1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * crash.c - kernel crash support code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/buildid.h> 10 #include <linux/init.h> 11 #include <linux/utsname.h> 12 #include <linux/vmalloc.h> 13 #include <linux/sizes.h> 14 #include <linux/kexec.h> 15 #include <linux/memory.h> 16 #include <linux/mm.h> 17 #include <linux/cpuhotplug.h> 18 #include <linux/memblock.h> 19 #include <linux/kmemleak.h> 20 #include <linux/crash_core.h> 21 #include <linux/reboot.h> 22 #include <linux/btf.h> 23 #include <linux/objtool.h> 24 #include <linux/delay.h> 25 #include <linux/panic.h> 26 27 #include <asm/page.h> 28 #include <asm/sections.h> 29 30 #include <crypto/sha1.h> 31 32 #include "kallsyms_internal.h" 33 #include "kexec_internal.h" 34 35 /* Per cpu memory for storing cpu states in case of system crash. */ 36 note_buf_t __percpu *crash_notes; 37 38 /* time to wait for possible DMA to finish before starting the kdump kernel 39 * when a CMA reservation is used 40 */ 41 #define CMA_DMA_TIMEOUT_SEC 10 42 43 #ifdef CONFIG_CRASH_DUMP 44 45 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 46 { 47 struct page *vmcoreinfo_base; 48 struct page *vmcoreinfo_pages[DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE)]; 49 unsigned int order, nr_pages; 50 int i; 51 void *safecopy; 52 53 nr_pages = DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE); 54 order = get_order(VMCOREINFO_BYTES); 55 56 if (!IS_ENABLED(CONFIG_CRASH_DUMP)) 57 return 0; 58 if (image->type != KEXEC_TYPE_CRASH) 59 return 0; 60 61 /* 62 * For kdump, allocate one vmcoreinfo safe copy from the 63 * crash memory. as we have arch_kexec_protect_crashkres() 64 * after kexec syscall, we naturally protect it from write 65 * (even read) access under kernel direct mapping. But on 66 * the other hand, we still need to operate it when crash 67 * happens to generate vmcoreinfo note, hereby we rely on 68 * vmap for this purpose. 69 */ 70 vmcoreinfo_base = kimage_alloc_control_pages(image, order); 71 if (!vmcoreinfo_base) { 72 pr_warn("Could not allocate vmcoreinfo buffer\n"); 73 return -ENOMEM; 74 } 75 for (i = 0; i < nr_pages; i++) 76 vmcoreinfo_pages[i] = vmcoreinfo_base + i; 77 78 safecopy = vmap(vmcoreinfo_pages, nr_pages, VM_MAP, PAGE_KERNEL); 79 if (!safecopy) { 80 pr_warn("Could not vmap vmcoreinfo buffer\n"); 81 return -ENOMEM; 82 } 83 84 image->vmcoreinfo_data_copy = safecopy; 85 crash_update_vmcoreinfo_safecopy(safecopy); 86 87 return 0; 88 } 89 90 91 92 int kexec_should_crash(struct task_struct *p) 93 { 94 /* 95 * If crash_kexec_post_notifiers is enabled, don't run 96 * crash_kexec() here yet, which must be run after panic 97 * notifiers in panic(). 98 */ 99 if (crash_kexec_post_notifiers) 100 return 0; 101 /* 102 * There are 4 panic() calls in make_task_dead() path, each of which 103 * corresponds to each of these 4 conditions. 104 */ 105 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 106 return 1; 107 return 0; 108 } 109 110 int kexec_crash_loaded(void) 111 { 112 return !!kexec_crash_image; 113 } 114 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 115 116 static void crash_cma_clear_pending_dma(void) 117 { 118 if (!crashk_cma_cnt) 119 return; 120 121 mdelay(CMA_DMA_TIMEOUT_SEC * 1000); 122 } 123 124 /* 125 * No panic_cpu check version of crash_kexec(). This function is called 126 * only when panic_cpu holds the current CPU number; this is the only CPU 127 * which processes crash_kexec routines. 128 */ 129 void __noclone __crash_kexec(struct pt_regs *regs) 130 { 131 /* Take the kexec_lock here to prevent sys_kexec_load 132 * running on one cpu from replacing the crash kernel 133 * we are using after a panic on a different cpu. 134 * 135 * If the crash kernel was not located in a fixed area 136 * of memory the xchg(&kexec_crash_image) would be 137 * sufficient. But since I reuse the memory... 138 */ 139 if (kexec_trylock()) { 140 if (kexec_crash_image) { 141 struct pt_regs fixed_regs; 142 143 crash_setup_regs(&fixed_regs, regs); 144 crash_save_vmcoreinfo(); 145 machine_crash_shutdown(&fixed_regs); 146 crash_cma_clear_pending_dma(); 147 machine_kexec(kexec_crash_image); 148 } 149 kexec_unlock(); 150 } 151 } 152 STACK_FRAME_NON_STANDARD(__crash_kexec); 153 154 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 155 { 156 if (panic_try_start()) { 157 /* This is the 1st CPU which comes here, so go ahead. */ 158 __crash_kexec(regs); 159 160 /* 161 * Reset panic_cpu to allow another panic()/crash_kexec() 162 * call. 163 */ 164 panic_reset(); 165 } 166 } 167 168 static inline resource_size_t crash_resource_size(const struct resource *res) 169 { 170 return !res->end ? 0 : resource_size(res); 171 } 172 173 174 175 176 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, 177 void **addr, unsigned long *sz) 178 { 179 Elf64_Ehdr *ehdr; 180 Elf64_Phdr *phdr; 181 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 182 unsigned char *buf; 183 unsigned int cpu, i; 184 unsigned long long notes_addr; 185 unsigned long mstart, mend; 186 187 /* extra phdr for vmcoreinfo ELF note */ 188 nr_phdr = nr_cpus + 1; 189 nr_phdr += mem->nr_ranges; 190 191 /* 192 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 193 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 194 * I think this is required by tools like gdb. So same physical 195 * memory will be mapped in two ELF headers. One will contain kernel 196 * text virtual addresses and other will have __va(physical) addresses. 197 */ 198 199 nr_phdr++; 200 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 201 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 202 203 buf = vzalloc(elf_sz); 204 if (!buf) 205 return -ENOMEM; 206 207 ehdr = (Elf64_Ehdr *)buf; 208 phdr = (Elf64_Phdr *)(ehdr + 1); 209 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 210 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 211 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 212 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 213 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 214 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 215 ehdr->e_type = ET_CORE; 216 ehdr->e_machine = ELF_ARCH; 217 ehdr->e_version = EV_CURRENT; 218 ehdr->e_phoff = sizeof(Elf64_Ehdr); 219 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 220 ehdr->e_phentsize = sizeof(Elf64_Phdr); 221 222 /* Prepare one phdr of type PT_NOTE for each possible CPU */ 223 for_each_possible_cpu(cpu) { 224 phdr->p_type = PT_NOTE; 225 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 226 phdr->p_offset = phdr->p_paddr = notes_addr; 227 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 228 (ehdr->e_phnum)++; 229 phdr++; 230 } 231 232 /* Prepare one PT_NOTE header for vmcoreinfo */ 233 phdr->p_type = PT_NOTE; 234 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 235 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 236 (ehdr->e_phnum)++; 237 phdr++; 238 239 /* Prepare PT_LOAD type program header for kernel text region */ 240 if (need_kernel_map) { 241 phdr->p_type = PT_LOAD; 242 phdr->p_flags = PF_R|PF_W|PF_X; 243 phdr->p_vaddr = (unsigned long) _text; 244 phdr->p_filesz = phdr->p_memsz = _end - _text; 245 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 246 ehdr->e_phnum++; 247 phdr++; 248 } 249 250 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 251 for (i = 0; i < mem->nr_ranges; i++) { 252 mstart = mem->ranges[i].start; 253 mend = mem->ranges[i].end; 254 255 phdr->p_type = PT_LOAD; 256 phdr->p_flags = PF_R|PF_W|PF_X; 257 phdr->p_offset = mstart; 258 259 phdr->p_paddr = mstart; 260 phdr->p_vaddr = (unsigned long) __va(mstart); 261 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 262 phdr->p_align = 0; 263 ehdr->e_phnum++; 264 #ifdef CONFIG_KEXEC_FILE 265 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 266 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 267 ehdr->e_phnum, phdr->p_offset); 268 #endif 269 phdr++; 270 } 271 272 *addr = buf; 273 *sz = elf_sz; 274 return 0; 275 } 276 277 /** 278 * crash_exclude_mem_range - exclude a mem range for existing ranges 279 * @mem: mem->range contains an array of ranges sorted in ascending order 280 * @mstart: the start of to-be-excluded range 281 * @mend: the start of to-be-excluded range 282 * 283 * If you are unsure if a range split will happen, to avoid function call 284 * failure because of -ENOMEM, always make sure 285 * mem->max_nr_ranges == mem->nr_ranges + 1 286 * before calling the function each time. 287 * 288 * returns 0 if a memory range is excluded successfully 289 * return -ENOMEM if mem->ranges doesn't have space to hold split ranges 290 */ 291 int crash_exclude_mem_range(struct crash_mem *mem, 292 unsigned long long mstart, unsigned long long mend) 293 { 294 int i; 295 unsigned long long start, end, p_start, p_end; 296 297 for (i = 0; i < mem->nr_ranges; i++) { 298 start = mem->ranges[i].start; 299 end = mem->ranges[i].end; 300 p_start = mstart; 301 p_end = mend; 302 303 if (p_start > end) 304 continue; 305 306 /* 307 * Because the memory ranges in mem->ranges are stored in 308 * ascending order, when we detect `p_end < start`, we can 309 * immediately exit the for loop, as the subsequent memory 310 * ranges will definitely be outside the range we are looking 311 * for. 312 */ 313 if (p_end < start) 314 break; 315 316 /* Truncate any area outside of range */ 317 if (p_start < start) 318 p_start = start; 319 if (p_end > end) 320 p_end = end; 321 322 /* Found completely overlapping range */ 323 if (p_start == start && p_end == end) { 324 memmove(&mem->ranges[i], &mem->ranges[i + 1], 325 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 326 i--; 327 mem->nr_ranges--; 328 } else if (p_start > start && p_end < end) { 329 /* Split original range */ 330 if (mem->nr_ranges >= mem->max_nr_ranges) 331 return -ENOMEM; 332 333 memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], 334 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 335 336 mem->ranges[i].end = p_start - 1; 337 mem->ranges[i + 1].start = p_end + 1; 338 mem->ranges[i + 1].end = end; 339 340 i++; 341 mem->nr_ranges++; 342 } else if (p_start != start) 343 mem->ranges[i].end = p_start - 1; 344 else 345 mem->ranges[i].start = p_end + 1; 346 } 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(crash_exclude_mem_range); 351 352 ssize_t crash_get_memory_size(void) 353 { 354 ssize_t size = 0; 355 356 if (!kexec_trylock()) 357 return -EBUSY; 358 359 size += crash_resource_size(&crashk_res); 360 size += crash_resource_size(&crashk_low_res); 361 362 kexec_unlock(); 363 return size; 364 } 365 366 static int __crash_shrink_memory(struct resource *old_res, 367 unsigned long new_size) 368 { 369 struct resource *ram_res; 370 371 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 372 if (!ram_res) 373 return -ENOMEM; 374 375 ram_res->start = old_res->start + new_size; 376 ram_res->end = old_res->end; 377 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 378 ram_res->name = "System RAM"; 379 380 if (!new_size) { 381 release_resource(old_res); 382 old_res->start = 0; 383 old_res->end = 0; 384 } else { 385 old_res->end = ram_res->start - 1; 386 } 387 388 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 389 insert_resource(&iomem_resource, ram_res); 390 391 return 0; 392 } 393 394 int crash_shrink_memory(unsigned long new_size) 395 { 396 int ret = 0; 397 unsigned long old_size, low_size; 398 399 if (!kexec_trylock()) 400 return -EBUSY; 401 402 if (kexec_crash_image) { 403 ret = -ENOENT; 404 goto unlock; 405 } 406 407 low_size = crash_resource_size(&crashk_low_res); 408 old_size = crash_resource_size(&crashk_res) + low_size; 409 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 410 if (new_size >= old_size) { 411 ret = (new_size == old_size) ? 0 : -EINVAL; 412 goto unlock; 413 } 414 415 /* 416 * (low_size > new_size) implies that low_size is greater than zero. 417 * This also means that if low_size is zero, the else branch is taken. 418 * 419 * If low_size is greater than 0, (low_size > new_size) indicates that 420 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 421 * needs to be shrunken. 422 */ 423 if (low_size > new_size) { 424 ret = __crash_shrink_memory(&crashk_res, 0); 425 if (ret) 426 goto unlock; 427 428 ret = __crash_shrink_memory(&crashk_low_res, new_size); 429 } else { 430 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 431 } 432 433 /* Swap crashk_res and crashk_low_res if needed */ 434 if (!crashk_res.end && crashk_low_res.end) { 435 crashk_res.start = crashk_low_res.start; 436 crashk_res.end = crashk_low_res.end; 437 release_resource(&crashk_low_res); 438 crashk_low_res.start = 0; 439 crashk_low_res.end = 0; 440 insert_resource(&iomem_resource, &crashk_res); 441 } 442 443 unlock: 444 kexec_unlock(); 445 return ret; 446 } 447 448 void crash_save_cpu(struct pt_regs *regs, int cpu) 449 { 450 struct elf_prstatus prstatus; 451 u32 *buf; 452 453 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 454 return; 455 456 /* Using ELF notes here is opportunistic. 457 * I need a well defined structure format 458 * for the data I pass, and I need tags 459 * on the data to indicate what information I have 460 * squirrelled away. ELF notes happen to provide 461 * all of that, so there is no need to invent something new. 462 */ 463 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 464 if (!buf) 465 return; 466 memset(&prstatus, 0, sizeof(prstatus)); 467 prstatus.common.pr_pid = current->pid; 468 elf_core_copy_regs(&prstatus.pr_reg, regs); 469 buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS, 470 &prstatus, sizeof(prstatus)); 471 final_note(buf); 472 } 473 474 475 476 static int __init crash_notes_memory_init(void) 477 { 478 /* Allocate memory for saving cpu registers. */ 479 size_t size, align; 480 481 /* 482 * crash_notes could be allocated across 2 vmalloc pages when percpu 483 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 484 * pages are also on 2 continuous physical pages. In this case the 485 * 2nd part of crash_notes in 2nd page could be lost since only the 486 * starting address and size of crash_notes are exported through sysfs. 487 * Here round up the size of crash_notes to the nearest power of two 488 * and pass it to __alloc_percpu as align value. This can make sure 489 * crash_notes is allocated inside one physical page. 490 */ 491 size = sizeof(note_buf_t); 492 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 493 494 /* 495 * Break compile if size is bigger than PAGE_SIZE since crash_notes 496 * definitely will be in 2 pages with that. 497 */ 498 BUILD_BUG_ON(size > PAGE_SIZE); 499 500 crash_notes = __alloc_percpu(size, align); 501 if (!crash_notes) { 502 pr_warn("Memory allocation for saving cpu register states failed\n"); 503 return -ENOMEM; 504 } 505 return 0; 506 } 507 subsys_initcall(crash_notes_memory_init); 508 509 #endif /*CONFIG_CRASH_DUMP*/ 510 511 #ifdef CONFIG_CRASH_HOTPLUG 512 #undef pr_fmt 513 #define pr_fmt(fmt) "crash hp: " fmt 514 515 /* 516 * Different than kexec/kdump loading/unloading/jumping/shrinking which 517 * usually rarely happen, there will be many crash hotplug events notified 518 * during one short period, e.g one memory board is hot added and memory 519 * regions are online. So mutex lock __crash_hotplug_lock is used to 520 * serialize the crash hotplug handling specifically. 521 */ 522 static DEFINE_MUTEX(__crash_hotplug_lock); 523 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) 524 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) 525 526 /* 527 * This routine utilized when the crash_hotplug sysfs node is read. 528 * It reflects the kernel's ability/permission to update the kdump 529 * image directly. 530 */ 531 int crash_check_hotplug_support(void) 532 { 533 int rc = 0; 534 535 crash_hotplug_lock(); 536 /* Obtain lock while reading crash information */ 537 if (!kexec_trylock()) { 538 if (!kexec_in_progress) 539 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 540 crash_hotplug_unlock(); 541 return 0; 542 } 543 if (kexec_crash_image) { 544 rc = kexec_crash_image->hotplug_support; 545 } 546 /* Release lock now that update complete */ 547 kexec_unlock(); 548 crash_hotplug_unlock(); 549 550 return rc; 551 } 552 553 /* 554 * To accurately reflect hot un/plug changes of CPU and Memory resources 555 * (including onling and offlining of those resources), the relevant 556 * kexec segments must be updated with latest CPU and Memory resources. 557 * 558 * Architectures must ensure two things for all segments that need 559 * updating during hotplug events: 560 * 561 * 1. Segments must be large enough to accommodate a growing number of 562 * resources. 563 * 2. Exclude the segments from SHA verification. 564 * 565 * For example, on most architectures, the elfcorehdr (which is passed 566 * to the crash kernel via the elfcorehdr= parameter) must include the 567 * new list of CPUs and memory. To make changes to the elfcorehdr, it 568 * should be large enough to permit a growing number of CPU and Memory 569 * resources. One can estimate the elfcorehdr memory size based on 570 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is 571 * excluded from SHA verification by default if the architecture 572 * supports crash hotplug. 573 */ 574 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg) 575 { 576 struct kimage *image; 577 578 crash_hotplug_lock(); 579 /* Obtain lock while changing crash information */ 580 if (!kexec_trylock()) { 581 if (!kexec_in_progress) 582 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 583 crash_hotplug_unlock(); 584 return; 585 } 586 587 /* Check kdump is not loaded */ 588 if (!kexec_crash_image) 589 goto out; 590 591 image = kexec_crash_image; 592 593 /* Check that kexec segments update is permitted */ 594 if (!image->hotplug_support) 595 goto out; 596 597 if (hp_action == KEXEC_CRASH_HP_ADD_CPU || 598 hp_action == KEXEC_CRASH_HP_REMOVE_CPU) 599 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); 600 else 601 pr_debug("hp_action %u\n", hp_action); 602 603 /* 604 * The elfcorehdr_index is set to -1 when the struct kimage 605 * is allocated. Find the segment containing the elfcorehdr, 606 * if not already found. 607 */ 608 if (image->elfcorehdr_index < 0) { 609 unsigned long mem; 610 unsigned char *ptr; 611 unsigned int n; 612 613 for (n = 0; n < image->nr_segments; n++) { 614 mem = image->segment[n].mem; 615 ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); 616 if (ptr) { 617 /* The segment containing elfcorehdr */ 618 if (memcmp(ptr, ELFMAG, SELFMAG) == 0) 619 image->elfcorehdr_index = (int)n; 620 kunmap_local(ptr); 621 } 622 } 623 } 624 625 if (image->elfcorehdr_index < 0) { 626 pr_err("unable to locate elfcorehdr segment"); 627 goto out; 628 } 629 630 /* Needed in order for the segments to be updated */ 631 arch_kexec_unprotect_crashkres(); 632 633 /* Differentiate between normal load and hotplug update */ 634 image->hp_action = hp_action; 635 636 /* Now invoke arch-specific update handler */ 637 arch_crash_handle_hotplug_event(image, arg); 638 639 /* No longer handling a hotplug event */ 640 image->hp_action = KEXEC_CRASH_HP_NONE; 641 image->elfcorehdr_updated = true; 642 643 /* Change back to read-only */ 644 arch_kexec_protect_crashkres(); 645 646 /* Errors in the callback is not a reason to rollback state */ 647 out: 648 /* Release lock now that update complete */ 649 kexec_unlock(); 650 crash_hotplug_unlock(); 651 } 652 653 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg) 654 { 655 switch (val) { 656 case MEM_ONLINE: 657 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, 658 KEXEC_CRASH_HP_INVALID_CPU, arg); 659 break; 660 661 case MEM_OFFLINE: 662 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, 663 KEXEC_CRASH_HP_INVALID_CPU, arg); 664 break; 665 } 666 return NOTIFY_OK; 667 } 668 669 static struct notifier_block crash_memhp_nb = { 670 .notifier_call = crash_memhp_notifier, 671 .priority = 0 672 }; 673 674 static int crash_cpuhp_online(unsigned int cpu) 675 { 676 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL); 677 return 0; 678 } 679 680 static int crash_cpuhp_offline(unsigned int cpu) 681 { 682 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL); 683 return 0; 684 } 685 686 static int __init crash_hotplug_init(void) 687 { 688 int result = 0; 689 690 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) 691 register_memory_notifier(&crash_memhp_nb); 692 693 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 694 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, 695 "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); 696 } 697 698 return result; 699 } 700 701 subsys_initcall(crash_hotplug_init); 702 #endif 703