1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64
65 #include "dc_dmub_srv.h"
66
67 #include "dsc.h"
68
69 #include "vm_helper.h"
70
71 #include "dce/dce_i2c.h"
72
73 #include "dmub/dmub_srv.h"
74
75 #include "dce/dmub_psr.h"
76
77 #include "dce/dmub_hw_lock_mgr.h"
78
79 #include "dc_trace.h"
80
81 #include "hw_sequencer_private.h"
82
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86
87 #include "dce/dmub_outbox.h"
88
89 #define CTX \
90 dc->ctx
91
92 #define DC_LOGGER \
93 dc->ctx->logger
94
95 static const char DC_BUILD_ID[] = "production-build";
96
97 /**
98 * DOC: Overview
99 *
100 * DC is the OS-agnostic component of the amdgpu DC driver.
101 *
102 * DC maintains and validates a set of structs representing the state of the
103 * driver and writes that state to AMD hardware
104 *
105 * Main DC HW structs:
106 *
107 * struct dc - The central struct. One per driver. Created on driver load,
108 * destroyed on driver unload.
109 *
110 * struct dc_context - One per driver.
111 * Used as a backpointer by most other structs in dc.
112 *
113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114 * plugpoints). Created on driver load, destroyed on driver unload.
115 *
116 * struct dc_sink - One per display. Created on boot or hotplug.
117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
118 * (the display directly attached). It may also have one or more remote
119 * sinks (in the Multi-Stream Transport case)
120 *
121 * struct resource_pool - One per driver. Represents the hw blocks not in the
122 * main pipeline. Not directly accessible by dm.
123 *
124 * Main dc state structs:
125 *
126 * These structs can be created and destroyed as needed. There is a full set of
127 * these structs in dc->current_state representing the currently programmed state.
128 *
129 * struct dc_state - The global DC state to track global state information,
130 * such as bandwidth values.
131 *
132 * struct dc_stream_state - Represents the hw configuration for the pipeline from
133 * a framebuffer to a display. Maps one-to-one with dc_sink.
134 *
135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
136 * and may have more in the Multi-Plane Overlay case.
137 *
138 * struct resource_context - Represents the programmable state of everything in
139 * the resource_pool. Not directly accessible by dm.
140 *
141 * struct pipe_ctx - A member of struct resource_context. Represents the
142 * internal hardware pipeline components. Each dc_plane_state has either
143 * one or two (in the pipe-split case).
144 */
145
146 /* Private functions */
147
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 if (new > *original)
151 *original = new;
152 }
153
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 uint32_t i;
157
158 for (i = 0; i < dc->link_count; i++) {
159 if (NULL != dc->links[i])
160 dc->link_srv->destroy_link(&dc->links[i]);
161 }
162 }
163
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 int i;
167 uint32_t count = 0;
168
169 for (i = 0; i < num_links; i++) {
170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 links[i]->is_internal_display)
172 count++;
173 }
174
175 return count;
176 }
177
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 uint8_t i;
181 uint8_t seamless_boot_stream_count = 0;
182
183 for (i = 0; i < ctx->stream_count; i++)
184 if (ctx->streams[i]->apply_seamless_boot_optimization)
185 seamless_boot_stream_count++;
186
187 return seamless_boot_stream_count;
188 }
189
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 struct dc *dc,
192 uint32_t num_virtual_links)
193 {
194 int i;
195 int connectors_num;
196 struct dc_bios *bios = dc->ctx->dc_bios;
197
198 dc->link_count = 0;
199
200 connectors_num = bios->funcs->get_connectors_number(bios);
201
202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203
204 if (connectors_num > ENUM_ID_COUNT) {
205 dm_error(
206 "DC: Number of connectors %d exceeds maximum of %d!\n",
207 connectors_num,
208 ENUM_ID_COUNT);
209 return false;
210 }
211
212 dm_output_to_console(
213 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 __func__,
215 connectors_num,
216 num_virtual_links);
217
218 // condition loop on link_count to allow skipping invalid indices
219 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220 struct link_init_data link_init_params = {0};
221 struct dc_link *link;
222
223 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224
225 link_init_params.ctx = dc->ctx;
226 /* next BIOS object table connector */
227 link_init_params.connector_index = i;
228 link_init_params.link_index = dc->link_count;
229 link_init_params.dc = dc;
230 link = dc->link_srv->create_link(&link_init_params);
231
232 if (link) {
233 dc->links[dc->link_count] = link;
234 link->dc = dc;
235 ++dc->link_count;
236 }
237 }
238
239 DC_LOG_DC("BIOS object table - end");
240
241 /* Create a link for each usb4 dpia port */
242 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243 struct link_init_data link_init_params = {0};
244 struct dc_link *link;
245
246 link_init_params.ctx = dc->ctx;
247 link_init_params.connector_index = i;
248 link_init_params.link_index = dc->link_count;
249 link_init_params.dc = dc;
250 link_init_params.is_dpia_link = true;
251
252 link = dc->link_srv->create_link(&link_init_params);
253 if (link) {
254 dc->links[dc->link_count] = link;
255 link->dc = dc;
256 ++dc->link_count;
257 }
258 }
259
260 for (i = 0; i < num_virtual_links; i++) {
261 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262 struct encoder_init_data enc_init = {0};
263
264 if (link == NULL) {
265 BREAK_TO_DEBUGGER();
266 goto failed_alloc;
267 }
268
269 link->link_index = dc->link_count;
270 dc->links[dc->link_count] = link;
271 dc->link_count++;
272
273 link->ctx = dc->ctx;
274 link->dc = dc;
275 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276 link->link_id.type = OBJECT_TYPE_CONNECTOR;
277 link->link_id.id = CONNECTOR_ID_VIRTUAL;
278 link->link_id.enum_id = ENUM_ID_1;
279 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
280 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
281
282 if (!link->link_enc) {
283 BREAK_TO_DEBUGGER();
284 goto failed_alloc;
285 }
286
287 link->link_status.dpcd_caps = &link->dpcd_caps;
288
289 enc_init.ctx = dc->ctx;
290 enc_init.channel = CHANNEL_ID_UNKNOWN;
291 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
292 enc_init.transmitter = TRANSMITTER_UNKNOWN;
293 enc_init.connector = link->link_id;
294 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
295 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
296 enc_init.encoder.enum_id = ENUM_ID_1;
297 virtual_link_encoder_construct(link->link_enc, &enc_init);
298 }
299
300 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
301
302 return true;
303
304 failed_alloc:
305 return false;
306 }
307
308 /* Create additional DIG link encoder objects if fewer than the platform
309 * supports were created during link construction. This can happen if the
310 * number of physical connectors is less than the number of DIGs.
311 */
create_link_encoders(struct dc * dc)312 static bool create_link_encoders(struct dc *dc)
313 {
314 bool res = true;
315 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
316 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
317 int i;
318
319 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
320 * link encoders and physical display endpoints and does not require
321 * additional link encoder objects.
322 */
323 if (num_usb4_dpia == 0)
324 return res;
325
326 /* Create as many link encoder objects as the platform supports. DPIA
327 * endpoints can be programmably mapped to any DIG.
328 */
329 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
330 for (i = 0; i < num_dig_link_enc; i++) {
331 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
332
333 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
334 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
335 (enum engine_id)(ENGINE_ID_DIGA + i));
336 if (link_enc) {
337 dc->res_pool->link_encoders[i] = link_enc;
338 dc->res_pool->dig_link_enc_count++;
339 } else {
340 res = false;
341 }
342 }
343 }
344 }
345
346 return res;
347 }
348
349 /* Destroy any additional DIG link encoder objects created by
350 * create_link_encoders().
351 * NB: Must only be called after destroy_links().
352 */
destroy_link_encoders(struct dc * dc)353 static void destroy_link_encoders(struct dc *dc)
354 {
355 unsigned int num_usb4_dpia;
356 unsigned int num_dig_link_enc;
357 int i;
358
359 if (!dc->res_pool)
360 return;
361
362 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
363 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
364
365 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
366 * link encoders and physical display endpoints and does not require
367 * additional link encoder objects.
368 */
369 if (num_usb4_dpia == 0)
370 return;
371
372 for (i = 0; i < num_dig_link_enc; i++) {
373 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
374
375 if (link_enc) {
376 link_enc->funcs->destroy(&link_enc);
377 dc->res_pool->link_encoders[i] = NULL;
378 dc->res_pool->dig_link_enc_count--;
379 }
380 }
381 }
382
dc_perf_trace_create(void)383 static struct dc_perf_trace *dc_perf_trace_create(void)
384 {
385 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
386 }
387
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)388 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
389 {
390 kfree(*perf_trace);
391 *perf_trace = NULL;
392 }
393
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)394 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
395 {
396 if (!dc || !stream || !adjust)
397 return false;
398
399 if (!dc->current_state)
400 return false;
401
402 int i;
403
404 for (i = 0; i < MAX_PIPES; i++) {
405 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
406
407 if (pipe->stream == stream && pipe->stream_res.tg) {
408 if (dc->hwss.set_long_vtotal)
409 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
410
411 return true;
412 }
413 }
414
415 return false;
416 }
417
418 /**
419 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
420 * @dc: dc reference
421 * @stream: Initial dc stream state
422 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
423 *
424 * Looks up the pipe context of dc_stream_state and updates the
425 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
426 * Rate, which is a power-saving feature that targets reducing panel
427 * refresh rate while the screen is static
428 *
429 * Return: %true if the pipe context is found and adjusted;
430 * %false if the pipe context is not found.
431 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)432 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
433 struct dc_stream_state *stream,
434 struct dc_crtc_timing_adjust *adjust)
435 {
436 int i;
437
438 /*
439 * Don't adjust DRR while there's bandwidth optimizations pending to
440 * avoid conflicting with firmware updates.
441 */
442 if (dc->ctx->dce_version > DCE_VERSION_MAX)
443 if (dc->optimized_required || dc->wm_optimized_required)
444 return false;
445
446 dc_exit_ips_for_hw_access(dc);
447
448 stream->adjust.v_total_max = adjust->v_total_max;
449 stream->adjust.v_total_mid = adjust->v_total_mid;
450 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
451 stream->adjust.v_total_min = adjust->v_total_min;
452 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
453
454 if (dc->caps.max_v_total != 0 &&
455 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
456 stream->adjust.timing_adjust_pending = false;
457 if (adjust->allow_otg_v_count_halt)
458 return set_long_vtotal(dc, stream, adjust);
459 else
460 return false;
461 }
462
463 for (i = 0; i < MAX_PIPES; i++) {
464 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
465
466 if (pipe->stream == stream && pipe->stream_res.tg) {
467 dc->hwss.set_drr(&pipe,
468 1,
469 *adjust);
470 stream->adjust.timing_adjust_pending = false;
471 return true;
472 }
473 }
474 return false;
475 }
476
477 /**
478 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
479 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
480 *
481 * @dc: [in] dc reference
482 * @stream: [in] Initial dc stream state
483 * @refresh_rate: [in] new refresh_rate
484 *
485 * Return: %true if the pipe context is found and there is an associated
486 * timing_generator for the DC;
487 * %false if the pipe context is not found or there is no
488 * timing_generator for the DC.
489 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)490 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
491 struct dc_stream_state *stream,
492 uint32_t *refresh_rate)
493 {
494 bool status = false;
495
496 int i = 0;
497
498 dc_exit_ips_for_hw_access(dc);
499
500 for (i = 0; i < MAX_PIPES; i++) {
501 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
502
503 if (pipe->stream == stream && pipe->stream_res.tg) {
504 /* Only execute if a function pointer has been defined for
505 * the DC version in question
506 */
507 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
508 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
509
510 status = true;
511
512 break;
513 }
514 }
515 }
516
517 return status;
518 }
519
520 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
521 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
523 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 union dmub_rb_cmd cmd = {0};
526
527 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
528 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
529
530 if (is_stop) {
531 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
532 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
533 } else {
534 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
535 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
536 cmd.secure_display.roi_info.x_start = rect->x;
537 cmd.secure_display.roi_info.y_start = rect->y;
538 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
539 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
540 }
541
542 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
543 }
544
545 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)546 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
547 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
548 {
549 if (is_stop)
550 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
551 else
552 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
553 }
554
555 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)556 dc_stream_forward_crc_window(struct dc_stream_state *stream,
557 struct rect *rect, uint8_t phy_id, bool is_stop)
558 {
559 struct dmcu *dmcu;
560 struct dc_dmub_srv *dmub_srv;
561 struct otg_phy_mux mux_mapping;
562 struct pipe_ctx *pipe;
563 int i;
564 struct dc *dc = stream->ctx->dc;
565
566 for (i = 0; i < MAX_PIPES; i++) {
567 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
568 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
569 break;
570 }
571
572 /* Stream not found */
573 if (i == MAX_PIPES)
574 return false;
575
576 mux_mapping.phy_output_num = phy_id;
577 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
578
579 dmcu = dc->res_pool->dmcu;
580 dmub_srv = dc->ctx->dmub_srv;
581
582 /* forward to dmub */
583 if (dmub_srv)
584 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
585 /* forward to dmcu */
586 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
587 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
588 else
589 return false;
590
591 return true;
592 }
593
594 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)595 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
596 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
597 {
598 int i;
599 union dmub_rb_cmd cmd = {0};
600
601 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
602 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
603
604 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
605
606 if (stop) {
607 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
608 } else {
609 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
610 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
611 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
612 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
613 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
614 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
615 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
616 }
617 }
618
619 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
620 }
621
622 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)623 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
624 struct crc_window *window, uint8_t phy_id, bool stop)
625 {
626 struct dc_dmub_srv *dmub_srv;
627 struct otg_phy_mux mux_mapping;
628 struct pipe_ctx *pipe;
629 int i;
630 struct dc *dc = stream->ctx->dc;
631
632 for (i = 0; i < MAX_PIPES; i++) {
633 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
634 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
635 break;
636 }
637
638 /* Stream not found */
639 if (i == MAX_PIPES)
640 return false;
641
642 mux_mapping.phy_output_num = phy_id;
643 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
644
645 dmub_srv = dc->ctx->dmub_srv;
646
647 /* forward to dmub only. no dmcu support*/
648 if (dmub_srv)
649 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
650 else
651 return false;
652
653 return true;
654 }
655 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
656
657 /**
658 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
659 * @dc: DC Object
660 * @stream: The stream to configure CRC on.
661 * @crc_window: CRC window (x/y start/end) information
662 * @enable: Enable CRC if true, disable otherwise.
663 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
664 * once.
665 * @idx: Capture CRC on which CRC engine instance
666 * @reset: Reset CRC engine before the configuration
667 *
668 * By default, the entire frame is used to calculate the CRC.
669 *
670 * Return: %false if the stream is not found or CRC capture is not supported;
671 * %true if the stream has been configured.
672 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)673 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
674 struct crc_params *crc_window, bool enable, bool continuous,
675 uint8_t idx, bool reset)
676 {
677 struct pipe_ctx *pipe;
678 struct crc_params param;
679 struct timing_generator *tg;
680
681 pipe = resource_get_otg_master_for_stream(
682 &dc->current_state->res_ctx, stream);
683
684 /* Stream not found */
685 if (pipe == NULL)
686 return false;
687
688 dc_exit_ips_for_hw_access(dc);
689
690 /* By default, capture the full frame */
691 param.windowa_x_start = 0;
692 param.windowa_y_start = 0;
693 param.windowa_x_end = pipe->stream->timing.h_addressable;
694 param.windowa_y_end = pipe->stream->timing.v_addressable;
695 param.windowb_x_start = 0;
696 param.windowb_y_start = 0;
697 param.windowb_x_end = pipe->stream->timing.h_addressable;
698 param.windowb_y_end = pipe->stream->timing.v_addressable;
699
700 if (crc_window) {
701 param.windowa_x_start = crc_window->windowa_x_start;
702 param.windowa_y_start = crc_window->windowa_y_start;
703 param.windowa_x_end = crc_window->windowa_x_end;
704 param.windowa_y_end = crc_window->windowa_y_end;
705 param.windowb_x_start = crc_window->windowb_x_start;
706 param.windowb_y_start = crc_window->windowb_y_start;
707 param.windowb_x_end = crc_window->windowb_x_end;
708 param.windowb_y_end = crc_window->windowb_y_end;
709 }
710
711 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
712 param.odm_mode = pipe->next_odm_pipe ? 1:0;
713
714 /* Default to the union of both windows */
715 param.selection = UNION_WINDOW_A_B;
716 param.continuous_mode = continuous;
717 param.enable = enable;
718
719 param.crc_eng_inst = idx;
720 param.reset = reset;
721
722 tg = pipe->stream_res.tg;
723
724 /* Only call if supported */
725 if (tg->funcs->configure_crc)
726 return tg->funcs->configure_crc(tg, ¶m);
727 DC_LOG_WARNING("CRC capture not supported.");
728 return false;
729 }
730
731 /**
732 * dc_stream_get_crc() - Get CRC values for the given stream.
733 *
734 * @dc: DC object.
735 * @stream: The DC stream state of the stream to get CRCs from.
736 * @idx: index of crc engine to get CRC from
737 * @r_cr: CRC value for the red component.
738 * @g_y: CRC value for the green component.
739 * @b_cb: CRC value for the blue component.
740 *
741 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
742 *
743 * Return:
744 * %false if stream is not found, or if CRCs are not enabled.
745 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)746 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
747 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
748 {
749 int i;
750 struct pipe_ctx *pipe;
751 struct timing_generator *tg;
752
753 dc_exit_ips_for_hw_access(dc);
754
755 for (i = 0; i < MAX_PIPES; i++) {
756 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
757 if (pipe->stream == stream)
758 break;
759 }
760 /* Stream not found */
761 if (i == MAX_PIPES)
762 return false;
763
764 tg = pipe->stream_res.tg;
765
766 if (tg->funcs->get_crc)
767 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
768 DC_LOG_WARNING("CRC capture not supported.");
769 return false;
770 }
771
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)772 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
773 enum dc_dynamic_expansion option)
774 {
775 /* OPP FMT dyn expansion updates*/
776 int i;
777 struct pipe_ctx *pipe_ctx;
778
779 dc_exit_ips_for_hw_access(dc);
780
781 for (i = 0; i < MAX_PIPES; i++) {
782 if (dc->current_state->res_ctx.pipe_ctx[i].stream
783 == stream) {
784 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
785 pipe_ctx->stream_res.opp->dyn_expansion = option;
786 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
787 pipe_ctx->stream_res.opp,
788 COLOR_SPACE_YCBCR601,
789 stream->timing.display_color_depth,
790 stream->signal);
791 }
792 }
793 }
794
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)795 void dc_stream_set_dither_option(struct dc_stream_state *stream,
796 enum dc_dither_option option)
797 {
798 struct bit_depth_reduction_params params;
799 struct dc_link *link = stream->link;
800 struct pipe_ctx *pipes = NULL;
801 int i;
802
803 for (i = 0; i < MAX_PIPES; i++) {
804 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
805 stream) {
806 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
807 break;
808 }
809 }
810
811 if (!pipes)
812 return;
813 if (option > DITHER_OPTION_MAX)
814 return;
815
816 dc_exit_ips_for_hw_access(stream->ctx->dc);
817
818 stream->dither_option = option;
819
820 memset(¶ms, 0, sizeof(params));
821 resource_build_bit_depth_reduction_params(stream, ¶ms);
822 stream->bit_depth_params = params;
823
824 if (pipes->plane_res.xfm &&
825 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
826 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
827 pipes->plane_res.xfm,
828 pipes->plane_res.scl_data.lb_params.depth,
829 &stream->bit_depth_params);
830 }
831
832 pipes->stream_res.opp->funcs->
833 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
834 }
835
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)836 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
837 {
838 int i;
839 bool ret = false;
840 struct pipe_ctx *pipes;
841
842 dc_exit_ips_for_hw_access(dc);
843
844 for (i = 0; i < MAX_PIPES; i++) {
845 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
846 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
847 dc->hwss.program_gamut_remap(pipes);
848 ret = true;
849 }
850 }
851
852 return ret;
853 }
854
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)855 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
856 {
857 int i;
858 bool ret = false;
859 struct pipe_ctx *pipes;
860
861 dc_exit_ips_for_hw_access(dc);
862
863 for (i = 0; i < MAX_PIPES; i++) {
864 if (dc->current_state->res_ctx.pipe_ctx[i].stream
865 == stream) {
866
867 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
868 dc->hwss.program_output_csc(dc,
869 pipes,
870 stream->output_color_space,
871 stream->csc_color_matrix.matrix,
872 pipes->stream_res.opp->inst);
873 ret = true;
874 }
875 }
876
877 return ret;
878 }
879
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)880 void dc_stream_set_static_screen_params(struct dc *dc,
881 struct dc_stream_state **streams,
882 int num_streams,
883 const struct dc_static_screen_params *params)
884 {
885 int i, j;
886 struct pipe_ctx *pipes_affected[MAX_PIPES];
887 int num_pipes_affected = 0;
888
889 dc_exit_ips_for_hw_access(dc);
890
891 for (i = 0; i < num_streams; i++) {
892 struct dc_stream_state *stream = streams[i];
893
894 for (j = 0; j < MAX_PIPES; j++) {
895 if (dc->current_state->res_ctx.pipe_ctx[j].stream
896 == stream) {
897 pipes_affected[num_pipes_affected++] =
898 &dc->current_state->res_ctx.pipe_ctx[j];
899 }
900 }
901 }
902
903 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
904 }
905
dc_destruct(struct dc * dc)906 static void dc_destruct(struct dc *dc)
907 {
908 // reset link encoder assignment table on destruct
909 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
910 !dc->config.unify_link_enc_assignment)
911 link_enc_cfg_init(dc, dc->current_state);
912
913 if (dc->current_state) {
914 dc_state_release(dc->current_state);
915 dc->current_state = NULL;
916 }
917
918 destroy_links(dc);
919
920 destroy_link_encoders(dc);
921
922 if (dc->clk_mgr) {
923 dc_destroy_clk_mgr(dc->clk_mgr);
924 dc->clk_mgr = NULL;
925 }
926
927 dc_destroy_resource_pool(dc);
928
929 if (dc->link_srv)
930 link_destroy_link_service(&dc->link_srv);
931
932 if (dc->ctx->gpio_service)
933 dal_gpio_service_destroy(&dc->ctx->gpio_service);
934
935 if (dc->ctx->created_bios)
936 dal_bios_parser_destroy(&dc->ctx->dc_bios);
937
938 kfree(dc->ctx->logger);
939 dc_perf_trace_destroy(&dc->ctx->perf_trace);
940
941 kfree(dc->ctx);
942 dc->ctx = NULL;
943
944 kfree(dc->bw_vbios);
945 dc->bw_vbios = NULL;
946
947 kfree(dc->bw_dceip);
948 dc->bw_dceip = NULL;
949
950 kfree(dc->dcn_soc);
951 dc->dcn_soc = NULL;
952
953 kfree(dc->dcn_ip);
954 dc->dcn_ip = NULL;
955
956 kfree(dc->vm_helper);
957 dc->vm_helper = NULL;
958
959 }
960
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)961 static bool dc_construct_ctx(struct dc *dc,
962 const struct dc_init_data *init_params)
963 {
964 struct dc_context *dc_ctx;
965
966 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
967 if (!dc_ctx)
968 return false;
969
970 dc_ctx->cgs_device = init_params->cgs_device;
971 dc_ctx->driver_context = init_params->driver;
972 dc_ctx->dc = dc;
973 dc_ctx->asic_id = init_params->asic_id;
974 dc_ctx->dc_sink_id_count = 0;
975 dc_ctx->dc_stream_id_count = 0;
976 dc_ctx->dce_environment = init_params->dce_environment;
977 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
978 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
979 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
980
981 /* Create logger */
982 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
983
984 if (!dc_ctx->logger) {
985 kfree(dc_ctx);
986 return false;
987 }
988
989 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
990 dc->dml.logger = dc_ctx->logger;
991
992 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
993
994 dc_ctx->perf_trace = dc_perf_trace_create();
995 if (!dc_ctx->perf_trace) {
996 kfree(dc_ctx);
997 ASSERT_CRITICAL(false);
998 return false;
999 }
1000
1001 dc->ctx = dc_ctx;
1002
1003 dc->link_srv = link_create_link_service();
1004 if (!dc->link_srv)
1005 return false;
1006
1007 return true;
1008 }
1009
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1010 static bool dc_construct(struct dc *dc,
1011 const struct dc_init_data *init_params)
1012 {
1013 struct dc_context *dc_ctx;
1014 struct bw_calcs_dceip *dc_dceip;
1015 struct bw_calcs_vbios *dc_vbios;
1016 struct dcn_soc_bounding_box *dcn_soc;
1017 struct dcn_ip_params *dcn_ip;
1018
1019 dc->config = init_params->flags;
1020
1021 // Allocate memory for the vm_helper
1022 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1023 if (!dc->vm_helper) {
1024 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1025 goto fail;
1026 }
1027
1028 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1029
1030 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1031 if (!dc_dceip) {
1032 dm_error("%s: failed to create dceip\n", __func__);
1033 goto fail;
1034 }
1035
1036 dc->bw_dceip = dc_dceip;
1037
1038 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1039 if (!dc_vbios) {
1040 dm_error("%s: failed to create vbios\n", __func__);
1041 goto fail;
1042 }
1043
1044 dc->bw_vbios = dc_vbios;
1045 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1046 if (!dcn_soc) {
1047 dm_error("%s: failed to create dcn_soc\n", __func__);
1048 goto fail;
1049 }
1050
1051 dc->dcn_soc = dcn_soc;
1052
1053 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1054 if (!dcn_ip) {
1055 dm_error("%s: failed to create dcn_ip\n", __func__);
1056 goto fail;
1057 }
1058
1059 dc->dcn_ip = dcn_ip;
1060
1061 if (init_params->bb_from_dmub)
1062 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1063 else
1064 dc->dml2_options.bb_from_dmub = NULL;
1065
1066 if (!dc_construct_ctx(dc, init_params)) {
1067 dm_error("%s: failed to create ctx\n", __func__);
1068 goto fail;
1069 }
1070
1071 dc_ctx = dc->ctx;
1072
1073 /* Resource should construct all asic specific resources.
1074 * This should be the only place where we need to parse the asic id
1075 */
1076 if (init_params->vbios_override)
1077 dc_ctx->dc_bios = init_params->vbios_override;
1078 else {
1079 /* Create BIOS parser */
1080 struct bp_init_data bp_init_data;
1081
1082 bp_init_data.ctx = dc_ctx;
1083 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1084
1085 dc_ctx->dc_bios = dal_bios_parser_create(
1086 &bp_init_data, dc_ctx->dce_version);
1087
1088 if (!dc_ctx->dc_bios) {
1089 ASSERT_CRITICAL(false);
1090 goto fail;
1091 }
1092
1093 dc_ctx->created_bios = true;
1094 }
1095
1096 dc->vendor_signature = init_params->vendor_signature;
1097
1098 /* Create GPIO service */
1099 dc_ctx->gpio_service = dal_gpio_service_create(
1100 dc_ctx->dce_version,
1101 dc_ctx->dce_environment,
1102 dc_ctx);
1103
1104 if (!dc_ctx->gpio_service) {
1105 ASSERT_CRITICAL(false);
1106 goto fail;
1107 }
1108
1109 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1110 if (!dc->res_pool)
1111 goto fail;
1112
1113 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1114 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1115 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1116 if (dc->caps.max_optimizable_video_width == 0)
1117 dc->caps.max_optimizable_video_width = 5120;
1118 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1119 if (!dc->clk_mgr)
1120 goto fail;
1121 #ifdef CONFIG_DRM_AMD_DC_FP
1122 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1123
1124 if (dc->res_pool->funcs->update_bw_bounding_box) {
1125 DC_FP_START();
1126 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1127 DC_FP_END();
1128 }
1129 #endif
1130
1131 if (!create_links(dc, init_params->num_virtual_links))
1132 goto fail;
1133
1134 /* Create additional DIG link encoder objects if fewer than the platform
1135 * supports were created during link construction.
1136 */
1137 if (!create_link_encoders(dc))
1138 goto fail;
1139
1140 /* Creation of current_state must occur after dc->dml
1141 * is initialized in dc_create_resource_pool because
1142 * on creation it copies the contents of dc->dml
1143 */
1144 dc->current_state = dc_state_create(dc, NULL);
1145
1146 if (!dc->current_state) {
1147 dm_error("%s: failed to create validate ctx\n", __func__);
1148 goto fail;
1149 }
1150
1151 return true;
1152
1153 fail:
1154 return false;
1155 }
1156
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1157 static void disable_all_writeback_pipes_for_stream(
1158 const struct dc *dc,
1159 struct dc_stream_state *stream,
1160 struct dc_state *context)
1161 {
1162 int i;
1163
1164 for (i = 0; i < stream->num_wb_info; i++)
1165 stream->writeback_info[i].wb_enabled = false;
1166 }
1167
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1168 static void apply_ctx_interdependent_lock(struct dc *dc,
1169 struct dc_state *context,
1170 struct dc_stream_state *stream,
1171 bool lock)
1172 {
1173 int i;
1174
1175 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1176 if (dc->hwss.interdependent_update_lock)
1177 dc->hwss.interdependent_update_lock(dc, context, lock);
1178 else {
1179 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1180 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1181 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1182
1183 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1184 if (stream == pipe_ctx->stream) {
1185 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1186 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1187 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1188 }
1189 }
1190 }
1191 }
1192
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1193 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1194 {
1195 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1196 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1197
1198 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1199 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1200 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1201 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1202 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1203 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1204 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1205 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1206 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1207 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1208 else {
1209 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1210 color_space_to_black_color(
1211 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1212 }
1213 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1214 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1215 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1216 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1217 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1218 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1219 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1220 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1221 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1222 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1223 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1224 }
1225 }
1226 }
1227
disable_dangling_plane(struct dc * dc,struct dc_state * context)1228 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1229 {
1230 int i, j;
1231 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1232 struct dc_state *current_ctx;
1233 struct pipe_ctx *pipe;
1234 struct timing_generator *tg;
1235
1236 if (dangling_context == NULL)
1237 return;
1238
1239 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1240 struct dc_stream_state *old_stream =
1241 dc->current_state->res_ctx.pipe_ctx[i].stream;
1242 bool should_disable = true;
1243 bool pipe_split_change = false;
1244
1245 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1246 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1247 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1248 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1249 else
1250 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1251 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1252
1253 for (j = 0; j < context->stream_count; j++) {
1254 if (old_stream == context->streams[j]) {
1255 should_disable = false;
1256 break;
1257 }
1258 }
1259 if (!should_disable && pipe_split_change &&
1260 dc->current_state->stream_count != context->stream_count)
1261 should_disable = true;
1262
1263 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1264 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1265 struct pipe_ctx *old_pipe, *new_pipe;
1266
1267 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1268 new_pipe = &context->res_ctx.pipe_ctx[i];
1269
1270 if (old_pipe->plane_state && !new_pipe->plane_state)
1271 should_disable = true;
1272 }
1273
1274 if (should_disable && old_stream) {
1275 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1276 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1277 tg = pipe->stream_res.tg;
1278 /* When disabling plane for a phantom pipe, we must turn on the
1279 * phantom OTG so the disable programming gets the double buffer
1280 * update. Otherwise the pipe will be left in a partially disabled
1281 * state that can result in underflow or hang when enabling it
1282 * again for different use.
1283 */
1284 if (is_phantom) {
1285 if (tg->funcs->enable_crtc) {
1286 if (dc->hwseq->funcs.blank_pixel_data)
1287 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1288 tg->funcs->enable_crtc(tg);
1289 }
1290 }
1291
1292 if (is_phantom)
1293 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1294 else
1295 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1296 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1297
1298 if (pipe->stream && pipe->plane_state) {
1299 if (!dc->debug.using_dml2)
1300 set_p_state_switch_method(dc, context, pipe);
1301 dc_update_visual_confirm_color(dc, context, pipe);
1302 }
1303
1304 if (dc->hwss.apply_ctx_for_surface) {
1305 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1306 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1307 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1308 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1309 }
1310
1311 if (dc->res_pool->funcs->prepare_mcache_programming)
1312 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1313 if (dc->hwss.program_front_end_for_ctx) {
1314 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1315 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1316 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1317 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1318 }
1319 /* We need to put the phantom OTG back into it's default (disabled) state or we
1320 * can get corruption when transition from one SubVP config to a different one.
1321 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1322 * will still get it's double buffer update.
1323 */
1324 if (is_phantom) {
1325 if (tg->funcs->disable_phantom_crtc)
1326 tg->funcs->disable_phantom_crtc(tg);
1327 }
1328 }
1329 }
1330
1331 current_ctx = dc->current_state;
1332 dc->current_state = dangling_context;
1333 dc_state_release(current_ctx);
1334 }
1335
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1336 static void disable_vbios_mode_if_required(
1337 struct dc *dc,
1338 struct dc_state *context)
1339 {
1340 unsigned int i, j;
1341
1342 /* check if timing_changed, disable stream*/
1343 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1344 struct dc_stream_state *stream = NULL;
1345 struct dc_link *link = NULL;
1346 struct pipe_ctx *pipe = NULL;
1347
1348 pipe = &context->res_ctx.pipe_ctx[i];
1349 stream = pipe->stream;
1350 if (stream == NULL)
1351 continue;
1352
1353 if (stream->apply_seamless_boot_optimization)
1354 continue;
1355
1356 // only looking for first odm pipe
1357 if (pipe->prev_odm_pipe)
1358 continue;
1359
1360 if (stream->link->local_sink &&
1361 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1362 link = stream->link;
1363 }
1364
1365 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1366 unsigned int enc_inst, tg_inst = 0;
1367 unsigned int pix_clk_100hz = 0;
1368
1369 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1370 if (enc_inst != ENGINE_ID_UNKNOWN) {
1371 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1372 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1373 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1374 dc->res_pool->stream_enc[j]);
1375 break;
1376 }
1377 }
1378
1379 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1380 dc->res_pool->dp_clock_source,
1381 tg_inst, &pix_clk_100hz);
1382
1383 if (link->link_status.link_active) {
1384 uint32_t requested_pix_clk_100hz =
1385 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1386
1387 if (pix_clk_100hz != requested_pix_clk_100hz) {
1388 dc->link_srv->set_dpms_off(pipe);
1389 pipe->stream->dpms_off = false;
1390 }
1391 }
1392 }
1393 }
1394 }
1395 }
1396
1397 /* Public functions */
1398
dc_create(const struct dc_init_data * init_params)1399 struct dc *dc_create(const struct dc_init_data *init_params)
1400 {
1401 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1402 unsigned int full_pipe_count;
1403
1404 if (!dc)
1405 return NULL;
1406
1407 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1408 dc->caps.linear_pitch_alignment = 64;
1409 if (!dc_construct_ctx(dc, init_params))
1410 goto destruct_dc;
1411 } else {
1412 if (!dc_construct(dc, init_params))
1413 goto destruct_dc;
1414
1415 full_pipe_count = dc->res_pool->pipe_count;
1416 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1417 full_pipe_count--;
1418 dc->caps.max_streams = min(
1419 full_pipe_count,
1420 dc->res_pool->stream_enc_count);
1421
1422 dc->caps.max_links = dc->link_count;
1423 dc->caps.max_audios = dc->res_pool->audio_count;
1424 dc->caps.linear_pitch_alignment = 64;
1425
1426 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1427
1428 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1429
1430 if (dc->res_pool->dmcu != NULL)
1431 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1432 }
1433
1434 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1435 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1436 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1437
1438 /* Populate versioning information */
1439 dc->versions.dc_ver = DC_VER;
1440
1441 dc->build_id = DC_BUILD_ID;
1442
1443 DC_LOG_DC("Display Core initialized\n");
1444
1445 return dc;
1446
1447 destruct_dc:
1448 dc_destruct(dc);
1449 kfree(dc);
1450 return NULL;
1451 }
1452
detect_edp_presence(struct dc * dc)1453 static void detect_edp_presence(struct dc *dc)
1454 {
1455 struct dc_link *edp_links[MAX_NUM_EDP];
1456 struct dc_link *edp_link = NULL;
1457 enum dc_connection_type type;
1458 int i;
1459 int edp_num;
1460
1461 dc_get_edp_links(dc, edp_links, &edp_num);
1462 if (!edp_num)
1463 return;
1464
1465 for (i = 0; i < edp_num; i++) {
1466 edp_link = edp_links[i];
1467 if (dc->config.edp_not_connected) {
1468 edp_link->edp_sink_present = false;
1469 } else {
1470 dc_link_detect_connection_type(edp_link, &type);
1471 edp_link->edp_sink_present = (type != dc_connection_none);
1472 }
1473 }
1474 }
1475
dc_hardware_init(struct dc * dc)1476 void dc_hardware_init(struct dc *dc)
1477 {
1478
1479 detect_edp_presence(dc);
1480 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1481 dc->hwss.init_hw(dc);
1482 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1483 }
1484
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1485 void dc_init_callbacks(struct dc *dc,
1486 const struct dc_callback_init *init_params)
1487 {
1488 dc->ctx->cp_psp = init_params->cp_psp;
1489 }
1490
dc_deinit_callbacks(struct dc * dc)1491 void dc_deinit_callbacks(struct dc *dc)
1492 {
1493 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1494 }
1495
dc_destroy(struct dc ** dc)1496 void dc_destroy(struct dc **dc)
1497 {
1498 dc_destruct(*dc);
1499 kfree(*dc);
1500 *dc = NULL;
1501 }
1502
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1503 static void enable_timing_multisync(
1504 struct dc *dc,
1505 struct dc_state *ctx)
1506 {
1507 int i, multisync_count = 0;
1508 int pipe_count = dc->res_pool->pipe_count;
1509 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1510
1511 for (i = 0; i < pipe_count; i++) {
1512 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1513 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1514 continue;
1515 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1516 continue;
1517 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1518 multisync_count++;
1519 }
1520
1521 if (multisync_count > 0) {
1522 dc->hwss.enable_per_frame_crtc_position_reset(
1523 dc, multisync_count, multisync_pipes);
1524 }
1525 }
1526
program_timing_sync(struct dc * dc,struct dc_state * ctx)1527 static void program_timing_sync(
1528 struct dc *dc,
1529 struct dc_state *ctx)
1530 {
1531 int i, j, k;
1532 int group_index = 0;
1533 int num_group = 0;
1534 int pipe_count = dc->res_pool->pipe_count;
1535 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1536
1537 for (i = 0; i < pipe_count; i++) {
1538 if (!ctx->res_ctx.pipe_ctx[i].stream
1539 || ctx->res_ctx.pipe_ctx[i].top_pipe
1540 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1541 continue;
1542
1543 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1544 }
1545
1546 for (i = 0; i < pipe_count; i++) {
1547 int group_size = 1;
1548 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1549 struct pipe_ctx *pipe_set[MAX_PIPES];
1550
1551 if (!unsynced_pipes[i])
1552 continue;
1553
1554 pipe_set[0] = unsynced_pipes[i];
1555 unsynced_pipes[i] = NULL;
1556
1557 /* Add tg to the set, search rest of the tg's for ones with
1558 * same timing, add all tgs with same timing to the group
1559 */
1560 for (j = i + 1; j < pipe_count; j++) {
1561 if (!unsynced_pipes[j])
1562 continue;
1563 if (sync_type != TIMING_SYNCHRONIZABLE &&
1564 dc->hwss.enable_vblanks_synchronization &&
1565 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1566 resource_are_vblanks_synchronizable(
1567 unsynced_pipes[j]->stream,
1568 pipe_set[0]->stream)) {
1569 sync_type = VBLANK_SYNCHRONIZABLE;
1570 pipe_set[group_size] = unsynced_pipes[j];
1571 unsynced_pipes[j] = NULL;
1572 group_size++;
1573 } else
1574 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1575 resource_are_streams_timing_synchronizable(
1576 unsynced_pipes[j]->stream,
1577 pipe_set[0]->stream)) {
1578 sync_type = TIMING_SYNCHRONIZABLE;
1579 pipe_set[group_size] = unsynced_pipes[j];
1580 unsynced_pipes[j] = NULL;
1581 group_size++;
1582 }
1583 }
1584
1585 /* set first unblanked pipe as master */
1586 for (j = 0; j < group_size; j++) {
1587 bool is_blanked;
1588
1589 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1590 is_blanked =
1591 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1592 else
1593 is_blanked =
1594 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1595 if (!is_blanked) {
1596 if (j == 0)
1597 break;
1598
1599 swap(pipe_set[0], pipe_set[j]);
1600 break;
1601 }
1602 }
1603
1604 for (k = 0; k < group_size; k++) {
1605 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1606
1607 if (!status)
1608 continue;
1609
1610 status->timing_sync_info.group_id = num_group;
1611 status->timing_sync_info.group_size = group_size;
1612 if (k == 0)
1613 status->timing_sync_info.master = true;
1614 else
1615 status->timing_sync_info.master = false;
1616
1617 }
1618
1619 /* remove any other unblanked pipes as they have already been synced */
1620 if (dc->config.use_pipe_ctx_sync_logic) {
1621 /* check pipe's syncd to decide which pipe to be removed */
1622 for (j = 1; j < group_size; j++) {
1623 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1624 group_size--;
1625 pipe_set[j] = pipe_set[group_size];
1626 j--;
1627 } else
1628 /* link slave pipe's syncd with master pipe */
1629 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1630 }
1631 } else {
1632 /* remove any other pipes by checking valid plane */
1633 for (j = j + 1; j < group_size; j++) {
1634 bool is_blanked;
1635
1636 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1637 is_blanked =
1638 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1639 else
1640 is_blanked =
1641 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1642 if (!is_blanked) {
1643 group_size--;
1644 pipe_set[j] = pipe_set[group_size];
1645 j--;
1646 }
1647 }
1648 }
1649
1650 if (group_size > 1) {
1651 if (sync_type == TIMING_SYNCHRONIZABLE) {
1652 dc->hwss.enable_timing_synchronization(
1653 dc, ctx, group_index, group_size, pipe_set);
1654 } else
1655 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1656 dc->hwss.enable_vblanks_synchronization(
1657 dc, group_index, group_size, pipe_set);
1658 }
1659 group_index++;
1660 }
1661 num_group++;
1662 }
1663 }
1664
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1665 static bool streams_changed(struct dc *dc,
1666 struct dc_stream_state *streams[],
1667 uint8_t stream_count)
1668 {
1669 uint8_t i;
1670
1671 if (stream_count != dc->current_state->stream_count)
1672 return true;
1673
1674 for (i = 0; i < dc->current_state->stream_count; i++) {
1675 if (dc->current_state->streams[i] != streams[i])
1676 return true;
1677 if (!streams[i]->link->link_state_valid)
1678 return true;
1679 }
1680
1681 return false;
1682 }
1683
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1684 bool dc_validate_boot_timing(const struct dc *dc,
1685 const struct dc_sink *sink,
1686 struct dc_crtc_timing *crtc_timing)
1687 {
1688 struct timing_generator *tg;
1689 struct stream_encoder *se = NULL;
1690
1691 struct dc_crtc_timing hw_crtc_timing = {0};
1692
1693 struct dc_link *link = sink->link;
1694 unsigned int i, enc_inst, tg_inst = 0;
1695
1696 /* Support seamless boot on EDP displays only */
1697 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1698 return false;
1699 }
1700
1701 if (dc->debug.force_odm_combine) {
1702 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1703 return false;
1704 }
1705
1706 /* Check for enabled DIG to identify enabled display */
1707 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1708 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1709 return false;
1710 }
1711
1712 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1713
1714 if (enc_inst == ENGINE_ID_UNKNOWN) {
1715 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1716 return false;
1717 }
1718
1719 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1720 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1721
1722 se = dc->res_pool->stream_enc[i];
1723
1724 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1725 dc->res_pool->stream_enc[i]);
1726 break;
1727 }
1728 }
1729
1730 // tg_inst not found
1731 if (i == dc->res_pool->stream_enc_count) {
1732 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1733 return false;
1734 }
1735
1736 if (tg_inst >= dc->res_pool->timing_generator_count) {
1737 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1738 return false;
1739 }
1740
1741 if (tg_inst != link->link_enc->preferred_engine) {
1742 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1743 return false;
1744 }
1745
1746 tg = dc->res_pool->timing_generators[tg_inst];
1747
1748 if (!tg->funcs->get_hw_timing) {
1749 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1750 return false;
1751 }
1752
1753 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1754 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1755 return false;
1756 }
1757
1758 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1759 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1760 return false;
1761 }
1762
1763 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1764 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1765 return false;
1766 }
1767
1768 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1769 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1770 return false;
1771 }
1772
1773 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1774 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1775 return false;
1776 }
1777
1778 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1779 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1780 return false;
1781 }
1782
1783 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1784 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1785 return false;
1786 }
1787
1788 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1789 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1790 return false;
1791 }
1792
1793 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1794 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1795 return false;
1796 }
1797
1798 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1799 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1800 return false;
1801 }
1802
1803 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1804 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1805 return false;
1806 }
1807
1808 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1809 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1810 return false;
1811 }
1812
1813 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1814 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1815 return false;
1816 }
1817
1818 /* block DSC for now, as VBIOS does not currently support DSC timings */
1819 if (crtc_timing->flags.DSC) {
1820 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1821 return false;
1822 }
1823
1824 if (dc_is_dp_signal(link->connector_signal)) {
1825 unsigned int pix_clk_100hz = 0;
1826 uint32_t numOdmPipes = 1;
1827 uint32_t id_src[4] = {0};
1828
1829 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1830 dc->res_pool->dp_clock_source,
1831 tg_inst, &pix_clk_100hz);
1832
1833 if (tg->funcs->get_optc_source)
1834 tg->funcs->get_optc_source(tg,
1835 &numOdmPipes, &id_src[0], &id_src[1]);
1836
1837 if (numOdmPipes == 2) {
1838 pix_clk_100hz *= 2;
1839 } else if (numOdmPipes == 4) {
1840 pix_clk_100hz *= 4;
1841 } else if (se && se->funcs->get_pixels_per_cycle) {
1842 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1843
1844 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1845 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1846 return false;
1847 }
1848
1849 pix_clk_100hz *= pixels_per_cycle;
1850 }
1851
1852 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1853 // slightly due to rounding issues in 10 kHz units.
1854 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1855 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1856 return false;
1857 }
1858
1859 if (!se || !se->funcs->dp_get_pixel_format) {
1860 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1861 return false;
1862 }
1863
1864 if (!se->funcs->dp_get_pixel_format(
1865 se,
1866 &hw_crtc_timing.pixel_encoding,
1867 &hw_crtc_timing.display_color_depth)) {
1868 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1869 return false;
1870 }
1871
1872 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1873 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1874 return false;
1875 }
1876
1877 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1878 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1879 return false;
1880 }
1881 }
1882
1883
1884 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1885 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1886 return false;
1887 }
1888
1889 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1890 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1891 return false;
1892 }
1893
1894 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1895 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1896 return false;
1897 }
1898
1899 return true;
1900 }
1901
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1902 static inline bool should_update_pipe_for_stream(
1903 struct dc_state *context,
1904 struct pipe_ctx *pipe_ctx,
1905 struct dc_stream_state *stream)
1906 {
1907 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1908 }
1909
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1910 static inline bool should_update_pipe_for_plane(
1911 struct dc_state *context,
1912 struct pipe_ctx *pipe_ctx,
1913 struct dc_plane_state *plane_state)
1914 {
1915 return (pipe_ctx->plane_state == plane_state);
1916 }
1917
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1918 void dc_enable_stereo(
1919 struct dc *dc,
1920 struct dc_state *context,
1921 struct dc_stream_state *streams[],
1922 uint8_t stream_count)
1923 {
1924 int i, j;
1925 struct pipe_ctx *pipe;
1926
1927 dc_exit_ips_for_hw_access(dc);
1928
1929 for (i = 0; i < MAX_PIPES; i++) {
1930 if (context != NULL) {
1931 pipe = &context->res_ctx.pipe_ctx[i];
1932 } else {
1933 context = dc->current_state;
1934 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1935 }
1936
1937 for (j = 0; pipe && j < stream_count; j++) {
1938 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1939 dc->hwss.setup_stereo)
1940 dc->hwss.setup_stereo(pipe, dc);
1941 }
1942 }
1943 }
1944
dc_trigger_sync(struct dc * dc,struct dc_state * context)1945 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1946 {
1947 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1948 dc_exit_ips_for_hw_access(dc);
1949
1950 enable_timing_multisync(dc, context);
1951 program_timing_sync(dc, context);
1952 }
1953 }
1954
get_stream_mask(struct dc * dc,struct dc_state * context)1955 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1956 {
1957 int i;
1958 unsigned int stream_mask = 0;
1959
1960 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1961 if (context->res_ctx.pipe_ctx[i].stream)
1962 stream_mask |= 1 << i;
1963 }
1964
1965 return stream_mask;
1966 }
1967
dc_z10_restore(const struct dc * dc)1968 void dc_z10_restore(const struct dc *dc)
1969 {
1970 if (dc->hwss.z10_restore)
1971 dc->hwss.z10_restore(dc);
1972 }
1973
dc_z10_save_init(struct dc * dc)1974 void dc_z10_save_init(struct dc *dc)
1975 {
1976 if (dc->hwss.z10_save_init)
1977 dc->hwss.z10_save_init(dc);
1978 }
1979
1980 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
1981 * Prevents over allocation of DET during unlock process
1982 * e.g. 2 pipe config with different streams with a max of 20 DET segments
1983 * Before: After:
1984 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
1985 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
1986 * If Pipe0 gets updated first, 22 DET segments will be allocated
1987 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)1988 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
1989 {
1990 unsigned int i = 0;
1991 struct pipe_ctx *pipe = NULL;
1992 struct timing_generator *tg = NULL;
1993
1994 if (!dc->config.set_pipe_unlock_order)
1995 return;
1996
1997 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
1998 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1999 pipe = &context->res_ctx.pipe_ctx[i];
2000 tg = pipe->stream_res.tg;
2001
2002 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2003 !tg->funcs->is_tg_enabled(tg) ||
2004 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2005 continue;
2006 }
2007
2008 if (resource_calculate_det_for_stream(context, pipe) <
2009 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2010 dc->scratch.pipes_to_unlock_first[i] = true;
2011 }
2012 }
2013 }
2014
2015 /**
2016 * dc_commit_state_no_check - Apply context to the hardware
2017 *
2018 * @dc: DC object with the current status to be updated
2019 * @context: New state that will become the current status at the end of this function
2020 *
2021 * Applies given context to the hardware and copy it into current context.
2022 * It's up to the user to release the src context afterwards.
2023 *
2024 * Return: an enum dc_status result code for the operation
2025 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2026 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2027 {
2028 struct dc_bios *dcb = dc->ctx->dc_bios;
2029 enum dc_status result = DC_ERROR_UNEXPECTED;
2030 struct pipe_ctx *pipe;
2031 int i, k, l;
2032 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2033 struct dc_state *old_state;
2034 bool subvp_prev_use = false;
2035
2036 dc_z10_restore(dc);
2037 dc_allow_idle_optimizations(dc, false);
2038
2039 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2040 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2041
2042 /* Check old context for SubVP */
2043 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2044 if (subvp_prev_use)
2045 break;
2046 }
2047
2048 for (i = 0; i < context->stream_count; i++)
2049 dc_streams[i] = context->streams[i];
2050
2051 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2052 disable_vbios_mode_if_required(dc, context);
2053 dc->hwss.enable_accelerated_mode(dc, context);
2054 }
2055
2056 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2057 context->stream_count == 0)
2058 dc->hwss.prepare_bandwidth(dc, context);
2059
2060 /* When SubVP is active, all HW programming must be done while
2061 * SubVP lock is acquired
2062 */
2063 if (dc->hwss.subvp_pipe_control_lock)
2064 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2065 if (dc->hwss.fams2_global_control_lock)
2066 dc->hwss.fams2_global_control_lock(dc, context, true);
2067
2068 if (dc->hwss.update_dsc_pg)
2069 dc->hwss.update_dsc_pg(dc, context, false);
2070
2071 disable_dangling_plane(dc, context);
2072 /* re-program planes for existing stream, in case we need to
2073 * free up plane resource for later use
2074 */
2075 if (dc->hwss.apply_ctx_for_surface) {
2076 for (i = 0; i < context->stream_count; i++) {
2077 if (context->streams[i]->mode_changed)
2078 continue;
2079 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2080 dc->hwss.apply_ctx_for_surface(
2081 dc, context->streams[i],
2082 context->stream_status[i].plane_count,
2083 context); /* use new pipe config in new context */
2084 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2085 dc->hwss.post_unlock_program_front_end(dc, context);
2086 }
2087 }
2088
2089 /* Program hardware */
2090 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2091 pipe = &context->res_ctx.pipe_ctx[i];
2092 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2093 }
2094
2095 result = dc->hwss.apply_ctx_to_hw(dc, context);
2096
2097 if (result != DC_OK) {
2098 /* Application of dc_state to hardware stopped. */
2099 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2100 return result;
2101 }
2102
2103 dc_trigger_sync(dc, context);
2104
2105 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2106 for (i = 0; i < context->stream_count; i++) {
2107 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2108
2109 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2110 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2111 }
2112
2113 determine_pipe_unlock_order(dc, context);
2114 /* Program all planes within new context*/
2115 if (dc->res_pool->funcs->prepare_mcache_programming)
2116 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2117 if (dc->hwss.program_front_end_for_ctx) {
2118 dc->hwss.interdependent_update_lock(dc, context, true);
2119 dc->hwss.program_front_end_for_ctx(dc, context);
2120 dc->hwss.interdependent_update_lock(dc, context, false);
2121 dc->hwss.post_unlock_program_front_end(dc, context);
2122 }
2123
2124 if (dc->hwss.commit_subvp_config)
2125 dc->hwss.commit_subvp_config(dc, context);
2126 if (dc->hwss.subvp_pipe_control_lock)
2127 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2128 if (dc->hwss.fams2_global_control_lock)
2129 dc->hwss.fams2_global_control_lock(dc, context, false);
2130
2131 for (i = 0; i < context->stream_count; i++) {
2132 const struct dc_link *link = context->streams[i]->link;
2133
2134 if (!context->streams[i]->mode_changed)
2135 continue;
2136
2137 if (dc->hwss.apply_ctx_for_surface) {
2138 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2139 dc->hwss.apply_ctx_for_surface(
2140 dc, context->streams[i],
2141 context->stream_status[i].plane_count,
2142 context);
2143 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2144 dc->hwss.post_unlock_program_front_end(dc, context);
2145 }
2146
2147 /*
2148 * enable stereo
2149 * TODO rework dc_enable_stereo call to work with validation sets?
2150 */
2151 for (k = 0; k < MAX_PIPES; k++) {
2152 pipe = &context->res_ctx.pipe_ctx[k];
2153
2154 for (l = 0 ; pipe && l < context->stream_count; l++) {
2155 if (context->streams[l] &&
2156 context->streams[l] == pipe->stream &&
2157 dc->hwss.setup_stereo)
2158 dc->hwss.setup_stereo(pipe, dc);
2159 }
2160 }
2161
2162 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2163 context->streams[i]->timing.h_addressable,
2164 context->streams[i]->timing.v_addressable,
2165 context->streams[i]->timing.h_total,
2166 context->streams[i]->timing.v_total,
2167 context->streams[i]->timing.pix_clk_100hz / 10);
2168 }
2169
2170 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2171
2172 if (get_seamless_boot_stream_count(context) == 0 ||
2173 context->stream_count == 0) {
2174 /* Must wait for no flips to be pending before doing optimize bw */
2175 hwss_wait_for_no_pipes_pending(dc, context);
2176 /*
2177 * optimized dispclk depends on ODM setup. Need to wait for ODM
2178 * update pending complete before optimizing bandwidth.
2179 */
2180 hwss_wait_for_odm_update_pending_complete(dc, context);
2181 /* pplib is notified if disp_num changed */
2182 dc->hwss.optimize_bandwidth(dc, context);
2183 /* Need to do otg sync again as otg could be out of sync due to otg
2184 * workaround applied during clock update
2185 */
2186 dc_trigger_sync(dc, context);
2187 }
2188
2189 if (dc->hwss.update_dsc_pg)
2190 dc->hwss.update_dsc_pg(dc, context, true);
2191
2192 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2193 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2194 else
2195 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2196
2197 context->stream_mask = get_stream_mask(dc, context);
2198
2199 if (context->stream_mask != dc->current_state->stream_mask)
2200 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2201
2202 for (i = 0; i < context->stream_count; i++)
2203 context->streams[i]->mode_changed = false;
2204
2205 /* Clear update flags that were set earlier to avoid redundant programming */
2206 for (i = 0; i < context->stream_count; i++) {
2207 context->streams[i]->update_flags.raw = 0x0;
2208 }
2209
2210 old_state = dc->current_state;
2211 dc->current_state = context;
2212
2213 dc_state_release(old_state);
2214
2215 dc_state_retain(dc->current_state);
2216
2217 return result;
2218 }
2219
2220 static bool commit_minimal_transition_state(struct dc *dc,
2221 struct dc_state *transition_base_context);
2222
2223 /**
2224 * dc_commit_streams - Commit current stream state
2225 *
2226 * @dc: DC object with the commit state to be configured in the hardware
2227 * @params: Parameters for the commit, including the streams to be committed
2228 *
2229 * Function responsible for commit streams change to the hardware.
2230 *
2231 * Return:
2232 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2233 * code.
2234 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2235 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2236 {
2237 int i, j;
2238 struct dc_state *context;
2239 enum dc_status res = DC_OK;
2240 struct dc_validation_set set[MAX_STREAMS] = {0};
2241 struct pipe_ctx *pipe;
2242 bool handle_exit_odm2to1 = false;
2243
2244 if (!params)
2245 return DC_ERROR_UNEXPECTED;
2246
2247 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2248 return res;
2249
2250 if (!streams_changed(dc, params->streams, params->stream_count) &&
2251 dc->current_state->power_source == params->power_source)
2252 return res;
2253
2254 dc_exit_ips_for_hw_access(dc);
2255
2256 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2257
2258 for (i = 0; i < params->stream_count; i++) {
2259 struct dc_stream_state *stream = params->streams[i];
2260 struct dc_stream_status *status = dc_stream_get_status(stream);
2261
2262 /* revalidate streams */
2263 res = dc_validate_stream(dc, stream);
2264 if (res != DC_OK)
2265 return res;
2266
2267 dc_stream_log(dc, stream);
2268
2269 set[i].stream = stream;
2270
2271 if (status) {
2272 set[i].plane_count = status->plane_count;
2273 for (j = 0; j < status->plane_count; j++)
2274 set[i].plane_states[j] = status->plane_states[j];
2275 }
2276 }
2277
2278 /* ODM Combine 2:1 power optimization is only applied for single stream
2279 * scenario, it uses extra pipes than needed to reduce power consumption
2280 * We need to switch off this feature to make room for new streams.
2281 */
2282 if (params->stream_count > dc->current_state->stream_count &&
2283 dc->current_state->stream_count == 1) {
2284 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2285 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2286 if (pipe->next_odm_pipe)
2287 handle_exit_odm2to1 = true;
2288 }
2289 }
2290
2291 if (handle_exit_odm2to1)
2292 res = commit_minimal_transition_state(dc, dc->current_state);
2293
2294 context = dc_state_create_current_copy(dc);
2295 if (!context)
2296 goto context_alloc_fail;
2297
2298 context->power_source = params->power_source;
2299
2300 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2301
2302 /*
2303 * Only update link encoder to stream assignment after bandwidth validation passed.
2304 */
2305 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2306 dc->res_pool->funcs->link_encs_assign(
2307 dc, context, context->streams, context->stream_count);
2308
2309 if (res != DC_OK) {
2310 BREAK_TO_DEBUGGER();
2311 goto fail;
2312 }
2313
2314 res = dc_commit_state_no_check(dc, context);
2315
2316 for (i = 0; i < params->stream_count; i++) {
2317 for (j = 0; j < context->stream_count; j++) {
2318 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2319 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2320
2321 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2322 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2323
2324 if (!status)
2325 continue;
2326
2327 if (dc->hwss.is_abm_supported)
2328 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2329 else
2330 status->is_abm_supported = true;
2331 }
2332 }
2333 }
2334
2335 fail:
2336 dc_state_release(context);
2337
2338 context_alloc_fail:
2339
2340 DC_LOG_DC("%s Finished.\n", __func__);
2341
2342 return res;
2343 }
2344
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2345 bool dc_acquire_release_mpc_3dlut(
2346 struct dc *dc, bool acquire,
2347 struct dc_stream_state *stream,
2348 struct dc_3dlut **lut,
2349 struct dc_transfer_func **shaper)
2350 {
2351 int pipe_idx;
2352 bool ret = false;
2353 bool found_pipe_idx = false;
2354 const struct resource_pool *pool = dc->res_pool;
2355 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2356 int mpcc_id = 0;
2357
2358 if (pool && res_ctx) {
2359 if (acquire) {
2360 /*find pipe idx for the given stream*/
2361 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2362 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2363 found_pipe_idx = true;
2364 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2365 break;
2366 }
2367 }
2368 } else
2369 found_pipe_idx = true;/*for release pipe_idx is not required*/
2370
2371 if (found_pipe_idx) {
2372 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2373 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2374 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2375 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2376 }
2377 }
2378 return ret;
2379 }
2380
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2381 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2382 {
2383 int i;
2384 struct pipe_ctx *pipe;
2385
2386 for (i = 0; i < MAX_PIPES; i++) {
2387 pipe = &context->res_ctx.pipe_ctx[i];
2388
2389 // Don't check flip pending on phantom pipes
2390 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2391 continue;
2392
2393 /* Must set to false to start with, due to OR in update function */
2394 pipe->plane_state->status.is_flip_pending = false;
2395 dc->hwss.update_pending_status(pipe);
2396 if (pipe->plane_state->status.is_flip_pending)
2397 return true;
2398 }
2399 return false;
2400 }
2401
2402 /* Perform updates here which need to be deferred until next vupdate
2403 *
2404 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2405 * but forcing lut memory to shutdown state is immediate. This causes
2406 * single frame corruption as lut gets disabled mid-frame unless shutdown
2407 * is deferred until after entering bypass.
2408 */
process_deferred_updates(struct dc * dc)2409 static void process_deferred_updates(struct dc *dc)
2410 {
2411 int i = 0;
2412
2413 if (dc->debug.enable_mem_low_power.bits.cm) {
2414 ASSERT(dc->dcn_ip->max_num_dpp);
2415 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2416 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2417 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2418 }
2419 }
2420
dc_post_update_surfaces_to_stream(struct dc * dc)2421 void dc_post_update_surfaces_to_stream(struct dc *dc)
2422 {
2423 int i;
2424 struct dc_state *context = dc->current_state;
2425
2426 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2427 return;
2428
2429 post_surface_trace(dc);
2430
2431 /*
2432 * Only relevant for DCN behavior where we can guarantee the optimization
2433 * is safe to apply - retain the legacy behavior for DCE.
2434 */
2435
2436 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2437 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2438 else {
2439 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2440
2441 if (is_flip_pending_in_pipes(dc, context))
2442 return;
2443
2444 for (i = 0; i < dc->res_pool->pipe_count; i++)
2445 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2446 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2447 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2448 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2449 }
2450
2451 process_deferred_updates(dc);
2452
2453 dc->hwss.optimize_bandwidth(dc, context);
2454
2455 if (dc->hwss.update_dsc_pg)
2456 dc->hwss.update_dsc_pg(dc, context, true);
2457 }
2458
2459 dc->optimized_required = false;
2460 dc->wm_optimized_required = false;
2461 }
2462
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2463 bool dc_set_generic_gpio_for_stereo(bool enable,
2464 struct gpio_service *gpio_service)
2465 {
2466 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2467 struct gpio_pin_info pin_info;
2468 struct gpio *generic;
2469 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2470 GFP_KERNEL);
2471
2472 if (!config)
2473 return false;
2474 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2475
2476 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2477 kfree(config);
2478 return false;
2479 } else {
2480 generic = dal_gpio_service_create_generic_mux(
2481 gpio_service,
2482 pin_info.offset,
2483 pin_info.mask);
2484 }
2485
2486 if (!generic) {
2487 kfree(config);
2488 return false;
2489 }
2490
2491 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2492
2493 config->enable_output_from_mux = enable;
2494 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2495
2496 if (gpio_result == GPIO_RESULT_OK)
2497 gpio_result = dal_mux_setup_config(generic, config);
2498
2499 if (gpio_result == GPIO_RESULT_OK) {
2500 dal_gpio_close(generic);
2501 dal_gpio_destroy_generic_mux(&generic);
2502 kfree(config);
2503 return true;
2504 } else {
2505 dal_gpio_close(generic);
2506 dal_gpio_destroy_generic_mux(&generic);
2507 kfree(config);
2508 return false;
2509 }
2510 }
2511
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2512 static bool is_surface_in_context(
2513 const struct dc_state *context,
2514 const struct dc_plane_state *plane_state)
2515 {
2516 int j;
2517
2518 for (j = 0; j < MAX_PIPES; j++) {
2519 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2520
2521 if (plane_state == pipe_ctx->plane_state) {
2522 return true;
2523 }
2524 }
2525
2526 return false;
2527 }
2528
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2529 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2530 {
2531 union surface_update_flags *update_flags = &u->surface->update_flags;
2532 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2533
2534 if (!u->plane_info)
2535 return UPDATE_TYPE_FAST;
2536
2537 if (u->plane_info->color_space != u->surface->color_space) {
2538 update_flags->bits.color_space_change = 1;
2539 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2540 }
2541
2542 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2543 update_flags->bits.horizontal_mirror_change = 1;
2544 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2545 }
2546
2547 if (u->plane_info->rotation != u->surface->rotation) {
2548 update_flags->bits.rotation_change = 1;
2549 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2550 }
2551
2552 if (u->plane_info->format != u->surface->format) {
2553 update_flags->bits.pixel_format_change = 1;
2554 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2555 }
2556
2557 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2558 update_flags->bits.stereo_format_change = 1;
2559 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2560 }
2561
2562 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2563 update_flags->bits.per_pixel_alpha_change = 1;
2564 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2565 }
2566
2567 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2568 update_flags->bits.global_alpha_change = 1;
2569 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2570 }
2571
2572 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2573 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2574 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2575 /* During DCC on/off, stutter period is calculated before
2576 * DCC has fully transitioned. This results in incorrect
2577 * stutter period calculation. Triggering a full update will
2578 * recalculate stutter period.
2579 */
2580 update_flags->bits.dcc_change = 1;
2581 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2582 }
2583
2584 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2585 resource_pixel_format_to_bpp(u->surface->format)) {
2586 /* different bytes per element will require full bandwidth
2587 * and DML calculation
2588 */
2589 update_flags->bits.bpp_change = 1;
2590 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2591 }
2592
2593 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2594 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2595 update_flags->bits.plane_size_change = 1;
2596 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2597 }
2598
2599
2600 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2601 sizeof(struct dc_tiling_info)) != 0) {
2602 update_flags->bits.swizzle_change = 1;
2603 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2604
2605 /* todo: below are HW dependent, we should add a hook to
2606 * DCE/N resource and validated there.
2607 */
2608 if (!dc->debug.skip_full_updated_if_possible) {
2609 /* swizzled mode requires RQ to be setup properly,
2610 * thus need to run DML to calculate RQ settings
2611 */
2612 update_flags->bits.bandwidth_change = 1;
2613 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2614 }
2615 }
2616
2617 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2618 return update_type;
2619 }
2620
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2621 static enum surface_update_type get_scaling_info_update_type(
2622 const struct dc *dc,
2623 const struct dc_surface_update *u)
2624 {
2625 union surface_update_flags *update_flags = &u->surface->update_flags;
2626
2627 if (!u->scaling_info)
2628 return UPDATE_TYPE_FAST;
2629
2630 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2631 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2632 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2633 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2634 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2635 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2636 || u->scaling_info->scaling_quality.integer_scaling !=
2637 u->surface->scaling_quality.integer_scaling) {
2638 update_flags->bits.scaling_change = 1;
2639
2640 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2641 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2642 /* Making src rect bigger requires a bandwidth change */
2643 update_flags->bits.clock_change = 1;
2644
2645 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2646 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2647 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2648 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2649 /* Making dst rect smaller requires a bandwidth change */
2650 update_flags->bits.bandwidth_change = 1;
2651
2652 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2653 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2654 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2655 /* Changing clip size of a large surface may result in MPC slice count change */
2656 update_flags->bits.bandwidth_change = 1;
2657 }
2658
2659 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2660 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2661 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2662 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2663 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2664 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2665 update_flags->bits.position_change = 1;
2666
2667 /* process every update flag before returning */
2668 if (update_flags->bits.clock_change
2669 || update_flags->bits.bandwidth_change
2670 || update_flags->bits.scaling_change)
2671 return UPDATE_TYPE_FULL;
2672
2673 if (update_flags->bits.position_change)
2674 return UPDATE_TYPE_MED;
2675
2676 return UPDATE_TYPE_FAST;
2677 }
2678
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2679 static enum surface_update_type det_surface_update(const struct dc *dc,
2680 const struct dc_surface_update *u)
2681 {
2682 const struct dc_state *context = dc->current_state;
2683 enum surface_update_type type;
2684 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2685 union surface_update_flags *update_flags = &u->surface->update_flags;
2686
2687 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2688 update_flags->raw = 0xFFFFFFFF;
2689 return UPDATE_TYPE_FULL;
2690 }
2691
2692 update_flags->raw = 0; // Reset all flags
2693
2694 type = get_plane_info_update_type(dc, u);
2695 elevate_update_type(&overall_type, type);
2696
2697 type = get_scaling_info_update_type(dc, u);
2698 elevate_update_type(&overall_type, type);
2699
2700 if (u->flip_addr) {
2701 update_flags->bits.addr_update = 1;
2702 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2703 update_flags->bits.tmz_changed = 1;
2704 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2705 }
2706 }
2707 if (u->in_transfer_func)
2708 update_flags->bits.in_transfer_func_change = 1;
2709
2710 if (u->input_csc_color_matrix)
2711 update_flags->bits.input_csc_change = 1;
2712
2713 if (u->coeff_reduction_factor)
2714 update_flags->bits.coeff_reduction_change = 1;
2715
2716 if (u->gamut_remap_matrix)
2717 update_flags->bits.gamut_remap_change = 1;
2718
2719 if (u->blend_tf)
2720 update_flags->bits.gamma_change = 1;
2721
2722 if (u->gamma) {
2723 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2724
2725 if (u->plane_info)
2726 format = u->plane_info->format;
2727 else
2728 format = u->surface->format;
2729
2730 if (dce_use_lut(format))
2731 update_flags->bits.gamma_change = 1;
2732 }
2733
2734 if (u->lut3d_func || u->func_shaper)
2735 update_flags->bits.lut_3d = 1;
2736
2737 if (u->hdr_mult.value)
2738 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2739 update_flags->bits.hdr_mult = 1;
2740 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2741 }
2742
2743 if (u->sdr_white_level_nits)
2744 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2745 update_flags->bits.sdr_white_level_nits = 1;
2746 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2747 }
2748
2749 if (u->cm2_params) {
2750 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2751 != u->surface->mcm_shaper_3dlut_setting)
2752 || (u->cm2_params->component_settings.lut1d_enable
2753 != u->surface->mcm_lut1d_enable))
2754 update_flags->bits.mcm_transfer_function_enable_change = 1;
2755 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2756 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2757 update_flags->bits.mcm_transfer_function_enable_change = 1;
2758 }
2759 if (update_flags->bits.in_transfer_func_change) {
2760 type = UPDATE_TYPE_MED;
2761 elevate_update_type(&overall_type, type);
2762 }
2763
2764 if (update_flags->bits.lut_3d &&
2765 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2766 type = UPDATE_TYPE_FULL;
2767 elevate_update_type(&overall_type, type);
2768 }
2769 if (update_flags->bits.mcm_transfer_function_enable_change) {
2770 type = UPDATE_TYPE_FULL;
2771 elevate_update_type(&overall_type, type);
2772 }
2773
2774 if (dc->debug.enable_legacy_fast_update &&
2775 (update_flags->bits.gamma_change ||
2776 update_flags->bits.gamut_remap_change ||
2777 update_flags->bits.input_csc_change ||
2778 update_flags->bits.coeff_reduction_change)) {
2779 type = UPDATE_TYPE_FULL;
2780 elevate_update_type(&overall_type, type);
2781 }
2782 return overall_type;
2783 }
2784
2785 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2786 * while both planes are flip_immediate
2787 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2788 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2789 {
2790 bool has_flip_immediate_plane = false;
2791 int i;
2792
2793 for (i = 0; i < surface_count; i++) {
2794 if (updates[i].surface->flip_immediate) {
2795 has_flip_immediate_plane = true;
2796 break;
2797 }
2798 }
2799
2800 if (has_flip_immediate_plane && surface_count > 1) {
2801 for (i = 0; i < surface_count; i++) {
2802 if (updates[i].surface->flip_immediate)
2803 updates[i].surface->update_flags.bits.addr_update = 1;
2804 }
2805 }
2806 }
2807
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2808 static enum surface_update_type check_update_surfaces_for_stream(
2809 struct dc *dc,
2810 struct dc_surface_update *updates,
2811 int surface_count,
2812 struct dc_stream_update *stream_update,
2813 const struct dc_stream_status *stream_status)
2814 {
2815 int i;
2816 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2817
2818 if (dc->idle_optimizations_allowed)
2819 overall_type = UPDATE_TYPE_FULL;
2820
2821 if (stream_status == NULL || stream_status->plane_count != surface_count)
2822 overall_type = UPDATE_TYPE_FULL;
2823
2824 if (stream_update && stream_update->pending_test_pattern) {
2825 overall_type = UPDATE_TYPE_FULL;
2826 }
2827
2828 if (stream_update && stream_update->hw_cursor_req) {
2829 overall_type = UPDATE_TYPE_FULL;
2830 }
2831
2832 /* some stream updates require passive update */
2833 if (stream_update) {
2834 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2835
2836 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2837 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2838 stream_update->integer_scaling_update)
2839 su_flags->bits.scaling = 1;
2840
2841 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2842 su_flags->bits.out_tf = 1;
2843
2844 if (stream_update->abm_level)
2845 su_flags->bits.abm_level = 1;
2846
2847 if (stream_update->dpms_off)
2848 su_flags->bits.dpms_off = 1;
2849
2850 if (stream_update->gamut_remap)
2851 su_flags->bits.gamut_remap = 1;
2852
2853 if (stream_update->wb_update)
2854 su_flags->bits.wb_update = 1;
2855
2856 if (stream_update->dsc_config)
2857 su_flags->bits.dsc_changed = 1;
2858
2859 if (stream_update->mst_bw_update)
2860 su_flags->bits.mst_bw = 1;
2861
2862 if (stream_update->stream->freesync_on_desktop &&
2863 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2864 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2865 su_flags->bits.fams_changed = 1;
2866
2867 if (stream_update->scaler_sharpener_update)
2868 su_flags->bits.scaler_sharpener = 1;
2869
2870 if (stream_update->sharpening_required)
2871 su_flags->bits.sharpening_required = 1;
2872
2873 if (stream_update->output_color_space)
2874 su_flags->bits.out_csc = 1;
2875
2876 if (su_flags->raw != 0)
2877 overall_type = UPDATE_TYPE_FULL;
2878
2879 if (stream_update->output_csc_transform)
2880 su_flags->bits.out_csc = 1;
2881
2882 /* Output transfer function changes do not require bandwidth recalculation,
2883 * so don't trigger a full update
2884 */
2885 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2886 su_flags->bits.out_tf = 1;
2887 }
2888
2889 for (i = 0 ; i < surface_count; i++) {
2890 enum surface_update_type type =
2891 det_surface_update(dc, &updates[i]);
2892
2893 elevate_update_type(&overall_type, type);
2894 }
2895
2896 return overall_type;
2897 }
2898
2899 /*
2900 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2901 *
2902 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2903 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2904 enum surface_update_type dc_check_update_surfaces_for_stream(
2905 struct dc *dc,
2906 struct dc_surface_update *updates,
2907 int surface_count,
2908 struct dc_stream_update *stream_update,
2909 const struct dc_stream_status *stream_status)
2910 {
2911 int i;
2912 enum surface_update_type type;
2913
2914 if (stream_update)
2915 stream_update->stream->update_flags.raw = 0;
2916 for (i = 0; i < surface_count; i++)
2917 updates[i].surface->update_flags.raw = 0;
2918
2919 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2920 if (type == UPDATE_TYPE_FULL) {
2921 if (stream_update) {
2922 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2923 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2924 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2925 }
2926 for (i = 0; i < surface_count; i++)
2927 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2928 }
2929
2930 if (type == UPDATE_TYPE_FAST) {
2931 // If there's an available clock comparator, we use that.
2932 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2933 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2934 dc->optimized_required = true;
2935 // Else we fallback to mem compare.
2936 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2937 dc->optimized_required = true;
2938 }
2939
2940 dc->optimized_required |= dc->wm_optimized_required;
2941 }
2942
2943 return type;
2944 }
2945
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2946 static struct dc_stream_status *stream_get_status(
2947 struct dc_state *ctx,
2948 struct dc_stream_state *stream)
2949 {
2950 uint8_t i;
2951
2952 for (i = 0; i < ctx->stream_count; i++) {
2953 if (stream == ctx->streams[i]) {
2954 return &ctx->stream_status[i];
2955 }
2956 }
2957
2958 return NULL;
2959 }
2960
2961 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2962
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2963 static void copy_surface_update_to_plane(
2964 struct dc_plane_state *surface,
2965 struct dc_surface_update *srf_update)
2966 {
2967 if (srf_update->flip_addr) {
2968 surface->address = srf_update->flip_addr->address;
2969 surface->flip_immediate =
2970 srf_update->flip_addr->flip_immediate;
2971 surface->time.time_elapsed_in_us[surface->time.index] =
2972 srf_update->flip_addr->flip_timestamp_in_us -
2973 surface->time.prev_update_time_in_us;
2974 surface->time.prev_update_time_in_us =
2975 srf_update->flip_addr->flip_timestamp_in_us;
2976 surface->time.index++;
2977 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2978 surface->time.index = 0;
2979
2980 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2981 }
2982
2983 if (srf_update->scaling_info) {
2984 surface->scaling_quality =
2985 srf_update->scaling_info->scaling_quality;
2986 surface->dst_rect =
2987 srf_update->scaling_info->dst_rect;
2988 surface->src_rect =
2989 srf_update->scaling_info->src_rect;
2990 surface->clip_rect =
2991 srf_update->scaling_info->clip_rect;
2992 }
2993
2994 if (srf_update->plane_info) {
2995 surface->color_space =
2996 srf_update->plane_info->color_space;
2997 surface->format =
2998 srf_update->plane_info->format;
2999 surface->plane_size =
3000 srf_update->plane_info->plane_size;
3001 surface->rotation =
3002 srf_update->plane_info->rotation;
3003 surface->horizontal_mirror =
3004 srf_update->plane_info->horizontal_mirror;
3005 surface->stereo_format =
3006 srf_update->plane_info->stereo_format;
3007 surface->tiling_info =
3008 srf_update->plane_info->tiling_info;
3009 surface->visible =
3010 srf_update->plane_info->visible;
3011 surface->per_pixel_alpha =
3012 srf_update->plane_info->per_pixel_alpha;
3013 surface->global_alpha =
3014 srf_update->plane_info->global_alpha;
3015 surface->global_alpha_value =
3016 srf_update->plane_info->global_alpha_value;
3017 surface->dcc =
3018 srf_update->plane_info->dcc;
3019 surface->layer_index =
3020 srf_update->plane_info->layer_index;
3021 }
3022
3023 if (srf_update->gamma) {
3024 memcpy(&surface->gamma_correction.entries,
3025 &srf_update->gamma->entries,
3026 sizeof(struct dc_gamma_entries));
3027 surface->gamma_correction.is_identity =
3028 srf_update->gamma->is_identity;
3029 surface->gamma_correction.num_entries =
3030 srf_update->gamma->num_entries;
3031 surface->gamma_correction.type =
3032 srf_update->gamma->type;
3033 }
3034
3035 if (srf_update->in_transfer_func) {
3036 surface->in_transfer_func.sdr_ref_white_level =
3037 srf_update->in_transfer_func->sdr_ref_white_level;
3038 surface->in_transfer_func.tf =
3039 srf_update->in_transfer_func->tf;
3040 surface->in_transfer_func.type =
3041 srf_update->in_transfer_func->type;
3042 memcpy(&surface->in_transfer_func.tf_pts,
3043 &srf_update->in_transfer_func->tf_pts,
3044 sizeof(struct dc_transfer_func_distributed_points));
3045 }
3046
3047 if (srf_update->cm2_params) {
3048 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3049 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3050 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3051 }
3052
3053 if (srf_update->func_shaper) {
3054 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3055 sizeof(surface->in_shaper_func));
3056
3057 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3058 surface->mcm_luts.shaper = &surface->in_shaper_func;
3059 }
3060
3061 if (srf_update->lut3d_func)
3062 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3063 sizeof(surface->lut3d_func));
3064
3065 if (srf_update->hdr_mult.value)
3066 surface->hdr_mult =
3067 srf_update->hdr_mult;
3068
3069 if (srf_update->sdr_white_level_nits)
3070 surface->sdr_white_level_nits =
3071 srf_update->sdr_white_level_nits;
3072
3073 if (srf_update->blend_tf) {
3074 memcpy(&surface->blend_tf, srf_update->blend_tf,
3075 sizeof(surface->blend_tf));
3076
3077 if (surface->mcm_lut1d_enable)
3078 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3079 }
3080
3081 if (srf_update->cm2_params || srf_update->blend_tf)
3082 surface->lut_bank_a = !surface->lut_bank_a;
3083
3084 if (srf_update->input_csc_color_matrix)
3085 surface->input_csc_color_matrix =
3086 *srf_update->input_csc_color_matrix;
3087
3088 if (srf_update->coeff_reduction_factor)
3089 surface->coeff_reduction_factor =
3090 *srf_update->coeff_reduction_factor;
3091
3092 if (srf_update->gamut_remap_matrix)
3093 surface->gamut_remap_matrix =
3094 *srf_update->gamut_remap_matrix;
3095
3096 if (srf_update->cursor_csc_color_matrix)
3097 surface->cursor_csc_color_matrix =
3098 *srf_update->cursor_csc_color_matrix;
3099
3100 if (srf_update->bias_and_scale.bias_and_scale_valid)
3101 surface->bias_and_scale =
3102 srf_update->bias_and_scale;
3103 }
3104
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3105 static void copy_stream_update_to_stream(struct dc *dc,
3106 struct dc_state *context,
3107 struct dc_stream_state *stream,
3108 struct dc_stream_update *update)
3109 {
3110 struct dc_context *dc_ctx = dc->ctx;
3111
3112 if (update == NULL || stream == NULL)
3113 return;
3114
3115 if (update->src.height && update->src.width)
3116 stream->src = update->src;
3117
3118 if (update->dst.height && update->dst.width)
3119 stream->dst = update->dst;
3120
3121 if (update->out_transfer_func) {
3122 stream->out_transfer_func.sdr_ref_white_level =
3123 update->out_transfer_func->sdr_ref_white_level;
3124 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3125 stream->out_transfer_func.type =
3126 update->out_transfer_func->type;
3127 memcpy(&stream->out_transfer_func.tf_pts,
3128 &update->out_transfer_func->tf_pts,
3129 sizeof(struct dc_transfer_func_distributed_points));
3130 }
3131
3132 if (update->hdr_static_metadata)
3133 stream->hdr_static_metadata = *update->hdr_static_metadata;
3134
3135 if (update->abm_level)
3136 stream->abm_level = *update->abm_level;
3137
3138 if (update->periodic_interrupt)
3139 stream->periodic_interrupt = *update->periodic_interrupt;
3140
3141 if (update->gamut_remap)
3142 stream->gamut_remap_matrix = *update->gamut_remap;
3143
3144 /* Note: this being updated after mode set is currently not a use case
3145 * however if it arises OCSC would need to be reprogrammed at the
3146 * minimum
3147 */
3148 if (update->output_color_space)
3149 stream->output_color_space = *update->output_color_space;
3150
3151 if (update->output_csc_transform)
3152 stream->csc_color_matrix = *update->output_csc_transform;
3153
3154 if (update->vrr_infopacket)
3155 stream->vrr_infopacket = *update->vrr_infopacket;
3156
3157 if (update->hw_cursor_req)
3158 stream->hw_cursor_req = *update->hw_cursor_req;
3159
3160 if (update->allow_freesync)
3161 stream->allow_freesync = *update->allow_freesync;
3162
3163 if (update->vrr_active_variable)
3164 stream->vrr_active_variable = *update->vrr_active_variable;
3165
3166 if (update->vrr_active_fixed)
3167 stream->vrr_active_fixed = *update->vrr_active_fixed;
3168
3169 if (update->crtc_timing_adjust) {
3170 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3171 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max)
3172 update->crtc_timing_adjust->timing_adjust_pending = true;
3173 stream->adjust = *update->crtc_timing_adjust;
3174 update->crtc_timing_adjust->timing_adjust_pending = false;
3175 }
3176
3177 if (update->dpms_off)
3178 stream->dpms_off = *update->dpms_off;
3179
3180 if (update->hfvsif_infopacket)
3181 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3182
3183 if (update->vtem_infopacket)
3184 stream->vtem_infopacket = *update->vtem_infopacket;
3185
3186 if (update->vsc_infopacket)
3187 stream->vsc_infopacket = *update->vsc_infopacket;
3188
3189 if (update->vsp_infopacket)
3190 stream->vsp_infopacket = *update->vsp_infopacket;
3191
3192 if (update->adaptive_sync_infopacket)
3193 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3194
3195 if (update->dither_option)
3196 stream->dither_option = *update->dither_option;
3197
3198 if (update->pending_test_pattern)
3199 stream->test_pattern = *update->pending_test_pattern;
3200 /* update current stream with writeback info */
3201 if (update->wb_update) {
3202 int i;
3203
3204 stream->num_wb_info = update->wb_update->num_wb_info;
3205 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3206 for (i = 0; i < stream->num_wb_info; i++)
3207 stream->writeback_info[i] =
3208 update->wb_update->writeback_info[i];
3209 }
3210 if (update->dsc_config) {
3211 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3212 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3213 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3214 update->dsc_config->num_slices_v != 0);
3215
3216 /* Use temporarry context for validating new DSC config */
3217 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3218
3219 if (dsc_validate_context) {
3220 stream->timing.dsc_cfg = *update->dsc_config;
3221 stream->timing.flags.DSC = enable_dsc;
3222 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3223 stream->timing.dsc_cfg = old_dsc_cfg;
3224 stream->timing.flags.DSC = old_dsc_enabled;
3225 update->dsc_config = NULL;
3226 }
3227
3228 dc_state_release(dsc_validate_context);
3229 } else {
3230 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3231 update->dsc_config = NULL;
3232 }
3233 }
3234 if (update->scaler_sharpener_update)
3235 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3236 if (update->sharpening_required)
3237 stream->sharpening_required = *update->sharpening_required;
3238 }
3239
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3240 static void backup_planes_and_stream_state(
3241 struct dc_scratch_space *scratch,
3242 struct dc_stream_state *stream)
3243 {
3244 int i;
3245 struct dc_stream_status *status = dc_stream_get_status(stream);
3246
3247 if (!status)
3248 return;
3249
3250 for (i = 0; i < status->plane_count; i++) {
3251 scratch->plane_states[i] = *status->plane_states[i];
3252 }
3253 scratch->stream_state = *stream;
3254 }
3255
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3256 static void restore_planes_and_stream_state(
3257 struct dc_scratch_space *scratch,
3258 struct dc_stream_state *stream)
3259 {
3260 int i;
3261 struct dc_stream_status *status = dc_stream_get_status(stream);
3262
3263 if (!status)
3264 return;
3265
3266 for (i = 0; i < status->plane_count; i++) {
3267 /* refcount will always be valid, restore everything else */
3268 struct kref refcount = status->plane_states[i]->refcount;
3269 *status->plane_states[i] = scratch->plane_states[i];
3270 status->plane_states[i]->refcount = refcount;
3271 }
3272 *stream = scratch->stream_state;
3273 }
3274
3275 /**
3276 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3277 *
3278 * @dc: Current DC state
3279 * @context: New DC state to be programmed
3280 * @surface_count: Number of surfaces that have an updated
3281 * @stream: Corresponding stream to be updated in the current flip
3282 *
3283 * Updating seamless boot flags do not need to be part of the commit sequence. This
3284 * helper function will update the seamless boot flags on each flip (if required)
3285 * outside of the HW commit sequence (fast or slow).
3286 *
3287 * Return: void
3288 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3289 static void update_seamless_boot_flags(struct dc *dc,
3290 struct dc_state *context,
3291 int surface_count,
3292 struct dc_stream_state *stream)
3293 {
3294 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3295 /* Optimize seamless boot flag keeps clocks and watermarks high until
3296 * first flip. After first flip, optimization is required to lower
3297 * bandwidth. Important to note that it is expected UEFI will
3298 * only light up a single display on POST, therefore we only expect
3299 * one stream with seamless boot flag set.
3300 */
3301 if (stream->apply_seamless_boot_optimization) {
3302 stream->apply_seamless_boot_optimization = false;
3303
3304 if (get_seamless_boot_stream_count(context) == 0)
3305 dc->optimized_required = true;
3306 }
3307 }
3308 }
3309
3310 /**
3311 * update_planes_and_stream_state() - The function takes planes and stream
3312 * updates as inputs and determines the appropriate update type. If update type
3313 * is FULL, the function allocates a new context, populates and validates it.
3314 * Otherwise, it updates current dc context. The function will return both
3315 * new_context and new_update_type back to the caller. The function also backs
3316 * up both current and new contexts into corresponding dc state scratch memory.
3317 * TODO: The function does too many things, and even conditionally allocates dc
3318 * context memory implicitly. We should consider to break it down.
3319 *
3320 * @dc: Current DC state
3321 * @srf_updates: an array of surface updates
3322 * @surface_count: surface update count
3323 * @stream: Corresponding stream to be updated
3324 * @stream_update: stream update
3325 * @new_update_type: [out] determined update type by the function
3326 * @new_context: [out] new context allocated and validated if update type is
3327 * FULL, reference to current context if update type is less than FULL.
3328 *
3329 * Return: true if a valid update is populated into new_context, false
3330 * otherwise.
3331 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3332 static bool update_planes_and_stream_state(struct dc *dc,
3333 struct dc_surface_update *srf_updates, int surface_count,
3334 struct dc_stream_state *stream,
3335 struct dc_stream_update *stream_update,
3336 enum surface_update_type *new_update_type,
3337 struct dc_state **new_context)
3338 {
3339 struct dc_state *context;
3340 int i, j;
3341 enum surface_update_type update_type;
3342 const struct dc_stream_status *stream_status;
3343 struct dc_context *dc_ctx = dc->ctx;
3344
3345 stream_status = dc_stream_get_status(stream);
3346
3347 if (!stream_status) {
3348 if (surface_count) /* Only an error condition if surf_count non-zero*/
3349 ASSERT(false);
3350
3351 return false; /* Cannot commit surface to stream that is not committed */
3352 }
3353
3354 context = dc->current_state;
3355 update_type = dc_check_update_surfaces_for_stream(
3356 dc, srf_updates, surface_count, stream_update, stream_status);
3357 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3358 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3359 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3360 */
3361 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3362 if (update_type == UPDATE_TYPE_FULL)
3363 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3364
3365 /* update current stream with the new updates */
3366 copy_stream_update_to_stream(dc, context, stream, stream_update);
3367
3368 /* do not perform surface update if surface has invalid dimensions
3369 * (all zero) and no scaling_info is provided
3370 */
3371 if (surface_count > 0) {
3372 for (i = 0; i < surface_count; i++) {
3373 if ((srf_updates[i].surface->src_rect.width == 0 ||
3374 srf_updates[i].surface->src_rect.height == 0 ||
3375 srf_updates[i].surface->dst_rect.width == 0 ||
3376 srf_updates[i].surface->dst_rect.height == 0) &&
3377 (!srf_updates[i].scaling_info ||
3378 srf_updates[i].scaling_info->src_rect.width == 0 ||
3379 srf_updates[i].scaling_info->src_rect.height == 0 ||
3380 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3381 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3382 DC_ERROR("Invalid src/dst rects in surface update!\n");
3383 return false;
3384 }
3385 }
3386 }
3387
3388 if (update_type >= update_surface_trace_level)
3389 update_surface_trace(dc, srf_updates, surface_count);
3390
3391 for (i = 0; i < surface_count; i++)
3392 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3393
3394 if (update_type >= UPDATE_TYPE_FULL) {
3395 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3396
3397 for (i = 0; i < surface_count; i++)
3398 new_planes[i] = srf_updates[i].surface;
3399
3400 /* initialize scratch memory for building context */
3401 context = dc_state_create_copy(dc->current_state);
3402 if (context == NULL) {
3403 DC_ERROR("Failed to allocate new validate context!\n");
3404 return false;
3405 }
3406
3407 /* For each full update, remove all existing phantom pipes first.
3408 * Ensures that we have enough pipes for newly added MPO planes
3409 */
3410 dc_state_remove_phantom_streams_and_planes(dc, context);
3411 dc_state_release_phantom_streams_and_planes(dc, context);
3412
3413 /*remove old surfaces from context */
3414 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3415
3416 BREAK_TO_DEBUGGER();
3417 goto fail;
3418 }
3419
3420 /* add surface to context */
3421 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3422
3423 BREAK_TO_DEBUGGER();
3424 goto fail;
3425 }
3426 }
3427
3428 /* save update parameters into surface */
3429 for (i = 0; i < surface_count; i++) {
3430 struct dc_plane_state *surface = srf_updates[i].surface;
3431
3432 if (update_type != UPDATE_TYPE_MED)
3433 continue;
3434 if (surface->update_flags.bits.position_change) {
3435 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3436 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3437
3438 if (pipe_ctx->plane_state != surface)
3439 continue;
3440
3441 resource_build_scaling_params(pipe_ctx);
3442 }
3443 }
3444 }
3445
3446 if (update_type == UPDATE_TYPE_FULL) {
3447 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3448 BREAK_TO_DEBUGGER();
3449 goto fail;
3450 }
3451 }
3452 update_seamless_boot_flags(dc, context, surface_count, stream);
3453
3454 *new_context = context;
3455 *new_update_type = update_type;
3456 if (update_type == UPDATE_TYPE_FULL)
3457 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3458
3459 return true;
3460
3461 fail:
3462 dc_state_release(context);
3463
3464 return false;
3465
3466 }
3467
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3468 static void commit_planes_do_stream_update(struct dc *dc,
3469 struct dc_stream_state *stream,
3470 struct dc_stream_update *stream_update,
3471 enum surface_update_type update_type,
3472 struct dc_state *context)
3473 {
3474 int j;
3475
3476 // Stream updates
3477 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3478 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3479
3480 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3481
3482 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3483 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3484
3485 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3486 stream_update->vrr_infopacket ||
3487 stream_update->vsc_infopacket ||
3488 stream_update->vsp_infopacket ||
3489 stream_update->hfvsif_infopacket ||
3490 stream_update->adaptive_sync_infopacket ||
3491 stream_update->vtem_infopacket) {
3492 resource_build_info_frame(pipe_ctx);
3493 dc->hwss.update_info_frame(pipe_ctx);
3494
3495 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3496 dc->link_srv->dp_trace_source_sequence(
3497 pipe_ctx->stream->link,
3498 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3499 }
3500
3501 if (stream_update->hdr_static_metadata &&
3502 stream->use_dynamic_meta &&
3503 dc->hwss.set_dmdata_attributes &&
3504 pipe_ctx->stream->dmdata_address.quad_part != 0)
3505 dc->hwss.set_dmdata_attributes(pipe_ctx);
3506
3507 if (stream_update->gamut_remap)
3508 dc_stream_set_gamut_remap(dc, stream);
3509
3510 if (stream_update->output_csc_transform)
3511 dc_stream_program_csc_matrix(dc, stream);
3512
3513 if (stream_update->dither_option) {
3514 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3515 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3516 &pipe_ctx->stream->bit_depth_params);
3517 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3518 &stream->bit_depth_params,
3519 &stream->clamping);
3520 while (odm_pipe) {
3521 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3522 &stream->bit_depth_params,
3523 &stream->clamping);
3524 odm_pipe = odm_pipe->next_odm_pipe;
3525 }
3526 }
3527
3528 if (stream_update->cursor_attributes)
3529 program_cursor_attributes(dc, stream);
3530
3531 if (stream_update->cursor_position)
3532 program_cursor_position(dc, stream);
3533
3534 /* Full fe update*/
3535 if (update_type == UPDATE_TYPE_FAST)
3536 continue;
3537
3538 if (stream_update->dsc_config)
3539 dc->link_srv->update_dsc_config(pipe_ctx);
3540
3541 if (stream_update->mst_bw_update) {
3542 if (stream_update->mst_bw_update->is_increase)
3543 dc->link_srv->increase_mst_payload(pipe_ctx,
3544 stream_update->mst_bw_update->mst_stream_bw);
3545 else
3546 dc->link_srv->reduce_mst_payload(pipe_ctx,
3547 stream_update->mst_bw_update->mst_stream_bw);
3548 }
3549
3550 if (stream_update->pending_test_pattern) {
3551 /*
3552 * test pattern params depends on ODM topology
3553 * changes that we could be applying to front
3554 * end. Since at the current stage front end
3555 * changes are not yet applied. We can only
3556 * apply test pattern in hw based on current
3557 * state and populate the final test pattern
3558 * params in new state. If current and new test
3559 * pattern params are different as result of
3560 * different ODM topology being used, it will be
3561 * detected and handle during front end
3562 * programming update.
3563 */
3564 dc->link_srv->dp_set_test_pattern(stream->link,
3565 stream->test_pattern.type,
3566 stream->test_pattern.color_space,
3567 stream->test_pattern.p_link_settings,
3568 stream->test_pattern.p_custom_pattern,
3569 stream->test_pattern.cust_pattern_size);
3570 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3571 }
3572
3573 if (stream_update->dpms_off) {
3574 if (*stream_update->dpms_off) {
3575 dc->link_srv->set_dpms_off(pipe_ctx);
3576 /* for dpms, keep acquired resources*/
3577 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3578 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3579
3580 dc->optimized_required = true;
3581
3582 } else {
3583 if (get_seamless_boot_stream_count(context) == 0)
3584 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3585 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3586 }
3587 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3588 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3589 /*
3590 * Workaround for firmware issue in some receivers where they don't pick up
3591 * correct output color space unless DP link is disabled/re-enabled
3592 */
3593 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3594 }
3595
3596 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3597 bool should_program_abm = true;
3598
3599 // if otg funcs defined check if blanked before programming
3600 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3601 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3602 should_program_abm = false;
3603
3604 if (should_program_abm) {
3605 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3606 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3607 } else {
3608 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3609 pipe_ctx->stream_res.abm, stream->abm_level);
3610 }
3611 }
3612 }
3613 }
3614 }
3615 }
3616
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3617 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3618 {
3619 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3620 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3621 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3622 return true;
3623
3624 if (stream->link->replay_settings.config.replay_supported)
3625 return true;
3626
3627 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3628 return true;
3629
3630 return false;
3631 }
3632
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3633 void dc_dmub_update_dirty_rect(struct dc *dc,
3634 int surface_count,
3635 struct dc_stream_state *stream,
3636 struct dc_surface_update *srf_updates,
3637 struct dc_state *context)
3638 {
3639 union dmub_rb_cmd cmd;
3640 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3641 unsigned int i, j;
3642 unsigned int panel_inst = 0;
3643
3644 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3645 return;
3646
3647 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3648 return;
3649
3650 memset(&cmd, 0x0, sizeof(cmd));
3651 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3652 cmd.update_dirty_rect.header.sub_type = 0;
3653 cmd.update_dirty_rect.header.payload_bytes =
3654 sizeof(cmd.update_dirty_rect) -
3655 sizeof(cmd.update_dirty_rect.header);
3656 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3657 for (i = 0; i < surface_count; i++) {
3658 struct dc_plane_state *plane_state = srf_updates[i].surface;
3659 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3660
3661 if (!srf_updates[i].surface || !flip_addr)
3662 continue;
3663 /* Do not send in immediate flip mode */
3664 if (srf_updates[i].surface->flip_immediate)
3665 continue;
3666
3667 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3668 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3669 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3670 sizeof(flip_addr->dirty_rects));
3671 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3672 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3673
3674 if (pipe_ctx->stream != stream)
3675 continue;
3676 if (pipe_ctx->plane_state != plane_state)
3677 continue;
3678
3679 update_dirty_rect->panel_inst = panel_inst;
3680 update_dirty_rect->pipe_idx = j;
3681 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3682 }
3683 }
3684 }
3685
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3686 static void build_dmub_update_dirty_rect(
3687 struct dc *dc,
3688 int surface_count,
3689 struct dc_stream_state *stream,
3690 struct dc_surface_update *srf_updates,
3691 struct dc_state *context,
3692 struct dc_dmub_cmd dc_dmub_cmd[],
3693 unsigned int *dmub_cmd_count)
3694 {
3695 union dmub_rb_cmd cmd;
3696 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3697 unsigned int i, j;
3698 unsigned int panel_inst = 0;
3699
3700 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3701 return;
3702
3703 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3704 return;
3705
3706 memset(&cmd, 0x0, sizeof(cmd));
3707 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3708 cmd.update_dirty_rect.header.sub_type = 0;
3709 cmd.update_dirty_rect.header.payload_bytes =
3710 sizeof(cmd.update_dirty_rect) -
3711 sizeof(cmd.update_dirty_rect.header);
3712 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3713 for (i = 0; i < surface_count; i++) {
3714 struct dc_plane_state *plane_state = srf_updates[i].surface;
3715 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3716
3717 if (!srf_updates[i].surface || !flip_addr)
3718 continue;
3719 /* Do not send in immediate flip mode */
3720 if (srf_updates[i].surface->flip_immediate)
3721 continue;
3722 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3723 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3724 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3725 sizeof(flip_addr->dirty_rects));
3726 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3727 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3728
3729 if (pipe_ctx->stream != stream)
3730 continue;
3731 if (pipe_ctx->plane_state != plane_state)
3732 continue;
3733 update_dirty_rect->panel_inst = panel_inst;
3734 update_dirty_rect->pipe_idx = j;
3735 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3736 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3737 (*dmub_cmd_count)++;
3738 }
3739 }
3740 }
3741
check_address_only_update(union surface_update_flags update_flags)3742 static bool check_address_only_update(union surface_update_flags update_flags)
3743 {
3744 union surface_update_flags addr_only_update_flags;
3745 addr_only_update_flags.raw = 0;
3746 addr_only_update_flags.bits.addr_update = 1;
3747
3748 return update_flags.bits.addr_update &&
3749 !(update_flags.raw & ~addr_only_update_flags.raw);
3750 }
3751
3752 /**
3753 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3754 *
3755 * @dc: Current DC state
3756 * @srf_updates: Array of surface updates
3757 * @surface_count: Number of surfaces that have an updated
3758 * @stream: Corresponding stream to be updated in the current flip
3759 * @context: New DC state to be programmed
3760 *
3761 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3762 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3763 *
3764 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3765 * to build an array of commands and have them sent while the OTG lock is acquired.
3766 *
3767 * Return: void
3768 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3769 static void build_dmub_cmd_list(struct dc *dc,
3770 struct dc_surface_update *srf_updates,
3771 int surface_count,
3772 struct dc_stream_state *stream,
3773 struct dc_state *context,
3774 struct dc_dmub_cmd dc_dmub_cmd[],
3775 unsigned int *dmub_cmd_count)
3776 {
3777 // Initialize cmd count to 0
3778 *dmub_cmd_count = 0;
3779 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3780 }
3781
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3782 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3783 struct dc_surface_update *srf_updates,
3784 int surface_count,
3785 struct dc_stream_state *stream,
3786 struct dc_state *context)
3787 {
3788 int i, j;
3789
3790 /* update dirty rect for PSR */
3791 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3792 srf_updates, context);
3793
3794 /* Perform requested Updates */
3795 for (i = 0; i < surface_count; i++) {
3796 struct dc_plane_state *plane_state = srf_updates[i].surface;
3797
3798 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3799 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3800
3801 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3802 continue;
3803
3804 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3805 continue;
3806
3807 /* update pipe context for plane */
3808 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3809 dc->hwss.update_plane_addr(dc, pipe_ctx);
3810 }
3811 }
3812
3813 /* Send commands to DMCUB */
3814 dc_dmub_srv_fams2_passthrough_flip(dc,
3815 context,
3816 stream,
3817 srf_updates,
3818 surface_count);
3819 }
3820
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3821 static void commit_planes_for_stream_fast(struct dc *dc,
3822 struct dc_surface_update *srf_updates,
3823 int surface_count,
3824 struct dc_stream_state *stream,
3825 struct dc_stream_update *stream_update,
3826 enum surface_update_type update_type,
3827 struct dc_state *context)
3828 {
3829 int i, j;
3830 struct pipe_ctx *top_pipe_to_program = NULL;
3831 struct dc_stream_status *stream_status = NULL;
3832 bool should_offload_fams2_flip = false;
3833 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3834
3835 if (should_lock_all_pipes)
3836 determine_pipe_unlock_order(dc, context);
3837
3838 if (dc->debug.fams2_config.bits.enable &&
3839 dc->debug.fams2_config.bits.enable_offload_flip &&
3840 dc_state_is_fams2_in_use(dc, context)) {
3841 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3842 should_offload_fams2_flip = true;
3843 for (i = 0; i < surface_count; i++) {
3844 if (srf_updates[i].surface &&
3845 srf_updates[i].surface->update_flags.raw &&
3846 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3847 /* more than address update, need to acquire FAMS2 lock */
3848 should_offload_fams2_flip = false;
3849 break;
3850 }
3851 }
3852 if (stream_update) {
3853 /* more than address update, need to acquire FAMS2 lock */
3854 should_offload_fams2_flip = false;
3855 }
3856 }
3857
3858 dc_exit_ips_for_hw_access(dc);
3859
3860 dc_z10_restore(dc);
3861
3862 top_pipe_to_program = resource_get_otg_master_for_stream(
3863 &context->res_ctx,
3864 stream);
3865
3866 if (!top_pipe_to_program)
3867 return;
3868
3869 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3870 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3871
3872 if (pipe->stream && pipe->plane_state) {
3873 if (!dc->debug.using_dml2)
3874 set_p_state_switch_method(dc, context, pipe);
3875
3876 if (dc->debug.visual_confirm)
3877 dc_update_visual_confirm_color(dc, context, pipe);
3878 }
3879 }
3880
3881 for (i = 0; i < surface_count; i++) {
3882 struct dc_plane_state *plane_state = srf_updates[i].surface;
3883 /*set logical flag for lock/unlock use*/
3884 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3885 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3886
3887 if (!pipe_ctx->plane_state)
3888 continue;
3889 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3890 continue;
3891
3892 pipe_ctx->plane_state->triplebuffer_flips = false;
3893 if (update_type == UPDATE_TYPE_FAST &&
3894 dc->hwss.program_triplebuffer != NULL &&
3895 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3896 /*triple buffer for VUpdate only*/
3897 pipe_ctx->plane_state->triplebuffer_flips = true;
3898 }
3899 }
3900 }
3901
3902 stream_status = dc_state_get_stream_status(context, stream);
3903
3904 if (should_offload_fams2_flip) {
3905 commit_plane_for_stream_offload_fams2_flip(dc,
3906 srf_updates,
3907 surface_count,
3908 stream,
3909 context);
3910 } else if (stream_status) {
3911 build_dmub_cmd_list(dc,
3912 srf_updates,
3913 surface_count,
3914 stream,
3915 context,
3916 context->dc_dmub_cmd,
3917 &(context->dmub_cmd_count));
3918 hwss_build_fast_sequence(dc,
3919 context->dc_dmub_cmd,
3920 context->dmub_cmd_count,
3921 context->block_sequence,
3922 &(context->block_sequence_steps),
3923 top_pipe_to_program,
3924 stream_status,
3925 context);
3926 hwss_execute_sequence(dc,
3927 context->block_sequence,
3928 context->block_sequence_steps);
3929 }
3930
3931 /* Clear update flags so next flip doesn't have redundant programming
3932 * (if there's no stream update, the update flags are not cleared).
3933 * Surface updates are cleared unconditionally at the beginning of each flip,
3934 * so no need to clear here.
3935 */
3936 if (top_pipe_to_program->stream)
3937 top_pipe_to_program->stream->update_flags.raw = 0;
3938 }
3939
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3940 static void commit_planes_for_stream(struct dc *dc,
3941 struct dc_surface_update *srf_updates,
3942 int surface_count,
3943 struct dc_stream_state *stream,
3944 struct dc_stream_update *stream_update,
3945 enum surface_update_type update_type,
3946 struct dc_state *context)
3947 {
3948 int i, j;
3949 struct pipe_ctx *top_pipe_to_program = NULL;
3950 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3951 bool subvp_prev_use = false;
3952 bool subvp_curr_use = false;
3953 uint8_t current_stream_mask = 0;
3954
3955 if (should_lock_all_pipes)
3956 determine_pipe_unlock_order(dc, context);
3957 // Once we apply the new subvp context to hardware it won't be in the
3958 // dc->current_state anymore, so we have to cache it before we apply
3959 // the new SubVP context
3960 subvp_prev_use = false;
3961 dc_exit_ips_for_hw_access(dc);
3962
3963 dc_z10_restore(dc);
3964 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
3965 hwss_process_outstanding_hw_updates(dc, dc->current_state);
3966
3967 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3968 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3969
3970 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3971 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3972
3973 if (pipe->stream && pipe->plane_state) {
3974 if (!dc->debug.using_dml2)
3975 set_p_state_switch_method(dc, context, pipe);
3976
3977 if (dc->debug.visual_confirm)
3978 dc_update_visual_confirm_color(dc, context, pipe);
3979 }
3980 }
3981
3982 if (update_type == UPDATE_TYPE_FULL) {
3983 dc_allow_idle_optimizations(dc, false);
3984
3985 if (get_seamless_boot_stream_count(context) == 0)
3986 dc->hwss.prepare_bandwidth(dc, context);
3987
3988 if (dc->hwss.update_dsc_pg)
3989 dc->hwss.update_dsc_pg(dc, context, false);
3990
3991 context_clock_trace(dc, context);
3992 }
3993
3994 if (update_type == UPDATE_TYPE_FULL)
3995 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
3996
3997 top_pipe_to_program = resource_get_otg_master_for_stream(
3998 &context->res_ctx,
3999 stream);
4000 ASSERT(top_pipe_to_program != NULL);
4001 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4002 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4003
4004 // Check old context for SubVP
4005 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4006 if (subvp_prev_use)
4007 break;
4008 }
4009
4010 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4011 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4012
4013 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4014 subvp_curr_use = true;
4015 break;
4016 }
4017 }
4018
4019 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4020 struct pipe_ctx *mpcc_pipe;
4021 struct pipe_ctx *odm_pipe;
4022
4023 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4024 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4025 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4026 }
4027
4028 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4029 if (top_pipe_to_program &&
4030 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4031 if (should_use_dmub_lock(stream->link)) {
4032 union dmub_hw_lock_flags hw_locks = { 0 };
4033 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4034
4035 hw_locks.bits.lock_dig = 1;
4036 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4037
4038 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4039 true,
4040 &hw_locks,
4041 &inst_flags);
4042 } else
4043 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4044 top_pipe_to_program->stream_res.tg);
4045 }
4046
4047 if (dc->hwss.wait_for_dcc_meta_propagation) {
4048 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4049 }
4050
4051 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4052 if (dc->hwss.subvp_pipe_control_lock)
4053 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4054
4055 if (dc->hwss.fams2_global_control_lock)
4056 dc->hwss.fams2_global_control_lock(dc, context, true);
4057
4058 dc->hwss.interdependent_update_lock(dc, context, true);
4059 } else {
4060 if (dc->hwss.subvp_pipe_control_lock)
4061 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4062
4063 if (dc->hwss.fams2_global_control_lock)
4064 dc->hwss.fams2_global_control_lock(dc, context, true);
4065
4066 /* Lock the top pipe while updating plane addrs, since freesync requires
4067 * plane addr update event triggers to be synchronized.
4068 * top_pipe_to_program is expected to never be NULL
4069 */
4070 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4071 }
4072
4073 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4074
4075 // Stream updates
4076 if (stream_update)
4077 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4078
4079 if (surface_count == 0) {
4080 /*
4081 * In case of turning off screen, no need to program front end a second time.
4082 * just return after program blank.
4083 */
4084 if (dc->hwss.apply_ctx_for_surface)
4085 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4086 if (dc->hwss.program_front_end_for_ctx)
4087 dc->hwss.program_front_end_for_ctx(dc, context);
4088
4089 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4090 dc->hwss.interdependent_update_lock(dc, context, false);
4091 } else {
4092 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4093 }
4094 dc->hwss.post_unlock_program_front_end(dc, context);
4095
4096 if (update_type != UPDATE_TYPE_FAST)
4097 if (dc->hwss.commit_subvp_config)
4098 dc->hwss.commit_subvp_config(dc, context);
4099
4100 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4101 * move the SubVP lock to after the phantom pipes have been setup
4102 */
4103 if (dc->hwss.subvp_pipe_control_lock)
4104 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4105 NULL, subvp_prev_use);
4106
4107 if (dc->hwss.fams2_global_control_lock)
4108 dc->hwss.fams2_global_control_lock(dc, context, false);
4109
4110 return;
4111 }
4112
4113 if (update_type != UPDATE_TYPE_FAST) {
4114 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4115 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4116
4117 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4118 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4119 pipe_ctx->stream && pipe_ctx->plane_state) {
4120 /* Only update visual confirm for SUBVP and Mclk switching here.
4121 * The bar appears on all pipes, so we need to update the bar on all displays,
4122 * so the information doesn't get stale.
4123 */
4124 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4125 pipe_ctx->plane_res.hubp->inst);
4126 }
4127 }
4128 }
4129
4130 for (i = 0; i < surface_count; i++) {
4131 struct dc_plane_state *plane_state = srf_updates[i].surface;
4132
4133 /*set logical flag for lock/unlock use*/
4134 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4135 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4136 if (!pipe_ctx->plane_state)
4137 continue;
4138 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4139 continue;
4140 pipe_ctx->plane_state->triplebuffer_flips = false;
4141 if (update_type == UPDATE_TYPE_FAST &&
4142 dc->hwss.program_triplebuffer != NULL &&
4143 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4144 /*triple buffer for VUpdate only*/
4145 pipe_ctx->plane_state->triplebuffer_flips = true;
4146 }
4147 }
4148 if (update_type == UPDATE_TYPE_FULL) {
4149 /* force vsync flip when reconfiguring pipes to prevent underflow */
4150 plane_state->flip_immediate = false;
4151 plane_state->triplebuffer_flips = false;
4152 }
4153 }
4154
4155 // Update Type FULL, Surface updates
4156 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4157 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4158
4159 if (!pipe_ctx->top_pipe &&
4160 !pipe_ctx->prev_odm_pipe &&
4161 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4162 struct dc_stream_status *stream_status = NULL;
4163
4164 if (!pipe_ctx->plane_state)
4165 continue;
4166
4167 /* Full fe update*/
4168 if (update_type == UPDATE_TYPE_FAST)
4169 continue;
4170
4171 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4172 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4173 /*turn off triple buffer for full update*/
4174 dc->hwss.program_triplebuffer(
4175 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4176 }
4177 stream_status =
4178 stream_get_status(context, pipe_ctx->stream);
4179
4180 if (dc->hwss.apply_ctx_for_surface && stream_status)
4181 dc->hwss.apply_ctx_for_surface(
4182 dc, pipe_ctx->stream, stream_status->plane_count, context);
4183 }
4184 }
4185 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4186 dc->hwss.program_front_end_for_ctx(dc, context);
4187 if (dc->debug.validate_dml_output) {
4188 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4189 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4190 if (cur_pipe->stream == NULL)
4191 continue;
4192
4193 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4194 cur_pipe->plane_res.hubp, dc->ctx,
4195 &context->res_ctx.pipe_ctx[i].rq_regs,
4196 &context->res_ctx.pipe_ctx[i].dlg_regs,
4197 &context->res_ctx.pipe_ctx[i].ttu_regs);
4198 }
4199 }
4200 }
4201
4202 // Update Type FAST, Surface updates
4203 if (update_type == UPDATE_TYPE_FAST) {
4204 if (dc->hwss.set_flip_control_gsl)
4205 for (i = 0; i < surface_count; i++) {
4206 struct dc_plane_state *plane_state = srf_updates[i].surface;
4207
4208 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4209 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4210
4211 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4212 continue;
4213
4214 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4215 continue;
4216
4217 // GSL has to be used for flip immediate
4218 dc->hwss.set_flip_control_gsl(pipe_ctx,
4219 pipe_ctx->plane_state->flip_immediate);
4220 }
4221 }
4222
4223 /* Perform requested Updates */
4224 for (i = 0; i < surface_count; i++) {
4225 struct dc_plane_state *plane_state = srf_updates[i].surface;
4226
4227 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4228 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4229
4230 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4231 continue;
4232
4233 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4234 continue;
4235
4236 if (srf_updates[i].cm2_params &&
4237 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4238 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4239 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4240 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4241 dc->hwss.trigger_3dlut_dma_load)
4242 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4243
4244 /*program triple buffer after lock based on flip type*/
4245 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4246 /*only enable triplebuffer for fast_update*/
4247 dc->hwss.program_triplebuffer(
4248 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4249 }
4250 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4251 dc->hwss.update_plane_addr(dc, pipe_ctx);
4252 }
4253 }
4254 }
4255
4256 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4257 dc->hwss.interdependent_update_lock(dc, context, false);
4258 } else {
4259 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4260 }
4261
4262 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4263 if (top_pipe_to_program &&
4264 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4265 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4266 top_pipe_to_program->stream_res.tg,
4267 CRTC_STATE_VACTIVE);
4268 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4269 top_pipe_to_program->stream_res.tg,
4270 CRTC_STATE_VBLANK);
4271 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4272 top_pipe_to_program->stream_res.tg,
4273 CRTC_STATE_VACTIVE);
4274
4275 if (should_use_dmub_lock(stream->link)) {
4276 union dmub_hw_lock_flags hw_locks = { 0 };
4277 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4278
4279 hw_locks.bits.lock_dig = 1;
4280 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4281
4282 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4283 false,
4284 &hw_locks,
4285 &inst_flags);
4286 } else
4287 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4288 top_pipe_to_program->stream_res.tg);
4289 }
4290
4291 if (subvp_curr_use) {
4292 /* If enabling subvp or transitioning from subvp->subvp, enable the
4293 * phantom streams before we program front end for the phantom pipes.
4294 */
4295 if (update_type != UPDATE_TYPE_FAST) {
4296 if (dc->hwss.enable_phantom_streams)
4297 dc->hwss.enable_phantom_streams(dc, context);
4298 }
4299 }
4300
4301 if (update_type != UPDATE_TYPE_FAST)
4302 dc->hwss.post_unlock_program_front_end(dc, context);
4303
4304 if (subvp_prev_use && !subvp_curr_use) {
4305 /* If disabling subvp, disable phantom streams after front end
4306 * programming has completed (we turn on phantom OTG in order
4307 * to complete the plane disable for phantom pipes).
4308 */
4309
4310 if (dc->hwss.disable_phantom_streams)
4311 dc->hwss.disable_phantom_streams(dc, context);
4312 }
4313
4314 if (update_type != UPDATE_TYPE_FAST)
4315 if (dc->hwss.commit_subvp_config)
4316 dc->hwss.commit_subvp_config(dc, context);
4317 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4318 * move the SubVP lock to after the phantom pipes have been setup
4319 */
4320 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4321 if (dc->hwss.subvp_pipe_control_lock)
4322 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4323 if (dc->hwss.fams2_global_control_lock)
4324 dc->hwss.fams2_global_control_lock(dc, context, false);
4325 } else {
4326 if (dc->hwss.subvp_pipe_control_lock)
4327 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4328 if (dc->hwss.fams2_global_control_lock)
4329 dc->hwss.fams2_global_control_lock(dc, context, false);
4330 }
4331
4332 // Fire manual trigger only when bottom plane is flipped
4333 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4334 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4335
4336 if (!pipe_ctx->plane_state)
4337 continue;
4338
4339 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4340 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4341 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4342 pipe_ctx->plane_state->skip_manual_trigger)
4343 continue;
4344
4345 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4346 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4347 }
4348
4349 current_stream_mask = get_stream_mask(dc, context);
4350 if (current_stream_mask != context->stream_mask) {
4351 context->stream_mask = current_stream_mask;
4352 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4353 }
4354 }
4355
4356 /**
4357 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4358 *
4359 * @dc: Used to get the current state status
4360 * @stream: Target stream, which we want to remove the attached planes
4361 * @srf_updates: Array of surface updates
4362 * @surface_count: Number of surface update
4363 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4364 *
4365 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4366 * the MPO if used simultaneously in some specific configurations (e.g.,
4367 * 4k@144). This function checks if the incoming context requires applying a
4368 * transition state with unnecessary pipe splitting and ODM disabled to
4369 * circumvent our hardware limitations to prevent this edge case. If the OPP
4370 * associated with an MPCC might change due to plane additions, this function
4371 * returns true.
4372 *
4373 * Return:
4374 * Return true if OPP and MPCC might change, otherwise, return false.
4375 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4376 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4377 struct dc_stream_state *stream,
4378 struct dc_surface_update *srf_updates,
4379 int surface_count,
4380 bool *is_plane_addition)
4381 {
4382
4383 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4384 bool force_minimal_pipe_splitting = false;
4385 bool subvp_active = false;
4386 uint32_t i;
4387
4388 *is_plane_addition = false;
4389
4390 if (cur_stream_status &&
4391 dc->current_state->stream_count > 0 &&
4392 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4393 /* determine if minimal transition is required due to MPC*/
4394 if (surface_count > 0) {
4395 if (cur_stream_status->plane_count > surface_count) {
4396 force_minimal_pipe_splitting = true;
4397 } else if (cur_stream_status->plane_count < surface_count) {
4398 force_minimal_pipe_splitting = true;
4399 *is_plane_addition = true;
4400 }
4401 }
4402 }
4403
4404 if (cur_stream_status &&
4405 dc->current_state->stream_count == 1 &&
4406 dc->debug.enable_single_display_2to1_odm_policy) {
4407 /* determine if minimal transition is required due to dynamic ODM*/
4408 if (surface_count > 0) {
4409 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4410 force_minimal_pipe_splitting = true;
4411 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4412 force_minimal_pipe_splitting = true;
4413 *is_plane_addition = true;
4414 }
4415 }
4416 }
4417
4418 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4419 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4420
4421 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4422 subvp_active = true;
4423 break;
4424 }
4425 }
4426
4427 /* For SubVP when adding or removing planes we need to add a minimal transition
4428 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4429 * must use the minimal transition path to disable the pipe correctly.
4430 *
4431 * We want to use the minimal transition whenever subvp is active, not only if
4432 * a plane is being added / removed from a subvp stream (MPO plane can be added
4433 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4434 * a min transition to disable subvp.
4435 */
4436 if (cur_stream_status && subvp_active) {
4437 /* determine if minimal transition is required due to SubVP*/
4438 if (cur_stream_status->plane_count > surface_count) {
4439 force_minimal_pipe_splitting = true;
4440 } else if (cur_stream_status->plane_count < surface_count) {
4441 force_minimal_pipe_splitting = true;
4442 *is_plane_addition = true;
4443 }
4444 }
4445
4446 return force_minimal_pipe_splitting;
4447 }
4448
4449 struct pipe_split_policy_backup {
4450 bool dynamic_odm_policy;
4451 bool subvp_policy;
4452 enum pipe_split_policy mpc_policy;
4453 char force_odm[MAX_PIPES];
4454 };
4455
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4456 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4457 struct dc_state *context,
4458 struct pipe_split_policy_backup *policy)
4459 {
4460 int i;
4461
4462 if (!dc->config.is_vmin_only_asic) {
4463 policy->mpc_policy = dc->debug.pipe_split_policy;
4464 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4465 }
4466 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4467 dc->debug.enable_single_display_2to1_odm_policy = false;
4468 policy->subvp_policy = dc->debug.force_disable_subvp;
4469 dc->debug.force_disable_subvp = true;
4470 for (i = 0; i < context->stream_count; i++) {
4471 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4472 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4473 context->streams[i]->debug.force_odm_combine_segments = 0;
4474 }
4475 }
4476
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4477 static void restore_minimal_pipe_split_policy(struct dc *dc,
4478 struct dc_state *context,
4479 struct pipe_split_policy_backup *policy)
4480 {
4481 uint8_t i;
4482
4483 if (!dc->config.is_vmin_only_asic)
4484 dc->debug.pipe_split_policy = policy->mpc_policy;
4485 dc->debug.enable_single_display_2to1_odm_policy =
4486 policy->dynamic_odm_policy;
4487 dc->debug.force_disable_subvp = policy->subvp_policy;
4488 for (i = 0; i < context->stream_count; i++)
4489 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4490 }
4491
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4492 static void release_minimal_transition_state(struct dc *dc,
4493 struct dc_state *minimal_transition_context,
4494 struct dc_state *base_context,
4495 struct pipe_split_policy_backup *policy)
4496 {
4497 restore_minimal_pipe_split_policy(dc, base_context, policy);
4498 dc_state_release(minimal_transition_context);
4499 }
4500
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4501 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4502 {
4503 uint8_t i;
4504 int j;
4505 struct dc_stream_status *stream_status;
4506
4507 for (i = 0; i < context->stream_count; i++) {
4508 stream_status = &context->stream_status[i];
4509
4510 for (j = 0; j < stream_status->plane_count; j++)
4511 stream_status->plane_states[j]->flip_immediate = false;
4512 }
4513 }
4514
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4515 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4516 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4517 {
4518 struct dc_state *minimal_transition_context = NULL;
4519
4520 minimal_transition_context = dc_state_create_copy(base_context);
4521 if (!minimal_transition_context)
4522 return NULL;
4523
4524 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4525 /* commit minimal state */
4526 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4527 /* prevent underflow and corruption when reconfiguring pipes */
4528 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4529 } else {
4530 /*
4531 * This should never happen, minimal transition state should
4532 * always be validated first before adding pipe split features.
4533 */
4534 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4535 BREAK_TO_DEBUGGER();
4536 minimal_transition_context = NULL;
4537 }
4538 return minimal_transition_context;
4539 }
4540
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4541 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4542 struct dc *dc,
4543 struct dc_state *initial_state,
4544 struct dc_state *intermediate_state,
4545 struct dc_state *final_state)
4546 {
4547 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4548 intermediate_state) &&
4549 dc->hwss.is_pipe_topology_transition_seamless(dc,
4550 intermediate_state, final_state);
4551 }
4552
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4553 static void swap_and_release_current_context(struct dc *dc,
4554 struct dc_state *new_context, struct dc_stream_state *stream)
4555 {
4556
4557 int i;
4558 struct dc_state *old = dc->current_state;
4559 struct pipe_ctx *pipe_ctx;
4560
4561 /* Since memory free requires elevated IRQ, an interrupt
4562 * request is generated by mem free. If this happens
4563 * between freeing and reassigning the context, our vsync
4564 * interrupt will call into dc and cause a memory
4565 * corruption. Hence, we first reassign the context,
4566 * then free the old context.
4567 */
4568 dc->current_state = new_context;
4569 dc_state_release(old);
4570
4571 // clear any forced full updates
4572 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4573 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4574
4575 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4576 pipe_ctx->plane_state->force_full_update = false;
4577 }
4578 }
4579
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4580 static int initialize_empty_surface_updates(
4581 struct dc_stream_state *stream,
4582 struct dc_surface_update *srf_updates)
4583 {
4584 struct dc_stream_status *status = dc_stream_get_status(stream);
4585 int i;
4586
4587 if (!status)
4588 return 0;
4589
4590 for (i = 0; i < status->plane_count; i++)
4591 srf_updates[i].surface = status->plane_states[i];
4592
4593 return status->plane_count;
4594 }
4595
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4596 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4597 struct dc_state *new_context,
4598 struct dc_stream_state *stream,
4599 struct dc_surface_update *srf_updates,
4600 int surface_count)
4601 {
4602 bool success = false;
4603 struct pipe_split_policy_backup policy;
4604 struct dc_state *intermediate_context =
4605 create_minimal_transition_state(dc, new_context,
4606 &policy);
4607
4608 if (intermediate_context) {
4609 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4610 dc,
4611 dc->current_state,
4612 intermediate_context,
4613 new_context)) {
4614 DC_LOG_DC("commit minimal transition state: base = new state\n");
4615 commit_planes_for_stream(dc, srf_updates,
4616 surface_count, stream, NULL,
4617 UPDATE_TYPE_FULL, intermediate_context);
4618 swap_and_release_current_context(
4619 dc, intermediate_context, stream);
4620 dc_state_retain(dc->current_state);
4621 success = true;
4622 }
4623 release_minimal_transition_state(
4624 dc, intermediate_context, new_context, &policy);
4625 }
4626 return success;
4627 }
4628
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4629 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4630 struct dc_state *new_context, struct dc_stream_state *stream)
4631 {
4632 bool success = false;
4633 struct pipe_split_policy_backup policy;
4634 struct dc_state *intermediate_context;
4635 struct dc_state *old_current_state = dc->current_state;
4636 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4637 int surface_count;
4638
4639 /*
4640 * Both current and new contexts share the same stream and plane state
4641 * pointers. When new context is validated, stream and planes get
4642 * populated with new updates such as new plane addresses. This makes
4643 * the current context no longer valid because stream and planes are
4644 * modified from the original. We backup current stream and plane states
4645 * into scratch space whenever we are populating new context. So we can
4646 * restore the original values back by calling the restore function now.
4647 * This restores back the original stream and plane states associated
4648 * with the current state.
4649 */
4650 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4651 dc_state_retain(old_current_state);
4652 intermediate_context = create_minimal_transition_state(dc,
4653 old_current_state, &policy);
4654
4655 if (intermediate_context) {
4656 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4657 dc,
4658 dc->current_state,
4659 intermediate_context,
4660 new_context)) {
4661 DC_LOG_DC("commit minimal transition state: base = current state\n");
4662 surface_count = initialize_empty_surface_updates(
4663 stream, srf_updates);
4664 commit_planes_for_stream(dc, srf_updates,
4665 surface_count, stream, NULL,
4666 UPDATE_TYPE_FULL, intermediate_context);
4667 swap_and_release_current_context(
4668 dc, intermediate_context, stream);
4669 dc_state_retain(dc->current_state);
4670 success = true;
4671 }
4672 release_minimal_transition_state(dc, intermediate_context,
4673 old_current_state, &policy);
4674 }
4675 dc_state_release(old_current_state);
4676 /*
4677 * Restore stream and plane states back to the values associated with
4678 * new context.
4679 */
4680 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4681 return success;
4682 }
4683
4684 /**
4685 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4686 * on current or new context
4687 *
4688 * @dc: DC structure, used to get the current state
4689 * @new_context: New context
4690 * @stream: Stream getting the update for the flip
4691 * @srf_updates: Surface updates
4692 * @surface_count: Number of surfaces
4693 *
4694 * The function takes in current state and new state and determine a minimal
4695 * transition state as the intermediate step which could make the transition
4696 * between current and new states seamless. If found, it will commit the minimal
4697 * transition state and update current state to this minimal transition state
4698 * and return true, if not, it will return false.
4699 *
4700 * Return:
4701 * Return True if the minimal transition succeeded, false otherwise
4702 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4703 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4704 struct dc_state *new_context,
4705 struct dc_stream_state *stream,
4706 struct dc_surface_update *srf_updates,
4707 int surface_count)
4708 {
4709 bool success = commit_minimal_transition_based_on_new_context(
4710 dc, new_context, stream, srf_updates,
4711 surface_count);
4712 if (!success)
4713 success = commit_minimal_transition_based_on_current_context(dc,
4714 new_context, stream);
4715 if (!success)
4716 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4717 return success;
4718 }
4719
4720 /**
4721 * commit_minimal_transition_state - Create a transition pipe split state
4722 *
4723 * @dc: Used to get the current state status
4724 * @transition_base_context: New transition state
4725 *
4726 * In some specific configurations, such as pipe split on multi-display with
4727 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4728 * programming when moving to new planes. To mitigate those types of problems,
4729 * this function adds a transition state that minimizes pipe usage before
4730 * programming the new configuration. When adding a new plane, the current
4731 * state requires the least pipes, so it is applied without splitting. When
4732 * removing a plane, the new state requires the least pipes, so it is applied
4733 * without splitting.
4734 *
4735 * Return:
4736 * Return false if something is wrong in the transition state.
4737 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4738 static bool commit_minimal_transition_state(struct dc *dc,
4739 struct dc_state *transition_base_context)
4740 {
4741 struct dc_state *transition_context;
4742 struct pipe_split_policy_backup policy;
4743 enum dc_status ret = DC_ERROR_UNEXPECTED;
4744 unsigned int i, j;
4745 unsigned int pipe_in_use = 0;
4746 bool subvp_in_use = false;
4747 bool odm_in_use = false;
4748
4749 /* check current pipes in use*/
4750 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4751 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4752
4753 if (pipe->plane_state)
4754 pipe_in_use++;
4755 }
4756
4757 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4758 * pipe, we must use the minimal transition.
4759 */
4760 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4761 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4762
4763 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4764 subvp_in_use = true;
4765 break;
4766 }
4767 }
4768
4769 /* If ODM is enabled and we are adding or removing planes from any ODM
4770 * pipe, we must use the minimal transition.
4771 */
4772 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4773 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4774
4775 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4776 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4777 break;
4778 }
4779 }
4780
4781 /* When the OS add a new surface if we have been used all of pipes with odm combine
4782 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4783 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4784 * call it again. Otherwise return true to skip.
4785 *
4786 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4787 * enter/exit MPO when DCN still have enough resources.
4788 */
4789 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4790 return true;
4791
4792 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4793 dc->current_state == transition_base_context ? "current" : "new",
4794 subvp_in_use ? "Subvp In Use" :
4795 odm_in_use ? "ODM in Use" :
4796 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4797 "Unknown");
4798
4799 dc_state_retain(transition_base_context);
4800 transition_context = create_minimal_transition_state(dc,
4801 transition_base_context, &policy);
4802 if (transition_context) {
4803 ret = dc_commit_state_no_check(dc, transition_context);
4804 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4805 }
4806 dc_state_release(transition_base_context);
4807
4808 if (ret != DC_OK) {
4809 /* this should never happen */
4810 BREAK_TO_DEBUGGER();
4811 return false;
4812 }
4813
4814 /* force full surface update */
4815 for (i = 0; i < dc->current_state->stream_count; i++) {
4816 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4817 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4818 }
4819 }
4820
4821 return true;
4822 }
4823
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4824 void populate_fast_updates(struct dc_fast_update *fast_update,
4825 struct dc_surface_update *srf_updates,
4826 int surface_count,
4827 struct dc_stream_update *stream_update)
4828 {
4829 int i = 0;
4830
4831 if (stream_update) {
4832 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4833 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4834 } else {
4835 fast_update[0].out_transfer_func = NULL;
4836 fast_update[0].output_csc_transform = NULL;
4837 }
4838
4839 for (i = 0; i < surface_count; i++) {
4840 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4841 fast_update[i].gamma = srf_updates[i].gamma;
4842 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4843 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4844 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4845 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4846 }
4847 }
4848
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4849 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4850 {
4851 int i;
4852
4853 if (fast_update[0].out_transfer_func ||
4854 fast_update[0].output_csc_transform)
4855 return true;
4856
4857 for (i = 0; i < surface_count; i++) {
4858 if (fast_update[i].flip_addr ||
4859 fast_update[i].gamma ||
4860 fast_update[i].gamut_remap_matrix ||
4861 fast_update[i].input_csc_color_matrix ||
4862 fast_update[i].cursor_csc_color_matrix ||
4863 fast_update[i].coeff_reduction_factor)
4864 return true;
4865 }
4866
4867 return false;
4868 }
4869
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4870 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4871 {
4872 int i;
4873
4874 if (fast_update[0].out_transfer_func ||
4875 fast_update[0].output_csc_transform)
4876 return true;
4877
4878 for (i = 0; i < surface_count; i++) {
4879 if (fast_update[i].input_csc_color_matrix ||
4880 fast_update[i].gamma ||
4881 fast_update[i].gamut_remap_matrix ||
4882 fast_update[i].coeff_reduction_factor ||
4883 fast_update[i].cursor_csc_color_matrix)
4884 return true;
4885 }
4886
4887 return false;
4888 }
4889
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4890 static bool full_update_required(struct dc *dc,
4891 struct dc_surface_update *srf_updates,
4892 int surface_count,
4893 struct dc_stream_update *stream_update,
4894 struct dc_stream_state *stream)
4895 {
4896
4897 int i;
4898 struct dc_stream_status *stream_status;
4899 const struct dc_state *context = dc->current_state;
4900
4901 for (i = 0; i < surface_count; i++) {
4902 if (srf_updates &&
4903 (srf_updates[i].plane_info ||
4904 srf_updates[i].scaling_info ||
4905 (srf_updates[i].hdr_mult.value &&
4906 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4907 (srf_updates[i].sdr_white_level_nits &&
4908 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4909 srf_updates[i].in_transfer_func ||
4910 srf_updates[i].func_shaper ||
4911 srf_updates[i].lut3d_func ||
4912 srf_updates[i].surface->force_full_update ||
4913 (srf_updates[i].flip_addr &&
4914 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4915 (srf_updates[i].cm2_params &&
4916 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4917 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4918 !is_surface_in_context(context, srf_updates[i].surface)))
4919 return true;
4920 }
4921
4922 if (stream_update &&
4923 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4924 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4925 stream_update->integer_scaling_update) ||
4926 stream_update->hdr_static_metadata ||
4927 stream_update->abm_level ||
4928 stream_update->periodic_interrupt ||
4929 stream_update->vrr_infopacket ||
4930 stream_update->vsc_infopacket ||
4931 stream_update->vsp_infopacket ||
4932 stream_update->hfvsif_infopacket ||
4933 stream_update->vtem_infopacket ||
4934 stream_update->adaptive_sync_infopacket ||
4935 stream_update->dpms_off ||
4936 stream_update->allow_freesync ||
4937 stream_update->vrr_active_variable ||
4938 stream_update->vrr_active_fixed ||
4939 stream_update->gamut_remap ||
4940 stream_update->output_color_space ||
4941 stream_update->dither_option ||
4942 stream_update->wb_update ||
4943 stream_update->dsc_config ||
4944 stream_update->mst_bw_update ||
4945 stream_update->func_shaper ||
4946 stream_update->lut3d_func ||
4947 stream_update->pending_test_pattern ||
4948 stream_update->crtc_timing_adjust ||
4949 stream_update->scaler_sharpener_update ||
4950 stream_update->hw_cursor_req))
4951 return true;
4952
4953 if (stream) {
4954 stream_status = dc_stream_get_status(stream);
4955 if (stream_status == NULL || stream_status->plane_count != surface_count)
4956 return true;
4957 }
4958 if (dc->idle_optimizations_allowed)
4959 return true;
4960
4961 return false;
4962 }
4963
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4964 static bool fast_update_only(struct dc *dc,
4965 struct dc_fast_update *fast_update,
4966 struct dc_surface_update *srf_updates,
4967 int surface_count,
4968 struct dc_stream_update *stream_update,
4969 struct dc_stream_state *stream)
4970 {
4971 return fast_updates_exist(fast_update, surface_count)
4972 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4973 }
4974
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4975 static bool update_planes_and_stream_v1(struct dc *dc,
4976 struct dc_surface_update *srf_updates, int surface_count,
4977 struct dc_stream_state *stream,
4978 struct dc_stream_update *stream_update,
4979 struct dc_state *state)
4980 {
4981 const struct dc_stream_status *stream_status;
4982 enum surface_update_type update_type;
4983 struct dc_state *context;
4984 struct dc_context *dc_ctx = dc->ctx;
4985 int i, j;
4986 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4987
4988 dc_exit_ips_for_hw_access(dc);
4989
4990 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4991 stream_status = dc_stream_get_status(stream);
4992 context = dc->current_state;
4993
4994 update_type = dc_check_update_surfaces_for_stream(
4995 dc, srf_updates, surface_count, stream_update, stream_status);
4996 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
4997 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
4998 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
4999 */
5000 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
5001
5002 if (update_type >= UPDATE_TYPE_FULL) {
5003
5004 /* initialize scratch memory for building context */
5005 context = dc_state_create_copy(state);
5006 if (context == NULL) {
5007 DC_ERROR("Failed to allocate new validate context!\n");
5008 return false;
5009 }
5010
5011 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5012 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
5013 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5014
5015 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
5016 new_pipe->plane_state->force_full_update = true;
5017 }
5018 } else if (update_type == UPDATE_TYPE_FAST) {
5019 /*
5020 * Previous frame finished and HW is ready for optimization.
5021 */
5022 dc_post_update_surfaces_to_stream(dc);
5023 }
5024
5025 for (i = 0; i < surface_count; i++) {
5026 struct dc_plane_state *surface = srf_updates[i].surface;
5027
5028 copy_surface_update_to_plane(surface, &srf_updates[i]);
5029
5030 if (update_type >= UPDATE_TYPE_MED) {
5031 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5032 struct pipe_ctx *pipe_ctx =
5033 &context->res_ctx.pipe_ctx[j];
5034
5035 if (pipe_ctx->plane_state != surface)
5036 continue;
5037
5038 resource_build_scaling_params(pipe_ctx);
5039 }
5040 }
5041 }
5042
5043 copy_stream_update_to_stream(dc, context, stream, stream_update);
5044
5045 if (update_type >= UPDATE_TYPE_FULL) {
5046 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
5047 DC_ERROR("Mode validation failed for stream update!\n");
5048 dc_state_release(context);
5049 return false;
5050 }
5051 }
5052
5053 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5054
5055 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5056 !dc->debug.enable_legacy_fast_update) {
5057 commit_planes_for_stream_fast(dc,
5058 srf_updates,
5059 surface_count,
5060 stream,
5061 stream_update,
5062 update_type,
5063 context);
5064 } else {
5065 commit_planes_for_stream(
5066 dc,
5067 srf_updates,
5068 surface_count,
5069 stream,
5070 stream_update,
5071 update_type,
5072 context);
5073 }
5074 /*update current_State*/
5075 if (dc->current_state != context) {
5076
5077 struct dc_state *old = dc->current_state;
5078
5079 dc->current_state = context;
5080 dc_state_release(old);
5081
5082 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5083 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5084
5085 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5086 pipe_ctx->plane_state->force_full_update = false;
5087 }
5088 }
5089
5090 /* Legacy optimization path for DCE. */
5091 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5092 dc_post_update_surfaces_to_stream(dc);
5093 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5094 }
5095 return true;
5096 }
5097
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5098 static bool update_planes_and_stream_v2(struct dc *dc,
5099 struct dc_surface_update *srf_updates, int surface_count,
5100 struct dc_stream_state *stream,
5101 struct dc_stream_update *stream_update)
5102 {
5103 struct dc_state *context;
5104 enum surface_update_type update_type;
5105 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5106
5107 /* In cases where MPO and split or ODM are used transitions can
5108 * cause underflow. Apply stream configuration with minimal pipe
5109 * split first to avoid unsupported transitions for active pipes.
5110 */
5111 bool force_minimal_pipe_splitting = 0;
5112 bool is_plane_addition = 0;
5113 bool is_fast_update_only;
5114
5115 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5116 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5117 surface_count, stream_update, stream);
5118 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5119 dc,
5120 stream,
5121 srf_updates,
5122 surface_count,
5123 &is_plane_addition);
5124
5125 /* on plane addition, minimal state is the current one */
5126 if (force_minimal_pipe_splitting && is_plane_addition &&
5127 !commit_minimal_transition_state(dc, dc->current_state))
5128 return false;
5129
5130 if (!update_planes_and_stream_state(
5131 dc,
5132 srf_updates,
5133 surface_count,
5134 stream,
5135 stream_update,
5136 &update_type,
5137 &context))
5138 return false;
5139
5140 /* on plane removal, minimal state is the new one */
5141 if (force_minimal_pipe_splitting && !is_plane_addition) {
5142 if (!commit_minimal_transition_state(dc, context)) {
5143 dc_state_release(context);
5144 return false;
5145 }
5146 update_type = UPDATE_TYPE_FULL;
5147 }
5148
5149 if (dc->hwss.is_pipe_topology_transition_seamless &&
5150 !dc->hwss.is_pipe_topology_transition_seamless(
5151 dc, dc->current_state, context))
5152 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5153 srf_updates, surface_count);
5154
5155 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5156 commit_planes_for_stream_fast(dc,
5157 srf_updates,
5158 surface_count,
5159 stream,
5160 stream_update,
5161 update_type,
5162 context);
5163 } else {
5164 if (!stream_update &&
5165 dc->hwss.is_pipe_topology_transition_seamless &&
5166 !dc->hwss.is_pipe_topology_transition_seamless(
5167 dc, dc->current_state, context)) {
5168 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5169 BREAK_TO_DEBUGGER();
5170 }
5171 commit_planes_for_stream(
5172 dc,
5173 srf_updates,
5174 surface_count,
5175 stream,
5176 stream_update,
5177 update_type,
5178 context);
5179 }
5180 if (dc->current_state != context)
5181 swap_and_release_current_context(dc, context, stream);
5182 return true;
5183 }
5184
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5185 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5186 struct dc_surface_update *srf_updates, int surface_count,
5187 struct dc_stream_state *stream,
5188 struct dc_stream_update *stream_update,
5189 enum surface_update_type update_type)
5190 {
5191 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5192
5193 ASSERT(update_type < UPDATE_TYPE_FULL);
5194 populate_fast_updates(fast_update, srf_updates, surface_count,
5195 stream_update);
5196 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5197 stream_update, stream) &&
5198 !dc->debug.enable_legacy_fast_update)
5199 commit_planes_for_stream_fast(dc,
5200 srf_updates,
5201 surface_count,
5202 stream,
5203 stream_update,
5204 update_type,
5205 dc->current_state);
5206 else
5207 commit_planes_for_stream(
5208 dc,
5209 srf_updates,
5210 surface_count,
5211 stream,
5212 stream_update,
5213 update_type,
5214 dc->current_state);
5215 }
5216
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5217 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5218 struct dc_surface_update *srf_updates, int surface_count,
5219 struct dc_stream_state *stream,
5220 struct dc_stream_update *stream_update,
5221 enum surface_update_type update_type,
5222 struct dc_state *new_context)
5223 {
5224 ASSERT(update_type >= UPDATE_TYPE_FULL);
5225 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5226 dc->current_state, new_context))
5227 /*
5228 * It is required by the feature design that all pipe topologies
5229 * using extra free pipes for power saving purposes such as
5230 * dynamic ODM or SubVp shall only be enabled when it can be
5231 * transitioned seamlessly to AND from its minimal transition
5232 * state. A minimal transition state is defined as the same dc
5233 * state but with all power saving features disabled. So it uses
5234 * the minimum pipe topology. When we can't seamlessly
5235 * transition from state A to state B, we will insert the
5236 * minimal transition state A' or B' in between so seamless
5237 * transition between A and B can be made possible.
5238 */
5239 commit_minimal_transition_state_in_dc_update(dc, new_context,
5240 stream, srf_updates, surface_count);
5241
5242 commit_planes_for_stream(
5243 dc,
5244 srf_updates,
5245 surface_count,
5246 stream,
5247 stream_update,
5248 update_type,
5249 new_context);
5250 }
5251
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5252 static bool update_planes_and_stream_v3(struct dc *dc,
5253 struct dc_surface_update *srf_updates, int surface_count,
5254 struct dc_stream_state *stream,
5255 struct dc_stream_update *stream_update)
5256 {
5257 struct dc_state *new_context;
5258 enum surface_update_type update_type;
5259
5260 /*
5261 * When this function returns true and new_context is not equal to
5262 * current state, the function allocates and validates a new dc state
5263 * and assigns it to new_context. The function expects that the caller
5264 * is responsible to free this memory when new_context is no longer
5265 * used. We swap current with new context and free current instead. So
5266 * new_context's memory will live until the next full update after it is
5267 * replaced by a newer context. Refer to the use of
5268 * swap_and_free_current_context below.
5269 */
5270 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5271 stream, stream_update, &update_type,
5272 &new_context))
5273 return false;
5274
5275 if (new_context == dc->current_state) {
5276 commit_planes_and_stream_update_on_current_context(dc,
5277 srf_updates, surface_count, stream,
5278 stream_update, update_type);
5279 } else {
5280 commit_planes_and_stream_update_with_new_context(dc,
5281 srf_updates, surface_count, stream,
5282 stream_update, update_type, new_context);
5283 swap_and_release_current_context(dc, new_context, stream);
5284 }
5285
5286 return true;
5287 }
5288
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5289 static void clear_update_flags(struct dc_surface_update *srf_updates,
5290 int surface_count, struct dc_stream_state *stream)
5291 {
5292 int i;
5293
5294 if (stream)
5295 stream->update_flags.raw = 0;
5296
5297 for (i = 0; i < surface_count; i++)
5298 if (srf_updates[i].surface)
5299 srf_updates[i].surface->update_flags.raw = 0;
5300 }
5301
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5302 bool dc_update_planes_and_stream(struct dc *dc,
5303 struct dc_surface_update *srf_updates, int surface_count,
5304 struct dc_stream_state *stream,
5305 struct dc_stream_update *stream_update)
5306 {
5307 bool ret = false;
5308
5309 dc_exit_ips_for_hw_access(dc);
5310 /*
5311 * update planes and stream version 3 separates FULL and FAST updates
5312 * to their own sequences. It aims to clean up frequent checks for
5313 * update type resulting unnecessary branching in logic flow. It also
5314 * adds a new commit minimal transition sequence, which detects the need
5315 * for minimal transition based on the actual comparison of current and
5316 * new states instead of "predicting" it based on per feature software
5317 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5318 * minimal transition sequence is made universal to any power saving
5319 * features that would use extra free pipes such as Dynamic ODM/MPC
5320 * Combine, MPO or SubVp. Therefore there is no longer a need to
5321 * specially handle compatibility problems with transitions among those
5322 * features as they are now transparent to the new sequence.
5323 */
5324 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5325 ret = update_planes_and_stream_v3(dc, srf_updates,
5326 surface_count, stream, stream_update);
5327 else
5328 ret = update_planes_and_stream_v2(dc, srf_updates,
5329 surface_count, stream, stream_update);
5330
5331 if (ret)
5332 clear_update_flags(srf_updates, surface_count, stream);
5333
5334 return ret;
5335 }
5336
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5337 void dc_commit_updates_for_stream(struct dc *dc,
5338 struct dc_surface_update *srf_updates,
5339 int surface_count,
5340 struct dc_stream_state *stream,
5341 struct dc_stream_update *stream_update,
5342 struct dc_state *state)
5343 {
5344 bool ret = false;
5345
5346 dc_exit_ips_for_hw_access(dc);
5347 /* TODO: Since change commit sequence can have a huge impact,
5348 * we decided to only enable it for DCN3x. However, as soon as
5349 * we get more confident about this change we'll need to enable
5350 * the new sequence for all ASICs.
5351 */
5352 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5353 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5354 stream, stream_update);
5355 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5356 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5357 stream, stream_update);
5358 } else
5359 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5360 stream_update, state);
5361
5362 if (ret)
5363 clear_update_flags(srf_updates, surface_count, stream);
5364 }
5365
dc_get_current_stream_count(struct dc * dc)5366 uint8_t dc_get_current_stream_count(struct dc *dc)
5367 {
5368 return dc->current_state->stream_count;
5369 }
5370
dc_get_stream_at_index(struct dc * dc,uint8_t i)5371 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5372 {
5373 if (i < dc->current_state->stream_count)
5374 return dc->current_state->streams[i];
5375 return NULL;
5376 }
5377
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5378 enum dc_irq_source dc_interrupt_to_irq_source(
5379 struct dc *dc,
5380 uint32_t src_id,
5381 uint32_t ext_id)
5382 {
5383 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5384 }
5385
5386 /*
5387 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5388 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5389 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5390 {
5391
5392 if (dc == NULL)
5393 return false;
5394
5395 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5396 }
5397
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5398 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5399 {
5400 dal_irq_service_ack(dc->res_pool->irqs, src);
5401 }
5402
dc_power_down_on_boot(struct dc * dc)5403 void dc_power_down_on_boot(struct dc *dc)
5404 {
5405 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5406 dc->hwss.power_down_on_boot) {
5407 if (dc->caps.ips_support)
5408 dc_exit_ips_for_hw_access(dc);
5409 dc->hwss.power_down_on_boot(dc);
5410 }
5411 }
5412
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5413 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5414 {
5415 if (!dc->current_state)
5416 return;
5417
5418 switch (power_state) {
5419 case DC_ACPI_CM_POWER_STATE_D0:
5420 dc_state_construct(dc, dc->current_state);
5421
5422 dc_exit_ips_for_hw_access(dc);
5423
5424 dc_z10_restore(dc);
5425
5426 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5427
5428 dc->hwss.init_hw(dc);
5429
5430 if (dc->hwss.init_sys_ctx != NULL &&
5431 dc->vm_pa_config.valid) {
5432 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5433 }
5434 break;
5435 default:
5436 ASSERT(dc->current_state->stream_count == 0);
5437 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5438
5439 dc_state_destruct(dc->current_state);
5440
5441 break;
5442 }
5443 }
5444
dc_resume(struct dc * dc)5445 void dc_resume(struct dc *dc)
5446 {
5447 uint32_t i;
5448
5449 for (i = 0; i < dc->link_count; i++)
5450 dc->link_srv->resume(dc->links[i]);
5451 }
5452
dc_is_dmcu_initialized(struct dc * dc)5453 bool dc_is_dmcu_initialized(struct dc *dc)
5454 {
5455 struct dmcu *dmcu = dc->res_pool->dmcu;
5456
5457 if (dmcu)
5458 return dmcu->funcs->is_dmcu_initialized(dmcu);
5459 return false;
5460 }
5461
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5462 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5463 {
5464 if (dc->hwss.set_clock)
5465 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5466 return DC_ERROR_UNEXPECTED;
5467 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5468 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5469 {
5470 if (dc->hwss.get_clock)
5471 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5472 }
5473
5474 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5475 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5476 {
5477 int i;
5478 bool allow_active;
5479
5480 for (i = 0; i < dc->current_state->stream_count ; i++) {
5481 struct dc_link *link;
5482 struct dc_stream_state *stream = dc->current_state->streams[i];
5483
5484 link = stream->link;
5485 if (!link)
5486 continue;
5487
5488 if (link->psr_settings.psr_feature_enabled) {
5489 if (enable && !link->psr_settings.psr_allow_active) {
5490 allow_active = true;
5491 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5492 return false;
5493 } else if (!enable && link->psr_settings.psr_allow_active) {
5494 allow_active = false;
5495 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5496 return false;
5497 }
5498 }
5499 }
5500
5501 return true;
5502 }
5503
5504 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5505 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5506 {
5507 int i;
5508 bool allow_active;
5509
5510 for (i = 0; i < dc->current_state->stream_count; i++) {
5511 struct dc_link *link;
5512 struct dc_stream_state *stream = dc->current_state->streams[i];
5513
5514 link = stream->link;
5515 if (!link)
5516 continue;
5517
5518 if (link->replay_settings.replay_feature_enabled) {
5519 if (active && !link->replay_settings.replay_allow_active) {
5520 allow_active = true;
5521 if (!dc_link_set_replay_allow_active(link, &allow_active,
5522 false, false, NULL))
5523 return false;
5524 } else if (!active && link->replay_settings.replay_allow_active) {
5525 allow_active = false;
5526 if (!dc_link_set_replay_allow_active(link, &allow_active,
5527 true, false, NULL))
5528 return false;
5529 }
5530 }
5531 }
5532
5533 return true;
5534 }
5535
5536 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5537 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5538 {
5539 dc_exit_ips_for_hw_access(dc);
5540
5541 dc->config.disable_ips = disable_ips;
5542
5543 return true;
5544 }
5545
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5546 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5547 {
5548 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5549 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5550 struct pipe_ctx *pipe = NULL;
5551 struct dc_state *context = dc->current_state;
5552
5553 if (dc->debug.disable_idle_power_optimizations) {
5554 DC_LOG_DEBUG("%s: disabled\n", __func__);
5555 return;
5556 }
5557
5558 if (allow != dc->idle_optimizations_allowed)
5559 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5560 dc->idle_optimizations_allowed, allow, caller_name);
5561
5562 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5563 return;
5564
5565 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5566 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5567 return;
5568
5569 if (allow == dc->idle_optimizations_allowed)
5570 return;
5571
5572 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5573 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5574 dc->idle_optimizations_allowed = allow;
5575 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5576 }
5577
5578 // log idle clocks and sub vp pipe types at idle optimization time
5579 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5580 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5581
5582 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5583 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5584
5585 if (dc->res_pool && context) {
5586 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5587 pipe = &context->res_ctx.pipe_ctx[i];
5588 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5589 }
5590 }
5591
5592 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5593 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5594 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5595
5596 }
5597
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5598 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5599 {
5600 if (dc->caps.ips_support)
5601 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5602 }
5603
dc_dmub_is_ips_idle_state(struct dc * dc)5604 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5605 {
5606 if (dc->debug.disable_idle_power_optimizations)
5607 return false;
5608
5609 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5610 return false;
5611
5612 if (!dc->ctx->dmub_srv)
5613 return false;
5614
5615 return dc->ctx->dmub_srv->idle_allowed;
5616 }
5617
5618 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5619 void dc_unlock_memory_clock_frequency(struct dc *dc)
5620 {
5621 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5622 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5623
5624 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5625 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5626 }
5627
5628 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5629 void dc_lock_memory_clock_frequency(struct dc *dc)
5630 {
5631 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5632 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5633
5634 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5635 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5636
5637 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5638 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5639 }
5640
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5641 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5642 {
5643 struct dc_state *context = dc->current_state;
5644 struct hubp *hubp;
5645 struct pipe_ctx *pipe;
5646 int i;
5647
5648 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5649 pipe = &context->res_ctx.pipe_ctx[i];
5650
5651 if (pipe->stream != NULL) {
5652 dc->hwss.disable_pixel_data(dc, pipe, true);
5653
5654 // wait for double buffer
5655 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5656 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5657 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5658
5659 hubp = pipe->plane_res.hubp;
5660 hubp->funcs->set_blank_regs(hubp, true);
5661 }
5662 }
5663 if (dc->clk_mgr->funcs->set_max_memclk)
5664 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5665 if (dc->clk_mgr->funcs->set_min_memclk)
5666 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5667
5668 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5669 pipe = &context->res_ctx.pipe_ctx[i];
5670
5671 if (pipe->stream != NULL) {
5672 dc->hwss.disable_pixel_data(dc, pipe, false);
5673
5674 hubp = pipe->plane_res.hubp;
5675 hubp->funcs->set_blank_regs(hubp, false);
5676 }
5677 }
5678 }
5679
5680
5681 /**
5682 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5683 * @dc: pointer to dc of the dm calling this
5684 * @enable: True = transition to DC mode, false = transition back to AC mode
5685 *
5686 * Some SoCs define additional clock limits when in DC mode, DM should
5687 * invoke this function when the platform undergoes a power source transition
5688 * so DC can apply/unapply the limit. This interface may be disruptive to
5689 * the onscreen content.
5690 *
5691 * Context: Triggered by OS through DM interface, or manually by escape calls.
5692 * Need to hold a dclock when doing so.
5693 *
5694 * Return: none (void function)
5695 *
5696 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5697 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5698 {
5699 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5700 bool p_state_change_support;
5701
5702 if (!dc->config.dc_mode_clk_limit_support)
5703 return;
5704
5705 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5706 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5707 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5708 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5709 }
5710 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5711 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5712
5713 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5714 if (p_state_change_support) {
5715 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5716 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5717 // else: No-Op
5718 } else {
5719 if (funcMin <= softMax)
5720 blank_and_force_memclk(dc, true, softMax);
5721 // else: No-Op
5722 }
5723 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5724 if (p_state_change_support) {
5725 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5726 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5727 // else: No-Op
5728 } else {
5729 if (funcMin <= softMax)
5730 blank_and_force_memclk(dc, true, maxDPM);
5731 // else: No-Op
5732 }
5733 }
5734 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5735 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5736 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5737 unsigned int pitch,
5738 unsigned int height,
5739 enum surface_pixel_format format,
5740 struct dc_cursor_attributes *cursor_attr)
5741 {
5742 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5743 return true;
5744 return false;
5745 }
5746
5747 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5748 void dc_hardware_release(struct dc *dc)
5749 {
5750 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5751
5752 if (dc->hwss.hardware_release)
5753 dc->hwss.hardware_release(dc);
5754 }
5755
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5756 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5757 {
5758 if (dc->current_state)
5759 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5760 }
5761
5762 /**
5763 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5764 *
5765 * @dc: [in] dc structure
5766 *
5767 * Checks whether DMUB FW supports outbox notifications, if supported DM
5768 * should register outbox interrupt prior to actually enabling interrupts
5769 * via dc_enable_dmub_outbox
5770 *
5771 * Return:
5772 * True if DMUB FW supports outbox notifications, False otherwise
5773 */
dc_is_dmub_outbox_supported(struct dc * dc)5774 bool dc_is_dmub_outbox_supported(struct dc *dc)
5775 {
5776 if (!dc->caps.dmcub_support)
5777 return false;
5778
5779 switch (dc->ctx->asic_id.chip_family) {
5780
5781 case FAMILY_YELLOW_CARP:
5782 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5783 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5784 !dc->debug.dpia_debug.bits.disable_dpia)
5785 return true;
5786 break;
5787
5788 case AMDGPU_FAMILY_GC_11_0_1:
5789 case AMDGPU_FAMILY_GC_11_5_0:
5790 if (!dc->debug.dpia_debug.bits.disable_dpia)
5791 return true;
5792 break;
5793
5794 default:
5795 break;
5796 }
5797
5798 /* dmub aux needs dmub notifications to be enabled */
5799 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5800
5801 }
5802
5803 /**
5804 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5805 *
5806 * @dc: [in] dc structure
5807 *
5808 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5809 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5810 * API shall be removed after switching.
5811 *
5812 * Return:
5813 * True if DMUB FW supports outbox notifications, False otherwise
5814 */
dc_enable_dmub_notifications(struct dc * dc)5815 bool dc_enable_dmub_notifications(struct dc *dc)
5816 {
5817 return dc_is_dmub_outbox_supported(dc);
5818 }
5819
5820 /**
5821 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5822 *
5823 * @dc: [in] dc structure
5824 *
5825 * Enables DMUB unsolicited notifications to x86 via outbox.
5826 */
dc_enable_dmub_outbox(struct dc * dc)5827 void dc_enable_dmub_outbox(struct dc *dc)
5828 {
5829 struct dc_context *dc_ctx = dc->ctx;
5830
5831 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5832 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5833 }
5834
5835 /**
5836 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5837 * Sets port index appropriately for legacy DDC
5838 * @dc: dc structure
5839 * @link_index: link index
5840 * @payload: aux payload
5841 *
5842 * Returns: True if successful, False if failure
5843 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5844 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5845 uint32_t link_index,
5846 struct aux_payload *payload)
5847 {
5848 uint8_t action;
5849 union dmub_rb_cmd cmd = {0};
5850
5851 ASSERT(payload->length <= 16);
5852
5853 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5854 cmd.dp_aux_access.header.payload_bytes = 0;
5855 /* For dpia, ddc_pin is set to NULL */
5856 if (!dc->links[link_index]->ddc->ddc_pin)
5857 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5858 else
5859 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5860
5861 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5862 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5863 cmd.dp_aux_access.aux_control.timeout = 0;
5864 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5865 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5866 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5867
5868 /* set aux action */
5869 if (payload->i2c_over_aux) {
5870 if (payload->write) {
5871 if (payload->mot)
5872 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5873 else
5874 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5875 } else {
5876 if (payload->mot)
5877 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5878 else
5879 action = DP_AUX_REQ_ACTION_I2C_READ;
5880 }
5881 } else {
5882 if (payload->write)
5883 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5884 else
5885 action = DP_AUX_REQ_ACTION_DPCD_READ;
5886 }
5887
5888 cmd.dp_aux_access.aux_control.dpaux.action = action;
5889
5890 if (payload->length && payload->write) {
5891 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5892 payload->data,
5893 payload->length
5894 );
5895 }
5896
5897 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5898
5899 return true;
5900 }
5901
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5902 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5903 uint8_t dpia_port_index)
5904 {
5905 uint8_t index, link_index = 0xFF;
5906
5907 for (index = 0; index < dc->link_count; index++) {
5908 /* ddc_hw_inst has dpia port index for dpia links
5909 * and ddc instance for legacy links
5910 */
5911 if (!dc->links[index]->ddc->ddc_pin) {
5912 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5913 link_index = index;
5914 break;
5915 }
5916 }
5917 }
5918 ASSERT(link_index != 0xFF);
5919 return link_index;
5920 }
5921
5922 /**
5923 * dc_process_dmub_set_config_async - Submits set_config command
5924 *
5925 * @dc: [in] dc structure
5926 * @link_index: [in] link_index: link index
5927 * @payload: [in] aux payload
5928 * @notify: [out] set_config immediate reply
5929 *
5930 * Submits set_config command to dmub via inbox message.
5931 *
5932 * Return:
5933 * True if successful, False if failure
5934 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5935 bool dc_process_dmub_set_config_async(struct dc *dc,
5936 uint32_t link_index,
5937 struct set_config_cmd_payload *payload,
5938 struct dmub_notification *notify)
5939 {
5940 union dmub_rb_cmd cmd = {0};
5941 bool is_cmd_complete = true;
5942
5943 /* prepare SET_CONFIG command */
5944 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5945 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5946
5947 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5948 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5949 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5950
5951 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5952 /* command is not processed by dmub */
5953 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5954 return is_cmd_complete;
5955 }
5956
5957 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5958 if (cmd.set_config_access.header.ret_status == 1)
5959 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5960 else
5961 /* cmd pending, will receive notification via outbox */
5962 is_cmd_complete = false;
5963
5964 return is_cmd_complete;
5965 }
5966
5967 /**
5968 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5969 *
5970 * @dc: [in] dc structure
5971 * @link_index: [in] link index
5972 * @mst_alloc_slots: [in] mst slots to be allotted
5973 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5974 *
5975 * Submits mst slot allocation command to dmub via inbox message
5976 *
5977 * Return:
5978 * DC_OK if successful, DC_ERROR if failure
5979 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5980 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5981 uint32_t link_index,
5982 uint8_t mst_alloc_slots,
5983 uint8_t *mst_slots_in_use)
5984 {
5985 union dmub_rb_cmd cmd = {0};
5986
5987 /* prepare MST_ALLOC_SLOTS command */
5988 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5989 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5990
5991 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5992 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5993
5994 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5995 /* command is not processed by dmub */
5996 return DC_ERROR_UNEXPECTED;
5997
5998 /* command processed by dmub, if ret_status is 1 */
5999 if (cmd.set_config_access.header.ret_status != 1)
6000 /* command processing error */
6001 return DC_ERROR_UNEXPECTED;
6002
6003 /* command processed and we have a status of 2, mst not enabled in dpia */
6004 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6005 return DC_FAIL_UNSUPPORTED_1;
6006
6007 /* previously configured mst alloc and used slots did not match */
6008 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6009 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6010 return DC_NOT_SUPPORTED;
6011 }
6012
6013 return DC_OK;
6014 }
6015
6016 /**
6017 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6018 *
6019 * @dc: [in] dc structure
6020 * @link_index: [in] link index
6021 * @tps: [in] request tps
6022 *
6023 * Submits set_tps_notification command to dmub via inbox message
6024 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6025 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6026 {
6027 union dmub_rb_cmd cmd = {0};
6028
6029 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6030 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6031 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6032 cmd.set_tps_notification.tps_notification.tps = tps;
6033
6034 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6035 }
6036
6037 /**
6038 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6039 *
6040 * @dc: [in] dc structure
6041 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6042 *
6043 * Submits dpia hpd int enable command to dmub via inbox message
6044 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6045 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6046 uint32_t hpd_int_enable)
6047 {
6048 union dmub_rb_cmd cmd = {0};
6049
6050 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6051 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6052
6053 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6054
6055 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6056 }
6057
6058 /**
6059 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6060 *
6061 * @dc: [in] dc structure
6062 *
6063 *
6064 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6065 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6066 {
6067 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6068 }
6069
6070 /**
6071 * dc_disable_accelerated_mode - disable accelerated mode
6072 * @dc: dc structure
6073 */
dc_disable_accelerated_mode(struct dc * dc)6074 void dc_disable_accelerated_mode(struct dc *dc)
6075 {
6076 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6077 }
6078
6079
6080 /**
6081 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6082 * @dc: dc structure
6083 * @stream: stream where vsync int state changed
6084 * @enable: whether vsync is enabled or disabled
6085 *
6086 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6087 * interrupts after steady state is reached.
6088 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6089 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6090 {
6091 int i;
6092 int edp_num;
6093 struct pipe_ctx *pipe = NULL;
6094 struct dc_link *link = stream->sink->link;
6095 struct dc_link *edp_links[MAX_NUM_EDP];
6096
6097
6098 if (link->psr_settings.psr_feature_enabled)
6099 return;
6100
6101 if (link->replay_settings.replay_feature_enabled)
6102 return;
6103
6104 /*find primary pipe associated with stream*/
6105 for (i = 0; i < MAX_PIPES; i++) {
6106 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6107
6108 if (pipe->stream == stream && pipe->stream_res.tg)
6109 break;
6110 }
6111
6112 if (i == MAX_PIPES) {
6113 ASSERT(0);
6114 return;
6115 }
6116
6117 dc_get_edp_links(dc, edp_links, &edp_num);
6118
6119 /* Determine panel inst */
6120 for (i = 0; i < edp_num; i++) {
6121 if (edp_links[i] == link)
6122 break;
6123 }
6124
6125 if (i == edp_num) {
6126 return;
6127 }
6128
6129 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6130 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6131 }
6132
6133 /*****************************************************************************
6134 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6135 * ABM
6136 * @dc: dc structure
6137 * @stream: stream where vsync int state changed
6138 * @pData: abm hw states
6139 *
6140 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6141 bool dc_abm_save_restore(
6142 struct dc *dc,
6143 struct dc_stream_state *stream,
6144 struct abm_save_restore *pData)
6145 {
6146 int i;
6147 int edp_num;
6148 struct pipe_ctx *pipe = NULL;
6149 struct dc_link *link = stream->sink->link;
6150 struct dc_link *edp_links[MAX_NUM_EDP];
6151
6152 if (link->replay_settings.replay_feature_enabled)
6153 return false;
6154
6155 /*find primary pipe associated with stream*/
6156 for (i = 0; i < MAX_PIPES; i++) {
6157 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6158
6159 if (pipe->stream == stream && pipe->stream_res.tg)
6160 break;
6161 }
6162
6163 if (i == MAX_PIPES) {
6164 ASSERT(0);
6165 return false;
6166 }
6167
6168 dc_get_edp_links(dc, edp_links, &edp_num);
6169
6170 /* Determine panel inst */
6171 for (i = 0; i < edp_num; i++)
6172 if (edp_links[i] == link)
6173 break;
6174
6175 if (i == edp_num)
6176 return false;
6177
6178 if (pipe->stream_res.abm &&
6179 pipe->stream_res.abm->funcs->save_restore)
6180 return pipe->stream_res.abm->funcs->save_restore(
6181 pipe->stream_res.abm,
6182 i,
6183 pData);
6184 return false;
6185 }
6186
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6187 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6188 {
6189 unsigned int i;
6190 bool subvp_sw_cursor_req = false;
6191
6192 for (i = 0; i < dc->current_state->stream_count; i++) {
6193 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i]) && !dc->current_state->streams[i]->hw_cursor_req) {
6194 subvp_sw_cursor_req = true;
6195 break;
6196 }
6197 }
6198 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
6199 }
6200
6201 /**
6202 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6203 *
6204 * Called when DM wants to power on/off eDP.
6205 * Only work on links with flag skip_implict_edp_power_control is set.
6206 *
6207 * @dc: Current DC state
6208 * @edp_link: a link with eDP connector signal type
6209 * @powerOn: power on/off eDP
6210 *
6211 * Return: void
6212 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6213 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6214 bool powerOn)
6215 {
6216 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6217 return;
6218
6219 if (edp_link->skip_implict_edp_power_control == false)
6220 return;
6221
6222 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6223 }
6224
6225 /*
6226 *****************************************************************************
6227 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6228 *
6229 * Called when DM wants to make power policy decisions based on dc_state
6230 *
6231 *****************************************************************************
6232 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6233 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6234 {
6235 struct dc_power_profile profile = { 0 };
6236
6237 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6238 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6239 return profile;
6240 struct dc *dc = context->clk_mgr->ctx->dc;
6241
6242 if (dc->res_pool->funcs->get_power_profile)
6243 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6244 return profile;
6245 }
6246
6247 /*
6248 **********************************************************************************
6249 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6250 *
6251 * Called when DM wants to log detile buffer size from dc_state
6252 *
6253 **********************************************************************************
6254 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6255 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6256 {
6257 struct dc *dc = context->clk_mgr->ctx->dc;
6258
6259 if (dc->res_pool->funcs->get_det_buffer_size)
6260 return dc->res_pool->funcs->get_det_buffer_size(context);
6261 else
6262 return 0;
6263 }
6264