workers that have been queued 6421 * with wiphy_queue_work() are running. 6422 */ 6423 static inline void wiphy_lock(struct wiphy *wiphy) 6424 __acquires(&wiphy->mtx) 6425 { 6426 mutex_lock(&wiphy->mtx); 6427 __acquire(&wiphy->mtx); 6428 } 6429 6430 /** 6431 * wiphy_unlock - unlock the wiphy again 6432 * @wiphy: the wiphy to unlock 6433 */ 6434 static inline void wiphy_unlock(struct wiphy *wiphy) 6435 __releases(&wiphy->mtx) 6436 { 6437 __release(&wiphy->mtx); 6438 mutex_unlock(&wiphy->mtx); 6439 } 6440 6441 DEFINE_GUARD(wiphy, struct wiphy *, 6442 mutex_lock(&_T->mtx), 6443 mutex_unlock(&_T->mtx)) 6444 6445 struct wiphy_work; 6446 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *); 6447 6448 struct wiphy_work { 6449 struct list_head entry; 6450 wiphy_work_func_t func; 6451 }; 6452 6453 static inline void wiphy_work_init(struct wiphy_work *work, 6454 wiphy_work_func_t func) 6455 { 6456 INIT_LIST_HEAD(&work->entry); 6457 work->func = func; 6458 } 6459 6460 /** 6461 * wiphy_work_queue - queue work for the wiphy 6462 * @wiphy: the wiphy to queue for 6463 * @work: the work item 6464 * 6465 * This is useful for work that must be done asynchronously, and work 6466 * queued here has the special property that the wiphy mutex will be 6467 * held as if wiphy_lock() was called, and that it cannot be running 6468 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6469 * use just cancel_work() instead of cancel_work_sync(), it requires 6470 * being in a section protected by wiphy_lock(). 6471 */ 6472 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work); 6473 6474 /** 6475 * wiphy_work_cancel - cancel previously queued work 6476 * @wiphy: the wiphy, for debug purposes 6477 * @work: the work to cancel 6478 * 6479 * Cancel the work *without* waiting for it, this assumes being 6480 * called under the wiphy mutex acquired by wiphy_lock(). 6481 */ 6482 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work); 6483 6484 /** 6485 * wiphy_work_flush - flush previously queued work 6486 * @wiphy: the wiphy, for debug purposes 6487 * @work: the work to flush, this can be %NULL to flush all work 6488 * 6489 * Flush the work (i.e. run it if pending). This must be called 6490 * under the wiphy mutex acquired by wiphy_lock(). 6491 */ 6492 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work); 6493 6494 struct wiphy_delayed_work { 6495 struct wiphy_work work; 6496 struct wiphy *wiphy; 6497 struct timer_list timer; 6498 }; 6499 6500 void wiphy_delayed_work_timer(struct timer_list *t); 6501 6502 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork, 6503 wiphy_work_func_t func) 6504 { 6505 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0); 6506 wiphy_work_init(&dwork->work, func); 6507 } 6508 6509 /** 6510 * wiphy_delayed_work_queue - queue delayed work for the wiphy 6511 * @wiphy: the wiphy to queue for 6512 * @dwork: the delayable worker 6513 * @delay: number of jiffies to wait before queueing 6514 * 6515 * This is useful for work that must be done asynchronously, and work 6516 * queued here has the special property that the wiphy mutex will be 6517 * held as if wiphy_lock() was called, and that it cannot be running 6518 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6519 * use just cancel_work() instead of cancel_work_sync(), it requires 6520 * being in a section protected by wiphy_lock(). 6521 * 6522 * Note that these are scheduled with a timer where the accuracy 6523 * becomes less the longer in the future the scheduled timer is. Use 6524 * wiphy_hrtimer_work_queue() if the timer must be not be late by more 6525 * than approximately 10 percent. 6526 */ 6527 void wiphy_delayed_work_queue(struct wiphy *wiphy, 6528 struct wiphy_delayed_work *dwork, 6529 unsigned long delay); 6530 6531 /** 6532 * wiphy_delayed_work_cancel - cancel previously queued delayed work 6533 * @wiphy: the wiphy, for debug purposes 6534 * @dwork: the delayed work to cancel 6535 * 6536 * Cancel the work *without* waiting for it, this assumes being 6537 * called under the wiphy mutex acquired by wiphy_lock(). 6538 */ 6539 void wiphy_delayed_work_cancel(struct wiphy *wiphy, 6540 struct wiphy_delayed_work *dwork); 6541 6542 /** 6543 * wiphy_delayed_work_flush - flush previously queued delayed work 6544 * @wiphy: the wiphy, for debug purposes 6545 * @dwork: the delayed work to flush 6546 * 6547 * Flush the work (i.e. run it if pending). This must be called 6548 * under the wiphy mutex acquired by wiphy_lock(). 6549 */ 6550 void wiphy_delayed_work_flush(struct wiphy *wiphy, 6551 struct wiphy_delayed_work *dwork); 6552 6553 /** 6554 * wiphy_delayed_work_pending - Find out whether a wiphy delayable 6555 * work item is currently pending. 6556 * 6557 * @wiphy: the wiphy, for debug purposes 6558 * @dwork: the delayed work in question 6559 * 6560 * Return: true if timer is pending, false otherwise 6561 * 6562 * How wiphy_delayed_work_queue() works is by setting a timer which 6563 * when it expires calls wiphy_work_queue() to queue the wiphy work. 6564 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is 6565 * called twice and the second call happens before the first call 6566 * deadline, the work will rescheduled for the second deadline and 6567 * won't run before that. 6568 * 6569 * wiphy_delayed_work_pending() can be used to detect if calling 6570 * wiphy_work_delayed_work_queue() would start a new work schedule 6571 * or delayed a previous one. As seen below it cannot be used to 6572 * detect precisely if the work has finished to execute nor if it 6573 * is currently executing. 6574 * 6575 * CPU0 CPU1 6576 * wiphy_delayed_work_queue(wk) 6577 * mod_timer(wk->timer) 6578 * wiphy_delayed_work_pending(wk) -> true 6579 * 6580 * [...] 6581 * expire_timers(wk->timer) 6582 * detach_timer(wk->timer) 6583 * wiphy_delayed_work_pending(wk) -> false 6584 * wk->timer->function() | 6585 * wiphy_work_queue(wk) | delayed work pending 6586 * list_add_tail() | returns false but 6587 * queue_work(cfg80211_wiphy_work) | wk->func() has not 6588 * | been run yet 6589 * [...] | 6590 * cfg80211_wiphy_work() | 6591 * wk->func() V 6592 * 6593 */ 6594 bool wiphy_delayed_work_pending(struct wiphy *wiphy, 6595 struct wiphy_delayed_work *dwork); 6596 6597 struct wiphy_hrtimer_work { 6598 struct wiphy_work work; 6599 struct wiphy *wiphy; 6600 struct hrtimer timer; 6601 }; 6602 6603 enum hrtimer_restart wiphy_hrtimer_work_timer(struct hrtimer *t); 6604 6605 static inline void wiphy_hrtimer_work_init(struct wiphy_hrtimer_work *hrwork, 6606 wiphy_work_func_t func) 6607 { 6608 hrtimer_setup(&hrwork->timer, wiphy_hrtimer_work_timer, 6609 CLOCK_BOOTTIME, HRTIMER_MODE_REL); 6610 wiphy_work_init(&hrwork->work, func); 6611 } 6612 6613 /** 6614 * wiphy_hrtimer_work_queue - queue hrtimer work for the wiphy 6615 * @wiphy: the wiphy to queue for 6616 * @hrwork: the high resolution timer worker 6617 * @delay: the delay given as a ktime_t 6618 * 6619 * Please refer to wiphy_delayed_work_queue(). The difference is that 6620 * the hrtimer work uses a high resolution timer for scheduling. This 6621 * may be needed if timeouts might be scheduled further in the future 6622 * and the accuracy of the normal timer is not sufficient. 6623 * 6624 * Expect a delay of a few milliseconds as the timer is scheduled 6625 * with some slack and some more time may pass between queueing the 6626 * work and its start. 6627 */ 6628 void wiphy_hrtimer_work_queue(struct wiphy *wiphy, 6629 struct wiphy_hrtimer_work *hrwork, 6630 ktime_t delay); 6631 6632 /** 6633 * wiphy_hrtimer_work_cancel - cancel previously queued hrtimer work 6634 * @wiphy: the wiphy, for debug purposes 6635 * @hrtimer: the hrtimer work to cancel 6636 * 6637 * Cancel the work *without* waiting for it, this assumes being 6638 * called under the wiphy mutex acquired by wiphy_lock(). 6639 */ 6640 void wiphy_hrtimer_work_cancel(struct wiphy *wiphy, 6641 struct wiphy_hrtimer_work *hrtimer); 6642 6643 /** 6644 * wiphy_hrtimer_work_flush - flush previously queued hrtimer work 6645 * @wiphy: the wiphy, for debug purposes 6646 * @hrwork: the hrtimer work to flush 6647 * 6648 * Flush the work (i.e. run it if pending). This must be called 6649 * under the wiphy mutex acquired by wiphy_lock(). 6650 */ 6651 void wiphy_hrtimer_work_flush(struct wiphy *wiphy, 6652 struct wiphy_hrtimer_work *hrwork); 6653 6654 /** 6655 * wiphy_hrtimer_work_pending - Find out whether a wiphy hrtimer 6656 * work item is currently pending. 6657 * 6658 * @wiphy: the wiphy, for debug purposes 6659 * @hrwork: the hrtimer work in question 6660 * 6661 * Return: true if timer is pending, false otherwise 6662 * 6663 * Please refer to the wiphy_delayed_work_pending() documentation as 6664 * this is the equivalent function for hrtimer based delayed work 6665 * items. 6666 */ 6667 bool wiphy_hrtimer_work_pending(struct wiphy *wiphy, 6668 struct wiphy_hrtimer_work *hrwork); 6669 6670 /** 6671 * enum ieee80211_ap_reg_power - regulatory power for an Access Point 6672 * 6673 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode 6674 * @IEEE80211_REG_LPI_AP: Indoor Access Point 6675 * @IEEE80211_REG_SP_AP: Standard power Access Point 6676 * @IEEE80211_REG_VLP_AP: Very low power Access Point 6677 */ 6678 enum ieee80211_ap_reg_power { 6679 IEEE80211_REG_UNSET_AP, 6680 IEEE80211_REG_LPI_AP, 6681 IEEE80211_REG_SP_AP, 6682 IEEE80211_REG_VLP_AP, 6683 }; 6684 6685 /** 6686 * struct wireless_dev - wireless device state 6687 * 6688 * For netdevs, this structure must be allocated by the driver 6689 * that uses the ieee80211_ptr field in struct net_device (this 6690 * is intentional so it can be allocated along with the netdev.) 6691 * It need not be registered then as netdev registration will 6692 * be intercepted by cfg80211 to see the new wireless device, 6693 * however, drivers must lock the wiphy before registering or 6694 * unregistering netdevs if they pre-create any netdevs (in ops 6695 * called from cfg80211, the wiphy is already locked.) 6696 * 6697 * For non-netdev uses, it must also be allocated by the driver 6698 * in response to the cfg80211 callbacks that require it, as 6699 * there's no netdev registration in that case it may not be 6700 * allocated outside of callback operations that return it. 6701 * 6702 * @wiphy: pointer to hardware description 6703 * @iftype: interface type 6704 * @registered: is this wdev already registered with cfg80211 6705 * @registering: indicates we're doing registration under wiphy lock 6706 * for the notifier 6707 * @list: (private) Used to collect the interfaces 6708 * @netdev: (private) Used to reference back to the netdev, may be %NULL 6709 * @identifier: (private) Identifier used in nl80211 to identify this 6710 * wireless device if it has no netdev 6711 * @u: union containing data specific to @iftype 6712 * @connected: indicates if connected or not (STA mode) 6713 * @wext: (private) Used by the internal wireless extensions compat code 6714 * @wext.ibss: (private) IBSS data part of wext handling 6715 * @wext.connect: (private) connection handling data 6716 * @wext.keys: (private) (WEP) key data 6717 * @wext.ie: (private) extra elements for association 6718 * @wext.ie_len: (private) length of extra elements 6719 * @wext.bssid: (private) selected network BSSID 6720 * @wext.ssid: (private) selected network SSID 6721 * @wext.default_key: (private) selected default key index 6722 * @wext.default_mgmt_key: (private) selected default management key index 6723 * @wext.prev_bssid: (private) previous BSSID for reassociation 6724 * @wext.prev_bssid_valid: (private) previous BSSID validity 6725 * @use_4addr: indicates 4addr mode is used on this interface, must be 6726 * set by driver (if supported) on add_interface BEFORE registering the 6727 * netdev and may otherwise be used by driver read-only, will be update 6728 * by cfg80211 on change_interface 6729 * @mgmt_registrations: list of registrations for management frames 6730 * @mgmt_registrations_need_update: mgmt registrations were updated, 6731 * need to propagate the update to the driver 6732 * @address: The address for this device, valid only if @netdev is %NULL 6733 * @is_running: true if this is a non-netdev device that has been started, e.g. 6734 * the P2P Device. 6735 * @ps: powersave mode is enabled 6736 * @ps_timeout: dynamic powersave timeout 6737 * @ap_unexpected_nlportid: (private) netlink port ID of application 6738 * registered for unexpected class 3 frames (AP mode) 6739 * @conn: (private) cfg80211 software SME connection state machine data 6740 * @connect_keys: (private) keys to set after connection is established 6741 * @conn_bss_type: connecting/connected BSS type 6742 * @conn_owner_nlportid: (private) connection owner socket port ID 6743 * @disconnect_wk: (private) auto-disconnect work 6744 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect 6745 * @event_list: (private) list for internal event processing 6746 * @event_lock: (private) lock for event list 6747 * @owner_nlportid: (private) owner socket port ID 6748 * @nl_owner_dead: (private) owner socket went away 6749 * @cqm_rssi_work: (private) CQM RSSI reporting work 6750 * @cqm_config: (private) nl80211 RSSI monitor state 6751 * @pmsr_list: (private) peer measurement requests 6752 * @pmsr_lock: (private) peer measurements requests/results lock 6753 * @pmsr_free_wk: (private) peer measurements cleanup work 6754 * @unprot_beacon_reported: (private) timestamp of last 6755 * unprotected beacon report 6756 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr 6757 * @ap and @client for each link 6758 * @links.cac_started: true if DFS channel availability check has been 6759 * started 6760 * @links.cac_start_time: timestamp (jiffies) when the dfs state was 6761 * entered. 6762 * @links.cac_time_ms: CAC time in ms 6763 * @valid_links: bitmap describing what elements of @links are valid 6764 * @radio_mask: Bitmask of radios that this interface is allowed to operate on. 6765 */ 6766 struct wireless_dev { 6767 struct wiphy *wiphy; 6768 enum nl80211_iftype iftype; 6769 6770 /* the remainder of this struct should be private to cfg80211 */ 6771 struct list_head list; 6772 struct net_device *netdev; 6773 6774 u32 identifier; 6775 6776 struct list_head mgmt_registrations; 6777 u8 mgmt_registrations_need_update:1; 6778 6779 bool use_4addr, is_running, registered, registering; 6780 6781 u8 address[ETH_ALEN] __aligned(sizeof(u16)); 6782 6783 /* currently used for IBSS and SME - might be rearranged later */ 6784 struct cfg80211_conn *conn; 6785 struct cfg80211_cached_keys *connect_keys; 6786 enum ieee80211_bss_type conn_bss_type; 6787 u32 conn_owner_nlportid; 6788 6789 struct work_struct disconnect_wk; 6790 u8 disconnect_bssid[ETH_ALEN]; 6791 6792 struct list_head event_list; 6793 spinlock_t event_lock; 6794 6795 u8 connected:1; 6796 6797 bool ps; 6798 int ps_timeout; 6799 6800 u32 ap_unexpected_nlportid; 6801 6802 u32 owner_nlportid; 6803 bool nl_owner_dead; 6804 6805 #ifdef CONFIG_CFG80211_WEXT 6806 /* wext data */ 6807 struct { 6808 struct cfg80211_ibss_params ibss; 6809 struct cfg80211_connect_params connect; 6810 struct cfg80211_cached_keys *keys; 6811 const u8 *ie; 6812 size_t ie_len; 6813 u8 bssid[ETH_ALEN]; 6814 u8 prev_bssid[ETH_ALEN]; 6815 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6816 s8 default_key, default_mgmt_key; 6817 bool prev_bssid_valid; 6818 } wext; 6819 #endif 6820 6821 struct wiphy_work cqm_rssi_work; 6822 struct cfg80211_cqm_config __rcu *cqm_config; 6823 6824 struct list_head pmsr_list; 6825 spinlock_t pmsr_lock; 6826 struct work_struct pmsr_free_wk; 6827 6828 unsigned long unprot_beacon_reported; 6829 6830 union { 6831 struct { 6832 u8 connected_addr[ETH_ALEN] __aligned(2); 6833 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6834 u8 ssid_len; 6835 } client; 6836 struct { 6837 int beacon_interval; 6838 struct cfg80211_chan_def preset_chandef; 6839 struct cfg80211_chan_def chandef; 6840 u8 id[IEEE80211_MAX_MESH_ID_LEN]; 6841 u8 id_len, id_up_len; 6842 } mesh; 6843 struct { 6844 struct cfg80211_chan_def preset_chandef; 6845 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6846 u8 ssid_len; 6847 } ap; 6848 struct { 6849 struct cfg80211_internal_bss *current_bss; 6850 struct cfg80211_chan_def chandef; 6851 int beacon_interval; 6852 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6853 u8 ssid_len; 6854 } ibss; 6855 struct { 6856 struct cfg80211_chan_def chandef; 6857 } ocb; 6858 struct { 6859 u8 cluster_id[ETH_ALEN] __aligned(2); 6860 } nan; 6861 } u; 6862 6863 struct { 6864 u8 addr[ETH_ALEN] __aligned(2); 6865 union { 6866 struct { 6867 unsigned int beacon_interval; 6868 struct cfg80211_chan_def chandef; 6869 } ap; 6870 struct { 6871 struct cfg80211_internal_bss *current_bss; 6872 } client; 6873 }; 6874 6875 bool cac_started; 6876 unsigned long cac_start_time; 6877 unsigned int cac_time_ms; 6878 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 6879 u16 valid_links; 6880 6881 u32 radio_mask; 6882 }; 6883 6884 static inline const u8 *wdev_address(struct wireless_dev *wdev) 6885 { 6886 if (wdev->netdev) 6887 return wdev->netdev->dev_addr; 6888 return wdev->address; 6889 } 6890 6891 static inline bool wdev_running(struct wireless_dev *wdev) 6892 { 6893 if (wdev->netdev) 6894 return netif_running(wdev->netdev); 6895 return wdev->is_running; 6896 } 6897 6898 /** 6899 * wdev_priv - return wiphy priv from wireless_dev 6900 * 6901 * @wdev: The wireless device whose wiphy's priv pointer to return 6902 * Return: The wiphy priv of @wdev. 6903 */ 6904 static inline void *wdev_priv(struct wireless_dev *wdev) 6905 { 6906 BUG_ON(!wdev); 6907 return wiphy_priv(wdev->wiphy); 6908 } 6909 6910 /** 6911 * wdev_chandef - return chandef pointer from wireless_dev 6912 * @wdev: the wdev 6913 * @link_id: the link ID for MLO 6914 * 6915 * Return: The chandef depending on the mode, or %NULL. 6916 */ 6917 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 6918 unsigned int link_id); 6919 6920 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev, 6921 unsigned int link_id) 6922 { 6923 WARN_ON(link_id && !wdev->valid_links); 6924 WARN_ON(wdev->valid_links && 6925 !(wdev->valid_links & BIT(link_id))); 6926 } 6927 6928 #define for_each_valid_link(link_info, link_id) \ 6929 for (link_id = 0; \ 6930 link_id < ((link_info)->valid_links ? \ 6931 ARRAY_SIZE((link_info)->links) : 1); \ 6932 link_id++) \ 6933 if (!(link_info)->valid_links || \ 6934 ((link_info)->valid_links & BIT(link_id))) 6935 6936 /** 6937 * DOC: Utility functions 6938 * 6939 * cfg80211 offers a number of utility functions that can be useful. 6940 */ 6941 6942 /** 6943 * ieee80211_channel_equal - compare two struct ieee80211_channel 6944 * 6945 * @a: 1st struct ieee80211_channel 6946 * @b: 2nd struct ieee80211_channel 6947 * Return: true if center frequency of @a == @b 6948 */ 6949 static inline bool 6950 ieee80211_channel_equal(struct ieee80211_channel *a, 6951 struct ieee80211_channel *b) 6952 { 6953 return (a->center_freq == b->center_freq && 6954 a->freq_offset == b->freq_offset); 6955 } 6956 6957 /** 6958 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz 6959 * @chan: struct ieee80211_channel to convert 6960 * Return: The corresponding frequency (in KHz) 6961 */ 6962 static inline u32 6963 ieee80211_channel_to_khz(const struct ieee80211_channel *chan) 6964 { 6965 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset; 6966 } 6967 6968 /** 6969 * ieee80211_channel_to_freq_khz - convert channel number to frequency 6970 * @chan: channel number 6971 * @band: band, necessary due to channel number overlap 6972 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed. 6973 */ 6974 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band); 6975 6976 /** 6977 * ieee80211_channel_to_frequency - convert channel number to frequency 6978 * @chan: channel number 6979 * @band: band, necessary due to channel number overlap 6980 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed. 6981 */ 6982 static inline int 6983 ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 6984 { 6985 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band)); 6986 } 6987 6988 /** 6989 * ieee80211_freq_khz_to_channel - convert frequency to channel number 6990 * @freq: center frequency in KHz 6991 * Return: The corresponding channel, or 0 if the conversion failed. 6992 */ 6993 int ieee80211_freq_khz_to_channel(u32 freq); 6994 6995 /** 6996 * ieee80211_frequency_to_channel - convert frequency to channel number 6997 * @freq: center frequency in MHz 6998 * Return: The corresponding channel, or 0 if the conversion failed. 6999 */ 7000 static inline int 7001 ieee80211_frequency_to_channel(int freq) 7002 { 7003 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq)); 7004 } 7005 7006 /** 7007 * ieee80211_get_channel_khz - get channel struct from wiphy for specified 7008 * frequency 7009 * @wiphy: the struct wiphy to get the channel for 7010 * @freq: the center frequency (in KHz) of the channel 7011 * Return: The channel struct from @wiphy at @freq. 7012 */ 7013 struct ieee80211_channel * 7014 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq); 7015 7016 /** 7017 * ieee80211_get_channel - get channel struct from wiphy for specified frequency 7018 * 7019 * @wiphy: the struct wiphy to get the channel for 7020 * @freq: the center frequency (in MHz) of the channel 7021 * Return: The channel struct from @wiphy at @freq. 7022 */ 7023 static inline struct ieee80211_channel * 7024 ieee80211_get_channel(struct wiphy *wiphy, int freq) 7025 { 7026 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq)); 7027 } 7028 7029 /** 7030 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC 7031 * @chan: control channel to check 7032 * 7033 * The Preferred Scanning Channels (PSC) are defined in 7034 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3 7035 * 7036 * Return: %true if channel is a PSC, %false otherwise 7037 */ 7038 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan) 7039 { 7040 if (chan->band != NL80211_BAND_6GHZ) 7041 return false; 7042 7043 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5; 7044 } 7045 7046 /** 7047 * ieee80211_radio_freq_range_valid - Check if the radio supports the 7048 * specified frequency range 7049 * 7050 * @radio: wiphy radio 7051 * @freq: the frequency (in KHz) to be queried 7052 * @width: the bandwidth (in KHz) to be queried 7053 * 7054 * Return: whether or not the given frequency range is valid for the given radio 7055 */ 7056 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, 7057 u32 freq, u32 width); 7058 7059 /** 7060 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef 7061 * 7062 * @radio: wiphy radio 7063 * @chandef: chandef for current channel 7064 * 7065 * Return: whether or not the given chandef is valid for the given radio 7066 */ 7067 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 7068 const struct cfg80211_chan_def *chandef); 7069 7070 /** 7071 * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel 7072 * 7073 * @wdev: the wireless device 7074 * @chan: channel to check 7075 * 7076 * Return: whether or not the wdev may use the channel 7077 */ 7078 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, 7079 struct ieee80211_channel *chan); 7080 7081 /** 7082 * ieee80211_get_response_rate - get basic rate for a given rate 7083 * 7084 * @sband: the band to look for rates in 7085 * @basic_rates: bitmap of basic rates 7086 * @bitrate: the bitrate for which to find the basic rate 7087 * 7088 * Return: The basic rate corresponding to a given bitrate, that 7089 * is the next lower bitrate contained in the basic rate map, 7090 * which is, for this function, given as a bitmap of indices of 7091 * rates in the band's bitrate table. 7092 */ 7093 const struct ieee80211_rate * 7094 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 7095 u32 basic_rates, int bitrate); 7096 7097 /** 7098 * ieee80211_mandatory_rates - get mandatory rates for a given band 7099 * @sband: the band to look for rates in 7100 * 7101 * Return: a bitmap of the mandatory rates for the given band, bits 7102 * are set according to the rate position in the bitrates array. 7103 */ 7104 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband); 7105 7106 /* 7107 * Radiotap parsing functions -- for controlled injection support 7108 * 7109 * Implemented in net/wireless/radiotap.c 7110 * Documentation in Documentation/networking/radiotap-headers.rst 7111 */ 7112 7113 struct radiotap_align_size { 7114 uint8_t align:4, size:4; 7115 }; 7116 7117 struct ieee80211_radiotap_namespace { 7118 const struct radiotap_align_size *align_size; 7119 int n_bits; 7120 uint32_t oui; 7121 uint8_t subns; 7122 }; 7123 7124 struct ieee80211_radiotap_vendor_namespaces { 7125 const struct ieee80211_radiotap_namespace *ns; 7126 int n_ns; 7127 }; 7128 7129 /** 7130 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args 7131 * @this_arg_index: index of current arg, valid after each successful call 7132 * to ieee80211_radiotap_iterator_next() 7133 * @this_arg: pointer to current radiotap arg; it is valid after each 7134 * call to ieee80211_radiotap_iterator_next() but also after 7135 * ieee80211_radiotap_iterator_init() where it will point to 7136 * the beginning of the actual data portion 7137 * @this_arg_size: length of the current arg, for convenience 7138 * @current_namespace: pointer to the current namespace definition 7139 * (or internally %NULL if the current namespace is unknown) 7140 * @is_radiotap_ns: indicates whether the current namespace is the default 7141 * radiotap namespace or not 7142 * 7143 * @_rtheader: pointer to the radiotap header we are walking through 7144 * @_max_length: length of radiotap header in cpu byte ordering 7145 * @_arg_index: next argument index 7146 * @_arg: next argument pointer 7147 * @_next_bitmap: internal pointer to next present u32 7148 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present 7149 * @_vns: vendor namespace definitions 7150 * @_next_ns_data: beginning of the next namespace's data 7151 * @_reset_on_ext: internal; reset the arg index to 0 when going to the 7152 * next bitmap word 7153 * 7154 * Describes the radiotap parser state. Fields prefixed with an underscore 7155 * must not be used by users of the parser, only by the parser internally. 7156 */ 7157 7158 struct ieee80211_radiotap_iterator { 7159 struct ieee80211_radiotap_header *_rtheader; 7160 const struct ieee80211_radiotap_vendor_namespaces *_vns; 7161 const struct ieee80211_radiotap_namespace *current_namespace; 7162 7163 unsigned char *_arg, *_next_ns_data; 7164 __le32 *_next_bitmap; 7165 7166 unsigned char *this_arg; 7167 int this_arg_index; 7168 int this_arg_size; 7169 7170 int is_radiotap_ns; 7171 7172 int _max_length; 7173 int _arg_index; 7174 uint32_t _bitmap_shifter; 7175 int _reset_on_ext; 7176 }; 7177 7178 int 7179 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator, 7180 struct ieee80211_radiotap_header *radiotap_header, 7181 int max_length, 7182 const struct ieee80211_radiotap_vendor_namespaces *vns); 7183 7184 int 7185 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator); 7186 7187 7188 extern const unsigned char rfc1042_header[6]; 7189 extern const unsigned char bridge_tunnel_header[6]; 7190 7191 /** 7192 * ieee80211_get_hdrlen_from_skb - get header length from data 7193 * 7194 * @skb: the frame 7195 * 7196 * Given an skb with a raw 802.11 header at the data pointer this function 7197 * returns the 802.11 header length. 7198 * 7199 * Return: The 802.11 header length in bytes (not including encryption 7200 * headers). Or 0 if the data in the sk_buff is too short to contain a valid 7201 * 802.11 header. 7202 */ 7203 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 7204 7205 /** 7206 * ieee80211_hdrlen - get header length in bytes from frame control 7207 * @fc: frame control field in little-endian format 7208 * Return: The header length in bytes. 7209 */ 7210 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); 7211 7212 /** 7213 * ieee80211_get_mesh_hdrlen - get mesh extension header length 7214 * @meshhdr: the mesh extension header, only the flags field 7215 * (first byte) will be accessed 7216 * Return: The length of the extension header, which is always at 7217 * least 6 bytes and at most 18 if address 5 and 6 are present. 7218 */ 7219 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr); 7220 7221 /** 7222 * DOC: Data path helpers 7223 * 7224 * In addition to generic utilities, cfg80211 also offers 7225 * functions that help implement the data path for devices 7226 * that do not do the 802.11/802.3 conversion on the device. 7227 */ 7228 7229 /** 7230 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3 7231 * @skb: the 802.11 data frame 7232 * @ehdr: pointer to a &struct ethhdr that will get the header, instead 7233 * of it being pushed into the SKB 7234 * @addr: the device MAC address 7235 * @iftype: the virtual interface type 7236 * @data_offset: offset of payload after the 802.11 header 7237 * @is_amsdu: true if the 802.11 header is A-MSDU 7238 * Return: 0 on success. Non-zero on error. 7239 */ 7240 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 7241 const u8 *addr, enum nl80211_iftype iftype, 7242 u8 data_offset, bool is_amsdu); 7243 7244 /** 7245 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 7246 * @skb: the 802.11 data frame 7247 * @addr: the device MAC address 7248 * @iftype: the virtual interface type 7249 * Return: 0 on success. Non-zero on error. 7250 */ 7251 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 7252 enum nl80211_iftype iftype) 7253 { 7254 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false); 7255 } 7256 7257 /** 7258 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid 7259 * 7260 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated 7261 * by ath10k and ath11k, where the subframe length includes the length of the 7262 * mesh control field. 7263 * 7264 * @skb: The input A-MSDU frame without any headers. 7265 * @mesh_hdr: the type of mesh header to test 7266 * 0: non-mesh A-MSDU length field 7267 * 1: big-endian mesh A-MSDU length field 7268 * 2: little-endian mesh A-MSDU length field 7269 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode 7270 */ 7271 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr); 7272 7273 /** 7274 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame 7275 * 7276 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames. 7277 * The @list will be empty if the decode fails. The @skb must be fully 7278 * header-less before being passed in here; it is freed in this function. 7279 * 7280 * @skb: The input A-MSDU frame without any headers. 7281 * @list: The output list of 802.3 frames. It must be allocated and 7282 * initialized by the caller. 7283 * @addr: The device MAC address. 7284 * @iftype: The device interface type. 7285 * @extra_headroom: The hardware extra headroom for SKBs in the @list. 7286 * @check_da: DA to check in the inner ethernet header, or NULL 7287 * @check_sa: SA to check in the inner ethernet header, or NULL 7288 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu 7289 */ 7290 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 7291 const u8 *addr, enum nl80211_iftype iftype, 7292 const unsigned int extra_headroom, 7293 const u8 *check_da, const u8 *check_sa, 7294 u8 mesh_control); 7295 7296 /** 7297 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol 7298 * 7299 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated 7300 * protocol. 7301 * 7302 * @hdr: pointer to the MSDU payload 7303 * @proto: destination pointer to store the protocol 7304 * Return: true if encapsulation was found 7305 */ 7306 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto); 7307 7308 /** 7309 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames 7310 * 7311 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part 7312 * of the MSDU data. Also move any source/destination addresses from the mesh 7313 * header to the ethernet header (if present). 7314 * 7315 * @skb: The 802.3 frame with embedded mesh header 7316 * 7317 * Return: 0 on success. Non-zero on error. 7318 */ 7319 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb); 7320 7321 /** 7322 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame 7323 * @skb: the data frame 7324 * @qos_map: Interworking QoS mapping or %NULL if not in use 7325 * Return: The 802.1p/1d tag. 7326 */ 7327 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 7328 struct cfg80211_qos_map *qos_map); 7329 7330 /** 7331 * cfg80211_find_elem_match - match information element and byte array in data 7332 * 7333 * @eid: element ID 7334 * @ies: data consisting of IEs 7335 * @len: length of data 7336 * @match: byte array to match 7337 * @match_len: number of bytes in the match array 7338 * @match_offset: offset in the IE data where the byte array should match. 7339 * Note the difference to cfg80211_find_ie_match() which considers 7340 * the offset to start from the element ID byte, but here we take 7341 * the data portion instead. 7342 * 7343 * Return: %NULL if the element ID could not be found or if 7344 * the element is invalid (claims to be longer than the given 7345 * data) or if the byte array doesn't match; otherwise return the 7346 * requested element struct. 7347 * 7348 * Note: There are no checks on the element length other than 7349 * having to fit into the given data and being large enough for the 7350 * byte array to match. 7351 */ 7352 const struct element * 7353 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 7354 const u8 *match, unsigned int match_len, 7355 unsigned int match_offset); 7356 7357 /** 7358 * cfg80211_find_ie_match - match information element and byte array in data 7359 * 7360 * @eid: element ID 7361 * @ies: data consisting of IEs 7362 * @len: length of data 7363 * @match: byte array to match 7364 * @match_len: number of bytes in the match array 7365 * @match_offset: offset in the IE where the byte array should match. 7366 * If match_len is zero, this must also be set to zero. 7367 * Otherwise this must be set to 2 or more, because the first 7368 * byte is the element id, which is already compared to eid, and 7369 * the second byte is the IE length. 7370 * 7371 * Return: %NULL if the element ID could not be found or if 7372 * the element is invalid (claims to be longer than the given 7373 * data) or if the byte array doesn't match, or a pointer to the first 7374 * byte of the requested element, that is the byte containing the 7375 * element ID. 7376 * 7377 * Note: There are no checks on the element length other than 7378 * having to fit into the given data and being large enough for the 7379 * byte array to match. 7380 */ 7381 static inline const u8 * 7382 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len, 7383 const u8 *match, unsigned int match_len, 7384 unsigned int match_offset) 7385 { 7386 /* match_offset can't be smaller than 2, unless match_len is 7387 * zero, in which case match_offset must be zero as well. 7388 */ 7389 if (WARN_ON((match_len && match_offset < 2) || 7390 (!match_len && match_offset))) 7391 return NULL; 7392 7393 return (const void *)cfg80211_find_elem_match(eid, ies, len, 7394 match, match_len, 7395 match_offset ? 7396 match_offset - 2 : 0); 7397 } 7398 7399 /** 7400 * cfg80211_find_elem - find information element in data 7401 * 7402 * @eid: element ID 7403 * @ies: data consisting of IEs 7404 * @len: length of data 7405 * 7406 * Return: %NULL if the element ID could not be found or if 7407 * the element is invalid (claims to be longer than the given 7408 * data) or if the byte array doesn't match; otherwise return the 7409 * requested element struct. 7410 * 7411 * Note: There are no checks on the element length other than 7412 * having to fit into the given data. 7413 */ 7414 static inline const struct element * 7415 cfg80211_find_elem(u8 eid, const u8 *ies, int len) 7416 { 7417 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0); 7418 } 7419 7420 /** 7421 * cfg80211_find_ie - find information element in data 7422 * 7423 * @eid: element ID 7424 * @ies: data consisting of IEs 7425 * @len: length of data 7426 * 7427 * Return: %NULL if the element ID could not be found or if 7428 * the element is invalid (claims to be longer than the given 7429 * data), or a pointer to the first byte of the requested 7430 * element, that is the byte containing the element ID. 7431 * 7432 * Note: There are no checks on the element length other than 7433 * having to fit into the given data. 7434 */ 7435 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len) 7436 { 7437 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0); 7438 } 7439 7440 /** 7441 * cfg80211_find_ext_elem - find information element with EID Extension in data 7442 * 7443 * @ext_eid: element ID Extension 7444 * @ies: data consisting of IEs 7445 * @len: length of data 7446 * 7447 * Return: %NULL if the extended element could not be found or if 7448 * the element is invalid (claims to be longer than the given 7449 * data) or if the byte array doesn't match; otherwise return the 7450 * requested element struct. 7451 * 7452 * Note: There are no checks on the element length other than 7453 * having to fit into the given data. 7454 */ 7455 static inline const struct element * 7456 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len) 7457 { 7458 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len, 7459 &ext_eid, 1, 0); 7460 } 7461 7462 /** 7463 * cfg80211_find_ext_ie - find information element with EID Extension in data 7464 * 7465 * @ext_eid: element ID Extension 7466 * @ies: data consisting of IEs 7467 * @len: length of data 7468 * 7469 * Return: %NULL if the extended element ID could not be found or if 7470 * the element is invalid (claims to be longer than the given 7471 * data), or a pointer to the first byte of the requested 7472 * element, that is the byte containing the element ID. 7473 * 7474 * Note: There are no checks on the element length other than 7475 * having to fit into the given data. 7476 */ 7477 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len) 7478 { 7479 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len, 7480 &ext_eid, 1, 2); 7481 } 7482 7483 /** 7484 * cfg80211_find_vendor_elem - find vendor specific information element in data 7485 * 7486 * @oui: vendor OUI 7487 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 7488 * @ies: data consisting of IEs 7489 * @len: length of data 7490 * 7491 * Return: %NULL if the vendor specific element ID could not be found or if the 7492 * element is invalid (claims to be longer than the given data); otherwise 7493 * return the element structure for the requested element. 7494 * 7495 * Note: There are no checks on the element length other than having to fit into 7496 * the given data. 7497 */ 7498 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 7499 const u8 *ies, 7500 unsigned int len); 7501 7502 /** 7503 * cfg80211_find_vendor_ie - find vendor specific information element in data 7504 * 7505 * @oui: vendor OUI 7506 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 7507 * @ies: data consisting of IEs 7508 * @len: length of data 7509 * 7510 * Return: %NULL if the vendor specific element ID could not be found or if the 7511 * element is invalid (claims to be longer than the given data), or a pointer to 7512 * the first byte of the requested element, that is the byte containing the 7513 * element ID. 7514 * 7515 * Note: There are no checks on the element length other than having to fit into 7516 * the given data. 7517 */ 7518 static inline const u8 * 7519 cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 7520 const u8 *ies, unsigned int len) 7521 { 7522 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len); 7523 } 7524 7525 /** 7526 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state 7527 * @RNR_ITER_CONTINUE: continue iterating with the next entry 7528 * @RNR_ITER_BREAK: break iteration and return success 7529 * @RNR_ITER_ERROR: break iteration and return error 7530 */ 7531 enum cfg80211_rnr_iter_ret { 7532 RNR_ITER_CONTINUE, 7533 RNR_ITER_BREAK, 7534 RNR_ITER_ERROR, 7535 }; 7536 7537 /** 7538 * cfg80211_iter_rnr - iterate reduced neighbor report entries 7539 * @elems: the frame elements to iterate RNR elements and then 7540 * their entries in 7541 * @elems_len: length of the elements 7542 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret 7543 * for the return value 7544 * @iter_data: additional data passed to the iteration function 7545 * Return: %true on success (after successfully iterating all entries 7546 * or if the iteration function returned %RNR_ITER_BREAK), 7547 * %false on error (iteration function returned %RNR_ITER_ERROR 7548 * or elements were malformed.) 7549 */ 7550 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 7551 enum cfg80211_rnr_iter_ret 7552 (*iter)(void *data, u8 type, 7553 const struct ieee80211_neighbor_ap_info *info, 7554 const u8 *tbtt_info, u8 tbtt_info_len), 7555 void *iter_data); 7556 7557 /** 7558 * cfg80211_defragment_element - Defrag the given element data into a buffer 7559 * 7560 * @elem: the element to defragment 7561 * @ies: elements where @elem is contained 7562 * @ieslen: length of @ies 7563 * @data: buffer to store element data, or %NULL to just determine size 7564 * @data_len: length of @data, or 0 7565 * @frag_id: the element ID of fragments 7566 * 7567 * Return: length of @data, or -EINVAL on error 7568 * 7569 * Copy out all data from an element that may be fragmented into @data, while 7570 * skipping all headers. 7571 * 7572 * The function uses memmove() internally. It is acceptable to defragment an 7573 * element in-place. 7574 */ 7575 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 7576 size_t ieslen, u8 *data, size_t data_len, 7577 u8 frag_id); 7578 7579 /** 7580 * cfg80211_send_layer2_update - send layer 2 update frame 7581 * 7582 * @dev: network device 7583 * @addr: STA MAC address 7584 * 7585 * Wireless drivers can use this function to update forwarding tables in bridge 7586 * devices upon STA association. 7587 */ 7588 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr); 7589 7590 /** 7591 * DOC: Regulatory enforcement infrastructure 7592 * 7593 * TODO 7594 */ 7595 7596 /** 7597 * regulatory_hint - driver hint to the wireless core a regulatory domain 7598 * @wiphy: the wireless device giving the hint (used only for reporting 7599 * conflicts) 7600 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain 7601 * should be in. If @rd is set this should be NULL. Note that if you 7602 * set this to NULL you should still set rd->alpha2 to some accepted 7603 * alpha2. 7604 * 7605 * Wireless drivers can use this function to hint to the wireless core 7606 * what it believes should be the current regulatory domain by 7607 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory 7608 * domain should be in or by providing a completely build regulatory domain. 7609 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried 7610 * for a regulatory domain structure for the respective country. 7611 * 7612 * The wiphy must have been registered to cfg80211 prior to this call. 7613 * For cfg80211 drivers this means you must first use wiphy_register(), 7614 * for mac80211 drivers you must first use ieee80211_register_hw(). 7615 * 7616 * Drivers should check the return value, its possible you can get 7617 * an -ENOMEM. 7618 * 7619 * Return: 0 on success. -ENOMEM. 7620 */ 7621 int regulatory_hint(struct wiphy *wiphy, const char *alpha2); 7622 7623 /** 7624 * regulatory_set_wiphy_regd - set regdom info for self managed drivers 7625 * @wiphy: the wireless device we want to process the regulatory domain on 7626 * @rd: the regulatory domain information to use for this wiphy 7627 * 7628 * Set the regulatory domain information for self-managed wiphys, only they 7629 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more 7630 * information. 7631 * 7632 * Return: 0 on success. -EINVAL, -EPERM 7633 */ 7634 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 7635 struct ieee80211_regdomain *rd); 7636 7637 /** 7638 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers 7639 * @wiphy: the wireless device we want to process the regulatory domain on 7640 * @rd: the regulatory domain information to use for this wiphy 7641 * 7642 * This functions requires the RTNL and the wiphy mutex to be held and 7643 * applies the new regdomain synchronously to this wiphy. For more details 7644 * see regulatory_set_wiphy_regd(). 7645 * 7646 * Return: 0 on success. -EINVAL, -EPERM 7647 */ 7648 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 7649 struct ieee80211_regdomain *rd); 7650 7651 /** 7652 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain 7653 * @wiphy: the wireless device we want to process the regulatory domain on 7654 * @regd: the custom regulatory domain to use for this wiphy 7655 * 7656 * Drivers can sometimes have custom regulatory domains which do not apply 7657 * to a specific country. Drivers can use this to apply such custom regulatory 7658 * domains. This routine must be called prior to wiphy registration. The 7659 * custom regulatory domain will be trusted completely and as such previous 7660 * default channel settings will be disregarded. If no rule is found for a 7661 * channel on the regulatory domain the channel will be disabled. 7662 * Drivers using this for a wiphy should also set the wiphy flag 7663 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy 7664 * that called this helper. 7665 */ 7666 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 7667 const struct ieee80211_regdomain *regd); 7668 7669 /** 7670 * freq_reg_info - get regulatory information for the given frequency 7671 * @wiphy: the wiphy for which we want to process this rule for 7672 * @center_freq: Frequency in KHz for which we want regulatory information for 7673 * 7674 * Use this function to get the regulatory rule for a specific frequency on 7675 * a given wireless device. If the device has a specific regulatory domain 7676 * it wants to follow we respect that unless a country IE has been received 7677 * and processed already. 7678 * 7679 * Return: A valid pointer, or, when an error occurs, for example if no rule 7680 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to 7681 * check and PTR_ERR() to obtain the numeric return value. The numeric return 7682 * value will be -ERANGE if we determine the given center_freq does not even 7683 * have a regulatory rule for a frequency range in the center_freq's band. 7684 * See freq_in_rule_band() for our current definition of a band -- this is 7685 * purely subjective and right now it's 802.11 specific. 7686 */ 7687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 7688 u32 center_freq); 7689 7690 /** 7691 * reg_initiator_name - map regulatory request initiator enum to name 7692 * @initiator: the regulatory request initiator 7693 * 7694 * You can use this to map the regulatory request initiator enum to a 7695 * proper string representation. 7696 * 7697 * Return: pointer to string representation of the initiator 7698 */ 7699 const char *reg_initiator_name(enum nl80211_reg_initiator initiator); 7700 7701 /** 7702 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom 7703 * @wiphy: wiphy for which pre-CAC capability is checked. 7704 * 7705 * Pre-CAC is allowed only in some regdomains (notable ETSI). 7706 * 7707 * Return: %true if allowed, %false otherwise 7708 */ 7709 bool regulatory_pre_cac_allowed(struct wiphy *wiphy); 7710 7711 /** 7712 * DOC: Internal regulatory db functions 7713 * 7714 */ 7715 7716 /** 7717 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule 7718 * Regulatory self-managed driver can use it to proactively 7719 * 7720 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried. 7721 * @freq: the frequency (in MHz) to be queried. 7722 * @rule: pointer to store the wmm rule from the regulatory db. 7723 * 7724 * Self-managed wireless drivers can use this function to query 7725 * the internal regulatory database to check whether the given 7726 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations. 7727 * 7728 * Drivers should check the return value, its possible you can get 7729 * an -ENODATA. 7730 * 7731 * Return: 0 on success. -ENODATA. 7732 */ 7733 int reg_query_regdb_wmm(char *alpha2, int freq, 7734 struct ieee80211_reg_rule *rule); 7735 7736 /* 7737 * callbacks for asynchronous cfg80211 methods, notification 7738 * functions and BSS handling helpers 7739 */ 7740 7741 /** 7742 * cfg80211_scan_done - notify that scan finished 7743 * 7744 * @request: the corresponding scan request 7745 * @info: information about the completed scan 7746 */ 7747 void cfg80211_scan_done(struct cfg80211_scan_request *request, 7748 struct cfg80211_scan_info *info); 7749 7750 /** 7751 * cfg80211_sched_scan_results - notify that new scan results are available 7752 * 7753 * @wiphy: the wiphy which got scheduled scan results 7754 * @reqid: identifier for the related scheduled scan request 7755 */ 7756 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid); 7757 7758 /** 7759 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped 7760 * 7761 * @wiphy: the wiphy on which the scheduled scan stopped 7762 * @reqid: identifier for the related scheduled scan request 7763 * 7764 * The driver can call this function to inform cfg80211 that the 7765 * scheduled scan had to be stopped, for whatever reason. The driver 7766 * is then called back via the sched_scan_stop operation when done. 7767 */ 7768 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid); 7769 7770 /** 7771 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped 7772 * 7773 * @wiphy: the wiphy on which the scheduled scan stopped 7774 * @reqid: identifier for the related scheduled scan request 7775 * 7776 * The driver can call this function to inform cfg80211 that the 7777 * scheduled scan had to be stopped, for whatever reason. The driver 7778 * is then called back via the sched_scan_stop operation when done. 7779 * This function should be called with the wiphy mutex held. 7780 */ 7781 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid); 7782 7783 /** 7784 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame 7785 * @wiphy: the wiphy reporting the BSS 7786 * @data: the BSS metadata 7787 * @mgmt: the management frame (probe response or beacon) 7788 * @len: length of the management frame 7789 * @gfp: context flags 7790 * 7791 * This informs cfg80211 that BSS information was found and 7792 * the BSS should be updated/added. 7793 * 7794 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7795 * Or %NULL on error. 7796 */ 7797 struct cfg80211_bss * __must_check 7798 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 7799 struct cfg80211_inform_bss *data, 7800 struct ieee80211_mgmt *mgmt, size_t len, 7801 gfp_t gfp); 7802 7803 static inline struct cfg80211_bss * __must_check 7804 cfg80211_inform_bss_frame(struct wiphy *wiphy, 7805 struct ieee80211_channel *rx_channel, 7806 struct ieee80211_mgmt *mgmt, size_t len, 7807 s32 signal, gfp_t gfp) 7808 { 7809 struct cfg80211_inform_bss data = { 7810 .chan = rx_channel, 7811 .signal = signal, 7812 }; 7813 7814 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); 7815 } 7816 7817 /** 7818 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID 7819 * @bssid: transmitter BSSID 7820 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element 7821 * @mbssid_index: BSSID index, taken from Multiple BSSID index element 7822 * @new_bssid: calculated nontransmitted BSSID 7823 */ 7824 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid, 7825 u8 mbssid_index, u8 *new_bssid) 7826 { 7827 u64 bssid_u64 = ether_addr_to_u64(bssid); 7828 u64 mask = GENMASK_ULL(max_bssid - 1, 0); 7829 u64 new_bssid_u64; 7830 7831 new_bssid_u64 = bssid_u64 & ~mask; 7832 7833 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask; 7834 7835 u64_to_ether_addr(new_bssid_u64, new_bssid); 7836 } 7837 7838 /** 7839 * cfg80211_is_element_inherited - returns if element ID should be inherited 7840 * @element: element to check 7841 * @non_inherit_element: non inheritance element 7842 * 7843 * Return: %true if should be inherited, %false otherwise 7844 */ 7845 bool cfg80211_is_element_inherited(const struct element *element, 7846 const struct element *non_inherit_element); 7847 7848 /** 7849 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs 7850 * @ie: ies 7851 * @ielen: length of IEs 7852 * @mbssid_elem: current MBSSID element 7853 * @sub_elem: current MBSSID subelement (profile) 7854 * @merged_ie: location of the merged profile 7855 * @max_copy_len: max merged profile length 7856 * 7857 * Return: the number of bytes merged 7858 */ 7859 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 7860 const struct element *mbssid_elem, 7861 const struct element *sub_elem, 7862 u8 *merged_ie, size_t max_copy_len); 7863 7864 /** 7865 * enum cfg80211_bss_frame_type - frame type that the BSS data came from 7866 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is 7867 * from a beacon or probe response 7868 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon 7869 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response 7870 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon 7871 */ 7872 enum cfg80211_bss_frame_type { 7873 CFG80211_BSS_FTYPE_UNKNOWN, 7874 CFG80211_BSS_FTYPE_BEACON, 7875 CFG80211_BSS_FTYPE_PRESP, 7876 CFG80211_BSS_FTYPE_S1G_BEACON, 7877 }; 7878 7879 /** 7880 * cfg80211_get_ies_channel_number - returns the channel number from ies 7881 * @ie: IEs 7882 * @ielen: length of IEs 7883 * @band: enum nl80211_band of the channel 7884 * 7885 * Return: the channel number, or -1 if none could be determined. 7886 */ 7887 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 7888 enum nl80211_band band); 7889 7890 /** 7891 * cfg80211_ssid_eq - compare two SSIDs 7892 * @a: first SSID 7893 * @b: second SSID 7894 * 7895 * Return: %true if SSIDs are equal, %false otherwise. 7896 */ 7897 static inline bool 7898 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b) 7899 { 7900 if (WARN_ON(!a || !b)) 7901 return false; 7902 if (a->ssid_len != b->ssid_len) 7903 return false; 7904 return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true; 7905 } 7906 7907 /** 7908 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS 7909 * 7910 * @wiphy: the wiphy reporting the BSS 7911 * @data: the BSS metadata 7912 * @ftype: frame type (if known) 7913 * @bssid: the BSSID of the BSS 7914 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) 7915 * @capability: the capability field sent by the peer 7916 * @beacon_interval: the beacon interval announced by the peer 7917 * @ie: additional IEs sent by the peer 7918 * @ielen: length of the additional IEs 7919 * @gfp: context flags 7920 * 7921 * This informs cfg80211 that BSS information was found and 7922 * the BSS should be updated/added. 7923 * 7924 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7925 * Or %NULL on error. 7926 */ 7927 struct cfg80211_bss * __must_check 7928 cfg80211_inform_bss_data(struct wiphy *wiphy, 7929 struct cfg80211_inform_bss *data, 7930 enum cfg80211_bss_frame_type ftype, 7931 const u8 *bssid, u64 tsf, u16 capability, 7932 u16 beacon_interval, const u8 *ie, size_t ielen, 7933 gfp_t gfp); 7934 7935 static inline struct cfg80211_bss * __must_check 7936 cfg80211_inform_bss(struct wiphy *wiphy, 7937 struct ieee80211_channel *rx_channel, 7938 enum cfg80211_bss_frame_type ftype, 7939 const u8 *bssid, u64 tsf, u16 capability, 7940 u16 beacon_interval, const u8 *ie, size_t ielen, 7941 s32 signal, gfp_t gfp) 7942 { 7943 struct cfg80211_inform_bss data = { 7944 .chan = rx_channel, 7945 .signal = signal, 7946 }; 7947 7948 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, 7949 capability, beacon_interval, ie, ielen, 7950 gfp); 7951 } 7952 7953 /** 7954 * __cfg80211_get_bss - get a BSS reference 7955 * @wiphy: the wiphy this BSS struct belongs to 7956 * @channel: the channel to search on (or %NULL) 7957 * @bssid: the desired BSSID (or %NULL) 7958 * @ssid: the desired SSID (or %NULL) 7959 * @ssid_len: length of the SSID (or 0) 7960 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7961 * @privacy: privacy filter, see &enum ieee80211_privacy 7962 * @use_for: indicates which use is intended 7963 * 7964 * Return: Reference-counted BSS on success. %NULL on error. 7965 */ 7966 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 7967 struct ieee80211_channel *channel, 7968 const u8 *bssid, 7969 const u8 *ssid, size_t ssid_len, 7970 enum ieee80211_bss_type bss_type, 7971 enum ieee80211_privacy privacy, 7972 u32 use_for); 7973 7974 /** 7975 * cfg80211_get_bss - get a BSS reference 7976 * @wiphy: the wiphy this BSS struct belongs to 7977 * @channel: the channel to search on (or %NULL) 7978 * @bssid: the desired BSSID (or %NULL) 7979 * @ssid: the desired SSID (or %NULL) 7980 * @ssid_len: length of the SSID (or 0) 7981 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7982 * @privacy: privacy filter, see &enum ieee80211_privacy 7983 * 7984 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL. 7985 * 7986 * Return: Reference-counted BSS on success. %NULL on error. 7987 */ 7988 static inline struct cfg80211_bss * 7989 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, 7990 const u8 *bssid, const u8 *ssid, size_t ssid_len, 7991 enum ieee80211_bss_type bss_type, 7992 enum ieee80211_privacy privacy) 7993 { 7994 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, 7995 bss_type, privacy, 7996 NL80211_BSS_USE_FOR_NORMAL); 7997 } 7998 7999 static inline struct cfg80211_bss * 8000 cfg80211_get_ibss(struct wiphy *wiphy, 8001 struct ieee80211_channel *channel, 8002 const u8 *ssid, size_t ssid_len) 8003 { 8004 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, 8005 IEEE80211_BSS_TYPE_IBSS, 8006 IEEE80211_PRIVACY_ANY); 8007 } 8008 8009 /** 8010 * cfg80211_ref_bss - reference BSS struct 8011 * @wiphy: the wiphy this BSS struct belongs to 8012 * @bss: the BSS struct to reference 8013 * 8014 * Increments the refcount of the given BSS struct. 8015 */ 8016 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 8017 8018 /** 8019 * cfg80211_put_bss - unref BSS struct 8020 * @wiphy: the wiphy this BSS struct belongs to 8021 * @bss: the BSS struct 8022 * 8023 * Decrements the refcount of the given BSS struct. 8024 */ 8025 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 8026 8027 /** 8028 * cfg80211_unlink_bss - unlink BSS from internal data structures 8029 * @wiphy: the wiphy 8030 * @bss: the bss to remove 8031 * 8032 * This function removes the given BSS from the internal data structures 8033 * thereby making it no longer show up in scan results etc. Use this 8034 * function when you detect a BSS is gone. Normally BSSes will also time 8035 * out, so it is not necessary to use this function at all. 8036 */ 8037 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 8038 8039 /** 8040 * cfg80211_bss_iter - iterate all BSS entries 8041 * 8042 * This function iterates over the BSS entries associated with the given wiphy 8043 * and calls the callback for the iterated BSS. The iterator function is not 8044 * allowed to call functions that might modify the internal state of the BSS DB. 8045 * 8046 * @wiphy: the wiphy 8047 * @chandef: if given, the iterator function will be called only if the channel 8048 * of the currently iterated BSS is a subset of the given channel. 8049 * @iter: the iterator function to call 8050 * @iter_data: an argument to the iterator function 8051 */ 8052 void cfg80211_bss_iter(struct wiphy *wiphy, 8053 struct cfg80211_chan_def *chandef, 8054 void (*iter)(struct wiphy *wiphy, 8055 struct cfg80211_bss *bss, 8056 void *data), 8057 void *iter_data); 8058 8059 /** 8060 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame 8061 * @dev: network device 8062 * @buf: authentication frame (header + body) 8063 * @len: length of the frame data 8064 * 8065 * This function is called whenever an authentication, disassociation or 8066 * deauthentication frame has been received and processed in station mode. 8067 * After being asked to authenticate via cfg80211_ops::auth() the driver must 8068 * call either this function or cfg80211_auth_timeout(). 8069 * After being asked to associate via cfg80211_ops::assoc() the driver must 8070 * call either this function or cfg80211_auth_timeout(). 8071 * While connected, the driver must calls this for received and processed 8072 * disassociation and deauthentication frames. If the frame couldn't be used 8073 * because it was unprotected, the driver must call the function 8074 * cfg80211_rx_unprot_mlme_mgmt() instead. 8075 * 8076 * This function may sleep. The caller must hold the corresponding wdev's mutex. 8077 */ 8078 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); 8079 8080 /** 8081 * cfg80211_auth_timeout - notification of timed out authentication 8082 * @dev: network device 8083 * @addr: The MAC address of the device with which the authentication timed out 8084 * 8085 * This function may sleep. The caller must hold the corresponding wdev's 8086 * mutex. 8087 */ 8088 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr); 8089 8090 /** 8091 * struct cfg80211_rx_assoc_resp_data - association response data 8092 * @buf: (Re)Association Response frame (header + body) 8093 * @len: length of the frame data 8094 * @uapsd_queues: bitmap of queues configured for uapsd. Same format 8095 * as the AC bitmap in the QoS info field 8096 * @req_ies: information elements from the (Re)Association Request frame 8097 * @req_ies_len: length of req_ies data 8098 * @ap_mld_addr: AP MLD address (in case of MLO) 8099 * @links: per-link information indexed by link ID, use links[0] for 8100 * non-MLO connections 8101 * @links.bss: the BSS that association was requested with, ownership of the 8102 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp() 8103 * @links.status: Set this (along with a BSS pointer) for links that 8104 * were rejected by the AP. 8105 */ 8106 struct cfg80211_rx_assoc_resp_data { 8107 const u8 *buf; 8108 size_t len; 8109 const u8 *req_ies; 8110 size_t req_ies_len; 8111 int uapsd_queues; 8112 const u8 *ap_mld_addr; 8113 struct { 8114 u8 addr[ETH_ALEN] __aligned(2); 8115 struct cfg80211_bss *bss; 8116 u16 status; 8117 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8118 }; 8119 8120 /** 8121 * cfg80211_rx_assoc_resp - notification of processed association response 8122 * @dev: network device 8123 * @data: association response data, &struct cfg80211_rx_assoc_resp_data 8124 * 8125 * After being asked to associate via cfg80211_ops::assoc() the driver must 8126 * call either this function or cfg80211_auth_timeout(). 8127 * 8128 * This function may sleep. The caller must hold the corresponding wdev's mutex. 8129 */ 8130 void cfg80211_rx_assoc_resp(struct net_device *dev, 8131 const struct cfg80211_rx_assoc_resp_data *data); 8132 8133 /** 8134 * struct cfg80211_assoc_failure - association failure data 8135 * @ap_mld_addr: AP MLD address, or %NULL 8136 * @bss: list of BSSes, must use entry 0 for non-MLO connections 8137 * (@ap_mld_addr is %NULL) 8138 * @timeout: indicates the association failed due to timeout, otherwise 8139 * the association was abandoned for a reason reported through some 8140 * other API (e.g. deauth RX) 8141 */ 8142 struct cfg80211_assoc_failure { 8143 const u8 *ap_mld_addr; 8144 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS]; 8145 bool timeout; 8146 }; 8147 8148 /** 8149 * cfg80211_assoc_failure - notification of association failure 8150 * @dev: network device 8151 * @data: data describing the association failure 8152 * 8153 * This function may sleep. The caller must hold the corresponding wdev's mutex. 8154 */ 8155 void cfg80211_assoc_failure(struct net_device *dev, 8156 struct cfg80211_assoc_failure *data); 8157 8158 /** 8159 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame 8160 * @dev: network device 8161 * @buf: 802.11 frame (header + body) 8162 * @len: length of the frame data 8163 * @reconnect: immediate reconnect is desired (include the nl80211 attribute) 8164 * 8165 * This function is called whenever deauthentication has been processed in 8166 * station mode. This includes both received deauthentication frames and 8167 * locally generated ones. This function may sleep. The caller must hold the 8168 * corresponding wdev's mutex. 8169 */ 8170 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len, 8171 bool reconnect); 8172 8173 /** 8174 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame 8175 * @dev: network device 8176 * @buf: received management frame (header + body) 8177 * @len: length of the frame data 8178 * 8179 * This function is called whenever a received deauthentication or dissassoc 8180 * frame has been dropped in station mode because of MFP being used but the 8181 * frame was not protected. This is also used to notify reception of a Beacon 8182 * frame that was dropped because it did not include a valid MME MIC while 8183 * beacon protection was enabled (BIGTK configured in station mode). 8184 * 8185 * This function may sleep. 8186 */ 8187 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, 8188 const u8 *buf, size_t len); 8189 8190 /** 8191 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) 8192 * @dev: network device 8193 * @addr: The source MAC address of the frame 8194 * @key_type: The key type that the received frame used 8195 * @key_id: Key identifier (0..3). Can be -1 if missing. 8196 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) 8197 * @gfp: allocation flags 8198 * 8199 * This function is called whenever the local MAC detects a MIC failure in a 8200 * received frame. This matches with MLME-MICHAELMICFAILURE.indication() 8201 * primitive. 8202 */ 8203 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, 8204 enum nl80211_key_type key_type, int key_id, 8205 const u8 *tsc, gfp_t gfp); 8206 8207 /** 8208 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS 8209 * 8210 * @dev: network device 8211 * @bssid: the BSSID of the IBSS joined 8212 * @channel: the channel of the IBSS joined 8213 * @gfp: allocation flags 8214 * 8215 * This function notifies cfg80211 that the device joined an IBSS or 8216 * switched to a different BSSID. Before this function can be called, 8217 * either a beacon has to have been received from the IBSS, or one of 8218 * the cfg80211_inform_bss{,_frame} functions must have been called 8219 * with the locally generated beacon -- this guarantees that there is 8220 * always a scan result for this IBSS. cfg80211 will handle the rest. 8221 */ 8222 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, 8223 struct ieee80211_channel *channel, gfp_t gfp); 8224 8225 /** 8226 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer 8227 * candidate 8228 * 8229 * @dev: network device 8230 * @macaddr: the MAC address of the new candidate 8231 * @ie: information elements advertised by the peer candidate 8232 * @ie_len: length of the information elements buffer 8233 * @sig_dbm: signal level in dBm 8234 * @gfp: allocation flags 8235 * 8236 * This function notifies cfg80211 that the mesh peer candidate has been 8237 * detected, most likely via a beacon or, less likely, via a probe response. 8238 * cfg80211 then sends a notification to userspace. 8239 */ 8240 void cfg80211_notify_new_peer_candidate(struct net_device *dev, 8241 const u8 *macaddr, const u8 *ie, u8 ie_len, 8242 int sig_dbm, gfp_t gfp); 8243 8244 /** 8245 * DOC: RFkill integration 8246 * 8247 * RFkill integration in cfg80211 is almost invisible to drivers, 8248 * as cfg80211 automatically registers an rfkill instance for each 8249 * wireless device it knows about. Soft kill is also translated 8250 * into disconnecting and turning all interfaces off. Drivers are 8251 * expected to turn off the device when all interfaces are down. 8252 * 8253 * However, devices may have a hard RFkill line, in which case they 8254 * also need to interact with the rfkill subsystem, via cfg80211. 8255 * They can do this with a few helper functions documented here. 8256 */ 8257 8258 /** 8259 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state 8260 * @wiphy: the wiphy 8261 * @blocked: block status 8262 * @reason: one of reasons in &enum rfkill_hard_block_reasons 8263 */ 8264 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked, 8265 enum rfkill_hard_block_reasons reason); 8266 8267 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked) 8268 { 8269 wiphy_rfkill_set_hw_state_reason(wiphy, blocked, 8270 RFKILL_HARD_BLOCK_SIGNAL); 8271 } 8272 8273 /** 8274 * wiphy_rfkill_start_polling - start polling rfkill 8275 * @wiphy: the wiphy 8276 */ 8277 void wiphy_rfkill_start_polling(struct wiphy *wiphy); 8278 8279 /** 8280 * wiphy_rfkill_stop_polling - stop polling rfkill 8281 * @wiphy: the wiphy 8282 */ 8283 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy) 8284 { 8285 rfkill_pause_polling(wiphy->rfkill); 8286 } 8287 8288 /** 8289 * DOC: Vendor commands 8290 * 8291 * Occasionally, there are special protocol or firmware features that 8292 * can't be implemented very openly. For this and similar cases, the 8293 * vendor command functionality allows implementing the features with 8294 * (typically closed-source) userspace and firmware, using nl80211 as 8295 * the configuration mechanism. 8296 * 8297 * A driver supporting vendor commands must register them as an array 8298 * in struct wiphy, with handlers for each one. Each command has an 8299 * OUI and sub command ID to identify it. 8300 * 8301 * Note that this feature should not be (ab)used to implement protocol 8302 * features that could openly be shared across drivers. In particular, 8303 * it must never be required to use vendor commands to implement any 8304 * "normal" functionality that higher-level userspace like connection 8305 * managers etc. need. 8306 */ 8307 8308 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy, 8309 enum nl80211_commands cmd, 8310 enum nl80211_attrs attr, 8311 int approxlen); 8312 8313 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy, 8314 struct wireless_dev *wdev, 8315 enum nl80211_commands cmd, 8316 enum nl80211_attrs attr, 8317 unsigned int portid, 8318 int vendor_event_idx, 8319 int approxlen, gfp_t gfp); 8320 8321 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp); 8322 8323 /** 8324 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply 8325 * @wiphy: the wiphy 8326 * @approxlen: an upper bound of the length of the data that will 8327 * be put into the skb 8328 * 8329 * This function allocates and pre-fills an skb for a reply to 8330 * a vendor command. Since it is intended for a reply, calling 8331 * it outside of a vendor command's doit() operation is invalid. 8332 * 8333 * The returned skb is pre-filled with some identifying data in 8334 * a way that any data that is put into the skb (with skb_put(), 8335 * nla_put() or similar) will end up being within the 8336 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done 8337 * with the skb is adding data for the corresponding userspace tool 8338 * which can then read that data out of the vendor data attribute. 8339 * You must not modify the skb in any other way. 8340 * 8341 * When done, call cfg80211_vendor_cmd_reply() with the skb and return 8342 * its error code as the result of the doit() operation. 8343 * 8344 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8345 */ 8346 static inline struct sk_buff * 8347 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 8348 { 8349 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR, 8350 NL80211_ATTR_VENDOR_DATA, approxlen); 8351 } 8352 8353 /** 8354 * cfg80211_vendor_cmd_reply - send the reply skb 8355 * @skb: The skb, must have been allocated with 8356 * cfg80211_vendor_cmd_alloc_reply_skb() 8357 * 8358 * Since calling this function will usually be the last thing 8359 * before returning from the vendor command doit() you should 8360 * return the error code. Note that this function consumes the 8361 * skb regardless of the return value. 8362 * 8363 * Return: An error code or 0 on success. 8364 */ 8365 int cfg80211_vendor_cmd_reply(struct sk_buff *skb); 8366 8367 /** 8368 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID 8369 * @wiphy: the wiphy 8370 * 8371 * Return: the current netlink port ID in a vendor command handler. 8372 * 8373 * Context: May only be called from a vendor command handler 8374 */ 8375 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy); 8376 8377 /** 8378 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb 8379 * @wiphy: the wiphy 8380 * @wdev: the wireless device 8381 * @event_idx: index of the vendor event in the wiphy's vendor_events 8382 * @approxlen: an upper bound of the length of the data that will 8383 * be put into the skb 8384 * @gfp: allocation flags 8385 * 8386 * This function allocates and pre-fills an skb for an event on the 8387 * vendor-specific multicast group. 8388 * 8389 * If wdev != NULL, both the ifindex and identifier of the specified 8390 * wireless device are added to the event message before the vendor data 8391 * attribute. 8392 * 8393 * When done filling the skb, call cfg80211_vendor_event() with the 8394 * skb to send the event. 8395 * 8396 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8397 */ 8398 static inline struct sk_buff * 8399 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, 8400 int approxlen, int event_idx, gfp_t gfp) 8401 { 8402 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 8403 NL80211_ATTR_VENDOR_DATA, 8404 0, event_idx, approxlen, gfp); 8405 } 8406 8407 /** 8408 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb 8409 * @wiphy: the wiphy 8410 * @wdev: the wireless device 8411 * @event_idx: index of the vendor event in the wiphy's vendor_events 8412 * @portid: port ID of the receiver 8413 * @approxlen: an upper bound of the length of the data that will 8414 * be put into the skb 8415 * @gfp: allocation flags 8416 * 8417 * This function allocates and pre-fills an skb for an event to send to 8418 * a specific (userland) socket. This socket would previously have been 8419 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take 8420 * care to register a netlink notifier to see when the socket closes. 8421 * 8422 * If wdev != NULL, both the ifindex and identifier of the specified 8423 * wireless device are added to the event message before the vendor data 8424 * attribute. 8425 * 8426 * When done filling the skb, call cfg80211_vendor_event() with the 8427 * skb to send the event. 8428 * 8429 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8430 */ 8431 static inline struct sk_buff * 8432 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy, 8433 struct wireless_dev *wdev, 8434 unsigned int portid, int approxlen, 8435 int event_idx, gfp_t gfp) 8436 { 8437 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 8438 NL80211_ATTR_VENDOR_DATA, 8439 portid, event_idx, approxlen, gfp); 8440 } 8441 8442 /** 8443 * cfg80211_vendor_event - send the event 8444 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc() 8445 * @gfp: allocation flags 8446 * 8447 * This function sends the given @skb, which must have been allocated 8448 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it. 8449 */ 8450 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp) 8451 { 8452 __cfg80211_send_event_skb(skb, gfp); 8453 } 8454 8455 #ifdef CONFIG_NL80211_TESTMODE 8456 /** 8457 * DOC: Test mode 8458 * 8459 * Test mode is a set of utility functions to allow drivers to 8460 * interact with driver-specific tools to aid, for instance, 8461 * factory programming. 8462 * 8463 * This chapter describes how drivers interact with it. For more 8464 * information see the nl80211 book's chapter on it. 8465 */ 8466 8467 /** 8468 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply 8469 * @wiphy: the wiphy 8470 * @approxlen: an upper bound of the length of the data that will 8471 * be put into the skb 8472 * 8473 * This function allocates and pre-fills an skb for a reply to 8474 * the testmode command. Since it is intended for a reply, calling 8475 * it outside of the @testmode_cmd operation is invalid. 8476 * 8477 * The returned skb is pre-filled with the wiphy index and set up in 8478 * a way that any data that is put into the skb (with skb_put(), 8479 * nla_put() or similar) will end up being within the 8480 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done 8481 * with the skb is adding data for the corresponding userspace tool 8482 * which can then read that data out of the testdata attribute. You 8483 * must not modify the skb in any other way. 8484 * 8485 * When done, call cfg80211_testmode_reply() with the skb and return 8486 * its error code as the result of the @testmode_cmd operation. 8487 * 8488 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8489 */ 8490 static inline struct sk_buff * 8491 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 8492 { 8493 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE, 8494 NL80211_ATTR_TESTDATA, approxlen); 8495 } 8496 8497 /** 8498 * cfg80211_testmode_reply - send the reply skb 8499 * @skb: The skb, must have been allocated with 8500 * cfg80211_testmode_alloc_reply_skb() 8501 * 8502 * Since calling this function will usually be the last thing 8503 * before returning from the @testmode_cmd you should return 8504 * the error code. Note that this function consumes the skb 8505 * regardless of the return value. 8506 * 8507 * Return: An error code or 0 on success. 8508 */ 8509 static inline int cfg80211_testmode_reply(struct sk_buff *skb) 8510 { 8511 return cfg80211_vendor_cmd_reply(skb); 8512 } 8513 8514 /** 8515 * cfg80211_testmode_alloc_event_skb - allocate testmode event 8516 * @wiphy: the wiphy 8517 * @approxlen: an upper bound of the length of the data that will 8518 * be put into the skb 8519 * @gfp: allocation flags 8520 * 8521 * This function allocates and pre-fills an skb for an event on the 8522 * testmode multicast group. 8523 * 8524 * The returned skb is set up in the same way as with 8525 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As 8526 * there, you should simply add data to it that will then end up in the 8527 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb 8528 * in any other way. 8529 * 8530 * When done filling the skb, call cfg80211_testmode_event() with the 8531 * skb to send the event. 8532 * 8533 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8534 */ 8535 static inline struct sk_buff * 8536 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp) 8537 { 8538 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE, 8539 NL80211_ATTR_TESTDATA, 0, -1, 8540 approxlen, gfp); 8541 } 8542 8543 /** 8544 * cfg80211_testmode_event - send the event 8545 * @skb: The skb, must have been allocated with 8546 * cfg80211_testmode_alloc_event_skb() 8547 * @gfp: allocation flags 8548 * 8549 * This function sends the given @skb, which must have been allocated 8550 * by cfg80211_testmode_alloc_event_skb(), as an event. It always 8551 * consumes it. 8552 */ 8553 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp) 8554 { 8555 __cfg80211_send_event_skb(skb, gfp); 8556 } 8557 8558 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), 8559 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd), 8560 #else 8561 #define CFG80211_TESTMODE_CMD(cmd) 8562 #define CFG80211_TESTMODE_DUMP(cmd) 8563 #endif 8564 8565 /** 8566 * struct cfg80211_fils_resp_params - FILS connection response params 8567 * @kek: KEK derived from a successful FILS connection (may be %NULL) 8568 * @kek_len: Length of @fils_kek in octets 8569 * @update_erp_next_seq_num: Boolean value to specify whether the value in 8570 * @erp_next_seq_num is valid. 8571 * @erp_next_seq_num: The next sequence number to use in ERP message in 8572 * FILS Authentication. This value should be specified irrespective of the 8573 * status for a FILS connection. 8574 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL). 8575 * @pmk_len: Length of @pmk in octets 8576 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID 8577 * used for this FILS connection (may be %NULL). 8578 */ 8579 struct cfg80211_fils_resp_params { 8580 const u8 *kek; 8581 size_t kek_len; 8582 bool update_erp_next_seq_num; 8583 u16 erp_next_seq_num; 8584 const u8 *pmk; 8585 size_t pmk_len; 8586 const u8 *pmkid; 8587 }; 8588 8589 /** 8590 * struct cfg80211_connect_resp_params - Connection response params 8591 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use 8592 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8593 * the real status code for failures. If this call is used to report a 8594 * failure due to a timeout (e.g., not receiving an Authentication frame 8595 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8596 * indicate that this is a failure, but without a status code. 8597 * @timeout_reason is used to report the reason for the timeout in that 8598 * case. 8599 * @req_ie: Association request IEs (may be %NULL) 8600 * @req_ie_len: Association request IEs length 8601 * @resp_ie: Association response IEs (may be %NULL) 8602 * @resp_ie_len: Association response IEs length 8603 * @fils: FILS connection response parameters. 8604 * @timeout_reason: Reason for connection timeout. This is used when the 8605 * connection fails due to a timeout instead of an explicit rejection from 8606 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8607 * not known. This value is used only if @status < 0 to indicate that the 8608 * failure is due to a timeout and not due to explicit rejection by the AP. 8609 * This value is ignored in other cases (@status >= 0). 8610 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise 8611 * zero. 8612 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL. 8613 * @links : For MLO connection, contains link info for the valid links indicated 8614 * using @valid_links. For non-MLO connection, links[0] contains the 8615 * connected AP info. 8616 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise 8617 * %NULL. 8618 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO 8619 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL). 8620 * @links.bss: For MLO connection, entry of bss to which STA link is connected. 8621 * For non-MLO connection, links[0].bss points to entry of bss to which STA 8622 * is connected. It can be obtained through cfg80211_get_bss() (may be 8623 * %NULL). It is recommended to store the bss from the connect_request and 8624 * hold a reference to it and return through this param to avoid a warning 8625 * if the bss is expired during the connection, esp. for those drivers 8626 * implementing connect op. Only one parameter among @bssid and @bss needs 8627 * to be specified. 8628 * @links.status: per-link status code, to report a status code that's not 8629 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the 8630 * @valid_links bitmap and may have a BSS pointer (which is then released) 8631 */ 8632 struct cfg80211_connect_resp_params { 8633 int status; 8634 const u8 *req_ie; 8635 size_t req_ie_len; 8636 const u8 *resp_ie; 8637 size_t resp_ie_len; 8638 struct cfg80211_fils_resp_params fils; 8639 enum nl80211_timeout_reason timeout_reason; 8640 8641 const u8 *ap_mld_addr; 8642 u16 valid_links; 8643 struct { 8644 const u8 *addr; 8645 const u8 *bssid; 8646 struct cfg80211_bss *bss; 8647 u16 status; 8648 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8649 }; 8650 8651 /** 8652 * cfg80211_connect_done - notify cfg80211 of connection result 8653 * 8654 * @dev: network device 8655 * @params: connection response parameters 8656 * @gfp: allocation flags 8657 * 8658 * It should be called by the underlying driver once execution of the connection 8659 * request from connect() has been completed. This is similar to 8660 * cfg80211_connect_bss(), but takes a structure pointer for connection response 8661 * parameters. Only one of the functions among cfg80211_connect_bss(), 8662 * cfg80211_connect_result(), cfg80211_connect_timeout(), 8663 * and cfg80211_connect_done() should be called. 8664 */ 8665 void cfg80211_connect_done(struct net_device *dev, 8666 struct cfg80211_connect_resp_params *params, 8667 gfp_t gfp); 8668 8669 /** 8670 * cfg80211_connect_bss - notify cfg80211 of connection result 8671 * 8672 * @dev: network device 8673 * @bssid: the BSSID of the AP 8674 * @bss: Entry of bss to which STA got connected to, can be obtained through 8675 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the 8676 * bss from the connect_request and hold a reference to it and return 8677 * through this param to avoid a warning if the bss is expired during the 8678 * connection, esp. for those drivers implementing connect op. 8679 * Only one parameter among @bssid and @bss needs to be specified. 8680 * @req_ie: association request IEs (maybe be %NULL) 8681 * @req_ie_len: association request IEs length 8682 * @resp_ie: association response IEs (may be %NULL) 8683 * @resp_ie_len: assoc response IEs length 8684 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8685 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8686 * the real status code for failures. If this call is used to report a 8687 * failure due to a timeout (e.g., not receiving an Authentication frame 8688 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8689 * indicate that this is a failure, but without a status code. 8690 * @timeout_reason is used to report the reason for the timeout in that 8691 * case. 8692 * @gfp: allocation flags 8693 * @timeout_reason: reason for connection timeout. This is used when the 8694 * connection fails due to a timeout instead of an explicit rejection from 8695 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8696 * not known. This value is used only if @status < 0 to indicate that the 8697 * failure is due to a timeout and not due to explicit rejection by the AP. 8698 * This value is ignored in other cases (@status >= 0). 8699 * 8700 * It should be called by the underlying driver once execution of the connection 8701 * request from connect() has been completed. This is similar to 8702 * cfg80211_connect_result(), but with the option of identifying the exact bss 8703 * entry for the connection. Only one of the functions among 8704 * cfg80211_connect_bss(), cfg80211_connect_result(), 8705 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8706 */ 8707 static inline void 8708 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid, 8709 struct cfg80211_bss *bss, const u8 *req_ie, 8710 size_t req_ie_len, const u8 *resp_ie, 8711 size_t resp_ie_len, int status, gfp_t gfp, 8712 enum nl80211_timeout_reason timeout_reason) 8713 { 8714 struct cfg80211_connect_resp_params params; 8715 8716 memset(¶ms, 0, sizeof(params)); 8717 params.status = status; 8718 params.links[0].bssid = bssid; 8719 params.links[0].bss = bss; 8720 params.req_ie = req_ie; 8721 params.req_ie_len = req_ie_len; 8722 params.resp_ie = resp_ie; 8723 params.resp_ie_len = resp_ie_len; 8724 params.timeout_reason = timeout_reason; 8725 8726 cfg80211_connect_done(dev, ¶ms, gfp); 8727 } 8728 8729 /** 8730 * cfg80211_connect_result - notify cfg80211 of connection result 8731 * 8732 * @dev: network device 8733 * @bssid: the BSSID of the AP 8734 * @req_ie: association request IEs (maybe be %NULL) 8735 * @req_ie_len: association request IEs length 8736 * @resp_ie: association response IEs (may be %NULL) 8737 * @resp_ie_len: assoc response IEs length 8738 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8739 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8740 * the real status code for failures. 8741 * @gfp: allocation flags 8742 * 8743 * It should be called by the underlying driver once execution of the connection 8744 * request from connect() has been completed. This is similar to 8745 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only 8746 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(), 8747 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8748 */ 8749 static inline void 8750 cfg80211_connect_result(struct net_device *dev, const u8 *bssid, 8751 const u8 *req_ie, size_t req_ie_len, 8752 const u8 *resp_ie, size_t resp_ie_len, 8753 u16 status, gfp_t gfp) 8754 { 8755 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie, 8756 resp_ie_len, status, gfp, 8757 NL80211_TIMEOUT_UNSPECIFIED); 8758 } 8759 8760 /** 8761 * cfg80211_connect_timeout - notify cfg80211 of connection timeout 8762 * 8763 * @dev: network device 8764 * @bssid: the BSSID of the AP 8765 * @req_ie: association request IEs (maybe be %NULL) 8766 * @req_ie_len: association request IEs length 8767 * @gfp: allocation flags 8768 * @timeout_reason: reason for connection timeout. 8769 * 8770 * It should be called by the underlying driver whenever connect() has failed 8771 * in a sequence where no explicit authentication/association rejection was 8772 * received from the AP. This could happen, e.g., due to not being able to send 8773 * out the Authentication or Association Request frame or timing out while 8774 * waiting for the response. Only one of the functions among 8775 * cfg80211_connect_bss(), cfg80211_connect_result(), 8776 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8777 */ 8778 static inline void 8779 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid, 8780 const u8 *req_ie, size_t req_ie_len, gfp_t gfp, 8781 enum nl80211_timeout_reason timeout_reason) 8782 { 8783 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1, 8784 gfp, timeout_reason); 8785 } 8786 8787 /** 8788 * struct cfg80211_roam_info - driver initiated roaming information 8789 * 8790 * @req_ie: association request IEs (maybe be %NULL) 8791 * @req_ie_len: association request IEs length 8792 * @resp_ie: association response IEs (may be %NULL) 8793 * @resp_ie_len: assoc response IEs length 8794 * @fils: FILS related roaming information. 8795 * @valid_links: For MLO roaming, BIT mask of the new valid links is set. 8796 * Otherwise zero. 8797 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL. 8798 * @links : For MLO roaming, contains new link info for the valid links set in 8799 * @valid_links. For non-MLO roaming, links[0] contains the new AP info. 8800 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL. 8801 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO 8802 * roaming, links[0].bssid points to the BSSID of the new AP. May be 8803 * %NULL if %links.bss is set. 8804 * @links.channel: the channel of the new AP. 8805 * @links.bss: For MLO roaming, entry of new bss to which STA link got 8806 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to 8807 * which STA got roamed (may be %NULL if %links.bssid is set) 8808 */ 8809 struct cfg80211_roam_info { 8810 const u8 *req_ie; 8811 size_t req_ie_len; 8812 const u8 *resp_ie; 8813 size_t resp_ie_len; 8814 struct cfg80211_fils_resp_params fils; 8815 8816 const u8 *ap_mld_addr; 8817 u16 valid_links; 8818 struct { 8819 const u8 *addr; 8820 const u8 *bssid; 8821 struct ieee80211_channel *channel; 8822 struct cfg80211_bss *bss; 8823 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8824 }; 8825 8826 /** 8827 * cfg80211_roamed - notify cfg80211 of roaming 8828 * 8829 * @dev: network device 8830 * @info: information about the new BSS. struct &cfg80211_roam_info. 8831 * @gfp: allocation flags 8832 * 8833 * This function may be called with the driver passing either the BSSID of the 8834 * new AP or passing the bss entry to avoid a race in timeout of the bss entry. 8835 * It should be called by the underlying driver whenever it roamed from one AP 8836 * to another while connected. Drivers which have roaming implemented in 8837 * firmware should pass the bss entry to avoid a race in bss entry timeout where 8838 * the bss entry of the new AP is seen in the driver, but gets timed out by the 8839 * time it is accessed in __cfg80211_roamed() due to delay in scheduling 8840 * rdev->event_work. In case of any failures, the reference is released 8841 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be 8842 * released while disconnecting from the current bss. 8843 */ 8844 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info, 8845 gfp_t gfp); 8846 8847 /** 8848 * cfg80211_port_authorized - notify cfg80211 of successful security association 8849 * 8850 * @dev: network device 8851 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address 8852 * in case of AP/P2P GO 8853 * @td_bitmap: transition disable policy 8854 * @td_bitmap_len: Length of transition disable policy 8855 * @gfp: allocation flags 8856 * 8857 * This function should be called by a driver that supports 4 way handshake 8858 * offload after a security association was successfully established (i.e., 8859 * the 4 way handshake was completed successfully). The call to this function 8860 * should be preceded with a call to cfg80211_connect_result(), 8861 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to 8862 * indicate the 802.11 association. 8863 * This function can also be called by AP/P2P GO driver that supports 8864 * authentication offload. In this case the peer_mac passed is that of 8865 * associated STA/GC. 8866 */ 8867 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr, 8868 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp); 8869 8870 /** 8871 * cfg80211_disconnected - notify cfg80211 that connection was dropped 8872 * 8873 * @dev: network device 8874 * @ie: information elements of the deauth/disassoc frame (may be %NULL) 8875 * @ie_len: length of IEs 8876 * @reason: reason code for the disconnection, set it to 0 if unknown 8877 * @locally_generated: disconnection was requested locally 8878 * @gfp: allocation flags 8879 * 8880 * After it calls this function, the driver should enter an idle state 8881 * and not try to connect to any AP any more. 8882 */ 8883 void cfg80211_disconnected(struct net_device *dev, u16 reason, 8884 const u8 *ie, size_t ie_len, 8885 bool locally_generated, gfp_t gfp); 8886 8887 /** 8888 * cfg80211_ready_on_channel - notification of remain_on_channel start 8889 * @wdev: wireless device 8890 * @cookie: the request cookie 8891 * @chan: The current channel (from remain_on_channel request) 8892 * @duration: Duration in milliseconds that the driver intents to remain on the 8893 * channel 8894 * @gfp: allocation flags 8895 */ 8896 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, 8897 struct ieee80211_channel *chan, 8898 unsigned int duration, gfp_t gfp); 8899 8900 /** 8901 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired 8902 * @wdev: wireless device 8903 * @cookie: the request cookie 8904 * @chan: The current channel (from remain_on_channel request) 8905 * @gfp: allocation flags 8906 */ 8907 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, 8908 struct ieee80211_channel *chan, 8909 gfp_t gfp); 8910 8911 /** 8912 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired 8913 * @wdev: wireless device 8914 * @cookie: the requested cookie 8915 * @chan: The current channel (from tx_mgmt request) 8916 * @gfp: allocation flags 8917 */ 8918 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie, 8919 struct ieee80211_channel *chan, gfp_t gfp); 8920 8921 /** 8922 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics. 8923 * 8924 * @sinfo: the station information 8925 * @gfp: allocation flags 8926 * 8927 * Return: 0 on success. Non-zero on error. 8928 */ 8929 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp); 8930 8931 /** 8932 * cfg80211_link_sinfo_alloc_tid_stats - allocate per-tid statistics. 8933 * 8934 * @link_sinfo: the link station information 8935 * @gfp: allocation flags 8936 * 8937 * Return: 0 on success. Non-zero on error. 8938 */ 8939 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo, 8940 gfp_t gfp); 8941 8942 /** 8943 * cfg80211_sinfo_release_content - release contents of station info 8944 * @sinfo: the station information 8945 * 8946 * Releases any potentially allocated sub-information of the station 8947 * information, but not the struct itself (since it's typically on 8948 * the stack.) 8949 */ 8950 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo) 8951 { 8952 kfree(sinfo->pertid); 8953 8954 for (int link_id = 0; link_id < ARRAY_SIZE(sinfo->links); link_id++) { 8955 if (sinfo->links[link_id]) { 8956 kfree(sinfo->links[link_id]->pertid); 8957 kfree(sinfo->links[link_id]); 8958 } 8959 } 8960 } 8961 8962 /** 8963 * cfg80211_new_sta - notify userspace about station 8964 * 8965 * @dev: the netdev 8966 * @mac_addr: the station's address 8967 * @sinfo: the station information 8968 * @gfp: allocation flags 8969 */ 8970 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, 8971 struct station_info *sinfo, gfp_t gfp); 8972 8973 /** 8974 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station 8975 * @dev: the netdev 8976 * @mac_addr: the station's address. For MLD station, MLD address is used. 8977 * @sinfo: the station information/statistics 8978 * @gfp: allocation flags 8979 */ 8980 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr, 8981 struct station_info *sinfo, gfp_t gfp); 8982 8983 /** 8984 * cfg80211_del_sta - notify userspace about deletion of a station 8985 * 8986 * @dev: the netdev 8987 * @mac_addr: the station's address. For MLD station, MLD address is used. 8988 * @gfp: allocation flags 8989 */ 8990 static inline void cfg80211_del_sta(struct net_device *dev, 8991 const u8 *mac_addr, gfp_t gfp) 8992 { 8993 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp); 8994 } 8995 8996 /** 8997 * cfg80211_conn_failed - connection request failed notification 8998 * 8999 * @dev: the netdev 9000 * @mac_addr: the station's address 9001 * @reason: the reason for connection failure 9002 * @gfp: allocation flags 9003 * 9004 * Whenever a station tries to connect to an AP and if the station 9005 * could not connect to the AP as the AP has rejected the connection 9006 * for some reasons, this function is called. 9007 * 9008 * The reason for connection failure can be any of the value from 9009 * nl80211_connect_failed_reason enum 9010 */ 9011 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, 9012 enum nl80211_connect_failed_reason reason, 9013 gfp_t gfp); 9014 9015 /** 9016 * struct cfg80211_rx_info - received management frame info 9017 * 9018 * @freq: Frequency on which the frame was received in kHz 9019 * @sig_dbm: signal strength in dBm, or 0 if unknown 9020 * @have_link_id: indicates the frame was received on a link of 9021 * an MLD, i.e. the @link_id field is valid 9022 * @link_id: the ID of the link the frame was received on 9023 * @buf: Management frame (header + body) 9024 * @len: length of the frame data 9025 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags 9026 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds 9027 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds 9028 */ 9029 struct cfg80211_rx_info { 9030 int freq; 9031 int sig_dbm; 9032 bool have_link_id; 9033 u8 link_id; 9034 const u8 *buf; 9035 size_t len; 9036 u32 flags; 9037 u64 rx_tstamp; 9038 u64 ack_tstamp; 9039 }; 9040 9041 /** 9042 * cfg80211_rx_mgmt_ext - management frame notification with extended info 9043 * @wdev: wireless device receiving the frame 9044 * @info: RX info as defined in struct cfg80211_rx_info 9045 * 9046 * This function is called whenever an Action frame is received for a station 9047 * mode interface, but is not processed in kernel. 9048 * 9049 * Return: %true if a user space application has registered for this frame. 9050 * For action frames, that makes it responsible for rejecting unrecognized 9051 * action frames; %false otherwise, in which case for action frames the 9052 * driver is responsible for rejecting the frame. 9053 */ 9054 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev, 9055 struct cfg80211_rx_info *info); 9056 9057 /** 9058 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame 9059 * @wdev: wireless device receiving the frame 9060 * @freq: Frequency on which the frame was received in KHz 9061 * @sig_dbm: signal strength in dBm, or 0 if unknown 9062 * @buf: Management frame (header + body) 9063 * @len: length of the frame data 9064 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 9065 * 9066 * This function is called whenever an Action frame is received for a station 9067 * mode interface, but is not processed in kernel. 9068 * 9069 * Return: %true if a user space application has registered for this frame. 9070 * For action frames, that makes it responsible for rejecting unrecognized 9071 * action frames; %false otherwise, in which case for action frames the 9072 * driver is responsible for rejecting the frame. 9073 */ 9074 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq, 9075 int sig_dbm, const u8 *buf, size_t len, 9076 u32 flags) 9077 { 9078 struct cfg80211_rx_info info = { 9079 .freq = freq, 9080 .sig_dbm = sig_dbm, 9081 .buf = buf, 9082 .len = len, 9083 .flags = flags 9084 }; 9085 9086 return cfg80211_rx_mgmt_ext(wdev, &info); 9087 } 9088 9089 /** 9090 * cfg80211_rx_mgmt - notification of received, unprocessed management frame 9091 * @wdev: wireless device receiving the frame 9092 * @freq: Frequency on which the frame was received in MHz 9093 * @sig_dbm: signal strength in dBm, or 0 if unknown 9094 * @buf: Management frame (header + body) 9095 * @len: length of the frame data 9096 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 9097 * 9098 * This function is called whenever an Action frame is received for a station 9099 * mode interface, but is not processed in kernel. 9100 * 9101 * Return: %true if a user space application has registered for this frame. 9102 * For action frames, that makes it responsible for rejecting unrecognized 9103 * action frames; %false otherwise, in which case for action frames the 9104 * driver is responsible for rejecting the frame. 9105 */ 9106 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, 9107 int sig_dbm, const u8 *buf, size_t len, 9108 u32 flags) 9109 { 9110 struct cfg80211_rx_info info = { 9111 .freq = MHZ_TO_KHZ(freq), 9112 .sig_dbm = sig_dbm, 9113 .buf = buf, 9114 .len = len, 9115 .flags = flags 9116 }; 9117 9118 return cfg80211_rx_mgmt_ext(wdev, &info); 9119 } 9120 9121 /** 9122 * struct cfg80211_tx_status - TX status for management frame information 9123 * 9124 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 9125 * @tx_tstamp: hardware TX timestamp in nanoseconds 9126 * @ack_tstamp: hardware ack RX timestamp in nanoseconds 9127 * @buf: Management frame (header + body) 9128 * @len: length of the frame data 9129 * @ack: Whether frame was acknowledged 9130 */ 9131 struct cfg80211_tx_status { 9132 u64 cookie; 9133 u64 tx_tstamp; 9134 u64 ack_tstamp; 9135 const u8 *buf; 9136 size_t len; 9137 bool ack; 9138 }; 9139 9140 /** 9141 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info 9142 * @wdev: wireless device receiving the frame 9143 * @status: TX status data 9144 * @gfp: context flags 9145 * 9146 * This function is called whenever a management frame was requested to be 9147 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 9148 * transmission attempt with extended info. 9149 */ 9150 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev, 9151 struct cfg80211_tx_status *status, gfp_t gfp); 9152 9153 /** 9154 * cfg80211_mgmt_tx_status - notification of TX status for management frame 9155 * @wdev: wireless device receiving the frame 9156 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 9157 * @buf: Management frame (header + body) 9158 * @len: length of the frame data 9159 * @ack: Whether frame was acknowledged 9160 * @gfp: context flags 9161 * 9162 * This function is called whenever a management frame was requested to be 9163 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 9164 * transmission attempt. 9165 */ 9166 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, 9167 u64 cookie, const u8 *buf, 9168 size_t len, bool ack, gfp_t gfp) 9169 { 9170 struct cfg80211_tx_status status = { 9171 .cookie = cookie, 9172 .buf = buf, 9173 .len = len, 9174 .ack = ack 9175 }; 9176 9177 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp); 9178 } 9179 9180 /** 9181 * cfg80211_control_port_tx_status - notification of TX status for control 9182 * port frames 9183 * @wdev: wireless device receiving the frame 9184 * @cookie: Cookie returned by cfg80211_ops::tx_control_port() 9185 * @buf: Data frame (header + body) 9186 * @len: length of the frame data 9187 * @ack: Whether frame was acknowledged 9188 * @gfp: context flags 9189 * 9190 * This function is called whenever a control port frame was requested to be 9191 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of 9192 * the transmission attempt. 9193 */ 9194 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie, 9195 const u8 *buf, size_t len, bool ack, 9196 gfp_t gfp); 9197 9198 /** 9199 * cfg80211_rx_control_port - notification about a received control port frame 9200 * @dev: The device the frame matched to 9201 * @skb: The skbuf with the control port frame. It is assumed that the skbuf 9202 * is 802.3 formatted (with 802.3 header). The skb can be non-linear. 9203 * This function does not take ownership of the skb, so the caller is 9204 * responsible for any cleanup. The caller must also ensure that 9205 * skb->protocol is set appropriately. 9206 * @unencrypted: Whether the frame was received unencrypted 9207 * @link_id: the link the frame was received on, -1 if not applicable or unknown 9208 * 9209 * This function is used to inform userspace about a received control port 9210 * frame. It should only be used if userspace indicated it wants to receive 9211 * control port frames over nl80211. 9212 * 9213 * The frame is the data portion of the 802.3 or 802.11 data frame with all 9214 * network layer headers removed (e.g. the raw EAPoL frame). 9215 * 9216 * Return: %true if the frame was passed to userspace 9217 */ 9218 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb, 9219 bool unencrypted, int link_id); 9220 9221 /** 9222 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event 9223 * @dev: network device 9224 * @rssi_event: the triggered RSSI event 9225 * @rssi_level: new RSSI level value or 0 if not available 9226 * @gfp: context flags 9227 * 9228 * This function is called when a configured connection quality monitoring 9229 * rssi threshold reached event occurs. 9230 */ 9231 void cfg80211_cqm_rssi_notify(struct net_device *dev, 9232 enum nl80211_cqm_rssi_threshold_event rssi_event, 9233 s32 rssi_level, gfp_t gfp); 9234 9235 /** 9236 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer 9237 * @dev: network device 9238 * @peer: peer's MAC address 9239 * @num_packets: how many packets were lost -- should be a fixed threshold 9240 * but probably no less than maybe 50, or maybe a throughput dependent 9241 * threshold (to account for temporary interference) 9242 * @gfp: context flags 9243 */ 9244 void cfg80211_cqm_pktloss_notify(struct net_device *dev, 9245 const u8 *peer, u32 num_packets, gfp_t gfp); 9246 9247 /** 9248 * cfg80211_cqm_txe_notify - TX error rate event 9249 * @dev: network device 9250 * @peer: peer's MAC address 9251 * @num_packets: how many packets were lost 9252 * @rate: % of packets which failed transmission 9253 * @intvl: interval (in s) over which the TX failure threshold was breached. 9254 * @gfp: context flags 9255 * 9256 * Notify userspace when configured % TX failures over number of packets in a 9257 * given interval is exceeded. 9258 */ 9259 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, 9260 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp); 9261 9262 /** 9263 * cfg80211_cqm_beacon_loss_notify - beacon loss event 9264 * @dev: network device 9265 * @gfp: context flags 9266 * 9267 * Notify userspace about beacon loss from the connected AP. 9268 */ 9269 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp); 9270 9271 /** 9272 * __cfg80211_radar_event - radar detection event 9273 * @wiphy: the wiphy 9274 * @chandef: chandef for the current channel 9275 * @offchan: the radar has been detected on the offchannel chain 9276 * @gfp: context flags 9277 * 9278 * This function is called when a radar is detected on the current chanenl. 9279 */ 9280 void __cfg80211_radar_event(struct wiphy *wiphy, 9281 struct cfg80211_chan_def *chandef, 9282 bool offchan, gfp_t gfp); 9283 9284 static inline void 9285 cfg80211_radar_event(struct wiphy *wiphy, 9286 struct cfg80211_chan_def *chandef, 9287 gfp_t gfp) 9288 { 9289 __cfg80211_radar_event(wiphy, chandef, false, gfp); 9290 } 9291 9292 static inline void 9293 cfg80211_background_radar_event(struct wiphy *wiphy, 9294 struct cfg80211_chan_def *chandef, 9295 gfp_t gfp) 9296 { 9297 __cfg80211_radar_event(wiphy, chandef, true, gfp); 9298 } 9299 9300 /** 9301 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event 9302 * @dev: network device 9303 * @mac: MAC address of a station which opmode got modified 9304 * @sta_opmode: station's current opmode value 9305 * @gfp: context flags 9306 * 9307 * Driver should call this function when station's opmode modified via action 9308 * frame. 9309 */ 9310 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac, 9311 struct sta_opmode_info *sta_opmode, 9312 gfp_t gfp); 9313 9314 /** 9315 * cfg80211_cac_event - Channel availability check (CAC) event 9316 * @netdev: network device 9317 * @chandef: chandef for the current channel 9318 * @event: type of event 9319 * @gfp: context flags 9320 * @link_id: valid link_id for MLO operation or 0 otherwise. 9321 * 9322 * This function is called when a Channel availability check (CAC) is finished 9323 * or aborted. This must be called to notify the completion of a CAC process, 9324 * also by full-MAC drivers. 9325 */ 9326 void cfg80211_cac_event(struct net_device *netdev, 9327 const struct cfg80211_chan_def *chandef, 9328 enum nl80211_radar_event event, gfp_t gfp, 9329 unsigned int link_id); 9330 9331 /** 9332 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event 9333 * @wiphy: the wiphy 9334 * 9335 * This function is called by the driver when a Channel Availability Check 9336 * (CAC) is aborted by a offchannel dedicated chain. 9337 */ 9338 void cfg80211_background_cac_abort(struct wiphy *wiphy); 9339 9340 /** 9341 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying 9342 * @dev: network device 9343 * @bssid: BSSID of AP (to avoid races) 9344 * @replay_ctr: new replay counter 9345 * @gfp: allocation flags 9346 */ 9347 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, 9348 const u8 *replay_ctr, gfp_t gfp); 9349 9350 /** 9351 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate 9352 * @dev: network device 9353 * @index: candidate index (the smaller the index, the higher the priority) 9354 * @bssid: BSSID of AP 9355 * @preauth: Whether AP advertises support for RSN pre-authentication 9356 * @gfp: allocation flags 9357 */ 9358 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, 9359 const u8 *bssid, bool preauth, gfp_t gfp); 9360 9361 /** 9362 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame 9363 * @dev: The device the frame matched to 9364 * @link_id: the link the frame was received on, -1 if not applicable or unknown 9365 * @addr: the transmitter address 9366 * @gfp: context flags 9367 * 9368 * This function is used in AP mode (only!) to inform userspace that 9369 * a spurious class 3 frame was received, to be able to deauth the 9370 * sender. 9371 * Return: %true if the frame was passed to userspace (or this failed 9372 * for a reason other than not having a subscription.) 9373 */ 9374 bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr, 9375 int link_id, gfp_t gfp); 9376 9377 /** 9378 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame 9379 * @dev: The device the frame matched to 9380 * @addr: the transmitter address 9381 * @link_id: the link the frame was received on, -1 if not applicable or unknown 9382 * @gfp: context flags 9383 * 9384 * This function is used in AP mode (only!) to inform userspace that 9385 * an associated station sent a 4addr frame but that wasn't expected. 9386 * It is allowed and desirable to send this event only once for each 9387 * station to avoid event flooding. 9388 * Return: %true if the frame was passed to userspace (or this failed 9389 * for a reason other than not having a subscription.) 9390 */ 9391 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr, 9392 int link_id, gfp_t gfp); 9393 9394 /** 9395 * cfg80211_probe_status - notify userspace about probe status 9396 * @dev: the device the probe was sent on 9397 * @addr: the address of the peer 9398 * @cookie: the cookie filled in @probe_client previously 9399 * @acked: indicates whether probe was acked or not 9400 * @ack_signal: signal strength (in dBm) of the ACK frame. 9401 * @is_valid_ack_signal: indicates the ack_signal is valid or not. 9402 * @gfp: allocation flags 9403 */ 9404 void cfg80211_probe_status(struct net_device *dev, const u8 *addr, 9405 u64 cookie, bool acked, s32 ack_signal, 9406 bool is_valid_ack_signal, gfp_t gfp); 9407 9408 /** 9409 * cfg80211_report_obss_beacon_khz - report beacon from other APs 9410 * @wiphy: The wiphy that received the beacon 9411 * @frame: the frame 9412 * @len: length of the frame 9413 * @freq: frequency the frame was received on in KHz 9414 * @sig_dbm: signal strength in dBm, or 0 if unknown 9415 * 9416 * Use this function to report to userspace when a beacon was 9417 * received. It is not useful to call this when there is no 9418 * netdev that is in AP/GO mode. 9419 */ 9420 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame, 9421 size_t len, int freq, int sig_dbm); 9422 9423 /** 9424 * cfg80211_report_obss_beacon - report beacon from other APs 9425 * @wiphy: The wiphy that received the beacon 9426 * @frame: the frame 9427 * @len: length of the frame 9428 * @freq: frequency the frame was received on 9429 * @sig_dbm: signal strength in dBm, or 0 if unknown 9430 * 9431 * Use this function to report to userspace when a beacon was 9432 * received. It is not useful to call this when there is no 9433 * netdev that is in AP/GO mode. 9434 */ 9435 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy, 9436 const u8 *frame, size_t len, 9437 int freq, int sig_dbm) 9438 { 9439 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq), 9440 sig_dbm); 9441 } 9442 9443 /** 9444 * struct cfg80211_beaconing_check_config - beacon check configuration 9445 * @iftype: the interface type to check for 9446 * @relax: allow IR-relaxation conditions to apply (e.g. another 9447 * interface connected already on the same channel) 9448 * NOTE: If this is set, wiphy mutex must be held. 9449 * @reg_power: &enum ieee80211_ap_reg_power value indicating the 9450 * advertised/used 6 GHz regulatory power setting 9451 */ 9452 struct cfg80211_beaconing_check_config { 9453 enum nl80211_iftype iftype; 9454 enum ieee80211_ap_reg_power reg_power; 9455 bool relax; 9456 }; 9457 9458 /** 9459 * cfg80211_reg_check_beaconing - check if beaconing is allowed 9460 * @wiphy: the wiphy 9461 * @chandef: the channel definition 9462 * @cfg: additional parameters for the checking 9463 * 9464 * Return: %true if there is no secondary channel or the secondary channel(s) 9465 * can be used for beaconing (i.e. is not a radar channel etc.) 9466 */ 9467 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy, 9468 struct cfg80211_chan_def *chandef, 9469 struct cfg80211_beaconing_check_config *cfg); 9470 9471 /** 9472 * cfg80211_reg_can_beacon - check if beaconing is allowed 9473 * @wiphy: the wiphy 9474 * @chandef: the channel definition 9475 * @iftype: interface type 9476 * 9477 * Return: %true if there is no secondary channel or the secondary channel(s) 9478 * can be used for beaconing (i.e. is not a radar channel etc.) 9479 */ 9480 static inline bool 9481 cfg80211_reg_can_beacon(struct wiphy *wiphy, 9482 struct cfg80211_chan_def *chandef, 9483 enum nl80211_iftype iftype) 9484 { 9485 struct cfg80211_beaconing_check_config config = { 9486 .iftype = iftype, 9487 }; 9488 9489 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 9490 } 9491 9492 /** 9493 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation 9494 * @wiphy: the wiphy 9495 * @chandef: the channel definition 9496 * @iftype: interface type 9497 * 9498 * Return: %true if there is no secondary channel or the secondary channel(s) 9499 * can be used for beaconing (i.e. is not a radar channel etc.). This version 9500 * also checks if IR-relaxation conditions apply, to allow beaconing under 9501 * more permissive conditions. 9502 * 9503 * Context: Requires the wiphy mutex to be held. 9504 */ 9505 static inline bool 9506 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 9507 struct cfg80211_chan_def *chandef, 9508 enum nl80211_iftype iftype) 9509 { 9510 struct cfg80211_beaconing_check_config config = { 9511 .iftype = iftype, 9512 .relax = true, 9513 }; 9514 9515 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 9516 } 9517 9518 /** 9519 * cfg80211_ch_switch_notify - update wdev channel and notify userspace 9520 * @dev: the device which switched channels 9521 * @chandef: the new channel definition 9522 * @link_id: the link ID for MLO, must be 0 for non-MLO 9523 * 9524 * Caller must hold wiphy mutex, therefore must only be called from sleepable 9525 * driver context! 9526 */ 9527 void cfg80211_ch_switch_notify(struct net_device *dev, 9528 struct cfg80211_chan_def *chandef, 9529 unsigned int link_id); 9530 9531 /** 9532 * cfg80211_ch_switch_started_notify - notify channel switch start 9533 * @dev: the device on which the channel switch started 9534 * @chandef: the future channel definition 9535 * @link_id: the link ID for MLO, must be 0 for non-MLO 9536 * @count: the number of TBTTs until the channel switch happens 9537 * @quiet: whether or not immediate quiet was requested by the AP 9538 * 9539 * Inform the userspace about the channel switch that has just 9540 * started, so that it can take appropriate actions (eg. starting 9541 * channel switch on other vifs), if necessary. 9542 */ 9543 void cfg80211_ch_switch_started_notify(struct net_device *dev, 9544 struct cfg80211_chan_def *chandef, 9545 unsigned int link_id, u8 count, 9546 bool quiet); 9547 9548 /** 9549 * ieee80211_operating_class_to_band - convert operating class to band 9550 * 9551 * @operating_class: the operating class to convert 9552 * @band: band pointer to fill 9553 * 9554 * Return: %true if the conversion was successful, %false otherwise. 9555 */ 9556 bool ieee80211_operating_class_to_band(u8 operating_class, 9557 enum nl80211_band *band); 9558 9559 /** 9560 * ieee80211_operating_class_to_chandef - convert operating class to chandef 9561 * 9562 * @operating_class: the operating class to convert 9563 * @chan: the ieee80211_channel to convert 9564 * @chandef: a pointer to the resulting chandef 9565 * 9566 * Return: %true if the conversion was successful, %false otherwise. 9567 */ 9568 bool ieee80211_operating_class_to_chandef(u8 operating_class, 9569 struct ieee80211_channel *chan, 9570 struct cfg80211_chan_def *chandef); 9571 9572 /** 9573 * ieee80211_chandef_to_operating_class - convert chandef to operation class 9574 * 9575 * @chandef: the chandef to convert 9576 * @op_class: a pointer to the resulting operating class 9577 * 9578 * Return: %true if the conversion was successful, %false otherwise. 9579 */ 9580 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 9581 u8 *op_class); 9582 9583 /** 9584 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz 9585 * 9586 * @chandef: the chandef to convert 9587 * 9588 * Return: the center frequency of chandef (1st segment) in KHz. 9589 */ 9590 static inline u32 9591 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef) 9592 { 9593 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset; 9594 } 9595 9596 /** 9597 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation 9598 * @dev: the device on which the operation is requested 9599 * @peer: the MAC address of the peer device 9600 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or 9601 * NL80211_TDLS_TEARDOWN) 9602 * @reason_code: the reason code for teardown request 9603 * @gfp: allocation flags 9604 * 9605 * This function is used to request userspace to perform TDLS operation that 9606 * requires knowledge of keys, i.e., link setup or teardown when the AP 9607 * connection uses encryption. This is optional mechanism for the driver to use 9608 * if it can automatically determine when a TDLS link could be useful (e.g., 9609 * based on traffic and signal strength for a peer). 9610 */ 9611 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, 9612 enum nl80211_tdls_operation oper, 9613 u16 reason_code, gfp_t gfp); 9614 9615 /** 9616 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units) 9617 * @rate: given rate_info to calculate bitrate from 9618 * 9619 * Return: calculated bitrate 9620 */ 9621 u32 cfg80211_calculate_bitrate(struct rate_info *rate); 9622 9623 /** 9624 * cfg80211_unregister_wdev - remove the given wdev 9625 * @wdev: struct wireless_dev to remove 9626 * 9627 * This function removes the device so it can no longer be used. It is necessary 9628 * to call this function even when cfg80211 requests the removal of the device 9629 * by calling the del_virtual_intf() callback. The function must also be called 9630 * when the driver wishes to unregister the wdev, e.g. when the hardware device 9631 * is unbound from the driver. 9632 * 9633 * Context: Requires the RTNL and wiphy mutex to be held. 9634 */ 9635 void cfg80211_unregister_wdev(struct wireless_dev *wdev); 9636 9637 /** 9638 * cfg80211_register_netdevice - register the given netdev 9639 * @dev: the netdev to register 9640 * 9641 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9642 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is 9643 * held. Otherwise, both register_netdevice() and register_netdev() are usable 9644 * instead as well. 9645 * 9646 * Context: Requires the RTNL and wiphy mutex to be held. 9647 * 9648 * Return: 0 on success. Non-zero on error. 9649 */ 9650 int cfg80211_register_netdevice(struct net_device *dev); 9651 9652 /** 9653 * cfg80211_unregister_netdevice - unregister the given netdev 9654 * @dev: the netdev to register 9655 * 9656 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9657 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL 9658 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are 9659 * usable instead as well. 9660 * 9661 * Context: Requires the RTNL and wiphy mutex to be held. 9662 */ 9663 static inline void cfg80211_unregister_netdevice(struct net_device *dev) 9664 { 9665 #if IS_ENABLED(CONFIG_CFG80211) 9666 cfg80211_unregister_wdev(dev->ieee80211_ptr); 9667 #endif 9668 } 9669 9670 /** 9671 * struct cfg80211_ft_event_params - FT Information Elements 9672 * @ies: FT IEs 9673 * @ies_len: length of the FT IE in bytes 9674 * @target_ap: target AP's MAC address 9675 * @ric_ies: RIC IE 9676 * @ric_ies_len: length of the RIC IE in bytes 9677 */ 9678 struct cfg80211_ft_event_params { 9679 const u8 *ies; 9680 size_t ies_len; 9681 const u8 *target_ap; 9682 const u8 *ric_ies; 9683 size_t ric_ies_len; 9684 }; 9685 9686 /** 9687 * cfg80211_ft_event - notify userspace about FT IE and RIC IE 9688 * @netdev: network device 9689 * @ft_event: IE information 9690 */ 9691 void cfg80211_ft_event(struct net_device *netdev, 9692 struct cfg80211_ft_event_params *ft_event); 9693 9694 /** 9695 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer 9696 * @ies: the input IE buffer 9697 * @len: the input length 9698 * @attr: the attribute ID to find 9699 * @buf: output buffer, can be %NULL if the data isn't needed, e.g. 9700 * if the function is only called to get the needed buffer size 9701 * @bufsize: size of the output buffer 9702 * 9703 * The function finds a given P2P attribute in the (vendor) IEs and 9704 * copies its contents to the given buffer. 9705 * 9706 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is 9707 * malformed or the attribute can't be found (respectively), or the 9708 * length of the found attribute (which can be zero). 9709 */ 9710 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 9711 enum ieee80211_p2p_attr_id attr, 9712 u8 *buf, unsigned int bufsize); 9713 9714 /** 9715 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC) 9716 * @ies: the IE buffer 9717 * @ielen: the length of the IE buffer 9718 * @ids: an array with element IDs that are allowed before 9719 * the split. A WLAN_EID_EXTENSION value means that the next 9720 * EID in the list is a sub-element of the EXTENSION IE. 9721 * @n_ids: the size of the element ID array 9722 * @after_ric: array IE types that come after the RIC element 9723 * @n_after_ric: size of the @after_ric array 9724 * @offset: offset where to start splitting in the buffer 9725 * 9726 * This function splits an IE buffer by updating the @offset 9727 * variable to point to the location where the buffer should be 9728 * split. 9729 * 9730 * It assumes that the given IE buffer is well-formed, this 9731 * has to be guaranteed by the caller! 9732 * 9733 * It also assumes that the IEs in the buffer are ordered 9734 * correctly, if not the result of using this function will not 9735 * be ordered correctly either, i.e. it does no reordering. 9736 * 9737 * Return: The offset where the next part of the buffer starts, which 9738 * may be @ielen if the entire (remainder) of the buffer should be 9739 * used. 9740 */ 9741 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 9742 const u8 *ids, int n_ids, 9743 const u8 *after_ric, int n_after_ric, 9744 size_t offset); 9745 9746 /** 9747 * ieee80211_ie_split - split an IE buffer according to ordering 9748 * @ies: the IE buffer 9749 * @ielen: the length of the IE buffer 9750 * @ids: an array with element IDs that are allowed before 9751 * the split. A WLAN_EID_EXTENSION value means that the next 9752 * EID in the list is a sub-element of the EXTENSION IE. 9753 * @n_ids: the size of the element ID array 9754 * @offset: offset where to start splitting in the buffer 9755 * 9756 * This function splits an IE buffer by updating the @offset 9757 * variable to point to the location where the buffer should be 9758 * split. 9759 * 9760 * It assumes that the given IE buffer is well-formed, this 9761 * has to be guaranteed by the caller! 9762 * 9763 * It also assumes that the IEs in the buffer are ordered 9764 * correctly, if not the result of using this function will not 9765 * be ordered correctly either, i.e. it does no reordering. 9766 * 9767 * Return: The offset where the next part of the buffer starts, which 9768 * may be @ielen if the entire (remainder) of the buffer should be 9769 * used. 9770 */ 9771 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen, 9772 const u8 *ids, int n_ids, size_t offset) 9773 { 9774 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset); 9775 } 9776 9777 /** 9778 * ieee80211_fragment_element - fragment the last element in skb 9779 * @skb: The skbuf that the element was added to 9780 * @len_pos: Pointer to length of the element to fragment 9781 * @frag_id: The element ID to use for fragments 9782 * 9783 * This function fragments all data after @len_pos, adding fragmentation 9784 * elements with the given ID as appropriate. The SKB will grow in size 9785 * accordingly. 9786 */ 9787 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id); 9788 9789 /** 9790 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN 9791 * @wdev: the wireless device reporting the wakeup 9792 * @wakeup: the wakeup report 9793 * @gfp: allocation flags 9794 * 9795 * This function reports that the given device woke up. If it 9796 * caused the wakeup, report the reason(s), otherwise you may 9797 * pass %NULL as the @wakeup parameter to advertise that something 9798 * else caused the wakeup. 9799 */ 9800 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, 9801 struct cfg80211_wowlan_wakeup *wakeup, 9802 gfp_t gfp); 9803 9804 /** 9805 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver. 9806 * 9807 * @wdev: the wireless device for which critical protocol is stopped. 9808 * @gfp: allocation flags 9809 * 9810 * This function can be called by the driver to indicate it has reverted 9811 * operation back to normal. One reason could be that the duration given 9812 * by .crit_proto_start() has expired. 9813 */ 9814 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp); 9815 9816 /** 9817 * ieee80211_get_num_supported_channels - get number of channels device has 9818 * @wiphy: the wiphy 9819 * 9820 * Return: the number of channels supported by the device. 9821 */ 9822 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy); 9823 9824 /** 9825 * cfg80211_check_combinations - check interface combinations 9826 * 9827 * @wiphy: the wiphy 9828 * @params: the interface combinations parameter 9829 * 9830 * This function can be called by the driver to check whether a 9831 * combination of interfaces and their types are allowed according to 9832 * the interface combinations. 9833 * 9834 * Return: 0 if combinations are allowed. Non-zero on error. 9835 */ 9836 int cfg80211_check_combinations(struct wiphy *wiphy, 9837 struct iface_combination_params *params); 9838 9839 /** 9840 * cfg80211_iter_combinations - iterate over matching combinations 9841 * 9842 * @wiphy: the wiphy 9843 * @params: the interface combinations parameter 9844 * @iter: function to call for each matching combination 9845 * @data: pointer to pass to iter function 9846 * 9847 * This function can be called by the driver to check what possible 9848 * combinations it fits in at a given moment, e.g. for channel switching 9849 * purposes. 9850 * 9851 * Return: 0 on success. Non-zero on error. 9852 */ 9853 int cfg80211_iter_combinations(struct wiphy *wiphy, 9854 struct iface_combination_params *params, 9855 void (*iter)(const struct ieee80211_iface_combination *c, 9856 void *data), 9857 void *data); 9858 /** 9859 * cfg80211_get_radio_idx_by_chan - get the radio index by the channel 9860 * 9861 * @wiphy: the wiphy 9862 * @chan: channel for which the supported radio index is required 9863 * 9864 * Return: radio index on success or -EINVAL otherwise 9865 */ 9866 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy, 9867 const struct ieee80211_channel *chan); 9868 9869 /** 9870 * cfg80211_stop_link - stop AP/P2P_GO link if link_id is non-negative or stops 9871 * all links on the interface. 9872 * 9873 * @wiphy: the wiphy 9874 * @wdev: wireless device 9875 * @link_id: valid link ID in case of MLO AP/P2P_GO Operation or else -1 9876 * @gfp: context flags 9877 * 9878 * If link_id is set during MLO operation, stops only the specified AP/P2P_GO 9879 * link and if link_id is set to -1 or last link is stopped, the entire 9880 * interface is stopped as if AP was stopped, IBSS/mesh left, STA disconnected. 9881 */ 9882 void cfg80211_stop_link(struct wiphy *wiphy, struct wireless_dev *wdev, 9883 int link_id, gfp_t gfp); 9884 9885 /** 9886 * cfg80211_stop_iface - trigger interface disconnection 9887 * 9888 * @wiphy: the wiphy 9889 * @wdev: wireless device 9890 * @gfp: context flags 9891 * 9892 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA 9893 * disconnected. 9894 * 9895 * Note: This doesn't need any locks and is asynchronous. 9896 */ 9897 static inline void 9898 cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev, gfp_t gfp) 9899 { 9900 cfg80211_stop_link(wiphy, wdev, -1, gfp); 9901 } 9902 9903 /** 9904 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy 9905 * @wiphy: the wiphy to shut down 9906 * 9907 * This function shuts down all interfaces belonging to this wiphy by 9908 * calling dev_close() (and treating non-netdev interfaces as needed). 9909 * It shouldn't really be used unless there are some fatal device errors 9910 * that really can't be recovered in any other way. 9911 * 9912 * Callers must hold the RTNL and be able to deal with callbacks into 9913 * the driver while the function is running. 9914 */ 9915 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy); 9916 9917 /** 9918 * wiphy_ext_feature_set - set the extended feature flag 9919 * 9920 * @wiphy: the wiphy to modify. 9921 * @ftidx: extended feature bit index. 9922 * 9923 * The extended features are flagged in multiple bytes (see 9924 * &struct wiphy.@ext_features) 9925 */ 9926 static inline void wiphy_ext_feature_set(struct wiphy *wiphy, 9927 enum nl80211_ext_feature_index ftidx) 9928 { 9929 u8 *ft_byte; 9930 9931 ft_byte = &wiphy->ext_features[ftidx / 8]; 9932 *ft_byte |= BIT(ftidx % 8); 9933 } 9934 9935 /** 9936 * wiphy_ext_feature_isset - check the extended feature flag 9937 * 9938 * @wiphy: the wiphy to modify. 9939 * @ftidx: extended feature bit index. 9940 * 9941 * The extended features are flagged in multiple bytes (see 9942 * &struct wiphy.@ext_features) 9943 * 9944 * Return: %true if extended feature flag is set, %false otherwise 9945 */ 9946 static inline bool 9947 wiphy_ext_feature_isset(struct wiphy *wiphy, 9948 enum nl80211_ext_feature_index ftidx) 9949 { 9950 u8 ft_byte; 9951 9952 ft_byte = wiphy->ext_features[ftidx / 8]; 9953 return (ft_byte & BIT(ftidx % 8)) != 0; 9954 } 9955 9956 /** 9957 * cfg80211_free_nan_func - free NAN function 9958 * @f: NAN function that should be freed 9959 * 9960 * Frees all the NAN function and all it's allocated members. 9961 */ 9962 void cfg80211_free_nan_func(struct cfg80211_nan_func *f); 9963 9964 /** 9965 * struct cfg80211_nan_match_params - NAN match parameters 9966 * @type: the type of the function that triggered a match. If it is 9967 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber. 9968 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery 9969 * result. 9970 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up. 9971 * @inst_id: the local instance id 9972 * @peer_inst_id: the instance id of the peer's function 9973 * @addr: the MAC address of the peer 9974 * @info_len: the length of the &info 9975 * @info: the Service Specific Info from the peer (if any) 9976 * @cookie: unique identifier of the corresponding function 9977 */ 9978 struct cfg80211_nan_match_params { 9979 enum nl80211_nan_function_type type; 9980 u8 inst_id; 9981 u8 peer_inst_id; 9982 const u8 *addr; 9983 u8 info_len; 9984 const u8 *info; 9985 u64 cookie; 9986 }; 9987 9988 /** 9989 * cfg80211_nan_match - report a match for a NAN function. 9990 * @wdev: the wireless device reporting the match 9991 * @match: match notification parameters 9992 * @gfp: allocation flags 9993 * 9994 * This function reports that the a NAN function had a match. This 9995 * can be a subscribe that had a match or a solicited publish that 9996 * was sent. It can also be a follow up that was received. 9997 */ 9998 void cfg80211_nan_match(struct wireless_dev *wdev, 9999 struct cfg80211_nan_match_params *match, gfp_t gfp); 10000 10001 /** 10002 * cfg80211_nan_func_terminated - notify about NAN function termination. 10003 * 10004 * @wdev: the wireless device reporting the match 10005 * @inst_id: the local instance id 10006 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*) 10007 * @cookie: unique NAN function identifier 10008 * @gfp: allocation flags 10009 * 10010 * This function reports that the a NAN function is terminated. 10011 */ 10012 void cfg80211_nan_func_terminated(struct wireless_dev *wdev, 10013 u8 inst_id, 10014 enum nl80211_nan_func_term_reason reason, 10015 u64 cookie, gfp_t gfp); 10016 10017 /* ethtool helper */ 10018 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info); 10019 10020 /** 10021 * cfg80211_external_auth_request - userspace request for authentication 10022 * @netdev: network device 10023 * @params: External authentication parameters 10024 * @gfp: allocation flags 10025 * Returns: 0 on success, < 0 on error 10026 */ 10027 int cfg80211_external_auth_request(struct net_device *netdev, 10028 struct cfg80211_external_auth_params *params, 10029 gfp_t gfp); 10030 10031 /** 10032 * cfg80211_pmsr_report - report peer measurement result data 10033 * @wdev: the wireless device reporting the measurement 10034 * @req: the original measurement request 10035 * @result: the result data 10036 * @gfp: allocation flags 10037 */ 10038 void cfg80211_pmsr_report(struct wireless_dev *wdev, 10039 struct cfg80211_pmsr_request *req, 10040 struct cfg80211_pmsr_result *result, 10041 gfp_t gfp); 10042 10043 /** 10044 * cfg80211_pmsr_complete - report peer measurement completed 10045 * @wdev: the wireless device reporting the measurement 10046 * @req: the original measurement request 10047 * @gfp: allocation flags 10048 * 10049 * Report that the entire measurement completed, after this 10050 * the request pointer will no longer be valid. 10051 */ 10052 void cfg80211_pmsr_complete(struct wireless_dev *wdev, 10053 struct cfg80211_pmsr_request *req, 10054 gfp_t gfp); 10055 10056 /** 10057 * cfg80211_iftype_allowed - check whether the interface can be allowed 10058 * @wiphy: the wiphy 10059 * @iftype: interface type 10060 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1' 10061 * @check_swif: check iftype against software interfaces 10062 * 10063 * Check whether the interface is allowed to operate; additionally, this API 10064 * can be used to check iftype against the software interfaces when 10065 * check_swif is '1'. 10066 * 10067 * Return: %true if allowed, %false otherwise 10068 */ 10069 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 10070 bool is_4addr, u8 check_swif); 10071 10072 10073 /** 10074 * cfg80211_assoc_comeback - notification of association that was 10075 * temporarily rejected with a comeback 10076 * @netdev: network device 10077 * @ap_addr: AP (MLD) address that rejected the association 10078 * @timeout: timeout interval value TUs. 10079 * 10080 * this function may sleep. the caller must hold the corresponding wdev's mutex. 10081 */ 10082 void cfg80211_assoc_comeback(struct net_device *netdev, 10083 const u8 *ap_addr, u32 timeout); 10084 10085 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 10086 10087 /* wiphy_printk helpers, similar to dev_printk */ 10088 10089 #define wiphy_printk(level, wiphy, format, args...) \ 10090 dev_printk(level, &(wiphy)->dev, format, ##args) 10091 #define wiphy_emerg(wiphy, format, args...) \ 10092 dev_emerg(&(wiphy)->dev, format, ##args) 10093 #define wiphy_alert(wiphy, format, args...) \ 10094 dev_alert(&(wiphy)->dev, format, ##args) 10095 #define wiphy_crit(wiphy, format, args...) \ 10096 dev_crit(&(wiphy)->dev, format, ##args) 10097 #define wiphy_err(wiphy, format, args...) \ 10098 dev_err(&(wiphy)->dev, format, ##args) 10099 #define wiphy_warn(wiphy, format, args...) \ 10100 dev_warn(&(wiphy)->dev, format, ##args) 10101 #define wiphy_notice(wiphy, format, args...) \ 10102 dev_notice(&(wiphy)->dev, format, ##args) 10103 #define wiphy_info(wiphy, format, args...) \ 10104 dev_info(&(wiphy)->dev, format, ##args) 10105 #define wiphy_info_once(wiphy, format, args...) \ 10106 dev_info_once(&(wiphy)->dev, format, ##args) 10107 10108 #define wiphy_err_ratelimited(wiphy, format, args...) \ 10109 dev_err_ratelimited(&(wiphy)->dev, format, ##args) 10110 #define wiphy_warn_ratelimited(wiphy, format, args...) \ 10111 dev_warn_ratelimited(&(wiphy)->dev, format, ##args) 10112 10113 #define wiphy_debug(wiphy, format, args...) \ 10114 wiphy_printk(KERN_DEBUG, wiphy, format, ##args) 10115 10116 #define wiphy_dbg(wiphy, format, args...) \ 10117 dev_dbg(&(wiphy)->dev, format, ##args) 10118 10119 #if defined(VERBOSE_DEBUG) 10120 #define wiphy_vdbg wiphy_dbg 10121 #else 10122 #define wiphy_vdbg(wiphy, format, args...) \ 10123 ({ \ 10124 if (0) \ 10125 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 10126 0; \ 10127 }) 10128 #endif 10129 10130 /* 10131 * wiphy_WARN() acts like wiphy_printk(), but with the key difference 10132 * of using a WARN/WARN_ON to get the message out, including the 10133 * file/line information and a backtrace. 10134 */ 10135 #define wiphy_WARN(wiphy, format, args...) \ 10136 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); 10137 10138 /** 10139 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space 10140 * @netdev: network device 10141 * @owe_info: peer's owe info 10142 * @gfp: allocation flags 10143 */ 10144 void cfg80211_update_owe_info_event(struct net_device *netdev, 10145 struct cfg80211_update_owe_info *owe_info, 10146 gfp_t gfp); 10147 10148 /** 10149 * cfg80211_bss_flush - resets all the scan entries 10150 * @wiphy: the wiphy 10151 */ 10152 void cfg80211_bss_flush(struct wiphy *wiphy); 10153 10154 /** 10155 * cfg80211_bss_color_notify - notify about bss color event 10156 * @dev: network device 10157 * @cmd: the actual event we want to notify 10158 * @count: the number of TBTTs until the color change happens 10159 * @color_bitmap: representations of the colors that the local BSS is aware of 10160 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 10161 * 10162 * Return: 0 on success. Non-zero on error. 10163 */ 10164 int cfg80211_bss_color_notify(struct net_device *dev, 10165 enum nl80211_commands cmd, u8 count, 10166 u64 color_bitmap, u8 link_id); 10167 10168 /** 10169 * cfg80211_obss_color_collision_notify - notify about bss color collision 10170 * @dev: network device 10171 * @color_bitmap: representations of the colors that the local BSS is aware of 10172 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 10173 * 10174 * Return: 0 on success. Non-zero on error. 10175 */ 10176 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev, 10177 u64 color_bitmap, 10178 u8 link_id) 10179 { 10180 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION, 10181 0, color_bitmap, link_id); 10182 } 10183 10184 /** 10185 * cfg80211_color_change_started_notify - notify color change start 10186 * @dev: the device on which the color is switched 10187 * @count: the number of TBTTs until the color change happens 10188 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 10189 * 10190 * Inform the userspace about the color change that has started. 10191 * 10192 * Return: 0 on success. Non-zero on error. 10193 */ 10194 static inline int cfg80211_color_change_started_notify(struct net_device *dev, 10195 u8 count, u8 link_id) 10196 { 10197 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED, 10198 count, 0, link_id); 10199 } 10200 10201 /** 10202 * cfg80211_color_change_aborted_notify - notify color change abort 10203 * @dev: the device on which the color is switched 10204 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 10205 * 10206 * Inform the userspace about the color change that has aborted. 10207 * 10208 * Return: 0 on success. Non-zero on error. 10209 */ 10210 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev, 10211 u8 link_id) 10212 { 10213 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED, 10214 0, 0, link_id); 10215 } 10216 10217 /** 10218 * cfg80211_color_change_notify - notify color change completion 10219 * @dev: the device on which the color was switched 10220 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 10221 * 10222 * Inform the userspace about the color change that has completed. 10223 * 10224 * Return: 0 on success. Non-zero on error. 10225 */ 10226 static inline int cfg80211_color_change_notify(struct net_device *dev, 10227 u8 link_id) 10228 { 10229 return cfg80211_bss_color_notify(dev, 10230 NL80211_CMD_COLOR_CHANGE_COMPLETED, 10231 0, 0, link_id); 10232 } 10233 10234 /** 10235 * cfg80211_6ghz_power_type - determine AP regulatory power type 10236 * @control: control flags 10237 * @client_flags: &enum ieee80211_channel_flags for station mode to enable 10238 * SP to LPI fallback, zero otherwise. 10239 * 10240 * Return: regulatory power type from &enum ieee80211_ap_reg_power 10241 */ 10242 static inline enum ieee80211_ap_reg_power 10243 cfg80211_6ghz_power_type(u8 control, u32 client_flags) 10244 { 10245 switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 10246 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 10247 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: 10248 case IEEE80211_6GHZ_CTRL_REG_AP_ROLE_NOT_RELEVANT: 10249 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD: 10250 return IEEE80211_REG_LPI_AP; 10251 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 10252 return IEEE80211_REG_SP_AP; 10253 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 10254 return IEEE80211_REG_VLP_AP; 10255 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: 10256 if (client_flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT) 10257 return IEEE80211_REG_LPI_AP; 10258 return IEEE80211_REG_SP_AP; 10259 default: 10260 return IEEE80211_REG_UNSET_AP; 10261 } 10262 } 10263 10264 /** 10265 * cfg80211_links_removed - Notify about removed STA MLD setup links. 10266 * @dev: network device. 10267 * @link_mask: BIT mask of removed STA MLD setup link IDs. 10268 * 10269 * Inform cfg80211 and the userspace about removed STA MLD setup links due to 10270 * AP MLD removing the corresponding affiliated APs with Multi-Link 10271 * reconfiguration. Note that it's not valid to remove all links, in this 10272 * case disconnect instead. 10273 * Also note that the wdev mutex must be held. 10274 */ 10275 void cfg80211_links_removed(struct net_device *dev, u16 link_mask); 10276 10277 /** 10278 * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data 10279 * @buf: MLO Reconfiguration Response frame (header + body) 10280 * @len: length of the frame data 10281 * @driver_initiated: Indicates whether the add links request is initiated by 10282 * driver. This is set to true when the link reconfiguration request 10283 * initiated by driver due to AP link recommendation requests 10284 * (Ex: BTM (BSS Transition Management) request) handling offloaded to 10285 * driver. 10286 * @added_links: BIT mask of links successfully added to the association 10287 * @links: per-link information indexed by link ID 10288 * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of 10289 * the pointer moves to cfg80211 in the call to 10290 * cfg80211_mlo_reconf_add_done(). 10291 * 10292 * The BSS pointer must be set for each link for which 'add' operation was 10293 * requested in the assoc_ml_reconf callback. 10294 */ 10295 struct cfg80211_mlo_reconf_done_data { 10296 const u8 *buf; 10297 size_t len; 10298 bool driver_initiated; 10299 u16 added_links; 10300 struct { 10301 struct cfg80211_bss *bss; 10302 u8 *addr; 10303 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 10304 }; 10305 10306 /** 10307 * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result 10308 * @dev: network device. 10309 * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data 10310 * 10311 * Inform cfg80211 and the userspace that processing of ML reconfiguration 10312 * request to add links to the association is done. 10313 */ 10314 void cfg80211_mlo_reconf_add_done(struct net_device *dev, 10315 struct cfg80211_mlo_reconf_done_data *data); 10316 10317 /** 10318 * cfg80211_schedule_channels_check - schedule regulatory check if needed 10319 * @wdev: the wireless device to check 10320 * 10321 * In case the device supports NO_IR or DFS relaxations, schedule regulatory 10322 * channels check, as previous concurrent operation conditions may not 10323 * hold anymore. 10324 */ 10325 void cfg80211_schedule_channels_check(struct wireless_dev *wdev); 10326 10327 /** 10328 * cfg80211_epcs_changed - Notify about a change in EPCS state 10329 * @netdev: the wireless device whose EPCS state changed 10330 * @enabled: set to true if EPCS was enabled, otherwise set to false. 10331 */ 10332 void cfg80211_epcs_changed(struct net_device *netdev, bool enabled); 10333 10334 /** 10335 * cfg80211_next_nan_dw_notif - Notify about the next NAN Discovery Window (DW) 10336 * @wdev: Pointer to the wireless device structure 10337 * @chan: DW channel (6, 44 or 149) 10338 * @gfp: Memory allocation flags 10339 */ 10340 void cfg80211_next_nan_dw_notif(struct wireless_dev *wdev, 10341 struct ieee80211_channel *chan, gfp_t gfp); 10342 10343 /** 10344 * cfg80211_nan_cluster_joined - Notify about NAN cluster join 10345 * @wdev: Pointer to the wireless device structure 10346 * @cluster_id: Cluster ID of the NAN cluster that was joined or started 10347 * @new_cluster: Indicates if this is a new cluster or an existing one 10348 * @gfp: Memory allocation flags 10349 * 10350 * This function is used to notify user space when a NAN cluster has been 10351 * joined, providing the cluster ID and a flag whether it is a new cluster. 10352 */ 10353 void cfg80211_nan_cluster_joined(struct wireless_dev *wdev, 10354 const u8 *cluster_id, bool new_cluster, 10355 gfp_t gfp); 10356 10357 #ifdef CONFIG_CFG80211_DEBUGFS 10358 /** 10359 * wiphy_locked_debugfs_read - do a locked read in debugfs 10360 * @wiphy: the wiphy to use 10361 * @file: the file being read 10362 * @buf: the buffer to fill and then read from 10363 * @bufsize: size of the buffer 10364 * @userbuf: the user buffer to copy to 10365 * @count: read count 10366 * @ppos: read position 10367 * @handler: the read handler to call (under wiphy lock) 10368 * @data: additional data to pass to the read handler 10369 * 10370 * Return: the number of characters read, or a negative errno 10371 */ 10372 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file, 10373 char *buf, size_t bufsize, 10374 char __user *userbuf, size_t count, 10375 loff_t *ppos, 10376 ssize_t (*handler)(struct wiphy *wiphy, 10377 struct file *file, 10378 char *buf, 10379 size_t bufsize, 10380 void *data), 10381 void *data); 10382 10383 /** 10384 * wiphy_locked_debugfs_write - do a locked write in debugfs 10385 * @wiphy: the wiphy to use 10386 * @file: the file being written to 10387 * @buf: the buffer to copy the user data to 10388 * @bufsize: size of the buffer 10389 * @userbuf: the user buffer to copy from 10390 * @count: read count 10391 * @handler: the write handler to call (under wiphy lock) 10392 * @data: additional data to pass to the write handler 10393 * 10394 * Return: the number of characters written, or a negative errno 10395 */ 10396 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file, 10397 char *buf, size_t bufsize, 10398 const char __user *userbuf, size_t count, 10399 ssize_t (*handler)(struct wiphy *wiphy, 10400 struct file *file, 10401 char *buf, 10402 size_t count, 10403 void *data), 10404 void *data); 10405 #endif 10406 10407 /** 10408 * cfg80211_s1g_get_start_freq_khz - get S1G chandef start frequency 10409 * @chandef: the chandef to use 10410 * 10411 * Return: the chandefs starting frequency in KHz 10412 */ 10413 static inline u32 10414 cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def *chandef) 10415 { 10416 u32 bw_mhz = cfg80211_chandef_get_width(chandef); 10417 u32 center_khz = 10418 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset; 10419 return center_khz - bw_mhz * 500 + 500; 10420 } 10421 10422 /** 10423 * cfg80211_s1g_get_end_freq_khz - get S1G chandef end frequency 10424 * @chandef: the chandef to use 10425 * 10426 * Return: the chandefs ending frequency in KHz 10427 */ 10428 static inline u32 10429 cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def *chandef) 10430 { 10431 u32 bw_mhz = cfg80211_chandef_get_width(chandef); 10432 u32 center_khz = 10433 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset; 10434 return center_khz + bw_mhz * 500 - 500; 10435 } 10436 10437 /** 10438 * cfg80211_s1g_get_primary_sibling - retrieve the sibling 1MHz subchannel 10439 * for an S1G chandef using a 2MHz primary channel. 10440 * @wiphy: wiphy the channel belongs to 10441 * @chandef: the chandef to use 10442 * 10443 * When chandef::s1g_primary_2mhz is set to true, we are operating on a 2MHz 10444 * primary channel. The 1MHz subchannel designated by the primary channel 10445 * location exists within chandef::chan, whilst the 'sibling' is denoted as 10446 * being the other 1MHz subchannel that make up the 2MHz primary channel. 10447 * 10448 * Returns: the sibling 1MHz &struct ieee80211_channel, or %NULL on failure. 10449 */ 10450 static inline struct ieee80211_channel * 10451 cfg80211_s1g_get_primary_sibling(struct wiphy *wiphy, 10452 const struct cfg80211_chan_def *chandef) 10453 { 10454 int width_mhz = cfg80211_chandef_get_width(chandef); 10455 u32 pri_1mhz_khz, sibling_1mhz_khz, op_low_1mhz_khz, pri_index; 10456 10457 if (!chandef->s1g_primary_2mhz || width_mhz < 2) 10458 return NULL; 10459 10460 pri_1mhz_khz = ieee80211_channel_to_khz(chandef->chan); 10461 op_low_1mhz_khz = cfg80211_s1g_get_start_freq_khz(chandef); 10462 10463 /* 10464 * Compute the index of the primary 1 MHz subchannel within the 10465 * operating channel, relative to the lowest 1 MHz center frequency. 10466 * Flip the least significant bit to select the even/odd sibling, 10467 * then translate that index back into a channel frequency. 10468 */ 10469 pri_index = (pri_1mhz_khz - op_low_1mhz_khz) / 1000; 10470 sibling_1mhz_khz = op_low_1mhz_khz + ((pri_index ^ 1) * 1000); 10471 10472 return ieee80211_get_channel_khz(wiphy, sibling_1mhz_khz); 10473 } 10474 10475 #endif /* __NET_CFG80211_H */ 10476