1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * crash.c - kernel crash support code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/buildid.h>
10 #include <linux/init.h>
11 #include <linux/utsname.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sizes.h>
14 #include <linux/kexec.h>
15 #include <linux/memory.h>
16 #include <linux/mm.h>
17 #include <linux/cpuhotplug.h>
18 #include <linux/memblock.h>
19 #include <linux/kmemleak.h>
20 #include <linux/crash_core.h>
21 #include <linux/reboot.h>
22 #include <linux/btf.h>
23 #include <linux/objtool.h>
24 #include <linux/delay.h>
25
26 #include <asm/page.h>
27 #include <asm/sections.h>
28
29 #include <crypto/sha1.h>
30
31 #include "kallsyms_internal.h"
32 #include "kexec_internal.h"
33
34 /* Per cpu memory for storing cpu states in case of system crash. */
35 note_buf_t __percpu *crash_notes;
36
37 /* time to wait for possible DMA to finish before starting the kdump kernel
38 * when a CMA reservation is used
39 */
40 #define CMA_DMA_TIMEOUT_SEC 10
41
42 #ifdef CONFIG_CRASH_DUMP
43
kimage_crash_copy_vmcoreinfo(struct kimage * image)44 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
45 {
46 struct page *vmcoreinfo_page;
47 void *safecopy;
48
49 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
50 return 0;
51 if (image->type != KEXEC_TYPE_CRASH)
52 return 0;
53
54 /*
55 * For kdump, allocate one vmcoreinfo safe copy from the
56 * crash memory. as we have arch_kexec_protect_crashkres()
57 * after kexec syscall, we naturally protect it from write
58 * (even read) access under kernel direct mapping. But on
59 * the other hand, we still need to operate it when crash
60 * happens to generate vmcoreinfo note, hereby we rely on
61 * vmap for this purpose.
62 */
63 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
64 if (!vmcoreinfo_page) {
65 pr_warn("Could not allocate vmcoreinfo buffer\n");
66 return -ENOMEM;
67 }
68 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
69 if (!safecopy) {
70 pr_warn("Could not vmap vmcoreinfo buffer\n");
71 return -ENOMEM;
72 }
73
74 image->vmcoreinfo_data_copy = safecopy;
75 crash_update_vmcoreinfo_safecopy(safecopy);
76
77 return 0;
78 }
79
80
81
kexec_should_crash(struct task_struct * p)82 int kexec_should_crash(struct task_struct *p)
83 {
84 /*
85 * If crash_kexec_post_notifiers is enabled, don't run
86 * crash_kexec() here yet, which must be run after panic
87 * notifiers in panic().
88 */
89 if (crash_kexec_post_notifiers)
90 return 0;
91 /*
92 * There are 4 panic() calls in make_task_dead() path, each of which
93 * corresponds to each of these 4 conditions.
94 */
95 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
96 return 1;
97 return 0;
98 }
99
kexec_crash_loaded(void)100 int kexec_crash_loaded(void)
101 {
102 return !!kexec_crash_image;
103 }
104 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
105
crash_cma_clear_pending_dma(void)106 static void crash_cma_clear_pending_dma(void)
107 {
108 if (!crashk_cma_cnt)
109 return;
110
111 mdelay(CMA_DMA_TIMEOUT_SEC * 1000);
112 }
113
114 /*
115 * No panic_cpu check version of crash_kexec(). This function is called
116 * only when panic_cpu holds the current CPU number; this is the only CPU
117 * which processes crash_kexec routines.
118 */
__crash_kexec(struct pt_regs * regs)119 void __noclone __crash_kexec(struct pt_regs *regs)
120 {
121 /* Take the kexec_lock here to prevent sys_kexec_load
122 * running on one cpu from replacing the crash kernel
123 * we are using after a panic on a different cpu.
124 *
125 * If the crash kernel was not located in a fixed area
126 * of memory the xchg(&kexec_crash_image) would be
127 * sufficient. But since I reuse the memory...
128 */
129 if (kexec_trylock()) {
130 if (kexec_crash_image) {
131 struct pt_regs fixed_regs;
132
133 crash_setup_regs(&fixed_regs, regs);
134 crash_save_vmcoreinfo();
135 machine_crash_shutdown(&fixed_regs);
136 crash_cma_clear_pending_dma();
137 machine_kexec(kexec_crash_image);
138 }
139 kexec_unlock();
140 }
141 }
142 STACK_FRAME_NON_STANDARD(__crash_kexec);
143
crash_kexec(struct pt_regs * regs)144 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
145 {
146 int old_cpu, this_cpu;
147
148 /*
149 * Only one CPU is allowed to execute the crash_kexec() code as with
150 * panic(). Otherwise parallel calls of panic() and crash_kexec()
151 * may stop each other. To exclude them, we use panic_cpu here too.
152 */
153 old_cpu = PANIC_CPU_INVALID;
154 this_cpu = raw_smp_processor_id();
155
156 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
157 /* This is the 1st CPU which comes here, so go ahead. */
158 __crash_kexec(regs);
159
160 /*
161 * Reset panic_cpu to allow another panic()/crash_kexec()
162 * call.
163 */
164 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
165 }
166 }
167
crash_resource_size(const struct resource * res)168 static inline resource_size_t crash_resource_size(const struct resource *res)
169 {
170 return !res->end ? 0 : resource_size(res);
171 }
172
173
174
175
crash_prepare_elf64_headers(struct crash_mem * mem,int need_kernel_map,void ** addr,unsigned long * sz)176 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
177 void **addr, unsigned long *sz)
178 {
179 Elf64_Ehdr *ehdr;
180 Elf64_Phdr *phdr;
181 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
182 unsigned char *buf;
183 unsigned int cpu, i;
184 unsigned long long notes_addr;
185 unsigned long mstart, mend;
186
187 /* extra phdr for vmcoreinfo ELF note */
188 nr_phdr = nr_cpus + 1;
189 nr_phdr += mem->nr_ranges;
190
191 /*
192 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
193 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
194 * I think this is required by tools like gdb. So same physical
195 * memory will be mapped in two ELF headers. One will contain kernel
196 * text virtual addresses and other will have __va(physical) addresses.
197 */
198
199 nr_phdr++;
200 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
201 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
202
203 buf = vzalloc(elf_sz);
204 if (!buf)
205 return -ENOMEM;
206
207 ehdr = (Elf64_Ehdr *)buf;
208 phdr = (Elf64_Phdr *)(ehdr + 1);
209 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
210 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
211 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
212 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
213 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
214 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
215 ehdr->e_type = ET_CORE;
216 ehdr->e_machine = ELF_ARCH;
217 ehdr->e_version = EV_CURRENT;
218 ehdr->e_phoff = sizeof(Elf64_Ehdr);
219 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
220 ehdr->e_phentsize = sizeof(Elf64_Phdr);
221
222 /* Prepare one phdr of type PT_NOTE for each possible CPU */
223 for_each_possible_cpu(cpu) {
224 phdr->p_type = PT_NOTE;
225 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
226 phdr->p_offset = phdr->p_paddr = notes_addr;
227 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
228 (ehdr->e_phnum)++;
229 phdr++;
230 }
231
232 /* Prepare one PT_NOTE header for vmcoreinfo */
233 phdr->p_type = PT_NOTE;
234 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
235 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
236 (ehdr->e_phnum)++;
237 phdr++;
238
239 /* Prepare PT_LOAD type program header for kernel text region */
240 if (need_kernel_map) {
241 phdr->p_type = PT_LOAD;
242 phdr->p_flags = PF_R|PF_W|PF_X;
243 phdr->p_vaddr = (unsigned long) _text;
244 phdr->p_filesz = phdr->p_memsz = _end - _text;
245 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
246 ehdr->e_phnum++;
247 phdr++;
248 }
249
250 /* Go through all the ranges in mem->ranges[] and prepare phdr */
251 for (i = 0; i < mem->nr_ranges; i++) {
252 mstart = mem->ranges[i].start;
253 mend = mem->ranges[i].end;
254
255 phdr->p_type = PT_LOAD;
256 phdr->p_flags = PF_R|PF_W|PF_X;
257 phdr->p_offset = mstart;
258
259 phdr->p_paddr = mstart;
260 phdr->p_vaddr = (unsigned long) __va(mstart);
261 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
262 phdr->p_align = 0;
263 ehdr->e_phnum++;
264 #ifdef CONFIG_KEXEC_FILE
265 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
266 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
267 ehdr->e_phnum, phdr->p_offset);
268 #endif
269 phdr++;
270 }
271
272 *addr = buf;
273 *sz = elf_sz;
274 return 0;
275 }
276
crash_exclude_mem_range(struct crash_mem * mem,unsigned long long mstart,unsigned long long mend)277 int crash_exclude_mem_range(struct crash_mem *mem,
278 unsigned long long mstart, unsigned long long mend)
279 {
280 int i;
281 unsigned long long start, end, p_start, p_end;
282
283 for (i = 0; i < mem->nr_ranges; i++) {
284 start = mem->ranges[i].start;
285 end = mem->ranges[i].end;
286 p_start = mstart;
287 p_end = mend;
288
289 if (p_start > end)
290 continue;
291
292 /*
293 * Because the memory ranges in mem->ranges are stored in
294 * ascending order, when we detect `p_end < start`, we can
295 * immediately exit the for loop, as the subsequent memory
296 * ranges will definitely be outside the range we are looking
297 * for.
298 */
299 if (p_end < start)
300 break;
301
302 /* Truncate any area outside of range */
303 if (p_start < start)
304 p_start = start;
305 if (p_end > end)
306 p_end = end;
307
308 /* Found completely overlapping range */
309 if (p_start == start && p_end == end) {
310 memmove(&mem->ranges[i], &mem->ranges[i + 1],
311 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
312 i--;
313 mem->nr_ranges--;
314 } else if (p_start > start && p_end < end) {
315 /* Split original range */
316 if (mem->nr_ranges >= mem->max_nr_ranges)
317 return -ENOMEM;
318
319 memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
320 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
321
322 mem->ranges[i].end = p_start - 1;
323 mem->ranges[i + 1].start = p_end + 1;
324 mem->ranges[i + 1].end = end;
325
326 i++;
327 mem->nr_ranges++;
328 } else if (p_start != start)
329 mem->ranges[i].end = p_start - 1;
330 else
331 mem->ranges[i].start = p_end + 1;
332 }
333
334 return 0;
335 }
336
crash_get_memory_size(void)337 ssize_t crash_get_memory_size(void)
338 {
339 ssize_t size = 0;
340
341 if (!kexec_trylock())
342 return -EBUSY;
343
344 size += crash_resource_size(&crashk_res);
345 size += crash_resource_size(&crashk_low_res);
346
347 kexec_unlock();
348 return size;
349 }
350
__crash_shrink_memory(struct resource * old_res,unsigned long new_size)351 static int __crash_shrink_memory(struct resource *old_res,
352 unsigned long new_size)
353 {
354 struct resource *ram_res;
355
356 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
357 if (!ram_res)
358 return -ENOMEM;
359
360 ram_res->start = old_res->start + new_size;
361 ram_res->end = old_res->end;
362 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
363 ram_res->name = "System RAM";
364
365 if (!new_size) {
366 release_resource(old_res);
367 old_res->start = 0;
368 old_res->end = 0;
369 } else {
370 crashk_res.end = ram_res->start - 1;
371 }
372
373 crash_free_reserved_phys_range(ram_res->start, ram_res->end);
374 insert_resource(&iomem_resource, ram_res);
375
376 return 0;
377 }
378
crash_shrink_memory(unsigned long new_size)379 int crash_shrink_memory(unsigned long new_size)
380 {
381 int ret = 0;
382 unsigned long old_size, low_size;
383
384 if (!kexec_trylock())
385 return -EBUSY;
386
387 if (kexec_crash_image) {
388 ret = -ENOENT;
389 goto unlock;
390 }
391
392 low_size = crash_resource_size(&crashk_low_res);
393 old_size = crash_resource_size(&crashk_res) + low_size;
394 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
395 if (new_size >= old_size) {
396 ret = (new_size == old_size) ? 0 : -EINVAL;
397 goto unlock;
398 }
399
400 /*
401 * (low_size > new_size) implies that low_size is greater than zero.
402 * This also means that if low_size is zero, the else branch is taken.
403 *
404 * If low_size is greater than 0, (low_size > new_size) indicates that
405 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
406 * needs to be shrunken.
407 */
408 if (low_size > new_size) {
409 ret = __crash_shrink_memory(&crashk_res, 0);
410 if (ret)
411 goto unlock;
412
413 ret = __crash_shrink_memory(&crashk_low_res, new_size);
414 } else {
415 ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
416 }
417
418 /* Swap crashk_res and crashk_low_res if needed */
419 if (!crashk_res.end && crashk_low_res.end) {
420 crashk_res.start = crashk_low_res.start;
421 crashk_res.end = crashk_low_res.end;
422 release_resource(&crashk_low_res);
423 crashk_low_res.start = 0;
424 crashk_low_res.end = 0;
425 insert_resource(&iomem_resource, &crashk_res);
426 }
427
428 unlock:
429 kexec_unlock();
430 return ret;
431 }
432
crash_save_cpu(struct pt_regs * regs,int cpu)433 void crash_save_cpu(struct pt_regs *regs, int cpu)
434 {
435 struct elf_prstatus prstatus;
436 u32 *buf;
437
438 if ((cpu < 0) || (cpu >= nr_cpu_ids))
439 return;
440
441 /* Using ELF notes here is opportunistic.
442 * I need a well defined structure format
443 * for the data I pass, and I need tags
444 * on the data to indicate what information I have
445 * squirrelled away. ELF notes happen to provide
446 * all of that, so there is no need to invent something new.
447 */
448 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
449 if (!buf)
450 return;
451 memset(&prstatus, 0, sizeof(prstatus));
452 prstatus.common.pr_pid = current->pid;
453 elf_core_copy_regs(&prstatus.pr_reg, regs);
454 buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
455 &prstatus, sizeof(prstatus));
456 final_note(buf);
457 }
458
459
460
crash_notes_memory_init(void)461 static int __init crash_notes_memory_init(void)
462 {
463 /* Allocate memory for saving cpu registers. */
464 size_t size, align;
465
466 /*
467 * crash_notes could be allocated across 2 vmalloc pages when percpu
468 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
469 * pages are also on 2 continuous physical pages. In this case the
470 * 2nd part of crash_notes in 2nd page could be lost since only the
471 * starting address and size of crash_notes are exported through sysfs.
472 * Here round up the size of crash_notes to the nearest power of two
473 * and pass it to __alloc_percpu as align value. This can make sure
474 * crash_notes is allocated inside one physical page.
475 */
476 size = sizeof(note_buf_t);
477 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
478
479 /*
480 * Break compile if size is bigger than PAGE_SIZE since crash_notes
481 * definitely will be in 2 pages with that.
482 */
483 BUILD_BUG_ON(size > PAGE_SIZE);
484
485 crash_notes = __alloc_percpu(size, align);
486 if (!crash_notes) {
487 pr_warn("Memory allocation for saving cpu register states failed\n");
488 return -ENOMEM;
489 }
490 return 0;
491 }
492 subsys_initcall(crash_notes_memory_init);
493
494 #endif /*CONFIG_CRASH_DUMP*/
495
496 #ifdef CONFIG_CRASH_HOTPLUG
497 #undef pr_fmt
498 #define pr_fmt(fmt) "crash hp: " fmt
499
500 /*
501 * Different than kexec/kdump loading/unloading/jumping/shrinking which
502 * usually rarely happen, there will be many crash hotplug events notified
503 * during one short period, e.g one memory board is hot added and memory
504 * regions are online. So mutex lock __crash_hotplug_lock is used to
505 * serialize the crash hotplug handling specifically.
506 */
507 static DEFINE_MUTEX(__crash_hotplug_lock);
508 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
509 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
510
511 /*
512 * This routine utilized when the crash_hotplug sysfs node is read.
513 * It reflects the kernel's ability/permission to update the kdump
514 * image directly.
515 */
crash_check_hotplug_support(void)516 int crash_check_hotplug_support(void)
517 {
518 int rc = 0;
519
520 crash_hotplug_lock();
521 /* Obtain lock while reading crash information */
522 if (!kexec_trylock()) {
523 if (!kexec_in_progress)
524 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
525 crash_hotplug_unlock();
526 return 0;
527 }
528 if (kexec_crash_image) {
529 rc = kexec_crash_image->hotplug_support;
530 }
531 /* Release lock now that update complete */
532 kexec_unlock();
533 crash_hotplug_unlock();
534
535 return rc;
536 }
537
538 /*
539 * To accurately reflect hot un/plug changes of CPU and Memory resources
540 * (including onling and offlining of those resources), the relevant
541 * kexec segments must be updated with latest CPU and Memory resources.
542 *
543 * Architectures must ensure two things for all segments that need
544 * updating during hotplug events:
545 *
546 * 1. Segments must be large enough to accommodate a growing number of
547 * resources.
548 * 2. Exclude the segments from SHA verification.
549 *
550 * For example, on most architectures, the elfcorehdr (which is passed
551 * to the crash kernel via the elfcorehdr= parameter) must include the
552 * new list of CPUs and memory. To make changes to the elfcorehdr, it
553 * should be large enough to permit a growing number of CPU and Memory
554 * resources. One can estimate the elfcorehdr memory size based on
555 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
556 * excluded from SHA verification by default if the architecture
557 * supports crash hotplug.
558 */
crash_handle_hotplug_event(unsigned int hp_action,unsigned int cpu,void * arg)559 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
560 {
561 struct kimage *image;
562
563 crash_hotplug_lock();
564 /* Obtain lock while changing crash information */
565 if (!kexec_trylock()) {
566 if (!kexec_in_progress)
567 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
568 crash_hotplug_unlock();
569 return;
570 }
571
572 /* Check kdump is not loaded */
573 if (!kexec_crash_image)
574 goto out;
575
576 image = kexec_crash_image;
577
578 /* Check that kexec segments update is permitted */
579 if (!image->hotplug_support)
580 goto out;
581
582 if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
583 hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
584 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
585 else
586 pr_debug("hp_action %u\n", hp_action);
587
588 /*
589 * The elfcorehdr_index is set to -1 when the struct kimage
590 * is allocated. Find the segment containing the elfcorehdr,
591 * if not already found.
592 */
593 if (image->elfcorehdr_index < 0) {
594 unsigned long mem;
595 unsigned char *ptr;
596 unsigned int n;
597
598 for (n = 0; n < image->nr_segments; n++) {
599 mem = image->segment[n].mem;
600 ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
601 if (ptr) {
602 /* The segment containing elfcorehdr */
603 if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
604 image->elfcorehdr_index = (int)n;
605 kunmap_local(ptr);
606 }
607 }
608 }
609
610 if (image->elfcorehdr_index < 0) {
611 pr_err("unable to locate elfcorehdr segment");
612 goto out;
613 }
614
615 /* Needed in order for the segments to be updated */
616 arch_kexec_unprotect_crashkres();
617
618 /* Differentiate between normal load and hotplug update */
619 image->hp_action = hp_action;
620
621 /* Now invoke arch-specific update handler */
622 arch_crash_handle_hotplug_event(image, arg);
623
624 /* No longer handling a hotplug event */
625 image->hp_action = KEXEC_CRASH_HP_NONE;
626 image->elfcorehdr_updated = true;
627
628 /* Change back to read-only */
629 arch_kexec_protect_crashkres();
630
631 /* Errors in the callback is not a reason to rollback state */
632 out:
633 /* Release lock now that update complete */
634 kexec_unlock();
635 crash_hotplug_unlock();
636 }
637
crash_memhp_notifier(struct notifier_block * nb,unsigned long val,void * arg)638 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
639 {
640 switch (val) {
641 case MEM_ONLINE:
642 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
643 KEXEC_CRASH_HP_INVALID_CPU, arg);
644 break;
645
646 case MEM_OFFLINE:
647 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
648 KEXEC_CRASH_HP_INVALID_CPU, arg);
649 break;
650 }
651 return NOTIFY_OK;
652 }
653
654 static struct notifier_block crash_memhp_nb = {
655 .notifier_call = crash_memhp_notifier,
656 .priority = 0
657 };
658
crash_cpuhp_online(unsigned int cpu)659 static int crash_cpuhp_online(unsigned int cpu)
660 {
661 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
662 return 0;
663 }
664
crash_cpuhp_offline(unsigned int cpu)665 static int crash_cpuhp_offline(unsigned int cpu)
666 {
667 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
668 return 0;
669 }
670
crash_hotplug_init(void)671 static int __init crash_hotplug_init(void)
672 {
673 int result = 0;
674
675 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
676 register_memory_notifier(&crash_memhp_nb);
677
678 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
679 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
680 "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
681 }
682
683 return result;
684 }
685
686 subsys_initcall(crash_hotplug_init);
687 #endif
688