xref: /linux/arch/arm64/kvm/mmu.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_pkvm.h>
19 #include <asm/kvm_ras.h>
20 #include <asm/kvm_asm.h>
21 #include <asm/kvm_emulate.h>
22 #include <asm/virt.h>
23 
24 #include "trace.h"
25 
26 static struct kvm_pgtable *hyp_pgtable;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28 
29 static unsigned long __ro_after_init hyp_idmap_start;
30 static unsigned long __ro_after_init hyp_idmap_end;
31 static phys_addr_t __ro_after_init hyp_idmap_vector;
32 
33 u32 __ro_after_init __hyp_va_bits;
34 
35 static unsigned long __ro_after_init io_map_base;
36 
37 #define KVM_PGT_FN(fn)		(!is_protected_kvm_enabled() ? fn : p ## fn)
38 
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)39 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
40 					   phys_addr_t size)
41 {
42 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
43 
44 	return (boundary - 1 < end - 1) ? boundary : end;
45 }
46 
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)47 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
48 {
49 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
50 
51 	return __stage2_range_addr_end(addr, end, size);
52 }
53 
54 /*
55  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
56  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
57  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
58  * long will also starve other vCPUs. We have to also make sure that the page
59  * tables are not freed while we released the lock.
60  */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)61 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
62 			      phys_addr_t end,
63 			      int (*fn)(struct kvm_pgtable *, u64, u64),
64 			      bool resched)
65 {
66 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
67 	int ret;
68 	u64 next;
69 
70 	do {
71 		struct kvm_pgtable *pgt = mmu->pgt;
72 		if (!pgt)
73 			return -EINVAL;
74 
75 		next = stage2_range_addr_end(addr, end);
76 		ret = fn(pgt, addr, next - addr);
77 		if (ret)
78 			break;
79 
80 		if (resched && next != end)
81 			cond_resched_rwlock_write(&kvm->mmu_lock);
82 	} while (addr = next, addr != end);
83 
84 	return ret;
85 }
86 
87 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
88 	stage2_apply_range(mmu, addr, end, fn, true)
89 
90 /*
91  * Get the maximum number of page-tables pages needed to split a range
92  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
93  * mapped at level 2, or at level 1 if allowed.
94  */
kvm_mmu_split_nr_page_tables(u64 range)95 static int kvm_mmu_split_nr_page_tables(u64 range)
96 {
97 	int n = 0;
98 
99 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
100 		n += DIV_ROUND_UP(range, PUD_SIZE);
101 	n += DIV_ROUND_UP(range, PMD_SIZE);
102 	return n;
103 }
104 
need_split_memcache_topup_or_resched(struct kvm * kvm)105 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
106 {
107 	struct kvm_mmu_memory_cache *cache;
108 	u64 chunk_size, min;
109 
110 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
111 		return true;
112 
113 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
114 	min = kvm_mmu_split_nr_page_tables(chunk_size);
115 	cache = &kvm->arch.mmu.split_page_cache;
116 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
117 }
118 
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)119 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
120 				    phys_addr_t end)
121 {
122 	struct kvm_mmu_memory_cache *cache;
123 	struct kvm_pgtable *pgt;
124 	int ret, cache_capacity;
125 	u64 next, chunk_size;
126 
127 	lockdep_assert_held_write(&kvm->mmu_lock);
128 
129 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
130 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
131 
132 	if (chunk_size == 0)
133 		return 0;
134 
135 	cache = &kvm->arch.mmu.split_page_cache;
136 
137 	do {
138 		if (need_split_memcache_topup_or_resched(kvm)) {
139 			write_unlock(&kvm->mmu_lock);
140 			cond_resched();
141 			/* Eager page splitting is best-effort. */
142 			ret = __kvm_mmu_topup_memory_cache(cache,
143 							   cache_capacity,
144 							   cache_capacity);
145 			write_lock(&kvm->mmu_lock);
146 			if (ret)
147 				break;
148 		}
149 
150 		pgt = kvm->arch.mmu.pgt;
151 		if (!pgt)
152 			return -EINVAL;
153 
154 		next = __stage2_range_addr_end(addr, end, chunk_size);
155 		ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
156 		if (ret)
157 			break;
158 	} while (addr = next, addr != end);
159 
160 	return ret;
161 }
162 
memslot_is_logging(struct kvm_memory_slot * memslot)163 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
164 {
165 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
166 }
167 
168 /**
169  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
170  * @kvm:	pointer to kvm structure.
171  *
172  * Interface to HYP function to flush all VM TLB entries
173  */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)174 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
175 {
176 	if (is_protected_kvm_enabled())
177 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
178 	else
179 		kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
180 	return 0;
181 }
182 
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)183 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
184 				      gfn_t gfn, u64 nr_pages)
185 {
186 	u64 size = nr_pages << PAGE_SHIFT;
187 	u64 addr = gfn << PAGE_SHIFT;
188 
189 	if (is_protected_kvm_enabled())
190 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
191 	else
192 		kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
193 	return 0;
194 }
195 
kvm_is_device_pfn(unsigned long pfn)196 static bool kvm_is_device_pfn(unsigned long pfn)
197 {
198 	return !pfn_is_map_memory(pfn);
199 }
200 
stage2_memcache_zalloc_page(void * arg)201 static void *stage2_memcache_zalloc_page(void *arg)
202 {
203 	struct kvm_mmu_memory_cache *mc = arg;
204 	void *virt;
205 
206 	/* Allocated with __GFP_ZERO, so no need to zero */
207 	virt = kvm_mmu_memory_cache_alloc(mc);
208 	if (virt)
209 		kvm_account_pgtable_pages(virt, 1);
210 	return virt;
211 }
212 
kvm_host_zalloc_pages_exact(size_t size)213 static void *kvm_host_zalloc_pages_exact(size_t size)
214 {
215 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
216 }
217 
kvm_s2_zalloc_pages_exact(size_t size)218 static void *kvm_s2_zalloc_pages_exact(size_t size)
219 {
220 	void *virt = kvm_host_zalloc_pages_exact(size);
221 
222 	if (virt)
223 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
224 	return virt;
225 }
226 
kvm_s2_free_pages_exact(void * virt,size_t size)227 static void kvm_s2_free_pages_exact(void *virt, size_t size)
228 {
229 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
230 	free_pages_exact(virt, size);
231 }
232 
233 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
234 
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)235 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
236 {
237 	struct page *page = container_of(head, struct page, rcu_head);
238 	void *pgtable = page_to_virt(page);
239 	s8 level = page_private(page);
240 
241 	KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
242 }
243 
stage2_free_unlinked_table(void * addr,s8 level)244 static void stage2_free_unlinked_table(void *addr, s8 level)
245 {
246 	struct page *page = virt_to_page(addr);
247 
248 	set_page_private(page, (unsigned long)level);
249 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
250 }
251 
kvm_host_get_page(void * addr)252 static void kvm_host_get_page(void *addr)
253 {
254 	get_page(virt_to_page(addr));
255 }
256 
kvm_host_put_page(void * addr)257 static void kvm_host_put_page(void *addr)
258 {
259 	put_page(virt_to_page(addr));
260 }
261 
kvm_s2_put_page(void * addr)262 static void kvm_s2_put_page(void *addr)
263 {
264 	struct page *p = virt_to_page(addr);
265 	/* Dropping last refcount, the page will be freed */
266 	if (page_count(p) == 1)
267 		kvm_account_pgtable_pages(addr, -1);
268 	put_page(p);
269 }
270 
kvm_host_page_count(void * addr)271 static int kvm_host_page_count(void *addr)
272 {
273 	return page_count(virt_to_page(addr));
274 }
275 
kvm_host_pa(void * addr)276 static phys_addr_t kvm_host_pa(void *addr)
277 {
278 	return __pa(addr);
279 }
280 
kvm_host_va(phys_addr_t phys)281 static void *kvm_host_va(phys_addr_t phys)
282 {
283 	return __va(phys);
284 }
285 
clean_dcache_guest_page(void * va,size_t size)286 static void clean_dcache_guest_page(void *va, size_t size)
287 {
288 	__clean_dcache_guest_page(va, size);
289 }
290 
invalidate_icache_guest_page(void * va,size_t size)291 static void invalidate_icache_guest_page(void *va, size_t size)
292 {
293 	__invalidate_icache_guest_page(va, size);
294 }
295 
296 /*
297  * Unmapping vs dcache management:
298  *
299  * If a guest maps certain memory pages as uncached, all writes will
300  * bypass the data cache and go directly to RAM.  However, the CPUs
301  * can still speculate reads (not writes) and fill cache lines with
302  * data.
303  *
304  * Those cache lines will be *clean* cache lines though, so a
305  * clean+invalidate operation is equivalent to an invalidate
306  * operation, because no cache lines are marked dirty.
307  *
308  * Those clean cache lines could be filled prior to an uncached write
309  * by the guest, and the cache coherent IO subsystem would therefore
310  * end up writing old data to disk.
311  *
312  * This is why right after unmapping a page/section and invalidating
313  * the corresponding TLBs, we flush to make sure the IO subsystem will
314  * never hit in the cache.
315  *
316  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
317  * we then fully enforce cacheability of RAM, no matter what the guest
318  * does.
319  */
320 /**
321  * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
322  * @mmu:   The KVM stage-2 MMU pointer
323  * @start: The intermediate physical base address of the range to unmap
324  * @size:  The size of the area to unmap
325  * @may_block: Whether or not we are permitted to block
326  *
327  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
328  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
329  * destroying the VM), otherwise another faulting VCPU may come in and mess
330  * with things behind our backs.
331  */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)332 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
333 				 bool may_block)
334 {
335 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
336 	phys_addr_t end = start + size;
337 
338 	lockdep_assert_held_write(&kvm->mmu_lock);
339 	WARN_ON(size & ~PAGE_MASK);
340 	WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
341 				   may_block));
342 }
343 
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)344 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
345 			    u64 size, bool may_block)
346 {
347 	__unmap_stage2_range(mmu, start, size, may_block);
348 }
349 
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)350 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
351 {
352 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
353 }
354 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)355 static void stage2_flush_memslot(struct kvm *kvm,
356 				 struct kvm_memory_slot *memslot)
357 {
358 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
359 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
360 
361 	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
362 }
363 
364 /**
365  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
366  * @kvm: The struct kvm pointer
367  *
368  * Go through the stage 2 page tables and invalidate any cache lines
369  * backing memory already mapped to the VM.
370  */
stage2_flush_vm(struct kvm * kvm)371 static void stage2_flush_vm(struct kvm *kvm)
372 {
373 	struct kvm_memslots *slots;
374 	struct kvm_memory_slot *memslot;
375 	int idx, bkt;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	write_lock(&kvm->mmu_lock);
379 
380 	slots = kvm_memslots(kvm);
381 	kvm_for_each_memslot(memslot, bkt, slots)
382 		stage2_flush_memslot(kvm, memslot);
383 
384 	kvm_nested_s2_flush(kvm);
385 
386 	write_unlock(&kvm->mmu_lock);
387 	srcu_read_unlock(&kvm->srcu, idx);
388 }
389 
390 /**
391  * free_hyp_pgds - free Hyp-mode page tables
392  */
free_hyp_pgds(void)393 void __init free_hyp_pgds(void)
394 {
395 	mutex_lock(&kvm_hyp_pgd_mutex);
396 	if (hyp_pgtable) {
397 		kvm_pgtable_hyp_destroy(hyp_pgtable);
398 		kfree(hyp_pgtable);
399 		hyp_pgtable = NULL;
400 	}
401 	mutex_unlock(&kvm_hyp_pgd_mutex);
402 }
403 
kvm_host_owns_hyp_mappings(void)404 static bool kvm_host_owns_hyp_mappings(void)
405 {
406 	if (is_kernel_in_hyp_mode())
407 		return false;
408 
409 	if (static_branch_likely(&kvm_protected_mode_initialized))
410 		return false;
411 
412 	/*
413 	 * This can happen at boot time when __create_hyp_mappings() is called
414 	 * after the hyp protection has been enabled, but the static key has
415 	 * not been flipped yet.
416 	 */
417 	if (!hyp_pgtable && is_protected_kvm_enabled())
418 		return false;
419 
420 	WARN_ON(!hyp_pgtable);
421 
422 	return true;
423 }
424 
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)425 int __create_hyp_mappings(unsigned long start, unsigned long size,
426 			  unsigned long phys, enum kvm_pgtable_prot prot)
427 {
428 	int err;
429 
430 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
431 		return -EINVAL;
432 
433 	mutex_lock(&kvm_hyp_pgd_mutex);
434 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
435 	mutex_unlock(&kvm_hyp_pgd_mutex);
436 
437 	return err;
438 }
439 
kvm_kaddr_to_phys(void * kaddr)440 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
441 {
442 	if (!is_vmalloc_addr(kaddr)) {
443 		BUG_ON(!virt_addr_valid(kaddr));
444 		return __pa(kaddr);
445 	} else {
446 		return page_to_phys(vmalloc_to_page(kaddr)) +
447 		       offset_in_page(kaddr);
448 	}
449 }
450 
451 struct hyp_shared_pfn {
452 	u64 pfn;
453 	int count;
454 	struct rb_node node;
455 };
456 
457 static DEFINE_MUTEX(hyp_shared_pfns_lock);
458 static struct rb_root hyp_shared_pfns = RB_ROOT;
459 
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)460 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
461 					      struct rb_node **parent)
462 {
463 	struct hyp_shared_pfn *this;
464 
465 	*node = &hyp_shared_pfns.rb_node;
466 	*parent = NULL;
467 	while (**node) {
468 		this = container_of(**node, struct hyp_shared_pfn, node);
469 		*parent = **node;
470 		if (this->pfn < pfn)
471 			*node = &((**node)->rb_left);
472 		else if (this->pfn > pfn)
473 			*node = &((**node)->rb_right);
474 		else
475 			return this;
476 	}
477 
478 	return NULL;
479 }
480 
share_pfn_hyp(u64 pfn)481 static int share_pfn_hyp(u64 pfn)
482 {
483 	struct rb_node **node, *parent;
484 	struct hyp_shared_pfn *this;
485 	int ret = 0;
486 
487 	mutex_lock(&hyp_shared_pfns_lock);
488 	this = find_shared_pfn(pfn, &node, &parent);
489 	if (this) {
490 		this->count++;
491 		goto unlock;
492 	}
493 
494 	this = kzalloc(sizeof(*this), GFP_KERNEL);
495 	if (!this) {
496 		ret = -ENOMEM;
497 		goto unlock;
498 	}
499 
500 	this->pfn = pfn;
501 	this->count = 1;
502 	rb_link_node(&this->node, parent, node);
503 	rb_insert_color(&this->node, &hyp_shared_pfns);
504 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
505 unlock:
506 	mutex_unlock(&hyp_shared_pfns_lock);
507 
508 	return ret;
509 }
510 
unshare_pfn_hyp(u64 pfn)511 static int unshare_pfn_hyp(u64 pfn)
512 {
513 	struct rb_node **node, *parent;
514 	struct hyp_shared_pfn *this;
515 	int ret = 0;
516 
517 	mutex_lock(&hyp_shared_pfns_lock);
518 	this = find_shared_pfn(pfn, &node, &parent);
519 	if (WARN_ON(!this)) {
520 		ret = -ENOENT;
521 		goto unlock;
522 	}
523 
524 	this->count--;
525 	if (this->count)
526 		goto unlock;
527 
528 	rb_erase(&this->node, &hyp_shared_pfns);
529 	kfree(this);
530 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
531 unlock:
532 	mutex_unlock(&hyp_shared_pfns_lock);
533 
534 	return ret;
535 }
536 
kvm_share_hyp(void * from,void * to)537 int kvm_share_hyp(void *from, void *to)
538 {
539 	phys_addr_t start, end, cur;
540 	u64 pfn;
541 	int ret;
542 
543 	if (is_kernel_in_hyp_mode())
544 		return 0;
545 
546 	/*
547 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
548 	 * VA space, so we can only share physically contiguous data-structures
549 	 * for now.
550 	 */
551 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
552 		return -EINVAL;
553 
554 	if (kvm_host_owns_hyp_mappings())
555 		return create_hyp_mappings(from, to, PAGE_HYP);
556 
557 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
558 	end = PAGE_ALIGN(__pa(to));
559 	for (cur = start; cur < end; cur += PAGE_SIZE) {
560 		pfn = __phys_to_pfn(cur);
561 		ret = share_pfn_hyp(pfn);
562 		if (ret)
563 			return ret;
564 	}
565 
566 	return 0;
567 }
568 
kvm_unshare_hyp(void * from,void * to)569 void kvm_unshare_hyp(void *from, void *to)
570 {
571 	phys_addr_t start, end, cur;
572 	u64 pfn;
573 
574 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
575 		return;
576 
577 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
578 	end = PAGE_ALIGN(__pa(to));
579 	for (cur = start; cur < end; cur += PAGE_SIZE) {
580 		pfn = __phys_to_pfn(cur);
581 		WARN_ON(unshare_pfn_hyp(pfn));
582 	}
583 }
584 
585 /**
586  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587  * @from:	The virtual kernel start address of the range
588  * @to:		The virtual kernel end address of the range (exclusive)
589  * @prot:	The protection to be applied to this range
590  *
591  * The same virtual address as the kernel virtual address is also used
592  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
593  * physical pages.
594  */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)595 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
596 {
597 	phys_addr_t phys_addr;
598 	unsigned long virt_addr;
599 	unsigned long start = kern_hyp_va((unsigned long)from);
600 	unsigned long end = kern_hyp_va((unsigned long)to);
601 
602 	if (is_kernel_in_hyp_mode())
603 		return 0;
604 
605 	if (!kvm_host_owns_hyp_mappings())
606 		return -EPERM;
607 
608 	start = start & PAGE_MASK;
609 	end = PAGE_ALIGN(end);
610 
611 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
612 		int err;
613 
614 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
615 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
616 					    prot);
617 		if (err)
618 			return err;
619 	}
620 
621 	return 0;
622 }
623 
__hyp_alloc_private_va_range(unsigned long base)624 static int __hyp_alloc_private_va_range(unsigned long base)
625 {
626 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
627 
628 	if (!PAGE_ALIGNED(base))
629 		return -EINVAL;
630 
631 	/*
632 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
633 	 * allocating the new area, as it would indicate we've
634 	 * overflowed the idmap/IO address range.
635 	 */
636 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
637 		return -ENOMEM;
638 
639 	io_map_base = base;
640 
641 	return 0;
642 }
643 
644 /**
645  * hyp_alloc_private_va_range - Allocates a private VA range.
646  * @size:	The size of the VA range to reserve.
647  * @haddr:	The hypervisor virtual start address of the allocation.
648  *
649  * The private virtual address (VA) range is allocated below io_map_base
650  * and aligned based on the order of @size.
651  *
652  * Return: 0 on success or negative error code on failure.
653  */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)654 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
655 {
656 	unsigned long base;
657 	int ret = 0;
658 
659 	mutex_lock(&kvm_hyp_pgd_mutex);
660 
661 	/*
662 	 * This assumes that we have enough space below the idmap
663 	 * page to allocate our VAs. If not, the check in
664 	 * __hyp_alloc_private_va_range() will kick. A potential
665 	 * alternative would be to detect that overflow and switch
666 	 * to an allocation above the idmap.
667 	 *
668 	 * The allocated size is always a multiple of PAGE_SIZE.
669 	 */
670 	size = PAGE_ALIGN(size);
671 	base = io_map_base - size;
672 	ret = __hyp_alloc_private_va_range(base);
673 
674 	mutex_unlock(&kvm_hyp_pgd_mutex);
675 
676 	if (!ret)
677 		*haddr = base;
678 
679 	return ret;
680 }
681 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)682 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
683 					unsigned long *haddr,
684 					enum kvm_pgtable_prot prot)
685 {
686 	unsigned long addr;
687 	int ret = 0;
688 
689 	if (!kvm_host_owns_hyp_mappings()) {
690 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
691 					 phys_addr, size, prot);
692 		if (IS_ERR_VALUE(addr))
693 			return addr;
694 		*haddr = addr;
695 
696 		return 0;
697 	}
698 
699 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
700 	ret = hyp_alloc_private_va_range(size, &addr);
701 	if (ret)
702 		return ret;
703 
704 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
705 	if (ret)
706 		return ret;
707 
708 	*haddr = addr + offset_in_page(phys_addr);
709 	return ret;
710 }
711 
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)712 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
713 {
714 	unsigned long base;
715 	size_t size;
716 	int ret;
717 
718 	mutex_lock(&kvm_hyp_pgd_mutex);
719 	/*
720 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
721 	 * an alignment of our allocation on the order of the size.
722 	 */
723 	size = NVHE_STACK_SIZE * 2;
724 	base = ALIGN_DOWN(io_map_base - size, size);
725 
726 	ret = __hyp_alloc_private_va_range(base);
727 
728 	mutex_unlock(&kvm_hyp_pgd_mutex);
729 
730 	if (ret) {
731 		kvm_err("Cannot allocate hyp stack guard page\n");
732 		return ret;
733 	}
734 
735 	/*
736 	 * Since the stack grows downwards, map the stack to the page
737 	 * at the higher address and leave the lower guard page
738 	 * unbacked.
739 	 *
740 	 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
741 	 * and addresses corresponding to the guard page have the
742 	 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
743 	 */
744 	ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
745 				    phys_addr, PAGE_HYP);
746 	if (ret)
747 		kvm_err("Cannot map hyp stack\n");
748 
749 	*haddr = base + size;
750 
751 	return ret;
752 }
753 
754 /**
755  * create_hyp_io_mappings - Map IO into both kernel and HYP
756  * @phys_addr:	The physical start address which gets mapped
757  * @size:	Size of the region being mapped
758  * @kaddr:	Kernel VA for this mapping
759  * @haddr:	HYP VA for this mapping
760  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)761 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
762 			   void __iomem **kaddr,
763 			   void __iomem **haddr)
764 {
765 	unsigned long addr;
766 	int ret;
767 
768 	if (is_protected_kvm_enabled())
769 		return -EPERM;
770 
771 	*kaddr = ioremap(phys_addr, size);
772 	if (!*kaddr)
773 		return -ENOMEM;
774 
775 	if (is_kernel_in_hyp_mode()) {
776 		*haddr = *kaddr;
777 		return 0;
778 	}
779 
780 	ret = __create_hyp_private_mapping(phys_addr, size,
781 					   &addr, PAGE_HYP_DEVICE);
782 	if (ret) {
783 		iounmap(*kaddr);
784 		*kaddr = NULL;
785 		*haddr = NULL;
786 		return ret;
787 	}
788 
789 	*haddr = (void __iomem *)addr;
790 	return 0;
791 }
792 
793 /**
794  * create_hyp_exec_mappings - Map an executable range into HYP
795  * @phys_addr:	The physical start address which gets mapped
796  * @size:	Size of the region being mapped
797  * @haddr:	HYP VA for this mapping
798  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)799 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
800 			     void **haddr)
801 {
802 	unsigned long addr;
803 	int ret;
804 
805 	BUG_ON(is_kernel_in_hyp_mode());
806 
807 	ret = __create_hyp_private_mapping(phys_addr, size,
808 					   &addr, PAGE_HYP_EXEC);
809 	if (ret) {
810 		*haddr = NULL;
811 		return ret;
812 	}
813 
814 	*haddr = (void *)addr;
815 	return 0;
816 }
817 
818 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
819 	/* We shouldn't need any other callback to walk the PT */
820 	.phys_to_virt		= kvm_host_va,
821 };
822 
get_user_mapping_size(struct kvm * kvm,u64 addr)823 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
824 {
825 	struct kvm_pgtable pgt = {
826 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
827 		.ia_bits	= vabits_actual,
828 		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
829 				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
830 		.mm_ops		= &kvm_user_mm_ops,
831 	};
832 	unsigned long flags;
833 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
834 	s8 level = S8_MAX;
835 	int ret;
836 
837 	/*
838 	 * Disable IRQs so that we hazard against a concurrent
839 	 * teardown of the userspace page tables (which relies on
840 	 * IPI-ing threads).
841 	 */
842 	local_irq_save(flags);
843 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
844 	local_irq_restore(flags);
845 
846 	if (ret)
847 		return ret;
848 
849 	/*
850 	 * Not seeing an error, but not updating level? Something went
851 	 * deeply wrong...
852 	 */
853 	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
854 		return -EFAULT;
855 	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
856 		return -EFAULT;
857 
858 	/* Oops, the userspace PTs are gone... Replay the fault */
859 	if (!kvm_pte_valid(pte))
860 		return -EAGAIN;
861 
862 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
863 }
864 
865 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
866 	.zalloc_page		= stage2_memcache_zalloc_page,
867 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
868 	.free_pages_exact	= kvm_s2_free_pages_exact,
869 	.free_unlinked_table	= stage2_free_unlinked_table,
870 	.get_page		= kvm_host_get_page,
871 	.put_page		= kvm_s2_put_page,
872 	.page_count		= kvm_host_page_count,
873 	.phys_to_virt		= kvm_host_va,
874 	.virt_to_phys		= kvm_host_pa,
875 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
876 	.icache_inval_pou	= invalidate_icache_guest_page,
877 };
878 
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)879 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
880 {
881 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
882 	u64 mmfr0, mmfr1;
883 	u32 phys_shift;
884 
885 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
886 		return -EINVAL;
887 
888 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
889 	if (is_protected_kvm_enabled()) {
890 		phys_shift = kvm_ipa_limit;
891 	} else if (phys_shift) {
892 		if (phys_shift > kvm_ipa_limit ||
893 		    phys_shift < ARM64_MIN_PARANGE_BITS)
894 			return -EINVAL;
895 	} else {
896 		phys_shift = KVM_PHYS_SHIFT;
897 		if (phys_shift > kvm_ipa_limit) {
898 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
899 				     current->comm);
900 			return -EINVAL;
901 		}
902 	}
903 
904 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
905 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
906 	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
907 
908 	return 0;
909 }
910 
911 /**
912  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
913  * @kvm:	The pointer to the KVM structure
914  * @mmu:	The pointer to the s2 MMU structure
915  * @type:	The machine type of the virtual machine
916  *
917  * Allocates only the stage-2 HW PGD level table(s).
918  * Note we don't need locking here as this is only called in two cases:
919  *
920  * - when the VM is created, which can't race against anything
921  *
922  * - when secondary kvm_s2_mmu structures are initialised for NV
923  *   guests, and the caller must hold kvm->lock as this is called on a
924  *   per-vcpu basis.
925  */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)926 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
927 {
928 	int cpu, err;
929 	struct kvm_pgtable *pgt;
930 
931 	/*
932 	 * If we already have our page tables in place, and that the
933 	 * MMU context is the canonical one, we have a bug somewhere,
934 	 * as this is only supposed to ever happen once per VM.
935 	 *
936 	 * Otherwise, we're building nested page tables, and that's
937 	 * probably because userspace called KVM_ARM_VCPU_INIT more
938 	 * than once on the same vcpu. Since that's actually legal,
939 	 * don't kick a fuss and leave gracefully.
940 	 */
941 	if (mmu->pgt != NULL) {
942 		if (kvm_is_nested_s2_mmu(kvm, mmu))
943 			return 0;
944 
945 		kvm_err("kvm_arch already initialized?\n");
946 		return -EINVAL;
947 	}
948 
949 	err = kvm_init_ipa_range(mmu, type);
950 	if (err)
951 		return err;
952 
953 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
954 	if (!pgt)
955 		return -ENOMEM;
956 
957 	mmu->arch = &kvm->arch;
958 	err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
959 	if (err)
960 		goto out_free_pgtable;
961 
962 	mmu->pgt = pgt;
963 	if (is_protected_kvm_enabled())
964 		return 0;
965 
966 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
967 	if (!mmu->last_vcpu_ran) {
968 		err = -ENOMEM;
969 		goto out_destroy_pgtable;
970 	}
971 
972 	for_each_possible_cpu(cpu)
973 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
974 
975 	 /* The eager page splitting is disabled by default */
976 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
977 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
978 
979 	mmu->pgd_phys = __pa(pgt->pgd);
980 
981 	if (kvm_is_nested_s2_mmu(kvm, mmu))
982 		kvm_init_nested_s2_mmu(mmu);
983 
984 	return 0;
985 
986 out_destroy_pgtable:
987 	KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
988 out_free_pgtable:
989 	kfree(pgt);
990 	return err;
991 }
992 
kvm_uninit_stage2_mmu(struct kvm * kvm)993 void kvm_uninit_stage2_mmu(struct kvm *kvm)
994 {
995 	kvm_free_stage2_pgd(&kvm->arch.mmu);
996 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
997 }
998 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)999 static void stage2_unmap_memslot(struct kvm *kvm,
1000 				 struct kvm_memory_slot *memslot)
1001 {
1002 	hva_t hva = memslot->userspace_addr;
1003 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1004 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1005 	hva_t reg_end = hva + size;
1006 
1007 	/*
1008 	 * A memory region could potentially cover multiple VMAs, and any holes
1009 	 * between them, so iterate over all of them to find out if we should
1010 	 * unmap any of them.
1011 	 *
1012 	 *     +--------------------------------------------+
1013 	 * +---------------+----------------+   +----------------+
1014 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1015 	 * +---------------+----------------+   +----------------+
1016 	 *     |               memory region                |
1017 	 *     +--------------------------------------------+
1018 	 */
1019 	do {
1020 		struct vm_area_struct *vma;
1021 		hva_t vm_start, vm_end;
1022 
1023 		vma = find_vma_intersection(current->mm, hva, reg_end);
1024 		if (!vma)
1025 			break;
1026 
1027 		/*
1028 		 * Take the intersection of this VMA with the memory region
1029 		 */
1030 		vm_start = max(hva, vma->vm_start);
1031 		vm_end = min(reg_end, vma->vm_end);
1032 
1033 		if (!(vma->vm_flags & VM_PFNMAP)) {
1034 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1035 			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1036 		}
1037 		hva = vm_end;
1038 	} while (hva < reg_end);
1039 }
1040 
1041 /**
1042  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1043  * @kvm: The struct kvm pointer
1044  *
1045  * Go through the memregions and unmap any regular RAM
1046  * backing memory already mapped to the VM.
1047  */
stage2_unmap_vm(struct kvm * kvm)1048 void stage2_unmap_vm(struct kvm *kvm)
1049 {
1050 	struct kvm_memslots *slots;
1051 	struct kvm_memory_slot *memslot;
1052 	int idx, bkt;
1053 
1054 	idx = srcu_read_lock(&kvm->srcu);
1055 	mmap_read_lock(current->mm);
1056 	write_lock(&kvm->mmu_lock);
1057 
1058 	slots = kvm_memslots(kvm);
1059 	kvm_for_each_memslot(memslot, bkt, slots)
1060 		stage2_unmap_memslot(kvm, memslot);
1061 
1062 	kvm_nested_s2_unmap(kvm, true);
1063 
1064 	write_unlock(&kvm->mmu_lock);
1065 	mmap_read_unlock(current->mm);
1066 	srcu_read_unlock(&kvm->srcu, idx);
1067 }
1068 
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1069 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1070 {
1071 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1072 	struct kvm_pgtable *pgt = NULL;
1073 
1074 	write_lock(&kvm->mmu_lock);
1075 	pgt = mmu->pgt;
1076 	if (pgt) {
1077 		mmu->pgd_phys = 0;
1078 		mmu->pgt = NULL;
1079 		free_percpu(mmu->last_vcpu_ran);
1080 	}
1081 	write_unlock(&kvm->mmu_lock);
1082 
1083 	if (pgt) {
1084 		KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
1085 		kfree(pgt);
1086 	}
1087 }
1088 
hyp_mc_free_fn(void * addr,void * mc)1089 static void hyp_mc_free_fn(void *addr, void *mc)
1090 {
1091 	struct kvm_hyp_memcache *memcache = mc;
1092 
1093 	if (memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1094 		kvm_account_pgtable_pages(addr, -1);
1095 
1096 	free_page((unsigned long)addr);
1097 }
1098 
hyp_mc_alloc_fn(void * mc)1099 static void *hyp_mc_alloc_fn(void *mc)
1100 {
1101 	struct kvm_hyp_memcache *memcache = mc;
1102 	void *addr;
1103 
1104 	addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1105 	if (addr && memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1106 		kvm_account_pgtable_pages(addr, 1);
1107 
1108 	return addr;
1109 }
1110 
free_hyp_memcache(struct kvm_hyp_memcache * mc)1111 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1112 {
1113 	if (!is_protected_kvm_enabled())
1114 		return;
1115 
1116 	kfree(mc->mapping);
1117 	__free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, mc);
1118 }
1119 
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1120 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1121 {
1122 	if (!is_protected_kvm_enabled())
1123 		return 0;
1124 
1125 	if (!mc->mapping) {
1126 		mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1127 		if (!mc->mapping)
1128 			return -ENOMEM;
1129 	}
1130 
1131 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1132 				    kvm_host_pa, mc);
1133 }
1134 
1135 /**
1136  * kvm_phys_addr_ioremap - map a device range to guest IPA
1137  *
1138  * @kvm:	The KVM pointer
1139  * @guest_ipa:	The IPA at which to insert the mapping
1140  * @pa:		The physical address of the device
1141  * @size:	The size of the mapping
1142  * @writable:   Whether or not to create a writable mapping
1143  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1144 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1145 			  phys_addr_t pa, unsigned long size, bool writable)
1146 {
1147 	phys_addr_t addr;
1148 	int ret = 0;
1149 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1150 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1151 	struct kvm_pgtable *pgt = mmu->pgt;
1152 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1153 				     KVM_PGTABLE_PROT_R |
1154 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1155 
1156 	if (is_protected_kvm_enabled())
1157 		return -EPERM;
1158 
1159 	size += offset_in_page(guest_ipa);
1160 	guest_ipa &= PAGE_MASK;
1161 
1162 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1163 		ret = kvm_mmu_topup_memory_cache(&cache,
1164 						 kvm_mmu_cache_min_pages(mmu));
1165 		if (ret)
1166 			break;
1167 
1168 		write_lock(&kvm->mmu_lock);
1169 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1170 				 pa, prot, &cache, 0);
1171 		write_unlock(&kvm->mmu_lock);
1172 		if (ret)
1173 			break;
1174 
1175 		pa += PAGE_SIZE;
1176 	}
1177 
1178 	kvm_mmu_free_memory_cache(&cache);
1179 	return ret;
1180 }
1181 
1182 /**
1183  * kvm_stage2_wp_range() - write protect stage2 memory region range
1184  * @mmu:        The KVM stage-2 MMU pointer
1185  * @addr:	Start address of range
1186  * @end:	End address of range
1187  */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1188 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1189 {
1190 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1191 }
1192 
1193 /**
1194  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1195  * @kvm:	The KVM pointer
1196  * @slot:	The memory slot to write protect
1197  *
1198  * Called to start logging dirty pages after memory region
1199  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1200  * all present PUD, PMD and PTEs are write protected in the memory region.
1201  * Afterwards read of dirty page log can be called.
1202  *
1203  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1204  * serializing operations for VM memory regions.
1205  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1206 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1207 {
1208 	struct kvm_memslots *slots = kvm_memslots(kvm);
1209 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1210 	phys_addr_t start, end;
1211 
1212 	if (WARN_ON_ONCE(!memslot))
1213 		return;
1214 
1215 	start = memslot->base_gfn << PAGE_SHIFT;
1216 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1217 
1218 	write_lock(&kvm->mmu_lock);
1219 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1220 	kvm_nested_s2_wp(kvm);
1221 	write_unlock(&kvm->mmu_lock);
1222 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1223 }
1224 
1225 /**
1226  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1227  *				   pages for memory slot
1228  * @kvm:	The KVM pointer
1229  * @slot:	The memory slot to split
1230  *
1231  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1232  * serializing operations for VM memory regions.
1233  */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1234 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1235 {
1236 	struct kvm_memslots *slots;
1237 	struct kvm_memory_slot *memslot;
1238 	phys_addr_t start, end;
1239 
1240 	lockdep_assert_held(&kvm->slots_lock);
1241 
1242 	slots = kvm_memslots(kvm);
1243 	memslot = id_to_memslot(slots, slot);
1244 
1245 	start = memslot->base_gfn << PAGE_SHIFT;
1246 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1247 
1248 	write_lock(&kvm->mmu_lock);
1249 	kvm_mmu_split_huge_pages(kvm, start, end);
1250 	write_unlock(&kvm->mmu_lock);
1251 }
1252 
1253 /*
1254  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1255  * @kvm:	The KVM pointer
1256  * @slot:	The memory slot associated with mask
1257  * @gfn_offset:	The gfn offset in memory slot
1258  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1259  *		slot to enable dirty logging on
1260  *
1261  * Writes protect selected pages to enable dirty logging, and then
1262  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1263  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1264 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1265 		struct kvm_memory_slot *slot,
1266 		gfn_t gfn_offset, unsigned long mask)
1267 {
1268 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1269 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1270 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1271 
1272 	lockdep_assert_held_write(&kvm->mmu_lock);
1273 
1274 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1275 
1276 	/*
1277 	 * Eager-splitting is done when manual-protect is set.  We
1278 	 * also check for initially-all-set because we can avoid
1279 	 * eager-splitting if initially-all-set is false.
1280 	 * Initially-all-set equal false implies that huge-pages were
1281 	 * already split when enabling dirty logging: no need to do it
1282 	 * again.
1283 	 */
1284 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1285 		kvm_mmu_split_huge_pages(kvm, start, end);
1286 
1287 	kvm_nested_s2_wp(kvm);
1288 }
1289 
kvm_send_hwpoison_signal(unsigned long address,short lsb)1290 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1291 {
1292 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1293 }
1294 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1295 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1296 					       unsigned long hva,
1297 					       unsigned long map_size)
1298 {
1299 	gpa_t gpa_start;
1300 	hva_t uaddr_start, uaddr_end;
1301 	size_t size;
1302 
1303 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1304 	if (map_size == PAGE_SIZE)
1305 		return true;
1306 
1307 	/* pKVM only supports PMD_SIZE huge-mappings */
1308 	if (is_protected_kvm_enabled() && map_size != PMD_SIZE)
1309 		return false;
1310 
1311 	size = memslot->npages * PAGE_SIZE;
1312 
1313 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1314 
1315 	uaddr_start = memslot->userspace_addr;
1316 	uaddr_end = uaddr_start + size;
1317 
1318 	/*
1319 	 * Pages belonging to memslots that don't have the same alignment
1320 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1321 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1322 	 *
1323 	 * Consider a layout like the following:
1324 	 *
1325 	 *    memslot->userspace_addr:
1326 	 *    +-----+--------------------+--------------------+---+
1327 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1328 	 *    +-----+--------------------+--------------------+---+
1329 	 *
1330 	 *    memslot->base_gfn << PAGE_SHIFT:
1331 	 *      +---+--------------------+--------------------+-----+
1332 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1333 	 *      +---+--------------------+--------------------+-----+
1334 	 *
1335 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1336 	 * mapping:
1337 	 *   d -> f
1338 	 *   e -> g
1339 	 *   f -> h
1340 	 */
1341 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1342 		return false;
1343 
1344 	/*
1345 	 * Next, let's make sure we're not trying to map anything not covered
1346 	 * by the memslot. This means we have to prohibit block size mappings
1347 	 * for the beginning and end of a non-block aligned and non-block sized
1348 	 * memory slot (illustrated by the head and tail parts of the
1349 	 * userspace view above containing pages 'abcde' and 'xyz',
1350 	 * respectively).
1351 	 *
1352 	 * Note that it doesn't matter if we do the check using the
1353 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1354 	 * the check above) and equally sized.
1355 	 */
1356 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1357 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1358 }
1359 
1360 /*
1361  * Check if the given hva is backed by a transparent huge page (THP) and
1362  * whether it can be mapped using block mapping in stage2. If so, adjust
1363  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1364  * supported. This will need to be updated to support other THP sizes.
1365  *
1366  * Returns the size of the mapping.
1367  */
1368 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1369 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1370 			    unsigned long hva, kvm_pfn_t *pfnp,
1371 			    phys_addr_t *ipap)
1372 {
1373 	kvm_pfn_t pfn = *pfnp;
1374 
1375 	/*
1376 	 * Make sure the adjustment is done only for THP pages. Also make
1377 	 * sure that the HVA and IPA are sufficiently aligned and that the
1378 	 * block map is contained within the memslot.
1379 	 */
1380 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1381 		int sz = get_user_mapping_size(kvm, hva);
1382 
1383 		if (sz < 0)
1384 			return sz;
1385 
1386 		if (sz < PMD_SIZE)
1387 			return PAGE_SIZE;
1388 
1389 		*ipap &= PMD_MASK;
1390 		pfn &= ~(PTRS_PER_PMD - 1);
1391 		*pfnp = pfn;
1392 
1393 		return PMD_SIZE;
1394 	}
1395 
1396 	/* Use page mapping if we cannot use block mapping. */
1397 	return PAGE_SIZE;
1398 }
1399 
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1400 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1401 {
1402 	unsigned long pa;
1403 
1404 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1405 		return huge_page_shift(hstate_vma(vma));
1406 
1407 	if (!(vma->vm_flags & VM_PFNMAP))
1408 		return PAGE_SHIFT;
1409 
1410 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1411 
1412 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1413 
1414 #ifndef __PAGETABLE_PMD_FOLDED
1415 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1416 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1417 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1418 		return PUD_SHIFT;
1419 #endif
1420 
1421 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1422 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1423 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1424 		return PMD_SHIFT;
1425 
1426 	return PAGE_SHIFT;
1427 }
1428 
1429 /*
1430  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1431  * able to see the page's tags and therefore they must be initialised first. If
1432  * PG_mte_tagged is set, tags have already been initialised.
1433  *
1434  * The race in the test/set of the PG_mte_tagged flag is handled by:
1435  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1436  *   racing to santise the same page
1437  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1438  *   an mprotect() to add VM_MTE
1439  */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1440 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1441 			      unsigned long size)
1442 {
1443 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1444 	struct page *page = pfn_to_page(pfn);
1445 	struct folio *folio = page_folio(page);
1446 
1447 	if (!kvm_has_mte(kvm))
1448 		return;
1449 
1450 	if (folio_test_hugetlb(folio)) {
1451 		/* Hugetlb has MTE flags set on head page only */
1452 		if (folio_try_hugetlb_mte_tagging(folio)) {
1453 			for (i = 0; i < nr_pages; i++, page++)
1454 				mte_clear_page_tags(page_address(page));
1455 			folio_set_hugetlb_mte_tagged(folio);
1456 		}
1457 		return;
1458 	}
1459 
1460 	for (i = 0; i < nr_pages; i++, page++) {
1461 		if (try_page_mte_tagging(page)) {
1462 			mte_clear_page_tags(page_address(page));
1463 			set_page_mte_tagged(page);
1464 		}
1465 	}
1466 }
1467 
kvm_vma_mte_allowed(struct vm_area_struct * vma)1468 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1469 {
1470 	return vma->vm_flags & VM_MTE_ALLOWED;
1471 }
1472 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1473 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1474 			  struct kvm_s2_trans *nested,
1475 			  struct kvm_memory_slot *memslot, unsigned long hva,
1476 			  bool fault_is_perm)
1477 {
1478 	int ret = 0;
1479 	bool write_fault, writable, force_pte = false;
1480 	bool exec_fault, mte_allowed;
1481 	bool device = false, vfio_allow_any_uc = false;
1482 	unsigned long mmu_seq;
1483 	phys_addr_t ipa = fault_ipa;
1484 	struct kvm *kvm = vcpu->kvm;
1485 	struct vm_area_struct *vma;
1486 	short vma_shift;
1487 	void *memcache;
1488 	gfn_t gfn;
1489 	kvm_pfn_t pfn;
1490 	bool logging_active = memslot_is_logging(memslot);
1491 	long vma_pagesize, fault_granule;
1492 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1493 	struct kvm_pgtable *pgt;
1494 	struct page *page;
1495 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1496 
1497 	if (fault_is_perm)
1498 		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1499 	write_fault = kvm_is_write_fault(vcpu);
1500 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1501 	VM_BUG_ON(write_fault && exec_fault);
1502 
1503 	if (fault_is_perm && !write_fault && !exec_fault) {
1504 		kvm_err("Unexpected L2 read permission error\n");
1505 		return -EFAULT;
1506 	}
1507 
1508 	if (!is_protected_kvm_enabled())
1509 		memcache = &vcpu->arch.mmu_page_cache;
1510 	else
1511 		memcache = &vcpu->arch.pkvm_memcache;
1512 
1513 	/*
1514 	 * Permission faults just need to update the existing leaf entry,
1515 	 * and so normally don't require allocations from the memcache. The
1516 	 * only exception to this is when dirty logging is enabled at runtime
1517 	 * and a write fault needs to collapse a block entry into a table.
1518 	 */
1519 	if (!fault_is_perm || (logging_active && write_fault)) {
1520 		int min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1521 
1522 		if (!is_protected_kvm_enabled())
1523 			ret = kvm_mmu_topup_memory_cache(memcache, min_pages);
1524 		else
1525 			ret = topup_hyp_memcache(memcache, min_pages);
1526 
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	/*
1532 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1533 	 * get block mapping for device MMIO region.
1534 	 */
1535 	mmap_read_lock(current->mm);
1536 	vma = vma_lookup(current->mm, hva);
1537 	if (unlikely(!vma)) {
1538 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1539 		mmap_read_unlock(current->mm);
1540 		return -EFAULT;
1541 	}
1542 
1543 	/*
1544 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1545 	 * memslots.
1546 	 */
1547 	if (logging_active) {
1548 		force_pte = true;
1549 		vma_shift = PAGE_SHIFT;
1550 	} else {
1551 		vma_shift = get_vma_page_shift(vma, hva);
1552 	}
1553 
1554 	switch (vma_shift) {
1555 #ifndef __PAGETABLE_PMD_FOLDED
1556 	case PUD_SHIFT:
1557 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1558 			break;
1559 		fallthrough;
1560 #endif
1561 	case CONT_PMD_SHIFT:
1562 		vma_shift = PMD_SHIFT;
1563 		fallthrough;
1564 	case PMD_SHIFT:
1565 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1566 			break;
1567 		fallthrough;
1568 	case CONT_PTE_SHIFT:
1569 		vma_shift = PAGE_SHIFT;
1570 		force_pte = true;
1571 		fallthrough;
1572 	case PAGE_SHIFT:
1573 		break;
1574 	default:
1575 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1576 	}
1577 
1578 	vma_pagesize = 1UL << vma_shift;
1579 
1580 	if (nested) {
1581 		unsigned long max_map_size;
1582 
1583 		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1584 
1585 		ipa = kvm_s2_trans_output(nested);
1586 
1587 		/*
1588 		 * If we're about to create a shadow stage 2 entry, then we
1589 		 * can only create a block mapping if the guest stage 2 page
1590 		 * table uses at least as big a mapping.
1591 		 */
1592 		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1593 
1594 		/*
1595 		 * Be careful that if the mapping size falls between
1596 		 * two host sizes, take the smallest of the two.
1597 		 */
1598 		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1599 			max_map_size = PMD_SIZE;
1600 		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1601 			max_map_size = PAGE_SIZE;
1602 
1603 		force_pte = (max_map_size == PAGE_SIZE);
1604 		vma_pagesize = min(vma_pagesize, (long)max_map_size);
1605 	}
1606 
1607 	/*
1608 	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1609 	 * ensure we find the right PFN and lay down the mapping in the right
1610 	 * place.
1611 	 */
1612 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1613 		fault_ipa &= ~(vma_pagesize - 1);
1614 		ipa &= ~(vma_pagesize - 1);
1615 	}
1616 
1617 	gfn = ipa >> PAGE_SHIFT;
1618 	mte_allowed = kvm_vma_mte_allowed(vma);
1619 
1620 	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1621 
1622 	/* Don't use the VMA after the unlock -- it may have vanished */
1623 	vma = NULL;
1624 
1625 	/*
1626 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1627 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1628 	 * acquiring kvm->mmu_lock.
1629 	 *
1630 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1631 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1632 	 */
1633 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1634 	mmap_read_unlock(current->mm);
1635 
1636 	pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1637 				&writable, &page);
1638 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1639 		kvm_send_hwpoison_signal(hva, vma_shift);
1640 		return 0;
1641 	}
1642 	if (is_error_noslot_pfn(pfn))
1643 		return -EFAULT;
1644 
1645 	if (kvm_is_device_pfn(pfn)) {
1646 		/*
1647 		 * If the page was identified as device early by looking at
1648 		 * the VMA flags, vma_pagesize is already representing the
1649 		 * largest quantity we can map.  If instead it was mapped
1650 		 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1651 		 * and must not be upgraded.
1652 		 *
1653 		 * In both cases, we don't let transparent_hugepage_adjust()
1654 		 * change things at the last minute.
1655 		 */
1656 		device = true;
1657 	} else if (logging_active && !write_fault) {
1658 		/*
1659 		 * Only actually map the page as writable if this was a write
1660 		 * fault.
1661 		 */
1662 		writable = false;
1663 	}
1664 
1665 	if (exec_fault && device)
1666 		return -ENOEXEC;
1667 
1668 	/*
1669 	 * Potentially reduce shadow S2 permissions to match the guest's own
1670 	 * S2. For exec faults, we'd only reach this point if the guest
1671 	 * actually allowed it (see kvm_s2_handle_perm_fault).
1672 	 *
1673 	 * Also encode the level of the original translation in the SW bits
1674 	 * of the leaf entry as a proxy for the span of that translation.
1675 	 * This will be retrieved on TLB invalidation from the guest and
1676 	 * used to limit the invalidation scope if a TTL hint or a range
1677 	 * isn't provided.
1678 	 */
1679 	if (nested) {
1680 		writable &= kvm_s2_trans_writable(nested);
1681 		if (!kvm_s2_trans_readable(nested))
1682 			prot &= ~KVM_PGTABLE_PROT_R;
1683 
1684 		prot |= kvm_encode_nested_level(nested);
1685 	}
1686 
1687 	kvm_fault_lock(kvm);
1688 	pgt = vcpu->arch.hw_mmu->pgt;
1689 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1690 		ret = -EAGAIN;
1691 		goto out_unlock;
1692 	}
1693 
1694 	/*
1695 	 * If we are not forced to use page mapping, check if we are
1696 	 * backed by a THP and thus use block mapping if possible.
1697 	 */
1698 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1699 		if (fault_is_perm && fault_granule > PAGE_SIZE)
1700 			vma_pagesize = fault_granule;
1701 		else
1702 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1703 								   hva, &pfn,
1704 								   &fault_ipa);
1705 
1706 		if (vma_pagesize < 0) {
1707 			ret = vma_pagesize;
1708 			goto out_unlock;
1709 		}
1710 	}
1711 
1712 	if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1713 		/* Check the VMM hasn't introduced a new disallowed VMA */
1714 		if (mte_allowed) {
1715 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1716 		} else {
1717 			ret = -EFAULT;
1718 			goto out_unlock;
1719 		}
1720 	}
1721 
1722 	if (writable)
1723 		prot |= KVM_PGTABLE_PROT_W;
1724 
1725 	if (exec_fault)
1726 		prot |= KVM_PGTABLE_PROT_X;
1727 
1728 	if (device) {
1729 		if (vfio_allow_any_uc)
1730 			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1731 		else
1732 			prot |= KVM_PGTABLE_PROT_DEVICE;
1733 	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1734 		   (!nested || kvm_s2_trans_executable(nested))) {
1735 		prot |= KVM_PGTABLE_PROT_X;
1736 	}
1737 
1738 	/*
1739 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1740 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1741 	 * kvm_pgtable_stage2_map() should be called to change block size.
1742 	 */
1743 	if (fault_is_perm && vma_pagesize == fault_granule) {
1744 		/*
1745 		 * Drop the SW bits in favour of those stored in the
1746 		 * PTE, which will be preserved.
1747 		 */
1748 		prot &= ~KVM_NV_GUEST_MAP_SZ;
1749 		ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1750 	} else {
1751 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1752 					     __pfn_to_phys(pfn), prot,
1753 					     memcache, flags);
1754 	}
1755 
1756 out_unlock:
1757 	kvm_release_faultin_page(kvm, page, !!ret, writable);
1758 	kvm_fault_unlock(kvm);
1759 
1760 	/* Mark the page dirty only if the fault is handled successfully */
1761 	if (writable && !ret)
1762 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1763 
1764 	return ret != -EAGAIN ? ret : 0;
1765 }
1766 
1767 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1768 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1769 {
1770 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1771 	struct kvm_s2_mmu *mmu;
1772 
1773 	trace_kvm_access_fault(fault_ipa);
1774 
1775 	read_lock(&vcpu->kvm->mmu_lock);
1776 	mmu = vcpu->arch.hw_mmu;
1777 	KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1778 	read_unlock(&vcpu->kvm->mmu_lock);
1779 }
1780 
1781 /**
1782  * kvm_handle_guest_abort - handles all 2nd stage aborts
1783  * @vcpu:	the VCPU pointer
1784  *
1785  * Any abort that gets to the host is almost guaranteed to be caused by a
1786  * missing second stage translation table entry, which can mean that either the
1787  * guest simply needs more memory and we must allocate an appropriate page or it
1788  * can mean that the guest tried to access I/O memory, which is emulated by user
1789  * space. The distinction is based on the IPA causing the fault and whether this
1790  * memory region has been registered as standard RAM by user space.
1791  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1792 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1793 {
1794 	struct kvm_s2_trans nested_trans, *nested = NULL;
1795 	unsigned long esr;
1796 	phys_addr_t fault_ipa; /* The address we faulted on */
1797 	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1798 	struct kvm_memory_slot *memslot;
1799 	unsigned long hva;
1800 	bool is_iabt, write_fault, writable;
1801 	gfn_t gfn;
1802 	int ret, idx;
1803 
1804 	/* Synchronous External Abort? */
1805 	if (kvm_vcpu_abt_issea(vcpu)) {
1806 		/*
1807 		 * For RAS the host kernel may handle this abort.
1808 		 * There is no need to pass the error into the guest.
1809 		 */
1810 		if (kvm_handle_guest_sea())
1811 			kvm_inject_vabt(vcpu);
1812 
1813 		return 1;
1814 	}
1815 
1816 	esr = kvm_vcpu_get_esr(vcpu);
1817 
1818 	/*
1819 	 * The fault IPA should be reliable at this point as we're not dealing
1820 	 * with an SEA.
1821 	 */
1822 	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1823 	if (KVM_BUG_ON(ipa == INVALID_GPA, vcpu->kvm))
1824 		return -EFAULT;
1825 
1826 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1827 
1828 	if (esr_fsc_is_translation_fault(esr)) {
1829 		/* Beyond sanitised PARange (which is the IPA limit) */
1830 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1831 			kvm_inject_size_fault(vcpu);
1832 			return 1;
1833 		}
1834 
1835 		/* Falls between the IPA range and the PARange? */
1836 		if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
1837 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1838 
1839 			if (is_iabt)
1840 				kvm_inject_pabt(vcpu, fault_ipa);
1841 			else
1842 				kvm_inject_dabt(vcpu, fault_ipa);
1843 			return 1;
1844 		}
1845 	}
1846 
1847 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1848 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1849 
1850 	/* Check the stage-2 fault is trans. fault or write fault */
1851 	if (!esr_fsc_is_translation_fault(esr) &&
1852 	    !esr_fsc_is_permission_fault(esr) &&
1853 	    !esr_fsc_is_access_flag_fault(esr)) {
1854 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1855 			kvm_vcpu_trap_get_class(vcpu),
1856 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1857 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1858 		return -EFAULT;
1859 	}
1860 
1861 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1862 
1863 	/*
1864 	 * We may have faulted on a shadow stage 2 page table if we are
1865 	 * running a nested guest.  In this case, we have to resolve the L2
1866 	 * IPA to the L1 IPA first, before knowing what kind of memory should
1867 	 * back the L1 IPA.
1868 	 *
1869 	 * If the shadow stage 2 page table walk faults, then we simply inject
1870 	 * this to the guest and carry on.
1871 	 *
1872 	 * If there are no shadow S2 PTs because S2 is disabled, there is
1873 	 * nothing to walk and we treat it as a 1:1 before going through the
1874 	 * canonical translation.
1875 	 */
1876 	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1877 	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
1878 		u32 esr;
1879 
1880 		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1881 		if (ret) {
1882 			esr = kvm_s2_trans_esr(&nested_trans);
1883 			kvm_inject_s2_fault(vcpu, esr);
1884 			goto out_unlock;
1885 		}
1886 
1887 		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1888 		if (ret) {
1889 			esr = kvm_s2_trans_esr(&nested_trans);
1890 			kvm_inject_s2_fault(vcpu, esr);
1891 			goto out_unlock;
1892 		}
1893 
1894 		ipa = kvm_s2_trans_output(&nested_trans);
1895 		nested = &nested_trans;
1896 	}
1897 
1898 	gfn = ipa >> PAGE_SHIFT;
1899 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1900 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1901 	write_fault = kvm_is_write_fault(vcpu);
1902 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1903 		/*
1904 		 * The guest has put either its instructions or its page-tables
1905 		 * somewhere it shouldn't have. Userspace won't be able to do
1906 		 * anything about this (there's no syndrome for a start), so
1907 		 * re-inject the abort back into the guest.
1908 		 */
1909 		if (is_iabt) {
1910 			ret = -ENOEXEC;
1911 			goto out;
1912 		}
1913 
1914 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1915 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1916 			ret = 1;
1917 			goto out_unlock;
1918 		}
1919 
1920 		/*
1921 		 * Check for a cache maintenance operation. Since we
1922 		 * ended-up here, we know it is outside of any memory
1923 		 * slot. But we can't find out if that is for a device,
1924 		 * or if the guest is just being stupid. The only thing
1925 		 * we know for sure is that this range cannot be cached.
1926 		 *
1927 		 * So let's assume that the guest is just being
1928 		 * cautious, and skip the instruction.
1929 		 */
1930 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1931 			kvm_incr_pc(vcpu);
1932 			ret = 1;
1933 			goto out_unlock;
1934 		}
1935 
1936 		/*
1937 		 * The IPA is reported as [MAX:12], so we need to
1938 		 * complement it with the bottom 12 bits from the
1939 		 * faulting VA. This is always 12 bits, irrespective
1940 		 * of the page size.
1941 		 */
1942 		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1943 		ret = io_mem_abort(vcpu, ipa);
1944 		goto out_unlock;
1945 	}
1946 
1947 	/* Userspace should not be able to register out-of-bounds IPAs */
1948 	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1949 
1950 	if (esr_fsc_is_access_flag_fault(esr)) {
1951 		handle_access_fault(vcpu, fault_ipa);
1952 		ret = 1;
1953 		goto out_unlock;
1954 	}
1955 
1956 	ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1957 			     esr_fsc_is_permission_fault(esr));
1958 	if (ret == 0)
1959 		ret = 1;
1960 out:
1961 	if (ret == -ENOEXEC) {
1962 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1963 		ret = 1;
1964 	}
1965 out_unlock:
1966 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1967 	return ret;
1968 }
1969 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1970 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1971 {
1972 	if (!kvm->arch.mmu.pgt)
1973 		return false;
1974 
1975 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1976 			     (range->end - range->start) << PAGE_SHIFT,
1977 			     range->may_block);
1978 
1979 	kvm_nested_s2_unmap(kvm, range->may_block);
1980 	return false;
1981 }
1982 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1983 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1984 {
1985 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1986 
1987 	if (!kvm->arch.mmu.pgt)
1988 		return false;
1989 
1990 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
1991 						   range->start << PAGE_SHIFT,
1992 						   size, true);
1993 	/*
1994 	 * TODO: Handle nested_mmu structures here using the reverse mapping in
1995 	 * a later version of patch series.
1996 	 */
1997 }
1998 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1999 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2000 {
2001 	u64 size = (range->end - range->start) << PAGE_SHIFT;
2002 
2003 	if (!kvm->arch.mmu.pgt)
2004 		return false;
2005 
2006 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2007 						   range->start << PAGE_SHIFT,
2008 						   size, false);
2009 }
2010 
kvm_mmu_get_httbr(void)2011 phys_addr_t kvm_mmu_get_httbr(void)
2012 {
2013 	return __pa(hyp_pgtable->pgd);
2014 }
2015 
kvm_get_idmap_vector(void)2016 phys_addr_t kvm_get_idmap_vector(void)
2017 {
2018 	return hyp_idmap_vector;
2019 }
2020 
kvm_map_idmap_text(void)2021 static int kvm_map_idmap_text(void)
2022 {
2023 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
2024 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2025 					PAGE_HYP_EXEC);
2026 	if (err)
2027 		kvm_err("Failed to idmap %lx-%lx\n",
2028 			hyp_idmap_start, hyp_idmap_end);
2029 
2030 	return err;
2031 }
2032 
kvm_hyp_zalloc_page(void * arg)2033 static void *kvm_hyp_zalloc_page(void *arg)
2034 {
2035 	return (void *)get_zeroed_page(GFP_KERNEL);
2036 }
2037 
2038 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2039 	.zalloc_page		= kvm_hyp_zalloc_page,
2040 	.get_page		= kvm_host_get_page,
2041 	.put_page		= kvm_host_put_page,
2042 	.phys_to_virt		= kvm_host_va,
2043 	.virt_to_phys		= kvm_host_pa,
2044 };
2045 
kvm_mmu_init(u32 * hyp_va_bits)2046 int __init kvm_mmu_init(u32 *hyp_va_bits)
2047 {
2048 	int err;
2049 	u32 idmap_bits;
2050 	u32 kernel_bits;
2051 
2052 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2053 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2054 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2055 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2056 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2057 
2058 	/*
2059 	 * We rely on the linker script to ensure at build time that the HYP
2060 	 * init code does not cross a page boundary.
2061 	 */
2062 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2063 
2064 	/*
2065 	 * The ID map is always configured for 48 bits of translation, which
2066 	 * may be fewer than the number of VA bits used by the regular kernel
2067 	 * stage 1, when VA_BITS=52.
2068 	 *
2069 	 * At EL2, there is only one TTBR register, and we can't switch between
2070 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2071 	 * line: we need to use the extended range with *both* our translation
2072 	 * tables.
2073 	 *
2074 	 * So use the maximum of the idmap VA bits and the regular kernel stage
2075 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2076 	 * and map any kernel memory.
2077 	 */
2078 	idmap_bits = IDMAP_VA_BITS;
2079 	kernel_bits = vabits_actual;
2080 	*hyp_va_bits = max(idmap_bits, kernel_bits);
2081 
2082 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2083 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2084 	kvm_debug("HYP VA range: %lx:%lx\n",
2085 		  kern_hyp_va(PAGE_OFFSET),
2086 		  kern_hyp_va((unsigned long)high_memory - 1));
2087 
2088 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2089 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2090 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2091 		/*
2092 		 * The idmap page is intersecting with the VA space,
2093 		 * it is not safe to continue further.
2094 		 */
2095 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2096 		err = -EINVAL;
2097 		goto out;
2098 	}
2099 
2100 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2101 	if (!hyp_pgtable) {
2102 		kvm_err("Hyp mode page-table not allocated\n");
2103 		err = -ENOMEM;
2104 		goto out;
2105 	}
2106 
2107 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2108 	if (err)
2109 		goto out_free_pgtable;
2110 
2111 	err = kvm_map_idmap_text();
2112 	if (err)
2113 		goto out_destroy_pgtable;
2114 
2115 	io_map_base = hyp_idmap_start;
2116 	__hyp_va_bits = *hyp_va_bits;
2117 	return 0;
2118 
2119 out_destroy_pgtable:
2120 	kvm_pgtable_hyp_destroy(hyp_pgtable);
2121 out_free_pgtable:
2122 	kfree(hyp_pgtable);
2123 	hyp_pgtable = NULL;
2124 out:
2125 	return err;
2126 }
2127 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2128 void kvm_arch_commit_memory_region(struct kvm *kvm,
2129 				   struct kvm_memory_slot *old,
2130 				   const struct kvm_memory_slot *new,
2131 				   enum kvm_mr_change change)
2132 {
2133 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2134 
2135 	/*
2136 	 * At this point memslot has been committed and there is an
2137 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2138 	 * memory slot is write protected.
2139 	 */
2140 	if (log_dirty_pages) {
2141 
2142 		if (change == KVM_MR_DELETE)
2143 			return;
2144 
2145 		/*
2146 		 * Huge and normal pages are write-protected and split
2147 		 * on either of these two cases:
2148 		 *
2149 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2150 		 */
2151 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2152 			return;
2153 		/*
2154 		 * or
2155 		 * 2. without initial-all-set: all in one shot when
2156 		 *    enabling dirty logging.
2157 		 */
2158 		kvm_mmu_wp_memory_region(kvm, new->id);
2159 		kvm_mmu_split_memory_region(kvm, new->id);
2160 	} else {
2161 		/*
2162 		 * Free any leftovers from the eager page splitting cache. Do
2163 		 * this when deleting, moving, disabling dirty logging, or
2164 		 * creating the memslot (a nop). Doing it for deletes makes
2165 		 * sure we don't leak memory, and there's no need to keep the
2166 		 * cache around for any of the other cases.
2167 		 */
2168 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2169 	}
2170 }
2171 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2172 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2173 				   const struct kvm_memory_slot *old,
2174 				   struct kvm_memory_slot *new,
2175 				   enum kvm_mr_change change)
2176 {
2177 	hva_t hva, reg_end;
2178 	int ret = 0;
2179 
2180 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2181 			change != KVM_MR_FLAGS_ONLY)
2182 		return 0;
2183 
2184 	/*
2185 	 * Prevent userspace from creating a memory region outside of the IPA
2186 	 * space addressable by the KVM guest IPA space.
2187 	 */
2188 	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2189 		return -EFAULT;
2190 
2191 	hva = new->userspace_addr;
2192 	reg_end = hva + (new->npages << PAGE_SHIFT);
2193 
2194 	mmap_read_lock(current->mm);
2195 	/*
2196 	 * A memory region could potentially cover multiple VMAs, and any holes
2197 	 * between them, so iterate over all of them.
2198 	 *
2199 	 *     +--------------------------------------------+
2200 	 * +---------------+----------------+   +----------------+
2201 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2202 	 * +---------------+----------------+   +----------------+
2203 	 *     |               memory region                |
2204 	 *     +--------------------------------------------+
2205 	 */
2206 	do {
2207 		struct vm_area_struct *vma;
2208 
2209 		vma = find_vma_intersection(current->mm, hva, reg_end);
2210 		if (!vma)
2211 			break;
2212 
2213 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2214 			ret = -EINVAL;
2215 			break;
2216 		}
2217 
2218 		if (vma->vm_flags & VM_PFNMAP) {
2219 			/* IO region dirty page logging not allowed */
2220 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2221 				ret = -EINVAL;
2222 				break;
2223 			}
2224 		}
2225 		hva = min(reg_end, vma->vm_end);
2226 	} while (hva < reg_end);
2227 
2228 	mmap_read_unlock(current->mm);
2229 	return ret;
2230 }
2231 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2232 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2233 {
2234 }
2235 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2236 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2237 {
2238 }
2239 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2240 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2241 				   struct kvm_memory_slot *slot)
2242 {
2243 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2244 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2245 
2246 	write_lock(&kvm->mmu_lock);
2247 	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2248 	kvm_nested_s2_unmap(kvm, true);
2249 	write_unlock(&kvm->mmu_lock);
2250 }
2251 
2252 /*
2253  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2254  *
2255  * Main problems:
2256  * - S/W ops are local to a CPU (not broadcast)
2257  * - We have line migration behind our back (speculation)
2258  * - System caches don't support S/W at all (damn!)
2259  *
2260  * In the face of the above, the best we can do is to try and convert
2261  * S/W ops to VA ops. Because the guest is not allowed to infer the
2262  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2263  * which is a rather good thing for us.
2264  *
2265  * Also, it is only used when turning caches on/off ("The expected
2266  * usage of the cache maintenance instructions that operate by set/way
2267  * is associated with the cache maintenance instructions associated
2268  * with the powerdown and powerup of caches, if this is required by
2269  * the implementation.").
2270  *
2271  * We use the following policy:
2272  *
2273  * - If we trap a S/W operation, we enable VM trapping to detect
2274  *   caches being turned on/off, and do a full clean.
2275  *
2276  * - We flush the caches on both caches being turned on and off.
2277  *
2278  * - Once the caches are enabled, we stop trapping VM ops.
2279  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2280 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2281 {
2282 	unsigned long hcr = *vcpu_hcr(vcpu);
2283 
2284 	/*
2285 	 * If this is the first time we do a S/W operation
2286 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2287 	 * VM trapping.
2288 	 *
2289 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2290 	 * Caches to be turned off. At that point, we'll be able to
2291 	 * clean the caches again.
2292 	 */
2293 	if (!(hcr & HCR_TVM)) {
2294 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2295 					vcpu_has_cache_enabled(vcpu));
2296 		stage2_flush_vm(vcpu->kvm);
2297 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2298 	}
2299 }
2300 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2301 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2302 {
2303 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2304 
2305 	/*
2306 	 * If switching the MMU+caches on, need to invalidate the caches.
2307 	 * If switching it off, need to clean the caches.
2308 	 * Clean + invalidate does the trick always.
2309 	 */
2310 	if (now_enabled != was_enabled)
2311 		stage2_flush_vm(vcpu->kvm);
2312 
2313 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2314 	if (now_enabled)
2315 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2316 
2317 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2318 }
2319