1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5 * Copyright (C) 2020 FORTH-ICS/CARV
6 * Nick Kossifidis <mick@ics.forth.gr>
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #include <linux/kfence.h>
24 #include <linux/execmem.h>
25
26 #include <asm/alternative.h>
27 #include <asm/fixmap.h>
28 #include <asm/io.h>
29 #include <asm/kasan.h>
30 #include <asm/module.h>
31 #include <asm/numa.h>
32 #include <asm/pgtable.h>
33 #include <asm/sections.h>
34 #include <asm/soc.h>
35 #include <asm/sparsemem.h>
36 #include <asm/tlbflush.h>
37
38 #include "../kernel/head.h"
39
40 u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1];
41
42 struct kernel_mapping kernel_map __ro_after_init;
43 EXPORT_SYMBOL(kernel_map);
44 #ifdef CONFIG_XIP_KERNEL
45 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
46 #endif
47
48 #ifdef CONFIG_64BIT
49 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
50 #else
51 u64 satp_mode __ro_after_init = SATP_MODE_32;
52 #endif
53 EXPORT_SYMBOL(satp_mode);
54
55 #ifdef CONFIG_64BIT
56 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
57 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
58 EXPORT_SYMBOL(pgtable_l4_enabled);
59 EXPORT_SYMBOL(pgtable_l5_enabled);
60 #endif
61
62 phys_addr_t phys_ram_base __ro_after_init;
63 EXPORT_SYMBOL(phys_ram_base);
64
65 #ifdef CONFIG_SPARSEMEM_VMEMMAP
66 #define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS)
67
68 unsigned long vmemmap_start_pfn __ro_after_init;
69 EXPORT_SYMBOL(vmemmap_start_pfn);
70 #endif
71
72 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
73 __page_aligned_bss;
74 EXPORT_SYMBOL(empty_zero_page);
75
76 extern char _start[];
77 void *_dtb_early_va __initdata;
78 uintptr_t _dtb_early_pa __initdata;
79
80 phys_addr_t dma32_phys_limit __initdata;
81
zone_sizes_init(void)82 static void __init zone_sizes_init(void)
83 {
84 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
85
86 #ifdef CONFIG_ZONE_DMA32
87 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
88 #endif
89 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
90
91 free_area_init(max_zone_pfns);
92 }
93
94 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
95
96 #define LOG2_SZ_1K ilog2(SZ_1K)
97 #define LOG2_SZ_1M ilog2(SZ_1M)
98 #define LOG2_SZ_1G ilog2(SZ_1G)
99 #define LOG2_SZ_1T ilog2(SZ_1T)
100
print_mlk(char * name,unsigned long b,unsigned long t)101 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
102 {
103 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
104 (((t) - (b)) >> LOG2_SZ_1K));
105 }
106
print_mlm(char * name,unsigned long b,unsigned long t)107 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
108 {
109 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
110 (((t) - (b)) >> LOG2_SZ_1M));
111 }
112
print_mlg(char * name,unsigned long b,unsigned long t)113 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
114 {
115 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t,
116 (((t) - (b)) >> LOG2_SZ_1G));
117 }
118
119 #ifdef CONFIG_64BIT
print_mlt(char * name,unsigned long b,unsigned long t)120 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
121 {
122 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t,
123 (((t) - (b)) >> LOG2_SZ_1T));
124 }
125 #else
126 #define print_mlt(n, b, t) do {} while (0)
127 #endif
128
print_ml(char * name,unsigned long b,unsigned long t)129 static inline void print_ml(char *name, unsigned long b, unsigned long t)
130 {
131 unsigned long diff = t - b;
132
133 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
134 print_mlt(name, b, t);
135 else if ((diff >> LOG2_SZ_1G) >= 10)
136 print_mlg(name, b, t);
137 else if ((diff >> LOG2_SZ_1M) >= 10)
138 print_mlm(name, b, t);
139 else
140 print_mlk(name, b, t);
141 }
142
print_vm_layout(void)143 static void __init print_vm_layout(void)
144 {
145 pr_notice("Virtual kernel memory layout:\n");
146 print_ml("fixmap", (unsigned long)FIXADDR_START,
147 (unsigned long)FIXADDR_TOP);
148 print_ml("pci io", (unsigned long)PCI_IO_START,
149 (unsigned long)PCI_IO_END);
150 print_ml("vmemmap", (unsigned long)VMEMMAP_START,
151 (unsigned long)VMEMMAP_END);
152 print_ml("vmalloc", (unsigned long)VMALLOC_START,
153 (unsigned long)VMALLOC_END);
154 #ifdef CONFIG_64BIT
155 print_ml("modules", (unsigned long)MODULES_VADDR,
156 (unsigned long)MODULES_END);
157 #endif
158 print_ml("lowmem", (unsigned long)PAGE_OFFSET,
159 (unsigned long)high_memory);
160 if (IS_ENABLED(CONFIG_64BIT)) {
161 #ifdef CONFIG_KASAN
162 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
163 #endif
164
165 print_ml("kernel", (unsigned long)kernel_map.virt_addr,
166 (unsigned long)ADDRESS_SPACE_END);
167 }
168 }
169 #else
print_vm_layout(void)170 static void print_vm_layout(void) { }
171 #endif /* CONFIG_DEBUG_VM */
172
arch_mm_preinit(void)173 void __init arch_mm_preinit(void)
174 {
175 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
176 #ifdef CONFIG_FLATMEM
177 BUG_ON(!mem_map);
178 #endif /* CONFIG_FLATMEM */
179
180 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
181 dma_cache_alignment != 1) {
182 /*
183 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
184 * buffer per 1GB of RAM for kmalloc() bouncing on
185 * non-coherent platforms.
186 */
187 unsigned long size =
188 DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
189 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
190 swiotlb = true;
191 }
192
193 swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
194
195 print_vm_layout();
196 }
197
198 /* Limit the memory size via mem. */
199 static phys_addr_t memory_limit;
200 #ifdef CONFIG_XIP_KERNEL
201 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
202 #endif /* CONFIG_XIP_KERNEL */
203
early_mem(char * p)204 static int __init early_mem(char *p)
205 {
206 u64 size;
207
208 if (!p)
209 return 1;
210
211 size = memparse(p, &p) & PAGE_MASK;
212 memory_limit = min_t(u64, size, memory_limit);
213
214 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
215
216 return 0;
217 }
218 early_param("mem", early_mem);
219
setup_bootmem(void)220 static void __init setup_bootmem(void)
221 {
222 phys_addr_t vmlinux_end = __pa_symbol(&_end);
223 phys_addr_t max_mapped_addr;
224 phys_addr_t phys_ram_end, vmlinux_start;
225
226 if (IS_ENABLED(CONFIG_XIP_KERNEL))
227 vmlinux_start = __pa_symbol(&_sdata);
228 else
229 vmlinux_start = __pa_symbol(&_start);
230
231 memblock_enforce_memory_limit(memory_limit);
232
233 /*
234 * Make sure we align the reservation on PMD_SIZE since we will
235 * map the kernel in the linear mapping as read-only: we do not want
236 * any allocation to happen between _end and the next pmd aligned page.
237 */
238 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
239 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
240 /*
241 * Reserve from the start of the kernel to the end of the kernel
242 */
243 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
244
245 /*
246 * Make sure we align the start of the memory on a PMD boundary so that
247 * at worst, we map the linear mapping with PMD mappings.
248 */
249 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) {
250 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
251 #ifdef CONFIG_SPARSEMEM_VMEMMAP
252 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
253 #endif
254 }
255
256 /*
257 * In 64-bit, any use of __va/__pa before this point is wrong as we
258 * did not know the start of DRAM before.
259 */
260 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
261 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
262
263 /*
264 * The size of the linear page mapping may restrict the amount of
265 * usable RAM.
266 */
267 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
268 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
269 if (memblock_end_of_DRAM() > max_mapped_addr) {
270 memblock_cap_memory_range(phys_ram_base,
271 max_mapped_addr - phys_ram_base);
272 pr_warn("Physical memory overflows the linear mapping size: region above %pa removed",
273 &max_mapped_addr);
274 }
275 }
276
277 /*
278 * Reserve physical address space that would be mapped to virtual
279 * addresses greater than (void *)(-PAGE_SIZE) because:
280 * - This memory would overlap with ERR_PTR
281 * - This memory belongs to high memory, which is not supported
282 *
283 * This is not applicable to 64-bit kernel, because virtual addresses
284 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
285 * occupied by kernel mapping. Also it is unrealistic for high memory
286 * to exist on 64-bit platforms.
287 */
288 if (!IS_ENABLED(CONFIG_64BIT)) {
289 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
290 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
291 }
292
293 phys_ram_end = memblock_end_of_DRAM();
294 min_low_pfn = PFN_UP(phys_ram_base);
295 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
296
297 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
298
299 reserve_initrd_mem();
300
301 /*
302 * No allocation should be done before reserving the memory as defined
303 * in the device tree, otherwise the allocation could end up in a
304 * reserved region.
305 */
306 early_init_fdt_scan_reserved_mem();
307
308 /*
309 * If DTB is built in, no need to reserve its memblock.
310 * Otherwise, do reserve it but avoid using
311 * early_init_fdt_reserve_self() since __pa() does
312 * not work for DTB pointers that are fixmap addresses
313 */
314 if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
315 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
316
317 dma_contiguous_reserve(dma32_phys_limit);
318 if (IS_ENABLED(CONFIG_64BIT))
319 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
320 }
321
322 #ifdef CONFIG_RELOCATABLE
323 extern unsigned long __rela_dyn_start, __rela_dyn_end;
324
relocate_kernel(void)325 static void __init relocate_kernel(void)
326 {
327 Elf_Rela *rela = (Elf_Rela *)&__rela_dyn_start;
328 /*
329 * This holds the offset between the linked virtual address and the
330 * relocated virtual address.
331 */
332 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
333 /*
334 * This holds the offset between kernel linked virtual address and
335 * physical address.
336 */
337 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
338
339 for ( ; rela < (Elf_Rela *)&__rela_dyn_end; rela++) {
340 Elf_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
341 Elf_Addr relocated_addr = rela->r_addend;
342
343 if (rela->r_info != R_RISCV_RELATIVE)
344 continue;
345
346 /*
347 * Make sure to not relocate vdso symbols like rt_sigreturn
348 * which are linked from the address 0 in vmlinux since
349 * vdso symbol addresses are actually used as an offset from
350 * mm->context.vdso in VDSO_OFFSET macro.
351 */
352 if (relocated_addr >= KERNEL_LINK_ADDR)
353 relocated_addr += reloc_offset;
354
355 *(Elf_Addr *)addr = relocated_addr;
356 }
357 }
358 #endif /* CONFIG_RELOCATABLE */
359
360 #ifdef CONFIG_MMU
361 struct pt_alloc_ops pt_ops __meminitdata;
362
363 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
364 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
365 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
366
367 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
368
369 #ifdef CONFIG_XIP_KERNEL
370 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
371 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
372 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte))
373 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir))
374 #endif /* CONFIG_XIP_KERNEL */
375
376 static const pgprot_t protection_map[16] = {
377 [VM_NONE] = PAGE_NONE,
378 [VM_READ] = PAGE_READ,
379 [VM_WRITE] = PAGE_COPY,
380 [VM_WRITE | VM_READ] = PAGE_COPY,
381 [VM_EXEC] = PAGE_EXEC,
382 [VM_EXEC | VM_READ] = PAGE_READ_EXEC,
383 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
384 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
385 [VM_SHARED] = PAGE_NONE,
386 [VM_SHARED | VM_READ] = PAGE_READ,
387 [VM_SHARED | VM_WRITE] = PAGE_SHARED,
388 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
389 [VM_SHARED | VM_EXEC] = PAGE_EXEC,
390 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC,
391 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
392 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
393 };
394 DECLARE_VM_GET_PAGE_PROT
395
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)396 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
397 {
398 unsigned long addr = __fix_to_virt(idx);
399 pte_t *ptep;
400
401 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
402
403 ptep = &fixmap_pte[pte_index(addr)];
404
405 if (pgprot_val(prot))
406 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
407 else
408 pte_clear(&init_mm, addr, ptep);
409 local_flush_tlb_page(addr);
410 }
411
get_pte_virt_early(phys_addr_t pa)412 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
413 {
414 return (pte_t *)((uintptr_t)pa);
415 }
416
get_pte_virt_fixmap(phys_addr_t pa)417 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
418 {
419 clear_fixmap(FIX_PTE);
420 return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
421 }
422
get_pte_virt_late(phys_addr_t pa)423 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
424 {
425 return (pte_t *) __va(pa);
426 }
427
alloc_pte_early(uintptr_t va)428 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
429 {
430 /*
431 * We only create PMD or PGD early mappings so we
432 * should never reach here with MMU disabled.
433 */
434 BUG();
435 }
436
alloc_pte_fixmap(uintptr_t va)437 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
438 {
439 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
440 }
441
alloc_pte_late(uintptr_t va)442 static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
443 {
444 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
445
446 /*
447 * We do not know which mm the PTE page is associated to at this point.
448 * Passing NULL to the ctor is the safe option, though it may result
449 * in unnecessary work (e.g. initialising the ptlock for init_mm).
450 */
451 BUG_ON(!ptdesc || !pagetable_pte_ctor(NULL, ptdesc));
452 return __pa((pte_t *)ptdesc_address(ptdesc));
453 }
454
create_pte_mapping(pte_t * ptep,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)455 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
456 pgprot_t prot)
457 {
458 uintptr_t pte_idx = pte_index(va);
459
460 BUG_ON(sz != PAGE_SIZE);
461
462 if (pte_none(ptep[pte_idx]))
463 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
464 }
465
466 #ifndef __PAGETABLE_PMD_FOLDED
467
468 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
469 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
470 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
471
472 #ifdef CONFIG_XIP_KERNEL
473 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
474 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd))
475 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd))
476 #endif /* CONFIG_XIP_KERNEL */
477
478 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
479 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
480 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
481
482 #ifdef CONFIG_XIP_KERNEL
483 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
484 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d))
485 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d))
486 #endif /* CONFIG_XIP_KERNEL */
487
488 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
489 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
490 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
491
492 #ifdef CONFIG_XIP_KERNEL
493 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
494 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud))
495 #define early_pud ((pud_t *)XIP_FIXUP(early_pud))
496 #endif /* CONFIG_XIP_KERNEL */
497
get_pmd_virt_early(phys_addr_t pa)498 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
499 {
500 /* Before MMU is enabled */
501 return (pmd_t *)((uintptr_t)pa);
502 }
503
get_pmd_virt_fixmap(phys_addr_t pa)504 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
505 {
506 clear_fixmap(FIX_PMD);
507 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
508 }
509
get_pmd_virt_late(phys_addr_t pa)510 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
511 {
512 return (pmd_t *) __va(pa);
513 }
514
alloc_pmd_early(uintptr_t va)515 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
516 {
517 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
518
519 return (uintptr_t)early_pmd;
520 }
521
alloc_pmd_fixmap(uintptr_t va)522 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
523 {
524 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
525 }
526
alloc_pmd_late(uintptr_t va)527 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
528 {
529 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
530
531 /* See comment in alloc_pte_late() regarding NULL passed the ctor */
532 BUG_ON(!ptdesc || !pagetable_pmd_ctor(NULL, ptdesc));
533 return __pa((pmd_t *)ptdesc_address(ptdesc));
534 }
535
create_pmd_mapping(pmd_t * pmdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)536 static void __meminit create_pmd_mapping(pmd_t *pmdp,
537 uintptr_t va, phys_addr_t pa,
538 phys_addr_t sz, pgprot_t prot)
539 {
540 pte_t *ptep;
541 phys_addr_t pte_phys;
542 uintptr_t pmd_idx = pmd_index(va);
543
544 if (sz == PMD_SIZE) {
545 if (pmd_none(pmdp[pmd_idx]))
546 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
547 return;
548 }
549
550 if (pmd_none(pmdp[pmd_idx])) {
551 pte_phys = pt_ops.alloc_pte(va);
552 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
553 ptep = pt_ops.get_pte_virt(pte_phys);
554 memset(ptep, 0, PAGE_SIZE);
555 } else {
556 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
557 ptep = pt_ops.get_pte_virt(pte_phys);
558 }
559
560 create_pte_mapping(ptep, va, pa, sz, prot);
561 }
562
get_pud_virt_early(phys_addr_t pa)563 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
564 {
565 return (pud_t *)((uintptr_t)pa);
566 }
567
get_pud_virt_fixmap(phys_addr_t pa)568 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
569 {
570 clear_fixmap(FIX_PUD);
571 return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
572 }
573
get_pud_virt_late(phys_addr_t pa)574 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
575 {
576 return (pud_t *)__va(pa);
577 }
578
alloc_pud_early(uintptr_t va)579 static phys_addr_t __init alloc_pud_early(uintptr_t va)
580 {
581 /* Only one PUD is available for early mapping */
582 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
583
584 return (uintptr_t)early_pud;
585 }
586
alloc_pud_fixmap(uintptr_t va)587 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
588 {
589 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
590 }
591
alloc_pud_late(uintptr_t va)592 static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
593 {
594 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0);
595
596 BUG_ON(!ptdesc);
597 pagetable_pud_ctor(ptdesc);
598 return __pa((pud_t *)ptdesc_address(ptdesc));
599 }
600
get_p4d_virt_early(phys_addr_t pa)601 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
602 {
603 return (p4d_t *)((uintptr_t)pa);
604 }
605
get_p4d_virt_fixmap(phys_addr_t pa)606 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
607 {
608 clear_fixmap(FIX_P4D);
609 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
610 }
611
get_p4d_virt_late(phys_addr_t pa)612 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
613 {
614 return (p4d_t *)__va(pa);
615 }
616
alloc_p4d_early(uintptr_t va)617 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
618 {
619 /* Only one P4D is available for early mapping */
620 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
621
622 return (uintptr_t)early_p4d;
623 }
624
alloc_p4d_fixmap(uintptr_t va)625 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
626 {
627 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
628 }
629
alloc_p4d_late(uintptr_t va)630 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
631 {
632 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0);
633
634 BUG_ON(!ptdesc);
635 pagetable_p4d_ctor(ptdesc);
636 return __pa((p4d_t *)ptdesc_address(ptdesc));
637 }
638
create_pud_mapping(pud_t * pudp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)639 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
640 pgprot_t prot)
641 {
642 pmd_t *nextp;
643 phys_addr_t next_phys;
644 uintptr_t pud_index = pud_index(va);
645
646 if (sz == PUD_SIZE) {
647 if (pud_val(pudp[pud_index]) == 0)
648 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
649 return;
650 }
651
652 if (pud_val(pudp[pud_index]) == 0) {
653 next_phys = pt_ops.alloc_pmd(va);
654 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
655 nextp = pt_ops.get_pmd_virt(next_phys);
656 memset(nextp, 0, PAGE_SIZE);
657 } else {
658 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
659 nextp = pt_ops.get_pmd_virt(next_phys);
660 }
661
662 create_pmd_mapping(nextp, va, pa, sz, prot);
663 }
664
create_p4d_mapping(p4d_t * p4dp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)665 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
666 pgprot_t prot)
667 {
668 pud_t *nextp;
669 phys_addr_t next_phys;
670 uintptr_t p4d_index = p4d_index(va);
671
672 if (sz == P4D_SIZE) {
673 if (p4d_val(p4dp[p4d_index]) == 0)
674 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
675 return;
676 }
677
678 if (p4d_val(p4dp[p4d_index]) == 0) {
679 next_phys = pt_ops.alloc_pud(va);
680 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
681 nextp = pt_ops.get_pud_virt(next_phys);
682 memset(nextp, 0, PAGE_SIZE);
683 } else {
684 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
685 nextp = pt_ops.get_pud_virt(next_phys);
686 }
687
688 create_pud_mapping(nextp, va, pa, sz, prot);
689 }
690
691 #define pgd_next_t p4d_t
692 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \
693 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \
694 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
695 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \
696 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
697 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
698 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
699 (pgtable_l5_enabled ? \
700 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
701 (pgtable_l4_enabled ? \
702 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \
703 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
704 #define fixmap_pgd_next (pgtable_l5_enabled ? \
705 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \
706 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
707 #define trampoline_pgd_next (pgtable_l5_enabled ? \
708 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \
709 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
710 #else
711 #define pgd_next_t pte_t
712 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
713 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
714 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
715 create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
716 #define fixmap_pgd_next ((uintptr_t)fixmap_pte)
717 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
718 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
719 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
720 #endif /* __PAGETABLE_PMD_FOLDED */
721
create_pgd_mapping(pgd_t * pgdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)722 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
723 pgprot_t prot)
724 {
725 pgd_next_t *nextp;
726 phys_addr_t next_phys;
727 uintptr_t pgd_idx = pgd_index(va);
728
729 if (sz == PGDIR_SIZE) {
730 if (pgd_val(pgdp[pgd_idx]) == 0)
731 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
732 return;
733 }
734
735 if (pgd_val(pgdp[pgd_idx]) == 0) {
736 next_phys = alloc_pgd_next(va);
737 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
738 nextp = get_pgd_next_virt(next_phys);
739 memset(nextp, 0, PAGE_SIZE);
740 } else {
741 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
742 nextp = get_pgd_next_virt(next_phys);
743 }
744
745 create_pgd_next_mapping(nextp, va, pa, sz, prot);
746 }
747
best_map_size(phys_addr_t pa,uintptr_t va,phys_addr_t size)748 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
749 {
750 if (debug_pagealloc_enabled())
751 return PAGE_SIZE;
752
753 if (pgtable_l5_enabled &&
754 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
755 return P4D_SIZE;
756
757 if (pgtable_l4_enabled &&
758 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
759 return PUD_SIZE;
760
761 if (IS_ENABLED(CONFIG_64BIT) &&
762 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
763 return PMD_SIZE;
764
765 return PAGE_SIZE;
766 }
767
768 #ifdef CONFIG_XIP_KERNEL
769 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
770 extern char _xiprom[], _exiprom[], __data_loc;
771
772 /* called from head.S with MMU off */
__copy_data(void)773 asmlinkage void __init __copy_data(void)
774 {
775 void *from = (void *)(&__data_loc);
776 void *to = (void *)CONFIG_PHYS_RAM_BASE;
777 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
778
779 memcpy(to, from, sz);
780 }
781 #endif
782
783 #ifdef CONFIG_STRICT_KERNEL_RWX
pgprot_from_va(uintptr_t va)784 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
785 {
786 if (is_va_kernel_text(va))
787 return PAGE_KERNEL_READ_EXEC;
788
789 /*
790 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
791 * we must protect its linear mapping alias from being executed and
792 * written.
793 * And rodata section is marked readonly in mark_rodata_ro.
794 */
795 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
796 return PAGE_KERNEL_READ;
797
798 return PAGE_KERNEL;
799 }
800
mark_rodata_ro(void)801 void mark_rodata_ro(void)
802 {
803 set_kernel_memory(__start_rodata, _data, set_memory_ro);
804 if (IS_ENABLED(CONFIG_64BIT))
805 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
806 set_memory_ro);
807 }
808 #else
pgprot_from_va(uintptr_t va)809 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
810 {
811 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
812 return PAGE_KERNEL;
813
814 return PAGE_KERNEL_EXEC;
815 }
816 #endif /* CONFIG_STRICT_KERNEL_RWX */
817
818 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
819 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
820 u64 __pi_set_satp_mode_from_fdt(uintptr_t dtb_pa);
821
disable_pgtable_l5(void)822 static void __init disable_pgtable_l5(void)
823 {
824 pgtable_l5_enabled = false;
825 kernel_map.page_offset = PAGE_OFFSET_L4;
826 satp_mode = SATP_MODE_48;
827 }
828
disable_pgtable_l4(void)829 static void __init disable_pgtable_l4(void)
830 {
831 pgtable_l4_enabled = false;
832 kernel_map.page_offset = PAGE_OFFSET_L3;
833 satp_mode = SATP_MODE_39;
834 }
835
print_no4lvl(char * p)836 static int __init print_no4lvl(char *p)
837 {
838 pr_info("Disabled 4-level and 5-level paging");
839 return 0;
840 }
841 early_param("no4lvl", print_no4lvl);
842
print_no5lvl(char * p)843 static int __init print_no5lvl(char *p)
844 {
845 pr_info("Disabled 5-level paging");
846 return 0;
847 }
848 early_param("no5lvl", print_no5lvl);
849
set_mmap_rnd_bits_max(void)850 static void __init set_mmap_rnd_bits_max(void)
851 {
852 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
853 }
854
855 /*
856 * There is a simple way to determine if 4-level is supported by the
857 * underlying hardware: establish 1:1 mapping in 4-level page table mode
858 * then read SATP to see if the configuration was taken into account
859 * meaning sv48 is supported.
860 * The maximum SATP mode is limited by both the command line and the "mmu-type"
861 * property in the device tree, since some platforms may hang if an unsupported
862 * SATP mode is attempted.
863 */
set_satp_mode(uintptr_t dtb_pa)864 static __init void set_satp_mode(uintptr_t dtb_pa)
865 {
866 u64 identity_satp, hw_satp;
867 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
868 u64 satp_mode_limit = min_not_zero(__pi_set_satp_mode_from_cmdline(dtb_pa),
869 __pi_set_satp_mode_from_fdt(dtb_pa));
870
871 kernel_map.page_offset = PAGE_OFFSET_L5;
872
873 if (satp_mode_limit == SATP_MODE_48) {
874 disable_pgtable_l5();
875 } else if (satp_mode_limit == SATP_MODE_39) {
876 disable_pgtable_l5();
877 disable_pgtable_l4();
878 return;
879 }
880
881 create_p4d_mapping(early_p4d,
882 set_satp_mode_pmd, (uintptr_t)early_pud,
883 P4D_SIZE, PAGE_TABLE);
884 create_pud_mapping(early_pud,
885 set_satp_mode_pmd, (uintptr_t)early_pmd,
886 PUD_SIZE, PAGE_TABLE);
887 /* Handle the case where set_satp_mode straddles 2 PMDs */
888 create_pmd_mapping(early_pmd,
889 set_satp_mode_pmd, set_satp_mode_pmd,
890 PMD_SIZE, PAGE_KERNEL_EXEC);
891 create_pmd_mapping(early_pmd,
892 set_satp_mode_pmd + PMD_SIZE,
893 set_satp_mode_pmd + PMD_SIZE,
894 PMD_SIZE, PAGE_KERNEL_EXEC);
895 retry:
896 create_pgd_mapping(early_pg_dir,
897 set_satp_mode_pmd,
898 pgtable_l5_enabled ?
899 (uintptr_t)early_p4d : (uintptr_t)early_pud,
900 PGDIR_SIZE, PAGE_TABLE);
901
902 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
903
904 local_flush_tlb_all();
905 csr_write(CSR_SATP, identity_satp);
906 hw_satp = csr_swap(CSR_SATP, 0ULL);
907 local_flush_tlb_all();
908
909 if (hw_satp != identity_satp) {
910 if (pgtable_l5_enabled) {
911 disable_pgtable_l5();
912 memset(early_pg_dir, 0, PAGE_SIZE);
913 goto retry;
914 }
915 disable_pgtable_l4();
916 }
917
918 memset(early_pg_dir, 0, PAGE_SIZE);
919 memset(early_p4d, 0, PAGE_SIZE);
920 memset(early_pud, 0, PAGE_SIZE);
921 memset(early_pmd, 0, PAGE_SIZE);
922 }
923 #endif
924
925 /*
926 * setup_vm() is called from head.S with MMU-off.
927 *
928 * Following requirements should be honoured for setup_vm() to work
929 * correctly:
930 * 1) It should use PC-relative addressing for accessing kernel symbols.
931 * To achieve this we always use GCC cmodel=medany.
932 * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
933 * so disable compiler instrumentation when FTRACE is enabled.
934 *
935 * Currently, the above requirements are honoured by using custom CFLAGS
936 * for init.o in mm/Makefile.
937 */
938
939 #ifndef __riscv_cmodel_medany
940 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
941 #endif
942
943 #ifdef CONFIG_XIP_KERNEL
create_kernel_page_table(pgd_t * pgdir,__always_unused bool early)944 static void __init create_kernel_page_table(pgd_t *pgdir,
945 __always_unused bool early)
946 {
947 uintptr_t va, start_va, end_va;
948
949 /* Map the flash resident part */
950 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
951 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
952 create_pgd_mapping(pgdir, va,
953 kernel_map.xiprom + (va - kernel_map.virt_addr),
954 PMD_SIZE, PAGE_KERNEL_EXEC);
955
956 /* Map the data in RAM */
957 start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start;
958 end_va = kernel_map.virt_addr + kernel_map.size;
959 for (va = start_va; va < end_va; va += PMD_SIZE)
960 create_pgd_mapping(pgdir, va,
961 kernel_map.phys_addr + (va - start_va),
962 PMD_SIZE, PAGE_KERNEL);
963 }
964 #else
create_kernel_page_table(pgd_t * pgdir,bool early)965 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
966 {
967 uintptr_t va, end_va;
968
969 end_va = kernel_map.virt_addr + kernel_map.size;
970 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
971 create_pgd_mapping(pgdir, va,
972 kernel_map.phys_addr + (va - kernel_map.virt_addr),
973 PMD_SIZE,
974 early ?
975 PAGE_KERNEL_EXEC : pgprot_from_va(va));
976 }
977 #endif
978
979 /*
980 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
981 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
982 * entry.
983 */
create_fdt_early_page_table(uintptr_t fix_fdt_va,uintptr_t dtb_pa)984 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
985 uintptr_t dtb_pa)
986 {
987 #ifndef CONFIG_BUILTIN_DTB
988 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
989
990 /* Make sure the fdt fixmap address is always aligned on PMD size */
991 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
992
993 /* In 32-bit only, the fdt lies in its own PGD */
994 if (!IS_ENABLED(CONFIG_64BIT)) {
995 create_pgd_mapping(early_pg_dir, fix_fdt_va,
996 pa, MAX_FDT_SIZE, PAGE_KERNEL);
997 } else {
998 create_pmd_mapping(fixmap_pmd, fix_fdt_va,
999 pa, PMD_SIZE, PAGE_KERNEL);
1000 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
1001 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
1002 }
1003
1004 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
1005 #else
1006 /*
1007 * For 64-bit kernel, __va can't be used since it would return a linear
1008 * mapping address whereas dtb_early_va will be used before
1009 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
1010 * kernel is mapped in the linear mapping, that makes no difference.
1011 */
1012 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
1013 #endif
1014
1015 dtb_early_pa = dtb_pa;
1016 }
1017
1018 /*
1019 * MMU is not enabled, the page tables are allocated directly using
1020 * early_pmd/pud/p4d and the address returned is the physical one.
1021 */
pt_ops_set_early(void)1022 static void __init pt_ops_set_early(void)
1023 {
1024 pt_ops.alloc_pte = alloc_pte_early;
1025 pt_ops.get_pte_virt = get_pte_virt_early;
1026 #ifndef __PAGETABLE_PMD_FOLDED
1027 pt_ops.alloc_pmd = alloc_pmd_early;
1028 pt_ops.get_pmd_virt = get_pmd_virt_early;
1029 pt_ops.alloc_pud = alloc_pud_early;
1030 pt_ops.get_pud_virt = get_pud_virt_early;
1031 pt_ops.alloc_p4d = alloc_p4d_early;
1032 pt_ops.get_p4d_virt = get_p4d_virt_early;
1033 #endif
1034 }
1035
1036 /*
1037 * MMU is enabled but page table setup is not complete yet.
1038 * fixmap page table alloc functions must be used as a means to temporarily
1039 * map the allocated physical pages since the linear mapping does not exist yet.
1040 *
1041 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1042 * but it will be used as described above.
1043 */
pt_ops_set_fixmap(void)1044 static void __init pt_ops_set_fixmap(void)
1045 {
1046 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1047 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1048 #ifndef __PAGETABLE_PMD_FOLDED
1049 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1050 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1051 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1052 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1053 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1054 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1055 #endif
1056 }
1057
1058 /*
1059 * MMU is enabled and page table setup is complete, so from now, we can use
1060 * generic page allocation functions to setup page table.
1061 */
pt_ops_set_late(void)1062 static void __init pt_ops_set_late(void)
1063 {
1064 pt_ops.alloc_pte = alloc_pte_late;
1065 pt_ops.get_pte_virt = get_pte_virt_late;
1066 #ifndef __PAGETABLE_PMD_FOLDED
1067 pt_ops.alloc_pmd = alloc_pmd_late;
1068 pt_ops.get_pmd_virt = get_pmd_virt_late;
1069 pt_ops.alloc_pud = alloc_pud_late;
1070 pt_ops.get_pud_virt = get_pud_virt_late;
1071 pt_ops.alloc_p4d = alloc_p4d_late;
1072 pt_ops.get_p4d_virt = get_p4d_virt_late;
1073 #endif
1074 }
1075
1076 #ifdef CONFIG_RANDOMIZE_BASE
1077 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1078 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1079 extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa);
1080
print_nokaslr(char * p)1081 static int __init print_nokaslr(char *p)
1082 {
1083 pr_info("Disabled KASLR");
1084 return 0;
1085 }
1086 early_param("nokaslr", print_nokaslr);
1087
kaslr_offset(void)1088 unsigned long kaslr_offset(void)
1089 {
1090 return kernel_map.virt_offset;
1091 }
1092 #endif
1093
setup_vm(uintptr_t dtb_pa)1094 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1095 {
1096 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1097
1098 #ifdef CONFIG_RANDOMIZE_BASE
1099 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1100 u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa);
1101 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1102 u32 nr_pos;
1103
1104 if (kaslr_seed == 0)
1105 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1106 /*
1107 * Compute the number of positions available: we are limited
1108 * by the early page table that only has one PUD and we must
1109 * be aligned on PMD_SIZE.
1110 */
1111 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1112
1113 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1114 }
1115 #endif
1116
1117 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1118
1119 #ifdef CONFIG_XIP_KERNEL
1120 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1121 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1122
1123 phys_ram_base = CONFIG_PHYS_RAM_BASE;
1124 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1125 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
1126 #endif
1127 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1128 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1129
1130 kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1131 kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr
1132 + (uintptr_t)&_sdata - (uintptr_t)&_start;
1133 #else
1134 kernel_map.phys_addr = (uintptr_t)(&_start);
1135 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1136 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1137 #endif
1138
1139 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1140 set_satp_mode(dtb_pa);
1141 set_mmap_rnd_bits_max();
1142 #endif
1143
1144 /*
1145 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1146 * where we have the system memory layout: this allows us to align
1147 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1148 * for the linear mapping. This is only possible because the kernel
1149 * mapping lies outside the linear mapping.
1150 * In 32-bit however, as the kernel resides in the linear mapping,
1151 * setup_vm_final can not change the mapping established here,
1152 * otherwise the same kernel addresses would get mapped to different
1153 * physical addresses (if the start of dram is different from the
1154 * kernel physical address start).
1155 */
1156 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1157 0UL : PAGE_OFFSET - kernel_map.phys_addr;
1158
1159 memory_limit = KERN_VIRT_SIZE;
1160
1161 /* Sanity check alignment and size */
1162 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1163 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1164
1165 #ifdef CONFIG_64BIT
1166 /*
1167 * The last 4K bytes of the addressable memory can not be mapped because
1168 * of IS_ERR_VALUE macro.
1169 */
1170 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1171 #endif
1172
1173 #ifdef CONFIG_RELOCATABLE
1174 /*
1175 * Early page table uses only one PUD, which makes it possible
1176 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1177 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1178 * since a part of the kernel would not get mapped.
1179 */
1180 if (IS_ENABLED(CONFIG_64BIT))
1181 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1182 relocate_kernel();
1183 #endif
1184
1185 apply_early_boot_alternatives();
1186 pt_ops_set_early();
1187
1188 /* Setup early PGD for fixmap */
1189 create_pgd_mapping(early_pg_dir, FIXADDR_START,
1190 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1191
1192 #ifndef __PAGETABLE_PMD_FOLDED
1193 /* Setup fixmap P4D and PUD */
1194 if (pgtable_l5_enabled)
1195 create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1196 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1197 /* Setup fixmap PUD and PMD */
1198 if (pgtable_l4_enabled)
1199 create_pud_mapping(fixmap_pud, FIXADDR_START,
1200 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1201 create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1202 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1203 /* Setup trampoline PGD and PMD */
1204 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1205 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1206 if (pgtable_l5_enabled)
1207 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1208 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1209 if (pgtable_l4_enabled)
1210 create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1211 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1212 #ifdef CONFIG_XIP_KERNEL
1213 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1214 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1215 #else
1216 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1217 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1218 #endif
1219 #else
1220 /* Setup trampoline PGD */
1221 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1222 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1223 #endif
1224
1225 /*
1226 * Setup early PGD covering entire kernel which will allow
1227 * us to reach paging_init(). We map all memory banks later
1228 * in setup_vm_final() below.
1229 */
1230 create_kernel_page_table(early_pg_dir, true);
1231
1232 /* Setup early mapping for FDT early scan */
1233 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1234
1235 /*
1236 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1237 * range can not span multiple pmds.
1238 */
1239 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1240 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1241
1242 #ifndef __PAGETABLE_PMD_FOLDED
1243 /*
1244 * Early ioremap fixmap is already created as it lies within first 2MB
1245 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1246 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1247 * the user if not.
1248 */
1249 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1250 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1251 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1252 WARN_ON(1);
1253 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1254 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1255 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1256 fix_to_virt(FIX_BTMAP_BEGIN));
1257 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1258 fix_to_virt(FIX_BTMAP_END));
1259
1260 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1261 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1262 }
1263 #endif
1264
1265 pt_ops_set_fixmap();
1266 }
1267
create_linear_mapping_range(phys_addr_t start,phys_addr_t end,uintptr_t fixed_map_size,const pgprot_t * pgprot)1268 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1269 uintptr_t fixed_map_size, const pgprot_t *pgprot)
1270 {
1271 phys_addr_t pa;
1272 uintptr_t va, map_size;
1273
1274 for (pa = start; pa < end; pa += map_size) {
1275 va = (uintptr_t)__va(pa);
1276 map_size = fixed_map_size ? fixed_map_size :
1277 best_map_size(pa, va, end - pa);
1278
1279 create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1280 pgprot ? *pgprot : pgprot_from_va(va));
1281 }
1282 }
1283
create_linear_mapping_page_table(void)1284 static void __init create_linear_mapping_page_table(void)
1285 {
1286 phys_addr_t start, end;
1287 phys_addr_t kfence_pool __maybe_unused;
1288 u64 i;
1289
1290 #ifdef CONFIG_STRICT_KERNEL_RWX
1291 phys_addr_t ktext_start = __pa_symbol(_start);
1292 phys_addr_t ktext_size = __init_data_begin - _start;
1293 phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1294 phys_addr_t krodata_size = _data - __start_rodata;
1295
1296 /* Isolate kernel text and rodata so they don't get mapped with a PUD */
1297 memblock_mark_nomap(ktext_start, ktext_size);
1298 memblock_mark_nomap(krodata_start, krodata_size);
1299 #endif
1300
1301 #ifdef CONFIG_KFENCE
1302 /*
1303 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1304 * before we setup the linear mapping so that we avoid using hugepages
1305 * for this region.
1306 */
1307 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1308 BUG_ON(!kfence_pool);
1309
1310 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1311 __kfence_pool = __va(kfence_pool);
1312 #endif
1313
1314 /* Map all memory banks in the linear mapping */
1315 for_each_mem_range(i, &start, &end) {
1316 if (start >= end)
1317 break;
1318 if (start <= __pa(PAGE_OFFSET) &&
1319 __pa(PAGE_OFFSET) < end)
1320 start = __pa(PAGE_OFFSET);
1321
1322 create_linear_mapping_range(start, end, 0, NULL);
1323 }
1324
1325 #ifdef CONFIG_STRICT_KERNEL_RWX
1326 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1327 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1328
1329 memblock_clear_nomap(ktext_start, ktext_size);
1330 memblock_clear_nomap(krodata_start, krodata_size);
1331 #endif
1332
1333 #ifdef CONFIG_KFENCE
1334 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1335
1336 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1337 #endif
1338 }
1339
setup_vm_final(void)1340 static void __init setup_vm_final(void)
1341 {
1342 /* Setup swapper PGD for fixmap */
1343 #if !defined(CONFIG_64BIT)
1344 /*
1345 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1346 * directly in swapper_pg_dir in addition to the pgd entry that points
1347 * to fixmap_pte.
1348 */
1349 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1350
1351 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1352 #endif
1353 create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1354 __pa_symbol(fixmap_pgd_next),
1355 PGDIR_SIZE, PAGE_TABLE);
1356
1357 /* Map the linear mapping */
1358 create_linear_mapping_page_table();
1359
1360 /* Map the kernel */
1361 if (IS_ENABLED(CONFIG_64BIT))
1362 create_kernel_page_table(swapper_pg_dir, false);
1363
1364 #ifdef CONFIG_KASAN
1365 kasan_swapper_init();
1366 #endif
1367
1368 /* Clear fixmap PTE and PMD mappings */
1369 clear_fixmap(FIX_PTE);
1370 clear_fixmap(FIX_PMD);
1371 clear_fixmap(FIX_PUD);
1372 clear_fixmap(FIX_P4D);
1373
1374 /* Move to swapper page table */
1375 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1376 local_flush_tlb_all();
1377
1378 pt_ops_set_late();
1379 }
1380 #else
setup_vm(uintptr_t dtb_pa)1381 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1382 {
1383 dtb_early_va = (void *)dtb_pa;
1384 dtb_early_pa = dtb_pa;
1385
1386 #ifdef CONFIG_RELOCATABLE
1387 kernel_map.virt_addr = (uintptr_t)_start;
1388 kernel_map.phys_addr = (uintptr_t)_start;
1389 relocate_kernel();
1390 #endif
1391 }
1392
setup_vm_final(void)1393 static inline void setup_vm_final(void)
1394 {
1395 }
1396 #endif /* CONFIG_MMU */
1397
1398 /*
1399 * reserve_crashkernel() - reserves memory for crash kernel
1400 *
1401 * This function reserves memory area given in "crashkernel=" kernel command
1402 * line parameter. The memory reserved is used by dump capture kernel when
1403 * primary kernel is crashing.
1404 */
arch_reserve_crashkernel(void)1405 static void __init arch_reserve_crashkernel(void)
1406 {
1407 unsigned long long low_size = 0;
1408 unsigned long long crash_base, crash_size;
1409 bool high = false;
1410 int ret;
1411
1412 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1413 return;
1414
1415 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
1416 &crash_size, &crash_base,
1417 &low_size, NULL, &high);
1418 if (ret)
1419 return;
1420
1421 reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
1422 }
1423
paging_init(void)1424 void __init paging_init(void)
1425 {
1426 setup_bootmem();
1427 setup_vm_final();
1428
1429 /* Depend on that Linear Mapping is ready */
1430 memblock_allow_resize();
1431 }
1432
misc_mem_init(void)1433 void __init misc_mem_init(void)
1434 {
1435 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1436 arch_numa_init();
1437 sparse_init();
1438 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1439 /* The entire VMEMMAP region has been populated. Flush TLB for this region */
1440 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1441 #endif
1442 zone_sizes_init();
1443 arch_reserve_crashkernel();
1444 memblock_dump_all();
1445 }
1446
1447 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1448 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1449 unsigned long addr, unsigned long next)
1450 {
1451 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1452 }
1453
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1454 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1455 unsigned long addr, unsigned long next)
1456 {
1457 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1458 return 1;
1459 }
1460
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1461 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1462 struct vmem_altmap *altmap)
1463 {
1464 /*
1465 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1466 * can't use hugepage mappings for 2-level page table because in case of
1467 * memory hotplug, we are not able to update all the page tables with
1468 * the new PMDs.
1469 */
1470 return vmemmap_populate_hugepages(start, end, node, altmap);
1471 }
1472 #endif
1473
1474 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1475 /*
1476 * Pre-allocates page-table pages for a specific area in the kernel
1477 * page-table. Only the level which needs to be synchronized between
1478 * all page-tables is allocated because the synchronization can be
1479 * expensive.
1480 */
preallocate_pgd_pages_range(unsigned long start,unsigned long end,const char * area)1481 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1482 const char *area)
1483 {
1484 unsigned long addr;
1485 const char *lvl;
1486
1487 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1488 pgd_t *pgd = pgd_offset_k(addr);
1489 p4d_t *p4d;
1490 pud_t *pud;
1491 pmd_t *pmd;
1492
1493 lvl = "p4d";
1494 p4d = p4d_alloc(&init_mm, pgd, addr);
1495 if (!p4d)
1496 goto failed;
1497
1498 if (pgtable_l5_enabled)
1499 continue;
1500
1501 lvl = "pud";
1502 pud = pud_alloc(&init_mm, p4d, addr);
1503 if (!pud)
1504 goto failed;
1505
1506 if (pgtable_l4_enabled)
1507 continue;
1508
1509 lvl = "pmd";
1510 pmd = pmd_alloc(&init_mm, pud, addr);
1511 if (!pmd)
1512 goto failed;
1513 }
1514 return;
1515
1516 failed:
1517 /*
1518 * The pages have to be there now or they will be missing in
1519 * process page-tables later.
1520 */
1521 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1522 }
1523
1524 #define PAGE_END KASAN_SHADOW_START
1525
pgtable_cache_init(void)1526 void __init pgtable_cache_init(void)
1527 {
1528 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1529 if (IS_ENABLED(CONFIG_MODULES))
1530 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1531 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1532 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1533 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1534 if (IS_ENABLED(CONFIG_KASAN))
1535 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1536 }
1537 }
1538 #endif
1539
1540 #ifdef CONFIG_EXECMEM
1541 #ifdef CONFIG_MMU
1542 static struct execmem_info execmem_info __ro_after_init;
1543
execmem_arch_setup(void)1544 struct execmem_info __init *execmem_arch_setup(void)
1545 {
1546 execmem_info = (struct execmem_info){
1547 .ranges = {
1548 [EXECMEM_DEFAULT] = {
1549 .start = MODULES_VADDR,
1550 .end = MODULES_END,
1551 .pgprot = PAGE_KERNEL,
1552 .alignment = 1,
1553 },
1554 [EXECMEM_KPROBES] = {
1555 .start = VMALLOC_START,
1556 .end = VMALLOC_END,
1557 .pgprot = PAGE_KERNEL_READ_EXEC,
1558 .alignment = 1,
1559 },
1560 [EXECMEM_BPF] = {
1561 .start = BPF_JIT_REGION_START,
1562 .end = BPF_JIT_REGION_END,
1563 .pgprot = PAGE_KERNEL,
1564 .alignment = PAGE_SIZE,
1565 },
1566 },
1567 };
1568
1569 return &execmem_info;
1570 }
1571 #endif /* CONFIG_MMU */
1572 #endif /* CONFIG_EXECMEM */
1573
1574 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)1575 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1576 {
1577 struct page *page = pmd_page(*pmd);
1578 struct ptdesc *ptdesc = page_ptdesc(page);
1579 pte_t *pte;
1580 int i;
1581
1582 for (i = 0; i < PTRS_PER_PTE; i++) {
1583 pte = pte_start + i;
1584 if (!pte_none(*pte))
1585 return;
1586 }
1587
1588 pagetable_dtor(ptdesc);
1589 if (PageReserved(page))
1590 free_reserved_page(page);
1591 else
1592 pagetable_free(ptdesc);
1593 pmd_clear(pmd);
1594 }
1595
free_pmd_table(pmd_t * pmd_start,pud_t * pud,bool is_vmemmap)1596 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap)
1597 {
1598 struct page *page = pud_page(*pud);
1599 struct ptdesc *ptdesc = page_ptdesc(page);
1600 pmd_t *pmd;
1601 int i;
1602
1603 for (i = 0; i < PTRS_PER_PMD; i++) {
1604 pmd = pmd_start + i;
1605 if (!pmd_none(*pmd))
1606 return;
1607 }
1608
1609 if (!is_vmemmap)
1610 pagetable_dtor(ptdesc);
1611 if (PageReserved(page))
1612 free_reserved_page(page);
1613 else
1614 pagetable_free(ptdesc);
1615 pud_clear(pud);
1616 }
1617
free_pud_table(pud_t * pud_start,p4d_t * p4d)1618 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1619 {
1620 struct page *page = p4d_page(*p4d);
1621 pud_t *pud;
1622 int i;
1623
1624 for (i = 0; i < PTRS_PER_PUD; i++) {
1625 pud = pud_start + i;
1626 if (!pud_none(*pud))
1627 return;
1628 }
1629
1630 if (PageReserved(page))
1631 free_reserved_page(page);
1632 else
1633 __free_pages(page, 0);
1634 p4d_clear(p4d);
1635 }
1636
free_vmemmap_storage(struct page * page,size_t size,struct vmem_altmap * altmap)1637 static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1638 struct vmem_altmap *altmap)
1639 {
1640 int order = get_order(size);
1641
1642 if (altmap) {
1643 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1644 return;
1645 }
1646
1647 if (PageReserved(page)) {
1648 unsigned int nr_pages = 1 << order;
1649
1650 while (nr_pages--)
1651 free_reserved_page(page++);
1652 return;
1653 }
1654
1655 __free_pages(page, order);
1656 }
1657
remove_pte_mapping(pte_t * pte_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1658 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1659 bool is_vmemmap, struct vmem_altmap *altmap)
1660 {
1661 unsigned long next;
1662 pte_t *ptep, pte;
1663
1664 for (; addr < end; addr = next) {
1665 next = (addr + PAGE_SIZE) & PAGE_MASK;
1666 if (next > end)
1667 next = end;
1668
1669 ptep = pte_base + pte_index(addr);
1670 pte = ptep_get(ptep);
1671 if (!pte_present(*ptep))
1672 continue;
1673
1674 pte_clear(&init_mm, addr, ptep);
1675 if (is_vmemmap)
1676 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1677 }
1678 }
1679
remove_pmd_mapping(pmd_t * pmd_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1680 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1681 bool is_vmemmap, struct vmem_altmap *altmap)
1682 {
1683 unsigned long next;
1684 pte_t *pte_base;
1685 pmd_t *pmdp, pmd;
1686
1687 for (; addr < end; addr = next) {
1688 next = pmd_addr_end(addr, end);
1689 pmdp = pmd_base + pmd_index(addr);
1690 pmd = pmdp_get(pmdp);
1691 if (!pmd_present(pmd))
1692 continue;
1693
1694 if (pmd_leaf(pmd)) {
1695 pmd_clear(pmdp);
1696 if (is_vmemmap)
1697 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1698 continue;
1699 }
1700
1701 pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1702 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1703 free_pte_table(pte_base, pmdp);
1704 }
1705 }
1706
remove_pud_mapping(pud_t * pud_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1707 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1708 bool is_vmemmap, struct vmem_altmap *altmap)
1709 {
1710 unsigned long next;
1711 pud_t *pudp, pud;
1712 pmd_t *pmd_base;
1713
1714 for (; addr < end; addr = next) {
1715 next = pud_addr_end(addr, end);
1716 pudp = pud_base + pud_index(addr);
1717 pud = pudp_get(pudp);
1718 if (!pud_present(pud))
1719 continue;
1720
1721 if (pud_leaf(pud)) {
1722 if (pgtable_l4_enabled) {
1723 pud_clear(pudp);
1724 if (is_vmemmap)
1725 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1726 }
1727 continue;
1728 }
1729
1730 pmd_base = pmd_offset(pudp, 0);
1731 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1732
1733 if (pgtable_l4_enabled)
1734 free_pmd_table(pmd_base, pudp, is_vmemmap);
1735 }
1736 }
1737
remove_p4d_mapping(p4d_t * p4d_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1738 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1739 bool is_vmemmap, struct vmem_altmap *altmap)
1740 {
1741 unsigned long next;
1742 p4d_t *p4dp, p4d;
1743 pud_t *pud_base;
1744
1745 for (; addr < end; addr = next) {
1746 next = p4d_addr_end(addr, end);
1747 p4dp = p4d_base + p4d_index(addr);
1748 p4d = p4dp_get(p4dp);
1749 if (!p4d_present(p4d))
1750 continue;
1751
1752 if (p4d_leaf(p4d)) {
1753 if (pgtable_l5_enabled) {
1754 p4d_clear(p4dp);
1755 if (is_vmemmap)
1756 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1757 }
1758 continue;
1759 }
1760
1761 pud_base = pud_offset(p4dp, 0);
1762 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1763
1764 if (pgtable_l5_enabled)
1765 free_pud_table(pud_base, p4dp);
1766 }
1767 }
1768
remove_pgd_mapping(unsigned long va,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1769 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1770 struct vmem_altmap *altmap)
1771 {
1772 unsigned long addr, next;
1773 p4d_t *p4d_base;
1774 pgd_t *pgd;
1775
1776 for (addr = va; addr < end; addr = next) {
1777 next = pgd_addr_end(addr, end);
1778 pgd = pgd_offset_k(addr);
1779
1780 if (!pgd_present(*pgd))
1781 continue;
1782
1783 if (pgd_leaf(*pgd))
1784 continue;
1785
1786 p4d_base = p4d_offset(pgd, 0);
1787 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1788 }
1789
1790 flush_tlb_all();
1791 }
1792
remove_linear_mapping(phys_addr_t start,u64 size)1793 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1794 {
1795 unsigned long va = (unsigned long)__va(start);
1796 unsigned long end = (unsigned long)__va(start + size);
1797
1798 remove_pgd_mapping(va, end, false, NULL);
1799 }
1800
arch_get_mappable_range(void)1801 struct range arch_get_mappable_range(void)
1802 {
1803 struct range mhp_range;
1804
1805 mhp_range.start = __pa(PAGE_OFFSET);
1806 mhp_range.end = __pa(PAGE_END - 1);
1807 return mhp_range;
1808 }
1809
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1810 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1811 {
1812 int ret = 0;
1813
1814 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot);
1815 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1816 if (ret) {
1817 remove_linear_mapping(start, size);
1818 goto out;
1819 }
1820
1821 max_pfn = PFN_UP(start + size);
1822 max_low_pfn = max_pfn;
1823
1824 out:
1825 flush_tlb_all();
1826 return ret;
1827 }
1828
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1829 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1830 {
1831 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1832 remove_linear_mapping(start, size);
1833 flush_tlb_all();
1834 }
1835
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1836 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1837 {
1838 remove_pgd_mapping(start, end, true, altmap);
1839 }
1840 #endif /* CONFIG_MEMORY_HOTPLUG */
1841