1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25
26 struct cqhci_slot {
27 struct mmc_request *mrq;
28 unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
30 #define CQHCI_COMPLETED BIT(1)
31 #define CQHCI_HOST_CRC BIT(2)
32 #define CQHCI_HOST_TIMEOUT BIT(3)
33 #define CQHCI_HOST_OTHER BIT(4)
34 };
35
cqhci_halted(struct cqhci_host * cq_host)36 static bool cqhci_halted(struct cqhci_host *cq_host)
37 {
38 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
39 }
40
get_desc(struct cqhci_host * cq_host,u8 tag)41 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 return cq_host->desc_base + (tag * cq_host->slot_sz);
44 }
45
get_link_desc(struct cqhci_host * cq_host,u8 tag)46 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
47 {
48 u8 *desc = get_desc(cq_host, tag);
49
50 return desc + cq_host->task_desc_len;
51 }
52
get_trans_desc_offset(struct cqhci_host * cq_host,u8 tag)53 static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
54 {
55 return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
56 }
57
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)58 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
59 {
60 size_t offset = get_trans_desc_offset(cq_host, tag);
61
62 return cq_host->trans_desc_dma_base + offset;
63 }
64
get_trans_desc(struct cqhci_host * cq_host,u8 tag)65 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
66 {
67 size_t offset = get_trans_desc_offset(cq_host, tag);
68
69 return cq_host->trans_desc_base + offset;
70 }
71
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)72 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
73 {
74 u8 *link_temp;
75 dma_addr_t trans_temp;
76
77 link_temp = get_link_desc(cq_host, tag);
78 trans_temp = get_trans_desc_dma(cq_host, tag);
79
80 memset(link_temp, 0, cq_host->link_desc_len);
81 if (cq_host->link_desc_len > 8)
82 *(link_temp + 8) = 0;
83
84 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
85 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
86 return;
87 }
88
89 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
90
91 if (cq_host->dma64) {
92 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
93
94 data_addr[0] = cpu_to_le64(trans_temp);
95 } else {
96 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
97
98 data_addr[0] = cpu_to_le32(trans_temp);
99 }
100 }
101
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)102 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
103 {
104 cqhci_writel(cq_host, set, CQHCI_ISTE);
105 cqhci_writel(cq_host, set, CQHCI_ISGE);
106 }
107
108 #define DRV_NAME "cqhci"
109
110 #define CQHCI_DUMP(f, x...) \
111 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
112
cqhci_dumpregs(struct cqhci_host * cq_host)113 static void cqhci_dumpregs(struct cqhci_host *cq_host)
114 {
115 struct mmc_host *mmc = cq_host->mmc;
116
117 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
118
119 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
120 cqhci_readl(cq_host, CQHCI_CAP),
121 cqhci_readl(cq_host, CQHCI_VER));
122 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
123 cqhci_readl(cq_host, CQHCI_CFG),
124 cqhci_readl(cq_host, CQHCI_CTL));
125 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
126 cqhci_readl(cq_host, CQHCI_IS),
127 cqhci_readl(cq_host, CQHCI_ISTE));
128 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
129 cqhci_readl(cq_host, CQHCI_ISGE),
130 cqhci_readl(cq_host, CQHCI_IC));
131 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
132 cqhci_readl(cq_host, CQHCI_TDLBA),
133 cqhci_readl(cq_host, CQHCI_TDLBAU));
134 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
135 cqhci_readl(cq_host, CQHCI_TDBR),
136 cqhci_readl(cq_host, CQHCI_TCN));
137 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
138 cqhci_readl(cq_host, CQHCI_DQS),
139 cqhci_readl(cq_host, CQHCI_DPT));
140 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
141 cqhci_readl(cq_host, CQHCI_TCLR),
142 cqhci_readl(cq_host, CQHCI_SSC1));
143 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
144 cqhci_readl(cq_host, CQHCI_SSC2),
145 cqhci_readl(cq_host, CQHCI_CRDCT));
146 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
147 cqhci_readl(cq_host, CQHCI_RMEM),
148 cqhci_readl(cq_host, CQHCI_TERRI));
149 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
150 cqhci_readl(cq_host, CQHCI_CRI),
151 cqhci_readl(cq_host, CQHCI_CRA));
152
153 if (cq_host->ops->dumpregs)
154 cq_host->ops->dumpregs(mmc);
155 else
156 CQHCI_DUMP(": ===========================================\n");
157 }
158
159 /*
160 * The allocated descriptor table for task, link & transfer descriptors
161 * looks like:
162 * |----------|
163 * |task desc | |->|----------|
164 * |----------| | |trans desc|
165 * |link desc-|->| |----------|
166 * |----------| .
167 * . .
168 * no. of slots max-segs
169 * . |----------|
170 * |----------|
171 * The idea here is to create the [task+trans] table and mark & point the
172 * link desc to the transfer desc table on a per slot basis.
173 */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)174 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
175 {
176 int i = 0;
177
178 /* task descriptor can be 64/128 bit irrespective of arch */
179 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
180 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
181 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
182 cq_host->task_desc_len = 16;
183 } else {
184 cq_host->task_desc_len = 8;
185 }
186
187 /*
188 * 96 bits length of transfer desc instead of 128 bits which means
189 * ADMA would expect next valid descriptor at the 96th bit
190 * or 128th bit
191 */
192 if (cq_host->dma64) {
193 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
194 cq_host->trans_desc_len = 12;
195 else
196 cq_host->trans_desc_len = 16;
197 cq_host->link_desc_len = 16;
198 } else {
199 cq_host->trans_desc_len = 8;
200 cq_host->link_desc_len = 8;
201 }
202
203 /* total size of a slot: 1 task & 1 transfer (link) */
204 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
205
206 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
207
208 cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
209
210 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
211 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
212 cq_host->slot_sz);
213
214 /*
215 * allocate a dma-mapped chunk of memory for the descriptors
216 * allocate a dma-mapped chunk of memory for link descriptors
217 * setup each link-desc memory offset per slot-number to
218 * the descriptor table.
219 */
220 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
221 cq_host->desc_size,
222 &cq_host->desc_dma_base,
223 GFP_KERNEL);
224 if (!cq_host->desc_base)
225 return -ENOMEM;
226
227 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
228 cq_host->data_size,
229 &cq_host->trans_desc_dma_base,
230 GFP_KERNEL);
231 if (!cq_host->trans_desc_base) {
232 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
233 cq_host->desc_base,
234 cq_host->desc_dma_base);
235 cq_host->desc_base = NULL;
236 cq_host->desc_dma_base = 0;
237 return -ENOMEM;
238 }
239
240 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
241 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
242 (unsigned long long)cq_host->desc_dma_base,
243 (unsigned long long)cq_host->trans_desc_dma_base);
244
245 for (; i < (cq_host->num_slots); i++)
246 setup_trans_desc(cq_host, i);
247
248 return 0;
249 }
250
__cqhci_enable(struct cqhci_host * cq_host)251 static void __cqhci_enable(struct cqhci_host *cq_host)
252 {
253 struct mmc_host *mmc = cq_host->mmc;
254 u32 cqcfg;
255
256 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
257
258 /* Configuration must not be changed while enabled */
259 if (cqcfg & CQHCI_ENABLE) {
260 cqcfg &= ~CQHCI_ENABLE;
261 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
262 }
263
264 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
265
266 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
267 cqcfg |= CQHCI_DCMD;
268
269 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
270 cqcfg |= CQHCI_TASK_DESC_SZ;
271
272 if (mmc->caps2 & MMC_CAP2_CRYPTO)
273 cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
274
275 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
276
277 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
278 CQHCI_TDLBA);
279 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
280 CQHCI_TDLBAU);
281
282 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
283
284 cqhci_set_irqs(cq_host, 0);
285
286 cqcfg |= CQHCI_ENABLE;
287
288 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
289
290 if (cqhci_halted(cq_host))
291 cqhci_writel(cq_host, 0, CQHCI_CTL);
292
293 mmc->cqe_on = true;
294
295 if (cq_host->ops->enable)
296 cq_host->ops->enable(mmc);
297
298 /* Ensure all writes are done before interrupts are enabled */
299 wmb();
300
301 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
302
303 cq_host->activated = true;
304 }
305
__cqhci_disable(struct cqhci_host * cq_host)306 static void __cqhci_disable(struct cqhci_host *cq_host)
307 {
308 u32 cqcfg;
309
310 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
311 cqcfg &= ~CQHCI_ENABLE;
312 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
313
314 cq_host->mmc->cqe_on = false;
315
316 cq_host->activated = false;
317 }
318
cqhci_deactivate(struct mmc_host * mmc)319 int cqhci_deactivate(struct mmc_host *mmc)
320 {
321 struct cqhci_host *cq_host = mmc->cqe_private;
322
323 if (cq_host->enabled && cq_host->activated)
324 __cqhci_disable(cq_host);
325
326 return 0;
327 }
328 EXPORT_SYMBOL(cqhci_deactivate);
329
cqhci_resume(struct mmc_host * mmc)330 int cqhci_resume(struct mmc_host *mmc)
331 {
332 /* Re-enable is done upon first request */
333 return 0;
334 }
335 EXPORT_SYMBOL(cqhci_resume);
336
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)337 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
338 {
339 struct cqhci_host *cq_host = mmc->cqe_private;
340 int err;
341
342 if (!card->ext_csd.cmdq_en)
343 return -EINVAL;
344
345 if (cq_host->enabled)
346 return 0;
347
348 cq_host->rca = card->rca;
349
350 err = cqhci_host_alloc_tdl(cq_host);
351 if (err) {
352 pr_err("%s: Failed to enable CQE, error %d\n",
353 mmc_hostname(mmc), err);
354 return err;
355 }
356
357 __cqhci_enable(cq_host);
358
359 cq_host->enabled = true;
360
361 #ifdef DEBUG
362 cqhci_dumpregs(cq_host);
363 #endif
364 return 0;
365 }
366
367 /* CQHCI is idle and should halt immediately, so set a small timeout */
368 #define CQHCI_OFF_TIMEOUT 100
369
cqhci_read_ctl(struct cqhci_host * cq_host)370 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
371 {
372 return cqhci_readl(cq_host, CQHCI_CTL);
373 }
374
cqhci_off(struct mmc_host * mmc)375 static void cqhci_off(struct mmc_host *mmc)
376 {
377 struct cqhci_host *cq_host = mmc->cqe_private;
378 u32 reg;
379 int err;
380
381 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
382 return;
383
384 if (cq_host->ops->disable)
385 cq_host->ops->disable(mmc, false);
386
387 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
388
389 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
390 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
391 if (err < 0)
392 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
393 else
394 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
395
396 if (cq_host->ops->post_disable)
397 cq_host->ops->post_disable(mmc);
398
399 mmc->cqe_on = false;
400 }
401
cqhci_disable(struct mmc_host * mmc)402 static void cqhci_disable(struct mmc_host *mmc)
403 {
404 struct cqhci_host *cq_host = mmc->cqe_private;
405
406 if (!cq_host->enabled)
407 return;
408
409 cqhci_off(mmc);
410
411 __cqhci_disable(cq_host);
412
413 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
414 cq_host->trans_desc_base,
415 cq_host->trans_desc_dma_base);
416
417 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
418 cq_host->desc_base,
419 cq_host->desc_dma_base);
420
421 cq_host->trans_desc_base = NULL;
422 cq_host->desc_base = NULL;
423
424 cq_host->enabled = false;
425 }
426
cqhci_prep_task_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)427 static void cqhci_prep_task_desc(struct mmc_request *mrq,
428 struct cqhci_host *cq_host, int tag)
429 {
430 __le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
431 u32 req_flags = mrq->data->flags;
432 u64 desc0;
433
434 desc0 = CQHCI_VALID(1) |
435 CQHCI_END(1) |
436 CQHCI_INT(1) |
437 CQHCI_ACT(0x5) |
438 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
439 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
440 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
441 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
442 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
443 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
444 CQHCI_BLK_COUNT(mrq->data->blocks) |
445 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
446
447 task_desc[0] = cpu_to_le64(desc0);
448
449 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
450 u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
451
452 task_desc[1] = cpu_to_le64(desc1);
453
454 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
455 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
456 } else {
457 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
458 mmc_hostname(mrq->host), mrq->tag, desc0);
459 }
460 }
461
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)462 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
463 {
464 int sg_count;
465 struct mmc_data *data = mrq->data;
466
467 if (!data)
468 return -EINVAL;
469
470 sg_count = dma_map_sg(mmc_dev(host), data->sg,
471 data->sg_len,
472 (data->flags & MMC_DATA_WRITE) ?
473 DMA_TO_DEVICE : DMA_FROM_DEVICE);
474 if (!sg_count) {
475 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
476 return -ENOMEM;
477 }
478
479 return sg_count;
480 }
481
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)482 void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
483 bool dma64)
484 {
485 __le32 *attr = (__le32 __force *)desc;
486
487 *attr = (CQHCI_VALID(1) |
488 CQHCI_END(end ? 1 : 0) |
489 CQHCI_INT(0) |
490 CQHCI_ACT(0x4) |
491 CQHCI_DAT_LENGTH(len));
492
493 if (dma64) {
494 __le64 *dataddr = (__le64 __force *)(desc + 4);
495
496 dataddr[0] = cpu_to_le64(addr);
497 } else {
498 __le32 *dataddr = (__le32 __force *)(desc + 4);
499
500 dataddr[0] = cpu_to_le32(addr);
501 }
502 }
503 EXPORT_SYMBOL(cqhci_set_tran_desc);
504
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)505 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
506 struct cqhci_host *cq_host, int tag)
507 {
508 struct mmc_data *data = mrq->data;
509 int i, sg_count, len;
510 bool end = false;
511 bool dma64 = cq_host->dma64;
512 dma_addr_t addr;
513 u8 *desc;
514 struct scatterlist *sg;
515
516 sg_count = cqhci_dma_map(mrq->host, mrq);
517 if (sg_count < 0) {
518 pr_err("%s: %s: unable to map sg lists, %d\n",
519 mmc_hostname(mrq->host), __func__, sg_count);
520 return sg_count;
521 }
522
523 desc = get_trans_desc(cq_host, tag);
524
525 for_each_sg(data->sg, sg, sg_count, i) {
526 addr = sg_dma_address(sg);
527 len = sg_dma_len(sg);
528
529 if ((i+1) == sg_count)
530 end = true;
531 if (cq_host->ops->set_tran_desc)
532 cq_host->ops->set_tran_desc(cq_host, &desc, addr, len, end, dma64);
533 else
534 cqhci_set_tran_desc(desc, addr, len, end, dma64);
535
536 desc += cq_host->trans_desc_len;
537 }
538
539 return 0;
540 }
541
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)542 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
543 struct mmc_request *mrq)
544 {
545 u64 *task_desc = NULL;
546 u64 data = 0;
547 u8 resp_type;
548 u8 *desc;
549 __le64 *dataddr;
550 struct cqhci_host *cq_host = mmc->cqe_private;
551 u8 timing;
552
553 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
554 resp_type = 0x0;
555 timing = 0x1;
556 } else {
557 if (mrq->cmd->flags & MMC_RSP_R1B) {
558 resp_type = 0x3;
559 timing = 0x0;
560 } else {
561 resp_type = 0x2;
562 timing = 0x1;
563 }
564 }
565
566 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
567 memset(task_desc, 0, cq_host->task_desc_len);
568 data |= (CQHCI_VALID(1) |
569 CQHCI_END(1) |
570 CQHCI_INT(1) |
571 CQHCI_QBAR(1) |
572 CQHCI_ACT(0x5) |
573 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
574 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
575 if (cq_host->ops->update_dcmd_desc)
576 cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
577 *task_desc |= data;
578 desc = (u8 *)task_desc;
579 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
580 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
581 dataddr = (__le64 __force *)(desc + 4);
582 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
583
584 }
585
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)586 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
587 {
588 struct mmc_data *data = mrq->data;
589
590 if (data) {
591 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
592 (data->flags & MMC_DATA_READ) ?
593 DMA_FROM_DEVICE : DMA_TO_DEVICE);
594 }
595 }
596
cqhci_tag(struct mmc_request * mrq)597 static inline int cqhci_tag(struct mmc_request *mrq)
598 {
599 return mrq->cmd ? DCMD_SLOT : mrq->tag;
600 }
601
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)602 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
603 {
604 int err = 0;
605 int tag = cqhci_tag(mrq);
606 struct cqhci_host *cq_host = mmc->cqe_private;
607 unsigned long flags;
608
609 if (!cq_host->enabled) {
610 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
611 return -EINVAL;
612 }
613
614 /* First request after resume has to re-enable */
615 if (!cq_host->activated)
616 __cqhci_enable(cq_host);
617
618 if (!mmc->cqe_on) {
619 if (cq_host->ops->pre_enable)
620 cq_host->ops->pre_enable(mmc);
621
622 cqhci_writel(cq_host, 0, CQHCI_CTL);
623 mmc->cqe_on = true;
624 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
625 if (cqhci_halted(cq_host)) {
626 pr_err("%s: cqhci: CQE failed to exit halt state\n",
627 mmc_hostname(mmc));
628 }
629 if (cq_host->ops->enable)
630 cq_host->ops->enable(mmc);
631 }
632
633 if (mrq->data) {
634 cqhci_prep_task_desc(mrq, cq_host, tag);
635
636 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
637 if (err) {
638 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
639 mmc_hostname(mmc), err);
640 return err;
641 }
642 } else {
643 cqhci_prep_dcmd_desc(mmc, mrq);
644 }
645
646 spin_lock_irqsave(&cq_host->lock, flags);
647
648 if (cq_host->recovery_halt) {
649 err = -EBUSY;
650 goto out_unlock;
651 }
652
653 cq_host->slot[tag].mrq = mrq;
654 cq_host->slot[tag].flags = 0;
655
656 cq_host->qcnt += 1;
657 /* Make sure descriptors are ready before ringing the doorbell */
658 wmb();
659 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
660 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
661 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
662 mmc_hostname(mmc), tag);
663 out_unlock:
664 spin_unlock_irqrestore(&cq_host->lock, flags);
665
666 if (err)
667 cqhci_post_req(mmc, mrq);
668
669 return err;
670 }
671
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)672 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
673 bool notify)
674 {
675 struct cqhci_host *cq_host = mmc->cqe_private;
676
677 if (!cq_host->recovery_halt) {
678 cq_host->recovery_halt = true;
679 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
680 wake_up(&cq_host->wait_queue);
681 if (notify && mrq->recovery_notifier)
682 mrq->recovery_notifier(mrq);
683 }
684 }
685
cqhci_error_flags(int error1,int error2)686 static unsigned int cqhci_error_flags(int error1, int error2)
687 {
688 int error = error1 ? error1 : error2;
689
690 switch (error) {
691 case -EILSEQ:
692 return CQHCI_HOST_CRC;
693 case -ETIMEDOUT:
694 return CQHCI_HOST_TIMEOUT;
695 default:
696 return CQHCI_HOST_OTHER;
697 }
698 }
699
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)700 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
701 int data_error)
702 {
703 struct cqhci_host *cq_host = mmc->cqe_private;
704 struct cqhci_slot *slot;
705 u32 terri;
706 u32 tdpe;
707 int tag;
708
709 spin_lock(&cq_host->lock);
710
711 terri = cqhci_readl(cq_host, CQHCI_TERRI);
712
713 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
714 mmc_hostname(mmc), status, cmd_error, data_error, terri);
715
716 /* Forget about errors when recovery has already been triggered */
717 if (cq_host->recovery_halt)
718 goto out_unlock;
719
720 if (!cq_host->qcnt) {
721 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
722 mmc_hostname(mmc), status, cmd_error, data_error,
723 terri);
724 goto out_unlock;
725 }
726
727 if (CQHCI_TERRI_C_VALID(terri)) {
728 tag = CQHCI_TERRI_C_TASK(terri);
729 slot = &cq_host->slot[tag];
730 if (slot->mrq) {
731 slot->flags = cqhci_error_flags(cmd_error, data_error);
732 cqhci_recovery_needed(mmc, slot->mrq, true);
733 }
734 }
735
736 if (CQHCI_TERRI_D_VALID(terri)) {
737 tag = CQHCI_TERRI_D_TASK(terri);
738 slot = &cq_host->slot[tag];
739 if (slot->mrq) {
740 slot->flags = cqhci_error_flags(data_error, cmd_error);
741 cqhci_recovery_needed(mmc, slot->mrq, true);
742 }
743 }
744
745 /*
746 * Handle ICCE ("Invalid Crypto Configuration Error"). This should
747 * never happen, since the block layer ensures that all crypto-enabled
748 * I/O requests have a valid keyslot before they reach the driver.
749 *
750 * Note that GCE ("General Crypto Error") is different; it already got
751 * handled above by checking TERRI.
752 */
753 if (status & CQHCI_IS_ICCE) {
754 tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
755 WARN_ONCE(1,
756 "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
757 mmc_hostname(mmc), status, tdpe);
758 while (tdpe != 0) {
759 tag = __ffs(tdpe);
760 tdpe &= ~(1 << tag);
761 slot = &cq_host->slot[tag];
762 if (!slot->mrq)
763 continue;
764 slot->flags = cqhci_error_flags(data_error, cmd_error);
765 cqhci_recovery_needed(mmc, slot->mrq, true);
766 }
767 }
768
769 if (!cq_host->recovery_halt) {
770 /*
771 * The only way to guarantee forward progress is to mark at
772 * least one task in error, so if none is indicated, pick one.
773 */
774 for (tag = 0; tag < NUM_SLOTS; tag++) {
775 slot = &cq_host->slot[tag];
776 if (!slot->mrq)
777 continue;
778 slot->flags = cqhci_error_flags(data_error, cmd_error);
779 cqhci_recovery_needed(mmc, slot->mrq, true);
780 break;
781 }
782 }
783
784 out_unlock:
785 spin_unlock(&cq_host->lock);
786 }
787
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)788 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
789 {
790 struct cqhci_host *cq_host = mmc->cqe_private;
791 struct cqhci_slot *slot = &cq_host->slot[tag];
792 struct mmc_request *mrq = slot->mrq;
793 struct mmc_data *data;
794
795 if (!mrq) {
796 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
797 mmc_hostname(mmc), tag);
798 return;
799 }
800
801 /* No completions allowed during recovery */
802 if (cq_host->recovery_halt) {
803 slot->flags |= CQHCI_COMPLETED;
804 return;
805 }
806
807 slot->mrq = NULL;
808
809 cq_host->qcnt -= 1;
810
811 data = mrq->data;
812 if (data) {
813 if (data->error)
814 data->bytes_xfered = 0;
815 else
816 data->bytes_xfered = data->blksz * data->blocks;
817 }
818
819 mmc_cqe_request_done(mmc, mrq);
820 }
821
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)822 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
823 int data_error)
824 {
825 u32 status;
826 unsigned long tag = 0, comp_status;
827 struct cqhci_host *cq_host = mmc->cqe_private;
828
829 status = cqhci_readl(cq_host, CQHCI_IS);
830 cqhci_writel(cq_host, status, CQHCI_IS);
831
832 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
833
834 if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
835 cmd_error || data_error) {
836 if (status & CQHCI_IS_RED)
837 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED);
838 if (status & CQHCI_IS_GCE)
839 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE);
840 if (status & CQHCI_IS_ICCE)
841 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE);
842 cqhci_error_irq(mmc, status, cmd_error, data_error);
843 }
844
845 if (status & CQHCI_IS_TCC) {
846 /* read TCN and complete the request */
847 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
848 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
849 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
850 mmc_hostname(mmc), comp_status);
851
852 spin_lock(&cq_host->lock);
853
854 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
855 /* complete the corresponding mrq */
856 pr_debug("%s: cqhci: completing tag %lu\n",
857 mmc_hostname(mmc), tag);
858 cqhci_finish_mrq(mmc, tag);
859 }
860
861 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
862 cq_host->waiting_for_idle = false;
863 wake_up(&cq_host->wait_queue);
864 }
865
866 spin_unlock(&cq_host->lock);
867 }
868
869 if (status & CQHCI_IS_TCL)
870 wake_up(&cq_host->wait_queue);
871
872 if (status & CQHCI_IS_HAC)
873 wake_up(&cq_host->wait_queue);
874
875 return IRQ_HANDLED;
876 }
877 EXPORT_SYMBOL(cqhci_irq);
878
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)879 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
880 {
881 unsigned long flags;
882 bool is_idle;
883
884 spin_lock_irqsave(&cq_host->lock, flags);
885 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
886 *ret = cq_host->recovery_halt ? -EBUSY : 0;
887 cq_host->waiting_for_idle = !is_idle;
888 spin_unlock_irqrestore(&cq_host->lock, flags);
889
890 return is_idle;
891 }
892
cqhci_wait_for_idle(struct mmc_host * mmc)893 static int cqhci_wait_for_idle(struct mmc_host *mmc)
894 {
895 struct cqhci_host *cq_host = mmc->cqe_private;
896 int ret;
897
898 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
899
900 return ret;
901 }
902
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)903 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
904 bool *recovery_needed)
905 {
906 struct cqhci_host *cq_host = mmc->cqe_private;
907 int tag = cqhci_tag(mrq);
908 struct cqhci_slot *slot = &cq_host->slot[tag];
909 unsigned long flags;
910 bool timed_out;
911
912 spin_lock_irqsave(&cq_host->lock, flags);
913 timed_out = slot->mrq == mrq;
914 if (timed_out) {
915 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
916 cqhci_recovery_needed(mmc, mrq, false);
917 *recovery_needed = cq_host->recovery_halt;
918 }
919 spin_unlock_irqrestore(&cq_host->lock, flags);
920
921 if (timed_out) {
922 pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
923 mmc_hostname(mmc), tag, cq_host->qcnt);
924 cqhci_dumpregs(cq_host);
925 }
926
927 return timed_out;
928 }
929
cqhci_tasks_cleared(struct cqhci_host * cq_host)930 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
931 {
932 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
933 }
934
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)935 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
936 {
937 struct cqhci_host *cq_host = mmc->cqe_private;
938 bool ret;
939 u32 ctl;
940
941 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
942
943 ctl = cqhci_readl(cq_host, CQHCI_CTL);
944 ctl |= CQHCI_CLEAR_ALL_TASKS;
945 cqhci_writel(cq_host, ctl, CQHCI_CTL);
946
947 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
948 msecs_to_jiffies(timeout) + 1);
949
950 cqhci_set_irqs(cq_host, 0);
951
952 ret = cqhci_tasks_cleared(cq_host);
953
954 if (!ret)
955 pr_warn("%s: cqhci: Failed to clear tasks\n",
956 mmc_hostname(mmc));
957
958 return ret;
959 }
960
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)961 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
962 {
963 struct cqhci_host *cq_host = mmc->cqe_private;
964 bool ret;
965 u32 ctl;
966
967 if (cqhci_halted(cq_host))
968 return true;
969
970 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
971
972 ctl = cqhci_readl(cq_host, CQHCI_CTL);
973 ctl |= CQHCI_HALT;
974 cqhci_writel(cq_host, ctl, CQHCI_CTL);
975
976 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
977 msecs_to_jiffies(timeout) + 1);
978
979 cqhci_set_irqs(cq_host, 0);
980
981 ret = cqhci_halted(cq_host);
982
983 if (!ret)
984 pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
985
986 return ret;
987 }
988
989 /*
990 * After halting we expect to be able to use the command line. We interpret the
991 * failure to halt to mean the data lines might still be in use (and the upper
992 * layers will need to send a STOP command), however failing to halt complicates
993 * the recovery, so set a timeout that would reasonably allow I/O to complete.
994 */
995 #define CQHCI_START_HALT_TIMEOUT 500
996
cqhci_recovery_start(struct mmc_host * mmc)997 static void cqhci_recovery_start(struct mmc_host *mmc)
998 {
999 struct cqhci_host *cq_host = mmc->cqe_private;
1000
1001 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1002
1003 WARN_ON(!cq_host->recovery_halt);
1004
1005 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
1006
1007 if (cq_host->ops->disable)
1008 cq_host->ops->disable(mmc, true);
1009
1010 mmc->cqe_on = false;
1011 }
1012
cqhci_error_from_flags(unsigned int flags)1013 static int cqhci_error_from_flags(unsigned int flags)
1014 {
1015 if (!flags)
1016 return 0;
1017
1018 /* CRC errors might indicate re-tuning so prefer to report that */
1019 if (flags & CQHCI_HOST_CRC)
1020 return -EILSEQ;
1021
1022 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1023 return -ETIMEDOUT;
1024
1025 return -EIO;
1026 }
1027
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)1028 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1029 {
1030 struct cqhci_slot *slot = &cq_host->slot[tag];
1031 struct mmc_request *mrq = slot->mrq;
1032 struct mmc_data *data;
1033
1034 if (!mrq)
1035 return;
1036
1037 slot->mrq = NULL;
1038
1039 cq_host->qcnt -= 1;
1040
1041 data = mrq->data;
1042 if (data) {
1043 data->bytes_xfered = 0;
1044 data->error = cqhci_error_from_flags(slot->flags);
1045 } else {
1046 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1047 }
1048
1049 mmc_cqe_request_done(cq_host->mmc, mrq);
1050 }
1051
cqhci_recover_mrqs(struct cqhci_host * cq_host)1052 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1053 {
1054 int i;
1055
1056 for (i = 0; i < cq_host->num_slots; i++)
1057 cqhci_recover_mrq(cq_host, i);
1058 }
1059
1060 /*
1061 * By now the command and data lines should be unused so there is no reason for
1062 * CQHCI to take a long time to halt, but if it doesn't halt there could be
1063 * problems clearing tasks, so be generous.
1064 */
1065 #define CQHCI_FINISH_HALT_TIMEOUT 20
1066
1067 /* CQHCI could be expected to clear it's internal state pretty quickly */
1068 #define CQHCI_CLEAR_TIMEOUT 20
1069
cqhci_recovery_finish(struct mmc_host * mmc)1070 static void cqhci_recovery_finish(struct mmc_host *mmc)
1071 {
1072 struct cqhci_host *cq_host = mmc->cqe_private;
1073 unsigned long flags;
1074 u32 cqcfg;
1075 bool ok;
1076
1077 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1078
1079 WARN_ON(!cq_host->recovery_halt);
1080
1081 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1082
1083 /*
1084 * The specification contradicts itself, by saying that tasks cannot be
1085 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1086 * be disabled/re-enabled, but not to disable before clearing tasks.
1087 * Have a go anyway.
1088 */
1089 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1090 ok = false;
1091
1092 /* Disable to make sure tasks really are cleared */
1093 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1094 cqcfg &= ~CQHCI_ENABLE;
1095 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1096
1097 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1098 cqcfg |= CQHCI_ENABLE;
1099 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1100
1101 cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1102
1103 if (!ok)
1104 cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT);
1105
1106 cqhci_recover_mrqs(cq_host);
1107
1108 WARN_ON(cq_host->qcnt);
1109
1110 spin_lock_irqsave(&cq_host->lock, flags);
1111 cq_host->qcnt = 0;
1112 cq_host->recovery_halt = false;
1113 mmc->cqe_on = false;
1114 spin_unlock_irqrestore(&cq_host->lock, flags);
1115
1116 /* Ensure all writes are done before interrupts are re-enabled */
1117 wmb();
1118
1119 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1120
1121 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1122
1123 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1124 }
1125
1126 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1127 .cqe_enable = cqhci_enable,
1128 .cqe_disable = cqhci_disable,
1129 .cqe_request = cqhci_request,
1130 .cqe_post_req = cqhci_post_req,
1131 .cqe_off = cqhci_off,
1132 .cqe_wait_for_idle = cqhci_wait_for_idle,
1133 .cqe_timeout = cqhci_timeout,
1134 .cqe_recovery_start = cqhci_recovery_start,
1135 .cqe_recovery_finish = cqhci_recovery_finish,
1136 };
1137
cqhci_pltfm_init(struct platform_device * pdev)1138 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1139 {
1140 struct cqhci_host *cq_host;
1141 struct resource *cqhci_memres = NULL;
1142
1143 /* check and setup CMDQ interface */
1144 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1145 "cqhci");
1146 if (!cqhci_memres) {
1147 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1148 return ERR_PTR(-EINVAL);
1149 }
1150
1151 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1152 if (!cq_host)
1153 return ERR_PTR(-ENOMEM);
1154 cq_host->mmio = devm_ioremap(&pdev->dev,
1155 cqhci_memres->start,
1156 resource_size(cqhci_memres));
1157 if (!cq_host->mmio) {
1158 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1159 return ERR_PTR(-EBUSY);
1160 }
1161 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1162
1163 return cq_host;
1164 }
1165 EXPORT_SYMBOL(cqhci_pltfm_init);
1166
cqhci_ver_major(struct cqhci_host * cq_host)1167 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1168 {
1169 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1170 }
1171
cqhci_ver_minor(struct cqhci_host * cq_host)1172 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1173 {
1174 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1175
1176 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1177 }
1178
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1179 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1180 bool dma64)
1181 {
1182 int err;
1183
1184 cq_host->dma64 = dma64;
1185 cq_host->mmc = mmc;
1186 cq_host->mmc->cqe_private = cq_host;
1187
1188 cq_host->num_slots = NUM_SLOTS;
1189 cq_host->dcmd_slot = DCMD_SLOT;
1190
1191 mmc->cqe_ops = &cqhci_cqe_ops;
1192
1193 mmc->cqe_qdepth = NUM_SLOTS;
1194 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1195 mmc->cqe_qdepth -= 1;
1196
1197 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1198 sizeof(*cq_host->slot), GFP_KERNEL);
1199 if (!cq_host->slot) {
1200 err = -ENOMEM;
1201 goto out_err;
1202 }
1203
1204 err = cqhci_crypto_init(cq_host);
1205 if (err) {
1206 pr_err("%s: CQHCI crypto initialization failed\n",
1207 mmc_hostname(mmc));
1208 goto out_err;
1209 }
1210
1211 spin_lock_init(&cq_host->lock);
1212
1213 init_completion(&cq_host->halt_comp);
1214 init_waitqueue_head(&cq_host->wait_queue);
1215
1216 pr_info("%s: CQHCI version %u.%02u\n",
1217 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1218 cqhci_ver_minor(cq_host));
1219
1220 return 0;
1221
1222 out_err:
1223 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1224 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1225 cqhci_ver_minor(cq_host), err);
1226 return err;
1227 }
1228 EXPORT_SYMBOL(cqhci_init);
1229
1230 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1231 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1232 MODULE_LICENSE("GPL v2");
1233