1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include "cgroup-internal.h"
4 #include "cpuset-internal.h"
5
6 /*
7 * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously
8 */
9 struct cpuset_remove_tasks_struct {
10 struct work_struct work;
11 struct cpuset *cs;
12 };
13
14 /*
15 * Frequency meter - How fast is some event occurring?
16 *
17 * These routines manage a digitally filtered, constant time based,
18 * event frequency meter. There are four routines:
19 * fmeter_init() - initialize a frequency meter.
20 * fmeter_markevent() - called each time the event happens.
21 * fmeter_getrate() - returns the recent rate of such events.
22 * fmeter_update() - internal routine used to update fmeter.
23 *
24 * A common data structure is passed to each of these routines,
25 * which is used to keep track of the state required to manage the
26 * frequency meter and its digital filter.
27 *
28 * The filter works on the number of events marked per unit time.
29 * The filter is single-pole low-pass recursive (IIR). The time unit
30 * is 1 second. Arithmetic is done using 32-bit integers scaled to
31 * simulate 3 decimal digits of precision (multiplied by 1000).
32 *
33 * With an FM_COEF of 933, and a time base of 1 second, the filter
34 * has a half-life of 10 seconds, meaning that if the events quit
35 * happening, then the rate returned from the fmeter_getrate()
36 * will be cut in half each 10 seconds, until it converges to zero.
37 *
38 * It is not worth doing a real infinitely recursive filter. If more
39 * than FM_MAXTICKS ticks have elapsed since the last filter event,
40 * just compute FM_MAXTICKS ticks worth, by which point the level
41 * will be stable.
42 *
43 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
44 * arithmetic overflow in the fmeter_update() routine.
45 *
46 * Given the simple 32 bit integer arithmetic used, this meter works
47 * best for reporting rates between one per millisecond (msec) and
48 * one per 32 (approx) seconds. At constant rates faster than one
49 * per msec it maxes out at values just under 1,000,000. At constant
50 * rates between one per msec, and one per second it will stabilize
51 * to a value N*1000, where N is the rate of events per second.
52 * At constant rates between one per second and one per 32 seconds,
53 * it will be choppy, moving up on the seconds that have an event,
54 * and then decaying until the next event. At rates slower than
55 * about one in 32 seconds, it decays all the way back to zero between
56 * each event.
57 */
58
59 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
60 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
61 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
62 #define FM_SCALE 1000 /* faux fixed point scale */
63
64 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)65 void fmeter_init(struct fmeter *fmp)
66 {
67 fmp->cnt = 0;
68 fmp->val = 0;
69 fmp->time = 0;
70 spin_lock_init(&fmp->lock);
71 }
72
73 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)74 static void fmeter_update(struct fmeter *fmp)
75 {
76 time64_t now;
77 u32 ticks;
78
79 now = ktime_get_seconds();
80 ticks = now - fmp->time;
81
82 if (ticks == 0)
83 return;
84
85 ticks = min(FM_MAXTICKS, ticks);
86 while (ticks-- > 0)
87 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
88 fmp->time = now;
89
90 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
91 fmp->cnt = 0;
92 }
93
94 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)95 static void fmeter_markevent(struct fmeter *fmp)
96 {
97 spin_lock(&fmp->lock);
98 fmeter_update(fmp);
99 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
100 spin_unlock(&fmp->lock);
101 }
102
103 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)104 static int fmeter_getrate(struct fmeter *fmp)
105 {
106 int val;
107
108 spin_lock(&fmp->lock);
109 fmeter_update(fmp);
110 val = fmp->val;
111 spin_unlock(&fmp->lock);
112 return val;
113 }
114
115 /*
116 * Collection of memory_pressure is suppressed unless
117 * this flag is enabled by writing "1" to the special
118 * cpuset file 'memory_pressure_enabled' in the root cpuset.
119 */
120
121 int cpuset_memory_pressure_enabled __read_mostly;
122
123 /*
124 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
125 *
126 * Keep a running average of the rate of synchronous (direct)
127 * page reclaim efforts initiated by tasks in each cpuset.
128 *
129 * This represents the rate at which some task in the cpuset
130 * ran low on memory on all nodes it was allowed to use, and
131 * had to enter the kernels page reclaim code in an effort to
132 * create more free memory by tossing clean pages or swapping
133 * or writing dirty pages.
134 *
135 * Display to user space in the per-cpuset read-only file
136 * "memory_pressure". Value displayed is an integer
137 * representing the recent rate of entry into the synchronous
138 * (direct) page reclaim by any task attached to the cpuset.
139 */
140
__cpuset_memory_pressure_bump(void)141 void __cpuset_memory_pressure_bump(void)
142 {
143 rcu_read_lock();
144 fmeter_markevent(&task_cs(current)->fmeter);
145 rcu_read_unlock();
146 }
147
update_relax_domain_level(struct cpuset * cs,s64 val)148 static int update_relax_domain_level(struct cpuset *cs, s64 val)
149 {
150 #ifdef CONFIG_SMP
151 if (val < -1 || val > sched_domain_level_max + 1)
152 return -EINVAL;
153 #endif
154
155 if (val != cs->relax_domain_level) {
156 cs->relax_domain_level = val;
157 if (!cpumask_empty(cs->cpus_allowed) &&
158 is_sched_load_balance(cs))
159 rebuild_sched_domains_locked();
160 }
161
162 return 0;
163 }
164
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)165 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
166 s64 val)
167 {
168 struct cpuset *cs = css_cs(css);
169 cpuset_filetype_t type = cft->private;
170 int retval = -ENODEV;
171
172 cpuset_full_lock();
173 if (!is_cpuset_online(cs))
174 goto out_unlock;
175
176 switch (type) {
177 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
178 pr_info_once("cpuset.%s is deprecated\n", cft->name);
179 retval = update_relax_domain_level(cs, val);
180 break;
181 default:
182 retval = -EINVAL;
183 break;
184 }
185 out_unlock:
186 cpuset_full_unlock();
187 return retval;
188 }
189
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)190 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
191 {
192 struct cpuset *cs = css_cs(css);
193 cpuset_filetype_t type = cft->private;
194
195 switch (type) {
196 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
197 return cs->relax_domain_level;
198 default:
199 BUG();
200 }
201
202 /* Unreachable but makes gcc happy */
203 return 0;
204 }
205
206 /*
207 * update task's spread flag if cpuset's page/slab spread flag is set
208 *
209 * Call with callback_lock or cpuset_mutex held. The check can be skipped
210 * if on default hierarchy.
211 */
cpuset1_update_task_spread_flags(struct cpuset * cs,struct task_struct * tsk)212 void cpuset1_update_task_spread_flags(struct cpuset *cs,
213 struct task_struct *tsk)
214 {
215 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
216 return;
217
218 if (is_spread_page(cs))
219 task_set_spread_page(tsk);
220 else
221 task_clear_spread_page(tsk);
222
223 if (is_spread_slab(cs))
224 task_set_spread_slab(tsk);
225 else
226 task_clear_spread_slab(tsk);
227 }
228
229 /**
230 * cpuset1_update_tasks_flags - update the spread flags of tasks in the cpuset.
231 * @cs: the cpuset in which each task's spread flags needs to be changed
232 *
233 * Iterate through each task of @cs updating its spread flags. As this
234 * function is called with cpuset_mutex held, cpuset membership stays
235 * stable.
236 */
cpuset1_update_tasks_flags(struct cpuset * cs)237 void cpuset1_update_tasks_flags(struct cpuset *cs)
238 {
239 struct css_task_iter it;
240 struct task_struct *task;
241
242 css_task_iter_start(&cs->css, 0, &it);
243 while ((task = css_task_iter_next(&it)))
244 cpuset1_update_task_spread_flags(cs, task);
245 css_task_iter_end(&it);
246 }
247
248 /*
249 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
250 * or memory nodes, we need to walk over the cpuset hierarchy,
251 * removing that CPU or node from all cpusets. If this removes the
252 * last CPU or node from a cpuset, then move the tasks in the empty
253 * cpuset to its next-highest non-empty parent.
254 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)255 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
256 {
257 struct cpuset *parent;
258
259 /*
260 * Find its next-highest non-empty parent, (top cpuset
261 * has online cpus, so can't be empty).
262 */
263 parent = parent_cs(cs);
264 while (cpumask_empty(parent->cpus_allowed) ||
265 nodes_empty(parent->mems_allowed))
266 parent = parent_cs(parent);
267
268 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
269 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
270 pr_cont_cgroup_name(cs->css.cgroup);
271 pr_cont("\n");
272 }
273 }
274
cpuset_migrate_tasks_workfn(struct work_struct * work)275 static void cpuset_migrate_tasks_workfn(struct work_struct *work)
276 {
277 struct cpuset_remove_tasks_struct *s;
278
279 s = container_of(work, struct cpuset_remove_tasks_struct, work);
280 remove_tasks_in_empty_cpuset(s->cs);
281 css_put(&s->cs->css);
282 kfree(s);
283 }
284
cpuset1_hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)285 void cpuset1_hotplug_update_tasks(struct cpuset *cs,
286 struct cpumask *new_cpus, nodemask_t *new_mems,
287 bool cpus_updated, bool mems_updated)
288 {
289 bool is_empty;
290
291 cpuset_callback_lock_irq();
292 cpumask_copy(cs->cpus_allowed, new_cpus);
293 cpumask_copy(cs->effective_cpus, new_cpus);
294 cs->mems_allowed = *new_mems;
295 cs->effective_mems = *new_mems;
296 cpuset_callback_unlock_irq();
297
298 /*
299 * Don't call cpuset_update_tasks_cpumask() if the cpuset becomes empty,
300 * as the tasks will be migrated to an ancestor.
301 */
302 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
303 cpuset_update_tasks_cpumask(cs, new_cpus);
304 if (mems_updated && !nodes_empty(cs->mems_allowed))
305 cpuset_update_tasks_nodemask(cs);
306
307 is_empty = cpumask_empty(cs->cpus_allowed) ||
308 nodes_empty(cs->mems_allowed);
309
310 /*
311 * Move tasks to the nearest ancestor with execution resources,
312 * This is full cgroup operation which will also call back into
313 * cpuset. Execute it asynchronously using workqueue.
314 */
315 if (is_empty && cs->css.cgroup->nr_populated_csets &&
316 css_tryget_online(&cs->css)) {
317 struct cpuset_remove_tasks_struct *s;
318
319 s = kzalloc(sizeof(*s), GFP_KERNEL);
320 if (WARN_ON_ONCE(!s)) {
321 css_put(&cs->css);
322 return;
323 }
324
325 s->cs = cs;
326 INIT_WORK(&s->work, cpuset_migrate_tasks_workfn);
327 schedule_work(&s->work);
328 }
329 }
330
331 /*
332 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
333 *
334 * One cpuset is a subset of another if all its allowed CPUs and
335 * Memory Nodes are a subset of the other, and its exclusive flags
336 * are only set if the other's are set. Call holding cpuset_mutex.
337 */
338
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)339 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
340 {
341 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
342 nodes_subset(p->mems_allowed, q->mems_allowed) &&
343 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
344 is_mem_exclusive(p) <= is_mem_exclusive(q);
345 }
346
347 /*
348 * cpuset1_validate_change() - Validate conditions specific to legacy (v1)
349 * behavior.
350 */
cpuset1_validate_change(struct cpuset * cur,struct cpuset * trial)351 int cpuset1_validate_change(struct cpuset *cur, struct cpuset *trial)
352 {
353 struct cgroup_subsys_state *css;
354 struct cpuset *c, *par;
355 int ret;
356
357 WARN_ON_ONCE(!rcu_read_lock_held());
358
359 /* Each of our child cpusets must be a subset of us */
360 ret = -EBUSY;
361 cpuset_for_each_child(c, css, cur)
362 if (!is_cpuset_subset(c, trial))
363 goto out;
364
365 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
366 ret = -EACCES;
367 par = parent_cs(cur);
368 if (par && !is_cpuset_subset(trial, par))
369 goto out;
370
371 ret = 0;
372 out:
373 return ret;
374 }
375
376 #ifdef CONFIG_PROC_PID_CPUSET
377 /*
378 * proc_cpuset_show()
379 * - Print tasks cpuset path into seq_file.
380 * - Used for /proc/<pid>/cpuset.
381 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)382 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
383 struct pid *pid, struct task_struct *tsk)
384 {
385 char *buf;
386 struct cgroup_subsys_state *css;
387 int retval;
388
389 retval = -ENOMEM;
390 buf = kmalloc(PATH_MAX, GFP_KERNEL);
391 if (!buf)
392 goto out;
393
394 rcu_read_lock();
395 spin_lock_irq(&css_set_lock);
396 css = task_css(tsk, cpuset_cgrp_id);
397 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
398 current->nsproxy->cgroup_ns);
399 spin_unlock_irq(&css_set_lock);
400 rcu_read_unlock();
401
402 if (retval == -E2BIG)
403 retval = -ENAMETOOLONG;
404 if (retval < 0)
405 goto out_free;
406 seq_puts(m, buf);
407 seq_putc(m, '\n');
408 retval = 0;
409 out_free:
410 kfree(buf);
411 out:
412 return retval;
413 }
414 #endif /* CONFIG_PROC_PID_CPUSET */
415
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)416 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
417 {
418 struct cpuset *cs = css_cs(css);
419 cpuset_filetype_t type = cft->private;
420
421 switch (type) {
422 case FILE_CPU_EXCLUSIVE:
423 return is_cpu_exclusive(cs);
424 case FILE_MEM_EXCLUSIVE:
425 return is_mem_exclusive(cs);
426 case FILE_MEM_HARDWALL:
427 return is_mem_hardwall(cs);
428 case FILE_SCHED_LOAD_BALANCE:
429 return is_sched_load_balance(cs);
430 case FILE_MEMORY_MIGRATE:
431 return is_memory_migrate(cs);
432 case FILE_MEMORY_PRESSURE_ENABLED:
433 return cpuset_memory_pressure_enabled;
434 case FILE_MEMORY_PRESSURE:
435 return fmeter_getrate(&cs->fmeter);
436 case FILE_SPREAD_PAGE:
437 return is_spread_page(cs);
438 case FILE_SPREAD_SLAB:
439 return is_spread_slab(cs);
440 default:
441 BUG();
442 }
443
444 /* Unreachable but makes gcc happy */
445 return 0;
446 }
447
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)448 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
449 u64 val)
450 {
451 struct cpuset *cs = css_cs(css);
452 cpuset_filetype_t type = cft->private;
453 int retval = 0;
454
455 cpuset_full_lock();
456 if (!is_cpuset_online(cs)) {
457 retval = -ENODEV;
458 goto out_unlock;
459 }
460
461 switch (type) {
462 case FILE_CPU_EXCLUSIVE:
463 retval = cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, val);
464 break;
465 case FILE_MEM_EXCLUSIVE:
466 pr_info_once("cpuset.%s is deprecated\n", cft->name);
467 retval = cpuset_update_flag(CS_MEM_EXCLUSIVE, cs, val);
468 break;
469 case FILE_MEM_HARDWALL:
470 pr_info_once("cpuset.%s is deprecated\n", cft->name);
471 retval = cpuset_update_flag(CS_MEM_HARDWALL, cs, val);
472 break;
473 case FILE_SCHED_LOAD_BALANCE:
474 pr_info_once("cpuset.%s is deprecated, use cpuset.cpus.partition instead\n", cft->name);
475 retval = cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
476 break;
477 case FILE_MEMORY_MIGRATE:
478 pr_info_once("cpuset.%s is deprecated\n", cft->name);
479 retval = cpuset_update_flag(CS_MEMORY_MIGRATE, cs, val);
480 break;
481 case FILE_MEMORY_PRESSURE_ENABLED:
482 pr_info_once("cpuset.%s is deprecated, use memory.pressure with CONFIG_PSI instead\n", cft->name);
483 cpuset_memory_pressure_enabled = !!val;
484 break;
485 case FILE_SPREAD_PAGE:
486 pr_info_once("cpuset.%s is deprecated\n", cft->name);
487 retval = cpuset_update_flag(CS_SPREAD_PAGE, cs, val);
488 break;
489 case FILE_SPREAD_SLAB:
490 pr_warn_once("cpuset.%s is deprecated\n", cft->name);
491 retval = cpuset_update_flag(CS_SPREAD_SLAB, cs, val);
492 break;
493 default:
494 retval = -EINVAL;
495 break;
496 }
497 out_unlock:
498 cpuset_full_unlock();
499 return retval;
500 }
501
502 /*
503 * for the common functions, 'private' gives the type of file
504 */
505
506 struct cftype cpuset1_files[] = {
507 {
508 .name = "cpus",
509 .seq_show = cpuset_common_seq_show,
510 .write = cpuset_write_resmask,
511 .max_write_len = (100U + 6 * NR_CPUS),
512 .private = FILE_CPULIST,
513 },
514
515 {
516 .name = "mems",
517 .seq_show = cpuset_common_seq_show,
518 .write = cpuset_write_resmask,
519 .max_write_len = (100U + 6 * MAX_NUMNODES),
520 .private = FILE_MEMLIST,
521 },
522
523 {
524 .name = "effective_cpus",
525 .seq_show = cpuset_common_seq_show,
526 .private = FILE_EFFECTIVE_CPULIST,
527 },
528
529 {
530 .name = "effective_mems",
531 .seq_show = cpuset_common_seq_show,
532 .private = FILE_EFFECTIVE_MEMLIST,
533 },
534
535 {
536 .name = "cpu_exclusive",
537 .read_u64 = cpuset_read_u64,
538 .write_u64 = cpuset_write_u64,
539 .private = FILE_CPU_EXCLUSIVE,
540 },
541
542 {
543 .name = "mem_exclusive",
544 .read_u64 = cpuset_read_u64,
545 .write_u64 = cpuset_write_u64,
546 .private = FILE_MEM_EXCLUSIVE,
547 },
548
549 {
550 .name = "mem_hardwall",
551 .read_u64 = cpuset_read_u64,
552 .write_u64 = cpuset_write_u64,
553 .private = FILE_MEM_HARDWALL,
554 },
555
556 {
557 .name = "sched_load_balance",
558 .read_u64 = cpuset_read_u64,
559 .write_u64 = cpuset_write_u64,
560 .private = FILE_SCHED_LOAD_BALANCE,
561 },
562
563 {
564 .name = "sched_relax_domain_level",
565 .read_s64 = cpuset_read_s64,
566 .write_s64 = cpuset_write_s64,
567 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
568 },
569
570 {
571 .name = "memory_migrate",
572 .read_u64 = cpuset_read_u64,
573 .write_u64 = cpuset_write_u64,
574 .private = FILE_MEMORY_MIGRATE,
575 },
576
577 {
578 .name = "memory_pressure",
579 .read_u64 = cpuset_read_u64,
580 .private = FILE_MEMORY_PRESSURE,
581 },
582
583 {
584 .name = "memory_spread_page",
585 .read_u64 = cpuset_read_u64,
586 .write_u64 = cpuset_write_u64,
587 .private = FILE_SPREAD_PAGE,
588 },
589
590 {
591 /* obsolete, may be removed in the future */
592 .name = "memory_spread_slab",
593 .read_u64 = cpuset_read_u64,
594 .write_u64 = cpuset_write_u64,
595 .private = FILE_SPREAD_SLAB,
596 },
597
598 {
599 .name = "memory_pressure_enabled",
600 .flags = CFTYPE_ONLY_ON_ROOT,
601 .read_u64 = cpuset_read_u64,
602 .write_u64 = cpuset_write_u64,
603 .private = FILE_MEMORY_PRESSURE_ENABLED,
604 },
605
606 { } /* terminate */
607 };
608