xref: /linux/include/linux/cpuset.h (revision 8449d3252c2603a51ffc7c36cb5bd94874378b7d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/jump_label.h>
20 
21 #ifdef CONFIG_CPUSETS
22 
23 /*
24  * Static branch rewrites can happen in an arbitrary order for a given
25  * key. In code paths where we need to loop with read_mems_allowed_begin() and
26  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
27  * to ensure that begin() always gets rewritten before retry() in the
28  * disabled -> enabled transition. If not, then if local irqs are disabled
29  * around the loop, we can deadlock since retry() would always be
30  * comparing the latest value of the mems_allowed seqcount against 0 as
31  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
32  * transition should happen in reverse order for the same reasons (want to stop
33  * looking at real value of mems_allowed.sequence in retry() first).
34  */
35 extern struct static_key_false cpusets_pre_enable_key;
36 extern struct static_key_false cpusets_enabled_key;
37 extern struct static_key_false cpusets_insane_config_key;
38 
cpusets_enabled(void)39 static inline bool cpusets_enabled(void)
40 {
41 	return static_branch_unlikely(&cpusets_enabled_key);
42 }
43 
cpuset_inc(void)44 static inline void cpuset_inc(void)
45 {
46 	static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
47 	static_branch_inc_cpuslocked(&cpusets_enabled_key);
48 }
49 
cpuset_dec(void)50 static inline void cpuset_dec(void)
51 {
52 	static_branch_dec_cpuslocked(&cpusets_enabled_key);
53 	static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
54 }
55 
56 /*
57  * This will get enabled whenever a cpuset configuration is considered
58  * unsupportable in general. E.g. movable only node which cannot satisfy
59  * any non movable allocations (see update_nodemask). Page allocator
60  * needs to make additional checks for those configurations and this
61  * check is meant to guard those checks without any overhead for sane
62  * configurations.
63  */
cpusets_insane_config(void)64 static inline bool cpusets_insane_config(void)
65 {
66 	return static_branch_unlikely(&cpusets_insane_config_key);
67 }
68 
69 extern int cpuset_init(void);
70 extern void cpuset_init_smp(void);
71 extern void cpuset_force_rebuild(void);
72 extern void cpuset_update_active_cpus(void);
73 extern void inc_dl_tasks_cs(struct task_struct *task);
74 extern void dec_dl_tasks_cs(struct task_struct *task);
75 extern void cpuset_lock(void);
76 extern void cpuset_unlock(void);
77 extern void cpuset_cpus_allowed_locked(struct task_struct *p, struct cpumask *mask);
78 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
79 extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
80 extern bool cpuset_cpu_is_isolated(int cpu);
81 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
82 #define cpuset_current_mems_allowed (current->mems_allowed)
83 void cpuset_init_current_mems_allowed(void);
84 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
85 
86 extern bool cpuset_current_node_allowed(int node, gfp_t gfp_mask);
87 
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)88 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
89 {
90 	return cpuset_current_node_allowed(zone_to_nid(z), gfp_mask);
91 }
92 
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)93 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
94 {
95 	if (cpusets_enabled())
96 		return __cpuset_zone_allowed(z, gfp_mask);
97 	return true;
98 }
99 
100 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
101 					  const struct task_struct *tsk2);
102 
103 #ifdef CONFIG_CPUSETS_V1
104 #define cpuset_memory_pressure_bump() 				\
105 	do {							\
106 		if (cpuset_memory_pressure_enabled)		\
107 			__cpuset_memory_pressure_bump();	\
108 	} while (0)
109 extern int cpuset_memory_pressure_enabled;
110 extern void __cpuset_memory_pressure_bump(void);
111 #else
cpuset_memory_pressure_bump(void)112 static inline void cpuset_memory_pressure_bump(void) { }
113 #endif
114 
115 extern void cpuset_task_status_allowed(struct seq_file *m,
116 					struct task_struct *task);
117 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
118 			    struct pid *pid, struct task_struct *tsk);
119 
120 extern int cpuset_mem_spread_node(void);
121 
cpuset_do_page_mem_spread(void)122 static inline int cpuset_do_page_mem_spread(void)
123 {
124 	return task_spread_page(current);
125 }
126 
127 extern bool current_cpuset_is_being_rebound(void);
128 
129 extern void dl_rebuild_rd_accounting(void);
130 extern void rebuild_sched_domains(void);
131 
132 extern void cpuset_print_current_mems_allowed(void);
133 extern void cpuset_reset_sched_domains(void);
134 
135 /*
136  * read_mems_allowed_begin is required when making decisions involving
137  * mems_allowed such as during page allocation. mems_allowed can be updated in
138  * parallel and depending on the new value an operation can fail potentially
139  * causing process failure. A retry loop with read_mems_allowed_begin and
140  * read_mems_allowed_retry prevents these artificial failures.
141  */
read_mems_allowed_begin(void)142 static inline unsigned int read_mems_allowed_begin(void)
143 {
144 	if (!static_branch_unlikely(&cpusets_pre_enable_key))
145 		return 0;
146 
147 	return read_seqcount_begin(&current->mems_allowed_seq);
148 }
149 
150 /*
151  * If this returns true, the operation that took place after
152  * read_mems_allowed_begin may have failed artificially due to a concurrent
153  * update of mems_allowed. It is up to the caller to retry the operation if
154  * appropriate.
155  */
read_mems_allowed_retry(unsigned int seq)156 static inline bool read_mems_allowed_retry(unsigned int seq)
157 {
158 	if (!static_branch_unlikely(&cpusets_enabled_key))
159 		return false;
160 
161 	return read_seqcount_retry(&current->mems_allowed_seq, seq);
162 }
163 
set_mems_allowed(nodemask_t nodemask)164 static inline void set_mems_allowed(nodemask_t nodemask)
165 {
166 	unsigned long flags;
167 
168 	task_lock(current);
169 	local_irq_save(flags);
170 	write_seqcount_begin(&current->mems_allowed_seq);
171 	current->mems_allowed = nodemask;
172 	write_seqcount_end(&current->mems_allowed_seq);
173 	local_irq_restore(flags);
174 	task_unlock(current);
175 }
176 
177 extern bool cpuset_node_allowed(struct cgroup *cgroup, int nid);
178 #else /* !CONFIG_CPUSETS */
179 
cpusets_enabled(void)180 static inline bool cpusets_enabled(void) { return false; }
181 
cpusets_insane_config(void)182 static inline bool cpusets_insane_config(void) { return false; }
183 
cpuset_init(void)184 static inline int cpuset_init(void) { return 0; }
cpuset_init_smp(void)185 static inline void cpuset_init_smp(void) {}
186 
cpuset_force_rebuild(void)187 static inline void cpuset_force_rebuild(void) { }
188 
cpuset_update_active_cpus(void)189 static inline void cpuset_update_active_cpus(void)
190 {
191 	partition_sched_domains(1, NULL, NULL);
192 }
193 
inc_dl_tasks_cs(struct task_struct * task)194 static inline void inc_dl_tasks_cs(struct task_struct *task) { }
dec_dl_tasks_cs(struct task_struct * task)195 static inline void dec_dl_tasks_cs(struct task_struct *task) { }
cpuset_lock(void)196 static inline void cpuset_lock(void) { }
cpuset_unlock(void)197 static inline void cpuset_unlock(void) { }
198 
cpuset_cpus_allowed_locked(struct task_struct * p,struct cpumask * mask)199 static inline void cpuset_cpus_allowed_locked(struct task_struct *p,
200 					struct cpumask *mask)
201 {
202 	cpumask_copy(mask, task_cpu_possible_mask(p));
203 }
204 
cpuset_cpus_allowed(struct task_struct * p,struct cpumask * mask)205 static inline void cpuset_cpus_allowed(struct task_struct *p,
206 				       struct cpumask *mask)
207 {
208 	cpuset_cpus_allowed_locked(p, mask);
209 }
210 
cpuset_cpus_allowed_fallback(struct task_struct * p)211 static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
212 {
213 	return false;
214 }
215 
cpuset_cpu_is_isolated(int cpu)216 static inline bool cpuset_cpu_is_isolated(int cpu)
217 {
218 	return false;
219 }
220 
cpuset_mems_allowed(struct task_struct * p)221 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
222 {
223 	return node_possible_map;
224 }
225 
226 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
cpuset_init_current_mems_allowed(void)227 static inline void cpuset_init_current_mems_allowed(void) {}
228 
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)229 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
230 {
231 	return 1;
232 }
233 
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)234 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
235 {
236 	return true;
237 }
238 
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)239 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
240 {
241 	return true;
242 }
243 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)244 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
245 						 const struct task_struct *tsk2)
246 {
247 	return 1;
248 }
249 
cpuset_memory_pressure_bump(void)250 static inline void cpuset_memory_pressure_bump(void) {}
251 
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)252 static inline void cpuset_task_status_allowed(struct seq_file *m,
253 						struct task_struct *task)
254 {
255 }
256 
cpuset_mem_spread_node(void)257 static inline int cpuset_mem_spread_node(void)
258 {
259 	return 0;
260 }
261 
cpuset_do_page_mem_spread(void)262 static inline int cpuset_do_page_mem_spread(void)
263 {
264 	return 0;
265 }
266 
current_cpuset_is_being_rebound(void)267 static inline bool current_cpuset_is_being_rebound(void)
268 {
269 	return false;
270 }
271 
dl_rebuild_rd_accounting(void)272 static inline void dl_rebuild_rd_accounting(void)
273 {
274 }
275 
rebuild_sched_domains(void)276 static inline void rebuild_sched_domains(void)
277 {
278 	partition_sched_domains(1, NULL, NULL);
279 }
280 
cpuset_reset_sched_domains(void)281 static inline void cpuset_reset_sched_domains(void)
282 {
283 	partition_sched_domains(1, NULL, NULL);
284 }
285 
cpuset_print_current_mems_allowed(void)286 static inline void cpuset_print_current_mems_allowed(void)
287 {
288 }
289 
set_mems_allowed(nodemask_t nodemask)290 static inline void set_mems_allowed(nodemask_t nodemask)
291 {
292 }
293 
read_mems_allowed_begin(void)294 static inline unsigned int read_mems_allowed_begin(void)
295 {
296 	return 0;
297 }
298 
read_mems_allowed_retry(unsigned int seq)299 static inline bool read_mems_allowed_retry(unsigned int seq)
300 {
301 	return false;
302 }
303 
cpuset_node_allowed(struct cgroup * cgroup,int nid)304 static inline bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
305 {
306 	return true;
307 }
308 #endif /* !CONFIG_CPUSETS */
309 
310 #endif /* _LINUX_CPUSET_H */
311