xref: /linux/kernel/crash_core.c (revision b5bfcc1ffe512c7879cb90befdeabaa43d9f07ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * crash.c - kernel crash support code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/buildid.h>
10 #include <linux/init.h>
11 #include <linux/utsname.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sizes.h>
14 #include <linux/kexec.h>
15 #include <linux/memory.h>
16 #include <linux/mm.h>
17 #include <linux/cpuhotplug.h>
18 #include <linux/memblock.h>
19 #include <linux/kmemleak.h>
20 #include <linux/crash_core.h>
21 #include <linux/reboot.h>
22 #include <linux/btf.h>
23 #include <linux/objtool.h>
24 #include <linux/delay.h>
25 #include <linux/panic.h>
26 
27 #include <asm/page.h>
28 #include <asm/sections.h>
29 
30 #include <crypto/sha1.h>
31 
32 #include "kallsyms_internal.h"
33 #include "kexec_internal.h"
34 
35 /* Per cpu memory for storing cpu states in case of system crash. */
36 note_buf_t __percpu *crash_notes;
37 
38 /* time to wait for possible DMA to finish before starting the kdump kernel
39  * when a CMA reservation is used
40  */
41 #define CMA_DMA_TIMEOUT_SEC 10
42 
43 #ifdef CONFIG_CRASH_DUMP
44 
45 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
46 {
47 	struct page *vmcoreinfo_base;
48 	struct page *vmcoreinfo_pages[DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE)];
49 	unsigned int order, nr_pages;
50 	int i;
51 	void *safecopy;
52 
53 	nr_pages = DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE);
54 	order = get_order(VMCOREINFO_BYTES);
55 
56 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
57 		return 0;
58 	if (image->type != KEXEC_TYPE_CRASH)
59 		return 0;
60 
61 	/*
62 	 * For kdump, allocate one vmcoreinfo safe copy from the
63 	 * crash memory. as we have arch_kexec_protect_crashkres()
64 	 * after kexec syscall, we naturally protect it from write
65 	 * (even read) access under kernel direct mapping. But on
66 	 * the other hand, we still need to operate it when crash
67 	 * happens to generate vmcoreinfo note, hereby we rely on
68 	 * vmap for this purpose.
69 	 */
70 	vmcoreinfo_base = kimage_alloc_control_pages(image, order);
71 	if (!vmcoreinfo_base) {
72 		pr_warn("Could not allocate vmcoreinfo buffer\n");
73 		return -ENOMEM;
74 	}
75 	for (i = 0; i < nr_pages; i++)
76 		vmcoreinfo_pages[i] = vmcoreinfo_base + i;
77 
78 	safecopy = vmap(vmcoreinfo_pages, nr_pages, VM_MAP, PAGE_KERNEL);
79 	if (!safecopy) {
80 		pr_warn("Could not vmap vmcoreinfo buffer\n");
81 		return -ENOMEM;
82 	}
83 
84 	image->vmcoreinfo_data_copy = safecopy;
85 	crash_update_vmcoreinfo_safecopy(safecopy);
86 
87 	return 0;
88 }
89 
90 
91 
92 int kexec_should_crash(struct task_struct *p)
93 {
94 	/*
95 	 * If crash_kexec_post_notifiers is enabled, don't run
96 	 * crash_kexec() here yet, which must be run after panic
97 	 * notifiers in panic().
98 	 */
99 	if (crash_kexec_post_notifiers)
100 		return 0;
101 	/*
102 	 * There are 4 panic() calls in make_task_dead() path, each of which
103 	 * corresponds to each of these 4 conditions.
104 	 */
105 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
106 		return 1;
107 	return 0;
108 }
109 
110 int kexec_crash_loaded(void)
111 {
112 	return !!kexec_crash_image;
113 }
114 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
115 
116 static void crash_cma_clear_pending_dma(void)
117 {
118 	if (!crashk_cma_cnt)
119 		return;
120 
121 	mdelay(CMA_DMA_TIMEOUT_SEC * 1000);
122 }
123 
124 /*
125  * No panic_cpu check version of crash_kexec().  This function is called
126  * only when panic_cpu holds the current CPU number; this is the only CPU
127  * which processes crash_kexec routines.
128  */
129 void __noclone __crash_kexec(struct pt_regs *regs)
130 {
131 	/* Take the kexec_lock here to prevent sys_kexec_load
132 	 * running on one cpu from replacing the crash kernel
133 	 * we are using after a panic on a different cpu.
134 	 *
135 	 * If the crash kernel was not located in a fixed area
136 	 * of memory the xchg(&kexec_crash_image) would be
137 	 * sufficient.  But since I reuse the memory...
138 	 */
139 	if (kexec_trylock()) {
140 		if (kexec_crash_image) {
141 			struct pt_regs fixed_regs;
142 
143 			crash_setup_regs(&fixed_regs, regs);
144 			crash_save_vmcoreinfo();
145 			machine_crash_shutdown(&fixed_regs);
146 			crash_cma_clear_pending_dma();
147 			machine_kexec(kexec_crash_image);
148 		}
149 		kexec_unlock();
150 	}
151 }
152 STACK_FRAME_NON_STANDARD(__crash_kexec);
153 
154 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
155 {
156 	if (panic_try_start()) {
157 		/* This is the 1st CPU which comes here, so go ahead. */
158 		__crash_kexec(regs);
159 
160 		/*
161 		 * Reset panic_cpu to allow another panic()/crash_kexec()
162 		 * call.
163 		 */
164 		panic_reset();
165 	}
166 }
167 
168 static inline resource_size_t crash_resource_size(const struct resource *res)
169 {
170 	return !res->end ? 0 : resource_size(res);
171 }
172 
173 
174 
175 
176 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
177 			  void **addr, unsigned long *sz)
178 {
179 	Elf64_Ehdr *ehdr;
180 	Elf64_Phdr *phdr;
181 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
182 	unsigned char *buf;
183 	unsigned int cpu, i;
184 	unsigned long long notes_addr;
185 	unsigned long mstart, mend;
186 
187 	/* extra phdr for vmcoreinfo ELF note */
188 	nr_phdr = nr_cpus + 1;
189 	nr_phdr += mem->nr_ranges;
190 
191 	/*
192 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
193 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
194 	 * I think this is required by tools like gdb. So same physical
195 	 * memory will be mapped in two ELF headers. One will contain kernel
196 	 * text virtual addresses and other will have __va(physical) addresses.
197 	 */
198 
199 	nr_phdr++;
200 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
201 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
202 
203 	buf = vzalloc(elf_sz);
204 	if (!buf)
205 		return -ENOMEM;
206 
207 	ehdr = (Elf64_Ehdr *)buf;
208 	phdr = (Elf64_Phdr *)(ehdr + 1);
209 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
210 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
211 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
212 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
213 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
214 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
215 	ehdr->e_type = ET_CORE;
216 	ehdr->e_machine = ELF_ARCH;
217 	ehdr->e_version = EV_CURRENT;
218 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
219 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
220 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
221 
222 	/* Prepare one phdr of type PT_NOTE for each possible CPU */
223 	for_each_possible_cpu(cpu) {
224 		phdr->p_type = PT_NOTE;
225 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
226 		phdr->p_offset = phdr->p_paddr = notes_addr;
227 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
228 		(ehdr->e_phnum)++;
229 		phdr++;
230 	}
231 
232 	/* Prepare one PT_NOTE header for vmcoreinfo */
233 	phdr->p_type = PT_NOTE;
234 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
235 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
236 	(ehdr->e_phnum)++;
237 	phdr++;
238 
239 	/* Prepare PT_LOAD type program header for kernel text region */
240 	if (need_kernel_map) {
241 		phdr->p_type = PT_LOAD;
242 		phdr->p_flags = PF_R|PF_W|PF_X;
243 		phdr->p_vaddr = (unsigned long) _text;
244 		phdr->p_filesz = phdr->p_memsz = _end - _text;
245 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
246 		ehdr->e_phnum++;
247 		phdr++;
248 	}
249 
250 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
251 	for (i = 0; i < mem->nr_ranges; i++) {
252 		mstart = mem->ranges[i].start;
253 		mend = mem->ranges[i].end;
254 
255 		phdr->p_type = PT_LOAD;
256 		phdr->p_flags = PF_R|PF_W|PF_X;
257 		phdr->p_offset  = mstart;
258 
259 		phdr->p_paddr = mstart;
260 		phdr->p_vaddr = (unsigned long) __va(mstart);
261 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
262 		phdr->p_align = 0;
263 		ehdr->e_phnum++;
264 #ifdef CONFIG_KEXEC_FILE
265 		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
266 			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
267 			      ehdr->e_phnum, phdr->p_offset);
268 #endif
269 		phdr++;
270 	}
271 
272 	*addr = buf;
273 	*sz = elf_sz;
274 	return 0;
275 }
276 
277 /**
278  * crash_exclude_mem_range - exclude a mem range for existing ranges
279  * @mem: mem->range contains an array of ranges sorted in ascending order
280  * @mstart: the start of to-be-excluded range
281  * @mend: the start of to-be-excluded range
282  *
283  * If you are unsure if a range split will happen, to avoid function call
284  * failure because of -ENOMEM, always make sure
285  *    mem->max_nr_ranges == mem->nr_ranges + 1
286  * before calling the function each time.
287  *
288  * returns 0 if a memory range is excluded successfully
289  * return -ENOMEM if mem->ranges doesn't have space to hold split ranges
290  */
291 int crash_exclude_mem_range(struct crash_mem *mem,
292 			    unsigned long long mstart, unsigned long long mend)
293 {
294 	int i;
295 	unsigned long long start, end, p_start, p_end;
296 
297 	for (i = 0; i < mem->nr_ranges; i++) {
298 		start = mem->ranges[i].start;
299 		end = mem->ranges[i].end;
300 		p_start = mstart;
301 		p_end = mend;
302 
303 		if (p_start > end)
304 			continue;
305 
306 		/*
307 		 * Because the memory ranges in mem->ranges are stored in
308 		 * ascending order, when we detect `p_end < start`, we can
309 		 * immediately exit the for loop, as the subsequent memory
310 		 * ranges will definitely be outside the range we are looking
311 		 * for.
312 		 */
313 		if (p_end < start)
314 			break;
315 
316 		/* Truncate any area outside of range */
317 		if (p_start < start)
318 			p_start = start;
319 		if (p_end > end)
320 			p_end = end;
321 
322 		/* Found completely overlapping range */
323 		if (p_start == start && p_end == end) {
324 			memmove(&mem->ranges[i], &mem->ranges[i + 1],
325 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
326 			i--;
327 			mem->nr_ranges--;
328 		} else if (p_start > start && p_end < end) {
329 			/* Split original range */
330 			if (mem->nr_ranges >= mem->max_nr_ranges)
331 				return -ENOMEM;
332 
333 			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
334 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
335 
336 			mem->ranges[i].end = p_start - 1;
337 			mem->ranges[i + 1].start = p_end + 1;
338 			mem->ranges[i + 1].end = end;
339 
340 			i++;
341 			mem->nr_ranges++;
342 		} else if (p_start != start)
343 			mem->ranges[i].end = p_start - 1;
344 		else
345 			mem->ranges[i].start = p_end + 1;
346 	}
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL_GPL(crash_exclude_mem_range);
351 
352 ssize_t crash_get_memory_size(void)
353 {
354 	ssize_t size = 0;
355 
356 	if (!kexec_trylock())
357 		return -EBUSY;
358 
359 	size += crash_resource_size(&crashk_res);
360 	size += crash_resource_size(&crashk_low_res);
361 
362 	kexec_unlock();
363 	return size;
364 }
365 
366 static int __crash_shrink_memory(struct resource *old_res,
367 				 unsigned long new_size)
368 {
369 	struct resource *ram_res;
370 
371 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
372 	if (!ram_res)
373 		return -ENOMEM;
374 
375 	ram_res->start = old_res->start + new_size;
376 	ram_res->end   = old_res->end;
377 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
378 	ram_res->name  = "System RAM";
379 
380 	if (!new_size) {
381 		release_resource(old_res);
382 		old_res->start = 0;
383 		old_res->end   = 0;
384 	} else {
385 		old_res->end = ram_res->start - 1;
386 	}
387 
388 	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
389 	insert_resource(&iomem_resource, ram_res);
390 
391 	return 0;
392 }
393 
394 int crash_shrink_memory(unsigned long new_size)
395 {
396 	int ret = 0;
397 	unsigned long old_size, low_size;
398 
399 	if (!kexec_trylock())
400 		return -EBUSY;
401 
402 	if (kexec_crash_image) {
403 		ret = -ENOENT;
404 		goto unlock;
405 	}
406 
407 	low_size = crash_resource_size(&crashk_low_res);
408 	old_size = crash_resource_size(&crashk_res) + low_size;
409 	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
410 	if (new_size >= old_size) {
411 		ret = (new_size == old_size) ? 0 : -EINVAL;
412 		goto unlock;
413 	}
414 
415 	/*
416 	 * (low_size > new_size) implies that low_size is greater than zero.
417 	 * This also means that if low_size is zero, the else branch is taken.
418 	 *
419 	 * If low_size is greater than 0, (low_size > new_size) indicates that
420 	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
421 	 * needs to be shrunken.
422 	 */
423 	if (low_size > new_size) {
424 		ret = __crash_shrink_memory(&crashk_res, 0);
425 		if (ret)
426 			goto unlock;
427 
428 		ret = __crash_shrink_memory(&crashk_low_res, new_size);
429 	} else {
430 		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
431 	}
432 
433 	/* Swap crashk_res and crashk_low_res if needed */
434 	if (!crashk_res.end && crashk_low_res.end) {
435 		crashk_res.start = crashk_low_res.start;
436 		crashk_res.end   = crashk_low_res.end;
437 		release_resource(&crashk_low_res);
438 		crashk_low_res.start = 0;
439 		crashk_low_res.end   = 0;
440 		insert_resource(&iomem_resource, &crashk_res);
441 	}
442 
443 unlock:
444 	kexec_unlock();
445 	return ret;
446 }
447 
448 void crash_save_cpu(struct pt_regs *regs, int cpu)
449 {
450 	struct elf_prstatus prstatus;
451 	u32 *buf;
452 
453 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
454 		return;
455 
456 	/* Using ELF notes here is opportunistic.
457 	 * I need a well defined structure format
458 	 * for the data I pass, and I need tags
459 	 * on the data to indicate what information I have
460 	 * squirrelled away.  ELF notes happen to provide
461 	 * all of that, so there is no need to invent something new.
462 	 */
463 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
464 	if (!buf)
465 		return;
466 	memset(&prstatus, 0, sizeof(prstatus));
467 	prstatus.common.pr_pid = current->pid;
468 	elf_core_copy_regs(&prstatus.pr_reg, regs);
469 	buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
470 			      &prstatus, sizeof(prstatus));
471 	final_note(buf);
472 }
473 
474 
475 
476 static int __init crash_notes_memory_init(void)
477 {
478 	/* Allocate memory for saving cpu registers. */
479 	size_t size, align;
480 
481 	/*
482 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
483 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
484 	 * pages are also on 2 continuous physical pages. In this case the
485 	 * 2nd part of crash_notes in 2nd page could be lost since only the
486 	 * starting address and size of crash_notes are exported through sysfs.
487 	 * Here round up the size of crash_notes to the nearest power of two
488 	 * and pass it to __alloc_percpu as align value. This can make sure
489 	 * crash_notes is allocated inside one physical page.
490 	 */
491 	size = sizeof(note_buf_t);
492 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
493 
494 	/*
495 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
496 	 * definitely will be in 2 pages with that.
497 	 */
498 	BUILD_BUG_ON(size > PAGE_SIZE);
499 
500 	crash_notes = __alloc_percpu(size, align);
501 	if (!crash_notes) {
502 		pr_warn("Memory allocation for saving cpu register states failed\n");
503 		return -ENOMEM;
504 	}
505 	return 0;
506 }
507 subsys_initcall(crash_notes_memory_init);
508 
509 #endif /*CONFIG_CRASH_DUMP*/
510 
511 #ifdef CONFIG_CRASH_HOTPLUG
512 #undef pr_fmt
513 #define pr_fmt(fmt) "crash hp: " fmt
514 
515 /*
516  * Different than kexec/kdump loading/unloading/jumping/shrinking which
517  * usually rarely happen, there will be many crash hotplug events notified
518  * during one short period, e.g one memory board is hot added and memory
519  * regions are online. So mutex lock  __crash_hotplug_lock is used to
520  * serialize the crash hotplug handling specifically.
521  */
522 static DEFINE_MUTEX(__crash_hotplug_lock);
523 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
524 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
525 
526 /*
527  * This routine utilized when the crash_hotplug sysfs node is read.
528  * It reflects the kernel's ability/permission to update the kdump
529  * image directly.
530  */
531 int crash_check_hotplug_support(void)
532 {
533 	int rc = 0;
534 
535 	crash_hotplug_lock();
536 	/* Obtain lock while reading crash information */
537 	if (!kexec_trylock()) {
538 		if (!kexec_in_progress)
539 			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
540 		crash_hotplug_unlock();
541 		return 0;
542 	}
543 	if (kexec_crash_image) {
544 		rc = kexec_crash_image->hotplug_support;
545 	}
546 	/* Release lock now that update complete */
547 	kexec_unlock();
548 	crash_hotplug_unlock();
549 
550 	return rc;
551 }
552 
553 /*
554  * To accurately reflect hot un/plug changes of CPU and Memory resources
555  * (including onling and offlining of those resources), the relevant
556  * kexec segments must be updated with latest CPU and Memory resources.
557  *
558  * Architectures must ensure two things for all segments that need
559  * updating during hotplug events:
560  *
561  * 1. Segments must be large enough to accommodate a growing number of
562  *    resources.
563  * 2. Exclude the segments from SHA verification.
564  *
565  * For example, on most architectures, the elfcorehdr (which is passed
566  * to the crash kernel via the elfcorehdr= parameter) must include the
567  * new list of CPUs and memory. To make changes to the elfcorehdr, it
568  * should be large enough to permit a growing number of CPU and Memory
569  * resources. One can estimate the elfcorehdr memory size based on
570  * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
571  * excluded from SHA verification by default if the architecture
572  * supports crash hotplug.
573  */
574 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
575 {
576 	struct kimage *image;
577 
578 	crash_hotplug_lock();
579 	/* Obtain lock while changing crash information */
580 	if (!kexec_trylock()) {
581 		if (!kexec_in_progress)
582 			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
583 		crash_hotplug_unlock();
584 		return;
585 	}
586 
587 	/* Check kdump is not loaded */
588 	if (!kexec_crash_image)
589 		goto out;
590 
591 	image = kexec_crash_image;
592 
593 	/* Check that kexec segments update is permitted */
594 	if (!image->hotplug_support)
595 		goto out;
596 
597 	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
598 		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
599 		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
600 	else
601 		pr_debug("hp_action %u\n", hp_action);
602 
603 	/*
604 	 * The elfcorehdr_index is set to -1 when the struct kimage
605 	 * is allocated. Find the segment containing the elfcorehdr,
606 	 * if not already found.
607 	 */
608 	if (image->elfcorehdr_index < 0) {
609 		unsigned long mem;
610 		unsigned char *ptr;
611 		unsigned int n;
612 
613 		for (n = 0; n < image->nr_segments; n++) {
614 			mem = image->segment[n].mem;
615 			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
616 			if (ptr) {
617 				/* The segment containing elfcorehdr */
618 				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
619 					image->elfcorehdr_index = (int)n;
620 				kunmap_local(ptr);
621 			}
622 		}
623 	}
624 
625 	if (image->elfcorehdr_index < 0) {
626 		pr_err("unable to locate elfcorehdr segment");
627 		goto out;
628 	}
629 
630 	/* Needed in order for the segments to be updated */
631 	arch_kexec_unprotect_crashkres();
632 
633 	/* Differentiate between normal load and hotplug update */
634 	image->hp_action = hp_action;
635 
636 	/* Now invoke arch-specific update handler */
637 	arch_crash_handle_hotplug_event(image, arg);
638 
639 	/* No longer handling a hotplug event */
640 	image->hp_action = KEXEC_CRASH_HP_NONE;
641 	image->elfcorehdr_updated = true;
642 
643 	/* Change back to read-only */
644 	arch_kexec_protect_crashkres();
645 
646 	/* Errors in the callback is not a reason to rollback state */
647 out:
648 	/* Release lock now that update complete */
649 	kexec_unlock();
650 	crash_hotplug_unlock();
651 }
652 
653 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
654 {
655 	switch (val) {
656 	case MEM_ONLINE:
657 		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
658 			KEXEC_CRASH_HP_INVALID_CPU, arg);
659 		break;
660 
661 	case MEM_OFFLINE:
662 		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
663 			KEXEC_CRASH_HP_INVALID_CPU, arg);
664 		break;
665 	}
666 	return NOTIFY_OK;
667 }
668 
669 static struct notifier_block crash_memhp_nb = {
670 	.notifier_call = crash_memhp_notifier,
671 	.priority = 0
672 };
673 
674 static int crash_cpuhp_online(unsigned int cpu)
675 {
676 	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
677 	return 0;
678 }
679 
680 static int crash_cpuhp_offline(unsigned int cpu)
681 {
682 	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
683 	return 0;
684 }
685 
686 static int __init crash_hotplug_init(void)
687 {
688 	int result = 0;
689 
690 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
691 		register_memory_notifier(&crash_memhp_nb);
692 
693 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
694 		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
695 			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
696 	}
697 
698 	return result;
699 }
700 
701 subsys_initcall(crash_hotplug_init);
702 #endif
703