xref: /linux/kernel/crash_core.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * crash.c - kernel crash support code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/buildid.h>
10 #include <linux/init.h>
11 #include <linux/utsname.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sizes.h>
14 #include <linux/kexec.h>
15 #include <linux/memory.h>
16 #include <linux/mm.h>
17 #include <linux/cpuhotplug.h>
18 #include <linux/memblock.h>
19 #include <linux/kmemleak.h>
20 #include <linux/crash_core.h>
21 #include <linux/reboot.h>
22 #include <linux/btf.h>
23 #include <linux/objtool.h>
24 
25 #include <asm/page.h>
26 #include <asm/sections.h>
27 
28 #include <crypto/sha1.h>
29 
30 #include "kallsyms_internal.h"
31 #include "kexec_internal.h"
32 
33 /* Per cpu memory for storing cpu states in case of system crash. */
34 note_buf_t __percpu *crash_notes;
35 
36 #ifdef CONFIG_CRASH_DUMP
37 
kimage_crash_copy_vmcoreinfo(struct kimage * image)38 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
39 {
40 	struct page *vmcoreinfo_page;
41 	void *safecopy;
42 
43 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
44 		return 0;
45 	if (image->type != KEXEC_TYPE_CRASH)
46 		return 0;
47 
48 	/*
49 	 * For kdump, allocate one vmcoreinfo safe copy from the
50 	 * crash memory. as we have arch_kexec_protect_crashkres()
51 	 * after kexec syscall, we naturally protect it from write
52 	 * (even read) access under kernel direct mapping. But on
53 	 * the other hand, we still need to operate it when crash
54 	 * happens to generate vmcoreinfo note, hereby we rely on
55 	 * vmap for this purpose.
56 	 */
57 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
58 	if (!vmcoreinfo_page) {
59 		pr_warn("Could not allocate vmcoreinfo buffer\n");
60 		return -ENOMEM;
61 	}
62 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
63 	if (!safecopy) {
64 		pr_warn("Could not vmap vmcoreinfo buffer\n");
65 		return -ENOMEM;
66 	}
67 
68 	image->vmcoreinfo_data_copy = safecopy;
69 	crash_update_vmcoreinfo_safecopy(safecopy);
70 
71 	return 0;
72 }
73 
74 
75 
kexec_should_crash(struct task_struct * p)76 int kexec_should_crash(struct task_struct *p)
77 {
78 	/*
79 	 * If crash_kexec_post_notifiers is enabled, don't run
80 	 * crash_kexec() here yet, which must be run after panic
81 	 * notifiers in panic().
82 	 */
83 	if (crash_kexec_post_notifiers)
84 		return 0;
85 	/*
86 	 * There are 4 panic() calls in make_task_dead() path, each of which
87 	 * corresponds to each of these 4 conditions.
88 	 */
89 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
90 		return 1;
91 	return 0;
92 }
93 
kexec_crash_loaded(void)94 int kexec_crash_loaded(void)
95 {
96 	return !!kexec_crash_image;
97 }
98 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
99 
100 /*
101  * No panic_cpu check version of crash_kexec().  This function is called
102  * only when panic_cpu holds the current CPU number; this is the only CPU
103  * which processes crash_kexec routines.
104  */
__crash_kexec(struct pt_regs * regs)105 void __noclone __crash_kexec(struct pt_regs *regs)
106 {
107 	/* Take the kexec_lock here to prevent sys_kexec_load
108 	 * running on one cpu from replacing the crash kernel
109 	 * we are using after a panic on a different cpu.
110 	 *
111 	 * If the crash kernel was not located in a fixed area
112 	 * of memory the xchg(&kexec_crash_image) would be
113 	 * sufficient.  But since I reuse the memory...
114 	 */
115 	if (kexec_trylock()) {
116 		if (kexec_crash_image) {
117 			struct pt_regs fixed_regs;
118 
119 			crash_setup_regs(&fixed_regs, regs);
120 			crash_save_vmcoreinfo();
121 			machine_crash_shutdown(&fixed_regs);
122 			machine_kexec(kexec_crash_image);
123 		}
124 		kexec_unlock();
125 	}
126 }
127 STACK_FRAME_NON_STANDARD(__crash_kexec);
128 
crash_kexec(struct pt_regs * regs)129 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
130 {
131 	int old_cpu, this_cpu;
132 
133 	/*
134 	 * Only one CPU is allowed to execute the crash_kexec() code as with
135 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
136 	 * may stop each other.  To exclude them, we use panic_cpu here too.
137 	 */
138 	old_cpu = PANIC_CPU_INVALID;
139 	this_cpu = raw_smp_processor_id();
140 
141 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
142 		/* This is the 1st CPU which comes here, so go ahead. */
143 		__crash_kexec(regs);
144 
145 		/*
146 		 * Reset panic_cpu to allow another panic()/crash_kexec()
147 		 * call.
148 		 */
149 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
150 	}
151 }
152 
crash_resource_size(const struct resource * res)153 static inline resource_size_t crash_resource_size(const struct resource *res)
154 {
155 	return !res->end ? 0 : resource_size(res);
156 }
157 
158 
159 
160 
crash_prepare_elf64_headers(struct crash_mem * mem,int need_kernel_map,void ** addr,unsigned long * sz)161 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
162 			  void **addr, unsigned long *sz)
163 {
164 	Elf64_Ehdr *ehdr;
165 	Elf64_Phdr *phdr;
166 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
167 	unsigned char *buf;
168 	unsigned int cpu, i;
169 	unsigned long long notes_addr;
170 	unsigned long mstart, mend;
171 
172 	/* extra phdr for vmcoreinfo ELF note */
173 	nr_phdr = nr_cpus + 1;
174 	nr_phdr += mem->nr_ranges;
175 
176 	/*
177 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179 	 * I think this is required by tools like gdb. So same physical
180 	 * memory will be mapped in two ELF headers. One will contain kernel
181 	 * text virtual addresses and other will have __va(physical) addresses.
182 	 */
183 
184 	nr_phdr++;
185 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
186 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
187 
188 	buf = vzalloc(elf_sz);
189 	if (!buf)
190 		return -ENOMEM;
191 
192 	ehdr = (Elf64_Ehdr *)buf;
193 	phdr = (Elf64_Phdr *)(ehdr + 1);
194 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
195 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
196 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
197 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
198 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
199 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
200 	ehdr->e_type = ET_CORE;
201 	ehdr->e_machine = ELF_ARCH;
202 	ehdr->e_version = EV_CURRENT;
203 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
204 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
205 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
206 
207 	/* Prepare one phdr of type PT_NOTE for each possible CPU */
208 	for_each_possible_cpu(cpu) {
209 		phdr->p_type = PT_NOTE;
210 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
211 		phdr->p_offset = phdr->p_paddr = notes_addr;
212 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
213 		(ehdr->e_phnum)++;
214 		phdr++;
215 	}
216 
217 	/* Prepare one PT_NOTE header for vmcoreinfo */
218 	phdr->p_type = PT_NOTE;
219 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
220 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
221 	(ehdr->e_phnum)++;
222 	phdr++;
223 
224 	/* Prepare PT_LOAD type program header for kernel text region */
225 	if (need_kernel_map) {
226 		phdr->p_type = PT_LOAD;
227 		phdr->p_flags = PF_R|PF_W|PF_X;
228 		phdr->p_vaddr = (unsigned long) _text;
229 		phdr->p_filesz = phdr->p_memsz = _end - _text;
230 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
231 		ehdr->e_phnum++;
232 		phdr++;
233 	}
234 
235 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
236 	for (i = 0; i < mem->nr_ranges; i++) {
237 		mstart = mem->ranges[i].start;
238 		mend = mem->ranges[i].end;
239 
240 		phdr->p_type = PT_LOAD;
241 		phdr->p_flags = PF_R|PF_W|PF_X;
242 		phdr->p_offset  = mstart;
243 
244 		phdr->p_paddr = mstart;
245 		phdr->p_vaddr = (unsigned long) __va(mstart);
246 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
247 		phdr->p_align = 0;
248 		ehdr->e_phnum++;
249 #ifdef CONFIG_KEXEC_FILE
250 		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251 			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
252 			      ehdr->e_phnum, phdr->p_offset);
253 #endif
254 		phdr++;
255 	}
256 
257 	*addr = buf;
258 	*sz = elf_sz;
259 	return 0;
260 }
261 
crash_exclude_mem_range(struct crash_mem * mem,unsigned long long mstart,unsigned long long mend)262 int crash_exclude_mem_range(struct crash_mem *mem,
263 			    unsigned long long mstart, unsigned long long mend)
264 {
265 	int i;
266 	unsigned long long start, end, p_start, p_end;
267 
268 	for (i = 0; i < mem->nr_ranges; i++) {
269 		start = mem->ranges[i].start;
270 		end = mem->ranges[i].end;
271 		p_start = mstart;
272 		p_end = mend;
273 
274 		if (p_start > end)
275 			continue;
276 
277 		/*
278 		 * Because the memory ranges in mem->ranges are stored in
279 		 * ascending order, when we detect `p_end < start`, we can
280 		 * immediately exit the for loop, as the subsequent memory
281 		 * ranges will definitely be outside the range we are looking
282 		 * for.
283 		 */
284 		if (p_end < start)
285 			break;
286 
287 		/* Truncate any area outside of range */
288 		if (p_start < start)
289 			p_start = start;
290 		if (p_end > end)
291 			p_end = end;
292 
293 		/* Found completely overlapping range */
294 		if (p_start == start && p_end == end) {
295 			memmove(&mem->ranges[i], &mem->ranges[i + 1],
296 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
297 			i--;
298 			mem->nr_ranges--;
299 		} else if (p_start > start && p_end < end) {
300 			/* Split original range */
301 			if (mem->nr_ranges >= mem->max_nr_ranges)
302 				return -ENOMEM;
303 
304 			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
305 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
306 
307 			mem->ranges[i].end = p_start - 1;
308 			mem->ranges[i + 1].start = p_end + 1;
309 			mem->ranges[i + 1].end = end;
310 
311 			i++;
312 			mem->nr_ranges++;
313 		} else if (p_start != start)
314 			mem->ranges[i].end = p_start - 1;
315 		else
316 			mem->ranges[i].start = p_end + 1;
317 	}
318 
319 	return 0;
320 }
321 
crash_get_memory_size(void)322 ssize_t crash_get_memory_size(void)
323 {
324 	ssize_t size = 0;
325 
326 	if (!kexec_trylock())
327 		return -EBUSY;
328 
329 	size += crash_resource_size(&crashk_res);
330 	size += crash_resource_size(&crashk_low_res);
331 
332 	kexec_unlock();
333 	return size;
334 }
335 
__crash_shrink_memory(struct resource * old_res,unsigned long new_size)336 static int __crash_shrink_memory(struct resource *old_res,
337 				 unsigned long new_size)
338 {
339 	struct resource *ram_res;
340 
341 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
342 	if (!ram_res)
343 		return -ENOMEM;
344 
345 	ram_res->start = old_res->start + new_size;
346 	ram_res->end   = old_res->end;
347 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
348 	ram_res->name  = "System RAM";
349 
350 	if (!new_size) {
351 		release_resource(old_res);
352 		old_res->start = 0;
353 		old_res->end   = 0;
354 	} else {
355 		crashk_res.end = ram_res->start - 1;
356 	}
357 
358 	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
359 	insert_resource(&iomem_resource, ram_res);
360 
361 	return 0;
362 }
363 
crash_shrink_memory(unsigned long new_size)364 int crash_shrink_memory(unsigned long new_size)
365 {
366 	int ret = 0;
367 	unsigned long old_size, low_size;
368 
369 	if (!kexec_trylock())
370 		return -EBUSY;
371 
372 	if (kexec_crash_image) {
373 		ret = -ENOENT;
374 		goto unlock;
375 	}
376 
377 	low_size = crash_resource_size(&crashk_low_res);
378 	old_size = crash_resource_size(&crashk_res) + low_size;
379 	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
380 	if (new_size >= old_size) {
381 		ret = (new_size == old_size) ? 0 : -EINVAL;
382 		goto unlock;
383 	}
384 
385 	/*
386 	 * (low_size > new_size) implies that low_size is greater than zero.
387 	 * This also means that if low_size is zero, the else branch is taken.
388 	 *
389 	 * If low_size is greater than 0, (low_size > new_size) indicates that
390 	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391 	 * needs to be shrunken.
392 	 */
393 	if (low_size > new_size) {
394 		ret = __crash_shrink_memory(&crashk_res, 0);
395 		if (ret)
396 			goto unlock;
397 
398 		ret = __crash_shrink_memory(&crashk_low_res, new_size);
399 	} else {
400 		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
401 	}
402 
403 	/* Swap crashk_res and crashk_low_res if needed */
404 	if (!crashk_res.end && crashk_low_res.end) {
405 		crashk_res.start = crashk_low_res.start;
406 		crashk_res.end   = crashk_low_res.end;
407 		release_resource(&crashk_low_res);
408 		crashk_low_res.start = 0;
409 		crashk_low_res.end   = 0;
410 		insert_resource(&iomem_resource, &crashk_res);
411 	}
412 
413 unlock:
414 	kexec_unlock();
415 	return ret;
416 }
417 
crash_save_cpu(struct pt_regs * regs,int cpu)418 void crash_save_cpu(struct pt_regs *regs, int cpu)
419 {
420 	struct elf_prstatus prstatus;
421 	u32 *buf;
422 
423 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
424 		return;
425 
426 	/* Using ELF notes here is opportunistic.
427 	 * I need a well defined structure format
428 	 * for the data I pass, and I need tags
429 	 * on the data to indicate what information I have
430 	 * squirrelled away.  ELF notes happen to provide
431 	 * all of that, so there is no need to invent something new.
432 	 */
433 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
434 	if (!buf)
435 		return;
436 	memset(&prstatus, 0, sizeof(prstatus));
437 	prstatus.common.pr_pid = current->pid;
438 	elf_core_copy_regs(&prstatus.pr_reg, regs);
439 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
440 			      &prstatus, sizeof(prstatus));
441 	final_note(buf);
442 }
443 
444 
445 
crash_notes_memory_init(void)446 static int __init crash_notes_memory_init(void)
447 {
448 	/* Allocate memory for saving cpu registers. */
449 	size_t size, align;
450 
451 	/*
452 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
453 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454 	 * pages are also on 2 continuous physical pages. In this case the
455 	 * 2nd part of crash_notes in 2nd page could be lost since only the
456 	 * starting address and size of crash_notes are exported through sysfs.
457 	 * Here round up the size of crash_notes to the nearest power of two
458 	 * and pass it to __alloc_percpu as align value. This can make sure
459 	 * crash_notes is allocated inside one physical page.
460 	 */
461 	size = sizeof(note_buf_t);
462 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
463 
464 	/*
465 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
466 	 * definitely will be in 2 pages with that.
467 	 */
468 	BUILD_BUG_ON(size > PAGE_SIZE);
469 
470 	crash_notes = __alloc_percpu(size, align);
471 	if (!crash_notes) {
472 		pr_warn("Memory allocation for saving cpu register states failed\n");
473 		return -ENOMEM;
474 	}
475 	return 0;
476 }
477 subsys_initcall(crash_notes_memory_init);
478 
479 #endif /*CONFIG_CRASH_DUMP*/
480 
481 #ifdef CONFIG_CRASH_HOTPLUG
482 #undef pr_fmt
483 #define pr_fmt(fmt) "crash hp: " fmt
484 
485 /*
486  * Different than kexec/kdump loading/unloading/jumping/shrinking which
487  * usually rarely happen, there will be many crash hotplug events notified
488  * during one short period, e.g one memory board is hot added and memory
489  * regions are online. So mutex lock  __crash_hotplug_lock is used to
490  * serialize the crash hotplug handling specifically.
491  */
492 static DEFINE_MUTEX(__crash_hotplug_lock);
493 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
495 
496 /*
497  * This routine utilized when the crash_hotplug sysfs node is read.
498  * It reflects the kernel's ability/permission to update the kdump
499  * image directly.
500  */
crash_check_hotplug_support(void)501 int crash_check_hotplug_support(void)
502 {
503 	int rc = 0;
504 
505 	crash_hotplug_lock();
506 	/* Obtain lock while reading crash information */
507 	if (!kexec_trylock()) {
508 		pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
509 		crash_hotplug_unlock();
510 		return 0;
511 	}
512 	if (kexec_crash_image) {
513 		rc = kexec_crash_image->hotplug_support;
514 	}
515 	/* Release lock now that update complete */
516 	kexec_unlock();
517 	crash_hotplug_unlock();
518 
519 	return rc;
520 }
521 
522 /*
523  * To accurately reflect hot un/plug changes of CPU and Memory resources
524  * (including onling and offlining of those resources), the relevant
525  * kexec segments must be updated with latest CPU and Memory resources.
526  *
527  * Architectures must ensure two things for all segments that need
528  * updating during hotplug events:
529  *
530  * 1. Segments must be large enough to accommodate a growing number of
531  *    resources.
532  * 2. Exclude the segments from SHA verification.
533  *
534  * For example, on most architectures, the elfcorehdr (which is passed
535  * to the crash kernel via the elfcorehdr= parameter) must include the
536  * new list of CPUs and memory. To make changes to the elfcorehdr, it
537  * should be large enough to permit a growing number of CPU and Memory
538  * resources. One can estimate the elfcorehdr memory size based on
539  * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
540  * excluded from SHA verification by default if the architecture
541  * supports crash hotplug.
542  */
crash_handle_hotplug_event(unsigned int hp_action,unsigned int cpu,void * arg)543 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
544 {
545 	struct kimage *image;
546 
547 	crash_hotplug_lock();
548 	/* Obtain lock while changing crash information */
549 	if (!kexec_trylock()) {
550 		pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
551 		crash_hotplug_unlock();
552 		return;
553 	}
554 
555 	/* Check kdump is not loaded */
556 	if (!kexec_crash_image)
557 		goto out;
558 
559 	image = kexec_crash_image;
560 
561 	/* Check that kexec segments update is permitted */
562 	if (!image->hotplug_support)
563 		goto out;
564 
565 	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
566 		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
567 		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
568 	else
569 		pr_debug("hp_action %u\n", hp_action);
570 
571 	/*
572 	 * The elfcorehdr_index is set to -1 when the struct kimage
573 	 * is allocated. Find the segment containing the elfcorehdr,
574 	 * if not already found.
575 	 */
576 	if (image->elfcorehdr_index < 0) {
577 		unsigned long mem;
578 		unsigned char *ptr;
579 		unsigned int n;
580 
581 		for (n = 0; n < image->nr_segments; n++) {
582 			mem = image->segment[n].mem;
583 			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
584 			if (ptr) {
585 				/* The segment containing elfcorehdr */
586 				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
587 					image->elfcorehdr_index = (int)n;
588 				kunmap_local(ptr);
589 			}
590 		}
591 	}
592 
593 	if (image->elfcorehdr_index < 0) {
594 		pr_err("unable to locate elfcorehdr segment");
595 		goto out;
596 	}
597 
598 	/* Needed in order for the segments to be updated */
599 	arch_kexec_unprotect_crashkres();
600 
601 	/* Differentiate between normal load and hotplug update */
602 	image->hp_action = hp_action;
603 
604 	/* Now invoke arch-specific update handler */
605 	arch_crash_handle_hotplug_event(image, arg);
606 
607 	/* No longer handling a hotplug event */
608 	image->hp_action = KEXEC_CRASH_HP_NONE;
609 	image->elfcorehdr_updated = true;
610 
611 	/* Change back to read-only */
612 	arch_kexec_protect_crashkres();
613 
614 	/* Errors in the callback is not a reason to rollback state */
615 out:
616 	/* Release lock now that update complete */
617 	kexec_unlock();
618 	crash_hotplug_unlock();
619 }
620 
crash_memhp_notifier(struct notifier_block * nb,unsigned long val,void * arg)621 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
622 {
623 	switch (val) {
624 	case MEM_ONLINE:
625 		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
626 			KEXEC_CRASH_HP_INVALID_CPU, arg);
627 		break;
628 
629 	case MEM_OFFLINE:
630 		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
631 			KEXEC_CRASH_HP_INVALID_CPU, arg);
632 		break;
633 	}
634 	return NOTIFY_OK;
635 }
636 
637 static struct notifier_block crash_memhp_nb = {
638 	.notifier_call = crash_memhp_notifier,
639 	.priority = 0
640 };
641 
crash_cpuhp_online(unsigned int cpu)642 static int crash_cpuhp_online(unsigned int cpu)
643 {
644 	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
645 	return 0;
646 }
647 
crash_cpuhp_offline(unsigned int cpu)648 static int crash_cpuhp_offline(unsigned int cpu)
649 {
650 	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
651 	return 0;
652 }
653 
crash_hotplug_init(void)654 static int __init crash_hotplug_init(void)
655 {
656 	int result = 0;
657 
658 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
659 		register_memory_notifier(&crash_memhp_nb);
660 
661 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
662 		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
663 			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
664 	}
665 
666 	return result;
667 }
668 
669 subsys_initcall(crash_hotplug_init);
670 #endif
671