xref: /linux/kernel/cgroup/cpuset.c (revision d16738a4e79e55b2c3c9ff4fb7b74a4a24723515)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  kernel/cpuset.c
4  *
5  *  Processor and Memory placement constraints for sets of tasks.
6  *
7  *  Copyright (C) 2003 BULL SA.
8  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
9  *  Copyright (C) 2006 Google, Inc
10  *
11  *  Portions derived from Patrick Mochel's sysfs code.
12  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
13  *
14  *  2003-10-10 Written by Simon Derr.
15  *  2003-10-22 Updates by Stephen Hemminger.
16  *  2004 May-July Rework by Paul Jackson.
17  *  2006 Rework by Paul Menage to use generic cgroups
18  *  2008 Rework of the scheduler domains and CPU hotplug handling
19  *       by Max Krasnyansky
20  */
21 #include "cpuset-internal.h"
22 
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mm.h>
28 #include <linux/memory.h>
29 #include <linux/rcupdate.h>
30 #include <linux/sched.h>
31 #include <linux/sched/deadline.h>
32 #include <linux/sched/mm.h>
33 #include <linux/sched/task.h>
34 #include <linux/security.h>
35 #include <linux/oom.h>
36 #include <linux/sched/isolation.h>
37 #include <linux/wait.h>
38 #include <linux/workqueue.h>
39 #include <linux/task_work.h>
40 
41 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
42 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
43 
44 /*
45  * There could be abnormal cpuset configurations for cpu or memory
46  * node binding, add this key to provide a quick low-cost judgment
47  * of the situation.
48  */
49 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
50 
51 static const char * const perr_strings[] = {
52 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
53 	[PERR_INVPARENT] = "Parent is an invalid partition root",
54 	[PERR_NOTPART]   = "Parent is not a partition root",
55 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
56 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
57 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
58 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
59 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
60 	[PERR_ACCESS]    = "Enable partition not permitted",
61 	[PERR_REMOTE]    = "Have remote partition underneath",
62 };
63 
64 /*
65  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
66  * in update_parent_effective_cpumask(). For remote partitions, it is done in
67  * the remote_partition_*() and remote_cpus_update() helpers.
68  */
69 /*
70  * Exclusive CPUs distributed out to local or remote sub-partitions of
71  * top_cpuset
72  */
73 static cpumask_var_t	subpartitions_cpus;
74 
75 /*
76  * Exclusive CPUs in isolated partitions
77  */
78 static cpumask_var_t	isolated_cpus;
79 
80 /*
81  * isolated_cpus updating flag (protected by cpuset_mutex)
82  * Set if isolated_cpus is going to be updated in the current
83  * cpuset_mutex crtical section.
84  */
85 static bool isolated_cpus_updating;
86 
87 /*
88  * A flag to force sched domain rebuild at the end of an operation.
89  * It can be set in
90  *  - update_partition_sd_lb()
91  *  - update_cpumasks_hier()
92  *  - cpuset_update_flag()
93  *  - cpuset_hotplug_update_tasks()
94  *  - cpuset_handle_hotplug()
95  *
96  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
97  *
98  * Note that update_relax_domain_level() in cpuset-v1.c can still call
99  * rebuild_sched_domains_locked() directly without using this flag.
100  */
101 static bool force_sd_rebuild;
102 
103 /*
104  * Partition root states:
105  *
106  *   0 - member (not a partition root)
107  *   1 - partition root
108  *   2 - partition root without load balancing (isolated)
109  *  -1 - invalid partition root
110  *  -2 - invalid isolated partition root
111  *
112  *  There are 2 types of partitions - local or remote. Local partitions are
113  *  those whose parents are partition root themselves. Setting of
114  *  cpuset.cpus.exclusive are optional in setting up local partitions.
115  *  Remote partitions are those whose parents are not partition roots. Passing
116  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
117  *  nodes are mandatory in creating a remote partition.
118  *
119  *  For simplicity, a local partition can be created under a local or remote
120  *  partition but a remote partition cannot have any partition root in its
121  *  ancestor chain except the cgroup root.
122  */
123 #define PRS_MEMBER		0
124 #define PRS_ROOT		1
125 #define PRS_ISOLATED		2
126 #define PRS_INVALID_ROOT	-1
127 #define PRS_INVALID_ISOLATED	-2
128 
129 /*
130  * Temporary cpumasks for working with partitions that are passed among
131  * functions to avoid memory allocation in inner functions.
132  */
133 struct tmpmasks {
134 	cpumask_var_t addmask, delmask;	/* For partition root */
135 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
136 };
137 
138 void inc_dl_tasks_cs(struct task_struct *p)
139 {
140 	struct cpuset *cs = task_cs(p);
141 
142 	cs->nr_deadline_tasks++;
143 }
144 
145 void dec_dl_tasks_cs(struct task_struct *p)
146 {
147 	struct cpuset *cs = task_cs(p);
148 
149 	cs->nr_deadline_tasks--;
150 }
151 
152 static inline bool is_partition_valid(const struct cpuset *cs)
153 {
154 	return cs->partition_root_state > 0;
155 }
156 
157 static inline bool is_partition_invalid(const struct cpuset *cs)
158 {
159 	return cs->partition_root_state < 0;
160 }
161 
162 static inline bool cs_is_member(const struct cpuset *cs)
163 {
164 	return cs->partition_root_state == PRS_MEMBER;
165 }
166 
167 /*
168  * Callers should hold callback_lock to modify partition_root_state.
169  */
170 static inline void make_partition_invalid(struct cpuset *cs)
171 {
172 	if (cs->partition_root_state > 0)
173 		cs->partition_root_state = -cs->partition_root_state;
174 }
175 
176 /*
177  * Send notification event of whenever partition_root_state changes.
178  */
179 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
180 {
181 	if (old_prs == cs->partition_root_state)
182 		return;
183 	cgroup_file_notify(&cs->partition_file);
184 
185 	/* Reset prs_err if not invalid */
186 	if (is_partition_valid(cs))
187 		WRITE_ONCE(cs->prs_err, PERR_NONE);
188 }
189 
190 /*
191  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
192  * using cpu_online_mask as much as possible. An active CPU is always an online
193  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
194  * during hotplug operations. A CPU is marked active at the last stage of CPU
195  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
196  * will be called to update the sched domains so that the scheduler can move
197  * a normal task to a newly active CPU or remove tasks away from a newly
198  * inactivated CPU. The online bit is set much earlier in the CPU bringup
199  * process and cleared much later in CPU teardown.
200  *
201  * If cpu_online_mask is used while a hotunplug operation is happening in
202  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
203  */
204 static struct cpuset top_cpuset = {
205 	.flags = BIT(CS_CPU_EXCLUSIVE) |
206 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
207 	.partition_root_state = PRS_ROOT,
208 	.relax_domain_level = -1,
209 	.remote_partition = false,
210 };
211 
212 /*
213  * There are two global locks guarding cpuset structures - cpuset_mutex and
214  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
215  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
216  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
217  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
218  * correctness.
219  *
220  * A task must hold both locks to modify cpusets.  If a task holds
221  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
222  * also acquire callback_lock and be able to modify cpusets.  It can perform
223  * various checks on the cpuset structure first, knowing nothing will change.
224  * It can also allocate memory while just holding cpuset_mutex.  While it is
225  * performing these checks, various callback routines can briefly acquire
226  * callback_lock to query cpusets.  Once it is ready to make the changes, it
227  * takes callback_lock, blocking everyone else.
228  *
229  * Calls to the kernel memory allocator can not be made while holding
230  * callback_lock, as that would risk double tripping on callback_lock
231  * from one of the callbacks into the cpuset code from within
232  * __alloc_pages().
233  *
234  * If a task is only holding callback_lock, then it has read-only
235  * access to cpusets.
236  *
237  * Now, the task_struct fields mems_allowed and mempolicy may be changed
238  * by other task, we use alloc_lock in the task_struct fields to protect
239  * them.
240  *
241  * The cpuset_common_seq_show() handlers only hold callback_lock across
242  * small pieces of code, such as when reading out possibly multi-word
243  * cpumasks and nodemasks.
244  */
245 
246 static DEFINE_MUTEX(cpuset_mutex);
247 
248 /**
249  * cpuset_lock - Acquire the global cpuset mutex
250  *
251  * This locks the global cpuset mutex to prevent modifications to cpuset
252  * hierarchy and configurations. This helper is not enough to make modification.
253  */
254 void cpuset_lock(void)
255 {
256 	mutex_lock(&cpuset_mutex);
257 }
258 
259 void cpuset_unlock(void)
260 {
261 	mutex_unlock(&cpuset_mutex);
262 }
263 
264 /**
265  * cpuset_full_lock - Acquire full protection for cpuset modification
266  *
267  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
268  * to safely modify cpuset data.
269  */
270 void cpuset_full_lock(void)
271 {
272 	cpus_read_lock();
273 	mutex_lock(&cpuset_mutex);
274 }
275 
276 void cpuset_full_unlock(void)
277 {
278 	mutex_unlock(&cpuset_mutex);
279 	cpus_read_unlock();
280 }
281 
282 #ifdef CONFIG_LOCKDEP
283 bool lockdep_is_cpuset_held(void)
284 {
285 	return lockdep_is_held(&cpuset_mutex);
286 }
287 #endif
288 
289 static DEFINE_SPINLOCK(callback_lock);
290 
291 void cpuset_callback_lock_irq(void)
292 {
293 	spin_lock_irq(&callback_lock);
294 }
295 
296 void cpuset_callback_unlock_irq(void)
297 {
298 	spin_unlock_irq(&callback_lock);
299 }
300 
301 static struct workqueue_struct *cpuset_migrate_mm_wq;
302 
303 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
304 
305 static inline void check_insane_mems_config(nodemask_t *nodes)
306 {
307 	if (!cpusets_insane_config() &&
308 		movable_only_nodes(nodes)) {
309 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
310 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
311 			"Cpuset allocations might fail even with a lot of memory available.\n",
312 			nodemask_pr_args(nodes));
313 	}
314 }
315 
316 /*
317  * decrease cs->attach_in_progress.
318  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
319  */
320 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
321 {
322 	lockdep_assert_held(&cpuset_mutex);
323 
324 	cs->attach_in_progress--;
325 	if (!cs->attach_in_progress)
326 		wake_up(&cpuset_attach_wq);
327 }
328 
329 static inline void dec_attach_in_progress(struct cpuset *cs)
330 {
331 	mutex_lock(&cpuset_mutex);
332 	dec_attach_in_progress_locked(cs);
333 	mutex_unlock(&cpuset_mutex);
334 }
335 
336 static inline bool cpuset_v2(void)
337 {
338 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
339 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
340 }
341 
342 /*
343  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
344  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
345  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
346  * With v2 behavior, "cpus" and "mems" are always what the users have
347  * requested and won't be changed by hotplug events. Only the effective
348  * cpus or mems will be affected.
349  */
350 static inline bool is_in_v2_mode(void)
351 {
352 	return cpuset_v2() ||
353 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
354 }
355 
356 static inline bool cpuset_is_populated(struct cpuset *cs)
357 {
358 	lockdep_assert_held(&cpuset_mutex);
359 
360 	/* Cpusets in the process of attaching should be considered as populated */
361 	return cgroup_is_populated(cs->css.cgroup) ||
362 		cs->attach_in_progress;
363 }
364 
365 /**
366  * partition_is_populated - check if partition has tasks
367  * @cs: partition root to be checked
368  * @excluded_child: a child cpuset to be excluded in task checking
369  * Return: true if there are tasks, false otherwise
370  *
371  * @cs should be a valid partition root or going to become a partition root.
372  * @excluded_child should be non-NULL when this cpuset is going to become a
373  * partition itself.
374  *
375  * Note that a remote partition is not allowed underneath a valid local
376  * or remote partition. So if a non-partition root child is populated,
377  * the whole partition is considered populated.
378  */
379 static inline bool partition_is_populated(struct cpuset *cs,
380 					  struct cpuset *excluded_child)
381 {
382 	struct cpuset *cp;
383 	struct cgroup_subsys_state *pos_css;
384 
385 	/*
386 	 * We cannot call cs_is_populated(cs) directly, as
387 	 * nr_populated_domain_children may include populated
388 	 * csets from descendants that are partitions.
389 	 */
390 	if (cs->css.cgroup->nr_populated_csets ||
391 	    cs->attach_in_progress)
392 		return true;
393 
394 	rcu_read_lock();
395 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
396 		if (cp == cs || cp == excluded_child)
397 			continue;
398 
399 		if (is_partition_valid(cp)) {
400 			pos_css = css_rightmost_descendant(pos_css);
401 			continue;
402 		}
403 
404 		if (cpuset_is_populated(cp)) {
405 			rcu_read_unlock();
406 			return true;
407 		}
408 	}
409 	rcu_read_unlock();
410 	return false;
411 }
412 
413 /*
414  * Return in pmask the portion of a task's cpusets's cpus_allowed that
415  * are online and are capable of running the task.  If none are found,
416  * walk up the cpuset hierarchy until we find one that does have some
417  * appropriate cpus.
418  *
419  * One way or another, we guarantee to return some non-empty subset
420  * of cpu_active_mask.
421  *
422  * Call with callback_lock or cpuset_mutex held.
423  */
424 static void guarantee_active_cpus(struct task_struct *tsk,
425 				  struct cpumask *pmask)
426 {
427 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
428 	struct cpuset *cs;
429 
430 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
431 		cpumask_copy(pmask, cpu_active_mask);
432 
433 	rcu_read_lock();
434 	cs = task_cs(tsk);
435 
436 	while (!cpumask_intersects(cs->effective_cpus, pmask))
437 		cs = parent_cs(cs);
438 
439 	cpumask_and(pmask, pmask, cs->effective_cpus);
440 	rcu_read_unlock();
441 }
442 
443 /*
444  * Return in *pmask the portion of a cpusets's mems_allowed that
445  * are online, with memory.  If none are online with memory, walk
446  * up the cpuset hierarchy until we find one that does have some
447  * online mems.  The top cpuset always has some mems online.
448  *
449  * One way or another, we guarantee to return some non-empty subset
450  * of node_states[N_MEMORY].
451  *
452  * Call with callback_lock or cpuset_mutex held.
453  */
454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
455 {
456 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
457 		cs = parent_cs(cs);
458 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
459 }
460 
461 /**
462  * alloc_cpumasks - Allocate an array of cpumask variables
463  * @pmasks: Pointer to array of cpumask_var_t pointers
464  * @size: Number of cpumasks to allocate
465  * Return: 0 if successful, -ENOMEM otherwise.
466  *
467  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
468  * success, -ENOMEM on allocation failure. On failure, any previously
469  * allocated cpumasks are freed.
470  */
471 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
472 {
473 	int i;
474 
475 	for (i = 0; i < size; i++) {
476 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
477 			while (--i >= 0)
478 				free_cpumask_var(*pmasks[i]);
479 			return -ENOMEM;
480 		}
481 	}
482 	return 0;
483 }
484 
485 /**
486  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
487  * @tmp: Pointer to tmpmasks structure to populate
488  * Return: 0 on success, -ENOMEM on allocation failure
489  */
490 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
491 {
492 	/*
493 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
494 	 * Note: Array size must match actual number of masks (3)
495 	 */
496 	cpumask_var_t *pmask[3] = {
497 		&tmp->new_cpus,
498 		&tmp->addmask,
499 		&tmp->delmask
500 	};
501 
502 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
503 }
504 
505 /**
506  * free_tmpmasks - free cpumasks in a tmpmasks structure
507  * @tmp: the tmpmasks structure pointer
508  */
509 static inline void free_tmpmasks(struct tmpmasks *tmp)
510 {
511 	if (!tmp)
512 		return;
513 
514 	free_cpumask_var(tmp->new_cpus);
515 	free_cpumask_var(tmp->addmask);
516 	free_cpumask_var(tmp->delmask);
517 }
518 
519 /**
520  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
521  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
522  *
523  * Creates a new cpuset by either:
524  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
525  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
526  *
527  * Return: Pointer to newly allocated cpuset on success, NULL on failure
528  */
529 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
530 {
531 	struct cpuset *trial;
532 
533 	/* Allocate base structure */
534 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
535 		     kzalloc(sizeof(*cs), GFP_KERNEL);
536 	if (!trial)
537 		return NULL;
538 
539 	/* Setup cpumask pointer array */
540 	cpumask_var_t *pmask[4] = {
541 		&trial->cpus_allowed,
542 		&trial->effective_cpus,
543 		&trial->effective_xcpus,
544 		&trial->exclusive_cpus
545 	};
546 
547 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
548 		kfree(trial);
549 		return NULL;
550 	}
551 
552 	/* Copy masks if duplicating */
553 	if (cs) {
554 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
555 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
556 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
557 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
558 	}
559 
560 	return trial;
561 }
562 
563 /**
564  * free_cpuset - free the cpuset
565  * @cs: the cpuset to be freed
566  */
567 static inline void free_cpuset(struct cpuset *cs)
568 {
569 	free_cpumask_var(cs->cpus_allowed);
570 	free_cpumask_var(cs->effective_cpus);
571 	free_cpumask_var(cs->effective_xcpus);
572 	free_cpumask_var(cs->exclusive_cpus);
573 	kfree(cs);
574 }
575 
576 /* Return user specified exclusive CPUs */
577 static inline struct cpumask *user_xcpus(struct cpuset *cs)
578 {
579 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
580 						 : cs->exclusive_cpus;
581 }
582 
583 static inline bool xcpus_empty(struct cpuset *cs)
584 {
585 	return cpumask_empty(cs->cpus_allowed) &&
586 	       cpumask_empty(cs->exclusive_cpus);
587 }
588 
589 /*
590  * cpusets_are_exclusive() - check if two cpusets are exclusive
591  *
592  * Return true if exclusive, false if not
593  */
594 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
595 {
596 	struct cpumask *xcpus1 = user_xcpus(cs1);
597 	struct cpumask *xcpus2 = user_xcpus(cs2);
598 
599 	if (cpumask_intersects(xcpus1, xcpus2))
600 		return false;
601 	return true;
602 }
603 
604 /**
605  * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
606  * @cs1: first cpuset to check
607  * @cs2: second cpuset to check
608  *
609  * Returns: true if CPU exclusivity conflict exists, false otherwise
610  *
611  * Conflict detection rules:
612  * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
613  * 2. exclusive_cpus masks cannot intersect between cpusets
614  * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
615  */
616 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
617 {
618 	/* If either cpuset is exclusive, check if they are mutually exclusive */
619 	if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
620 		return !cpusets_are_exclusive(cs1, cs2);
621 
622 	/* Exclusive_cpus cannot intersect */
623 	if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
624 		return true;
625 
626 	/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
627 	if (!cpumask_empty(cs1->cpus_allowed) &&
628 	    cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
629 		return true;
630 
631 	if (!cpumask_empty(cs2->cpus_allowed) &&
632 	    cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
633 		return true;
634 
635 	return false;
636 }
637 
638 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
639 {
640 	if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
641 		return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
642 	return false;
643 }
644 
645 /*
646  * validate_change() - Used to validate that any proposed cpuset change
647  *		       follows the structural rules for cpusets.
648  *
649  * If we replaced the flag and mask values of the current cpuset
650  * (cur) with those values in the trial cpuset (trial), would
651  * our various subset and exclusive rules still be valid?  Presumes
652  * cpuset_mutex held.
653  *
654  * 'cur' is the address of an actual, in-use cpuset.  Operations
655  * such as list traversal that depend on the actual address of the
656  * cpuset in the list must use cur below, not trial.
657  *
658  * 'trial' is the address of bulk structure copy of cur, with
659  * perhaps one or more of the fields cpus_allowed, mems_allowed,
660  * or flags changed to new, trial values.
661  *
662  * Return 0 if valid, -errno if not.
663  */
664 
665 static int validate_change(struct cpuset *cur, struct cpuset *trial)
666 {
667 	struct cgroup_subsys_state *css;
668 	struct cpuset *c, *par;
669 	int ret = 0;
670 
671 	rcu_read_lock();
672 
673 	if (!is_in_v2_mode())
674 		ret = cpuset1_validate_change(cur, trial);
675 	if (ret)
676 		goto out;
677 
678 	/* Remaining checks don't apply to root cpuset */
679 	if (cur == &top_cpuset)
680 		goto out;
681 
682 	par = parent_cs(cur);
683 
684 	/*
685 	 * Cpusets with tasks - existing or newly being attached - can't
686 	 * be changed to have empty cpus_allowed or mems_allowed.
687 	 */
688 	ret = -ENOSPC;
689 	if (cpuset_is_populated(cur)) {
690 		if (!cpumask_empty(cur->cpus_allowed) &&
691 		    cpumask_empty(trial->cpus_allowed))
692 			goto out;
693 		if (!nodes_empty(cur->mems_allowed) &&
694 		    nodes_empty(trial->mems_allowed))
695 			goto out;
696 	}
697 
698 	/*
699 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
700 	 * tasks. This check is not done when scheduling is disabled as the
701 	 * users should know what they are doing.
702 	 *
703 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
704 	 * cpus_allowed.
705 	 *
706 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
707 	 * for non-isolated partition root. At this point, the target
708 	 * effective_cpus isn't computed yet. user_xcpus() is the best
709 	 * approximation.
710 	 *
711 	 * TBD: May need to precompute the real effective_cpus here in case
712 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
713 	 * becomes an issue.
714 	 */
715 	ret = -EBUSY;
716 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
717 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
718 		goto out;
719 
720 	/*
721 	 * If either I or some sibling (!= me) is exclusive, we can't
722 	 * overlap. exclusive_cpus cannot overlap with each other if set.
723 	 */
724 	ret = -EINVAL;
725 	cpuset_for_each_child(c, css, par) {
726 		if (c == cur)
727 			continue;
728 		if (cpus_excl_conflict(trial, c))
729 			goto out;
730 		if (mems_excl_conflict(trial, c))
731 			goto out;
732 	}
733 
734 	ret = 0;
735 out:
736 	rcu_read_unlock();
737 	return ret;
738 }
739 
740 #ifdef CONFIG_SMP
741 /*
742  * Helper routine for generate_sched_domains().
743  * Do cpusets a, b have overlapping effective cpus_allowed masks?
744  */
745 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
746 {
747 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
748 }
749 
750 static void
751 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
752 {
753 	if (dattr->relax_domain_level < c->relax_domain_level)
754 		dattr->relax_domain_level = c->relax_domain_level;
755 	return;
756 }
757 
758 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
759 				    struct cpuset *root_cs)
760 {
761 	struct cpuset *cp;
762 	struct cgroup_subsys_state *pos_css;
763 
764 	rcu_read_lock();
765 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
766 		/* skip the whole subtree if @cp doesn't have any CPU */
767 		if (cpumask_empty(cp->cpus_allowed)) {
768 			pos_css = css_rightmost_descendant(pos_css);
769 			continue;
770 		}
771 
772 		if (is_sched_load_balance(cp))
773 			update_domain_attr(dattr, cp);
774 	}
775 	rcu_read_unlock();
776 }
777 
778 /* Must be called with cpuset_mutex held.  */
779 static inline int nr_cpusets(void)
780 {
781 	/* jump label reference count + the top-level cpuset */
782 	return static_key_count(&cpusets_enabled_key.key) + 1;
783 }
784 
785 /*
786  * generate_sched_domains()
787  *
788  * This function builds a partial partition of the systems CPUs
789  * A 'partial partition' is a set of non-overlapping subsets whose
790  * union is a subset of that set.
791  * The output of this function needs to be passed to kernel/sched/core.c
792  * partition_sched_domains() routine, which will rebuild the scheduler's
793  * load balancing domains (sched domains) as specified by that partial
794  * partition.
795  *
796  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
797  * for a background explanation of this.
798  *
799  * Does not return errors, on the theory that the callers of this
800  * routine would rather not worry about failures to rebuild sched
801  * domains when operating in the severe memory shortage situations
802  * that could cause allocation failures below.
803  *
804  * Must be called with cpuset_mutex held.
805  *
806  * The three key local variables below are:
807  *    cp - cpuset pointer, used (together with pos_css) to perform a
808  *	   top-down scan of all cpusets. For our purposes, rebuilding
809  *	   the schedulers sched domains, we can ignore !is_sched_load_
810  *	   balance cpusets.
811  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
812  *	   that need to be load balanced, for convenient iterative
813  *	   access by the subsequent code that finds the best partition,
814  *	   i.e the set of domains (subsets) of CPUs such that the
815  *	   cpus_allowed of every cpuset marked is_sched_load_balance
816  *	   is a subset of one of these domains, while there are as
817  *	   many such domains as possible, each as small as possible.
818  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
819  *	   the kernel/sched/core.c routine partition_sched_domains() in a
820  *	   convenient format, that can be easily compared to the prior
821  *	   value to determine what partition elements (sched domains)
822  *	   were changed (added or removed.)
823  *
824  * Finding the best partition (set of domains):
825  *	The double nested loops below over i, j scan over the load
826  *	balanced cpusets (using the array of cpuset pointers in csa[])
827  *	looking for pairs of cpusets that have overlapping cpus_allowed
828  *	and merging them using a union-find algorithm.
829  *
830  *	The union of the cpus_allowed masks from the set of all cpusets
831  *	having the same root then form the one element of the partition
832  *	(one sched domain) to be passed to partition_sched_domains().
833  *
834  */
835 static int generate_sched_domains(cpumask_var_t **domains,
836 			struct sched_domain_attr **attributes)
837 {
838 	struct cpuset *cp;	/* top-down scan of cpusets */
839 	struct cpuset **csa;	/* array of all cpuset ptrs */
840 	int csn;		/* how many cpuset ptrs in csa so far */
841 	int i, j;		/* indices for partition finding loops */
842 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
843 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
844 	int ndoms = 0;		/* number of sched domains in result */
845 	int nslot;		/* next empty doms[] struct cpumask slot */
846 	struct cgroup_subsys_state *pos_css;
847 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
848 	bool cgrpv2 = cpuset_v2();
849 	int nslot_update;
850 
851 	doms = NULL;
852 	dattr = NULL;
853 	csa = NULL;
854 
855 	/* Special case for the 99% of systems with one, full, sched domain */
856 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
857 single_root_domain:
858 		ndoms = 1;
859 		doms = alloc_sched_domains(ndoms);
860 		if (!doms)
861 			goto done;
862 
863 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
864 		if (dattr) {
865 			*dattr = SD_ATTR_INIT;
866 			update_domain_attr_tree(dattr, &top_cpuset);
867 		}
868 		cpumask_and(doms[0], top_cpuset.effective_cpus,
869 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
870 
871 		goto done;
872 	}
873 
874 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
875 	if (!csa)
876 		goto done;
877 	csn = 0;
878 
879 	rcu_read_lock();
880 	if (root_load_balance)
881 		csa[csn++] = &top_cpuset;
882 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
883 		if (cp == &top_cpuset)
884 			continue;
885 
886 		if (cgrpv2)
887 			goto v2;
888 
889 		/*
890 		 * v1:
891 		 * Continue traversing beyond @cp iff @cp has some CPUs and
892 		 * isn't load balancing.  The former is obvious.  The
893 		 * latter: All child cpusets contain a subset of the
894 		 * parent's cpus, so just skip them, and then we call
895 		 * update_domain_attr_tree() to calc relax_domain_level of
896 		 * the corresponding sched domain.
897 		 */
898 		if (!cpumask_empty(cp->cpus_allowed) &&
899 		    !(is_sched_load_balance(cp) &&
900 		      cpumask_intersects(cp->cpus_allowed,
901 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
902 			continue;
903 
904 		if (is_sched_load_balance(cp) &&
905 		    !cpumask_empty(cp->effective_cpus))
906 			csa[csn++] = cp;
907 
908 		/* skip @cp's subtree */
909 		pos_css = css_rightmost_descendant(pos_css);
910 		continue;
911 
912 v2:
913 		/*
914 		 * Only valid partition roots that are not isolated and with
915 		 * non-empty effective_cpus will be saved into csn[].
916 		 */
917 		if ((cp->partition_root_state == PRS_ROOT) &&
918 		    !cpumask_empty(cp->effective_cpus))
919 			csa[csn++] = cp;
920 
921 		/*
922 		 * Skip @cp's subtree if not a partition root and has no
923 		 * exclusive CPUs to be granted to child cpusets.
924 		 */
925 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
926 			pos_css = css_rightmost_descendant(pos_css);
927 	}
928 	rcu_read_unlock();
929 
930 	/*
931 	 * If there are only isolated partitions underneath the cgroup root,
932 	 * we can optimize out unneeded sched domains scanning.
933 	 */
934 	if (root_load_balance && (csn == 1))
935 		goto single_root_domain;
936 
937 	for (i = 0; i < csn; i++)
938 		uf_node_init(&csa[i]->node);
939 
940 	/* Merge overlapping cpusets */
941 	for (i = 0; i < csn; i++) {
942 		for (j = i + 1; j < csn; j++) {
943 			if (cpusets_overlap(csa[i], csa[j])) {
944 				/*
945 				 * Cgroup v2 shouldn't pass down overlapping
946 				 * partition root cpusets.
947 				 */
948 				WARN_ON_ONCE(cgrpv2);
949 				uf_union(&csa[i]->node, &csa[j]->node);
950 			}
951 		}
952 	}
953 
954 	/* Count the total number of domains */
955 	for (i = 0; i < csn; i++) {
956 		if (uf_find(&csa[i]->node) == &csa[i]->node)
957 			ndoms++;
958 	}
959 
960 	/*
961 	 * Now we know how many domains to create.
962 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
963 	 */
964 	doms = alloc_sched_domains(ndoms);
965 	if (!doms)
966 		goto done;
967 
968 	/*
969 	 * The rest of the code, including the scheduler, can deal with
970 	 * dattr==NULL case. No need to abort if alloc fails.
971 	 */
972 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
973 			      GFP_KERNEL);
974 
975 	/*
976 	 * Cgroup v2 doesn't support domain attributes, just set all of them
977 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
978 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
979 	 */
980 	if (cgrpv2) {
981 		for (i = 0; i < ndoms; i++) {
982 			/*
983 			 * The top cpuset may contain some boot time isolated
984 			 * CPUs that need to be excluded from the sched domain.
985 			 */
986 			if (csa[i] == &top_cpuset)
987 				cpumask_and(doms[i], csa[i]->effective_cpus,
988 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
989 			else
990 				cpumask_copy(doms[i], csa[i]->effective_cpus);
991 			if (dattr)
992 				dattr[i] = SD_ATTR_INIT;
993 		}
994 		goto done;
995 	}
996 
997 	for (nslot = 0, i = 0; i < csn; i++) {
998 		nslot_update = 0;
999 		for (j = i; j < csn; j++) {
1000 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
1001 				struct cpumask *dp = doms[nslot];
1002 
1003 				if (i == j) {
1004 					nslot_update = 1;
1005 					cpumask_clear(dp);
1006 					if (dattr)
1007 						*(dattr + nslot) = SD_ATTR_INIT;
1008 				}
1009 				cpumask_or(dp, dp, csa[j]->effective_cpus);
1010 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1011 				if (dattr)
1012 					update_domain_attr_tree(dattr + nslot, csa[j]);
1013 			}
1014 		}
1015 		if (nslot_update)
1016 			nslot++;
1017 	}
1018 	BUG_ON(nslot != ndoms);
1019 
1020 done:
1021 	kfree(csa);
1022 
1023 	/*
1024 	 * Fallback to the default domain if kmalloc() failed.
1025 	 * See comments in partition_sched_domains().
1026 	 */
1027 	if (doms == NULL)
1028 		ndoms = 1;
1029 
1030 	*domains    = doms;
1031 	*attributes = dattr;
1032 	return ndoms;
1033 }
1034 
1035 static void dl_update_tasks_root_domain(struct cpuset *cs)
1036 {
1037 	struct css_task_iter it;
1038 	struct task_struct *task;
1039 
1040 	if (cs->nr_deadline_tasks == 0)
1041 		return;
1042 
1043 	css_task_iter_start(&cs->css, 0, &it);
1044 
1045 	while ((task = css_task_iter_next(&it)))
1046 		dl_add_task_root_domain(task);
1047 
1048 	css_task_iter_end(&it);
1049 }
1050 
1051 void dl_rebuild_rd_accounting(void)
1052 {
1053 	struct cpuset *cs = NULL;
1054 	struct cgroup_subsys_state *pos_css;
1055 	int cpu;
1056 	u64 cookie = ++dl_cookie;
1057 
1058 	lockdep_assert_held(&cpuset_mutex);
1059 	lockdep_assert_cpus_held();
1060 	lockdep_assert_held(&sched_domains_mutex);
1061 
1062 	rcu_read_lock();
1063 
1064 	for_each_possible_cpu(cpu) {
1065 		if (dl_bw_visited(cpu, cookie))
1066 			continue;
1067 
1068 		dl_clear_root_domain_cpu(cpu);
1069 	}
1070 
1071 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1072 
1073 		if (cpumask_empty(cs->effective_cpus)) {
1074 			pos_css = css_rightmost_descendant(pos_css);
1075 			continue;
1076 		}
1077 
1078 		css_get(&cs->css);
1079 
1080 		rcu_read_unlock();
1081 
1082 		dl_update_tasks_root_domain(cs);
1083 
1084 		rcu_read_lock();
1085 		css_put(&cs->css);
1086 	}
1087 	rcu_read_unlock();
1088 }
1089 
1090 /*
1091  * Rebuild scheduler domains.
1092  *
1093  * If the flag 'sched_load_balance' of any cpuset with non-empty
1094  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1095  * which has that flag enabled, or if any cpuset with a non-empty
1096  * 'cpus' is removed, then call this routine to rebuild the
1097  * scheduler's dynamic sched domains.
1098  *
1099  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1100  */
1101 void rebuild_sched_domains_locked(void)
1102 {
1103 	struct cgroup_subsys_state *pos_css;
1104 	struct sched_domain_attr *attr;
1105 	cpumask_var_t *doms;
1106 	struct cpuset *cs;
1107 	int ndoms;
1108 
1109 	lockdep_assert_cpus_held();
1110 	lockdep_assert_held(&cpuset_mutex);
1111 	force_sd_rebuild = false;
1112 
1113 	/*
1114 	 * If we have raced with CPU hotplug, return early to avoid
1115 	 * passing doms with offlined cpu to partition_sched_domains().
1116 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1117 	 *
1118 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1119 	 * should be the same as the active CPUs, so checking only top_cpuset
1120 	 * is enough to detect racing CPU offlines.
1121 	 */
1122 	if (cpumask_empty(subpartitions_cpus) &&
1123 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1124 		return;
1125 
1126 	/*
1127 	 * With subpartition CPUs, however, the effective CPUs of a partition
1128 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1129 	 * partition root could be offlined, all must be checked.
1130 	 */
1131 	if (!cpumask_empty(subpartitions_cpus)) {
1132 		rcu_read_lock();
1133 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1134 			if (!is_partition_valid(cs)) {
1135 				pos_css = css_rightmost_descendant(pos_css);
1136 				continue;
1137 			}
1138 			if (!cpumask_subset(cs->effective_cpus,
1139 					    cpu_active_mask)) {
1140 				rcu_read_unlock();
1141 				return;
1142 			}
1143 		}
1144 		rcu_read_unlock();
1145 	}
1146 
1147 	/* Generate domain masks and attrs */
1148 	ndoms = generate_sched_domains(&doms, &attr);
1149 
1150 	/* Have scheduler rebuild the domains */
1151 	partition_sched_domains(ndoms, doms, attr);
1152 }
1153 #else /* !CONFIG_SMP */
1154 void rebuild_sched_domains_locked(void)
1155 {
1156 }
1157 #endif /* CONFIG_SMP */
1158 
1159 static void rebuild_sched_domains_cpuslocked(void)
1160 {
1161 	mutex_lock(&cpuset_mutex);
1162 	rebuild_sched_domains_locked();
1163 	mutex_unlock(&cpuset_mutex);
1164 }
1165 
1166 void rebuild_sched_domains(void)
1167 {
1168 	cpus_read_lock();
1169 	rebuild_sched_domains_cpuslocked();
1170 	cpus_read_unlock();
1171 }
1172 
1173 void cpuset_reset_sched_domains(void)
1174 {
1175 	mutex_lock(&cpuset_mutex);
1176 	partition_sched_domains(1, NULL, NULL);
1177 	mutex_unlock(&cpuset_mutex);
1178 }
1179 
1180 /**
1181  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1182  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1183  * @new_cpus: the temp variable for the new effective_cpus mask
1184  *
1185  * Iterate through each task of @cs updating its cpus_allowed to the
1186  * effective cpuset's.  As this function is called with cpuset_mutex held,
1187  * cpuset membership stays stable.
1188  *
1189  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1190  * to make sure all offline CPUs are also included as hotplug code won't
1191  * update cpumasks for tasks in top_cpuset.
1192  *
1193  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1194  * do cpu masking per task instead of doing it once for all.
1195  */
1196 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1197 {
1198 	struct css_task_iter it;
1199 	struct task_struct *task;
1200 	bool top_cs = cs == &top_cpuset;
1201 
1202 	css_task_iter_start(&cs->css, 0, &it);
1203 	while ((task = css_task_iter_next(&it))) {
1204 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1205 
1206 		if (top_cs) {
1207 			/*
1208 			 * PF_KTHREAD tasks are handled by housekeeping.
1209 			 * PF_NO_SETAFFINITY tasks are ignored.
1210 			 */
1211 			if (task->flags & (PF_KTHREAD | PF_NO_SETAFFINITY))
1212 				continue;
1213 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1214 		} else {
1215 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1216 		}
1217 		set_cpus_allowed_ptr(task, new_cpus);
1218 	}
1219 	css_task_iter_end(&it);
1220 }
1221 
1222 /**
1223  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1224  * @new_cpus: the temp variable for the new effective_cpus mask
1225  * @cs: the cpuset the need to recompute the new effective_cpus mask
1226  * @parent: the parent cpuset
1227  *
1228  * The result is valid only if the given cpuset isn't a partition root.
1229  */
1230 static void compute_effective_cpumask(struct cpumask *new_cpus,
1231 				      struct cpuset *cs, struct cpuset *parent)
1232 {
1233 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1234 }
1235 
1236 /*
1237  * Commands for update_parent_effective_cpumask
1238  */
1239 enum partition_cmd {
1240 	partcmd_enable,		/* Enable partition root	  */
1241 	partcmd_enablei,	/* Enable isolated partition root */
1242 	partcmd_disable,	/* Disable partition root	  */
1243 	partcmd_update,		/* Update parent's effective_cpus */
1244 	partcmd_invalidate,	/* Make partition invalid	  */
1245 };
1246 
1247 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1248 				    struct tmpmasks *tmp);
1249 
1250 /*
1251  * Update partition exclusive flag
1252  *
1253  * Return: 0 if successful, an error code otherwise
1254  */
1255 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1256 {
1257 	bool exclusive = (new_prs > PRS_MEMBER);
1258 
1259 	if (exclusive && !is_cpu_exclusive(cs)) {
1260 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1261 			return PERR_NOTEXCL;
1262 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1263 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1264 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1265 	}
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Update partition load balance flag and/or rebuild sched domain
1271  *
1272  * Changing load balance flag will automatically call
1273  * rebuild_sched_domains_locked().
1274  * This function is for cgroup v2 only.
1275  */
1276 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1277 {
1278 	int new_prs = cs->partition_root_state;
1279 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1280 	bool new_lb;
1281 
1282 	/*
1283 	 * If cs is not a valid partition root, the load balance state
1284 	 * will follow its parent.
1285 	 */
1286 	if (new_prs > 0) {
1287 		new_lb = (new_prs != PRS_ISOLATED);
1288 	} else {
1289 		new_lb = is_sched_load_balance(parent_cs(cs));
1290 	}
1291 	if (new_lb != !!is_sched_load_balance(cs)) {
1292 		rebuild_domains = true;
1293 		if (new_lb)
1294 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1295 		else
1296 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1297 	}
1298 
1299 	if (rebuild_domains)
1300 		cpuset_force_rebuild();
1301 }
1302 
1303 /*
1304  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1305  */
1306 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1307 			      struct cpumask *xcpus)
1308 {
1309 	/*
1310 	 * A populated partition (cs or parent) can't have empty effective_cpus
1311 	 */
1312 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1313 		partition_is_populated(parent, cs)) ||
1314 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1315 		partition_is_populated(cs, NULL));
1316 }
1317 
1318 static void reset_partition_data(struct cpuset *cs)
1319 {
1320 	struct cpuset *parent = parent_cs(cs);
1321 
1322 	if (!cpuset_v2())
1323 		return;
1324 
1325 	lockdep_assert_held(&callback_lock);
1326 
1327 	if (cpumask_empty(cs->exclusive_cpus)) {
1328 		cpumask_clear(cs->effective_xcpus);
1329 		if (is_cpu_exclusive(cs))
1330 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1331 	}
1332 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1333 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1334 }
1335 
1336 /*
1337  * isolated_cpus_update - Update the isolated_cpus mask
1338  * @old_prs: old partition_root_state
1339  * @new_prs: new partition_root_state
1340  * @xcpus: exclusive CPUs with state change
1341  */
1342 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1343 {
1344 	WARN_ON_ONCE(old_prs == new_prs);
1345 	if (new_prs == PRS_ISOLATED)
1346 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1347 	else
1348 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1349 
1350 	isolated_cpus_updating = true;
1351 }
1352 
1353 /*
1354  * partition_xcpus_add - Add new exclusive CPUs to partition
1355  * @new_prs: new partition_root_state
1356  * @parent: parent cpuset
1357  * @xcpus: exclusive CPUs to be added
1358  *
1359  * Remote partition if parent == NULL
1360  */
1361 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1362 				struct cpumask *xcpus)
1363 {
1364 	WARN_ON_ONCE(new_prs < 0);
1365 	lockdep_assert_held(&callback_lock);
1366 	if (!parent)
1367 		parent = &top_cpuset;
1368 
1369 
1370 	if (parent == &top_cpuset)
1371 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1372 
1373 	if (new_prs != parent->partition_root_state)
1374 		isolated_cpus_update(parent->partition_root_state, new_prs,
1375 				     xcpus);
1376 
1377 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1378 }
1379 
1380 /*
1381  * partition_xcpus_del - Remove exclusive CPUs from partition
1382  * @old_prs: old partition_root_state
1383  * @parent: parent cpuset
1384  * @xcpus: exclusive CPUs to be removed
1385  *
1386  * Remote partition if parent == NULL
1387  */
1388 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1389 				struct cpumask *xcpus)
1390 {
1391 	WARN_ON_ONCE(old_prs < 0);
1392 	lockdep_assert_held(&callback_lock);
1393 	if (!parent)
1394 		parent = &top_cpuset;
1395 
1396 	if (parent == &top_cpuset)
1397 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1398 
1399 	if (old_prs != parent->partition_root_state)
1400 		isolated_cpus_update(old_prs, parent->partition_root_state,
1401 				     xcpus);
1402 
1403 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1404 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1405 }
1406 
1407 /*
1408  * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1409  * @add_cpus: cpu mask for cpus that are going to be isolated
1410  * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1411  * Return: false if there is conflict, true otherwise
1412  *
1413  * If nohz_full is enabled and we have isolated CPUs, their combination must
1414  * still leave housekeeping CPUs.
1415  *
1416  * TBD: Should consider merging this function into
1417  *      prstate_housekeeping_conflict().
1418  */
1419 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1420 				     struct cpumask *del_cpus)
1421 {
1422 	cpumask_var_t full_hk_cpus;
1423 	int res = true;
1424 
1425 	if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1426 		return true;
1427 
1428 	if (del_cpus && cpumask_weight_and(del_cpus,
1429 			housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1430 		return true;
1431 
1432 	if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1433 		return false;
1434 
1435 	cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1436 		    housekeeping_cpumask(HK_TYPE_DOMAIN));
1437 	cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1438 	cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1439 	if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1440 		res = false;
1441 
1442 	free_cpumask_var(full_hk_cpus);
1443 	return res;
1444 }
1445 
1446 /*
1447  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1448  * @prstate: partition root state to be checked
1449  * @new_cpus: cpu mask
1450  * Return: true if there is conflict, false otherwise
1451  *
1452  * CPUs outside of HK_TYPE_DOMAIN_BOOT, if defined, can only be used in an
1453  * isolated partition.
1454  */
1455 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1456 {
1457 	if (!housekeeping_enabled(HK_TYPE_DOMAIN_BOOT))
1458 		return false;
1459 
1460 	if ((prstate != PRS_ISOLATED) &&
1461 	    !cpumask_subset(new_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN_BOOT)))
1462 		return true;
1463 
1464 	return false;
1465 }
1466 
1467 /*
1468  * update_isolation_cpumasks - Update external isolation related CPU masks
1469  *
1470  * The following external CPU masks will be updated if necessary:
1471  * - workqueue unbound cpumask
1472  */
1473 static void update_isolation_cpumasks(void)
1474 {
1475 	int ret;
1476 
1477 	if (!isolated_cpus_updating)
1478 		return;
1479 
1480 	ret = housekeeping_update(isolated_cpus);
1481 	WARN_ON_ONCE(ret < 0);
1482 
1483 	isolated_cpus_updating = false;
1484 }
1485 
1486 /**
1487  * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1488  * @parent: Parent cpuset containing all siblings
1489  * @cs: Current cpuset (will be skipped)
1490  * @excpus:  exclusive effective CPU mask to modify
1491  *
1492  * This function ensures the given @excpus mask doesn't include any CPUs that
1493  * are exclusively allocated to sibling cpusets. It walks through all siblings
1494  * of @cs under @parent and removes their exclusive CPUs from @excpus.
1495  */
1496 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1497 					struct cpumask *excpus)
1498 {
1499 	struct cgroup_subsys_state *css;
1500 	struct cpuset *sibling;
1501 	int retval = 0;
1502 
1503 	if (cpumask_empty(excpus))
1504 		return retval;
1505 
1506 	/*
1507 	 * Exclude exclusive CPUs from siblings
1508 	 */
1509 	rcu_read_lock();
1510 	cpuset_for_each_child(sibling, css, parent) {
1511 		if (sibling == cs)
1512 			continue;
1513 
1514 		if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1515 			cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1516 			retval++;
1517 			continue;
1518 		}
1519 		if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1520 			cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1521 			retval++;
1522 		}
1523 	}
1524 	rcu_read_unlock();
1525 
1526 	return retval;
1527 }
1528 
1529 /*
1530  * compute_excpus - compute effective exclusive CPUs
1531  * @cs: cpuset
1532  * @xcpus: effective exclusive CPUs value to be set
1533  * Return: 0 if there is no sibling conflict, > 0 otherwise
1534  *
1535  * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1536  * and exclude their exclusive_cpus or effective_xcpus as well.
1537  */
1538 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1539 {
1540 	struct cpuset *parent = parent_cs(cs);
1541 
1542 	cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1543 
1544 	if (!cpumask_empty(cs->exclusive_cpus))
1545 		return 0;
1546 
1547 	return rm_siblings_excl_cpus(parent, cs, excpus);
1548 }
1549 
1550 /*
1551  * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1552  * @trialcs: The trial cpuset containing the proposed new configuration
1553  * @cs: The original cpuset that the trial configuration is based on
1554  * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1555  *
1556  * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1557  * the real cs.
1558  */
1559 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1560 {
1561 	struct cpuset *parent = parent_cs(trialcs);
1562 	struct cpumask *excpus = trialcs->effective_xcpus;
1563 
1564 	/* trialcs is member, cpuset.cpus has no impact to excpus */
1565 	if (cs_is_member(cs))
1566 		cpumask_and(excpus, trialcs->exclusive_cpus,
1567 				parent->effective_xcpus);
1568 	else
1569 		cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1570 
1571 	return rm_siblings_excl_cpus(parent, cs, excpus);
1572 }
1573 
1574 static inline bool is_remote_partition(struct cpuset *cs)
1575 {
1576 	return cs->remote_partition;
1577 }
1578 
1579 static inline bool is_local_partition(struct cpuset *cs)
1580 {
1581 	return is_partition_valid(cs) && !is_remote_partition(cs);
1582 }
1583 
1584 /*
1585  * remote_partition_enable - Enable current cpuset as a remote partition root
1586  * @cs: the cpuset to update
1587  * @new_prs: new partition_root_state
1588  * @tmp: temporary masks
1589  * Return: 0 if successful, errcode if error
1590  *
1591  * Enable the current cpuset to become a remote partition root taking CPUs
1592  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1593  */
1594 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1595 				   struct tmpmasks *tmp)
1596 {
1597 	/*
1598 	 * The user must have sysadmin privilege.
1599 	 */
1600 	if (!capable(CAP_SYS_ADMIN))
1601 		return PERR_ACCESS;
1602 
1603 	/*
1604 	 * The requested exclusive_cpus must not be allocated to other
1605 	 * partitions and it can't use up all the root's effective_cpus.
1606 	 *
1607 	 * The effective_xcpus mask can contain offline CPUs, but there must
1608 	 * be at least one or more online CPUs present before it can be enabled.
1609 	 *
1610 	 * Note that creating a remote partition with any local partition root
1611 	 * above it or remote partition root underneath it is not allowed.
1612 	 */
1613 	compute_excpus(cs, tmp->new_cpus);
1614 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1615 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1616 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1617 		return PERR_INVCPUS;
1618 	if (((new_prs == PRS_ISOLATED) &&
1619 	     !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1620 	    prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1621 		return PERR_HKEEPING;
1622 
1623 	spin_lock_irq(&callback_lock);
1624 	partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1625 	cs->remote_partition = true;
1626 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1627 	spin_unlock_irq(&callback_lock);
1628 	update_isolation_cpumasks();
1629 	cpuset_force_rebuild();
1630 	cs->prs_err = 0;
1631 
1632 	/*
1633 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1634 	 */
1635 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1636 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1637 	return 0;
1638 }
1639 
1640 /*
1641  * remote_partition_disable - Remove current cpuset from remote partition list
1642  * @cs: the cpuset to update
1643  * @tmp: temporary masks
1644  *
1645  * The effective_cpus is also updated.
1646  *
1647  * cpuset_mutex must be held by the caller.
1648  */
1649 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1650 {
1651 	WARN_ON_ONCE(!is_remote_partition(cs));
1652 	/*
1653 	 * When a CPU is offlined, top_cpuset may end up with no available CPUs,
1654 	 * which should clear subpartitions_cpus. We should not emit a warning for this
1655 	 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus
1656 	 * may already be cleared when disabling the partition.
1657 	 */
1658 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) &&
1659 		     !cpumask_empty(subpartitions_cpus));
1660 
1661 	spin_lock_irq(&callback_lock);
1662 	cs->remote_partition = false;
1663 	partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1664 	if (cs->prs_err)
1665 		cs->partition_root_state = -cs->partition_root_state;
1666 	else
1667 		cs->partition_root_state = PRS_MEMBER;
1668 
1669 	/* effective_xcpus may need to be changed */
1670 	compute_excpus(cs, cs->effective_xcpus);
1671 	reset_partition_data(cs);
1672 	spin_unlock_irq(&callback_lock);
1673 	update_isolation_cpumasks();
1674 	cpuset_force_rebuild();
1675 
1676 	/*
1677 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1678 	 */
1679 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1680 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1681 }
1682 
1683 /*
1684  * remote_cpus_update - cpus_exclusive change of remote partition
1685  * @cs: the cpuset to be updated
1686  * @xcpus: the new exclusive_cpus mask, if non-NULL
1687  * @excpus: the new effective_xcpus mask
1688  * @tmp: temporary masks
1689  *
1690  * top_cpuset and subpartitions_cpus will be updated or partition can be
1691  * invalidated.
1692  */
1693 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1694 			       struct cpumask *excpus, struct tmpmasks *tmp)
1695 {
1696 	bool adding, deleting;
1697 	int prs = cs->partition_root_state;
1698 
1699 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1700 		return;
1701 
1702 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1703 
1704 	if (cpumask_empty(excpus)) {
1705 		cs->prs_err = PERR_CPUSEMPTY;
1706 		goto invalidate;
1707 	}
1708 
1709 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1710 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1711 
1712 	/*
1713 	 * Additions of remote CPUs is only allowed if those CPUs are
1714 	 * not allocated to other partitions and there are effective_cpus
1715 	 * left in the top cpuset.
1716 	 */
1717 	if (adding) {
1718 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1719 		if (!capable(CAP_SYS_ADMIN))
1720 			cs->prs_err = PERR_ACCESS;
1721 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1722 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1723 			cs->prs_err = PERR_NOCPUS;
1724 		else if ((prs == PRS_ISOLATED) &&
1725 			 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1726 			cs->prs_err = PERR_HKEEPING;
1727 		if (cs->prs_err)
1728 			goto invalidate;
1729 	}
1730 
1731 	spin_lock_irq(&callback_lock);
1732 	if (adding)
1733 		partition_xcpus_add(prs, NULL, tmp->addmask);
1734 	if (deleting)
1735 		partition_xcpus_del(prs, NULL, tmp->delmask);
1736 	/*
1737 	 * Need to update effective_xcpus and exclusive_cpus now as
1738 	 * update_sibling_cpumasks() below may iterate back to the same cs.
1739 	 */
1740 	cpumask_copy(cs->effective_xcpus, excpus);
1741 	if (xcpus)
1742 		cpumask_copy(cs->exclusive_cpus, xcpus);
1743 	spin_unlock_irq(&callback_lock);
1744 	update_isolation_cpumasks();
1745 	if (adding || deleting)
1746 		cpuset_force_rebuild();
1747 
1748 	/*
1749 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1750 	 */
1751 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1752 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1753 	return;
1754 
1755 invalidate:
1756 	remote_partition_disable(cs, tmp);
1757 }
1758 
1759 /**
1760  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1761  * @cs:      The cpuset that requests change in partition root state
1762  * @cmd:     Partition root state change command
1763  * @newmask: Optional new cpumask for partcmd_update
1764  * @tmp:     Temporary addmask and delmask
1765  * Return:   0 or a partition root state error code
1766  *
1767  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1768  * root to a partition root. The effective_xcpus (cpus_allowed if
1769  * effective_xcpus not set) mask of the given cpuset will be taken away from
1770  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1771  * in effective_xcpus can be granted or an error code will be returned.
1772  *
1773  * For partcmd_disable, the cpuset is being transformed from a partition
1774  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1775  * given back to parent's effective_cpus. 0 will always be returned.
1776  *
1777  * For partcmd_update, if the optional newmask is specified, the cpu list is
1778  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1779  * assumed to remain the same. The cpuset should either be a valid or invalid
1780  * partition root. The partition root state may change from valid to invalid
1781  * or vice versa. An error code will be returned if transitioning from
1782  * invalid to valid violates the exclusivity rule.
1783  *
1784  * For partcmd_invalidate, the current partition will be made invalid.
1785  *
1786  * The partcmd_enable* and partcmd_disable commands are used by
1787  * update_prstate(). An error code may be returned and the caller will check
1788  * for error.
1789  *
1790  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1791  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1792  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1793  * check for error and so partition_root_state and prs_err will be updated
1794  * directly.
1795  */
1796 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1797 					   struct cpumask *newmask,
1798 					   struct tmpmasks *tmp)
1799 {
1800 	struct cpuset *parent = parent_cs(cs);
1801 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1802 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1803 	int old_prs, new_prs;
1804 	int part_error = PERR_NONE;	/* Partition error? */
1805 	struct cpumask *xcpus = user_xcpus(cs);
1806 	int parent_prs = parent->partition_root_state;
1807 	bool nocpu;
1808 
1809 	lockdep_assert_held(&cpuset_mutex);
1810 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
1811 
1812 	/*
1813 	 * new_prs will only be changed for the partcmd_update and
1814 	 * partcmd_invalidate commands.
1815 	 */
1816 	adding = deleting = false;
1817 	old_prs = new_prs = cs->partition_root_state;
1818 
1819 	if (cmd == partcmd_invalidate) {
1820 		if (is_partition_invalid(cs))
1821 			return 0;
1822 
1823 		/*
1824 		 * Make the current partition invalid.
1825 		 */
1826 		if (is_partition_valid(parent))
1827 			adding = cpumask_and(tmp->addmask,
1828 					     xcpus, parent->effective_xcpus);
1829 		if (old_prs > 0)
1830 			new_prs = -old_prs;
1831 
1832 		goto write_error;
1833 	}
1834 
1835 	/*
1836 	 * The parent must be a partition root.
1837 	 * The new cpumask, if present, or the current cpus_allowed must
1838 	 * not be empty.
1839 	 */
1840 	if (!is_partition_valid(parent)) {
1841 		return is_partition_invalid(parent)
1842 		       ? PERR_INVPARENT : PERR_NOTPART;
1843 	}
1844 	if (!newmask && xcpus_empty(cs))
1845 		return PERR_CPUSEMPTY;
1846 
1847 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1848 
1849 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1850 		/*
1851 		 * Need to call compute_excpus() in case
1852 		 * exclusive_cpus not set. Sibling conflict should only happen
1853 		 * if exclusive_cpus isn't set.
1854 		 */
1855 		xcpus = tmp->delmask;
1856 		if (compute_excpus(cs, xcpus))
1857 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1858 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1859 
1860 		/*
1861 		 * Enabling partition root is not allowed if its
1862 		 * effective_xcpus is empty.
1863 		 */
1864 		if (cpumask_empty(xcpus))
1865 			return PERR_INVCPUS;
1866 
1867 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1868 			return PERR_HKEEPING;
1869 
1870 		if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1871 		    !isolated_cpus_can_update(xcpus, NULL))
1872 			return PERR_HKEEPING;
1873 
1874 		if (tasks_nocpu_error(parent, cs, xcpus))
1875 			return PERR_NOCPUS;
1876 
1877 		/*
1878 		 * This function will only be called when all the preliminary
1879 		 * checks have passed. At this point, the following condition
1880 		 * should hold.
1881 		 *
1882 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1883 		 *
1884 		 * Warn if it is not the case.
1885 		 */
1886 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1887 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1888 
1889 		deleting = true;
1890 	} else if (cmd == partcmd_disable) {
1891 		/*
1892 		 * May need to add cpus back to parent's effective_cpus
1893 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1894 		 * for valid partition root. xcpus may contain CPUs that
1895 		 * shouldn't be removed from the two global cpumasks.
1896 		 */
1897 		if (is_partition_valid(cs)) {
1898 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
1899 			adding = true;
1900 		}
1901 		new_prs = PRS_MEMBER;
1902 	} else if (newmask) {
1903 		/*
1904 		 * Empty cpumask is not allowed
1905 		 */
1906 		if (cpumask_empty(newmask)) {
1907 			part_error = PERR_CPUSEMPTY;
1908 			goto write_error;
1909 		}
1910 
1911 		/* Check newmask again, whether cpus are available for parent/cs */
1912 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1913 
1914 		/*
1915 		 * partcmd_update with newmask:
1916 		 *
1917 		 * Compute add/delete mask to/from effective_cpus
1918 		 *
1919 		 * For valid partition:
1920 		 *   addmask = exclusive_cpus & ~newmask
1921 		 *			      & parent->effective_xcpus
1922 		 *   delmask = newmask & ~exclusive_cpus
1923 		 *		       & parent->effective_xcpus
1924 		 *
1925 		 * For invalid partition:
1926 		 *   delmask = newmask & parent->effective_xcpus
1927 		 *   The partition may become valid soon.
1928 		 */
1929 		if (is_partition_invalid(cs)) {
1930 			adding = false;
1931 			deleting = cpumask_and(tmp->delmask,
1932 					newmask, parent->effective_xcpus);
1933 		} else {
1934 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1935 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1936 					     parent->effective_xcpus);
1937 
1938 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1939 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1940 					       parent->effective_xcpus);
1941 		}
1942 
1943 		/*
1944 		 * TBD: Invalidate a currently valid child root partition may
1945 		 * still break isolated_cpus_can_update() rule if parent is an
1946 		 * isolated partition.
1947 		 */
1948 		if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1949 			if ((parent_prs == PRS_ROOT) &&
1950 			    /* Adding to parent means removing isolated CPUs */
1951 			    !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1952 				part_error = PERR_HKEEPING;
1953 			if ((parent_prs == PRS_ISOLATED) &&
1954 			    /* Adding to parent means adding isolated CPUs */
1955 			    !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1956 				part_error = PERR_HKEEPING;
1957 		}
1958 
1959 		/*
1960 		 * The new CPUs to be removed from parent's effective CPUs
1961 		 * must be present.
1962 		 */
1963 		if (deleting) {
1964 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1965 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1966 		}
1967 
1968 		/*
1969 		 * Make partition invalid if parent's effective_cpus could
1970 		 * become empty and there are tasks in the parent.
1971 		 */
1972 		if (nocpu && (!adding ||
1973 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1974 			part_error = PERR_NOCPUS;
1975 			deleting = false;
1976 			adding = cpumask_and(tmp->addmask,
1977 					     xcpus, parent->effective_xcpus);
1978 		}
1979 	} else {
1980 		/*
1981 		 * partcmd_update w/o newmask
1982 		 *
1983 		 * delmask = effective_xcpus & parent->effective_cpus
1984 		 *
1985 		 * This can be called from:
1986 		 * 1) update_cpumasks_hier()
1987 		 * 2) cpuset_hotplug_update_tasks()
1988 		 *
1989 		 * Check to see if it can be transitioned from valid to
1990 		 * invalid partition or vice versa.
1991 		 *
1992 		 * A partition error happens when parent has tasks and all
1993 		 * its effective CPUs will have to be distributed out.
1994 		 */
1995 		if (nocpu) {
1996 			part_error = PERR_NOCPUS;
1997 			if (is_partition_valid(cs))
1998 				adding = cpumask_and(tmp->addmask,
1999 						xcpus, parent->effective_xcpus);
2000 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2001 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
2002 			struct cgroup_subsys_state *css;
2003 			struct cpuset *child;
2004 			bool exclusive = true;
2005 
2006 			/*
2007 			 * Convert invalid partition to valid has to
2008 			 * pass the cpu exclusivity test.
2009 			 */
2010 			rcu_read_lock();
2011 			cpuset_for_each_child(child, css, parent) {
2012 				if (child == cs)
2013 					continue;
2014 				if (!cpusets_are_exclusive(cs, child)) {
2015 					exclusive = false;
2016 					break;
2017 				}
2018 			}
2019 			rcu_read_unlock();
2020 			if (exclusive)
2021 				deleting = cpumask_and(tmp->delmask,
2022 						xcpus, parent->effective_cpus);
2023 			else
2024 				part_error = PERR_NOTEXCL;
2025 		}
2026 	}
2027 
2028 write_error:
2029 	if (part_error)
2030 		WRITE_ONCE(cs->prs_err, part_error);
2031 
2032 	if (cmd == partcmd_update) {
2033 		/*
2034 		 * Check for possible transition between valid and invalid
2035 		 * partition root.
2036 		 */
2037 		switch (cs->partition_root_state) {
2038 		case PRS_ROOT:
2039 		case PRS_ISOLATED:
2040 			if (part_error)
2041 				new_prs = -old_prs;
2042 			break;
2043 		case PRS_INVALID_ROOT:
2044 		case PRS_INVALID_ISOLATED:
2045 			if (!part_error)
2046 				new_prs = -old_prs;
2047 			break;
2048 		}
2049 	}
2050 
2051 	if (!adding && !deleting && (new_prs == old_prs))
2052 		return 0;
2053 
2054 	/*
2055 	 * Transitioning between invalid to valid or vice versa may require
2056 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2057 	 * validate_change() has already been successfully called and
2058 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2059 	 */
2060 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2061 		int err = update_partition_exclusive_flag(cs, new_prs);
2062 
2063 		if (err)
2064 			return err;
2065 	}
2066 
2067 	/*
2068 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2069 	 * only).
2070 	 *
2071 	 * Newly added CPUs will be removed from effective_cpus and
2072 	 * newly deleted ones will be added back to effective_cpus.
2073 	 */
2074 	spin_lock_irq(&callback_lock);
2075 	if (old_prs != new_prs)
2076 		cs->partition_root_state = new_prs;
2077 
2078 	/*
2079 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2080 	 * and vice versa.
2081 	 */
2082 	if (adding)
2083 		partition_xcpus_del(old_prs, parent, tmp->addmask);
2084 	if (deleting)
2085 		partition_xcpus_add(new_prs, parent, tmp->delmask);
2086 
2087 	spin_unlock_irq(&callback_lock);
2088 	update_isolation_cpumasks();
2089 
2090 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2091 		update_partition_exclusive_flag(cs, new_prs);
2092 
2093 	if (adding || deleting) {
2094 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
2095 		update_sibling_cpumasks(parent, cs, tmp);
2096 	}
2097 
2098 	/*
2099 	 * For partcmd_update without newmask, it is being called from
2100 	 * cpuset_handle_hotplug(). Update the load balance flag and
2101 	 * scheduling domain accordingly.
2102 	 */
2103 	if ((cmd == partcmd_update) && !newmask)
2104 		update_partition_sd_lb(cs, old_prs);
2105 
2106 	notify_partition_change(cs, old_prs);
2107 	return 0;
2108 }
2109 
2110 /**
2111  * compute_partition_effective_cpumask - compute effective_cpus for partition
2112  * @cs: partition root cpuset
2113  * @new_ecpus: previously computed effective_cpus to be updated
2114  *
2115  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2116  * of child partition roots and excluding their effective_xcpus.
2117  *
2118  * This has the side effect of invalidating valid child partition roots,
2119  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2120  * or update_cpumasks_hier() where parent and children are modified
2121  * successively, we don't need to call update_parent_effective_cpumask()
2122  * and the child's effective_cpus will be updated in later iterations.
2123  *
2124  * Note that rcu_read_lock() is assumed to be held.
2125  */
2126 static void compute_partition_effective_cpumask(struct cpuset *cs,
2127 						struct cpumask *new_ecpus)
2128 {
2129 	struct cgroup_subsys_state *css;
2130 	struct cpuset *child;
2131 	bool populated = partition_is_populated(cs, NULL);
2132 
2133 	/*
2134 	 * Check child partition roots to see if they should be
2135 	 * invalidated when
2136 	 *  1) child effective_xcpus not a subset of new
2137 	 *     excluisve_cpus
2138 	 *  2) All the effective_cpus will be used up and cp
2139 	 *     has tasks
2140 	 */
2141 	compute_excpus(cs, new_ecpus);
2142 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2143 
2144 	rcu_read_lock();
2145 	cpuset_for_each_child(child, css, cs) {
2146 		if (!is_partition_valid(child))
2147 			continue;
2148 
2149 		/*
2150 		 * There shouldn't be a remote partition underneath another
2151 		 * partition root.
2152 		 */
2153 		WARN_ON_ONCE(is_remote_partition(child));
2154 		child->prs_err = 0;
2155 		if (!cpumask_subset(child->effective_xcpus,
2156 				    cs->effective_xcpus))
2157 			child->prs_err = PERR_INVCPUS;
2158 		else if (populated &&
2159 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2160 			child->prs_err = PERR_NOCPUS;
2161 
2162 		if (child->prs_err) {
2163 			int old_prs = child->partition_root_state;
2164 
2165 			/*
2166 			 * Invalidate child partition
2167 			 */
2168 			spin_lock_irq(&callback_lock);
2169 			make_partition_invalid(child);
2170 			spin_unlock_irq(&callback_lock);
2171 			notify_partition_change(child, old_prs);
2172 			continue;
2173 		}
2174 		cpumask_andnot(new_ecpus, new_ecpus,
2175 			       child->effective_xcpus);
2176 	}
2177 	rcu_read_unlock();
2178 }
2179 
2180 /*
2181  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2182  * @cs:  the cpuset to consider
2183  * @tmp: temp variables for calculating effective_cpus & partition setup
2184  * @force: don't skip any descendant cpusets if set
2185  *
2186  * When configured cpumask is changed, the effective cpumasks of this cpuset
2187  * and all its descendants need to be updated.
2188  *
2189  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2190  *
2191  * Called with cpuset_mutex held
2192  */
2193 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2194 				 bool force)
2195 {
2196 	struct cpuset *cp;
2197 	struct cgroup_subsys_state *pos_css;
2198 	int old_prs, new_prs;
2199 
2200 	rcu_read_lock();
2201 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2202 		struct cpuset *parent = parent_cs(cp);
2203 		bool remote = is_remote_partition(cp);
2204 		bool update_parent = false;
2205 
2206 		old_prs = new_prs = cp->partition_root_state;
2207 
2208 		/*
2209 		 * For child remote partition root (!= cs), we need to call
2210 		 * remote_cpus_update() if effective_xcpus will be changed.
2211 		 * Otherwise, we can skip the whole subtree.
2212 		 *
2213 		 * remote_cpus_update() will reuse tmp->new_cpus only after
2214 		 * its value is being processed.
2215 		 */
2216 		if (remote && (cp != cs)) {
2217 			compute_excpus(cp, tmp->new_cpus);
2218 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2219 				pos_css = css_rightmost_descendant(pos_css);
2220 				continue;
2221 			}
2222 			rcu_read_unlock();
2223 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2224 			rcu_read_lock();
2225 
2226 			/* Remote partition may be invalidated */
2227 			new_prs = cp->partition_root_state;
2228 			remote = (new_prs == old_prs);
2229 		}
2230 
2231 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2232 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2233 		else
2234 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2235 
2236 		if (remote)
2237 			goto get_css;	/* Ready to update cpuset data */
2238 
2239 		/*
2240 		 * A partition with no effective_cpus is allowed as long as
2241 		 * there is no task associated with it. Call
2242 		 * update_parent_effective_cpumask() to check it.
2243 		 */
2244 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2245 			update_parent = true;
2246 			goto update_parent_effective;
2247 		}
2248 
2249 		/*
2250 		 * If it becomes empty, inherit the effective mask of the
2251 		 * parent, which is guaranteed to have some CPUs unless
2252 		 * it is a partition root that has explicitly distributed
2253 		 * out all its CPUs.
2254 		 */
2255 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2256 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2257 
2258 		/*
2259 		 * Skip the whole subtree if
2260 		 * 1) the cpumask remains the same,
2261 		 * 2) has no partition root state,
2262 		 * 3) force flag not set, and
2263 		 * 4) for v2 load balance state same as its parent.
2264 		 */
2265 		if (!cp->partition_root_state && !force &&
2266 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2267 		    (!cpuset_v2() ||
2268 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2269 			pos_css = css_rightmost_descendant(pos_css);
2270 			continue;
2271 		}
2272 
2273 update_parent_effective:
2274 		/*
2275 		 * update_parent_effective_cpumask() should have been called
2276 		 * for cs already in update_cpumask(). We should also call
2277 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2278 		 * cpuset if the parent's effective_cpus changes.
2279 		 */
2280 		if ((cp != cs) && old_prs) {
2281 			switch (parent->partition_root_state) {
2282 			case PRS_ROOT:
2283 			case PRS_ISOLATED:
2284 				update_parent = true;
2285 				break;
2286 
2287 			default:
2288 				/*
2289 				 * When parent is not a partition root or is
2290 				 * invalid, child partition roots become
2291 				 * invalid too.
2292 				 */
2293 				if (is_partition_valid(cp))
2294 					new_prs = -cp->partition_root_state;
2295 				WRITE_ONCE(cp->prs_err,
2296 					   is_partition_invalid(parent)
2297 					   ? PERR_INVPARENT : PERR_NOTPART);
2298 				break;
2299 			}
2300 		}
2301 get_css:
2302 		if (!css_tryget_online(&cp->css))
2303 			continue;
2304 		rcu_read_unlock();
2305 
2306 		if (update_parent) {
2307 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2308 			/*
2309 			 * The cpuset partition_root_state may become
2310 			 * invalid. Capture it.
2311 			 */
2312 			new_prs = cp->partition_root_state;
2313 		}
2314 
2315 		spin_lock_irq(&callback_lock);
2316 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2317 		cp->partition_root_state = new_prs;
2318 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2319 			compute_excpus(cp, cp->effective_xcpus);
2320 
2321 		/*
2322 		 * Make sure effective_xcpus is properly set for a valid
2323 		 * partition root.
2324 		 */
2325 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2326 			cpumask_and(cp->effective_xcpus,
2327 				    cp->cpus_allowed, parent->effective_xcpus);
2328 		else if (new_prs < 0)
2329 			reset_partition_data(cp);
2330 		spin_unlock_irq(&callback_lock);
2331 
2332 		notify_partition_change(cp, old_prs);
2333 
2334 		WARN_ON(!is_in_v2_mode() &&
2335 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2336 
2337 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2338 
2339 		/*
2340 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2341 		 * from parent if current cpuset isn't a valid partition root
2342 		 * and their load balance states differ.
2343 		 */
2344 		if (cpuset_v2() && !is_partition_valid(cp) &&
2345 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2346 			if (is_sched_load_balance(parent))
2347 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2348 			else
2349 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2350 		}
2351 
2352 		/*
2353 		 * On legacy hierarchy, if the effective cpumask of any non-
2354 		 * empty cpuset is changed, we need to rebuild sched domains.
2355 		 * On default hierarchy, the cpuset needs to be a partition
2356 		 * root as well.
2357 		 */
2358 		if (!cpumask_empty(cp->cpus_allowed) &&
2359 		    is_sched_load_balance(cp) &&
2360 		   (!cpuset_v2() || is_partition_valid(cp)))
2361 			cpuset_force_rebuild();
2362 
2363 		rcu_read_lock();
2364 		css_put(&cp->css);
2365 	}
2366 	rcu_read_unlock();
2367 }
2368 
2369 /**
2370  * update_sibling_cpumasks - Update siblings cpumasks
2371  * @parent:  Parent cpuset
2372  * @cs:      Current cpuset
2373  * @tmp:     Temp variables
2374  */
2375 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2376 				    struct tmpmasks *tmp)
2377 {
2378 	struct cpuset *sibling;
2379 	struct cgroup_subsys_state *pos_css;
2380 
2381 	lockdep_assert_held(&cpuset_mutex);
2382 
2383 	/*
2384 	 * Check all its siblings and call update_cpumasks_hier()
2385 	 * if their effective_cpus will need to be changed.
2386 	 *
2387 	 * It is possible a change in parent's effective_cpus
2388 	 * due to a change in a child partition's effective_xcpus will impact
2389 	 * its siblings even if they do not inherit parent's effective_cpus
2390 	 * directly.
2391 	 *
2392 	 * The update_cpumasks_hier() function may sleep. So we have to
2393 	 * release the RCU read lock before calling it.
2394 	 */
2395 	rcu_read_lock();
2396 	cpuset_for_each_child(sibling, pos_css, parent) {
2397 		if (sibling == cs)
2398 			continue;
2399 		if (!is_partition_valid(sibling)) {
2400 			compute_effective_cpumask(tmp->new_cpus, sibling,
2401 						  parent);
2402 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2403 				continue;
2404 		} else if (is_remote_partition(sibling)) {
2405 			/*
2406 			 * Change in a sibling cpuset won't affect a remote
2407 			 * partition root.
2408 			 */
2409 			continue;
2410 		}
2411 
2412 		if (!css_tryget_online(&sibling->css))
2413 			continue;
2414 
2415 		rcu_read_unlock();
2416 		update_cpumasks_hier(sibling, tmp, false);
2417 		rcu_read_lock();
2418 		css_put(&sibling->css);
2419 	}
2420 	rcu_read_unlock();
2421 }
2422 
2423 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2424 {
2425 	int retval;
2426 
2427 	retval = cpulist_parse(buf, out_mask);
2428 	if (retval < 0)
2429 		return retval;
2430 	if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2431 		return -EINVAL;
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * validate_partition - Validate a cpuset partition configuration
2438  * @cs: The cpuset to validate
2439  * @trialcs: The trial cpuset containing proposed configuration changes
2440  *
2441  * If any validation check fails, the appropriate error code is set in the
2442  * cpuset's prs_err field.
2443  *
2444  * Return: PRS error code (0 if valid, non-zero error code if invalid)
2445  */
2446 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2447 {
2448 	struct cpuset *parent = parent_cs(cs);
2449 
2450 	if (cs_is_member(trialcs))
2451 		return PERR_NONE;
2452 
2453 	if (cpumask_empty(trialcs->effective_xcpus))
2454 		return PERR_INVCPUS;
2455 
2456 	if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2457 					  trialcs->effective_xcpus))
2458 		return PERR_HKEEPING;
2459 
2460 	if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2461 		return PERR_NOCPUS;
2462 
2463 	return PERR_NONE;
2464 }
2465 
2466 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2467 					struct tmpmasks *tmp)
2468 {
2469 	int retval;
2470 	struct cpuset *parent = parent_cs(cs);
2471 
2472 	retval = validate_change(cs, trialcs);
2473 
2474 	if ((retval == -EINVAL) && cpuset_v2()) {
2475 		struct cgroup_subsys_state *css;
2476 		struct cpuset *cp;
2477 
2478 		/*
2479 		 * The -EINVAL error code indicates that partition sibling
2480 		 * CPU exclusivity rule has been violated. We still allow
2481 		 * the cpumask change to proceed while invalidating the
2482 		 * partition. However, any conflicting sibling partitions
2483 		 * have to be marked as invalid too.
2484 		 */
2485 		trialcs->prs_err = PERR_NOTEXCL;
2486 		rcu_read_lock();
2487 		cpuset_for_each_child(cp, css, parent) {
2488 			struct cpumask *xcpus = user_xcpus(trialcs);
2489 
2490 			if (is_partition_valid(cp) &&
2491 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2492 				rcu_read_unlock();
2493 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2494 				rcu_read_lock();
2495 			}
2496 		}
2497 		rcu_read_unlock();
2498 		retval = 0;
2499 	}
2500 	return retval;
2501 }
2502 
2503 /**
2504  * partition_cpus_change - Handle partition state changes due to CPU mask updates
2505  * @cs: The target cpuset being modified
2506  * @trialcs: The trial cpuset containing proposed configuration changes
2507  * @tmp: Temporary masks for intermediate calculations
2508  *
2509  * This function handles partition state transitions triggered by CPU mask changes.
2510  * CPU modifications may cause a partition to be disabled or require state updates.
2511  */
2512 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2513 					struct tmpmasks *tmp)
2514 {
2515 	enum prs_errcode prs_err;
2516 
2517 	if (cs_is_member(cs))
2518 		return;
2519 
2520 	prs_err = validate_partition(cs, trialcs);
2521 	if (prs_err)
2522 		trialcs->prs_err = cs->prs_err = prs_err;
2523 
2524 	if (is_remote_partition(cs)) {
2525 		if (trialcs->prs_err)
2526 			remote_partition_disable(cs, tmp);
2527 		else
2528 			remote_cpus_update(cs, trialcs->exclusive_cpus,
2529 					   trialcs->effective_xcpus, tmp);
2530 	} else {
2531 		if (trialcs->prs_err)
2532 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2533 							NULL, tmp);
2534 		else
2535 			update_parent_effective_cpumask(cs, partcmd_update,
2536 							trialcs->effective_xcpus, tmp);
2537 	}
2538 }
2539 
2540 /**
2541  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2542  * @cs: the cpuset to consider
2543  * @trialcs: trial cpuset
2544  * @buf: buffer of cpu numbers written to this cpuset
2545  */
2546 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2547 			  const char *buf)
2548 {
2549 	int retval;
2550 	struct tmpmasks tmp;
2551 	bool force = false;
2552 	int old_prs = cs->partition_root_state;
2553 
2554 	retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2555 	if (retval < 0)
2556 		return retval;
2557 
2558 	/* Nothing to do if the cpus didn't change */
2559 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2560 		return 0;
2561 
2562 	if (alloc_tmpmasks(&tmp))
2563 		return -ENOMEM;
2564 
2565 	compute_trialcs_excpus(trialcs, cs);
2566 	trialcs->prs_err = PERR_NONE;
2567 
2568 	retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2569 	if (retval < 0)
2570 		goto out_free;
2571 
2572 	/*
2573 	 * Check all the descendants in update_cpumasks_hier() if
2574 	 * effective_xcpus is to be changed.
2575 	 */
2576 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2577 
2578 	partition_cpus_change(cs, trialcs, &tmp);
2579 
2580 	spin_lock_irq(&callback_lock);
2581 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2582 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2583 	if ((old_prs > 0) && !is_partition_valid(cs))
2584 		reset_partition_data(cs);
2585 	spin_unlock_irq(&callback_lock);
2586 
2587 	/* effective_cpus/effective_xcpus will be updated here */
2588 	update_cpumasks_hier(cs, &tmp, force);
2589 
2590 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2591 	if (cs->partition_root_state)
2592 		update_partition_sd_lb(cs, old_prs);
2593 out_free:
2594 	free_tmpmasks(&tmp);
2595 	return retval;
2596 }
2597 
2598 /**
2599  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2600  * @cs: the cpuset to consider
2601  * @trialcs: trial cpuset
2602  * @buf: buffer of cpu numbers written to this cpuset
2603  *
2604  * The tasks' cpumask will be updated if cs is a valid partition root.
2605  */
2606 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2607 				    const char *buf)
2608 {
2609 	int retval;
2610 	struct tmpmasks tmp;
2611 	bool force = false;
2612 	int old_prs = cs->partition_root_state;
2613 
2614 	retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2615 	if (retval < 0)
2616 		return retval;
2617 
2618 	/* Nothing to do if the CPUs didn't change */
2619 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2620 		return 0;
2621 
2622 	/*
2623 	 * Reject the change if there is exclusive CPUs conflict with
2624 	 * the siblings.
2625 	 */
2626 	if (compute_trialcs_excpus(trialcs, cs))
2627 		return -EINVAL;
2628 
2629 	/*
2630 	 * Check all the descendants in update_cpumasks_hier() if
2631 	 * effective_xcpus is to be changed.
2632 	 */
2633 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2634 
2635 	retval = validate_change(cs, trialcs);
2636 	if (retval)
2637 		return retval;
2638 
2639 	if (alloc_tmpmasks(&tmp))
2640 		return -ENOMEM;
2641 
2642 	trialcs->prs_err = PERR_NONE;
2643 	partition_cpus_change(cs, trialcs, &tmp);
2644 
2645 	spin_lock_irq(&callback_lock);
2646 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2647 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2648 	if ((old_prs > 0) && !is_partition_valid(cs))
2649 		reset_partition_data(cs);
2650 	spin_unlock_irq(&callback_lock);
2651 
2652 	/*
2653 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2654 	 * of the subtree when it is a valid partition root or effective_xcpus
2655 	 * is updated.
2656 	 */
2657 	if (is_partition_valid(cs) || force)
2658 		update_cpumasks_hier(cs, &tmp, force);
2659 
2660 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2661 	if (cs->partition_root_state)
2662 		update_partition_sd_lb(cs, old_prs);
2663 
2664 	free_tmpmasks(&tmp);
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Migrate memory region from one set of nodes to another.  This is
2670  * performed asynchronously as it can be called from process migration path
2671  * holding locks involved in process management.  All mm migrations are
2672  * performed in the queued order and can be waited for by flushing
2673  * cpuset_migrate_mm_wq.
2674  */
2675 
2676 struct cpuset_migrate_mm_work {
2677 	struct work_struct	work;
2678 	struct mm_struct	*mm;
2679 	nodemask_t		from;
2680 	nodemask_t		to;
2681 };
2682 
2683 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2684 {
2685 	struct cpuset_migrate_mm_work *mwork =
2686 		container_of(work, struct cpuset_migrate_mm_work, work);
2687 
2688 	/* on a wq worker, no need to worry about %current's mems_allowed */
2689 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2690 	mmput(mwork->mm);
2691 	kfree(mwork);
2692 }
2693 
2694 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2695 							const nodemask_t *to)
2696 {
2697 	struct cpuset_migrate_mm_work *mwork;
2698 
2699 	if (nodes_equal(*from, *to)) {
2700 		mmput(mm);
2701 		return;
2702 	}
2703 
2704 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2705 	if (mwork) {
2706 		mwork->mm = mm;
2707 		mwork->from = *from;
2708 		mwork->to = *to;
2709 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2710 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2711 	} else {
2712 		mmput(mm);
2713 	}
2714 }
2715 
2716 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2717 {
2718 	flush_workqueue(cpuset_migrate_mm_wq);
2719 	kfree(head);
2720 }
2721 
2722 static void schedule_flush_migrate_mm(void)
2723 {
2724 	struct callback_head *flush_cb;
2725 
2726 	flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2727 	if (!flush_cb)
2728 		return;
2729 
2730 	init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2731 
2732 	if (task_work_add(current, flush_cb, TWA_RESUME))
2733 		kfree(flush_cb);
2734 }
2735 
2736 /*
2737  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2738  * @tsk: the task to change
2739  * @newmems: new nodes that the task will be set
2740  *
2741  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2742  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2743  * parallel, it might temporarily see an empty intersection, which results in
2744  * a seqlock check and retry before OOM or allocation failure.
2745  */
2746 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2747 					nodemask_t *newmems)
2748 {
2749 	task_lock(tsk);
2750 
2751 	local_irq_disable();
2752 	write_seqcount_begin(&tsk->mems_allowed_seq);
2753 
2754 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2755 	mpol_rebind_task(tsk, newmems);
2756 	tsk->mems_allowed = *newmems;
2757 
2758 	write_seqcount_end(&tsk->mems_allowed_seq);
2759 	local_irq_enable();
2760 
2761 	task_unlock(tsk);
2762 }
2763 
2764 static void *cpuset_being_rebound;
2765 
2766 /**
2767  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2768  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2769  *
2770  * Iterate through each task of @cs updating its mems_allowed to the
2771  * effective cpuset's.  As this function is called with cpuset_mutex held,
2772  * cpuset membership stays stable.
2773  */
2774 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2775 {
2776 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2777 	struct css_task_iter it;
2778 	struct task_struct *task;
2779 
2780 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2781 
2782 	guarantee_online_mems(cs, &newmems);
2783 
2784 	/*
2785 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2786 	 * take while holding tasklist_lock.  Forks can happen - the
2787 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2788 	 * and rebind their vma mempolicies too.  Because we still hold
2789 	 * the global cpuset_mutex, we know that no other rebind effort
2790 	 * will be contending for the global variable cpuset_being_rebound.
2791 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2792 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2793 	 */
2794 	css_task_iter_start(&cs->css, 0, &it);
2795 	while ((task = css_task_iter_next(&it))) {
2796 		struct mm_struct *mm;
2797 		bool migrate;
2798 
2799 		cpuset_change_task_nodemask(task, &newmems);
2800 
2801 		mm = get_task_mm(task);
2802 		if (!mm)
2803 			continue;
2804 
2805 		migrate = is_memory_migrate(cs);
2806 
2807 		mpol_rebind_mm(mm, &cs->mems_allowed);
2808 		if (migrate)
2809 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2810 		else
2811 			mmput(mm);
2812 	}
2813 	css_task_iter_end(&it);
2814 
2815 	/*
2816 	 * All the tasks' nodemasks have been updated, update
2817 	 * cs->old_mems_allowed.
2818 	 */
2819 	cs->old_mems_allowed = newmems;
2820 
2821 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2822 	cpuset_being_rebound = NULL;
2823 }
2824 
2825 /*
2826  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2827  * @cs: the cpuset to consider
2828  * @new_mems: a temp variable for calculating new effective_mems
2829  *
2830  * When configured nodemask is changed, the effective nodemasks of this cpuset
2831  * and all its descendants need to be updated.
2832  *
2833  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2834  *
2835  * Called with cpuset_mutex held
2836  */
2837 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2838 {
2839 	struct cpuset *cp;
2840 	struct cgroup_subsys_state *pos_css;
2841 
2842 	rcu_read_lock();
2843 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2844 		struct cpuset *parent = parent_cs(cp);
2845 
2846 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2847 
2848 		/*
2849 		 * If it becomes empty, inherit the effective mask of the
2850 		 * parent, which is guaranteed to have some MEMs.
2851 		 */
2852 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2853 			*new_mems = parent->effective_mems;
2854 
2855 		/* Skip the whole subtree if the nodemask remains the same. */
2856 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2857 			pos_css = css_rightmost_descendant(pos_css);
2858 			continue;
2859 		}
2860 
2861 		if (!css_tryget_online(&cp->css))
2862 			continue;
2863 		rcu_read_unlock();
2864 
2865 		spin_lock_irq(&callback_lock);
2866 		cp->effective_mems = *new_mems;
2867 		spin_unlock_irq(&callback_lock);
2868 
2869 		WARN_ON(!is_in_v2_mode() &&
2870 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2871 
2872 		cpuset_update_tasks_nodemask(cp);
2873 
2874 		rcu_read_lock();
2875 		css_put(&cp->css);
2876 	}
2877 	rcu_read_unlock();
2878 }
2879 
2880 /*
2881  * Handle user request to change the 'mems' memory placement
2882  * of a cpuset.  Needs to validate the request, update the
2883  * cpusets mems_allowed, and for each task in the cpuset,
2884  * update mems_allowed and rebind task's mempolicy and any vma
2885  * mempolicies and if the cpuset is marked 'memory_migrate',
2886  * migrate the tasks pages to the new memory.
2887  *
2888  * Call with cpuset_mutex held. May take callback_lock during call.
2889  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2890  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2891  * their mempolicies to the cpusets new mems_allowed.
2892  */
2893 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2894 			   const char *buf)
2895 {
2896 	int retval;
2897 
2898 	/*
2899 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2900 	 * The validate_change() call ensures that cpusets with tasks have memory.
2901 	 */
2902 	retval = nodelist_parse(buf, trialcs->mems_allowed);
2903 	if (retval < 0)
2904 		return retval;
2905 
2906 	if (!nodes_subset(trialcs->mems_allowed,
2907 			  top_cpuset.mems_allowed))
2908 		return -EINVAL;
2909 
2910 	/* No change? nothing to do */
2911 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2912 		return 0;
2913 
2914 	retval = validate_change(cs, trialcs);
2915 	if (retval < 0)
2916 		return retval;
2917 
2918 	check_insane_mems_config(&trialcs->mems_allowed);
2919 
2920 	spin_lock_irq(&callback_lock);
2921 	cs->mems_allowed = trialcs->mems_allowed;
2922 	spin_unlock_irq(&callback_lock);
2923 
2924 	/* use trialcs->mems_allowed as a temp variable */
2925 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2926 	return 0;
2927 }
2928 
2929 bool current_cpuset_is_being_rebound(void)
2930 {
2931 	bool ret;
2932 
2933 	rcu_read_lock();
2934 	ret = task_cs(current) == cpuset_being_rebound;
2935 	rcu_read_unlock();
2936 
2937 	return ret;
2938 }
2939 
2940 /*
2941  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2942  * bit:		the bit to update (see cpuset_flagbits_t)
2943  * cs:		the cpuset to update
2944  * turning_on: 	whether the flag is being set or cleared
2945  *
2946  * Call with cpuset_mutex held.
2947  */
2948 
2949 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2950 		       int turning_on)
2951 {
2952 	struct cpuset *trialcs;
2953 	int balance_flag_changed;
2954 	int spread_flag_changed;
2955 	int err;
2956 
2957 	trialcs = dup_or_alloc_cpuset(cs);
2958 	if (!trialcs)
2959 		return -ENOMEM;
2960 
2961 	if (turning_on)
2962 		set_bit(bit, &trialcs->flags);
2963 	else
2964 		clear_bit(bit, &trialcs->flags);
2965 
2966 	err = validate_change(cs, trialcs);
2967 	if (err < 0)
2968 		goto out;
2969 
2970 	balance_flag_changed = (is_sched_load_balance(cs) !=
2971 				is_sched_load_balance(trialcs));
2972 
2973 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2974 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2975 
2976 	spin_lock_irq(&callback_lock);
2977 	cs->flags = trialcs->flags;
2978 	spin_unlock_irq(&callback_lock);
2979 
2980 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2981 		if (cpuset_v2())
2982 			cpuset_force_rebuild();
2983 		else
2984 			rebuild_sched_domains_locked();
2985 	}
2986 
2987 	if (spread_flag_changed)
2988 		cpuset1_update_tasks_flags(cs);
2989 out:
2990 	free_cpuset(trialcs);
2991 	return err;
2992 }
2993 
2994 /**
2995  * update_prstate - update partition_root_state
2996  * @cs: the cpuset to update
2997  * @new_prs: new partition root state
2998  * Return: 0 if successful, != 0 if error
2999  *
3000  * Call with cpuset_mutex held.
3001  */
3002 static int update_prstate(struct cpuset *cs, int new_prs)
3003 {
3004 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3005 	struct cpuset *parent = parent_cs(cs);
3006 	struct tmpmasks tmpmask;
3007 	bool isolcpus_updated = false;
3008 
3009 	if (old_prs == new_prs)
3010 		return 0;
3011 
3012 	/*
3013 	 * Treat a previously invalid partition root as if it is a "member".
3014 	 */
3015 	if (new_prs && is_partition_invalid(cs))
3016 		old_prs = PRS_MEMBER;
3017 
3018 	if (alloc_tmpmasks(&tmpmask))
3019 		return -ENOMEM;
3020 
3021 	err = update_partition_exclusive_flag(cs, new_prs);
3022 	if (err)
3023 		goto out;
3024 
3025 	if (!old_prs) {
3026 		/*
3027 		 * cpus_allowed and exclusive_cpus cannot be both empty.
3028 		 */
3029 		if (xcpus_empty(cs)) {
3030 			err = PERR_CPUSEMPTY;
3031 			goto out;
3032 		}
3033 
3034 		/*
3035 		 * We don't support the creation of a new local partition with
3036 		 * a remote partition underneath it. This unsupported
3037 		 * setting can happen only if parent is the top_cpuset because
3038 		 * a remote partition cannot be created underneath an existing
3039 		 * local or remote partition.
3040 		 */
3041 		if ((parent == &top_cpuset) &&
3042 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3043 			err = PERR_REMOTE;
3044 			goto out;
3045 		}
3046 
3047 		/*
3048 		 * If parent is valid partition, enable local partiion.
3049 		 * Otherwise, enable a remote partition.
3050 		 */
3051 		if (is_partition_valid(parent)) {
3052 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
3053 					       ? partcmd_enable : partcmd_enablei;
3054 
3055 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3056 		} else {
3057 			err = remote_partition_enable(cs, new_prs, &tmpmask);
3058 		}
3059 	} else if (old_prs && new_prs) {
3060 		/*
3061 		 * A change in load balance state only, no change in cpumasks.
3062 		 * Need to update isolated_cpus.
3063 		 */
3064 		if (((new_prs == PRS_ISOLATED) &&
3065 		     !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3066 		    prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3067 			err = PERR_HKEEPING;
3068 		else
3069 			isolcpus_updated = true;
3070 	} else {
3071 		/*
3072 		 * Switching back to member is always allowed even if it
3073 		 * disables child partitions.
3074 		 */
3075 		if (is_remote_partition(cs))
3076 			remote_partition_disable(cs, &tmpmask);
3077 		else
3078 			update_parent_effective_cpumask(cs, partcmd_disable,
3079 							NULL, &tmpmask);
3080 
3081 		/*
3082 		 * Invalidation of child partitions will be done in
3083 		 * update_cpumasks_hier().
3084 		 */
3085 	}
3086 out:
3087 	/*
3088 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3089 	 * happens.
3090 	 */
3091 	if (err) {
3092 		new_prs = -new_prs;
3093 		update_partition_exclusive_flag(cs, new_prs);
3094 	}
3095 
3096 	spin_lock_irq(&callback_lock);
3097 	cs->partition_root_state = new_prs;
3098 	WRITE_ONCE(cs->prs_err, err);
3099 	if (!is_partition_valid(cs))
3100 		reset_partition_data(cs);
3101 	else if (isolcpus_updated)
3102 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3103 	spin_unlock_irq(&callback_lock);
3104 	update_isolation_cpumasks();
3105 
3106 	/* Force update if switching back to member & update effective_xcpus */
3107 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
3108 
3109 	/* A newly created partition must have effective_xcpus set */
3110 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
3111 			      && cpumask_empty(cs->effective_xcpus));
3112 
3113 	/* Update sched domains and load balance flag */
3114 	update_partition_sd_lb(cs, old_prs);
3115 
3116 	notify_partition_change(cs, old_prs);
3117 	if (force_sd_rebuild)
3118 		rebuild_sched_domains_locked();
3119 	free_tmpmasks(&tmpmask);
3120 	return 0;
3121 }
3122 
3123 static struct cpuset *cpuset_attach_old_cs;
3124 
3125 /*
3126  * Check to see if a cpuset can accept a new task
3127  * For v1, cpus_allowed and mems_allowed can't be empty.
3128  * For v2, effective_cpus can't be empty.
3129  * Note that in v1, effective_cpus = cpus_allowed.
3130  */
3131 static int cpuset_can_attach_check(struct cpuset *cs)
3132 {
3133 	if (cpumask_empty(cs->effective_cpus) ||
3134 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3135 		return -ENOSPC;
3136 	return 0;
3137 }
3138 
3139 static void reset_migrate_dl_data(struct cpuset *cs)
3140 {
3141 	cs->nr_migrate_dl_tasks = 0;
3142 	cs->sum_migrate_dl_bw = 0;
3143 }
3144 
3145 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3146 static int cpuset_can_attach(struct cgroup_taskset *tset)
3147 {
3148 	struct cgroup_subsys_state *css;
3149 	struct cpuset *cs, *oldcs;
3150 	struct task_struct *task;
3151 	bool cpus_updated, mems_updated;
3152 	int ret;
3153 
3154 	/* used later by cpuset_attach() */
3155 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3156 	oldcs = cpuset_attach_old_cs;
3157 	cs = css_cs(css);
3158 
3159 	mutex_lock(&cpuset_mutex);
3160 
3161 	/* Check to see if task is allowed in the cpuset */
3162 	ret = cpuset_can_attach_check(cs);
3163 	if (ret)
3164 		goto out_unlock;
3165 
3166 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3167 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3168 
3169 	cgroup_taskset_for_each(task, css, tset) {
3170 		ret = task_can_attach(task);
3171 		if (ret)
3172 			goto out_unlock;
3173 
3174 		/*
3175 		 * Skip rights over task check in v2 when nothing changes,
3176 		 * migration permission derives from hierarchy ownership in
3177 		 * cgroup_procs_write_permission()).
3178 		 */
3179 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3180 			ret = security_task_setscheduler(task);
3181 			if (ret)
3182 				goto out_unlock;
3183 		}
3184 
3185 		if (dl_task(task)) {
3186 			cs->nr_migrate_dl_tasks++;
3187 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3188 		}
3189 	}
3190 
3191 	if (!cs->nr_migrate_dl_tasks)
3192 		goto out_success;
3193 
3194 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3195 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3196 
3197 		if (unlikely(cpu >= nr_cpu_ids)) {
3198 			reset_migrate_dl_data(cs);
3199 			ret = -EINVAL;
3200 			goto out_unlock;
3201 		}
3202 
3203 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3204 		if (ret) {
3205 			reset_migrate_dl_data(cs);
3206 			goto out_unlock;
3207 		}
3208 	}
3209 
3210 out_success:
3211 	/*
3212 	 * Mark attach is in progress.  This makes validate_change() fail
3213 	 * changes which zero cpus/mems_allowed.
3214 	 */
3215 	cs->attach_in_progress++;
3216 out_unlock:
3217 	mutex_unlock(&cpuset_mutex);
3218 	return ret;
3219 }
3220 
3221 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3222 {
3223 	struct cgroup_subsys_state *css;
3224 	struct cpuset *cs;
3225 
3226 	cgroup_taskset_first(tset, &css);
3227 	cs = css_cs(css);
3228 
3229 	mutex_lock(&cpuset_mutex);
3230 	dec_attach_in_progress_locked(cs);
3231 
3232 	if (cs->nr_migrate_dl_tasks) {
3233 		int cpu = cpumask_any(cs->effective_cpus);
3234 
3235 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3236 		reset_migrate_dl_data(cs);
3237 	}
3238 
3239 	mutex_unlock(&cpuset_mutex);
3240 }
3241 
3242 /*
3243  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3244  * but we can't allocate it dynamically there.  Define it global and
3245  * allocate from cpuset_init().
3246  */
3247 static cpumask_var_t cpus_attach;
3248 static nodemask_t cpuset_attach_nodemask_to;
3249 
3250 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3251 {
3252 	lockdep_assert_held(&cpuset_mutex);
3253 
3254 	if (cs != &top_cpuset)
3255 		guarantee_active_cpus(task, cpus_attach);
3256 	else
3257 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3258 			       subpartitions_cpus);
3259 	/*
3260 	 * can_attach beforehand should guarantee that this doesn't
3261 	 * fail.  TODO: have a better way to handle failure here
3262 	 */
3263 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3264 
3265 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3266 	cpuset1_update_task_spread_flags(cs, task);
3267 }
3268 
3269 static void cpuset_attach(struct cgroup_taskset *tset)
3270 {
3271 	struct task_struct *task;
3272 	struct task_struct *leader;
3273 	struct cgroup_subsys_state *css;
3274 	struct cpuset *cs;
3275 	struct cpuset *oldcs = cpuset_attach_old_cs;
3276 	bool cpus_updated, mems_updated;
3277 	bool queue_task_work = false;
3278 
3279 	cgroup_taskset_first(tset, &css);
3280 	cs = css_cs(css);
3281 
3282 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3283 	mutex_lock(&cpuset_mutex);
3284 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3285 				      oldcs->effective_cpus);
3286 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3287 
3288 	/*
3289 	 * In the default hierarchy, enabling cpuset in the child cgroups
3290 	 * will trigger a number of cpuset_attach() calls with no change
3291 	 * in effective cpus and mems. In that case, we can optimize out
3292 	 * by skipping the task iteration and update.
3293 	 */
3294 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3295 		cpuset_attach_nodemask_to = cs->effective_mems;
3296 		goto out;
3297 	}
3298 
3299 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3300 
3301 	cgroup_taskset_for_each(task, css, tset)
3302 		cpuset_attach_task(cs, task);
3303 
3304 	/*
3305 	 * Change mm for all threadgroup leaders. This is expensive and may
3306 	 * sleep and should be moved outside migration path proper. Skip it
3307 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3308 	 * not set.
3309 	 */
3310 	cpuset_attach_nodemask_to = cs->effective_mems;
3311 	if (!is_memory_migrate(cs) && !mems_updated)
3312 		goto out;
3313 
3314 	cgroup_taskset_for_each_leader(leader, css, tset) {
3315 		struct mm_struct *mm = get_task_mm(leader);
3316 
3317 		if (mm) {
3318 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3319 
3320 			/*
3321 			 * old_mems_allowed is the same with mems_allowed
3322 			 * here, except if this task is being moved
3323 			 * automatically due to hotplug.  In that case
3324 			 * @mems_allowed has been updated and is empty, so
3325 			 * @old_mems_allowed is the right nodesets that we
3326 			 * migrate mm from.
3327 			 */
3328 			if (is_memory_migrate(cs)) {
3329 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3330 						  &cpuset_attach_nodemask_to);
3331 				queue_task_work = true;
3332 			} else
3333 				mmput(mm);
3334 		}
3335 	}
3336 
3337 out:
3338 	if (queue_task_work)
3339 		schedule_flush_migrate_mm();
3340 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3341 
3342 	if (cs->nr_migrate_dl_tasks) {
3343 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3344 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3345 		reset_migrate_dl_data(cs);
3346 	}
3347 
3348 	dec_attach_in_progress_locked(cs);
3349 
3350 	mutex_unlock(&cpuset_mutex);
3351 }
3352 
3353 /*
3354  * Common handling for a write to a "cpus" or "mems" file.
3355  */
3356 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3357 				    char *buf, size_t nbytes, loff_t off)
3358 {
3359 	struct cpuset *cs = css_cs(of_css(of));
3360 	struct cpuset *trialcs;
3361 	int retval = -ENODEV;
3362 
3363 	/* root is read-only */
3364 	if (cs == &top_cpuset)
3365 		return -EACCES;
3366 
3367 	buf = strstrip(buf);
3368 	cpuset_full_lock();
3369 	if (!is_cpuset_online(cs))
3370 		goto out_unlock;
3371 
3372 	trialcs = dup_or_alloc_cpuset(cs);
3373 	if (!trialcs) {
3374 		retval = -ENOMEM;
3375 		goto out_unlock;
3376 	}
3377 
3378 	switch (of_cft(of)->private) {
3379 	case FILE_CPULIST:
3380 		retval = update_cpumask(cs, trialcs, buf);
3381 		break;
3382 	case FILE_EXCLUSIVE_CPULIST:
3383 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3384 		break;
3385 	case FILE_MEMLIST:
3386 		retval = update_nodemask(cs, trialcs, buf);
3387 		break;
3388 	default:
3389 		retval = -EINVAL;
3390 		break;
3391 	}
3392 
3393 	free_cpuset(trialcs);
3394 	if (force_sd_rebuild)
3395 		rebuild_sched_domains_locked();
3396 out_unlock:
3397 	cpuset_full_unlock();
3398 	if (of_cft(of)->private == FILE_MEMLIST)
3399 		schedule_flush_migrate_mm();
3400 	return retval ?: nbytes;
3401 }
3402 
3403 /*
3404  * These ascii lists should be read in a single call, by using a user
3405  * buffer large enough to hold the entire map.  If read in smaller
3406  * chunks, there is no guarantee of atomicity.  Since the display format
3407  * used, list of ranges of sequential numbers, is variable length,
3408  * and since these maps can change value dynamically, one could read
3409  * gibberish by doing partial reads while a list was changing.
3410  */
3411 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3412 {
3413 	struct cpuset *cs = css_cs(seq_css(sf));
3414 	cpuset_filetype_t type = seq_cft(sf)->private;
3415 	int ret = 0;
3416 
3417 	spin_lock_irq(&callback_lock);
3418 
3419 	switch (type) {
3420 	case FILE_CPULIST:
3421 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3422 		break;
3423 	case FILE_MEMLIST:
3424 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3425 		break;
3426 	case FILE_EFFECTIVE_CPULIST:
3427 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3428 		break;
3429 	case FILE_EFFECTIVE_MEMLIST:
3430 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3431 		break;
3432 	case FILE_EXCLUSIVE_CPULIST:
3433 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3434 		break;
3435 	case FILE_EFFECTIVE_XCPULIST:
3436 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3437 		break;
3438 	case FILE_SUBPARTS_CPULIST:
3439 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3440 		break;
3441 	case FILE_ISOLATED_CPULIST:
3442 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3443 		break;
3444 	default:
3445 		ret = -EINVAL;
3446 	}
3447 
3448 	spin_unlock_irq(&callback_lock);
3449 	return ret;
3450 }
3451 
3452 static int cpuset_partition_show(struct seq_file *seq, void *v)
3453 {
3454 	struct cpuset *cs = css_cs(seq_css(seq));
3455 	const char *err, *type = NULL;
3456 
3457 	switch (cs->partition_root_state) {
3458 	case PRS_ROOT:
3459 		seq_puts(seq, "root\n");
3460 		break;
3461 	case PRS_ISOLATED:
3462 		seq_puts(seq, "isolated\n");
3463 		break;
3464 	case PRS_MEMBER:
3465 		seq_puts(seq, "member\n");
3466 		break;
3467 	case PRS_INVALID_ROOT:
3468 		type = "root";
3469 		fallthrough;
3470 	case PRS_INVALID_ISOLATED:
3471 		if (!type)
3472 			type = "isolated";
3473 		err = perr_strings[READ_ONCE(cs->prs_err)];
3474 		if (err)
3475 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3476 		else
3477 			seq_printf(seq, "%s invalid\n", type);
3478 		break;
3479 	}
3480 	return 0;
3481 }
3482 
3483 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3484 				     size_t nbytes, loff_t off)
3485 {
3486 	struct cpuset *cs = css_cs(of_css(of));
3487 	int val;
3488 	int retval = -ENODEV;
3489 
3490 	buf = strstrip(buf);
3491 
3492 	if (!strcmp(buf, "root"))
3493 		val = PRS_ROOT;
3494 	else if (!strcmp(buf, "member"))
3495 		val = PRS_MEMBER;
3496 	else if (!strcmp(buf, "isolated"))
3497 		val = PRS_ISOLATED;
3498 	else
3499 		return -EINVAL;
3500 
3501 	cpuset_full_lock();
3502 	if (is_cpuset_online(cs))
3503 		retval = update_prstate(cs, val);
3504 	cpuset_full_unlock();
3505 	return retval ?: nbytes;
3506 }
3507 
3508 /*
3509  * This is currently a minimal set for the default hierarchy. It can be
3510  * expanded later on by migrating more features and control files from v1.
3511  */
3512 static struct cftype dfl_files[] = {
3513 	{
3514 		.name = "cpus",
3515 		.seq_show = cpuset_common_seq_show,
3516 		.write = cpuset_write_resmask,
3517 		.max_write_len = (100U + 6 * NR_CPUS),
3518 		.private = FILE_CPULIST,
3519 		.flags = CFTYPE_NOT_ON_ROOT,
3520 	},
3521 
3522 	{
3523 		.name = "mems",
3524 		.seq_show = cpuset_common_seq_show,
3525 		.write = cpuset_write_resmask,
3526 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3527 		.private = FILE_MEMLIST,
3528 		.flags = CFTYPE_NOT_ON_ROOT,
3529 	},
3530 
3531 	{
3532 		.name = "cpus.effective",
3533 		.seq_show = cpuset_common_seq_show,
3534 		.private = FILE_EFFECTIVE_CPULIST,
3535 	},
3536 
3537 	{
3538 		.name = "mems.effective",
3539 		.seq_show = cpuset_common_seq_show,
3540 		.private = FILE_EFFECTIVE_MEMLIST,
3541 	},
3542 
3543 	{
3544 		.name = "cpus.partition",
3545 		.seq_show = cpuset_partition_show,
3546 		.write = cpuset_partition_write,
3547 		.private = FILE_PARTITION_ROOT,
3548 		.flags = CFTYPE_NOT_ON_ROOT,
3549 		.file_offset = offsetof(struct cpuset, partition_file),
3550 	},
3551 
3552 	{
3553 		.name = "cpus.exclusive",
3554 		.seq_show = cpuset_common_seq_show,
3555 		.write = cpuset_write_resmask,
3556 		.max_write_len = (100U + 6 * NR_CPUS),
3557 		.private = FILE_EXCLUSIVE_CPULIST,
3558 		.flags = CFTYPE_NOT_ON_ROOT,
3559 	},
3560 
3561 	{
3562 		.name = "cpus.exclusive.effective",
3563 		.seq_show = cpuset_common_seq_show,
3564 		.private = FILE_EFFECTIVE_XCPULIST,
3565 		.flags = CFTYPE_NOT_ON_ROOT,
3566 	},
3567 
3568 	{
3569 		.name = "cpus.subpartitions",
3570 		.seq_show = cpuset_common_seq_show,
3571 		.private = FILE_SUBPARTS_CPULIST,
3572 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3573 	},
3574 
3575 	{
3576 		.name = "cpus.isolated",
3577 		.seq_show = cpuset_common_seq_show,
3578 		.private = FILE_ISOLATED_CPULIST,
3579 		.flags = CFTYPE_ONLY_ON_ROOT,
3580 	},
3581 
3582 	{ }	/* terminate */
3583 };
3584 
3585 
3586 /**
3587  * cpuset_css_alloc - Allocate a cpuset css
3588  * @parent_css: Parent css of the control group that the new cpuset will be
3589  *              part of
3590  * Return: cpuset css on success, -ENOMEM on failure.
3591  *
3592  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3593  * top cpuset css otherwise.
3594  */
3595 static struct cgroup_subsys_state *
3596 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3597 {
3598 	struct cpuset *cs;
3599 
3600 	if (!parent_css)
3601 		return &top_cpuset.css;
3602 
3603 	cs = dup_or_alloc_cpuset(NULL);
3604 	if (!cs)
3605 		return ERR_PTR(-ENOMEM);
3606 
3607 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3608 	fmeter_init(&cs->fmeter);
3609 	cs->relax_domain_level = -1;
3610 
3611 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3612 	if (cpuset_v2())
3613 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3614 
3615 	return &cs->css;
3616 }
3617 
3618 static int cpuset_css_online(struct cgroup_subsys_state *css)
3619 {
3620 	struct cpuset *cs = css_cs(css);
3621 	struct cpuset *parent = parent_cs(cs);
3622 	struct cpuset *tmp_cs;
3623 	struct cgroup_subsys_state *pos_css;
3624 
3625 	if (!parent)
3626 		return 0;
3627 
3628 	cpuset_full_lock();
3629 	if (is_spread_page(parent))
3630 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3631 	if (is_spread_slab(parent))
3632 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3633 	/*
3634 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3635 	 */
3636 	if (cpuset_v2() && !is_sched_load_balance(parent))
3637 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3638 
3639 	cpuset_inc();
3640 
3641 	spin_lock_irq(&callback_lock);
3642 	if (is_in_v2_mode()) {
3643 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3644 		cs->effective_mems = parent->effective_mems;
3645 	}
3646 	spin_unlock_irq(&callback_lock);
3647 
3648 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3649 		goto out_unlock;
3650 
3651 	/*
3652 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3653 	 * set.  This flag handling is implemented in cgroup core for
3654 	 * historical reasons - the flag may be specified during mount.
3655 	 *
3656 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3657 	 * refuse to clone the configuration - thereby refusing the task to
3658 	 * be entered, and as a result refusing the sys_unshare() or
3659 	 * clone() which initiated it.  If this becomes a problem for some
3660 	 * users who wish to allow that scenario, then this could be
3661 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3662 	 * (and likewise for mems) to the new cgroup.
3663 	 */
3664 	rcu_read_lock();
3665 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3666 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3667 			rcu_read_unlock();
3668 			goto out_unlock;
3669 		}
3670 	}
3671 	rcu_read_unlock();
3672 
3673 	spin_lock_irq(&callback_lock);
3674 	cs->mems_allowed = parent->mems_allowed;
3675 	cs->effective_mems = parent->mems_allowed;
3676 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3677 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3678 	spin_unlock_irq(&callback_lock);
3679 out_unlock:
3680 	cpuset_full_unlock();
3681 	return 0;
3682 }
3683 
3684 /*
3685  * If the cpuset being removed has its flag 'sched_load_balance'
3686  * enabled, then simulate turning sched_load_balance off, which
3687  * will call rebuild_sched_domains_locked(). That is not needed
3688  * in the default hierarchy where only changes in partition
3689  * will cause repartitioning.
3690  */
3691 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3692 {
3693 	struct cpuset *cs = css_cs(css);
3694 
3695 	cpuset_full_lock();
3696 	if (!cpuset_v2() && is_sched_load_balance(cs))
3697 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3698 
3699 	cpuset_dec();
3700 	cpuset_full_unlock();
3701 }
3702 
3703 /*
3704  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3705  * changing it back to member to free its exclusive CPUs back to the pool to
3706  * be used by other online cpusets.
3707  */
3708 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3709 {
3710 	struct cpuset *cs = css_cs(css);
3711 
3712 	cpuset_full_lock();
3713 	/* Reset valid partition back to member */
3714 	if (is_partition_valid(cs))
3715 		update_prstate(cs, PRS_MEMBER);
3716 	cpuset_full_unlock();
3717 }
3718 
3719 static void cpuset_css_free(struct cgroup_subsys_state *css)
3720 {
3721 	struct cpuset *cs = css_cs(css);
3722 
3723 	free_cpuset(cs);
3724 }
3725 
3726 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3727 {
3728 	mutex_lock(&cpuset_mutex);
3729 	spin_lock_irq(&callback_lock);
3730 
3731 	if (is_in_v2_mode()) {
3732 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3733 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3734 		top_cpuset.mems_allowed = node_possible_map;
3735 	} else {
3736 		cpumask_copy(top_cpuset.cpus_allowed,
3737 			     top_cpuset.effective_cpus);
3738 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3739 	}
3740 
3741 	spin_unlock_irq(&callback_lock);
3742 	mutex_unlock(&cpuset_mutex);
3743 }
3744 
3745 /*
3746  * In case the child is cloned into a cpuset different from its parent,
3747  * additional checks are done to see if the move is allowed.
3748  */
3749 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3750 {
3751 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3752 	bool same_cs;
3753 	int ret;
3754 
3755 	rcu_read_lock();
3756 	same_cs = (cs == task_cs(current));
3757 	rcu_read_unlock();
3758 
3759 	if (same_cs)
3760 		return 0;
3761 
3762 	lockdep_assert_held(&cgroup_mutex);
3763 	mutex_lock(&cpuset_mutex);
3764 
3765 	/* Check to see if task is allowed in the cpuset */
3766 	ret = cpuset_can_attach_check(cs);
3767 	if (ret)
3768 		goto out_unlock;
3769 
3770 	ret = task_can_attach(task);
3771 	if (ret)
3772 		goto out_unlock;
3773 
3774 	ret = security_task_setscheduler(task);
3775 	if (ret)
3776 		goto out_unlock;
3777 
3778 	/*
3779 	 * Mark attach is in progress.  This makes validate_change() fail
3780 	 * changes which zero cpus/mems_allowed.
3781 	 */
3782 	cs->attach_in_progress++;
3783 out_unlock:
3784 	mutex_unlock(&cpuset_mutex);
3785 	return ret;
3786 }
3787 
3788 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3789 {
3790 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3791 	bool same_cs;
3792 
3793 	rcu_read_lock();
3794 	same_cs = (cs == task_cs(current));
3795 	rcu_read_unlock();
3796 
3797 	if (same_cs)
3798 		return;
3799 
3800 	dec_attach_in_progress(cs);
3801 }
3802 
3803 /*
3804  * Make sure the new task conform to the current state of its parent,
3805  * which could have been changed by cpuset just after it inherits the
3806  * state from the parent and before it sits on the cgroup's task list.
3807  */
3808 static void cpuset_fork(struct task_struct *task)
3809 {
3810 	struct cpuset *cs;
3811 	bool same_cs;
3812 
3813 	rcu_read_lock();
3814 	cs = task_cs(task);
3815 	same_cs = (cs == task_cs(current));
3816 	rcu_read_unlock();
3817 
3818 	if (same_cs) {
3819 		if (cs == &top_cpuset)
3820 			return;
3821 
3822 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3823 		task->mems_allowed = current->mems_allowed;
3824 		return;
3825 	}
3826 
3827 	/* CLONE_INTO_CGROUP */
3828 	mutex_lock(&cpuset_mutex);
3829 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3830 	cpuset_attach_task(cs, task);
3831 
3832 	dec_attach_in_progress_locked(cs);
3833 	mutex_unlock(&cpuset_mutex);
3834 }
3835 
3836 struct cgroup_subsys cpuset_cgrp_subsys = {
3837 	.css_alloc	= cpuset_css_alloc,
3838 	.css_online	= cpuset_css_online,
3839 	.css_offline	= cpuset_css_offline,
3840 	.css_killed	= cpuset_css_killed,
3841 	.css_free	= cpuset_css_free,
3842 	.can_attach	= cpuset_can_attach,
3843 	.cancel_attach	= cpuset_cancel_attach,
3844 	.attach		= cpuset_attach,
3845 	.bind		= cpuset_bind,
3846 	.can_fork	= cpuset_can_fork,
3847 	.cancel_fork	= cpuset_cancel_fork,
3848 	.fork		= cpuset_fork,
3849 #ifdef CONFIG_CPUSETS_V1
3850 	.legacy_cftypes	= cpuset1_files,
3851 #endif
3852 	.dfl_cftypes	= dfl_files,
3853 	.early_init	= true,
3854 	.threaded	= true,
3855 };
3856 
3857 /**
3858  * cpuset_init - initialize cpusets at system boot
3859  *
3860  * Description: Initialize top_cpuset
3861  **/
3862 
3863 int __init cpuset_init(void)
3864 {
3865 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3866 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3867 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3868 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3869 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3870 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3871 
3872 	cpumask_setall(top_cpuset.cpus_allowed);
3873 	nodes_setall(top_cpuset.mems_allowed);
3874 	cpumask_setall(top_cpuset.effective_cpus);
3875 	cpumask_setall(top_cpuset.effective_xcpus);
3876 	cpumask_setall(top_cpuset.exclusive_cpus);
3877 	nodes_setall(top_cpuset.effective_mems);
3878 
3879 	fmeter_init(&top_cpuset.fmeter);
3880 
3881 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3882 
3883 	if (housekeeping_enabled(HK_TYPE_DOMAIN_BOOT))
3884 		cpumask_andnot(isolated_cpus, cpu_possible_mask,
3885 			       housekeeping_cpumask(HK_TYPE_DOMAIN_BOOT));
3886 
3887 	return 0;
3888 }
3889 
3890 static void
3891 hotplug_update_tasks(struct cpuset *cs,
3892 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3893 		     bool cpus_updated, bool mems_updated)
3894 {
3895 	/* A partition root is allowed to have empty effective cpus */
3896 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3897 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3898 	if (nodes_empty(*new_mems))
3899 		*new_mems = parent_cs(cs)->effective_mems;
3900 
3901 	spin_lock_irq(&callback_lock);
3902 	cpumask_copy(cs->effective_cpus, new_cpus);
3903 	cs->effective_mems = *new_mems;
3904 	spin_unlock_irq(&callback_lock);
3905 
3906 	if (cpus_updated)
3907 		cpuset_update_tasks_cpumask(cs, new_cpus);
3908 	if (mems_updated)
3909 		cpuset_update_tasks_nodemask(cs);
3910 }
3911 
3912 void cpuset_force_rebuild(void)
3913 {
3914 	force_sd_rebuild = true;
3915 }
3916 
3917 /**
3918  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3919  * @cs: cpuset in interest
3920  * @tmp: the tmpmasks structure pointer
3921  *
3922  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3923  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3924  * all its tasks are moved to the nearest ancestor with both resources.
3925  */
3926 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3927 {
3928 	static cpumask_t new_cpus;
3929 	static nodemask_t new_mems;
3930 	bool cpus_updated;
3931 	bool mems_updated;
3932 	bool remote;
3933 	int partcmd = -1;
3934 	struct cpuset *parent;
3935 retry:
3936 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3937 
3938 	mutex_lock(&cpuset_mutex);
3939 
3940 	/*
3941 	 * We have raced with task attaching. We wait until attaching
3942 	 * is finished, so we won't attach a task to an empty cpuset.
3943 	 */
3944 	if (cs->attach_in_progress) {
3945 		mutex_unlock(&cpuset_mutex);
3946 		goto retry;
3947 	}
3948 
3949 	parent = parent_cs(cs);
3950 	compute_effective_cpumask(&new_cpus, cs, parent);
3951 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3952 
3953 	if (!tmp || !cs->partition_root_state)
3954 		goto update_tasks;
3955 
3956 	/*
3957 	 * Compute effective_cpus for valid partition root, may invalidate
3958 	 * child partition roots if necessary.
3959 	 */
3960 	remote = is_remote_partition(cs);
3961 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3962 		compute_partition_effective_cpumask(cs, &new_cpus);
3963 
3964 	if (remote && (cpumask_empty(subpartitions_cpus) ||
3965 			(cpumask_empty(&new_cpus) &&
3966 			 partition_is_populated(cs, NULL)))) {
3967 		cs->prs_err = PERR_HOTPLUG;
3968 		remote_partition_disable(cs, tmp);
3969 		compute_effective_cpumask(&new_cpus, cs, parent);
3970 		remote = false;
3971 	}
3972 
3973 	/*
3974 	 * Force the partition to become invalid if either one of
3975 	 * the following conditions hold:
3976 	 * 1) empty effective cpus but not valid empty partition.
3977 	 * 2) parent is invalid or doesn't grant any cpus to child
3978 	 *    partitions.
3979 	 * 3) subpartitions_cpus is empty.
3980 	 */
3981 	if (is_local_partition(cs) &&
3982 	    (!is_partition_valid(parent) ||
3983 	     tasks_nocpu_error(parent, cs, &new_cpus) ||
3984 	     cpumask_empty(subpartitions_cpus)))
3985 		partcmd = partcmd_invalidate;
3986 	/*
3987 	 * On the other hand, an invalid partition root may be transitioned
3988 	 * back to a regular one with a non-empty effective xcpus.
3989 	 */
3990 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
3991 		 !cpumask_empty(cs->effective_xcpus))
3992 		partcmd = partcmd_update;
3993 
3994 	if (partcmd >= 0) {
3995 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3996 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3997 			compute_partition_effective_cpumask(cs, &new_cpus);
3998 			cpuset_force_rebuild();
3999 		}
4000 	}
4001 
4002 update_tasks:
4003 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4004 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4005 	if (!cpus_updated && !mems_updated)
4006 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4007 
4008 	if (mems_updated)
4009 		check_insane_mems_config(&new_mems);
4010 
4011 	if (is_in_v2_mode())
4012 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4013 				     cpus_updated, mems_updated);
4014 	else
4015 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4016 					    cpus_updated, mems_updated);
4017 
4018 unlock:
4019 	mutex_unlock(&cpuset_mutex);
4020 }
4021 
4022 /**
4023  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4024  *
4025  * This function is called after either CPU or memory configuration has
4026  * changed and updates cpuset accordingly.  The top_cpuset is always
4027  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4028  * order to make cpusets transparent (of no affect) on systems that are
4029  * actively using CPU hotplug but making no active use of cpusets.
4030  *
4031  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4032  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4033  * all descendants.
4034  *
4035  * Note that CPU offlining during suspend is ignored.  We don't modify
4036  * cpusets across suspend/resume cycles at all.
4037  *
4038  * CPU / memory hotplug is handled synchronously.
4039  */
4040 static void cpuset_handle_hotplug(void)
4041 {
4042 	static cpumask_t new_cpus;
4043 	static nodemask_t new_mems;
4044 	bool cpus_updated, mems_updated;
4045 	bool on_dfl = is_in_v2_mode();
4046 	struct tmpmasks tmp, *ptmp = NULL;
4047 
4048 	if (on_dfl && !alloc_tmpmasks(&tmp))
4049 		ptmp = &tmp;
4050 
4051 	lockdep_assert_cpus_held();
4052 	mutex_lock(&cpuset_mutex);
4053 
4054 	/* fetch the available cpus/mems and find out which changed how */
4055 	cpumask_copy(&new_cpus, cpu_active_mask);
4056 	new_mems = node_states[N_MEMORY];
4057 
4058 	/*
4059 	 * If subpartitions_cpus is populated, it is likely that the check
4060 	 * below will produce a false positive on cpus_updated when the cpu
4061 	 * list isn't changed. It is extra work, but it is better to be safe.
4062 	 */
4063 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4064 		       !cpumask_empty(subpartitions_cpus);
4065 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4066 
4067 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4068 	if (cpus_updated) {
4069 		cpuset_force_rebuild();
4070 		spin_lock_irq(&callback_lock);
4071 		if (!on_dfl)
4072 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4073 		/*
4074 		 * Make sure that CPUs allocated to child partitions
4075 		 * do not show up in effective_cpus. If no CPU is left,
4076 		 * we clear the subpartitions_cpus & let the child partitions
4077 		 * fight for the CPUs again.
4078 		 */
4079 		if (!cpumask_empty(subpartitions_cpus)) {
4080 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4081 				cpumask_clear(subpartitions_cpus);
4082 			} else {
4083 				cpumask_andnot(&new_cpus, &new_cpus,
4084 					       subpartitions_cpus);
4085 			}
4086 		}
4087 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4088 		spin_unlock_irq(&callback_lock);
4089 		/* we don't mess with cpumasks of tasks in top_cpuset */
4090 	}
4091 
4092 	/* synchronize mems_allowed to N_MEMORY */
4093 	if (mems_updated) {
4094 		spin_lock_irq(&callback_lock);
4095 		if (!on_dfl)
4096 			top_cpuset.mems_allowed = new_mems;
4097 		top_cpuset.effective_mems = new_mems;
4098 		spin_unlock_irq(&callback_lock);
4099 		cpuset_update_tasks_nodemask(&top_cpuset);
4100 	}
4101 
4102 	mutex_unlock(&cpuset_mutex);
4103 
4104 	/* if cpus or mems changed, we need to propagate to descendants */
4105 	if (cpus_updated || mems_updated) {
4106 		struct cpuset *cs;
4107 		struct cgroup_subsys_state *pos_css;
4108 
4109 		rcu_read_lock();
4110 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4111 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4112 				continue;
4113 			rcu_read_unlock();
4114 
4115 			cpuset_hotplug_update_tasks(cs, ptmp);
4116 
4117 			rcu_read_lock();
4118 			css_put(&cs->css);
4119 		}
4120 		rcu_read_unlock();
4121 	}
4122 
4123 	/* rebuild sched domains if necessary */
4124 	if (force_sd_rebuild)
4125 		rebuild_sched_domains_cpuslocked();
4126 
4127 	free_tmpmasks(ptmp);
4128 }
4129 
4130 void cpuset_update_active_cpus(void)
4131 {
4132 	/*
4133 	 * We're inside cpu hotplug critical region which usually nests
4134 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4135 	 * to a work item to avoid reverse locking order.
4136 	 */
4137 	cpuset_handle_hotplug();
4138 }
4139 
4140 /*
4141  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4142  * Call this routine anytime after node_states[N_MEMORY] changes.
4143  * See cpuset_update_active_cpus() for CPU hotplug handling.
4144  */
4145 static int cpuset_track_online_nodes(struct notifier_block *self,
4146 				unsigned long action, void *arg)
4147 {
4148 	cpuset_handle_hotplug();
4149 	return NOTIFY_OK;
4150 }
4151 
4152 /**
4153  * cpuset_init_smp - initialize cpus_allowed
4154  *
4155  * Description: Finish top cpuset after cpu, node maps are initialized
4156  */
4157 void __init cpuset_init_smp(void)
4158 {
4159 	/*
4160 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4161 	 * cpuset_bind() call will be reset to v1 values in another
4162 	 * cpuset_bind() call when v1 cpuset is mounted.
4163 	 */
4164 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4165 
4166 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4167 	top_cpuset.effective_mems = node_states[N_MEMORY];
4168 
4169 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4170 
4171 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4172 	BUG_ON(!cpuset_migrate_mm_wq);
4173 }
4174 
4175 /*
4176  * Return cpus_allowed mask from a task's cpuset.
4177  */
4178 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4179 {
4180 	struct cpuset *cs;
4181 
4182 	cs = task_cs(tsk);
4183 	if (cs != &top_cpuset)
4184 		guarantee_active_cpus(tsk, pmask);
4185 	/*
4186 	 * Tasks in the top cpuset won't get update to their cpumasks
4187 	 * when a hotplug online/offline event happens. So we include all
4188 	 * offline cpus in the allowed cpu list.
4189 	 */
4190 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4191 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4192 
4193 		/*
4194 		 * We first exclude cpus allocated to partitions. If there is no
4195 		 * allowable online cpu left, we fall back to all possible cpus.
4196 		 */
4197 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4198 		if (!cpumask_intersects(pmask, cpu_active_mask))
4199 			cpumask_copy(pmask, possible_mask);
4200 	}
4201 }
4202 
4203 /**
4204  * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4205  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4206  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4207  *
4208  * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4209  * cpuset_mutex.
4210  */
4211 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4212 {
4213 	lockdep_assert_held(&cpuset_mutex);
4214 	__cpuset_cpus_allowed_locked(tsk, pmask);
4215 }
4216 
4217 /**
4218  * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4219  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4220  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4221  *
4222  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4223  * attached to the specified @tsk.  Guaranteed to return some non-empty
4224  * subset of cpu_active_mask, even if this means going outside the
4225  * tasks cpuset, except when the task is in the top cpuset.
4226  **/
4227 
4228 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4229 {
4230 	unsigned long flags;
4231 
4232 	spin_lock_irqsave(&callback_lock, flags);
4233 	__cpuset_cpus_allowed_locked(tsk, pmask);
4234 	spin_unlock_irqrestore(&callback_lock, flags);
4235 }
4236 
4237 /**
4238  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4239  * @tsk: pointer to task_struct with which the scheduler is struggling
4240  *
4241  * Description: In the case that the scheduler cannot find an allowed cpu in
4242  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4243  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4244  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4245  * This is the absolute last resort for the scheduler and it is only used if
4246  * _every_ other avenue has been traveled.
4247  *
4248  * Returns true if the affinity of @tsk was changed, false otherwise.
4249  **/
4250 
4251 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4252 {
4253 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4254 	const struct cpumask *cs_mask;
4255 	bool changed = false;
4256 
4257 	rcu_read_lock();
4258 	cs_mask = task_cs(tsk)->cpus_allowed;
4259 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4260 		set_cpus_allowed_force(tsk, cs_mask);
4261 		changed = true;
4262 	}
4263 	rcu_read_unlock();
4264 
4265 	/*
4266 	 * We own tsk->cpus_allowed, nobody can change it under us.
4267 	 *
4268 	 * But we used cs && cs->cpus_allowed lockless and thus can
4269 	 * race with cgroup_attach_task() or update_cpumask() and get
4270 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4271 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4272 	 * which takes task_rq_lock().
4273 	 *
4274 	 * If we are called after it dropped the lock we must see all
4275 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4276 	 * set any mask even if it is not right from task_cs() pov,
4277 	 * the pending set_cpus_allowed_ptr() will fix things.
4278 	 *
4279 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4280 	 * if required.
4281 	 */
4282 	return changed;
4283 }
4284 
4285 void __init cpuset_init_current_mems_allowed(void)
4286 {
4287 	nodes_setall(current->mems_allowed);
4288 }
4289 
4290 /**
4291  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4292  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4293  *
4294  * Description: Returns the nodemask_t mems_allowed of the cpuset
4295  * attached to the specified @tsk.  Guaranteed to return some non-empty
4296  * subset of node_states[N_MEMORY], even if this means going outside the
4297  * tasks cpuset.
4298  **/
4299 
4300 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4301 {
4302 	nodemask_t mask;
4303 	unsigned long flags;
4304 
4305 	spin_lock_irqsave(&callback_lock, flags);
4306 	guarantee_online_mems(task_cs(tsk), &mask);
4307 	spin_unlock_irqrestore(&callback_lock, flags);
4308 
4309 	return mask;
4310 }
4311 
4312 /**
4313  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4314  * @nodemask: the nodemask to be checked
4315  *
4316  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4317  */
4318 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4319 {
4320 	return nodes_intersects(*nodemask, current->mems_allowed);
4321 }
4322 
4323 /*
4324  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4325  * mem_hardwall ancestor to the specified cpuset.  Call holding
4326  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4327  * (an unusual configuration), then returns the root cpuset.
4328  */
4329 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4330 {
4331 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4332 		cs = parent_cs(cs);
4333 	return cs;
4334 }
4335 
4336 /*
4337  * cpuset_current_node_allowed - Can current task allocate on a memory node?
4338  * @node: is this an allowed node?
4339  * @gfp_mask: memory allocation flags
4340  *
4341  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4342  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4343  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4344  * yes.  If current has access to memory reserves as an oom victim, yes.
4345  * Otherwise, no.
4346  *
4347  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4348  * and do not allow allocations outside the current tasks cpuset
4349  * unless the task has been OOM killed.
4350  * GFP_KERNEL allocations are not so marked, so can escape to the
4351  * nearest enclosing hardwalled ancestor cpuset.
4352  *
4353  * Scanning up parent cpusets requires callback_lock.  The
4354  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4355  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4356  * current tasks mems_allowed came up empty on the first pass over
4357  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4358  * cpuset are short of memory, might require taking the callback_lock.
4359  *
4360  * The first call here from mm/page_alloc:get_page_from_freelist()
4361  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4362  * so no allocation on a node outside the cpuset is allowed (unless
4363  * in interrupt, of course).
4364  *
4365  * The second pass through get_page_from_freelist() doesn't even call
4366  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4367  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4368  * in alloc_flags.  That logic and the checks below have the combined
4369  * affect that:
4370  *	in_interrupt - any node ok (current task context irrelevant)
4371  *	GFP_ATOMIC   - any node ok
4372  *	tsk_is_oom_victim   - any node ok
4373  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4374  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4375  */
4376 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4377 {
4378 	struct cpuset *cs;		/* current cpuset ancestors */
4379 	bool allowed;			/* is allocation in zone z allowed? */
4380 	unsigned long flags;
4381 
4382 	if (in_interrupt())
4383 		return true;
4384 	if (node_isset(node, current->mems_allowed))
4385 		return true;
4386 	/*
4387 	 * Allow tasks that have access to memory reserves because they have
4388 	 * been OOM killed to get memory anywhere.
4389 	 */
4390 	if (unlikely(tsk_is_oom_victim(current)))
4391 		return true;
4392 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4393 		return false;
4394 
4395 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4396 		return true;
4397 
4398 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4399 	spin_lock_irqsave(&callback_lock, flags);
4400 
4401 	cs = nearest_hardwall_ancestor(task_cs(current));
4402 	allowed = node_isset(node, cs->mems_allowed);
4403 
4404 	spin_unlock_irqrestore(&callback_lock, flags);
4405 	return allowed;
4406 }
4407 
4408 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4409 {
4410 	struct cgroup_subsys_state *css;
4411 	struct cpuset *cs;
4412 	bool allowed;
4413 
4414 	/*
4415 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4416 	 * and mems_allowed is likely to be empty even if we could get to it,
4417 	 * so return true to avoid taking a global lock on the empty check.
4418 	 */
4419 	if (!cpuset_v2())
4420 		return true;
4421 
4422 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4423 	if (!css)
4424 		return true;
4425 
4426 	/*
4427 	 * Normally, accessing effective_mems would require the cpuset_mutex
4428 	 * or callback_lock - but node_isset is atomic and the reference
4429 	 * taken via cgroup_get_e_css is sufficient to protect css.
4430 	 *
4431 	 * Since this interface is intended for use by migration paths, we
4432 	 * relax locking here to avoid taking global locks - while accepting
4433 	 * there may be rare scenarios where the result may be innaccurate.
4434 	 *
4435 	 * Reclaim and migration are subject to these same race conditions, and
4436 	 * cannot make strong isolation guarantees, so this is acceptable.
4437 	 */
4438 	cs = container_of(css, struct cpuset, css);
4439 	allowed = node_isset(nid, cs->effective_mems);
4440 	css_put(css);
4441 	return allowed;
4442 }
4443 
4444 /**
4445  * cpuset_spread_node() - On which node to begin search for a page
4446  * @rotor: round robin rotor
4447  *
4448  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4449  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4450  * and if the memory allocation used cpuset_mem_spread_node()
4451  * to determine on which node to start looking, as it will for
4452  * certain page cache or slab cache pages such as used for file
4453  * system buffers and inode caches, then instead of starting on the
4454  * local node to look for a free page, rather spread the starting
4455  * node around the tasks mems_allowed nodes.
4456  *
4457  * We don't have to worry about the returned node being offline
4458  * because "it can't happen", and even if it did, it would be ok.
4459  *
4460  * The routines calling guarantee_online_mems() are careful to
4461  * only set nodes in task->mems_allowed that are online.  So it
4462  * should not be possible for the following code to return an
4463  * offline node.  But if it did, that would be ok, as this routine
4464  * is not returning the node where the allocation must be, only
4465  * the node where the search should start.  The zonelist passed to
4466  * __alloc_pages() will include all nodes.  If the slab allocator
4467  * is passed an offline node, it will fall back to the local node.
4468  * See kmem_cache_alloc_node().
4469  */
4470 static int cpuset_spread_node(int *rotor)
4471 {
4472 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4473 }
4474 
4475 /**
4476  * cpuset_mem_spread_node() - On which node to begin search for a file page
4477  */
4478 int cpuset_mem_spread_node(void)
4479 {
4480 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4481 		current->cpuset_mem_spread_rotor =
4482 			node_random(&current->mems_allowed);
4483 
4484 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4485 }
4486 
4487 /**
4488  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4489  * @tsk1: pointer to task_struct of some task.
4490  * @tsk2: pointer to task_struct of some other task.
4491  *
4492  * Description: Return true if @tsk1's mems_allowed intersects the
4493  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4494  * one of the task's memory usage might impact the memory available
4495  * to the other.
4496  **/
4497 
4498 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4499 				   const struct task_struct *tsk2)
4500 {
4501 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4502 }
4503 
4504 /**
4505  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4506  *
4507  * Description: Prints current's name, cpuset name, and cached copy of its
4508  * mems_allowed to the kernel log.
4509  */
4510 void cpuset_print_current_mems_allowed(void)
4511 {
4512 	struct cgroup *cgrp;
4513 
4514 	rcu_read_lock();
4515 
4516 	cgrp = task_cs(current)->css.cgroup;
4517 	pr_cont(",cpuset=");
4518 	pr_cont_cgroup_name(cgrp);
4519 	pr_cont(",mems_allowed=%*pbl",
4520 		nodemask_pr_args(&current->mems_allowed));
4521 
4522 	rcu_read_unlock();
4523 }
4524 
4525 /* Display task mems_allowed in /proc/<pid>/status file. */
4526 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4527 {
4528 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4529 		   nodemask_pr_args(&task->mems_allowed));
4530 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4531 		   nodemask_pr_args(&task->mems_allowed));
4532 }
4533