xref: /linux/arch/arm64/kvm/mmu.c (revision 19cffd16ed6489770272ba383ff3aaec077e01ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/mman.h>
9 #include <linux/kvm_host.h>
10 #include <linux/io.h>
11 #include <linux/hugetlb.h>
12 #include <linux/sched/signal.h>
13 #include <trace/events/kvm.h>
14 #include <asm/acpi.h>
15 #include <asm/pgalloc.h>
16 #include <asm/cacheflush.h>
17 #include <asm/kvm_arm.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_pgtable.h>
20 #include <asm/kvm_pkvm.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/virt.h>
24 
25 #include "trace.h"
26 
27 static struct kvm_pgtable *hyp_pgtable;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29 
30 static unsigned long __ro_after_init hyp_idmap_start;
31 static unsigned long __ro_after_init hyp_idmap_end;
32 static phys_addr_t __ro_after_init hyp_idmap_vector;
33 
34 u32 __ro_after_init __hyp_va_bits;
35 
36 static unsigned long __ro_after_init io_map_base;
37 
38 #define KVM_PGT_FN(fn)		(!is_protected_kvm_enabled() ? fn : p ## fn)
39 
40 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
41 					   phys_addr_t size)
42 {
43 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
44 
45 	return (boundary - 1 < end - 1) ? boundary : end;
46 }
47 
48 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
49 {
50 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
51 
52 	return __stage2_range_addr_end(addr, end, size);
53 }
54 
55 /*
56  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
57  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
58  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
59  * long will also starve other vCPUs. We have to also make sure that the page
60  * tables are not freed while we released the lock.
61  */
62 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
63 			      phys_addr_t end,
64 			      int (*fn)(struct kvm_pgtable *, u64, u64),
65 			      bool resched)
66 {
67 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
68 	int ret;
69 	u64 next;
70 
71 	do {
72 		struct kvm_pgtable *pgt = mmu->pgt;
73 		if (!pgt)
74 			return -EINVAL;
75 
76 		next = stage2_range_addr_end(addr, end);
77 		ret = fn(pgt, addr, next - addr);
78 		if (ret)
79 			break;
80 
81 		if (resched && next != end)
82 			cond_resched_rwlock_write(&kvm->mmu_lock);
83 	} while (addr = next, addr != end);
84 
85 	return ret;
86 }
87 
88 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
89 	stage2_apply_range(mmu, addr, end, fn, true)
90 
91 /*
92  * Get the maximum number of page-tables pages needed to split a range
93  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
94  * mapped at level 2, or at level 1 if allowed.
95  */
96 static int kvm_mmu_split_nr_page_tables(u64 range)
97 {
98 	int n = 0;
99 
100 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
101 		n += DIV_ROUND_UP(range, PUD_SIZE);
102 	n += DIV_ROUND_UP(range, PMD_SIZE);
103 	return n;
104 }
105 
106 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
107 {
108 	struct kvm_mmu_memory_cache *cache;
109 	u64 chunk_size, min;
110 
111 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
112 		return true;
113 
114 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
115 	min = kvm_mmu_split_nr_page_tables(chunk_size);
116 	cache = &kvm->arch.mmu.split_page_cache;
117 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
118 }
119 
120 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
121 				    phys_addr_t end)
122 {
123 	struct kvm_mmu_memory_cache *cache;
124 	struct kvm_pgtable *pgt;
125 	int ret, cache_capacity;
126 	u64 next, chunk_size;
127 
128 	lockdep_assert_held_write(&kvm->mmu_lock);
129 
130 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
131 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
132 
133 	if (chunk_size == 0)
134 		return 0;
135 
136 	cache = &kvm->arch.mmu.split_page_cache;
137 
138 	do {
139 		if (need_split_memcache_topup_or_resched(kvm)) {
140 			write_unlock(&kvm->mmu_lock);
141 			cond_resched();
142 			/* Eager page splitting is best-effort. */
143 			ret = __kvm_mmu_topup_memory_cache(cache,
144 							   cache_capacity,
145 							   cache_capacity);
146 			write_lock(&kvm->mmu_lock);
147 			if (ret)
148 				break;
149 		}
150 
151 		pgt = kvm->arch.mmu.pgt;
152 		if (!pgt)
153 			return -EINVAL;
154 
155 		next = __stage2_range_addr_end(addr, end, chunk_size);
156 		ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
157 		if (ret)
158 			break;
159 	} while (addr = next, addr != end);
160 
161 	return ret;
162 }
163 
164 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
165 {
166 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
167 }
168 
169 /**
170  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
171  * @kvm:	pointer to kvm structure.
172  *
173  * Interface to HYP function to flush all VM TLB entries
174  */
175 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
176 {
177 	if (is_protected_kvm_enabled())
178 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
179 	else
180 		kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
181 	return 0;
182 }
183 
184 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
185 				      gfn_t gfn, u64 nr_pages)
186 {
187 	u64 size = nr_pages << PAGE_SHIFT;
188 	u64 addr = gfn << PAGE_SHIFT;
189 
190 	if (is_protected_kvm_enabled())
191 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
192 	else
193 		kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
194 	return 0;
195 }
196 
197 static void *stage2_memcache_zalloc_page(void *arg)
198 {
199 	struct kvm_mmu_memory_cache *mc = arg;
200 	void *virt;
201 
202 	/* Allocated with __GFP_ZERO, so no need to zero */
203 	virt = kvm_mmu_memory_cache_alloc(mc);
204 	if (virt)
205 		kvm_account_pgtable_pages(virt, 1);
206 	return virt;
207 }
208 
209 static void *kvm_host_zalloc_pages_exact(size_t size)
210 {
211 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
212 }
213 
214 static void *kvm_s2_zalloc_pages_exact(size_t size)
215 {
216 	void *virt = kvm_host_zalloc_pages_exact(size);
217 
218 	if (virt)
219 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
220 	return virt;
221 }
222 
223 static void kvm_s2_free_pages_exact(void *virt, size_t size)
224 {
225 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
226 	free_pages_exact(virt, size);
227 }
228 
229 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
230 
231 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
232 {
233 	struct page *page = container_of(head, struct page, rcu_head);
234 	void *pgtable = page_to_virt(page);
235 	s8 level = page_private(page);
236 
237 	KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
238 }
239 
240 static void stage2_free_unlinked_table(void *addr, s8 level)
241 {
242 	struct page *page = virt_to_page(addr);
243 
244 	set_page_private(page, (unsigned long)level);
245 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
246 }
247 
248 static void kvm_host_get_page(void *addr)
249 {
250 	get_page(virt_to_page(addr));
251 }
252 
253 static void kvm_host_put_page(void *addr)
254 {
255 	put_page(virt_to_page(addr));
256 }
257 
258 static void kvm_s2_put_page(void *addr)
259 {
260 	struct page *p = virt_to_page(addr);
261 	/* Dropping last refcount, the page will be freed */
262 	if (page_count(p) == 1)
263 		kvm_account_pgtable_pages(addr, -1);
264 	put_page(p);
265 }
266 
267 static int kvm_host_page_count(void *addr)
268 {
269 	return page_count(virt_to_page(addr));
270 }
271 
272 static phys_addr_t kvm_host_pa(void *addr)
273 {
274 	return __pa(addr);
275 }
276 
277 static void *kvm_host_va(phys_addr_t phys)
278 {
279 	return __va(phys);
280 }
281 
282 static void clean_dcache_guest_page(void *va, size_t size)
283 {
284 	__clean_dcache_guest_page(va, size);
285 }
286 
287 static void invalidate_icache_guest_page(void *va, size_t size)
288 {
289 	__invalidate_icache_guest_page(va, size);
290 }
291 
292 /*
293  * Unmapping vs dcache management:
294  *
295  * If a guest maps certain memory pages as uncached, all writes will
296  * bypass the data cache and go directly to RAM.  However, the CPUs
297  * can still speculate reads (not writes) and fill cache lines with
298  * data.
299  *
300  * Those cache lines will be *clean* cache lines though, so a
301  * clean+invalidate operation is equivalent to an invalidate
302  * operation, because no cache lines are marked dirty.
303  *
304  * Those clean cache lines could be filled prior to an uncached write
305  * by the guest, and the cache coherent IO subsystem would therefore
306  * end up writing old data to disk.
307  *
308  * This is why right after unmapping a page/section and invalidating
309  * the corresponding TLBs, we flush to make sure the IO subsystem will
310  * never hit in the cache.
311  *
312  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
313  * we then fully enforce cacheability of RAM, no matter what the guest
314  * does.
315  */
316 /**
317  * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
318  * @mmu:   The KVM stage-2 MMU pointer
319  * @start: The intermediate physical base address of the range to unmap
320  * @size:  The size of the area to unmap
321  * @may_block: Whether or not we are permitted to block
322  *
323  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
324  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
325  * destroying the VM), otherwise another faulting VCPU may come in and mess
326  * with things behind our backs.
327  */
328 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
329 				 bool may_block)
330 {
331 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
332 	phys_addr_t end = start + size;
333 
334 	lockdep_assert_held_write(&kvm->mmu_lock);
335 	WARN_ON(size & ~PAGE_MASK);
336 	WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
337 				   may_block));
338 }
339 
340 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
341 			    u64 size, bool may_block)
342 {
343 	__unmap_stage2_range(mmu, start, size, may_block);
344 }
345 
346 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
347 {
348 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
349 }
350 
351 static void stage2_flush_memslot(struct kvm *kvm,
352 				 struct kvm_memory_slot *memslot)
353 {
354 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356 
357 	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
358 }
359 
360 /**
361  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
362  * @kvm: The struct kvm pointer
363  *
364  * Go through the stage 2 page tables and invalidate any cache lines
365  * backing memory already mapped to the VM.
366  */
367 static void stage2_flush_vm(struct kvm *kvm)
368 {
369 	struct kvm_memslots *slots;
370 	struct kvm_memory_slot *memslot;
371 	int idx, bkt;
372 
373 	idx = srcu_read_lock(&kvm->srcu);
374 	write_lock(&kvm->mmu_lock);
375 
376 	slots = kvm_memslots(kvm);
377 	kvm_for_each_memslot(memslot, bkt, slots)
378 		stage2_flush_memslot(kvm, memslot);
379 
380 	kvm_nested_s2_flush(kvm);
381 
382 	write_unlock(&kvm->mmu_lock);
383 	srcu_read_unlock(&kvm->srcu, idx);
384 }
385 
386 /**
387  * free_hyp_pgds - free Hyp-mode page tables
388  */
389 void __init free_hyp_pgds(void)
390 {
391 	mutex_lock(&kvm_hyp_pgd_mutex);
392 	if (hyp_pgtable) {
393 		kvm_pgtable_hyp_destroy(hyp_pgtable);
394 		kfree(hyp_pgtable);
395 		hyp_pgtable = NULL;
396 	}
397 	mutex_unlock(&kvm_hyp_pgd_mutex);
398 }
399 
400 static bool kvm_host_owns_hyp_mappings(void)
401 {
402 	if (is_kernel_in_hyp_mode())
403 		return false;
404 
405 	if (static_branch_likely(&kvm_protected_mode_initialized))
406 		return false;
407 
408 	/*
409 	 * This can happen at boot time when __create_hyp_mappings() is called
410 	 * after the hyp protection has been enabled, but the static key has
411 	 * not been flipped yet.
412 	 */
413 	if (!hyp_pgtable && is_protected_kvm_enabled())
414 		return false;
415 
416 	WARN_ON(!hyp_pgtable);
417 
418 	return true;
419 }
420 
421 int __create_hyp_mappings(unsigned long start, unsigned long size,
422 			  unsigned long phys, enum kvm_pgtable_prot prot)
423 {
424 	int err;
425 
426 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
427 		return -EINVAL;
428 
429 	mutex_lock(&kvm_hyp_pgd_mutex);
430 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
431 	mutex_unlock(&kvm_hyp_pgd_mutex);
432 
433 	return err;
434 }
435 
436 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
437 {
438 	if (!is_vmalloc_addr(kaddr)) {
439 		BUG_ON(!virt_addr_valid(kaddr));
440 		return __pa(kaddr);
441 	} else {
442 		return page_to_phys(vmalloc_to_page(kaddr)) +
443 		       offset_in_page(kaddr);
444 	}
445 }
446 
447 struct hyp_shared_pfn {
448 	u64 pfn;
449 	int count;
450 	struct rb_node node;
451 };
452 
453 static DEFINE_MUTEX(hyp_shared_pfns_lock);
454 static struct rb_root hyp_shared_pfns = RB_ROOT;
455 
456 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
457 					      struct rb_node **parent)
458 {
459 	struct hyp_shared_pfn *this;
460 
461 	*node = &hyp_shared_pfns.rb_node;
462 	*parent = NULL;
463 	while (**node) {
464 		this = container_of(**node, struct hyp_shared_pfn, node);
465 		*parent = **node;
466 		if (this->pfn < pfn)
467 			*node = &((**node)->rb_left);
468 		else if (this->pfn > pfn)
469 			*node = &((**node)->rb_right);
470 		else
471 			return this;
472 	}
473 
474 	return NULL;
475 }
476 
477 static int share_pfn_hyp(u64 pfn)
478 {
479 	struct rb_node **node, *parent;
480 	struct hyp_shared_pfn *this;
481 	int ret = 0;
482 
483 	mutex_lock(&hyp_shared_pfns_lock);
484 	this = find_shared_pfn(pfn, &node, &parent);
485 	if (this) {
486 		this->count++;
487 		goto unlock;
488 	}
489 
490 	this = kzalloc(sizeof(*this), GFP_KERNEL);
491 	if (!this) {
492 		ret = -ENOMEM;
493 		goto unlock;
494 	}
495 
496 	this->pfn = pfn;
497 	this->count = 1;
498 	rb_link_node(&this->node, parent, node);
499 	rb_insert_color(&this->node, &hyp_shared_pfns);
500 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn);
501 unlock:
502 	mutex_unlock(&hyp_shared_pfns_lock);
503 
504 	return ret;
505 }
506 
507 static int unshare_pfn_hyp(u64 pfn)
508 {
509 	struct rb_node **node, *parent;
510 	struct hyp_shared_pfn *this;
511 	int ret = 0;
512 
513 	mutex_lock(&hyp_shared_pfns_lock);
514 	this = find_shared_pfn(pfn, &node, &parent);
515 	if (WARN_ON(!this)) {
516 		ret = -ENOENT;
517 		goto unlock;
518 	}
519 
520 	this->count--;
521 	if (this->count)
522 		goto unlock;
523 
524 	rb_erase(&this->node, &hyp_shared_pfns);
525 	kfree(this);
526 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn);
527 unlock:
528 	mutex_unlock(&hyp_shared_pfns_lock);
529 
530 	return ret;
531 }
532 
533 int kvm_share_hyp(void *from, void *to)
534 {
535 	phys_addr_t start, end, cur;
536 	u64 pfn;
537 	int ret;
538 
539 	if (is_kernel_in_hyp_mode())
540 		return 0;
541 
542 	/*
543 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
544 	 * VA space, so we can only share physically contiguous data-structures
545 	 * for now.
546 	 */
547 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
548 		return -EINVAL;
549 
550 	if (kvm_host_owns_hyp_mappings())
551 		return create_hyp_mappings(from, to, PAGE_HYP);
552 
553 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
554 	end = PAGE_ALIGN(__pa(to));
555 	for (cur = start; cur < end; cur += PAGE_SIZE) {
556 		pfn = __phys_to_pfn(cur);
557 		ret = share_pfn_hyp(pfn);
558 		if (ret)
559 			return ret;
560 	}
561 
562 	return 0;
563 }
564 
565 void kvm_unshare_hyp(void *from, void *to)
566 {
567 	phys_addr_t start, end, cur;
568 	u64 pfn;
569 
570 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
571 		return;
572 
573 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
574 	end = PAGE_ALIGN(__pa(to));
575 	for (cur = start; cur < end; cur += PAGE_SIZE) {
576 		pfn = __phys_to_pfn(cur);
577 		WARN_ON(unshare_pfn_hyp(pfn));
578 	}
579 }
580 
581 /**
582  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583  * @from:	The virtual kernel start address of the range
584  * @to:		The virtual kernel end address of the range (exclusive)
585  * @prot:	The protection to be applied to this range
586  *
587  * The same virtual address as the kernel virtual address is also used
588  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
589  * physical pages.
590  */
591 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
592 {
593 	phys_addr_t phys_addr;
594 	unsigned long virt_addr;
595 	unsigned long start = kern_hyp_va((unsigned long)from);
596 	unsigned long end = kern_hyp_va((unsigned long)to);
597 
598 	if (is_kernel_in_hyp_mode())
599 		return 0;
600 
601 	if (!kvm_host_owns_hyp_mappings())
602 		return -EPERM;
603 
604 	start = start & PAGE_MASK;
605 	end = PAGE_ALIGN(end);
606 
607 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
608 		int err;
609 
610 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
611 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
612 					    prot);
613 		if (err)
614 			return err;
615 	}
616 
617 	return 0;
618 }
619 
620 static int __hyp_alloc_private_va_range(unsigned long base)
621 {
622 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
623 
624 	if (!PAGE_ALIGNED(base))
625 		return -EINVAL;
626 
627 	/*
628 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
629 	 * allocating the new area, as it would indicate we've
630 	 * overflowed the idmap/IO address range.
631 	 */
632 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
633 		return -ENOMEM;
634 
635 	io_map_base = base;
636 
637 	return 0;
638 }
639 
640 /**
641  * hyp_alloc_private_va_range - Allocates a private VA range.
642  * @size:	The size of the VA range to reserve.
643  * @haddr:	The hypervisor virtual start address of the allocation.
644  *
645  * The private virtual address (VA) range is allocated below io_map_base
646  * and aligned based on the order of @size.
647  *
648  * Return: 0 on success or negative error code on failure.
649  */
650 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
651 {
652 	unsigned long base;
653 	int ret = 0;
654 
655 	mutex_lock(&kvm_hyp_pgd_mutex);
656 
657 	/*
658 	 * This assumes that we have enough space below the idmap
659 	 * page to allocate our VAs. If not, the check in
660 	 * __hyp_alloc_private_va_range() will kick. A potential
661 	 * alternative would be to detect that overflow and switch
662 	 * to an allocation above the idmap.
663 	 *
664 	 * The allocated size is always a multiple of PAGE_SIZE.
665 	 */
666 	size = PAGE_ALIGN(size);
667 	base = io_map_base - size;
668 	ret = __hyp_alloc_private_va_range(base);
669 
670 	mutex_unlock(&kvm_hyp_pgd_mutex);
671 
672 	if (!ret)
673 		*haddr = base;
674 
675 	return ret;
676 }
677 
678 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
679 					unsigned long *haddr,
680 					enum kvm_pgtable_prot prot)
681 {
682 	unsigned long addr;
683 	int ret = 0;
684 
685 	if (!kvm_host_owns_hyp_mappings()) {
686 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
687 					 phys_addr, size, prot);
688 		if (IS_ERR_VALUE(addr))
689 			return addr;
690 		*haddr = addr;
691 
692 		return 0;
693 	}
694 
695 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
696 	ret = hyp_alloc_private_va_range(size, &addr);
697 	if (ret)
698 		return ret;
699 
700 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
701 	if (ret)
702 		return ret;
703 
704 	*haddr = addr + offset_in_page(phys_addr);
705 	return ret;
706 }
707 
708 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
709 {
710 	unsigned long base;
711 	size_t size;
712 	int ret;
713 
714 	mutex_lock(&kvm_hyp_pgd_mutex);
715 	/*
716 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
717 	 * an alignment of our allocation on the order of the size.
718 	 */
719 	size = NVHE_STACK_SIZE * 2;
720 	base = ALIGN_DOWN(io_map_base - size, size);
721 
722 	ret = __hyp_alloc_private_va_range(base);
723 
724 	mutex_unlock(&kvm_hyp_pgd_mutex);
725 
726 	if (ret) {
727 		kvm_err("Cannot allocate hyp stack guard page\n");
728 		return ret;
729 	}
730 
731 	/*
732 	 * Since the stack grows downwards, map the stack to the page
733 	 * at the higher address and leave the lower guard page
734 	 * unbacked.
735 	 *
736 	 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
737 	 * and addresses corresponding to the guard page have the
738 	 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
739 	 */
740 	ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
741 				    phys_addr, PAGE_HYP);
742 	if (ret)
743 		kvm_err("Cannot map hyp stack\n");
744 
745 	*haddr = base + size;
746 
747 	return ret;
748 }
749 
750 /**
751  * create_hyp_io_mappings - Map IO into both kernel and HYP
752  * @phys_addr:	The physical start address which gets mapped
753  * @size:	Size of the region being mapped
754  * @kaddr:	Kernel VA for this mapping
755  * @haddr:	HYP VA for this mapping
756  */
757 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
758 			   void __iomem **kaddr,
759 			   void __iomem **haddr)
760 {
761 	unsigned long addr;
762 	int ret;
763 
764 	if (is_protected_kvm_enabled())
765 		return -EPERM;
766 
767 	*kaddr = ioremap(phys_addr, size);
768 	if (!*kaddr)
769 		return -ENOMEM;
770 
771 	if (is_kernel_in_hyp_mode()) {
772 		*haddr = *kaddr;
773 		return 0;
774 	}
775 
776 	ret = __create_hyp_private_mapping(phys_addr, size,
777 					   &addr, PAGE_HYP_DEVICE);
778 	if (ret) {
779 		iounmap(*kaddr);
780 		*kaddr = NULL;
781 		*haddr = NULL;
782 		return ret;
783 	}
784 
785 	*haddr = (void __iomem *)addr;
786 	return 0;
787 }
788 
789 /**
790  * create_hyp_exec_mappings - Map an executable range into HYP
791  * @phys_addr:	The physical start address which gets mapped
792  * @size:	Size of the region being mapped
793  * @haddr:	HYP VA for this mapping
794  */
795 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
796 			     void **haddr)
797 {
798 	unsigned long addr;
799 	int ret;
800 
801 	BUG_ON(is_kernel_in_hyp_mode());
802 
803 	ret = __create_hyp_private_mapping(phys_addr, size,
804 					   &addr, PAGE_HYP_EXEC);
805 	if (ret) {
806 		*haddr = NULL;
807 		return ret;
808 	}
809 
810 	*haddr = (void *)addr;
811 	return 0;
812 }
813 
814 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
815 	/* We shouldn't need any other callback to walk the PT */
816 	.phys_to_virt		= kvm_host_va,
817 };
818 
819 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
820 {
821 	struct kvm_pgtable pgt = {
822 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
823 		.ia_bits	= vabits_actual,
824 		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
825 				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
826 		.mm_ops		= &kvm_user_mm_ops,
827 	};
828 	unsigned long flags;
829 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
830 	s8 level = S8_MAX;
831 	int ret;
832 
833 	/*
834 	 * Disable IRQs so that we hazard against a concurrent
835 	 * teardown of the userspace page tables (which relies on
836 	 * IPI-ing threads).
837 	 */
838 	local_irq_save(flags);
839 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
840 	local_irq_restore(flags);
841 
842 	if (ret)
843 		return ret;
844 
845 	/*
846 	 * Not seeing an error, but not updating level? Something went
847 	 * deeply wrong...
848 	 */
849 	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
850 		return -EFAULT;
851 	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
852 		return -EFAULT;
853 
854 	/* Oops, the userspace PTs are gone... Replay the fault */
855 	if (!kvm_pte_valid(pte))
856 		return -EAGAIN;
857 
858 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
859 }
860 
861 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
862 	.zalloc_page		= stage2_memcache_zalloc_page,
863 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
864 	.free_pages_exact	= kvm_s2_free_pages_exact,
865 	.free_unlinked_table	= stage2_free_unlinked_table,
866 	.get_page		= kvm_host_get_page,
867 	.put_page		= kvm_s2_put_page,
868 	.page_count		= kvm_host_page_count,
869 	.phys_to_virt		= kvm_host_va,
870 	.virt_to_phys		= kvm_host_pa,
871 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
872 	.icache_inval_pou	= invalidate_icache_guest_page,
873 };
874 
875 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
876 {
877 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
878 	u64 mmfr0, mmfr1;
879 	u32 phys_shift;
880 
881 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
882 		return -EINVAL;
883 
884 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
885 	if (is_protected_kvm_enabled()) {
886 		phys_shift = kvm_ipa_limit;
887 	} else if (phys_shift) {
888 		if (phys_shift > kvm_ipa_limit ||
889 		    phys_shift < ARM64_MIN_PARANGE_BITS)
890 			return -EINVAL;
891 	} else {
892 		phys_shift = KVM_PHYS_SHIFT;
893 		if (phys_shift > kvm_ipa_limit) {
894 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
895 				     current->comm);
896 			return -EINVAL;
897 		}
898 	}
899 
900 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
901 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
902 	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
903 
904 	return 0;
905 }
906 
907 /*
908  * Assume that @pgt is valid and unlinked from the KVM MMU to free the
909  * page-table without taking the kvm_mmu_lock and without performing any
910  * TLB invalidations.
911  *
912  * Also, the range of addresses can be large enough to cause need_resched
913  * warnings, for instance on CONFIG_PREEMPT_NONE kernels. Hence, invoke
914  * cond_resched() periodically to prevent hogging the CPU for a long time
915  * and schedule something else, if required.
916  */
917 static void stage2_destroy_range(struct kvm_pgtable *pgt, phys_addr_t addr,
918 				   phys_addr_t end)
919 {
920 	u64 next;
921 
922 	do {
923 		next = stage2_range_addr_end(addr, end);
924 		KVM_PGT_FN(kvm_pgtable_stage2_destroy_range)(pgt, addr,
925 							     next - addr);
926 		if (next != end)
927 			cond_resched();
928 	} while (addr = next, addr != end);
929 }
930 
931 static void kvm_stage2_destroy(struct kvm_pgtable *pgt)
932 {
933 	unsigned int ia_bits = VTCR_EL2_IPA(pgt->mmu->vtcr);
934 
935 	stage2_destroy_range(pgt, 0, BIT(ia_bits));
936 	KVM_PGT_FN(kvm_pgtable_stage2_destroy_pgd)(pgt);
937 }
938 
939 /**
940  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
941  * @kvm:	The pointer to the KVM structure
942  * @mmu:	The pointer to the s2 MMU structure
943  * @type:	The machine type of the virtual machine
944  *
945  * Allocates only the stage-2 HW PGD level table(s).
946  * Note we don't need locking here as this is only called in two cases:
947  *
948  * - when the VM is created, which can't race against anything
949  *
950  * - when secondary kvm_s2_mmu structures are initialised for NV
951  *   guests, and the caller must hold kvm->lock as this is called on a
952  *   per-vcpu basis.
953  */
954 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
955 {
956 	int cpu, err;
957 	struct kvm_pgtable *pgt;
958 
959 	/*
960 	 * If we already have our page tables in place, and that the
961 	 * MMU context is the canonical one, we have a bug somewhere,
962 	 * as this is only supposed to ever happen once per VM.
963 	 *
964 	 * Otherwise, we're building nested page tables, and that's
965 	 * probably because userspace called KVM_ARM_VCPU_INIT more
966 	 * than once on the same vcpu. Since that's actually legal,
967 	 * don't kick a fuss and leave gracefully.
968 	 */
969 	if (mmu->pgt != NULL) {
970 		if (kvm_is_nested_s2_mmu(kvm, mmu))
971 			return 0;
972 
973 		kvm_err("kvm_arch already initialized?\n");
974 		return -EINVAL;
975 	}
976 
977 	err = kvm_init_ipa_range(mmu, type);
978 	if (err)
979 		return err;
980 
981 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
982 	if (!pgt)
983 		return -ENOMEM;
984 
985 	mmu->arch = &kvm->arch;
986 	err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
987 	if (err)
988 		goto out_free_pgtable;
989 
990 	mmu->pgt = pgt;
991 	if (is_protected_kvm_enabled())
992 		return 0;
993 
994 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
995 	if (!mmu->last_vcpu_ran) {
996 		err = -ENOMEM;
997 		goto out_destroy_pgtable;
998 	}
999 
1000 	for_each_possible_cpu(cpu)
1001 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1002 
1003 	 /* The eager page splitting is disabled by default */
1004 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
1005 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
1006 
1007 	mmu->pgd_phys = __pa(pgt->pgd);
1008 
1009 	if (kvm_is_nested_s2_mmu(kvm, mmu))
1010 		kvm_init_nested_s2_mmu(mmu);
1011 
1012 	return 0;
1013 
1014 out_destroy_pgtable:
1015 	kvm_stage2_destroy(pgt);
1016 out_free_pgtable:
1017 	kfree(pgt);
1018 	return err;
1019 }
1020 
1021 void kvm_uninit_stage2_mmu(struct kvm *kvm)
1022 {
1023 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1024 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1025 }
1026 
1027 static void stage2_unmap_memslot(struct kvm *kvm,
1028 				 struct kvm_memory_slot *memslot)
1029 {
1030 	hva_t hva = memslot->userspace_addr;
1031 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1032 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1033 	hva_t reg_end = hva + size;
1034 
1035 	/*
1036 	 * A memory region could potentially cover multiple VMAs, and any holes
1037 	 * between them, so iterate over all of them to find out if we should
1038 	 * unmap any of them.
1039 	 *
1040 	 *     +--------------------------------------------+
1041 	 * +---------------+----------------+   +----------------+
1042 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1043 	 * +---------------+----------------+   +----------------+
1044 	 *     |               memory region                |
1045 	 *     +--------------------------------------------+
1046 	 */
1047 	do {
1048 		struct vm_area_struct *vma;
1049 		hva_t vm_start, vm_end;
1050 
1051 		vma = find_vma_intersection(current->mm, hva, reg_end);
1052 		if (!vma)
1053 			break;
1054 
1055 		/*
1056 		 * Take the intersection of this VMA with the memory region
1057 		 */
1058 		vm_start = max(hva, vma->vm_start);
1059 		vm_end = min(reg_end, vma->vm_end);
1060 
1061 		if (!(vma->vm_flags & VM_PFNMAP)) {
1062 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1063 			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1064 		}
1065 		hva = vm_end;
1066 	} while (hva < reg_end);
1067 }
1068 
1069 /**
1070  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1071  * @kvm: The struct kvm pointer
1072  *
1073  * Go through the memregions and unmap any regular RAM
1074  * backing memory already mapped to the VM.
1075  */
1076 void stage2_unmap_vm(struct kvm *kvm)
1077 {
1078 	struct kvm_memslots *slots;
1079 	struct kvm_memory_slot *memslot;
1080 	int idx, bkt;
1081 
1082 	idx = srcu_read_lock(&kvm->srcu);
1083 	mmap_read_lock(current->mm);
1084 	write_lock(&kvm->mmu_lock);
1085 
1086 	slots = kvm_memslots(kvm);
1087 	kvm_for_each_memslot(memslot, bkt, slots)
1088 		stage2_unmap_memslot(kvm, memslot);
1089 
1090 	kvm_nested_s2_unmap(kvm, true);
1091 
1092 	write_unlock(&kvm->mmu_lock);
1093 	mmap_read_unlock(current->mm);
1094 	srcu_read_unlock(&kvm->srcu, idx);
1095 }
1096 
1097 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1098 {
1099 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1100 	struct kvm_pgtable *pgt = NULL;
1101 
1102 	write_lock(&kvm->mmu_lock);
1103 	pgt = mmu->pgt;
1104 	if (pgt) {
1105 		mmu->pgd_phys = 0;
1106 		mmu->pgt = NULL;
1107 		free_percpu(mmu->last_vcpu_ran);
1108 	}
1109 
1110 	if (kvm_is_nested_s2_mmu(kvm, mmu))
1111 		kvm_init_nested_s2_mmu(mmu);
1112 
1113 	write_unlock(&kvm->mmu_lock);
1114 
1115 	if (pgt) {
1116 		kvm_stage2_destroy(pgt);
1117 		kfree(pgt);
1118 	}
1119 }
1120 
1121 static void hyp_mc_free_fn(void *addr, void *mc)
1122 {
1123 	struct kvm_hyp_memcache *memcache = mc;
1124 
1125 	if (memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1126 		kvm_account_pgtable_pages(addr, -1);
1127 
1128 	free_page((unsigned long)addr);
1129 }
1130 
1131 static void *hyp_mc_alloc_fn(void *mc)
1132 {
1133 	struct kvm_hyp_memcache *memcache = mc;
1134 	void *addr;
1135 
1136 	addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1137 	if (addr && memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1138 		kvm_account_pgtable_pages(addr, 1);
1139 
1140 	return addr;
1141 }
1142 
1143 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1144 {
1145 	if (!is_protected_kvm_enabled())
1146 		return;
1147 
1148 	kfree(mc->mapping);
1149 	__free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, mc);
1150 }
1151 
1152 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1153 {
1154 	if (!is_protected_kvm_enabled())
1155 		return 0;
1156 
1157 	if (!mc->mapping) {
1158 		mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1159 		if (!mc->mapping)
1160 			return -ENOMEM;
1161 	}
1162 
1163 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1164 				    kvm_host_pa, mc);
1165 }
1166 
1167 /**
1168  * kvm_phys_addr_ioremap - map a device range to guest IPA
1169  *
1170  * @kvm:	The KVM pointer
1171  * @guest_ipa:	The IPA at which to insert the mapping
1172  * @pa:		The physical address of the device
1173  * @size:	The size of the mapping
1174  * @writable:   Whether or not to create a writable mapping
1175  */
1176 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1177 			  phys_addr_t pa, unsigned long size, bool writable)
1178 {
1179 	phys_addr_t addr;
1180 	int ret = 0;
1181 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1182 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1183 	struct kvm_pgtable *pgt = mmu->pgt;
1184 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1185 				     KVM_PGTABLE_PROT_R |
1186 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1187 
1188 	if (is_protected_kvm_enabled())
1189 		return -EPERM;
1190 
1191 	size += offset_in_page(guest_ipa);
1192 	guest_ipa &= PAGE_MASK;
1193 
1194 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1195 		ret = kvm_mmu_topup_memory_cache(&cache,
1196 						 kvm_mmu_cache_min_pages(mmu));
1197 		if (ret)
1198 			break;
1199 
1200 		write_lock(&kvm->mmu_lock);
1201 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1202 				 pa, prot, &cache, 0);
1203 		write_unlock(&kvm->mmu_lock);
1204 		if (ret)
1205 			break;
1206 
1207 		pa += PAGE_SIZE;
1208 	}
1209 
1210 	kvm_mmu_free_memory_cache(&cache);
1211 	return ret;
1212 }
1213 
1214 /**
1215  * kvm_stage2_wp_range() - write protect stage2 memory region range
1216  * @mmu:        The KVM stage-2 MMU pointer
1217  * @addr:	Start address of range
1218  * @end:	End address of range
1219  */
1220 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1221 {
1222 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1223 }
1224 
1225 /**
1226  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1227  * @kvm:	The KVM pointer
1228  * @slot:	The memory slot to write protect
1229  *
1230  * Called to start logging dirty pages after memory region
1231  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1232  * all present PUD, PMD and PTEs are write protected in the memory region.
1233  * Afterwards read of dirty page log can be called.
1234  *
1235  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1236  * serializing operations for VM memory regions.
1237  */
1238 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1239 {
1240 	struct kvm_memslots *slots = kvm_memslots(kvm);
1241 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1242 	phys_addr_t start, end;
1243 
1244 	if (WARN_ON_ONCE(!memslot))
1245 		return;
1246 
1247 	start = memslot->base_gfn << PAGE_SHIFT;
1248 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1249 
1250 	write_lock(&kvm->mmu_lock);
1251 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1252 	kvm_nested_s2_wp(kvm);
1253 	write_unlock(&kvm->mmu_lock);
1254 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1255 }
1256 
1257 /**
1258  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1259  *				   pages for memory slot
1260  * @kvm:	The KVM pointer
1261  * @slot:	The memory slot to split
1262  *
1263  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1264  * serializing operations for VM memory regions.
1265  */
1266 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1267 {
1268 	struct kvm_memslots *slots;
1269 	struct kvm_memory_slot *memslot;
1270 	phys_addr_t start, end;
1271 
1272 	lockdep_assert_held(&kvm->slots_lock);
1273 
1274 	slots = kvm_memslots(kvm);
1275 	memslot = id_to_memslot(slots, slot);
1276 
1277 	start = memslot->base_gfn << PAGE_SHIFT;
1278 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1279 
1280 	write_lock(&kvm->mmu_lock);
1281 	kvm_mmu_split_huge_pages(kvm, start, end);
1282 	write_unlock(&kvm->mmu_lock);
1283 }
1284 
1285 /*
1286  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1287  * @kvm:	The KVM pointer
1288  * @slot:	The memory slot associated with mask
1289  * @gfn_offset:	The gfn offset in memory slot
1290  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1291  *		slot to enable dirty logging on
1292  *
1293  * Writes protect selected pages to enable dirty logging, and then
1294  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1295  */
1296 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1297 		struct kvm_memory_slot *slot,
1298 		gfn_t gfn_offset, unsigned long mask)
1299 {
1300 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1301 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1302 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1303 
1304 	lockdep_assert_held_write(&kvm->mmu_lock);
1305 
1306 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1307 
1308 	/*
1309 	 * Eager-splitting is done when manual-protect is set.  We
1310 	 * also check for initially-all-set because we can avoid
1311 	 * eager-splitting if initially-all-set is false.
1312 	 * Initially-all-set equal false implies that huge-pages were
1313 	 * already split when enabling dirty logging: no need to do it
1314 	 * again.
1315 	 */
1316 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1317 		kvm_mmu_split_huge_pages(kvm, start, end);
1318 
1319 	kvm_nested_s2_wp(kvm);
1320 }
1321 
1322 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1323 {
1324 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1325 }
1326 
1327 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1328 					       unsigned long hva,
1329 					       unsigned long map_size)
1330 {
1331 	gpa_t gpa_start;
1332 	hva_t uaddr_start, uaddr_end;
1333 	size_t size;
1334 
1335 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1336 	if (map_size == PAGE_SIZE)
1337 		return true;
1338 
1339 	/* pKVM only supports PMD_SIZE huge-mappings */
1340 	if (is_protected_kvm_enabled() && map_size != PMD_SIZE)
1341 		return false;
1342 
1343 	size = memslot->npages * PAGE_SIZE;
1344 
1345 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1346 
1347 	uaddr_start = memslot->userspace_addr;
1348 	uaddr_end = uaddr_start + size;
1349 
1350 	/*
1351 	 * Pages belonging to memslots that don't have the same alignment
1352 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1353 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1354 	 *
1355 	 * Consider a layout like the following:
1356 	 *
1357 	 *    memslot->userspace_addr:
1358 	 *    +-----+--------------------+--------------------+---+
1359 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1360 	 *    +-----+--------------------+--------------------+---+
1361 	 *
1362 	 *    memslot->base_gfn << PAGE_SHIFT:
1363 	 *      +---+--------------------+--------------------+-----+
1364 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1365 	 *      +---+--------------------+--------------------+-----+
1366 	 *
1367 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1368 	 * mapping:
1369 	 *   d -> f
1370 	 *   e -> g
1371 	 *   f -> h
1372 	 */
1373 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1374 		return false;
1375 
1376 	/*
1377 	 * Next, let's make sure we're not trying to map anything not covered
1378 	 * by the memslot. This means we have to prohibit block size mappings
1379 	 * for the beginning and end of a non-block aligned and non-block sized
1380 	 * memory slot (illustrated by the head and tail parts of the
1381 	 * userspace view above containing pages 'abcde' and 'xyz',
1382 	 * respectively).
1383 	 *
1384 	 * Note that it doesn't matter if we do the check using the
1385 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1386 	 * the check above) and equally sized.
1387 	 */
1388 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1389 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1390 }
1391 
1392 /*
1393  * Check if the given hva is backed by a transparent huge page (THP) and
1394  * whether it can be mapped using block mapping in stage2. If so, adjust
1395  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1396  * supported. This will need to be updated to support other THP sizes.
1397  *
1398  * Returns the size of the mapping.
1399  */
1400 static long
1401 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1402 			    unsigned long hva, kvm_pfn_t *pfnp,
1403 			    phys_addr_t *ipap)
1404 {
1405 	kvm_pfn_t pfn = *pfnp;
1406 
1407 	/*
1408 	 * Make sure the adjustment is done only for THP pages. Also make
1409 	 * sure that the HVA and IPA are sufficiently aligned and that the
1410 	 * block map is contained within the memslot.
1411 	 */
1412 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1413 		int sz = get_user_mapping_size(kvm, hva);
1414 
1415 		if (sz < 0)
1416 			return sz;
1417 
1418 		if (sz < PMD_SIZE)
1419 			return PAGE_SIZE;
1420 
1421 		*ipap &= PMD_MASK;
1422 		pfn &= ~(PTRS_PER_PMD - 1);
1423 		*pfnp = pfn;
1424 
1425 		return PMD_SIZE;
1426 	}
1427 
1428 	/* Use page mapping if we cannot use block mapping. */
1429 	return PAGE_SIZE;
1430 }
1431 
1432 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1433 {
1434 	unsigned long pa;
1435 
1436 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1437 		return huge_page_shift(hstate_vma(vma));
1438 
1439 	if (!(vma->vm_flags & VM_PFNMAP))
1440 		return PAGE_SHIFT;
1441 
1442 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1443 
1444 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1445 
1446 #ifndef __PAGETABLE_PMD_FOLDED
1447 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1448 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1449 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1450 		return PUD_SHIFT;
1451 #endif
1452 
1453 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1454 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1455 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1456 		return PMD_SHIFT;
1457 
1458 	return PAGE_SHIFT;
1459 }
1460 
1461 /*
1462  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1463  * able to see the page's tags and therefore they must be initialised first. If
1464  * PG_mte_tagged is set, tags have already been initialised.
1465  *
1466  * Must be called with kvm->mmu_lock held to ensure the memory remains mapped
1467  * while the tags are zeroed.
1468  */
1469 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1470 			      unsigned long size)
1471 {
1472 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1473 	struct page *page = pfn_to_page(pfn);
1474 	struct folio *folio = page_folio(page);
1475 
1476 	if (!kvm_has_mte(kvm))
1477 		return;
1478 
1479 	if (folio_test_hugetlb(folio)) {
1480 		/* Hugetlb has MTE flags set on head page only */
1481 		if (folio_try_hugetlb_mte_tagging(folio)) {
1482 			for (i = 0; i < nr_pages; i++, page++)
1483 				mte_clear_page_tags(page_address(page));
1484 			folio_set_hugetlb_mte_tagged(folio);
1485 		}
1486 		return;
1487 	}
1488 
1489 	for (i = 0; i < nr_pages; i++, page++) {
1490 		if (try_page_mte_tagging(page)) {
1491 			mte_clear_page_tags(page_address(page));
1492 			set_page_mte_tagged(page);
1493 		}
1494 	}
1495 }
1496 
1497 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1498 {
1499 	return vma->vm_flags & VM_MTE_ALLOWED;
1500 }
1501 
1502 static bool kvm_vma_is_cacheable(struct vm_area_struct *vma)
1503 {
1504 	switch (FIELD_GET(PTE_ATTRINDX_MASK, pgprot_val(vma->vm_page_prot))) {
1505 	case MT_NORMAL_NC:
1506 	case MT_DEVICE_nGnRnE:
1507 	case MT_DEVICE_nGnRE:
1508 		return false;
1509 	default:
1510 		return true;
1511 	}
1512 }
1513 
1514 static int prepare_mmu_memcache(struct kvm_vcpu *vcpu, bool topup_memcache,
1515 				void **memcache)
1516 {
1517 	int min_pages;
1518 
1519 	if (!is_protected_kvm_enabled())
1520 		*memcache = &vcpu->arch.mmu_page_cache;
1521 	else
1522 		*memcache = &vcpu->arch.pkvm_memcache;
1523 
1524 	if (!topup_memcache)
1525 		return 0;
1526 
1527 	min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1528 
1529 	if (!is_protected_kvm_enabled())
1530 		return kvm_mmu_topup_memory_cache(*memcache, min_pages);
1531 
1532 	return topup_hyp_memcache(*memcache, min_pages);
1533 }
1534 
1535 /*
1536  * Potentially reduce shadow S2 permissions to match the guest's own S2. For
1537  * exec faults, we'd only reach this point if the guest actually allowed it (see
1538  * kvm_s2_handle_perm_fault).
1539  *
1540  * Also encode the level of the original translation in the SW bits of the leaf
1541  * entry as a proxy for the span of that translation. This will be retrieved on
1542  * TLB invalidation from the guest and used to limit the invalidation scope if a
1543  * TTL hint or a range isn't provided.
1544  */
1545 static void adjust_nested_fault_perms(struct kvm_s2_trans *nested,
1546 				      enum kvm_pgtable_prot *prot,
1547 				      bool *writable)
1548 {
1549 	*writable &= kvm_s2_trans_writable(nested);
1550 	if (!kvm_s2_trans_readable(nested))
1551 		*prot &= ~KVM_PGTABLE_PROT_R;
1552 
1553 	*prot |= kvm_encode_nested_level(nested);
1554 }
1555 
1556 static void adjust_nested_exec_perms(struct kvm *kvm,
1557 				     struct kvm_s2_trans *nested,
1558 				     enum kvm_pgtable_prot *prot)
1559 {
1560 	if (!kvm_s2_trans_exec_el0(kvm, nested))
1561 		*prot &= ~KVM_PGTABLE_PROT_UX;
1562 	if (!kvm_s2_trans_exec_el1(kvm, nested))
1563 		*prot &= ~KVM_PGTABLE_PROT_PX;
1564 }
1565 
1566 static int gmem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1567 		      struct kvm_s2_trans *nested,
1568 		      struct kvm_memory_slot *memslot, bool is_perm)
1569 {
1570 	bool write_fault, exec_fault, writable;
1571 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_SHARED;
1572 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1573 	struct kvm_pgtable *pgt = vcpu->arch.hw_mmu->pgt;
1574 	unsigned long mmu_seq;
1575 	struct page *page;
1576 	struct kvm *kvm = vcpu->kvm;
1577 	void *memcache;
1578 	kvm_pfn_t pfn;
1579 	gfn_t gfn;
1580 	int ret;
1581 
1582 	ret = prepare_mmu_memcache(vcpu, true, &memcache);
1583 	if (ret)
1584 		return ret;
1585 
1586 	if (nested)
1587 		gfn = kvm_s2_trans_output(nested) >> PAGE_SHIFT;
1588 	else
1589 		gfn = fault_ipa >> PAGE_SHIFT;
1590 
1591 	write_fault = kvm_is_write_fault(vcpu);
1592 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1593 
1594 	VM_WARN_ON_ONCE(write_fault && exec_fault);
1595 
1596 	mmu_seq = kvm->mmu_invalidate_seq;
1597 	/* Pairs with the smp_wmb() in kvm_mmu_invalidate_end(). */
1598 	smp_rmb();
1599 
1600 	ret = kvm_gmem_get_pfn(kvm, memslot, gfn, &pfn, &page, NULL);
1601 	if (ret) {
1602 		kvm_prepare_memory_fault_exit(vcpu, fault_ipa, PAGE_SIZE,
1603 					      write_fault, exec_fault, false);
1604 		return ret;
1605 	}
1606 
1607 	writable = !(memslot->flags & KVM_MEM_READONLY);
1608 
1609 	if (nested)
1610 		adjust_nested_fault_perms(nested, &prot, &writable);
1611 
1612 	if (writable)
1613 		prot |= KVM_PGTABLE_PROT_W;
1614 
1615 	if (exec_fault || cpus_have_final_cap(ARM64_HAS_CACHE_DIC))
1616 		prot |= KVM_PGTABLE_PROT_X;
1617 
1618 	if (nested)
1619 		adjust_nested_exec_perms(kvm, nested, &prot);
1620 
1621 	kvm_fault_lock(kvm);
1622 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1623 		ret = -EAGAIN;
1624 		goto out_unlock;
1625 	}
1626 
1627 	ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, PAGE_SIZE,
1628 						 __pfn_to_phys(pfn), prot,
1629 						 memcache, flags);
1630 
1631 out_unlock:
1632 	kvm_release_faultin_page(kvm, page, !!ret, writable);
1633 	kvm_fault_unlock(kvm);
1634 
1635 	if (writable && !ret)
1636 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1637 
1638 	return ret != -EAGAIN ? ret : 0;
1639 }
1640 
1641 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1642 			  struct kvm_s2_trans *nested,
1643 			  struct kvm_memory_slot *memslot, unsigned long hva,
1644 			  bool fault_is_perm)
1645 {
1646 	int ret = 0;
1647 	bool topup_memcache;
1648 	bool write_fault, writable;
1649 	bool exec_fault, mte_allowed, is_vma_cacheable;
1650 	bool s2_force_noncacheable = false, vfio_allow_any_uc = false;
1651 	unsigned long mmu_seq;
1652 	phys_addr_t ipa = fault_ipa;
1653 	struct kvm *kvm = vcpu->kvm;
1654 	struct vm_area_struct *vma;
1655 	short vma_shift;
1656 	void *memcache;
1657 	gfn_t gfn;
1658 	kvm_pfn_t pfn;
1659 	bool logging_active = memslot_is_logging(memslot);
1660 	bool force_pte = logging_active;
1661 	long vma_pagesize, fault_granule;
1662 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1663 	struct kvm_pgtable *pgt;
1664 	struct page *page;
1665 	vm_flags_t vm_flags;
1666 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_SHARED;
1667 
1668 	if (fault_is_perm)
1669 		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1670 	write_fault = kvm_is_write_fault(vcpu);
1671 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1672 	VM_WARN_ON_ONCE(write_fault && exec_fault);
1673 
1674 	/*
1675 	 * Permission faults just need to update the existing leaf entry,
1676 	 * and so normally don't require allocations from the memcache. The
1677 	 * only exception to this is when dirty logging is enabled at runtime
1678 	 * and a write fault needs to collapse a block entry into a table.
1679 	 */
1680 	topup_memcache = !fault_is_perm || (logging_active && write_fault);
1681 	ret = prepare_mmu_memcache(vcpu, topup_memcache, &memcache);
1682 	if (ret)
1683 		return ret;
1684 
1685 	/*
1686 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1687 	 * get block mapping for device MMIO region.
1688 	 */
1689 	mmap_read_lock(current->mm);
1690 	vma = vma_lookup(current->mm, hva);
1691 	if (unlikely(!vma)) {
1692 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1693 		mmap_read_unlock(current->mm);
1694 		return -EFAULT;
1695 	}
1696 
1697 	if (force_pte)
1698 		vma_shift = PAGE_SHIFT;
1699 	else
1700 		vma_shift = get_vma_page_shift(vma, hva);
1701 
1702 	switch (vma_shift) {
1703 #ifndef __PAGETABLE_PMD_FOLDED
1704 	case PUD_SHIFT:
1705 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1706 			break;
1707 		fallthrough;
1708 #endif
1709 	case CONT_PMD_SHIFT:
1710 		vma_shift = PMD_SHIFT;
1711 		fallthrough;
1712 	case PMD_SHIFT:
1713 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1714 			break;
1715 		fallthrough;
1716 	case CONT_PTE_SHIFT:
1717 		vma_shift = PAGE_SHIFT;
1718 		force_pte = true;
1719 		fallthrough;
1720 	case PAGE_SHIFT:
1721 		break;
1722 	default:
1723 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1724 	}
1725 
1726 	vma_pagesize = 1UL << vma_shift;
1727 
1728 	if (nested) {
1729 		unsigned long max_map_size;
1730 
1731 		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1732 
1733 		ipa = kvm_s2_trans_output(nested);
1734 
1735 		/*
1736 		 * If we're about to create a shadow stage 2 entry, then we
1737 		 * can only create a block mapping if the guest stage 2 page
1738 		 * table uses at least as big a mapping.
1739 		 */
1740 		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1741 
1742 		/*
1743 		 * Be careful that if the mapping size falls between
1744 		 * two host sizes, take the smallest of the two.
1745 		 */
1746 		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1747 			max_map_size = PMD_SIZE;
1748 		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1749 			max_map_size = PAGE_SIZE;
1750 
1751 		force_pte = (max_map_size == PAGE_SIZE);
1752 		vma_pagesize = min_t(long, vma_pagesize, max_map_size);
1753 	}
1754 
1755 	/*
1756 	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1757 	 * ensure we find the right PFN and lay down the mapping in the right
1758 	 * place.
1759 	 */
1760 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1761 		fault_ipa &= ~(vma_pagesize - 1);
1762 		ipa &= ~(vma_pagesize - 1);
1763 	}
1764 
1765 	gfn = ipa >> PAGE_SHIFT;
1766 	mte_allowed = kvm_vma_mte_allowed(vma);
1767 
1768 	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1769 
1770 	vm_flags = vma->vm_flags;
1771 
1772 	is_vma_cacheable = kvm_vma_is_cacheable(vma);
1773 
1774 	/* Don't use the VMA after the unlock -- it may have vanished */
1775 	vma = NULL;
1776 
1777 	/*
1778 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1779 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1780 	 * acquiring kvm->mmu_lock.
1781 	 *
1782 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1783 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1784 	 */
1785 	mmu_seq = kvm->mmu_invalidate_seq;
1786 	mmap_read_unlock(current->mm);
1787 
1788 	pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1789 				&writable, &page);
1790 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1791 		kvm_send_hwpoison_signal(hva, vma_shift);
1792 		return 0;
1793 	}
1794 	if (is_error_noslot_pfn(pfn))
1795 		return -EFAULT;
1796 
1797 	/*
1798 	 * Check if this is non-struct page memory PFN, and cannot support
1799 	 * CMOs. It could potentially be unsafe to access as cacheable.
1800 	 */
1801 	if (vm_flags & (VM_PFNMAP | VM_MIXEDMAP) && !pfn_is_map_memory(pfn)) {
1802 		if (is_vma_cacheable) {
1803 			/*
1804 			 * Whilst the VMA owner expects cacheable mapping to this
1805 			 * PFN, hardware also has to support the FWB and CACHE DIC
1806 			 * features.
1807 			 *
1808 			 * ARM64 KVM relies on kernel VA mapping to the PFN to
1809 			 * perform cache maintenance as the CMO instructions work on
1810 			 * virtual addresses. VM_PFNMAP region are not necessarily
1811 			 * mapped to a KVA and hence the presence of hardware features
1812 			 * S2FWB and CACHE DIC are mandatory to avoid the need for
1813 			 * cache maintenance.
1814 			 */
1815 			if (!kvm_supports_cacheable_pfnmap())
1816 				ret = -EFAULT;
1817 		} else {
1818 			/*
1819 			 * If the page was identified as device early by looking at
1820 			 * the VMA flags, vma_pagesize is already representing the
1821 			 * largest quantity we can map.  If instead it was mapped
1822 			 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1823 			 * and must not be upgraded.
1824 			 *
1825 			 * In both cases, we don't let transparent_hugepage_adjust()
1826 			 * change things at the last minute.
1827 			 */
1828 			s2_force_noncacheable = true;
1829 		}
1830 	} else if (logging_active && !write_fault) {
1831 		/*
1832 		 * Only actually map the page as writable if this was a write
1833 		 * fault.
1834 		 */
1835 		writable = false;
1836 	}
1837 
1838 	if (exec_fault && s2_force_noncacheable)
1839 		ret = -ENOEXEC;
1840 
1841 	if (ret) {
1842 		kvm_release_page_unused(page);
1843 		return ret;
1844 	}
1845 
1846 	if (nested)
1847 		adjust_nested_fault_perms(nested, &prot, &writable);
1848 
1849 	kvm_fault_lock(kvm);
1850 	pgt = vcpu->arch.hw_mmu->pgt;
1851 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1852 		ret = -EAGAIN;
1853 		goto out_unlock;
1854 	}
1855 
1856 	/*
1857 	 * If we are not forced to use page mapping, check if we are
1858 	 * backed by a THP and thus use block mapping if possible.
1859 	 */
1860 	if (vma_pagesize == PAGE_SIZE && !(force_pte || s2_force_noncacheable)) {
1861 		if (fault_is_perm && fault_granule > PAGE_SIZE)
1862 			vma_pagesize = fault_granule;
1863 		else
1864 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1865 								   hva, &pfn,
1866 								   &fault_ipa);
1867 
1868 		if (vma_pagesize < 0) {
1869 			ret = vma_pagesize;
1870 			goto out_unlock;
1871 		}
1872 	}
1873 
1874 	if (!fault_is_perm && !s2_force_noncacheable && kvm_has_mte(kvm)) {
1875 		/* Check the VMM hasn't introduced a new disallowed VMA */
1876 		if (mte_allowed) {
1877 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1878 		} else {
1879 			ret = -EFAULT;
1880 			goto out_unlock;
1881 		}
1882 	}
1883 
1884 	if (writable)
1885 		prot |= KVM_PGTABLE_PROT_W;
1886 
1887 	if (exec_fault)
1888 		prot |= KVM_PGTABLE_PROT_X;
1889 
1890 	if (s2_force_noncacheable) {
1891 		if (vfio_allow_any_uc)
1892 			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1893 		else
1894 			prot |= KVM_PGTABLE_PROT_DEVICE;
1895 	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) {
1896 		prot |= KVM_PGTABLE_PROT_X;
1897 	}
1898 
1899 	if (nested)
1900 		adjust_nested_exec_perms(kvm, nested, &prot);
1901 
1902 	/*
1903 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1904 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1905 	 * kvm_pgtable_stage2_map() should be called to change block size.
1906 	 */
1907 	if (fault_is_perm && vma_pagesize == fault_granule) {
1908 		/*
1909 		 * Drop the SW bits in favour of those stored in the
1910 		 * PTE, which will be preserved.
1911 		 */
1912 		prot &= ~KVM_NV_GUEST_MAP_SZ;
1913 		ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1914 	} else {
1915 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1916 					     __pfn_to_phys(pfn), prot,
1917 					     memcache, flags);
1918 	}
1919 
1920 out_unlock:
1921 	kvm_release_faultin_page(kvm, page, !!ret, writable);
1922 	kvm_fault_unlock(kvm);
1923 
1924 	/* Mark the page dirty only if the fault is handled successfully */
1925 	if (writable && !ret)
1926 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1927 
1928 	return ret != -EAGAIN ? ret : 0;
1929 }
1930 
1931 /* Resolve the access fault by making the page young again. */
1932 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1933 {
1934 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_SHARED;
1935 	struct kvm_s2_mmu *mmu;
1936 
1937 	trace_kvm_access_fault(fault_ipa);
1938 
1939 	read_lock(&vcpu->kvm->mmu_lock);
1940 	mmu = vcpu->arch.hw_mmu;
1941 	KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1942 	read_unlock(&vcpu->kvm->mmu_lock);
1943 }
1944 
1945 /*
1946  * Returns true if the SEA should be handled locally within KVM if the abort
1947  * is caused by a kernel memory allocation (e.g. stage-2 table memory).
1948  */
1949 static bool host_owns_sea(struct kvm_vcpu *vcpu, u64 esr)
1950 {
1951 	/*
1952 	 * Without FEAT_RAS HCR_EL2.TEA is RES0, meaning any external abort
1953 	 * taken from a guest EL to EL2 is due to a host-imposed access (e.g.
1954 	 * stage-2 PTW).
1955 	 */
1956 	if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
1957 		return true;
1958 
1959 	/* KVM owns the VNCR when the vCPU isn't in a nested context. */
1960 	if (is_hyp_ctxt(vcpu) && !kvm_vcpu_trap_is_iabt(vcpu) && (esr & ESR_ELx_VNCR))
1961 		return true;
1962 
1963 	/*
1964 	 * Determining if an external abort during a table walk happened at
1965 	 * stage-2 is only possible with S1PTW is set. Otherwise, since KVM
1966 	 * sets HCR_EL2.TEA, SEAs due to a stage-1 walk (i.e. accessing the
1967 	 * PA of the stage-1 descriptor) can reach here and are reported
1968 	 * with a TTW ESR value.
1969 	 */
1970 	return (esr_fsc_is_sea_ttw(esr) && (esr & ESR_ELx_S1PTW));
1971 }
1972 
1973 int kvm_handle_guest_sea(struct kvm_vcpu *vcpu)
1974 {
1975 	struct kvm *kvm = vcpu->kvm;
1976 	struct kvm_run *run = vcpu->run;
1977 	u64 esr = kvm_vcpu_get_esr(vcpu);
1978 	u64 esr_mask = ESR_ELx_EC_MASK	|
1979 		       ESR_ELx_IL	|
1980 		       ESR_ELx_FnV	|
1981 		       ESR_ELx_EA	|
1982 		       ESR_ELx_CM	|
1983 		       ESR_ELx_WNR	|
1984 		       ESR_ELx_FSC;
1985 	u64 ipa;
1986 
1987 	/*
1988 	 * Give APEI the opportunity to claim the abort before handling it
1989 	 * within KVM. apei_claim_sea() expects to be called with IRQs enabled.
1990 	 */
1991 	lockdep_assert_irqs_enabled();
1992 	if (apei_claim_sea(NULL) == 0)
1993 		return 1;
1994 
1995 	if (host_owns_sea(vcpu, esr) ||
1996 	    !test_bit(KVM_ARCH_FLAG_EXIT_SEA, &vcpu->kvm->arch.flags))
1997 		return kvm_inject_serror(vcpu);
1998 
1999 	/* ESR_ELx.SET is RES0 when FEAT_RAS isn't implemented. */
2000 	if (kvm_has_ras(kvm))
2001 		esr_mask |= ESR_ELx_SET_MASK;
2002 
2003 	/*
2004 	 * Exit to userspace, and provide faulting guest virtual and physical
2005 	 * addresses in case userspace wants to emulate SEA to guest by
2006 	 * writing to FAR_ELx and HPFAR_ELx registers.
2007 	 */
2008 	memset(&run->arm_sea, 0, sizeof(run->arm_sea));
2009 	run->exit_reason = KVM_EXIT_ARM_SEA;
2010 	run->arm_sea.esr = esr & esr_mask;
2011 
2012 	if (!(esr & ESR_ELx_FnV))
2013 		run->arm_sea.gva = kvm_vcpu_get_hfar(vcpu);
2014 
2015 	ipa = kvm_vcpu_get_fault_ipa(vcpu);
2016 	if (ipa != INVALID_GPA) {
2017 		run->arm_sea.flags |= KVM_EXIT_ARM_SEA_FLAG_GPA_VALID;
2018 		run->arm_sea.gpa = ipa;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 /**
2025  * kvm_handle_guest_abort - handles all 2nd stage aborts
2026  * @vcpu:	the VCPU pointer
2027  *
2028  * Any abort that gets to the host is almost guaranteed to be caused by a
2029  * missing second stage translation table entry, which can mean that either the
2030  * guest simply needs more memory and we must allocate an appropriate page or it
2031  * can mean that the guest tried to access I/O memory, which is emulated by user
2032  * space. The distinction is based on the IPA causing the fault and whether this
2033  * memory region has been registered as standard RAM by user space.
2034  */
2035 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2036 {
2037 	struct kvm_s2_trans nested_trans, *nested = NULL;
2038 	unsigned long esr;
2039 	phys_addr_t fault_ipa; /* The address we faulted on */
2040 	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
2041 	struct kvm_memory_slot *memslot;
2042 	unsigned long hva;
2043 	bool is_iabt, write_fault, writable;
2044 	gfn_t gfn;
2045 	int ret, idx;
2046 
2047 	if (kvm_vcpu_abt_issea(vcpu))
2048 		return kvm_handle_guest_sea(vcpu);
2049 
2050 	esr = kvm_vcpu_get_esr(vcpu);
2051 
2052 	/*
2053 	 * The fault IPA should be reliable at this point as we're not dealing
2054 	 * with an SEA.
2055 	 */
2056 	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2057 	if (KVM_BUG_ON(ipa == INVALID_GPA, vcpu->kvm))
2058 		return -EFAULT;
2059 
2060 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2061 
2062 	if (esr_fsc_is_translation_fault(esr)) {
2063 		/* Beyond sanitised PARange (which is the IPA limit) */
2064 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
2065 			kvm_inject_size_fault(vcpu);
2066 			return 1;
2067 		}
2068 
2069 		/* Falls between the IPA range and the PARange? */
2070 		if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
2071 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2072 
2073 			return kvm_inject_sea(vcpu, is_iabt, fault_ipa);
2074 		}
2075 	}
2076 
2077 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2078 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
2079 
2080 	/* Check the stage-2 fault is trans. fault or write fault */
2081 	if (!esr_fsc_is_translation_fault(esr) &&
2082 	    !esr_fsc_is_permission_fault(esr) &&
2083 	    !esr_fsc_is_access_flag_fault(esr)) {
2084 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2085 			kvm_vcpu_trap_get_class(vcpu),
2086 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2087 			(unsigned long)kvm_vcpu_get_esr(vcpu));
2088 		return -EFAULT;
2089 	}
2090 
2091 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2092 
2093 	/*
2094 	 * We may have faulted on a shadow stage 2 page table if we are
2095 	 * running a nested guest.  In this case, we have to resolve the L2
2096 	 * IPA to the L1 IPA first, before knowing what kind of memory should
2097 	 * back the L1 IPA.
2098 	 *
2099 	 * If the shadow stage 2 page table walk faults, then we simply inject
2100 	 * this to the guest and carry on.
2101 	 *
2102 	 * If there are no shadow S2 PTs because S2 is disabled, there is
2103 	 * nothing to walk and we treat it as a 1:1 before going through the
2104 	 * canonical translation.
2105 	 */
2106 	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
2107 	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
2108 		u32 esr;
2109 
2110 		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
2111 		if (ret == -EAGAIN) {
2112 			ret = 1;
2113 			goto out_unlock;
2114 		}
2115 
2116 		if (ret) {
2117 			esr = kvm_s2_trans_esr(&nested_trans);
2118 			kvm_inject_s2_fault(vcpu, esr);
2119 			goto out_unlock;
2120 		}
2121 
2122 		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
2123 		if (ret) {
2124 			esr = kvm_s2_trans_esr(&nested_trans);
2125 			kvm_inject_s2_fault(vcpu, esr);
2126 			goto out_unlock;
2127 		}
2128 
2129 		ipa = kvm_s2_trans_output(&nested_trans);
2130 		nested = &nested_trans;
2131 	}
2132 
2133 	gfn = ipa >> PAGE_SHIFT;
2134 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
2135 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2136 	write_fault = kvm_is_write_fault(vcpu);
2137 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2138 		/*
2139 		 * The guest has put either its instructions or its page-tables
2140 		 * somewhere it shouldn't have. Userspace won't be able to do
2141 		 * anything about this (there's no syndrome for a start), so
2142 		 * re-inject the abort back into the guest.
2143 		 */
2144 		if (is_iabt) {
2145 			ret = -ENOEXEC;
2146 			goto out;
2147 		}
2148 
2149 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
2150 			ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2151 			goto out_unlock;
2152 		}
2153 
2154 		/*
2155 		 * Check for a cache maintenance operation. Since we
2156 		 * ended-up here, we know it is outside of any memory
2157 		 * slot. But we can't find out if that is for a device,
2158 		 * or if the guest is just being stupid. The only thing
2159 		 * we know for sure is that this range cannot be cached.
2160 		 *
2161 		 * So let's assume that the guest is just being
2162 		 * cautious, and skip the instruction.
2163 		 */
2164 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2165 			kvm_incr_pc(vcpu);
2166 			ret = 1;
2167 			goto out_unlock;
2168 		}
2169 
2170 		/*
2171 		 * The IPA is reported as [MAX:12], so we need to
2172 		 * complement it with the bottom 12 bits from the
2173 		 * faulting VA. This is always 12 bits, irrespective
2174 		 * of the page size.
2175 		 */
2176 		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2177 		ret = io_mem_abort(vcpu, ipa);
2178 		goto out_unlock;
2179 	}
2180 
2181 	/* Userspace should not be able to register out-of-bounds IPAs */
2182 	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
2183 
2184 	if (esr_fsc_is_access_flag_fault(esr)) {
2185 		handle_access_fault(vcpu, fault_ipa);
2186 		ret = 1;
2187 		goto out_unlock;
2188 	}
2189 
2190 	VM_WARN_ON_ONCE(kvm_vcpu_trap_is_permission_fault(vcpu) &&
2191 			!write_fault && !kvm_vcpu_trap_is_exec_fault(vcpu));
2192 
2193 	if (kvm_slot_has_gmem(memslot))
2194 		ret = gmem_abort(vcpu, fault_ipa, nested, memslot,
2195 				 esr_fsc_is_permission_fault(esr));
2196 	else
2197 		ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
2198 				     esr_fsc_is_permission_fault(esr));
2199 	if (ret == 0)
2200 		ret = 1;
2201 out:
2202 	if (ret == -ENOEXEC)
2203 		ret = kvm_inject_sea_iabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2204 out_unlock:
2205 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2206 	return ret;
2207 }
2208 
2209 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
2210 {
2211 	if (!kvm->arch.mmu.pgt)
2212 		return false;
2213 
2214 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
2215 			     (range->end - range->start) << PAGE_SHIFT,
2216 			     range->may_block);
2217 
2218 	kvm_nested_s2_unmap(kvm, range->may_block);
2219 	return false;
2220 }
2221 
2222 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2223 {
2224 	u64 size = (range->end - range->start) << PAGE_SHIFT;
2225 
2226 	if (!kvm->arch.mmu.pgt)
2227 		return false;
2228 
2229 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2230 						   range->start << PAGE_SHIFT,
2231 						   size, true);
2232 	/*
2233 	 * TODO: Handle nested_mmu structures here using the reverse mapping in
2234 	 * a later version of patch series.
2235 	 */
2236 }
2237 
2238 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2239 {
2240 	u64 size = (range->end - range->start) << PAGE_SHIFT;
2241 
2242 	if (!kvm->arch.mmu.pgt)
2243 		return false;
2244 
2245 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2246 						   range->start << PAGE_SHIFT,
2247 						   size, false);
2248 }
2249 
2250 phys_addr_t kvm_mmu_get_httbr(void)
2251 {
2252 	return __pa(hyp_pgtable->pgd);
2253 }
2254 
2255 phys_addr_t kvm_get_idmap_vector(void)
2256 {
2257 	return hyp_idmap_vector;
2258 }
2259 
2260 static int kvm_map_idmap_text(void)
2261 {
2262 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
2263 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2264 					PAGE_HYP_EXEC);
2265 	if (err)
2266 		kvm_err("Failed to idmap %lx-%lx\n",
2267 			hyp_idmap_start, hyp_idmap_end);
2268 
2269 	return err;
2270 }
2271 
2272 static void *kvm_hyp_zalloc_page(void *arg)
2273 {
2274 	return (void *)get_zeroed_page(GFP_KERNEL);
2275 }
2276 
2277 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2278 	.zalloc_page		= kvm_hyp_zalloc_page,
2279 	.get_page		= kvm_host_get_page,
2280 	.put_page		= kvm_host_put_page,
2281 	.phys_to_virt		= kvm_host_va,
2282 	.virt_to_phys		= kvm_host_pa,
2283 };
2284 
2285 int __init kvm_mmu_init(u32 *hyp_va_bits)
2286 {
2287 	int err;
2288 	u32 idmap_bits;
2289 	u32 kernel_bits;
2290 
2291 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2292 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2293 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2294 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2295 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2296 
2297 	/*
2298 	 * We rely on the linker script to ensure at build time that the HYP
2299 	 * init code does not cross a page boundary.
2300 	 */
2301 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2302 
2303 	/*
2304 	 * The ID map is always configured for 48 bits of translation, which
2305 	 * may be fewer than the number of VA bits used by the regular kernel
2306 	 * stage 1, when VA_BITS=52.
2307 	 *
2308 	 * At EL2, there is only one TTBR register, and we can't switch between
2309 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2310 	 * line: we need to use the extended range with *both* our translation
2311 	 * tables.
2312 	 *
2313 	 * So use the maximum of the idmap VA bits and the regular kernel stage
2314 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2315 	 * and map any kernel memory.
2316 	 */
2317 	idmap_bits = IDMAP_VA_BITS;
2318 	kernel_bits = vabits_actual;
2319 	*hyp_va_bits = max(idmap_bits, kernel_bits);
2320 
2321 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2322 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2323 	kvm_debug("HYP VA range: %lx:%lx\n",
2324 		  kern_hyp_va(PAGE_OFFSET),
2325 		  kern_hyp_va((unsigned long)high_memory - 1));
2326 
2327 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2328 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2329 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2330 		/*
2331 		 * The idmap page is intersecting with the VA space,
2332 		 * it is not safe to continue further.
2333 		 */
2334 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2335 		err = -EINVAL;
2336 		goto out;
2337 	}
2338 
2339 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2340 	if (!hyp_pgtable) {
2341 		kvm_err("Hyp mode page-table not allocated\n");
2342 		err = -ENOMEM;
2343 		goto out;
2344 	}
2345 
2346 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2347 	if (err)
2348 		goto out_free_pgtable;
2349 
2350 	err = kvm_map_idmap_text();
2351 	if (err)
2352 		goto out_destroy_pgtable;
2353 
2354 	io_map_base = hyp_idmap_start;
2355 	__hyp_va_bits = *hyp_va_bits;
2356 	return 0;
2357 
2358 out_destroy_pgtable:
2359 	kvm_pgtable_hyp_destroy(hyp_pgtable);
2360 out_free_pgtable:
2361 	kfree(hyp_pgtable);
2362 	hyp_pgtable = NULL;
2363 out:
2364 	return err;
2365 }
2366 
2367 void kvm_arch_commit_memory_region(struct kvm *kvm,
2368 				   struct kvm_memory_slot *old,
2369 				   const struct kvm_memory_slot *new,
2370 				   enum kvm_mr_change change)
2371 {
2372 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2373 
2374 	/*
2375 	 * At this point memslot has been committed and there is an
2376 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2377 	 * memory slot is write protected.
2378 	 */
2379 	if (log_dirty_pages) {
2380 
2381 		if (change == KVM_MR_DELETE)
2382 			return;
2383 
2384 		/*
2385 		 * Huge and normal pages are write-protected and split
2386 		 * on either of these two cases:
2387 		 *
2388 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2389 		 */
2390 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2391 			return;
2392 		/*
2393 		 * or
2394 		 * 2. without initial-all-set: all in one shot when
2395 		 *    enabling dirty logging.
2396 		 */
2397 		kvm_mmu_wp_memory_region(kvm, new->id);
2398 		kvm_mmu_split_memory_region(kvm, new->id);
2399 	} else {
2400 		/*
2401 		 * Free any leftovers from the eager page splitting cache. Do
2402 		 * this when deleting, moving, disabling dirty logging, or
2403 		 * creating the memslot (a nop). Doing it for deletes makes
2404 		 * sure we don't leak memory, and there's no need to keep the
2405 		 * cache around for any of the other cases.
2406 		 */
2407 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2408 	}
2409 }
2410 
2411 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2412 				   const struct kvm_memory_slot *old,
2413 				   struct kvm_memory_slot *new,
2414 				   enum kvm_mr_change change)
2415 {
2416 	hva_t hva, reg_end;
2417 	int ret = 0;
2418 
2419 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2420 			change != KVM_MR_FLAGS_ONLY)
2421 		return 0;
2422 
2423 	/*
2424 	 * Prevent userspace from creating a memory region outside of the IPA
2425 	 * space addressable by the KVM guest IPA space.
2426 	 */
2427 	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2428 		return -EFAULT;
2429 
2430 	/*
2431 	 * Only support guest_memfd backed memslots with mappable memory, since
2432 	 * there aren't any CoCo VMs that support only private memory on arm64.
2433 	 */
2434 	if (kvm_slot_has_gmem(new) && !kvm_memslot_is_gmem_only(new))
2435 		return -EINVAL;
2436 
2437 	hva = new->userspace_addr;
2438 	reg_end = hva + (new->npages << PAGE_SHIFT);
2439 
2440 	mmap_read_lock(current->mm);
2441 	/*
2442 	 * A memory region could potentially cover multiple VMAs, and any holes
2443 	 * between them, so iterate over all of them.
2444 	 *
2445 	 *     +--------------------------------------------+
2446 	 * +---------------+----------------+   +----------------+
2447 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2448 	 * +---------------+----------------+   +----------------+
2449 	 *     |               memory region                |
2450 	 *     +--------------------------------------------+
2451 	 */
2452 	do {
2453 		struct vm_area_struct *vma;
2454 
2455 		vma = find_vma_intersection(current->mm, hva, reg_end);
2456 		if (!vma)
2457 			break;
2458 
2459 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2460 			ret = -EINVAL;
2461 			break;
2462 		}
2463 
2464 		if (vma->vm_flags & VM_PFNMAP) {
2465 			/* IO region dirty page logging not allowed */
2466 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2467 				ret = -EINVAL;
2468 				break;
2469 			}
2470 
2471 			/*
2472 			 * Cacheable PFNMAP is allowed only if the hardware
2473 			 * supports it.
2474 			 */
2475 			if (kvm_vma_is_cacheable(vma) && !kvm_supports_cacheable_pfnmap()) {
2476 				ret = -EINVAL;
2477 				break;
2478 			}
2479 		}
2480 		hva = min(reg_end, vma->vm_end);
2481 	} while (hva < reg_end);
2482 
2483 	mmap_read_unlock(current->mm);
2484 	return ret;
2485 }
2486 
2487 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2488 {
2489 }
2490 
2491 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2492 {
2493 }
2494 
2495 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2496 				   struct kvm_memory_slot *slot)
2497 {
2498 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2499 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2500 
2501 	write_lock(&kvm->mmu_lock);
2502 	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2503 	kvm_nested_s2_unmap(kvm, true);
2504 	write_unlock(&kvm->mmu_lock);
2505 }
2506 
2507 /*
2508  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2509  *
2510  * Main problems:
2511  * - S/W ops are local to a CPU (not broadcast)
2512  * - We have line migration behind our back (speculation)
2513  * - System caches don't support S/W at all (damn!)
2514  *
2515  * In the face of the above, the best we can do is to try and convert
2516  * S/W ops to VA ops. Because the guest is not allowed to infer the
2517  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2518  * which is a rather good thing for us.
2519  *
2520  * Also, it is only used when turning caches on/off ("The expected
2521  * usage of the cache maintenance instructions that operate by set/way
2522  * is associated with the cache maintenance instructions associated
2523  * with the powerdown and powerup of caches, if this is required by
2524  * the implementation.").
2525  *
2526  * We use the following policy:
2527  *
2528  * - If we trap a S/W operation, we enable VM trapping to detect
2529  *   caches being turned on/off, and do a full clean.
2530  *
2531  * - We flush the caches on both caches being turned on and off.
2532  *
2533  * - Once the caches are enabled, we stop trapping VM ops.
2534  */
2535 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2536 {
2537 	unsigned long hcr = *vcpu_hcr(vcpu);
2538 
2539 	/*
2540 	 * If this is the first time we do a S/W operation
2541 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2542 	 * VM trapping.
2543 	 *
2544 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2545 	 * Caches to be turned off. At that point, we'll be able to
2546 	 * clean the caches again.
2547 	 */
2548 	if (!(hcr & HCR_TVM)) {
2549 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2550 					vcpu_has_cache_enabled(vcpu));
2551 		stage2_flush_vm(vcpu->kvm);
2552 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2553 	}
2554 }
2555 
2556 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2557 {
2558 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2559 
2560 	/*
2561 	 * If switching the MMU+caches on, need to invalidate the caches.
2562 	 * If switching it off, need to clean the caches.
2563 	 * Clean + invalidate does the trick always.
2564 	 */
2565 	if (now_enabled != was_enabled)
2566 		stage2_flush_vm(vcpu->kvm);
2567 
2568 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2569 	if (now_enabled)
2570 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2571 
2572 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2573 }
2574