1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/compiler.h> 16 #include <linux/mm_types.h> 17 #include <linux/mmap_lock.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page-flags.h> 27 #include <linux/page_ref.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 #include <linux/sched.h> 31 #include <linux/pgtable.h> 32 #include <linux/kasan.h> 33 #include <linux/memremap.h> 34 #include <linux/slab.h> 35 #include <linux/cacheinfo.h> 36 #include <linux/rcuwait.h> 37 #include <linux/bitmap.h> 38 #include <linux/bitops.h> 39 #include <linux/iommu-debug-pagealloc.h> 40 41 struct mempolicy; 42 struct anon_vma; 43 struct anon_vma_chain; 44 struct user_struct; 45 struct pt_regs; 46 struct folio_batch; 47 48 void arch_mm_preinit(void); 49 void mm_core_init_early(void); 50 void mm_core_init(void); 51 void init_mm_internals(void); 52 53 extern atomic_long_t _totalram_pages; 54 static inline unsigned long totalram_pages(void) 55 { 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_inc(void) 60 { 61 atomic_long_inc(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_dec(void) 65 { 66 atomic_long_dec(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_add(long count) 70 { 71 atomic_long_add(count, &_totalram_pages); 72 } 73 74 extern void * high_memory; 75 76 /* 77 * Convert between pages and MB 78 * 20 is the shift for 1MB (2^20 = 1MB) 79 * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages) 80 * So (20 - PAGE_SHIFT) converts between pages and MB 81 */ 82 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT)) 83 #define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 84 85 #ifdef CONFIG_SYSCTL 86 extern int sysctl_legacy_va_layout; 87 #else 88 #define sysctl_legacy_va_layout 0 89 #endif 90 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 92 extern const int mmap_rnd_bits_min; 93 extern int mmap_rnd_bits_max __ro_after_init; 94 extern int mmap_rnd_bits __read_mostly; 95 #endif 96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 97 extern const int mmap_rnd_compat_bits_min; 98 extern const int mmap_rnd_compat_bits_max; 99 extern int mmap_rnd_compat_bits __read_mostly; 100 #endif 101 102 #ifndef DIRECT_MAP_PHYSMEM_END 103 # ifdef MAX_PHYSMEM_BITS 104 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 105 # else 106 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 107 # endif 108 #endif 109 110 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 111 112 #include <asm/page.h> 113 #include <asm/processor.h> 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 96 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 96); 160 161 switch (sizeof(struct page)) { 162 case 96: 163 _pp[11] = 0; 164 fallthrough; 165 case 88: 166 _pp[10] = 0; 167 fallthrough; 168 case 80: 169 _pp[9] = 0; 170 fallthrough; 171 case 72: 172 _pp[8] = 0; 173 fallthrough; 174 case 64: 175 _pp[7] = 0; 176 fallthrough; 177 case 56: 178 _pp[6] = 0; 179 _pp[5] = 0; 180 _pp[4] = 0; 181 _pp[3] = 0; 182 _pp[2] = 0; 183 _pp[1] = 0; 184 _pp[0] = 0; 185 } 186 } 187 #else 188 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 189 #endif 190 191 /* 192 * Default maximum number of active map areas, this limits the number of vmas 193 * per mm struct. Users can overwrite this number by sysctl but there is a 194 * problem. 195 * 196 * When a program's coredump is generated as ELF format, a section is created 197 * per a vma. In ELF, the number of sections is represented in unsigned short. 198 * This means the number of sections should be smaller than 65535 at coredump. 199 * Because the kernel adds some informative sections to a image of program at 200 * generating coredump, we need some margin. The number of extra sections is 201 * 1-3 now and depends on arch. We use "5" as safe margin, here. 202 * 203 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 204 * not a hard limit any more. Although some userspace tools can be surprised by 205 * that. 206 */ 207 #define MAPCOUNT_ELF_CORE_MARGIN (5) 208 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 209 210 extern int sysctl_max_map_count; 211 212 extern unsigned long sysctl_user_reserve_kbytes; 213 extern unsigned long sysctl_admin_reserve_kbytes; 214 215 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 216 bool page_range_contiguous(const struct page *page, unsigned long nr_pages); 217 #else 218 static inline bool page_range_contiguous(const struct page *page, 219 unsigned long nr_pages) 220 { 221 return true; 222 } 223 #endif 224 225 /* to align the pointer to the (next) page boundary */ 226 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 227 228 /* to align the pointer to the (prev) page boundary */ 229 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 230 231 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 232 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 233 234 /** 235 * folio_page_idx - Return the number of a page in a folio. 236 * @folio: The folio. 237 * @page: The folio page. 238 * 239 * This function expects that the page is actually part of the folio. 240 * The returned number is relative to the start of the folio. 241 */ 242 static inline unsigned long folio_page_idx(const struct folio *folio, 243 const struct page *page) 244 { 245 return page - &folio->page; 246 } 247 248 static inline struct folio *lru_to_folio(struct list_head *head) 249 { 250 return list_entry((head)->prev, struct folio, lru); 251 } 252 253 void setup_initial_init_mm(void *start_code, void *end_code, 254 void *end_data, void *brk); 255 256 /* 257 * Linux kernel virtual memory manager primitives. 258 * The idea being to have a "virtual" mm in the same way 259 * we have a virtual fs - giving a cleaner interface to the 260 * mm details, and allowing different kinds of memory mappings 261 * (from shared memory to executable loading to arbitrary 262 * mmap() functions). 263 */ 264 265 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 266 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 267 void vm_area_free(struct vm_area_struct *); 268 269 #ifndef CONFIG_MMU 270 extern struct rb_root nommu_region_tree; 271 extern struct rw_semaphore nommu_region_sem; 272 273 extern unsigned int kobjsize(const void *objp); 274 #endif 275 276 /* 277 * vm_flags in vm_area_struct, see mm_types.h. 278 * When changing, update also include/trace/events/mmflags.h 279 */ 280 281 #define VM_NONE 0x00000000 282 283 /** 284 * typedef vma_flag_t - specifies an individual VMA flag by bit number. 285 * 286 * This value is made type safe by sparse to avoid passing invalid flag values 287 * around. 288 */ 289 typedef int __bitwise vma_flag_t; 290 291 #define DECLARE_VMA_BIT(name, bitnum) \ 292 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum) 293 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \ 294 VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT) 295 enum { 296 DECLARE_VMA_BIT(READ, 0), 297 DECLARE_VMA_BIT(WRITE, 1), 298 DECLARE_VMA_BIT(EXEC, 2), 299 DECLARE_VMA_BIT(SHARED, 3), 300 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 301 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */ 302 DECLARE_VMA_BIT(MAYWRITE, 5), 303 DECLARE_VMA_BIT(MAYEXEC, 6), 304 DECLARE_VMA_BIT(MAYSHARE, 7), 305 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */ 306 #ifdef CONFIG_MMU 307 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */ 308 #else 309 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 310 DECLARE_VMA_BIT(MAYOVERLAY, 9), 311 #endif /* CONFIG_MMU */ 312 /* Page-ranges managed without "struct page", just pure PFN */ 313 DECLARE_VMA_BIT(PFNMAP, 10), 314 DECLARE_VMA_BIT(MAYBE_GUARD, 11), 315 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */ 316 DECLARE_VMA_BIT(LOCKED, 13), 317 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */ 318 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */ 319 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */ 320 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */ 321 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */ 322 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */ 323 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */ 324 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */ 325 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */ 326 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */ 327 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */ 328 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */ 329 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */ 330 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */ 331 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */ 332 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */ 333 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */ 334 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */ 335 /* These bits are reused, we define specific uses below. */ 336 DECLARE_VMA_BIT(HIGH_ARCH_0, 32), 337 DECLARE_VMA_BIT(HIGH_ARCH_1, 33), 338 DECLARE_VMA_BIT(HIGH_ARCH_2, 34), 339 DECLARE_VMA_BIT(HIGH_ARCH_3, 35), 340 DECLARE_VMA_BIT(HIGH_ARCH_4, 36), 341 DECLARE_VMA_BIT(HIGH_ARCH_5, 37), 342 DECLARE_VMA_BIT(HIGH_ARCH_6, 38), 343 /* 344 * This flag is used to connect VFIO to arch specific KVM code. It 345 * indicates that the memory under this VMA is safe for use with any 346 * non-cachable memory type inside KVM. Some VFIO devices, on some 347 * platforms, are thought to be unsafe and can cause machine crashes 348 * if KVM does not lock down the memory type. 349 */ 350 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39), 351 #ifdef CONFIG_PPC32 352 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1), 353 #else 354 DECLARE_VMA_BIT(DROPPABLE, 40), 355 #endif 356 DECLARE_VMA_BIT(UFFD_MINOR, 41), 357 DECLARE_VMA_BIT(SEALED, 42), 358 /* Flags that reuse flags above. */ 359 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0), 360 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1), 361 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2), 362 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3), 363 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4), 364 #if defined(CONFIG_X86_USER_SHADOW_STACK) 365 /* 366 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 367 * support core mm. 368 * 369 * These VMAs will get a single end guard page. This helps userspace 370 * protect itself from attacks. A single page is enough for current 371 * shadow stack archs (x86). See the comments near alloc_shstk() in 372 * arch/x86/kernel/shstk.c for more details on the guard size. 373 */ 374 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5), 375 #elif defined(CONFIG_ARM64_GCS) 376 /* 377 * arm64's Guarded Control Stack implements similar functionality and 378 * has similar constraints to shadow stacks. 379 */ 380 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6), 381 #endif 382 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */ 383 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */ 384 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */ 385 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */ 386 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */ 387 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */ 388 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */ 389 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */ 390 #ifdef CONFIG_STACK_GROWSUP 391 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP), 392 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN), 393 #else 394 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN), 395 #endif 396 }; 397 #undef DECLARE_VMA_BIT 398 #undef DECLARE_VMA_BIT_ALIAS 399 400 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT) 401 #define VM_READ INIT_VM_FLAG(READ) 402 #define VM_WRITE INIT_VM_FLAG(WRITE) 403 #define VM_EXEC INIT_VM_FLAG(EXEC) 404 #define VM_SHARED INIT_VM_FLAG(SHARED) 405 #define VM_MAYREAD INIT_VM_FLAG(MAYREAD) 406 #define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE) 407 #define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC) 408 #define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE) 409 #define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN) 410 #ifdef CONFIG_MMU 411 #define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING) 412 #else 413 #define VM_UFFD_MISSING VM_NONE 414 #define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY) 415 #endif 416 #define VM_PFNMAP INIT_VM_FLAG(PFNMAP) 417 #define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD) 418 #define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP) 419 #define VM_LOCKED INIT_VM_FLAG(LOCKED) 420 #define VM_IO INIT_VM_FLAG(IO) 421 #define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ) 422 #define VM_RAND_READ INIT_VM_FLAG(RAND_READ) 423 #define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY) 424 #define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND) 425 #define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT) 426 #define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT) 427 #define VM_NORESERVE INIT_VM_FLAG(NORESERVE) 428 #define VM_HUGETLB INIT_VM_FLAG(HUGETLB) 429 #define VM_SYNC INIT_VM_FLAG(SYNC) 430 #define VM_ARCH_1 INIT_VM_FLAG(ARCH_1) 431 #define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK) 432 #define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP) 433 #ifdef CONFIG_MEM_SOFT_DIRTY 434 #define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY) 435 #else 436 #define VM_SOFTDIRTY VM_NONE 437 #endif 438 #define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP) 439 #define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE) 440 #define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE) 441 #define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE) 442 #define VM_STACK INIT_VM_FLAG(STACK) 443 #ifdef CONFIG_STACK_GROWSUP 444 #define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY) 445 #else 446 #define VM_STACK_EARLY VM_NONE 447 #endif 448 #ifdef CONFIG_ARCH_HAS_PKEYS 449 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT) 450 /* Despite the naming, these are FLAGS not bits. */ 451 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0) 452 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1) 453 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2) 454 #if CONFIG_ARCH_PKEY_BITS > 3 455 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3) 456 #else 457 #define VM_PKEY_BIT3 VM_NONE 458 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */ 459 #if CONFIG_ARCH_PKEY_BITS > 4 460 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4) 461 #else 462 #define VM_PKEY_BIT4 VM_NONE 463 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */ 464 #endif /* CONFIG_ARCH_HAS_PKEYS */ 465 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS) 466 #define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK) 467 #else 468 #define VM_SHADOW_STACK VM_NONE 469 #endif 470 #if defined(CONFIG_PPC64) 471 #define VM_SAO INIT_VM_FLAG(SAO) 472 #elif defined(CONFIG_PARISC) 473 #define VM_GROWSUP INIT_VM_FLAG(GROWSUP) 474 #elif defined(CONFIG_SPARC64) 475 #define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI) 476 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 477 #elif defined(CONFIG_ARM64) 478 #define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI) 479 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 480 #elif !defined(CONFIG_MMU) 481 #define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY) 482 #endif 483 #ifndef VM_GROWSUP 484 #define VM_GROWSUP VM_NONE 485 #endif 486 #ifdef CONFIG_ARM64_MTE 487 #define VM_MTE INIT_VM_FLAG(MTE) 488 #define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED) 489 #else 490 #define VM_MTE VM_NONE 491 #define VM_MTE_ALLOWED VM_NONE 492 #endif 493 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 494 #define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR) 495 #else 496 #define VM_UFFD_MINOR VM_NONE 497 #endif 498 #ifdef CONFIG_64BIT 499 #define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED) 500 #define VM_SEALED INIT_VM_FLAG(SEALED) 501 #else 502 #define VM_ALLOW_ANY_UNCACHED VM_NONE 503 #define VM_SEALED VM_NONE 504 #endif 505 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 506 #define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE) 507 #else 508 #define VM_DROPPABLE VM_NONE 509 #endif 510 511 /* Bits set in the VMA until the stack is in its final location */ 512 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 513 514 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 515 516 /* Common data flag combinations */ 517 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 518 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 519 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 520 VM_MAYWRITE | VM_MAYEXEC) 521 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 522 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 523 524 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 525 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 526 #endif 527 528 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 529 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 530 #endif 531 532 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 533 534 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 535 #define VM_SEALED_SYSMAP VM_SEALED 536 #else 537 #define VM_SEALED_SYSMAP VM_NONE 538 #endif 539 540 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 541 542 /* VMA basic access permission flags */ 543 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 544 545 /* 546 * Special vmas that are non-mergable, non-mlock()able. 547 */ 548 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 549 550 /* 551 * Physically remapped pages are special. Tell the 552 * rest of the world about it: 553 * VM_IO tells people not to look at these pages 554 * (accesses can have side effects). 555 * VM_PFNMAP tells the core MM that the base pages are just 556 * raw PFN mappings, and do not have a "struct page" associated 557 * with them. 558 * VM_DONTEXPAND 559 * Disable vma merging and expanding with mremap(). 560 * VM_DONTDUMP 561 * Omit vma from core dump, even when VM_IO turned off. 562 */ 563 #define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP) 564 565 /* This mask prevents VMA from being scanned with khugepaged */ 566 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 567 568 /* This mask defines which mm->def_flags a process can inherit its parent */ 569 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 570 571 /* This mask represents all the VMA flag bits used by mlock */ 572 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 573 574 /* These flags can be updated atomically via VMA/mmap read lock. */ 575 #define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD 576 577 /* Arch-specific flags to clear when updating VM flags on protection change */ 578 #ifndef VM_ARCH_CLEAR 579 #define VM_ARCH_CLEAR VM_NONE 580 #endif 581 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 582 583 /* 584 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA 585 * possesses it but the other does not, the merged VMA should nonetheless have 586 * applied to it: 587 * 588 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its 589 * references cleared via /proc/$pid/clear_refs, any merged VMA 590 * should be considered soft-dirty also as it operates at a VMA 591 * granularity. 592 * 593 * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that 594 * mapped page tables may contain metadata not described by the 595 * VMA and thus any merged VMA may also contain this metadata, 596 * and thus we must make this flag sticky. 597 */ 598 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD) 599 600 /* 601 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one 602 * of these flags and the other not does not preclude a merge. 603 * 604 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are 605 * 'sticky'. If any sticky flags exist in either VMA, we simply 606 * set all of them on the merged VMA. 607 */ 608 #define VM_IGNORE_MERGE VM_STICKY 609 610 /* 611 * Flags which should result in page tables being copied on fork. These are 612 * flags which indicate that the VMA maps page tables which cannot be 613 * reconsistuted upon page fault, so necessitate page table copying upon fork. 614 * 615 * Note that these flags should be compared with the DESTINATION VMA not the 616 * source, as VM_UFFD_WP may not be propagated to destination, while all other 617 * flags will be. 618 * 619 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be 620 * reasonably reconstructed on page fault. 621 * 622 * VM_UFFD_WP - Encodes metadata about an installed uffd 623 * write protect handler, which cannot be 624 * reconstructed on page fault. 625 * 626 * We always copy pgtables when dst_vma has uffd-wp 627 * enabled even if it's file-backed 628 * (e.g. shmem). Because when uffd-wp is enabled, 629 * pgtable contains uffd-wp protection information, 630 * that's something we can't retrieve from page cache, 631 * and skip copying will lose those info. 632 * 633 * VM_MAYBE_GUARD - Could contain page guard region markers which 634 * by design are a property of the page tables 635 * only and thus cannot be reconstructed on page 636 * fault. 637 */ 638 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD) 639 640 /* 641 * mapping from the currently active vm_flags protection bits (the 642 * low four bits) to a page protection mask.. 643 */ 644 645 /* 646 * The default fault flags that should be used by most of the 647 * arch-specific page fault handlers. 648 */ 649 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 650 FAULT_FLAG_KILLABLE | \ 651 FAULT_FLAG_INTERRUPTIBLE) 652 653 /** 654 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 655 * @flags: Fault flags. 656 * 657 * This is mostly used for places where we want to try to avoid taking 658 * the mmap_lock for too long a time when waiting for another condition 659 * to change, in which case we can try to be polite to release the 660 * mmap_lock in the first round to avoid potential starvation of other 661 * processes that would also want the mmap_lock. 662 * 663 * Return: true if the page fault allows retry and this is the first 664 * attempt of the fault handling; false otherwise. 665 */ 666 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 667 { 668 return (flags & FAULT_FLAG_ALLOW_RETRY) && 669 (!(flags & FAULT_FLAG_TRIED)); 670 } 671 672 #define FAULT_FLAG_TRACE \ 673 { FAULT_FLAG_WRITE, "WRITE" }, \ 674 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 675 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 676 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 677 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 678 { FAULT_FLAG_TRIED, "TRIED" }, \ 679 { FAULT_FLAG_USER, "USER" }, \ 680 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 681 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 682 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 683 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 684 685 /* 686 * vm_fault is filled by the pagefault handler and passed to the vma's 687 * ->fault function. The vma's ->fault is responsible for returning a bitmask 688 * of VM_FAULT_xxx flags that give details about how the fault was handled. 689 * 690 * MM layer fills up gfp_mask for page allocations but fault handler might 691 * alter it if its implementation requires a different allocation context. 692 * 693 * pgoff should be used in favour of virtual_address, if possible. 694 */ 695 struct vm_fault { 696 const struct { 697 struct vm_area_struct *vma; /* Target VMA */ 698 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 699 pgoff_t pgoff; /* Logical page offset based on vma */ 700 unsigned long address; /* Faulting virtual address - masked */ 701 unsigned long real_address; /* Faulting virtual address - unmasked */ 702 }; 703 enum fault_flag flags; /* FAULT_FLAG_xxx flags 704 * XXX: should really be 'const' */ 705 pmd_t *pmd; /* Pointer to pmd entry matching 706 * the 'address' */ 707 pud_t *pud; /* Pointer to pud entry matching 708 * the 'address' 709 */ 710 union { 711 pte_t orig_pte; /* Value of PTE at the time of fault */ 712 pmd_t orig_pmd; /* Value of PMD at the time of fault, 713 * used by PMD fault only. 714 */ 715 }; 716 717 struct page *cow_page; /* Page handler may use for COW fault */ 718 struct page *page; /* ->fault handlers should return a 719 * page here, unless VM_FAULT_NOPAGE 720 * is set (which is also implied by 721 * VM_FAULT_ERROR). 722 */ 723 /* These three entries are valid only while holding ptl lock */ 724 pte_t *pte; /* Pointer to pte entry matching 725 * the 'address'. NULL if the page 726 * table hasn't been allocated. 727 */ 728 spinlock_t *ptl; /* Page table lock. 729 * Protects pte page table if 'pte' 730 * is not NULL, otherwise pmd. 731 */ 732 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 733 * vm_ops->map_pages() sets up a page 734 * table from atomic context. 735 * do_fault_around() pre-allocates 736 * page table to avoid allocation from 737 * atomic context. 738 */ 739 }; 740 741 /* 742 * These are the virtual MM functions - opening of an area, closing and 743 * unmapping it (needed to keep files on disk up-to-date etc), pointer 744 * to the functions called when a no-page or a wp-page exception occurs. 745 */ 746 struct vm_operations_struct { 747 void (*open)(struct vm_area_struct * area); 748 /** 749 * @close: Called when the VMA is being removed from the MM. 750 * Context: User context. May sleep. Caller holds mmap_lock. 751 */ 752 void (*close)(struct vm_area_struct * area); 753 /* Called any time before splitting to check if it's allowed */ 754 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 755 int (*mremap)(struct vm_area_struct *area); 756 /* 757 * Called by mprotect() to make driver-specific permission 758 * checks before mprotect() is finalised. The VMA must not 759 * be modified. Returns 0 if mprotect() can proceed. 760 */ 761 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 762 unsigned long end, unsigned long newflags); 763 vm_fault_t (*fault)(struct vm_fault *vmf); 764 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 765 vm_fault_t (*map_pages)(struct vm_fault *vmf, 766 pgoff_t start_pgoff, pgoff_t end_pgoff); 767 unsigned long (*pagesize)(struct vm_area_struct * area); 768 769 /* notification that a previously read-only page is about to become 770 * writable, if an error is returned it will cause a SIGBUS */ 771 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 772 773 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 774 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 775 776 /* called by access_process_vm when get_user_pages() fails, typically 777 * for use by special VMAs. See also generic_access_phys() for a generic 778 * implementation useful for any iomem mapping. 779 */ 780 int (*access)(struct vm_area_struct *vma, unsigned long addr, 781 void *buf, int len, int write); 782 783 /* Called by the /proc/PID/maps code to ask the vma whether it 784 * has a special name. Returning non-NULL will also cause this 785 * vma to be dumped unconditionally. */ 786 const char *(*name)(struct vm_area_struct *vma); 787 788 #ifdef CONFIG_NUMA 789 /* 790 * set_policy() op must add a reference to any non-NULL @new mempolicy 791 * to hold the policy upon return. Caller should pass NULL @new to 792 * remove a policy and fall back to surrounding context--i.e. do not 793 * install a MPOL_DEFAULT policy, nor the task or system default 794 * mempolicy. 795 */ 796 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 797 798 /* 799 * get_policy() op must add reference [mpol_get()] to any policy at 800 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 801 * in mm/mempolicy.c will do this automatically. 802 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 803 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 804 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 805 * must return NULL--i.e., do not "fallback" to task or system default 806 * policy. 807 */ 808 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 809 unsigned long addr, pgoff_t *ilx); 810 #endif 811 #ifdef CONFIG_FIND_NORMAL_PAGE 812 /* 813 * Called by vm_normal_page() for special PTEs in @vma at @addr. This 814 * allows for returning a "normal" page from vm_normal_page() even 815 * though the PTE indicates that the "struct page" either does not exist 816 * or should not be touched: "special". 817 * 818 * Do not add new users: this really only works when a "normal" page 819 * was mapped, but then the PTE got changed to something weird (+ 820 * marked special) that would not make pte_pfn() identify the originally 821 * inserted page. 822 */ 823 struct page *(*find_normal_page)(struct vm_area_struct *vma, 824 unsigned long addr); 825 #endif /* CONFIG_FIND_NORMAL_PAGE */ 826 }; 827 828 #ifdef CONFIG_NUMA_BALANCING 829 static inline void vma_numab_state_init(struct vm_area_struct *vma) 830 { 831 vma->numab_state = NULL; 832 } 833 static inline void vma_numab_state_free(struct vm_area_struct *vma) 834 { 835 kfree(vma->numab_state); 836 } 837 #else 838 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 839 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 840 #endif /* CONFIG_NUMA_BALANCING */ 841 842 /* 843 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 844 * declared in this header. 845 */ 846 #ifdef CONFIG_PER_VMA_LOCK 847 static inline void release_fault_lock(struct vm_fault *vmf) 848 { 849 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 850 vma_end_read(vmf->vma); 851 else 852 mmap_read_unlock(vmf->vma->vm_mm); 853 } 854 855 static inline void assert_fault_locked(const struct vm_fault *vmf) 856 { 857 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 858 vma_assert_locked(vmf->vma); 859 else 860 mmap_assert_locked(vmf->vma->vm_mm); 861 } 862 #else 863 static inline void release_fault_lock(struct vm_fault *vmf) 864 { 865 mmap_read_unlock(vmf->vma->vm_mm); 866 } 867 868 static inline void assert_fault_locked(const struct vm_fault *vmf) 869 { 870 mmap_assert_locked(vmf->vma->vm_mm); 871 } 872 #endif /* CONFIG_PER_VMA_LOCK */ 873 874 static inline bool mm_flags_test(int flag, const struct mm_struct *mm) 875 { 876 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 877 } 878 879 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm) 880 { 881 return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 882 } 883 884 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm) 885 { 886 return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 887 } 888 889 static inline void mm_flags_set(int flag, struct mm_struct *mm) 890 { 891 set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 892 } 893 894 static inline void mm_flags_clear(int flag, struct mm_struct *mm) 895 { 896 clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 897 } 898 899 static inline void mm_flags_clear_all(struct mm_struct *mm) 900 { 901 bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS); 902 } 903 904 extern const struct vm_operations_struct vma_dummy_vm_ops; 905 906 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 907 { 908 memset(vma, 0, sizeof(*vma)); 909 vma->vm_mm = mm; 910 vma->vm_ops = &vma_dummy_vm_ops; 911 INIT_LIST_HEAD(&vma->anon_vma_chain); 912 vma_lock_init(vma, false); 913 } 914 915 /* Use when VMA is not part of the VMA tree and needs no locking */ 916 static inline void vm_flags_init(struct vm_area_struct *vma, 917 vm_flags_t flags) 918 { 919 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 920 vma_flags_clear_all(&vma->flags); 921 vma_flags_overwrite_word(&vma->flags, flags); 922 } 923 924 /* 925 * Use when VMA is part of the VMA tree and modifications need coordination 926 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 927 * it should be locked explicitly beforehand. 928 */ 929 static inline void vm_flags_reset(struct vm_area_struct *vma, 930 vm_flags_t flags) 931 { 932 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 933 vma_assert_write_locked(vma); 934 vm_flags_init(vma, flags); 935 } 936 937 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 938 vm_flags_t flags) 939 { 940 vma_assert_write_locked(vma); 941 /* 942 * If VMA flags exist beyond the first system word, also clear these. It 943 * is assumed the write once behaviour is required only for the first 944 * system word. 945 */ 946 if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) { 947 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 948 949 bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG); 950 } 951 952 vma_flags_overwrite_word_once(&vma->flags, flags); 953 } 954 955 static inline void vm_flags_set(struct vm_area_struct *vma, 956 vm_flags_t flags) 957 { 958 vma_start_write(vma); 959 vma_flags_set_word(&vma->flags, flags); 960 } 961 962 static inline void vm_flags_clear(struct vm_area_struct *vma, 963 vm_flags_t flags) 964 { 965 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 966 vma_start_write(vma); 967 vma_flags_clear_word(&vma->flags, flags); 968 } 969 970 /* 971 * Use only if VMA is not part of the VMA tree or has no other users and 972 * therefore needs no locking. 973 */ 974 static inline void __vm_flags_mod(struct vm_area_struct *vma, 975 vm_flags_t set, vm_flags_t clear) 976 { 977 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 978 } 979 980 /* 981 * Use only when the order of set/clear operations is unimportant, otherwise 982 * use vm_flags_{set|clear} explicitly. 983 */ 984 static inline void vm_flags_mod(struct vm_area_struct *vma, 985 vm_flags_t set, vm_flags_t clear) 986 { 987 vma_start_write(vma); 988 __vm_flags_mod(vma, set, clear); 989 } 990 991 static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma, 992 vma_flag_t bit) 993 { 994 const vm_flags_t mask = BIT((__force int)bit); 995 996 /* Only specific flags are permitted */ 997 if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED))) 998 return false; 999 1000 return true; 1001 } 1002 1003 /* 1004 * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific 1005 * valid flags are allowed to do this. 1006 */ 1007 static inline void vma_flag_set_atomic(struct vm_area_struct *vma, 1008 vma_flag_t bit) 1009 { 1010 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 1011 1012 vma_assert_stabilised(vma); 1013 if (__vma_flag_atomic_valid(vma, bit)) 1014 set_bit((__force int)bit, bitmap); 1015 } 1016 1017 /* 1018 * Test for VMA flag atomically. Requires no locks. Only specific valid flags 1019 * are allowed to do this. 1020 * 1021 * This is necessarily racey, so callers must ensure that serialisation is 1022 * achieved through some other means, or that races are permissible. 1023 */ 1024 static inline bool vma_flag_test_atomic(struct vm_area_struct *vma, 1025 vma_flag_t bit) 1026 { 1027 if (__vma_flag_atomic_valid(vma, bit)) 1028 return test_bit((__force int)bit, &vma->vm_flags); 1029 1030 return false; 1031 } 1032 1033 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1034 { 1035 vma->vm_ops = NULL; 1036 } 1037 1038 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1039 { 1040 return !vma->vm_ops; 1041 } 1042 1043 /* 1044 * Indicate if the VMA is a heap for the given task; for 1045 * /proc/PID/maps that is the heap of the main task. 1046 */ 1047 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1048 { 1049 return vma->vm_start < vma->vm_mm->brk && 1050 vma->vm_end > vma->vm_mm->start_brk; 1051 } 1052 1053 /* 1054 * Indicate if the VMA is a stack for the given task; for 1055 * /proc/PID/maps that is the stack of the main task. 1056 */ 1057 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1058 { 1059 /* 1060 * We make no effort to guess what a given thread considers to be 1061 * its "stack". It's not even well-defined for programs written 1062 * languages like Go. 1063 */ 1064 return vma->vm_start <= vma->vm_mm->start_stack && 1065 vma->vm_end >= vma->vm_mm->start_stack; 1066 } 1067 1068 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma) 1069 { 1070 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1071 1072 if (!maybe_stack) 1073 return false; 1074 1075 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1076 VM_STACK_INCOMPLETE_SETUP) 1077 return true; 1078 1079 return false; 1080 } 1081 1082 static inline bool vma_is_foreign(const struct vm_area_struct *vma) 1083 { 1084 if (!current->mm) 1085 return true; 1086 1087 if (current->mm != vma->vm_mm) 1088 return true; 1089 1090 return false; 1091 } 1092 1093 static inline bool vma_is_accessible(const struct vm_area_struct *vma) 1094 { 1095 return vma->vm_flags & VM_ACCESS_FLAGS; 1096 } 1097 1098 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1099 { 1100 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1101 (VM_SHARED | VM_MAYWRITE); 1102 } 1103 1104 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma) 1105 { 1106 return is_shared_maywrite(vma->vm_flags); 1107 } 1108 1109 static inline 1110 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1111 { 1112 return mas_find(&vmi->mas, max - 1); 1113 } 1114 1115 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1116 { 1117 /* 1118 * Uses mas_find() to get the first VMA when the iterator starts. 1119 * Calling mas_next() could skip the first entry. 1120 */ 1121 return mas_find(&vmi->mas, ULONG_MAX); 1122 } 1123 1124 static inline 1125 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1126 { 1127 return mas_next_range(&vmi->mas, ULONG_MAX); 1128 } 1129 1130 1131 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1132 { 1133 return mas_prev(&vmi->mas, 0); 1134 } 1135 1136 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1137 unsigned long start, unsigned long end, gfp_t gfp) 1138 { 1139 __mas_set_range(&vmi->mas, start, end - 1); 1140 mas_store_gfp(&vmi->mas, NULL, gfp); 1141 if (unlikely(mas_is_err(&vmi->mas))) 1142 return -ENOMEM; 1143 1144 return 0; 1145 } 1146 1147 /* Free any unused preallocations */ 1148 static inline void vma_iter_free(struct vma_iterator *vmi) 1149 { 1150 mas_destroy(&vmi->mas); 1151 } 1152 1153 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1154 struct vm_area_struct *vma) 1155 { 1156 vmi->mas.index = vma->vm_start; 1157 vmi->mas.last = vma->vm_end - 1; 1158 mas_store(&vmi->mas, vma); 1159 if (unlikely(mas_is_err(&vmi->mas))) 1160 return -ENOMEM; 1161 1162 vma_mark_attached(vma); 1163 return 0; 1164 } 1165 1166 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1167 { 1168 mas_pause(&vmi->mas); 1169 } 1170 1171 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1172 { 1173 mas_set(&vmi->mas, addr); 1174 } 1175 1176 #define for_each_vma(__vmi, __vma) \ 1177 while (((__vma) = vma_next(&(__vmi))) != NULL) 1178 1179 /* The MM code likes to work with exclusive end addresses */ 1180 #define for_each_vma_range(__vmi, __vma, __end) \ 1181 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1182 1183 #ifdef CONFIG_SHMEM 1184 /* 1185 * The vma_is_shmem is not inline because it is used only by slow 1186 * paths in userfault. 1187 */ 1188 bool vma_is_shmem(const struct vm_area_struct *vma); 1189 bool vma_is_anon_shmem(const struct vm_area_struct *vma); 1190 #else 1191 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; } 1192 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; } 1193 #endif 1194 1195 int vma_is_stack_for_current(const struct vm_area_struct *vma); 1196 1197 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1198 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1199 1200 struct mmu_gather; 1201 struct inode; 1202 1203 extern void prep_compound_page(struct page *page, unsigned int order); 1204 1205 static inline unsigned int folio_large_order(const struct folio *folio) 1206 { 1207 return folio->_flags_1 & 0xff; 1208 } 1209 1210 #ifdef NR_PAGES_IN_LARGE_FOLIO 1211 static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1212 { 1213 return folio->_nr_pages; 1214 } 1215 #else 1216 static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1217 { 1218 return 1L << folio_large_order(folio); 1219 } 1220 #endif 1221 1222 /* 1223 * compound_order() can be called without holding a reference, which means 1224 * that niceties like page_folio() don't work. These callers should be 1225 * prepared to handle wild return values. For example, PG_head may be 1226 * set before the order is initialised, or this may be a tail page. 1227 * See compaction.c for some good examples. 1228 */ 1229 static inline unsigned int compound_order(const struct page *page) 1230 { 1231 const struct folio *folio = (struct folio *)page; 1232 1233 if (!test_bit(PG_head, &folio->flags.f)) 1234 return 0; 1235 return folio_large_order(folio); 1236 } 1237 1238 /** 1239 * folio_order - The allocation order of a folio. 1240 * @folio: The folio. 1241 * 1242 * A folio is composed of 2^order pages. See get_order() for the definition 1243 * of order. 1244 * 1245 * Return: The order of the folio. 1246 */ 1247 static inline unsigned int folio_order(const struct folio *folio) 1248 { 1249 if (!folio_test_large(folio)) 1250 return 0; 1251 return folio_large_order(folio); 1252 } 1253 1254 /** 1255 * folio_reset_order - Reset the folio order and derived _nr_pages 1256 * @folio: The folio. 1257 * 1258 * Reset the order and derived _nr_pages to 0. Must only be used in the 1259 * process of splitting large folios. 1260 */ 1261 static inline void folio_reset_order(struct folio *folio) 1262 { 1263 if (WARN_ON_ONCE(!folio_test_large(folio))) 1264 return; 1265 folio->_flags_1 &= ~0xffUL; 1266 #ifdef NR_PAGES_IN_LARGE_FOLIO 1267 folio->_nr_pages = 0; 1268 #endif 1269 } 1270 1271 #include <linux/huge_mm.h> 1272 1273 /* 1274 * Methods to modify the page usage count. 1275 * 1276 * What counts for a page usage: 1277 * - cache mapping (page->mapping) 1278 * - private data (page->private) 1279 * - page mapped in a task's page tables, each mapping 1280 * is counted separately 1281 * 1282 * Also, many kernel routines increase the page count before a critical 1283 * routine so they can be sure the page doesn't go away from under them. 1284 */ 1285 1286 /* 1287 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1288 */ 1289 static inline int put_page_testzero(struct page *page) 1290 { 1291 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1292 return page_ref_dec_and_test(page); 1293 } 1294 1295 static inline int folio_put_testzero(struct folio *folio) 1296 { 1297 return put_page_testzero(&folio->page); 1298 } 1299 1300 /* 1301 * Try to grab a ref unless the page has a refcount of zero, return false if 1302 * that is the case. 1303 * This can be called when MMU is off so it must not access 1304 * any of the virtual mappings. 1305 */ 1306 static inline bool get_page_unless_zero(struct page *page) 1307 { 1308 return page_ref_add_unless(page, 1, 0); 1309 } 1310 1311 static inline struct folio *folio_get_nontail_page(struct page *page) 1312 { 1313 if (unlikely(!get_page_unless_zero(page))) 1314 return NULL; 1315 return (struct folio *)page; 1316 } 1317 1318 extern int page_is_ram(unsigned long pfn); 1319 1320 enum { 1321 REGION_INTERSECTS, 1322 REGION_DISJOINT, 1323 REGION_MIXED, 1324 }; 1325 1326 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1327 unsigned long desc); 1328 1329 /* Support for virtually mapped pages */ 1330 struct page *vmalloc_to_page(const void *addr); 1331 unsigned long vmalloc_to_pfn(const void *addr); 1332 1333 /* 1334 * Determine if an address is within the vmalloc range 1335 * 1336 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1337 * is no special casing required. 1338 */ 1339 #ifdef CONFIG_MMU 1340 extern bool is_vmalloc_addr(const void *x); 1341 extern int is_vmalloc_or_module_addr(const void *x); 1342 #else 1343 static inline bool is_vmalloc_addr(const void *x) 1344 { 1345 return false; 1346 } 1347 static inline int is_vmalloc_or_module_addr(const void *x) 1348 { 1349 return 0; 1350 } 1351 #endif 1352 1353 /* 1354 * How many times the entire folio is mapped as a single unit (eg by a 1355 * PMD or PUD entry). This is probably not what you want, except for 1356 * debugging purposes or implementation of other core folio_*() primitives. 1357 */ 1358 static inline int folio_entire_mapcount(const struct folio *folio) 1359 { 1360 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1361 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1362 return 0; 1363 return atomic_read(&folio->_entire_mapcount) + 1; 1364 } 1365 1366 static inline int folio_large_mapcount(const struct folio *folio) 1367 { 1368 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1369 return atomic_read(&folio->_large_mapcount) + 1; 1370 } 1371 1372 /** 1373 * folio_mapcount() - Number of mappings of this folio. 1374 * @folio: The folio. 1375 * 1376 * The folio mapcount corresponds to the number of present user page table 1377 * entries that reference any part of a folio. Each such present user page 1378 * table entry must be paired with exactly on folio reference. 1379 * 1380 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1381 * exactly once. 1382 * 1383 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1384 * references the entire folio counts exactly once, even when such special 1385 * page table entries are comprised of multiple ordinary page table entries. 1386 * 1387 * Will report 0 for pages which cannot be mapped into userspace, such as 1388 * slab, page tables and similar. 1389 * 1390 * Return: The number of times this folio is mapped. 1391 */ 1392 static inline int folio_mapcount(const struct folio *folio) 1393 { 1394 int mapcount; 1395 1396 if (likely(!folio_test_large(folio))) { 1397 mapcount = atomic_read(&folio->_mapcount) + 1; 1398 if (page_mapcount_is_type(mapcount)) 1399 mapcount = 0; 1400 return mapcount; 1401 } 1402 return folio_large_mapcount(folio); 1403 } 1404 1405 /** 1406 * folio_mapped - Is this folio mapped into userspace? 1407 * @folio: The folio. 1408 * 1409 * Return: True if any page in this folio is referenced by user page tables. 1410 */ 1411 static inline bool folio_mapped(const struct folio *folio) 1412 { 1413 return folio_mapcount(folio) >= 1; 1414 } 1415 1416 /* 1417 * Return true if this page is mapped into pagetables. 1418 * For compound page it returns true if any sub-page of compound page is mapped, 1419 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1420 */ 1421 static inline bool page_mapped(const struct page *page) 1422 { 1423 return folio_mapped(page_folio(page)); 1424 } 1425 1426 static inline struct page *virt_to_head_page(const void *x) 1427 { 1428 struct page *page = virt_to_page(x); 1429 1430 return compound_head(page); 1431 } 1432 1433 static inline struct folio *virt_to_folio(const void *x) 1434 { 1435 struct page *page = virt_to_page(x); 1436 1437 return page_folio(page); 1438 } 1439 1440 void __folio_put(struct folio *folio); 1441 1442 void split_page(struct page *page, unsigned int order); 1443 void folio_copy(struct folio *dst, struct folio *src); 1444 int folio_mc_copy(struct folio *dst, struct folio *src); 1445 1446 unsigned long nr_free_buffer_pages(void); 1447 1448 /* Returns the number of bytes in this potentially compound page. */ 1449 static inline unsigned long page_size(const struct page *page) 1450 { 1451 return PAGE_SIZE << compound_order(page); 1452 } 1453 1454 /* Returns the number of bits needed for the number of bytes in a page */ 1455 static inline unsigned int page_shift(struct page *page) 1456 { 1457 return PAGE_SHIFT + compound_order(page); 1458 } 1459 1460 /** 1461 * thp_order - Order of a transparent huge page. 1462 * @page: Head page of a transparent huge page. 1463 */ 1464 static inline unsigned int thp_order(struct page *page) 1465 { 1466 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1467 return compound_order(page); 1468 } 1469 1470 /** 1471 * thp_size - Size of a transparent huge page. 1472 * @page: Head page of a transparent huge page. 1473 * 1474 * Return: Number of bytes in this page. 1475 */ 1476 static inline unsigned long thp_size(struct page *page) 1477 { 1478 return PAGE_SIZE << thp_order(page); 1479 } 1480 1481 #ifdef CONFIG_MMU 1482 /* 1483 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1484 * servicing faults for write access. In the normal case, do always want 1485 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1486 * that do not have writing enabled, when used by access_process_vm. 1487 */ 1488 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1489 { 1490 if (likely(vma->vm_flags & VM_WRITE)) 1491 pte = pte_mkwrite(pte, vma); 1492 return pte; 1493 } 1494 1495 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1496 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1497 struct page *page, unsigned int nr, unsigned long addr); 1498 1499 vm_fault_t finish_fault(struct vm_fault *vmf); 1500 #endif 1501 1502 /* 1503 * Multiple processes may "see" the same page. E.g. for untouched 1504 * mappings of /dev/null, all processes see the same page full of 1505 * zeroes, and text pages of executables and shared libraries have 1506 * only one copy in memory, at most, normally. 1507 * 1508 * For the non-reserved pages, page_count(page) denotes a reference count. 1509 * page_count() == 0 means the page is free. page->lru is then used for 1510 * freelist management in the buddy allocator. 1511 * page_count() > 0 means the page has been allocated. 1512 * 1513 * Pages are allocated by the slab allocator in order to provide memory 1514 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1515 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1516 * unless a particular usage is carefully commented. (the responsibility of 1517 * freeing the kmalloc memory is the caller's, of course). 1518 * 1519 * A page may be used by anyone else who does a __get_free_page(). 1520 * In this case, page_count still tracks the references, and should only 1521 * be used through the normal accessor functions. The top bits of page->flags 1522 * and page->virtual store page management information, but all other fields 1523 * are unused and could be used privately, carefully. The management of this 1524 * page is the responsibility of the one who allocated it, and those who have 1525 * subsequently been given references to it. 1526 * 1527 * The other pages (we may call them "pagecache pages") are completely 1528 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1529 * The following discussion applies only to them. 1530 * 1531 * A pagecache page contains an opaque `private' member, which belongs to the 1532 * page's address_space. Usually, this is the address of a circular list of 1533 * the page's disk buffers. PG_private must be set to tell the VM to call 1534 * into the filesystem to release these pages. 1535 * 1536 * A folio may belong to an inode's memory mapping. In this case, 1537 * folio->mapping points to the inode, and folio->index is the file 1538 * offset of the folio, in units of PAGE_SIZE. 1539 * 1540 * If pagecache pages are not associated with an inode, they are said to be 1541 * anonymous pages. These may become associated with the swapcache, and in that 1542 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1543 * 1544 * In either case (swapcache or inode backed), the pagecache itself holds one 1545 * reference to the page. Setting PG_private should also increment the 1546 * refcount. The each user mapping also has a reference to the page. 1547 * 1548 * The pagecache pages are stored in a per-mapping radix tree, which is 1549 * rooted at mapping->i_pages, and indexed by offset. 1550 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1551 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1552 * 1553 * All pagecache pages may be subject to I/O: 1554 * - inode pages may need to be read from disk, 1555 * - inode pages which have been modified and are MAP_SHARED may need 1556 * to be written back to the inode on disk, 1557 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1558 * modified may need to be swapped out to swap space and (later) to be read 1559 * back into memory. 1560 */ 1561 1562 /* 127: arbitrary random number, small enough to assemble well */ 1563 #define folio_ref_zero_or_close_to_overflow(folio) \ 1564 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1565 1566 /** 1567 * folio_get - Increment the reference count on a folio. 1568 * @folio: The folio. 1569 * 1570 * Context: May be called in any context, as long as you know that 1571 * you have a refcount on the folio. If you do not already have one, 1572 * folio_try_get() may be the right interface for you to use. 1573 */ 1574 static inline void folio_get(struct folio *folio) 1575 { 1576 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1577 folio_ref_inc(folio); 1578 } 1579 1580 static inline void get_page(struct page *page) 1581 { 1582 struct folio *folio = page_folio(page); 1583 if (WARN_ON_ONCE(folio_test_slab(folio))) 1584 return; 1585 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) 1586 return; 1587 folio_get(folio); 1588 } 1589 1590 static inline __must_check bool try_get_page(struct page *page) 1591 { 1592 page = compound_head(page); 1593 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1594 return false; 1595 page_ref_inc(page); 1596 return true; 1597 } 1598 1599 /** 1600 * folio_put - Decrement the reference count on a folio. 1601 * @folio: The folio. 1602 * 1603 * If the folio's reference count reaches zero, the memory will be 1604 * released back to the page allocator and may be used by another 1605 * allocation immediately. Do not access the memory or the struct folio 1606 * after calling folio_put() unless you can be sure that it wasn't the 1607 * last reference. 1608 * 1609 * Context: May be called in process or interrupt context, but not in NMI 1610 * context. May be called while holding a spinlock. 1611 */ 1612 static inline void folio_put(struct folio *folio) 1613 { 1614 if (folio_put_testzero(folio)) 1615 __folio_put(folio); 1616 } 1617 1618 /** 1619 * folio_put_refs - Reduce the reference count on a folio. 1620 * @folio: The folio. 1621 * @refs: The amount to subtract from the folio's reference count. 1622 * 1623 * If the folio's reference count reaches zero, the memory will be 1624 * released back to the page allocator and may be used by another 1625 * allocation immediately. Do not access the memory or the struct folio 1626 * after calling folio_put_refs() unless you can be sure that these weren't 1627 * the last references. 1628 * 1629 * Context: May be called in process or interrupt context, but not in NMI 1630 * context. May be called while holding a spinlock. 1631 */ 1632 static inline void folio_put_refs(struct folio *folio, int refs) 1633 { 1634 if (folio_ref_sub_and_test(folio, refs)) 1635 __folio_put(folio); 1636 } 1637 1638 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1639 1640 /* 1641 * union release_pages_arg - an array of pages or folios 1642 * 1643 * release_pages() releases a simple array of multiple pages, and 1644 * accepts various different forms of said page array: either 1645 * a regular old boring array of pages, an array of folios, or 1646 * an array of encoded page pointers. 1647 * 1648 * The transparent union syntax for this kind of "any of these 1649 * argument types" is all kinds of ugly, so look away. 1650 */ 1651 typedef union { 1652 struct page **pages; 1653 struct folio **folios; 1654 struct encoded_page **encoded_pages; 1655 } release_pages_arg __attribute__ ((__transparent_union__)); 1656 1657 void release_pages(release_pages_arg, int nr); 1658 1659 /** 1660 * folios_put - Decrement the reference count on an array of folios. 1661 * @folios: The folios. 1662 * 1663 * Like folio_put(), but for a batch of folios. This is more efficient 1664 * than writing the loop yourself as it will optimise the locks which need 1665 * to be taken if the folios are freed. The folios batch is returned 1666 * empty and ready to be reused for another batch; there is no need to 1667 * reinitialise it. 1668 * 1669 * Context: May be called in process or interrupt context, but not in NMI 1670 * context. May be called while holding a spinlock. 1671 */ 1672 static inline void folios_put(struct folio_batch *folios) 1673 { 1674 folios_put_refs(folios, NULL); 1675 } 1676 1677 static inline void put_page(struct page *page) 1678 { 1679 struct folio *folio = page_folio(page); 1680 1681 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) 1682 return; 1683 1684 folio_put(folio); 1685 } 1686 1687 /* 1688 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1689 * the page's refcount so that two separate items are tracked: the original page 1690 * reference count, and also a new count of how many pin_user_pages() calls were 1691 * made against the page. ("gup-pinned" is another term for the latter). 1692 * 1693 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1694 * distinct from normal pages. As such, the unpin_user_page() call (and its 1695 * variants) must be used in order to release gup-pinned pages. 1696 * 1697 * Choice of value: 1698 * 1699 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1700 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1701 * simpler, due to the fact that adding an even power of two to the page 1702 * refcount has the effect of using only the upper N bits, for the code that 1703 * counts up using the bias value. This means that the lower bits are left for 1704 * the exclusive use of the original code that increments and decrements by one 1705 * (or at least, by much smaller values than the bias value). 1706 * 1707 * Of course, once the lower bits overflow into the upper bits (and this is 1708 * OK, because subtraction recovers the original values), then visual inspection 1709 * no longer suffices to directly view the separate counts. However, for normal 1710 * applications that don't have huge page reference counts, this won't be an 1711 * issue. 1712 * 1713 * Locking: the lockless algorithm described in folio_try_get_rcu() 1714 * provides safe operation for get_user_pages(), folio_mkclean() and 1715 * other calls that race to set up page table entries. 1716 */ 1717 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1718 1719 void unpin_user_page(struct page *page); 1720 void unpin_folio(struct folio *folio); 1721 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1722 bool make_dirty); 1723 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1724 bool make_dirty); 1725 void unpin_user_pages(struct page **pages, unsigned long npages); 1726 void unpin_user_folio(struct folio *folio, unsigned long npages); 1727 void unpin_folios(struct folio **folios, unsigned long nfolios); 1728 1729 static inline bool is_cow_mapping(vm_flags_t flags) 1730 { 1731 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1732 } 1733 1734 #ifndef CONFIG_MMU 1735 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1736 { 1737 /* 1738 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1739 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1740 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1741 * underlying memory if ptrace is active, so this is only possible if 1742 * ptrace does not apply. Note that there is no mprotect() to upgrade 1743 * write permissions later. 1744 */ 1745 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1746 } 1747 #endif 1748 1749 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1750 #define SECTION_IN_PAGE_FLAGS 1751 #endif 1752 1753 /* 1754 * The identification function is mainly used by the buddy allocator for 1755 * determining if two pages could be buddies. We are not really identifying 1756 * the zone since we could be using the section number id if we do not have 1757 * node id available in page flags. 1758 * We only guarantee that it will return the same value for two combinable 1759 * pages in a zone. 1760 */ 1761 static inline int page_zone_id(struct page *page) 1762 { 1763 return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK; 1764 } 1765 1766 #ifdef NODE_NOT_IN_PAGE_FLAGS 1767 int memdesc_nid(memdesc_flags_t mdf); 1768 #else 1769 static inline int memdesc_nid(memdesc_flags_t mdf) 1770 { 1771 return (mdf.f >> NODES_PGSHIFT) & NODES_MASK; 1772 } 1773 #endif 1774 1775 static inline int page_to_nid(const struct page *page) 1776 { 1777 return memdesc_nid(PF_POISONED_CHECK(page)->flags); 1778 } 1779 1780 static inline int folio_nid(const struct folio *folio) 1781 { 1782 return memdesc_nid(folio->flags); 1783 } 1784 1785 #ifdef CONFIG_NUMA_BALANCING 1786 /* page access time bits needs to hold at least 4 seconds */ 1787 #define PAGE_ACCESS_TIME_MIN_BITS 12 1788 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1789 #define PAGE_ACCESS_TIME_BUCKETS \ 1790 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1791 #else 1792 #define PAGE_ACCESS_TIME_BUCKETS 0 1793 #endif 1794 1795 #define PAGE_ACCESS_TIME_MASK \ 1796 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1797 1798 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1799 { 1800 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1801 } 1802 1803 static inline int cpupid_to_pid(int cpupid) 1804 { 1805 return cpupid & LAST__PID_MASK; 1806 } 1807 1808 static inline int cpupid_to_cpu(int cpupid) 1809 { 1810 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1811 } 1812 1813 static inline int cpupid_to_nid(int cpupid) 1814 { 1815 return cpu_to_node(cpupid_to_cpu(cpupid)); 1816 } 1817 1818 static inline bool cpupid_pid_unset(int cpupid) 1819 { 1820 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1821 } 1822 1823 static inline bool cpupid_cpu_unset(int cpupid) 1824 { 1825 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1826 } 1827 1828 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1829 { 1830 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1831 } 1832 1833 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1834 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1835 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1836 { 1837 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1838 } 1839 1840 static inline int folio_last_cpupid(struct folio *folio) 1841 { 1842 return folio->_last_cpupid; 1843 } 1844 static inline void page_cpupid_reset_last(struct page *page) 1845 { 1846 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1847 } 1848 #else 1849 static inline int folio_last_cpupid(struct folio *folio) 1850 { 1851 return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1852 } 1853 1854 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1855 1856 static inline void page_cpupid_reset_last(struct page *page) 1857 { 1858 page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1859 } 1860 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1861 1862 static inline int folio_xchg_access_time(struct folio *folio, int time) 1863 { 1864 int last_time; 1865 1866 last_time = folio_xchg_last_cpupid(folio, 1867 time >> PAGE_ACCESS_TIME_BUCKETS); 1868 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1869 } 1870 1871 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1872 { 1873 unsigned int pid_bit; 1874 1875 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1876 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1877 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1878 } 1879 } 1880 1881 bool folio_use_access_time(struct folio *folio); 1882 #else /* !CONFIG_NUMA_BALANCING */ 1883 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1884 { 1885 return folio_nid(folio); /* XXX */ 1886 } 1887 1888 static inline int folio_xchg_access_time(struct folio *folio, int time) 1889 { 1890 return 0; 1891 } 1892 1893 static inline int folio_last_cpupid(struct folio *folio) 1894 { 1895 return folio_nid(folio); /* XXX */ 1896 } 1897 1898 static inline int cpupid_to_nid(int cpupid) 1899 { 1900 return -1; 1901 } 1902 1903 static inline int cpupid_to_pid(int cpupid) 1904 { 1905 return -1; 1906 } 1907 1908 static inline int cpupid_to_cpu(int cpupid) 1909 { 1910 return -1; 1911 } 1912 1913 static inline int cpu_pid_to_cpupid(int nid, int pid) 1914 { 1915 return -1; 1916 } 1917 1918 static inline bool cpupid_pid_unset(int cpupid) 1919 { 1920 return true; 1921 } 1922 1923 static inline void page_cpupid_reset_last(struct page *page) 1924 { 1925 } 1926 1927 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1928 { 1929 return false; 1930 } 1931 1932 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1933 { 1934 } 1935 static inline bool folio_use_access_time(struct folio *folio) 1936 { 1937 return false; 1938 } 1939 #endif /* CONFIG_NUMA_BALANCING */ 1940 1941 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1942 1943 /* 1944 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1945 * setting tags for all pages to native kernel tag value 0xff, as the default 1946 * value 0x00 maps to 0xff. 1947 */ 1948 1949 static inline u8 page_kasan_tag(const struct page *page) 1950 { 1951 u8 tag = KASAN_TAG_KERNEL; 1952 1953 if (kasan_enabled()) { 1954 tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1955 tag ^= 0xff; 1956 } 1957 1958 return tag; 1959 } 1960 1961 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1962 { 1963 unsigned long old_flags, flags; 1964 1965 if (!kasan_enabled()) 1966 return; 1967 1968 tag ^= 0xff; 1969 old_flags = READ_ONCE(page->flags.f); 1970 do { 1971 flags = old_flags; 1972 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1973 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1974 } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags))); 1975 } 1976 1977 static inline void page_kasan_tag_reset(struct page *page) 1978 { 1979 if (kasan_enabled()) 1980 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1981 } 1982 1983 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1984 1985 static inline u8 page_kasan_tag(const struct page *page) 1986 { 1987 return 0xff; 1988 } 1989 1990 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1991 static inline void page_kasan_tag_reset(struct page *page) { } 1992 1993 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1994 1995 static inline struct zone *page_zone(const struct page *page) 1996 { 1997 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1998 } 1999 2000 static inline pg_data_t *page_pgdat(const struct page *page) 2001 { 2002 return NODE_DATA(page_to_nid(page)); 2003 } 2004 2005 static inline pg_data_t *folio_pgdat(const struct folio *folio) 2006 { 2007 return NODE_DATA(folio_nid(folio)); 2008 } 2009 2010 static inline struct zone *folio_zone(const struct folio *folio) 2011 { 2012 return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)]; 2013 } 2014 2015 #ifdef SECTION_IN_PAGE_FLAGS 2016 static inline void set_page_section(struct page *page, unsigned long section) 2017 { 2018 page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 2019 page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 2020 } 2021 2022 static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2023 { 2024 return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 2025 } 2026 #else /* !SECTION_IN_PAGE_FLAGS */ 2027 static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2028 { 2029 return 0; 2030 } 2031 #endif /* SECTION_IN_PAGE_FLAGS */ 2032 2033 /** 2034 * folio_pfn - Return the Page Frame Number of a folio. 2035 * @folio: The folio. 2036 * 2037 * A folio may contain multiple pages. The pages have consecutive 2038 * Page Frame Numbers. 2039 * 2040 * Return: The Page Frame Number of the first page in the folio. 2041 */ 2042 static inline unsigned long folio_pfn(const struct folio *folio) 2043 { 2044 return page_to_pfn(&folio->page); 2045 } 2046 2047 static inline struct folio *pfn_folio(unsigned long pfn) 2048 { 2049 return page_folio(pfn_to_page(pfn)); 2050 } 2051 2052 #ifdef CONFIG_MMU 2053 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot) 2054 { 2055 return pfn_pte(page_to_pfn(page), pgprot); 2056 } 2057 2058 /** 2059 * folio_mk_pte - Create a PTE for this folio 2060 * @folio: The folio to create a PTE for 2061 * @pgprot: The page protection bits to use 2062 * 2063 * Create a page table entry for the first page of this folio. 2064 * This is suitable for passing to set_ptes(). 2065 * 2066 * Return: A page table entry suitable for mapping this folio. 2067 */ 2068 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot) 2069 { 2070 return pfn_pte(folio_pfn(folio), pgprot); 2071 } 2072 2073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2074 /** 2075 * folio_mk_pmd - Create a PMD for this folio 2076 * @folio: The folio to create a PMD for 2077 * @pgprot: The page protection bits to use 2078 * 2079 * Create a page table entry for the first page of this folio. 2080 * This is suitable for passing to set_pmd_at(). 2081 * 2082 * Return: A page table entry suitable for mapping this folio. 2083 */ 2084 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot) 2085 { 2086 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 2087 } 2088 2089 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2090 /** 2091 * folio_mk_pud - Create a PUD for this folio 2092 * @folio: The folio to create a PUD for 2093 * @pgprot: The page protection bits to use 2094 * 2095 * Create a page table entry for the first page of this folio. 2096 * This is suitable for passing to set_pud_at(). 2097 * 2098 * Return: A page table entry suitable for mapping this folio. 2099 */ 2100 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot) 2101 { 2102 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot)); 2103 } 2104 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2105 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2106 #endif /* CONFIG_MMU */ 2107 2108 static inline bool folio_has_pincount(const struct folio *folio) 2109 { 2110 if (IS_ENABLED(CONFIG_64BIT)) 2111 return folio_test_large(folio); 2112 return folio_order(folio) > 1; 2113 } 2114 2115 /** 2116 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2117 * @folio: The folio. 2118 * 2119 * This function checks if a folio has been pinned via a call to 2120 * a function in the pin_user_pages() family. 2121 * 2122 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2123 * because it means "definitely not pinned for DMA", but true means "probably 2124 * pinned for DMA, but possibly a false positive due to having at least 2125 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2126 * 2127 * False positives are OK, because: a) it's unlikely for a folio to 2128 * get that many refcounts, and b) all the callers of this routine are 2129 * expected to be able to deal gracefully with a false positive. 2130 * 2131 * For most large folios, the result will be exactly correct. That's because 2132 * we have more tracking data available: the _pincount field is used 2133 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2134 * 2135 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2136 * 2137 * Return: True, if it is likely that the folio has been "dma-pinned". 2138 * False, if the folio is definitely not dma-pinned. 2139 */ 2140 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2141 { 2142 if (folio_has_pincount(folio)) 2143 return atomic_read(&folio->_pincount) > 0; 2144 2145 /* 2146 * folio_ref_count() is signed. If that refcount overflows, then 2147 * folio_ref_count() returns a negative value, and callers will avoid 2148 * further incrementing the refcount. 2149 * 2150 * Here, for that overflow case, use the sign bit to count a little 2151 * bit higher via unsigned math, and thus still get an accurate result. 2152 */ 2153 return ((unsigned int)folio_ref_count(folio)) >= 2154 GUP_PIN_COUNTING_BIAS; 2155 } 2156 2157 /* 2158 * This should most likely only be called during fork() to see whether we 2159 * should break the cow immediately for an anon page on the src mm. 2160 * 2161 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2162 */ 2163 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2164 struct folio *folio) 2165 { 2166 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2167 2168 if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm)) 2169 return false; 2170 2171 return folio_maybe_dma_pinned(folio); 2172 } 2173 2174 /** 2175 * is_zero_page - Query if a page is a zero page 2176 * @page: The page to query 2177 * 2178 * This returns true if @page is one of the permanent zero pages. 2179 */ 2180 static inline bool is_zero_page(const struct page *page) 2181 { 2182 return is_zero_pfn(page_to_pfn(page)); 2183 } 2184 2185 /** 2186 * is_zero_folio - Query if a folio is a zero page 2187 * @folio: The folio to query 2188 * 2189 * This returns true if @folio is one of the permanent zero pages. 2190 */ 2191 static inline bool is_zero_folio(const struct folio *folio) 2192 { 2193 return is_zero_page(&folio->page); 2194 } 2195 2196 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2197 #ifdef CONFIG_MIGRATION 2198 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2199 { 2200 #ifdef CONFIG_CMA 2201 int mt = folio_migratetype(folio); 2202 2203 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2204 return false; 2205 #endif 2206 /* The zero page can be "pinned" but gets special handling. */ 2207 if (is_zero_folio(folio)) 2208 return true; 2209 2210 /* Coherent device memory must always allow eviction. */ 2211 if (folio_is_device_coherent(folio)) 2212 return false; 2213 2214 /* 2215 * Filesystems can only tolerate transient delays to truncate and 2216 * hole-punch operations 2217 */ 2218 if (folio_is_fsdax(folio)) 2219 return false; 2220 2221 /* Otherwise, non-movable zone folios can be pinned. */ 2222 return !folio_is_zone_movable(folio); 2223 2224 } 2225 #else 2226 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2227 { 2228 return true; 2229 } 2230 #endif 2231 2232 static inline void set_page_zone(struct page *page, enum zone_type zone) 2233 { 2234 page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT); 2235 page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2236 } 2237 2238 static inline void set_page_node(struct page *page, unsigned long node) 2239 { 2240 page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT); 2241 page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT; 2242 } 2243 2244 static inline void set_page_links(struct page *page, enum zone_type zone, 2245 unsigned long node, unsigned long pfn) 2246 { 2247 set_page_zone(page, zone); 2248 set_page_node(page, node); 2249 #ifdef SECTION_IN_PAGE_FLAGS 2250 set_page_section(page, pfn_to_section_nr(pfn)); 2251 #endif 2252 } 2253 2254 /** 2255 * folio_nr_pages - The number of pages in the folio. 2256 * @folio: The folio. 2257 * 2258 * Return: A positive power of two. 2259 */ 2260 static inline unsigned long folio_nr_pages(const struct folio *folio) 2261 { 2262 if (!folio_test_large(folio)) 2263 return 1; 2264 return folio_large_nr_pages(folio); 2265 } 2266 2267 #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS) 2268 /* 2269 * We don't expect any folios that exceed buddy sizes (and consequently 2270 * memory sections). 2271 */ 2272 #define MAX_FOLIO_ORDER MAX_PAGE_ORDER 2273 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 2274 /* 2275 * Only pages within a single memory section are guaranteed to be 2276 * contiguous. By limiting folios to a single memory section, all folio 2277 * pages are guaranteed to be contiguous. 2278 */ 2279 #define MAX_FOLIO_ORDER PFN_SECTION_SHIFT 2280 #elif defined(CONFIG_HUGETLB_PAGE) 2281 /* 2282 * There is no real limit on the folio size. We limit them to the maximum we 2283 * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect 2284 * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit. 2285 */ 2286 #define MAX_FOLIO_ORDER get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G) 2287 #else 2288 /* 2289 * Without hugetlb, gigantic folios that are bigger than a single PUD are 2290 * currently impossible. 2291 */ 2292 #define MAX_FOLIO_ORDER PUD_ORDER 2293 #endif 2294 2295 #define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER) 2296 2297 /* 2298 * compound_nr() returns the number of pages in this potentially compound 2299 * page. compound_nr() can be called on a tail page, and is defined to 2300 * return 1 in that case. 2301 */ 2302 static inline unsigned long compound_nr(const struct page *page) 2303 { 2304 const struct folio *folio = (struct folio *)page; 2305 2306 if (!test_bit(PG_head, &folio->flags.f)) 2307 return 1; 2308 return folio_large_nr_pages(folio); 2309 } 2310 2311 /** 2312 * folio_next - Move to the next physical folio. 2313 * @folio: The folio we're currently operating on. 2314 * 2315 * If you have physically contiguous memory which may span more than 2316 * one folio (eg a &struct bio_vec), use this function to move from one 2317 * folio to the next. Do not use it if the memory is only virtually 2318 * contiguous as the folios are almost certainly not adjacent to each 2319 * other. This is the folio equivalent to writing ``page++``. 2320 * 2321 * Context: We assume that the folios are refcounted and/or locked at a 2322 * higher level and do not adjust the reference counts. 2323 * Return: The next struct folio. 2324 */ 2325 static inline struct folio *folio_next(struct folio *folio) 2326 { 2327 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2328 } 2329 2330 /** 2331 * folio_shift - The size of the memory described by this folio. 2332 * @folio: The folio. 2333 * 2334 * A folio represents a number of bytes which is a power-of-two in size. 2335 * This function tells you which power-of-two the folio is. See also 2336 * folio_size() and folio_order(). 2337 * 2338 * Context: The caller should have a reference on the folio to prevent 2339 * it from being split. It is not necessary for the folio to be locked. 2340 * Return: The base-2 logarithm of the size of this folio. 2341 */ 2342 static inline unsigned int folio_shift(const struct folio *folio) 2343 { 2344 return PAGE_SHIFT + folio_order(folio); 2345 } 2346 2347 /** 2348 * folio_size - The number of bytes in a folio. 2349 * @folio: The folio. 2350 * 2351 * Context: The caller should have a reference on the folio to prevent 2352 * it from being split. It is not necessary for the folio to be locked. 2353 * Return: The number of bytes in this folio. 2354 */ 2355 static inline size_t folio_size(const struct folio *folio) 2356 { 2357 return PAGE_SIZE << folio_order(folio); 2358 } 2359 2360 /** 2361 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2362 * tables of more than one MM 2363 * @folio: The folio. 2364 * 2365 * This function checks if the folio maybe currently mapped into more than one 2366 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2367 * MM ("mapped exclusively"). 2368 * 2369 * For KSM folios, this function also returns "mapped shared" when a folio is 2370 * mapped multiple times into the same MM, because the individual page mappings 2371 * are independent. 2372 * 2373 * For small anonymous folios and anonymous hugetlb folios, the return 2374 * value will be exactly correct: non-KSM folios can only be mapped at most once 2375 * into an MM, and they cannot be partially mapped. KSM folios are 2376 * considered shared even if mapped multiple times into the same MM. 2377 * 2378 * For other folios, the result can be fuzzy: 2379 * #. For partially-mappable large folios (THP), the return value can wrongly 2380 * indicate "mapped shared" (false positive) if a folio was mapped by 2381 * more than two MMs at one point in time. 2382 * #. For pagecache folios (including hugetlb), the return value can wrongly 2383 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2384 * cover the same file range. 2385 * 2386 * Further, this function only considers current page table mappings that 2387 * are tracked using the folio mapcount(s). 2388 * 2389 * This function does not consider: 2390 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2391 * pagecache, temporary unmapping for migration). 2392 * #. If the folio is mapped differently (VM_PFNMAP). 2393 * #. If hugetlb page table sharing applies. Callers might want to check 2394 * hugetlb_pmd_shared(). 2395 * 2396 * Return: Whether the folio is estimated to be mapped into more than one MM. 2397 */ 2398 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2399 { 2400 int mapcount = folio_mapcount(folio); 2401 2402 /* Only partially-mappable folios require more care. */ 2403 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2404 return mapcount > 1; 2405 2406 /* 2407 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2408 * simply assume "mapped shared", nobody should really care 2409 * about this for arbitrary kernel allocations. 2410 */ 2411 if (!IS_ENABLED(CONFIG_MM_ID)) 2412 return true; 2413 2414 /* 2415 * A single mapping implies "mapped exclusively", even if the 2416 * folio flag says something different: it's easier to handle this 2417 * case here instead of on the RMAP hot path. 2418 */ 2419 if (mapcount <= 1) 2420 return false; 2421 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2422 } 2423 2424 /** 2425 * folio_expected_ref_count - calculate the expected folio refcount 2426 * @folio: the folio 2427 * 2428 * Calculate the expected folio refcount, taking references from the pagecache, 2429 * swapcache, PG_private and page table mappings into account. Useful in 2430 * combination with folio_ref_count() to detect unexpected references (e.g., 2431 * GUP or other temporary references). 2432 * 2433 * Does currently not consider references from the LRU cache. If the folio 2434 * was isolated from the LRU (which is the case during migration or split), 2435 * the LRU cache does not apply. 2436 * 2437 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2438 * locked will return a stable result. 2439 * 2440 * Calling this function on a mapped folio will not result in a stable result, 2441 * because nothing stops additional page table mappings from coming (e.g., 2442 * fork()) or going (e.g., munmap()). 2443 * 2444 * Calling this function without the folio lock will also not result in a 2445 * stable result: for example, the folio might get dropped from the swapcache 2446 * concurrently. 2447 * 2448 * However, even when called without the folio lock or on a mapped folio, 2449 * this function can be used to detect unexpected references early (for example, 2450 * if it makes sense to even lock the folio and unmap it). 2451 * 2452 * The caller must add any reference (e.g., from folio_try_get()) it might be 2453 * holding itself to the result. 2454 * 2455 * Returns the expected folio refcount. 2456 */ 2457 static inline int folio_expected_ref_count(const struct folio *folio) 2458 { 2459 const int order = folio_order(folio); 2460 int ref_count = 0; 2461 2462 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) 2463 return 0; 2464 2465 /* One reference per page from the swapcache. */ 2466 ref_count += folio_test_swapcache(folio) << order; 2467 2468 if (!folio_test_anon(folio)) { 2469 /* One reference per page from the pagecache. */ 2470 ref_count += !!folio->mapping << order; 2471 /* One reference from PG_private. */ 2472 ref_count += folio_test_private(folio); 2473 } 2474 2475 /* One reference per page table mapping. */ 2476 return ref_count + folio_mapcount(folio); 2477 } 2478 2479 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2480 static inline int arch_make_folio_accessible(struct folio *folio) 2481 { 2482 return 0; 2483 } 2484 #endif 2485 2486 /* 2487 * Some inline functions in vmstat.h depend on page_zone() 2488 */ 2489 #include <linux/vmstat.h> 2490 2491 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2492 #define HASHED_PAGE_VIRTUAL 2493 #endif 2494 2495 #if defined(WANT_PAGE_VIRTUAL) 2496 static inline void *page_address(const struct page *page) 2497 { 2498 return page->virtual; 2499 } 2500 static inline void set_page_address(struct page *page, void *address) 2501 { 2502 page->virtual = address; 2503 } 2504 #define page_address_init() do { } while(0) 2505 #endif 2506 2507 #if defined(HASHED_PAGE_VIRTUAL) 2508 void *page_address(const struct page *page); 2509 void set_page_address(struct page *page, void *virtual); 2510 void page_address_init(void); 2511 #endif 2512 2513 static __always_inline void *lowmem_page_address(const struct page *page) 2514 { 2515 return page_to_virt(page); 2516 } 2517 2518 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2519 #define page_address(page) lowmem_page_address(page) 2520 #define set_page_address(page, address) do { } while(0) 2521 #define page_address_init() do { } while(0) 2522 #endif 2523 2524 static inline void *folio_address(const struct folio *folio) 2525 { 2526 return page_address(&folio->page); 2527 } 2528 2529 /* 2530 * Return true only if the page has been allocated with 2531 * ALLOC_NO_WATERMARKS and the low watermark was not 2532 * met implying that the system is under some pressure. 2533 */ 2534 static inline bool page_is_pfmemalloc(const struct page *page) 2535 { 2536 /* 2537 * lru.next has bit 1 set if the page is allocated from the 2538 * pfmemalloc reserves. Callers may simply overwrite it if 2539 * they do not need to preserve that information. 2540 */ 2541 return (uintptr_t)page->lru.next & BIT(1); 2542 } 2543 2544 /* 2545 * Return true only if the folio has been allocated with 2546 * ALLOC_NO_WATERMARKS and the low watermark was not 2547 * met implying that the system is under some pressure. 2548 */ 2549 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2550 { 2551 /* 2552 * lru.next has bit 1 set if the page is allocated from the 2553 * pfmemalloc reserves. Callers may simply overwrite it if 2554 * they do not need to preserve that information. 2555 */ 2556 return (uintptr_t)folio->lru.next & BIT(1); 2557 } 2558 2559 /* 2560 * Only to be called by the page allocator on a freshly allocated 2561 * page. 2562 */ 2563 static inline void set_page_pfmemalloc(struct page *page) 2564 { 2565 page->lru.next = (void *)BIT(1); 2566 } 2567 2568 static inline void clear_page_pfmemalloc(struct page *page) 2569 { 2570 page->lru.next = NULL; 2571 } 2572 2573 /* 2574 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2575 */ 2576 extern void pagefault_out_of_memory(void); 2577 2578 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2579 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2580 2581 /* 2582 * Parameter block passed down to zap_pte_range in exceptional cases. 2583 */ 2584 struct zap_details { 2585 struct folio *single_folio; /* Locked folio to be unmapped */ 2586 bool even_cows; /* Zap COWed private pages too? */ 2587 bool reclaim_pt; /* Need reclaim page tables? */ 2588 zap_flags_t zap_flags; /* Extra flags for zapping */ 2589 }; 2590 2591 /* 2592 * Whether to drop the pte markers, for example, the uffd-wp information for 2593 * file-backed memory. This should only be specified when we will completely 2594 * drop the page in the mm, either by truncation or unmapping of the vma. By 2595 * default, the flag is not set. 2596 */ 2597 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2598 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2599 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2600 2601 #ifdef CONFIG_MMU 2602 extern bool can_do_mlock(void); 2603 #else 2604 static inline bool can_do_mlock(void) { return false; } 2605 #endif 2606 extern int user_shm_lock(size_t, struct ucounts *); 2607 extern void user_shm_unlock(size_t, struct ucounts *); 2608 2609 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2610 pte_t pte); 2611 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2612 pte_t pte); 2613 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2614 unsigned long addr, pmd_t pmd); 2615 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2616 pmd_t pmd); 2617 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr, 2618 pud_t pud); 2619 2620 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2621 unsigned long size); 2622 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2623 unsigned long size, struct zap_details *details); 2624 static inline void zap_vma_pages(struct vm_area_struct *vma) 2625 { 2626 zap_page_range_single(vma, vma->vm_start, 2627 vma->vm_end - vma->vm_start, NULL); 2628 } 2629 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2630 struct vm_area_struct *start_vma, unsigned long start, 2631 unsigned long end, unsigned long tree_end); 2632 2633 struct mmu_notifier_range; 2634 2635 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2636 unsigned long end, unsigned long floor, unsigned long ceiling); 2637 int 2638 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2639 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2640 void *buf, int len, int write); 2641 2642 struct follow_pfnmap_args { 2643 /** 2644 * Inputs: 2645 * @vma: Pointer to @vm_area_struct struct 2646 * @address: the virtual address to walk 2647 */ 2648 struct vm_area_struct *vma; 2649 unsigned long address; 2650 /** 2651 * Internals: 2652 * 2653 * The caller shouldn't touch any of these. 2654 */ 2655 spinlock_t *lock; 2656 pte_t *ptep; 2657 /** 2658 * Outputs: 2659 * 2660 * @pfn: the PFN of the address 2661 * @addr_mask: address mask covering pfn 2662 * @pgprot: the pgprot_t of the mapping 2663 * @writable: whether the mapping is writable 2664 * @special: whether the mapping is a special mapping (real PFN maps) 2665 */ 2666 unsigned long pfn; 2667 unsigned long addr_mask; 2668 pgprot_t pgprot; 2669 bool writable; 2670 bool special; 2671 }; 2672 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2673 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2674 2675 extern void truncate_pagecache(struct inode *inode, loff_t new); 2676 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2677 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2678 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2679 int generic_error_remove_folio(struct address_space *mapping, 2680 struct folio *folio); 2681 2682 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2683 unsigned long address, struct pt_regs *regs); 2684 2685 #ifdef CONFIG_MMU 2686 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2687 unsigned long address, unsigned int flags, 2688 struct pt_regs *regs); 2689 extern int fixup_user_fault(struct mm_struct *mm, 2690 unsigned long address, unsigned int fault_flags, 2691 bool *unlocked); 2692 void unmap_mapping_pages(struct address_space *mapping, 2693 pgoff_t start, pgoff_t nr, bool even_cows); 2694 void unmap_mapping_range(struct address_space *mapping, 2695 loff_t const holebegin, loff_t const holelen, int even_cows); 2696 #else 2697 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2698 unsigned long address, unsigned int flags, 2699 struct pt_regs *regs) 2700 { 2701 /* should never happen if there's no MMU */ 2702 BUG(); 2703 return VM_FAULT_SIGBUS; 2704 } 2705 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2706 unsigned int fault_flags, bool *unlocked) 2707 { 2708 /* should never happen if there's no MMU */ 2709 BUG(); 2710 return -EFAULT; 2711 } 2712 static inline void unmap_mapping_pages(struct address_space *mapping, 2713 pgoff_t start, pgoff_t nr, bool even_cows) { } 2714 static inline void unmap_mapping_range(struct address_space *mapping, 2715 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2716 #endif 2717 2718 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2719 loff_t const holebegin, loff_t const holelen) 2720 { 2721 unmap_mapping_range(mapping, holebegin, holelen, 0); 2722 } 2723 2724 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2725 unsigned long addr); 2726 2727 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2728 void *buf, int len, unsigned int gup_flags); 2729 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2730 void *buf, int len, unsigned int gup_flags); 2731 2732 #ifdef CONFIG_BPF_SYSCALL 2733 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2734 void *buf, int len, unsigned int gup_flags); 2735 #endif 2736 2737 long get_user_pages_remote(struct mm_struct *mm, 2738 unsigned long start, unsigned long nr_pages, 2739 unsigned int gup_flags, struct page **pages, 2740 int *locked); 2741 long pin_user_pages_remote(struct mm_struct *mm, 2742 unsigned long start, unsigned long nr_pages, 2743 unsigned int gup_flags, struct page **pages, 2744 int *locked); 2745 2746 /* 2747 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2748 */ 2749 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2750 unsigned long addr, 2751 int gup_flags, 2752 struct vm_area_struct **vmap) 2753 { 2754 struct page *page; 2755 struct vm_area_struct *vma; 2756 int got; 2757 2758 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2759 return ERR_PTR(-EINVAL); 2760 2761 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2762 2763 if (got < 0) 2764 return ERR_PTR(got); 2765 2766 vma = vma_lookup(mm, addr); 2767 if (WARN_ON_ONCE(!vma)) { 2768 put_page(page); 2769 return ERR_PTR(-EINVAL); 2770 } 2771 2772 *vmap = vma; 2773 return page; 2774 } 2775 2776 long get_user_pages(unsigned long start, unsigned long nr_pages, 2777 unsigned int gup_flags, struct page **pages); 2778 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2779 unsigned int gup_flags, struct page **pages); 2780 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2781 struct page **pages, unsigned int gup_flags); 2782 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2783 struct page **pages, unsigned int gup_flags); 2784 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2785 struct folio **folios, unsigned int max_folios, 2786 pgoff_t *offset); 2787 int folio_add_pins(struct folio *folio, unsigned int pins); 2788 2789 int get_user_pages_fast(unsigned long start, int nr_pages, 2790 unsigned int gup_flags, struct page **pages); 2791 int pin_user_pages_fast(unsigned long start, int nr_pages, 2792 unsigned int gup_flags, struct page **pages); 2793 void folio_add_pin(struct folio *folio); 2794 2795 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2796 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2797 const struct task_struct *task, bool bypass_rlim); 2798 2799 struct kvec; 2800 struct page *get_dump_page(unsigned long addr, int *locked); 2801 2802 bool folio_mark_dirty(struct folio *folio); 2803 bool folio_mark_dirty_lock(struct folio *folio); 2804 bool set_page_dirty(struct page *page); 2805 int set_page_dirty_lock(struct page *page); 2806 2807 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2808 2809 /* 2810 * Flags used by change_protection(). For now we make it a bitmap so 2811 * that we can pass in multiple flags just like parameters. However 2812 * for now all the callers are only use one of the flags at the same 2813 * time. 2814 */ 2815 /* 2816 * Whether we should manually check if we can map individual PTEs writable, 2817 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2818 * PTEs automatically in a writable mapping. 2819 */ 2820 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2821 /* Whether this protection change is for NUMA hints */ 2822 #define MM_CP_PROT_NUMA (1UL << 1) 2823 /* Whether this change is for write protecting */ 2824 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2825 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2826 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2827 MM_CP_UFFD_WP_RESOLVE) 2828 2829 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2830 pte_t pte); 2831 extern long change_protection(struct mmu_gather *tlb, 2832 struct vm_area_struct *vma, unsigned long start, 2833 unsigned long end, unsigned long cp_flags); 2834 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2835 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2836 unsigned long start, unsigned long end, vm_flags_t newflags); 2837 2838 /* 2839 * doesn't attempt to fault and will return short. 2840 */ 2841 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2842 unsigned int gup_flags, struct page **pages); 2843 2844 static inline bool get_user_page_fast_only(unsigned long addr, 2845 unsigned int gup_flags, struct page **pagep) 2846 { 2847 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2848 } 2849 /* 2850 * per-process(per-mm_struct) statistics. 2851 */ 2852 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2853 { 2854 return percpu_counter_read_positive(&mm->rss_stat[member]); 2855 } 2856 2857 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2858 { 2859 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2860 } 2861 2862 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2863 2864 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2865 { 2866 percpu_counter_add(&mm->rss_stat[member], value); 2867 2868 mm_trace_rss_stat(mm, member); 2869 } 2870 2871 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2872 { 2873 percpu_counter_inc(&mm->rss_stat[member]); 2874 2875 mm_trace_rss_stat(mm, member); 2876 } 2877 2878 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2879 { 2880 percpu_counter_dec(&mm->rss_stat[member]); 2881 2882 mm_trace_rss_stat(mm, member); 2883 } 2884 2885 /* Optimized variant when folio is already known not to be anon */ 2886 static inline int mm_counter_file(struct folio *folio) 2887 { 2888 if (folio_test_swapbacked(folio)) 2889 return MM_SHMEMPAGES; 2890 return MM_FILEPAGES; 2891 } 2892 2893 static inline int mm_counter(struct folio *folio) 2894 { 2895 if (folio_test_anon(folio)) 2896 return MM_ANONPAGES; 2897 return mm_counter_file(folio); 2898 } 2899 2900 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2901 { 2902 return get_mm_counter(mm, MM_FILEPAGES) + 2903 get_mm_counter(mm, MM_ANONPAGES) + 2904 get_mm_counter(mm, MM_SHMEMPAGES); 2905 } 2906 2907 static inline unsigned long get_mm_rss_sum(struct mm_struct *mm) 2908 { 2909 return get_mm_counter_sum(mm, MM_FILEPAGES) + 2910 get_mm_counter_sum(mm, MM_ANONPAGES) + 2911 get_mm_counter_sum(mm, MM_SHMEMPAGES); 2912 } 2913 2914 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2915 { 2916 return max(mm->hiwater_rss, get_mm_rss(mm)); 2917 } 2918 2919 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2920 { 2921 return max(mm->hiwater_vm, mm->total_vm); 2922 } 2923 2924 static inline void update_hiwater_rss(struct mm_struct *mm) 2925 { 2926 unsigned long _rss = get_mm_rss(mm); 2927 2928 if (data_race(mm->hiwater_rss) < _rss) 2929 data_race(mm->hiwater_rss = _rss); 2930 } 2931 2932 static inline void update_hiwater_vm(struct mm_struct *mm) 2933 { 2934 if (mm->hiwater_vm < mm->total_vm) 2935 mm->hiwater_vm = mm->total_vm; 2936 } 2937 2938 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2939 { 2940 mm->hiwater_rss = get_mm_rss(mm); 2941 } 2942 2943 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2944 struct mm_struct *mm) 2945 { 2946 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2947 2948 if (*maxrss < hiwater_rss) 2949 *maxrss = hiwater_rss; 2950 } 2951 2952 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2953 static inline int pte_special(pte_t pte) 2954 { 2955 return 0; 2956 } 2957 2958 static inline pte_t pte_mkspecial(pte_t pte) 2959 { 2960 return pte; 2961 } 2962 #endif 2963 2964 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2965 static inline bool pmd_special(pmd_t pmd) 2966 { 2967 return false; 2968 } 2969 2970 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2971 { 2972 return pmd; 2973 } 2974 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2975 2976 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2977 static inline bool pud_special(pud_t pud) 2978 { 2979 return false; 2980 } 2981 2982 static inline pud_t pud_mkspecial(pud_t pud) 2983 { 2984 return pud; 2985 } 2986 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2987 2988 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2989 spinlock_t **ptl); 2990 2991 #ifdef __PAGETABLE_P4D_FOLDED 2992 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2993 unsigned long address) 2994 { 2995 return 0; 2996 } 2997 #else 2998 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2999 #endif 3000 3001 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 3002 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3003 unsigned long address) 3004 { 3005 return 0; 3006 } 3007 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 3008 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 3009 3010 #else 3011 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 3012 3013 static inline void mm_inc_nr_puds(struct mm_struct *mm) 3014 { 3015 if (mm_pud_folded(mm)) 3016 return; 3017 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3018 } 3019 3020 static inline void mm_dec_nr_puds(struct mm_struct *mm) 3021 { 3022 if (mm_pud_folded(mm)) 3023 return; 3024 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3025 } 3026 #endif 3027 3028 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 3029 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 3030 unsigned long address) 3031 { 3032 return 0; 3033 } 3034 3035 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 3036 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 3037 3038 #else 3039 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 3040 3041 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 3042 { 3043 if (mm_pmd_folded(mm)) 3044 return; 3045 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3046 } 3047 3048 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 3049 { 3050 if (mm_pmd_folded(mm)) 3051 return; 3052 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3053 } 3054 #endif 3055 3056 #ifdef CONFIG_MMU 3057 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 3058 { 3059 atomic_long_set(&mm->pgtables_bytes, 0); 3060 } 3061 3062 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3063 { 3064 return atomic_long_read(&mm->pgtables_bytes); 3065 } 3066 3067 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 3068 { 3069 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3070 } 3071 3072 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 3073 { 3074 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3075 } 3076 #else 3077 3078 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 3079 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3080 { 3081 return 0; 3082 } 3083 3084 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 3085 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 3086 #endif 3087 3088 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 3089 int __pte_alloc_kernel(pmd_t *pmd); 3090 3091 #if defined(CONFIG_MMU) 3092 3093 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 3094 unsigned long address) 3095 { 3096 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 3097 NULL : p4d_offset(pgd, address); 3098 } 3099 3100 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3101 unsigned long address) 3102 { 3103 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 3104 NULL : pud_offset(p4d, address); 3105 } 3106 3107 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3108 { 3109 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 3110 NULL: pmd_offset(pud, address); 3111 } 3112 #endif /* CONFIG_MMU */ 3113 3114 enum pt_flags { 3115 PT_kernel = PG_referenced, 3116 PT_reserved = PG_reserved, 3117 /* High bits are used for zone/node/section */ 3118 }; 3119 3120 static inline struct ptdesc *virt_to_ptdesc(const void *x) 3121 { 3122 return page_ptdesc(virt_to_page(x)); 3123 } 3124 3125 /** 3126 * ptdesc_address - Virtual address of page table. 3127 * @pt: Page table descriptor. 3128 * 3129 * Return: The first byte of the page table described by @pt. 3130 */ 3131 static inline void *ptdesc_address(const struct ptdesc *pt) 3132 { 3133 return folio_address(ptdesc_folio(pt)); 3134 } 3135 3136 static inline bool pagetable_is_reserved(struct ptdesc *pt) 3137 { 3138 return test_bit(PT_reserved, &pt->pt_flags.f); 3139 } 3140 3141 /** 3142 * ptdesc_set_kernel - Mark a ptdesc used to map the kernel 3143 * @ptdesc: The ptdesc to be marked 3144 * 3145 * Kernel page tables often need special handling. Set a flag so that 3146 * the handling code knows this ptdesc will not be used for userspace. 3147 */ 3148 static inline void ptdesc_set_kernel(struct ptdesc *ptdesc) 3149 { 3150 set_bit(PT_kernel, &ptdesc->pt_flags.f); 3151 } 3152 3153 /** 3154 * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel 3155 * @ptdesc: The ptdesc to be unmarked 3156 * 3157 * Use when the ptdesc is no longer used to map the kernel and no longer 3158 * needs special handling. 3159 */ 3160 static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc) 3161 { 3162 /* 3163 * Note: the 'PG_referenced' bit does not strictly need to be 3164 * cleared before freeing the page. But this is nice for 3165 * symmetry. 3166 */ 3167 clear_bit(PT_kernel, &ptdesc->pt_flags.f); 3168 } 3169 3170 /** 3171 * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel 3172 * @ptdesc: The ptdesc being tested 3173 * 3174 * Call to tell if the ptdesc used to map the kernel. 3175 */ 3176 static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc) 3177 { 3178 return test_bit(PT_kernel, &ptdesc->pt_flags.f); 3179 } 3180 3181 /** 3182 * pagetable_alloc - Allocate pagetables 3183 * @gfp: GFP flags 3184 * @order: desired pagetable order 3185 * 3186 * pagetable_alloc allocates memory for page tables as well as a page table 3187 * descriptor to describe that memory. 3188 * 3189 * Return: The ptdesc describing the allocated page tables. 3190 */ 3191 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 3192 { 3193 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3194 3195 return page_ptdesc(page); 3196 } 3197 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3198 3199 static inline void __pagetable_free(struct ptdesc *pt) 3200 { 3201 struct page *page = ptdesc_page(pt); 3202 3203 __free_pages(page, compound_order(page)); 3204 } 3205 3206 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE 3207 void pagetable_free_kernel(struct ptdesc *pt); 3208 #else 3209 static inline void pagetable_free_kernel(struct ptdesc *pt) 3210 { 3211 __pagetable_free(pt); 3212 } 3213 #endif 3214 /** 3215 * pagetable_free - Free pagetables 3216 * @pt: The page table descriptor 3217 * 3218 * pagetable_free frees the memory of all page tables described by a page 3219 * table descriptor and the memory for the descriptor itself. 3220 */ 3221 static inline void pagetable_free(struct ptdesc *pt) 3222 { 3223 if (ptdesc_test_kernel(pt)) { 3224 ptdesc_clear_kernel(pt); 3225 pagetable_free_kernel(pt); 3226 } else { 3227 __pagetable_free(pt); 3228 } 3229 } 3230 3231 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3232 #if ALLOC_SPLIT_PTLOCKS 3233 void __init ptlock_cache_init(void); 3234 bool ptlock_alloc(struct ptdesc *ptdesc); 3235 void ptlock_free(struct ptdesc *ptdesc); 3236 3237 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3238 { 3239 return ptdesc->ptl; 3240 } 3241 #else /* ALLOC_SPLIT_PTLOCKS */ 3242 static inline void ptlock_cache_init(void) 3243 { 3244 } 3245 3246 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3247 { 3248 return true; 3249 } 3250 3251 static inline void ptlock_free(struct ptdesc *ptdesc) 3252 { 3253 } 3254 3255 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3256 { 3257 return &ptdesc->ptl; 3258 } 3259 #endif /* ALLOC_SPLIT_PTLOCKS */ 3260 3261 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3262 { 3263 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3264 } 3265 3266 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3267 { 3268 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3269 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3270 return ptlock_ptr(virt_to_ptdesc(pte)); 3271 } 3272 3273 static inline bool ptlock_init(struct ptdesc *ptdesc) 3274 { 3275 /* 3276 * prep_new_page() initialize page->private (and therefore page->ptl) 3277 * with 0. Make sure nobody took it in use in between. 3278 * 3279 * It can happen if arch try to use slab for page table allocation: 3280 * slab code uses page->slab_cache, which share storage with page->ptl. 3281 */ 3282 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3283 if (!ptlock_alloc(ptdesc)) 3284 return false; 3285 spin_lock_init(ptlock_ptr(ptdesc)); 3286 return true; 3287 } 3288 3289 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3290 /* 3291 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3292 */ 3293 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3294 { 3295 return &mm->page_table_lock; 3296 } 3297 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3298 { 3299 return &mm->page_table_lock; 3300 } 3301 static inline void ptlock_cache_init(void) {} 3302 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3303 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3304 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3305 3306 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc) 3307 { 3308 return compound_nr(ptdesc_page(ptdesc)); 3309 } 3310 3311 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3312 { 3313 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3314 3315 __SetPageTable(ptdesc_page(ptdesc)); 3316 mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc)); 3317 } 3318 3319 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3320 { 3321 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3322 3323 ptlock_free(ptdesc); 3324 __ClearPageTable(ptdesc_page(ptdesc)); 3325 mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc)); 3326 } 3327 3328 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3329 { 3330 pagetable_dtor(ptdesc); 3331 pagetable_free(ptdesc); 3332 } 3333 3334 static inline bool pagetable_pte_ctor(struct mm_struct *mm, 3335 struct ptdesc *ptdesc) 3336 { 3337 if (mm != &init_mm && !ptlock_init(ptdesc)) 3338 return false; 3339 __pagetable_ctor(ptdesc); 3340 return true; 3341 } 3342 3343 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3344 3345 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3346 { 3347 return __pte_offset_map(pmd, addr, NULL); 3348 } 3349 3350 pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3351 unsigned long addr, spinlock_t **ptlp); 3352 3353 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3354 unsigned long addr, spinlock_t **ptlp); 3355 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3356 unsigned long addr, pmd_t *pmdvalp, 3357 spinlock_t **ptlp); 3358 3359 #define pte_unmap_unlock(pte, ptl) do { \ 3360 spin_unlock(ptl); \ 3361 pte_unmap(pte); \ 3362 } while (0) 3363 3364 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3365 3366 #define pte_alloc_map(mm, pmd, address) \ 3367 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3368 3369 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3370 (pte_alloc(mm, pmd) ? \ 3371 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3372 3373 #define pte_alloc_kernel(pmd, address) \ 3374 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3375 NULL: pte_offset_kernel(pmd, address)) 3376 3377 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3378 3379 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3380 { 3381 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3382 return virt_to_page((void *)((unsigned long) pmd & mask)); 3383 } 3384 3385 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3386 { 3387 return page_ptdesc(pmd_pgtable_page(pmd)); 3388 } 3389 3390 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3391 { 3392 return ptlock_ptr(pmd_ptdesc(pmd)); 3393 } 3394 3395 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3396 { 3397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3398 ptdesc->pmd_huge_pte = NULL; 3399 #endif 3400 return ptlock_init(ptdesc); 3401 } 3402 3403 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3404 3405 #else 3406 3407 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3408 { 3409 return &mm->page_table_lock; 3410 } 3411 3412 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3413 3414 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3415 3416 #endif 3417 3418 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3419 { 3420 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3421 spin_lock(ptl); 3422 return ptl; 3423 } 3424 3425 static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3426 struct ptdesc *ptdesc) 3427 { 3428 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3429 return false; 3430 ptdesc_pmd_pts_init(ptdesc); 3431 __pagetable_ctor(ptdesc); 3432 return true; 3433 } 3434 3435 /* 3436 * No scalability reason to split PUD locks yet, but follow the same pattern 3437 * as the PMD locks to make it easier if we decide to. The VM should not be 3438 * considered ready to switch to split PUD locks yet; there may be places 3439 * which need to be converted from page_table_lock. 3440 */ 3441 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3442 { 3443 return &mm->page_table_lock; 3444 } 3445 3446 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3447 { 3448 spinlock_t *ptl = pud_lockptr(mm, pud); 3449 3450 spin_lock(ptl); 3451 return ptl; 3452 } 3453 3454 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3455 { 3456 __pagetable_ctor(ptdesc); 3457 } 3458 3459 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3460 { 3461 __pagetable_ctor(ptdesc); 3462 } 3463 3464 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3465 { 3466 __pagetable_ctor(ptdesc); 3467 } 3468 3469 extern void __init pagecache_init(void); 3470 extern void free_initmem(void); 3471 3472 /* 3473 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3474 * into the buddy system. The freed pages will be poisoned with pattern 3475 * "poison" if it's within range [0, UCHAR_MAX]. 3476 * Return pages freed into the buddy system. 3477 */ 3478 extern unsigned long free_reserved_area(void *start, void *end, 3479 int poison, const char *s); 3480 3481 extern void adjust_managed_page_count(struct page *page, long count); 3482 3483 extern void reserve_bootmem_region(phys_addr_t start, 3484 phys_addr_t end, int nid); 3485 3486 /* Free the reserved page into the buddy system, so it gets managed. */ 3487 void free_reserved_page(struct page *page); 3488 3489 static inline void mark_page_reserved(struct page *page) 3490 { 3491 SetPageReserved(page); 3492 adjust_managed_page_count(page, -1); 3493 } 3494 3495 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3496 { 3497 free_reserved_page(ptdesc_page(pt)); 3498 } 3499 3500 /* 3501 * Default method to free all the __init memory into the buddy system. 3502 * The freed pages will be poisoned with pattern "poison" if it's within 3503 * range [0, UCHAR_MAX]. 3504 * Return pages freed into the buddy system. 3505 */ 3506 static inline unsigned long free_initmem_default(int poison) 3507 { 3508 extern char __init_begin[], __init_end[]; 3509 3510 return free_reserved_area(&__init_begin, &__init_end, 3511 poison, "unused kernel image (initmem)"); 3512 } 3513 3514 static inline unsigned long get_num_physpages(void) 3515 { 3516 int nid; 3517 unsigned long phys_pages = 0; 3518 3519 for_each_online_node(nid) 3520 phys_pages += node_present_pages(nid); 3521 3522 return phys_pages; 3523 } 3524 3525 /* 3526 * FIXME: Using memblock node mappings, an architecture may initialise its 3527 * zones, allocate the backing mem_map and account for memory holes in an 3528 * architecture independent manner. 3529 * 3530 * An architecture is expected to register range of page frames backed by 3531 * physical memory with memblock_add[_node]() before calling 3532 * free_area_init() passing in the PFN each zone ends at. At a basic 3533 * usage, an architecture is expected to do something like 3534 * 3535 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3536 * max_highmem_pfn}; 3537 * for_each_valid_physical_page_range() 3538 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3539 * free_area_init(max_zone_pfns); 3540 */ 3541 void arch_zone_limits_init(unsigned long *max_zone_pfn); 3542 unsigned long node_map_pfn_alignment(void); 3543 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3544 unsigned long end_pfn); 3545 extern void get_pfn_range_for_nid(unsigned int nid, 3546 unsigned long *start_pfn, unsigned long *end_pfn); 3547 3548 #ifndef CONFIG_NUMA 3549 static inline int early_pfn_to_nid(unsigned long pfn) 3550 { 3551 return 0; 3552 } 3553 #else 3554 /* please see mm/page_alloc.c */ 3555 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3556 #endif 3557 3558 extern void mem_init(void); 3559 extern void __init mmap_init(void); 3560 3561 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3562 static inline void show_mem(void) 3563 { 3564 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3565 } 3566 extern long si_mem_available(void); 3567 extern void si_meminfo(struct sysinfo * val); 3568 extern void si_meminfo_node(struct sysinfo *val, int nid); 3569 3570 extern __printf(3, 4) 3571 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3572 3573 extern void setup_per_cpu_pageset(void); 3574 3575 /* nommu.c */ 3576 extern atomic_long_t mmap_pages_allocated; 3577 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3578 3579 /* interval_tree.c */ 3580 void vma_interval_tree_insert(struct vm_area_struct *node, 3581 struct rb_root_cached *root); 3582 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3583 struct vm_area_struct *prev, 3584 struct rb_root_cached *root); 3585 void vma_interval_tree_remove(struct vm_area_struct *node, 3586 struct rb_root_cached *root); 3587 struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node, 3588 unsigned long start, unsigned long last); 3589 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3590 unsigned long start, unsigned long last); 3591 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3592 unsigned long start, unsigned long last); 3593 3594 #define vma_interval_tree_foreach(vma, root, start, last) \ 3595 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3596 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3597 3598 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3599 struct rb_root_cached *root); 3600 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3601 struct rb_root_cached *root); 3602 struct anon_vma_chain * 3603 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3604 unsigned long start, unsigned long last); 3605 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3606 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3607 #ifdef CONFIG_DEBUG_VM_RB 3608 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3609 #endif 3610 3611 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3612 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3613 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3614 3615 /* mmap.c */ 3616 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin); 3617 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3618 extern void exit_mmap(struct mm_struct *); 3619 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3620 unsigned long addr, bool write); 3621 3622 static inline int check_data_rlimit(unsigned long rlim, 3623 unsigned long new, 3624 unsigned long start, 3625 unsigned long end_data, 3626 unsigned long start_data) 3627 { 3628 if (rlim < RLIM_INFINITY) { 3629 if (((new - start) + (end_data - start_data)) > rlim) 3630 return -ENOSPC; 3631 } 3632 3633 return 0; 3634 } 3635 3636 extern int mm_take_all_locks(struct mm_struct *mm); 3637 extern void mm_drop_all_locks(struct mm_struct *mm); 3638 3639 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3640 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3641 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3642 extern struct file *get_task_exe_file(struct task_struct *task); 3643 3644 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3645 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3646 3647 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3648 const struct vm_special_mapping *sm); 3649 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3650 unsigned long addr, unsigned long len, 3651 vm_flags_t vm_flags, 3652 const struct vm_special_mapping *spec); 3653 3654 unsigned long randomize_stack_top(unsigned long stack_top); 3655 unsigned long randomize_page(unsigned long start, unsigned long range); 3656 3657 unsigned long 3658 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3659 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3660 3661 static inline unsigned long 3662 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3663 unsigned long pgoff, unsigned long flags) 3664 { 3665 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3666 } 3667 3668 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3669 unsigned long len, unsigned long prot, unsigned long flags, 3670 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3671 struct list_head *uf); 3672 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3673 unsigned long start, size_t len, struct list_head *uf, 3674 bool unlock); 3675 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3676 struct mm_struct *mm, unsigned long start, 3677 unsigned long end, struct list_head *uf, bool unlock); 3678 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3679 struct list_head *uf); 3680 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3681 3682 #ifdef CONFIG_MMU 3683 extern int __mm_populate(unsigned long addr, unsigned long len, 3684 int ignore_errors); 3685 static inline void mm_populate(unsigned long addr, unsigned long len) 3686 { 3687 /* Ignore errors */ 3688 (void) __mm_populate(addr, len, 1); 3689 } 3690 #else 3691 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3692 #endif 3693 3694 /* This takes the mm semaphore itself */ 3695 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3696 extern int vm_munmap(unsigned long, size_t); 3697 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3698 unsigned long, unsigned long, 3699 unsigned long, unsigned long); 3700 3701 struct vm_unmapped_area_info { 3702 #define VM_UNMAPPED_AREA_TOPDOWN 1 3703 unsigned long flags; 3704 unsigned long length; 3705 unsigned long low_limit; 3706 unsigned long high_limit; 3707 unsigned long align_mask; 3708 unsigned long align_offset; 3709 unsigned long start_gap; 3710 }; 3711 3712 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3713 3714 /* truncate.c */ 3715 void truncate_inode_pages(struct address_space *mapping, loff_t lstart); 3716 void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, 3717 uoff_t lend); 3718 void truncate_inode_pages_final(struct address_space *mapping); 3719 3720 /* generic vm_area_ops exported for stackable file systems */ 3721 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3722 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3723 pgoff_t start_pgoff, pgoff_t end_pgoff); 3724 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3725 3726 extern unsigned long stack_guard_gap; 3727 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3728 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3729 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3730 3731 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3732 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3733 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3734 struct vm_area_struct **pprev); 3735 3736 /* 3737 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3738 * NULL if none. Assume start_addr < end_addr. 3739 */ 3740 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3741 unsigned long start_addr, unsigned long end_addr); 3742 3743 /** 3744 * vma_lookup() - Find a VMA at a specific address 3745 * @mm: The process address space. 3746 * @addr: The user address. 3747 * 3748 * Return: The vm_area_struct at the given address, %NULL otherwise. 3749 */ 3750 static inline 3751 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3752 { 3753 return mtree_load(&mm->mm_mt, addr); 3754 } 3755 3756 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma) 3757 { 3758 if (vma->vm_flags & VM_GROWSDOWN) 3759 return stack_guard_gap; 3760 3761 /* See reasoning around the VM_SHADOW_STACK definition */ 3762 if (vma->vm_flags & VM_SHADOW_STACK) 3763 return PAGE_SIZE; 3764 3765 return 0; 3766 } 3767 3768 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma) 3769 { 3770 unsigned long gap = stack_guard_start_gap(vma); 3771 unsigned long vm_start = vma->vm_start; 3772 3773 vm_start -= gap; 3774 if (vm_start > vma->vm_start) 3775 vm_start = 0; 3776 return vm_start; 3777 } 3778 3779 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma) 3780 { 3781 unsigned long vm_end = vma->vm_end; 3782 3783 if (vma->vm_flags & VM_GROWSUP) { 3784 vm_end += stack_guard_gap; 3785 if (vm_end < vma->vm_end) 3786 vm_end = -PAGE_SIZE; 3787 } 3788 return vm_end; 3789 } 3790 3791 static inline unsigned long vma_pages(const struct vm_area_struct *vma) 3792 { 3793 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3794 } 3795 3796 static inline unsigned long vma_desc_size(const struct vm_area_desc *desc) 3797 { 3798 return desc->end - desc->start; 3799 } 3800 3801 static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc) 3802 { 3803 return vma_desc_size(desc) >> PAGE_SHIFT; 3804 } 3805 3806 /** 3807 * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN 3808 * remap is required. 3809 * @desc: The VMA descriptor for the VMA requiring remap. 3810 * @start: The virtual address to start the remap from, must be within the VMA. 3811 * @start_pfn: The first PFN in the range to remap. 3812 * @size: The size of the range to remap, in bytes, at most spanning to the end 3813 * of the VMA. 3814 */ 3815 static inline void mmap_action_remap(struct vm_area_desc *desc, 3816 unsigned long start, 3817 unsigned long start_pfn, 3818 unsigned long size) 3819 { 3820 struct mmap_action *action = &desc->action; 3821 3822 /* [start, start + size) must be within the VMA. */ 3823 WARN_ON_ONCE(start < desc->start || start >= desc->end); 3824 WARN_ON_ONCE(start + size > desc->end); 3825 3826 action->type = MMAP_REMAP_PFN; 3827 action->remap.start = start; 3828 action->remap.start_pfn = start_pfn; 3829 action->remap.size = size; 3830 action->remap.pgprot = desc->page_prot; 3831 } 3832 3833 /** 3834 * mmap_action_remap_full - helper for mmap_prepare hook to specify that the 3835 * entirety of a VMA should be PFN remapped. 3836 * @desc: The VMA descriptor for the VMA requiring remap. 3837 * @start_pfn: The first PFN in the range to remap. 3838 */ 3839 static inline void mmap_action_remap_full(struct vm_area_desc *desc, 3840 unsigned long start_pfn) 3841 { 3842 mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3843 } 3844 3845 /** 3846 * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN 3847 * I/O remap is required. 3848 * @desc: The VMA descriptor for the VMA requiring remap. 3849 * @start: The virtual address to start the remap from, must be within the VMA. 3850 * @start_pfn: The first PFN in the range to remap. 3851 * @size: The size of the range to remap, in bytes, at most spanning to the end 3852 * of the VMA. 3853 */ 3854 static inline void mmap_action_ioremap(struct vm_area_desc *desc, 3855 unsigned long start, 3856 unsigned long start_pfn, 3857 unsigned long size) 3858 { 3859 mmap_action_remap(desc, start, start_pfn, size); 3860 desc->action.type = MMAP_IO_REMAP_PFN; 3861 } 3862 3863 /** 3864 * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the 3865 * entirety of a VMA should be PFN I/O remapped. 3866 * @desc: The VMA descriptor for the VMA requiring remap. 3867 * @start_pfn: The first PFN in the range to remap. 3868 */ 3869 static inline void mmap_action_ioremap_full(struct vm_area_desc *desc, 3870 unsigned long start_pfn) 3871 { 3872 mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3873 } 3874 3875 void mmap_action_prepare(struct mmap_action *action, 3876 struct vm_area_desc *desc); 3877 int mmap_action_complete(struct mmap_action *action, 3878 struct vm_area_struct *vma); 3879 3880 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3881 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3882 unsigned long vm_start, unsigned long vm_end) 3883 { 3884 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3885 3886 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3887 vma = NULL; 3888 3889 return vma; 3890 } 3891 3892 static inline bool range_in_vma(const struct vm_area_struct *vma, 3893 unsigned long start, unsigned long end) 3894 { 3895 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3896 } 3897 3898 #ifdef CONFIG_MMU 3899 pgprot_t vm_get_page_prot(vm_flags_t vm_flags); 3900 void vma_set_page_prot(struct vm_area_struct *vma); 3901 #else 3902 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 3903 { 3904 return __pgprot(0); 3905 } 3906 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3907 { 3908 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3909 } 3910 #endif 3911 3912 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3913 3914 #ifdef CONFIG_NUMA_BALANCING 3915 unsigned long change_prot_numa(struct vm_area_struct *vma, 3916 unsigned long start, unsigned long end); 3917 #endif 3918 3919 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3920 unsigned long addr); 3921 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3922 unsigned long pfn, unsigned long size, pgprot_t pgprot); 3923 3924 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3925 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3926 struct page **pages, unsigned long *num); 3927 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3928 unsigned long num); 3929 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3930 unsigned long num); 3931 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3932 bool write); 3933 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3934 unsigned long pfn); 3935 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3936 unsigned long pfn, pgprot_t pgprot); 3937 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3938 unsigned long pfn); 3939 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3940 unsigned long addr, unsigned long pfn); 3941 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3942 3943 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3944 unsigned long addr, struct page *page) 3945 { 3946 int err = vm_insert_page(vma, addr, page); 3947 3948 if (err == -ENOMEM) 3949 return VM_FAULT_OOM; 3950 if (err < 0 && err != -EBUSY) 3951 return VM_FAULT_SIGBUS; 3952 3953 return VM_FAULT_NOPAGE; 3954 } 3955 3956 #ifndef io_remap_pfn_range_pfn 3957 static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn, 3958 unsigned long size) 3959 { 3960 return pfn; 3961 } 3962 #endif 3963 3964 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3965 unsigned long addr, unsigned long orig_pfn, 3966 unsigned long size, pgprot_t orig_prot) 3967 { 3968 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size); 3969 const pgprot_t prot = pgprot_decrypted(orig_prot); 3970 3971 return remap_pfn_range(vma, addr, pfn, size, prot); 3972 } 3973 3974 static inline vm_fault_t vmf_error(int err) 3975 { 3976 if (err == -ENOMEM) 3977 return VM_FAULT_OOM; 3978 else if (err == -EHWPOISON) 3979 return VM_FAULT_HWPOISON; 3980 return VM_FAULT_SIGBUS; 3981 } 3982 3983 /* 3984 * Convert errno to return value for ->page_mkwrite() calls. 3985 * 3986 * This should eventually be merged with vmf_error() above, but will need a 3987 * careful audit of all vmf_error() callers. 3988 */ 3989 static inline vm_fault_t vmf_fs_error(int err) 3990 { 3991 if (err == 0) 3992 return VM_FAULT_LOCKED; 3993 if (err == -EFAULT || err == -EAGAIN) 3994 return VM_FAULT_NOPAGE; 3995 if (err == -ENOMEM) 3996 return VM_FAULT_OOM; 3997 /* -ENOSPC, -EDQUOT, -EIO ... */ 3998 return VM_FAULT_SIGBUS; 3999 } 4000 4001 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 4002 { 4003 if (vm_fault & VM_FAULT_OOM) 4004 return -ENOMEM; 4005 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 4006 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 4007 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 4008 return -EFAULT; 4009 return 0; 4010 } 4011 4012 /* 4013 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 4014 * a (NUMA hinting) fault is required. 4015 */ 4016 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma, 4017 unsigned int flags) 4018 { 4019 /* 4020 * If callers don't want to honor NUMA hinting faults, no need to 4021 * determine if we would actually have to trigger a NUMA hinting fault. 4022 */ 4023 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 4024 return true; 4025 4026 /* 4027 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 4028 * 4029 * Requiring a fault here even for inaccessible VMAs would mean that 4030 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 4031 * refuses to process NUMA hinting faults in inaccessible VMAs. 4032 */ 4033 return !vma_is_accessible(vma); 4034 } 4035 4036 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 4037 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 4038 unsigned long size, pte_fn_t fn, void *data); 4039 extern int apply_to_existing_page_range(struct mm_struct *mm, 4040 unsigned long address, unsigned long size, 4041 pte_fn_t fn, void *data); 4042 4043 #ifdef CONFIG_PAGE_POISONING 4044 extern void __kernel_poison_pages(struct page *page, int numpages); 4045 extern void __kernel_unpoison_pages(struct page *page, int numpages); 4046 extern bool _page_poisoning_enabled_early; 4047 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 4048 static inline bool page_poisoning_enabled(void) 4049 { 4050 return _page_poisoning_enabled_early; 4051 } 4052 /* 4053 * For use in fast paths after init_mem_debugging() has run, or when a 4054 * false negative result is not harmful when called too early. 4055 */ 4056 static inline bool page_poisoning_enabled_static(void) 4057 { 4058 return static_branch_unlikely(&_page_poisoning_enabled); 4059 } 4060 static inline void kernel_poison_pages(struct page *page, int numpages) 4061 { 4062 if (page_poisoning_enabled_static()) 4063 __kernel_poison_pages(page, numpages); 4064 } 4065 static inline void kernel_unpoison_pages(struct page *page, int numpages) 4066 { 4067 if (page_poisoning_enabled_static()) 4068 __kernel_unpoison_pages(page, numpages); 4069 } 4070 #else 4071 static inline bool page_poisoning_enabled(void) { return false; } 4072 static inline bool page_poisoning_enabled_static(void) { return false; } 4073 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 4074 static inline void kernel_poison_pages(struct page *page, int numpages) { } 4075 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 4076 #endif 4077 4078 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 4079 static inline bool want_init_on_alloc(gfp_t flags) 4080 { 4081 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4082 &init_on_alloc)) 4083 return true; 4084 return flags & __GFP_ZERO; 4085 } 4086 4087 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 4088 static inline bool want_init_on_free(void) 4089 { 4090 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 4091 &init_on_free); 4092 } 4093 4094 extern bool _debug_pagealloc_enabled_early; 4095 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 4096 4097 static inline bool debug_pagealloc_enabled(void) 4098 { 4099 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 4100 _debug_pagealloc_enabled_early; 4101 } 4102 4103 /* 4104 * For use in fast paths after mem_debugging_and_hardening_init() has run, 4105 * or when a false negative result is not harmful when called too early. 4106 */ 4107 static inline bool debug_pagealloc_enabled_static(void) 4108 { 4109 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 4110 return false; 4111 4112 return static_branch_unlikely(&_debug_pagealloc_enabled); 4113 } 4114 4115 /* 4116 * To support DEBUG_PAGEALLOC architecture must ensure that 4117 * __kernel_map_pages() never fails 4118 */ 4119 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 4120 #ifdef CONFIG_DEBUG_PAGEALLOC 4121 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 4122 { 4123 iommu_debug_check_unmapped(page, numpages); 4124 4125 if (debug_pagealloc_enabled_static()) 4126 __kernel_map_pages(page, numpages, 1); 4127 } 4128 4129 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 4130 { 4131 iommu_debug_check_unmapped(page, numpages); 4132 4133 if (debug_pagealloc_enabled_static()) 4134 __kernel_map_pages(page, numpages, 0); 4135 } 4136 4137 extern unsigned int _debug_guardpage_minorder; 4138 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 4139 4140 static inline unsigned int debug_guardpage_minorder(void) 4141 { 4142 return _debug_guardpage_minorder; 4143 } 4144 4145 static inline bool debug_guardpage_enabled(void) 4146 { 4147 return static_branch_unlikely(&_debug_guardpage_enabled); 4148 } 4149 4150 static inline bool page_is_guard(const struct page *page) 4151 { 4152 if (!debug_guardpage_enabled()) 4153 return false; 4154 4155 return PageGuard(page); 4156 } 4157 4158 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 4159 static inline bool set_page_guard(struct zone *zone, struct page *page, 4160 unsigned int order) 4161 { 4162 if (!debug_guardpage_enabled()) 4163 return false; 4164 return __set_page_guard(zone, page, order); 4165 } 4166 4167 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 4168 static inline void clear_page_guard(struct zone *zone, struct page *page, 4169 unsigned int order) 4170 { 4171 if (!debug_guardpage_enabled()) 4172 return; 4173 __clear_page_guard(zone, page, order); 4174 } 4175 4176 #else /* CONFIG_DEBUG_PAGEALLOC */ 4177 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 4178 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 4179 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 4180 static inline bool debug_guardpage_enabled(void) { return false; } 4181 static inline bool page_is_guard(const struct page *page) { return false; } 4182 static inline bool set_page_guard(struct zone *zone, struct page *page, 4183 unsigned int order) { return false; } 4184 static inline void clear_page_guard(struct zone *zone, struct page *page, 4185 unsigned int order) {} 4186 #endif /* CONFIG_DEBUG_PAGEALLOC */ 4187 4188 #ifndef clear_pages 4189 /** 4190 * clear_pages() - clear a page range for kernel-internal use. 4191 * @addr: start address 4192 * @npages: number of pages 4193 * 4194 * Use clear_user_pages() instead when clearing a page range to be 4195 * mapped to user space. 4196 * 4197 * Does absolutely no exception handling. 4198 * 4199 * Note that even though the clearing operation is preemptible, clear_pages() 4200 * does not (and on architectures where it reduces to a few long-running 4201 * instructions, might not be able to) call cond_resched() to check if 4202 * rescheduling is required. 4203 * 4204 * When running under preemptible models this is not a problem. Under 4205 * cooperatively scheduled models, however, the caller is expected to 4206 * limit @npages to no more than PROCESS_PAGES_NON_PREEMPT_BATCH. 4207 */ 4208 static inline void clear_pages(void *addr, unsigned int npages) 4209 { 4210 do { 4211 clear_page(addr); 4212 addr += PAGE_SIZE; 4213 } while (--npages); 4214 } 4215 #endif 4216 4217 #ifndef PROCESS_PAGES_NON_PREEMPT_BATCH 4218 #ifdef clear_pages 4219 /* 4220 * The architecture defines clear_pages(), and we assume that it is 4221 * generally "fast". So choose a batch size large enough to allow the processor 4222 * headroom for optimizing the operation and yet small enough that we see 4223 * reasonable preemption latency for when this optimization is not possible 4224 * (ex. slow microarchitectures, memory bandwidth saturation.) 4225 * 4226 * With a value of 32MB and assuming a memory bandwidth of ~10GBps, this should 4227 * result in worst case preemption latency of around 3ms when clearing pages. 4228 * 4229 * (See comment above clear_pages() for why preemption latency is a concern 4230 * here.) 4231 */ 4232 #define PROCESS_PAGES_NON_PREEMPT_BATCH (SZ_32M >> PAGE_SHIFT) 4233 #else /* !clear_pages */ 4234 /* 4235 * The architecture does not provide a clear_pages() implementation. Assume 4236 * that clear_page() -- which clear_pages() will fallback to -- is relatively 4237 * slow and choose a small value for PROCESS_PAGES_NON_PREEMPT_BATCH. 4238 */ 4239 #define PROCESS_PAGES_NON_PREEMPT_BATCH 1 4240 #endif 4241 #endif 4242 4243 #ifdef __HAVE_ARCH_GATE_AREA 4244 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 4245 extern int in_gate_area_no_mm(unsigned long addr); 4246 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 4247 #else 4248 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 4249 { 4250 return NULL; 4251 } 4252 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 4253 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 4254 { 4255 return 0; 4256 } 4257 #endif /* __HAVE_ARCH_GATE_AREA */ 4258 4259 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm); 4260 4261 void drop_slab(void); 4262 4263 #ifndef CONFIG_MMU 4264 #define randomize_va_space 0 4265 #else 4266 extern int randomize_va_space; 4267 #endif 4268 4269 const char * arch_vma_name(struct vm_area_struct *vma); 4270 #ifdef CONFIG_MMU 4271 void print_vma_addr(char *prefix, unsigned long rip); 4272 #else 4273 static inline void print_vma_addr(char *prefix, unsigned long rip) 4274 { 4275 } 4276 #endif 4277 4278 void *sparse_buffer_alloc(unsigned long size); 4279 unsigned long section_map_size(void); 4280 struct page * __populate_section_memmap(unsigned long pfn, 4281 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 4282 struct dev_pagemap *pgmap); 4283 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 4284 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 4285 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 4286 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 4287 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 4288 struct vmem_altmap *altmap, unsigned long ptpfn, 4289 unsigned long flags); 4290 void *vmemmap_alloc_block(unsigned long size, int node); 4291 struct vmem_altmap; 4292 void *vmemmap_alloc_block_buf(unsigned long size, int node, 4293 struct vmem_altmap *altmap); 4294 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 4295 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 4296 unsigned long addr, unsigned long next); 4297 int vmemmap_check_pmd(pmd_t *pmd, int node, 4298 unsigned long addr, unsigned long next); 4299 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 4300 int node, struct vmem_altmap *altmap); 4301 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 4302 int node, struct vmem_altmap *altmap); 4303 int vmemmap_populate(unsigned long start, unsigned long end, int node, 4304 struct vmem_altmap *altmap); 4305 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 4306 unsigned long headsize); 4307 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 4308 unsigned long headsize); 4309 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 4310 unsigned long headsize); 4311 void vmemmap_populate_print_last(void); 4312 #ifdef CONFIG_MEMORY_HOTPLUG 4313 void vmemmap_free(unsigned long start, unsigned long end, 4314 struct vmem_altmap *altmap); 4315 #endif 4316 4317 #ifdef CONFIG_SPARSEMEM_VMEMMAP 4318 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4319 { 4320 /* number of pfns from base where pfn_to_page() is valid */ 4321 if (altmap) 4322 return altmap->reserve + altmap->free; 4323 return 0; 4324 } 4325 4326 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4327 unsigned long nr_pfns) 4328 { 4329 altmap->alloc -= nr_pfns; 4330 } 4331 #else 4332 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4333 { 4334 return 0; 4335 } 4336 4337 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4338 unsigned long nr_pfns) 4339 { 4340 } 4341 #endif 4342 4343 #define VMEMMAP_RESERVE_NR 2 4344 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 4345 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 4346 struct dev_pagemap *pgmap) 4347 { 4348 unsigned long nr_pages; 4349 unsigned long nr_vmemmap_pages; 4350 4351 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4352 return false; 4353 4354 nr_pages = pgmap_vmemmap_nr(pgmap); 4355 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4356 /* 4357 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4358 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4359 */ 4360 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4361 } 4362 /* 4363 * If we don't have an architecture override, use the generic rule 4364 */ 4365 #ifndef vmemmap_can_optimize 4366 #define vmemmap_can_optimize __vmemmap_can_optimize 4367 #endif 4368 4369 #else 4370 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4371 struct dev_pagemap *pgmap) 4372 { 4373 return false; 4374 } 4375 #endif 4376 4377 enum mf_flags { 4378 MF_COUNT_INCREASED = 1 << 0, 4379 MF_ACTION_REQUIRED = 1 << 1, 4380 MF_MUST_KILL = 1 << 2, 4381 MF_SOFT_OFFLINE = 1 << 3, 4382 MF_UNPOISON = 1 << 4, 4383 MF_SW_SIMULATED = 1 << 5, 4384 MF_NO_RETRY = 1 << 6, 4385 MF_MEM_PRE_REMOVE = 1 << 7, 4386 }; 4387 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4388 unsigned long count, int mf_flags); 4389 extern int memory_failure(unsigned long pfn, int flags); 4390 extern int unpoison_memory(unsigned long pfn); 4391 extern atomic_long_t num_poisoned_pages __read_mostly; 4392 extern int soft_offline_page(unsigned long pfn, int flags); 4393 #ifdef CONFIG_MEMORY_FAILURE 4394 /* 4395 * Sysfs entries for memory failure handling statistics. 4396 */ 4397 extern const struct attribute_group memory_failure_attr_group; 4398 extern void memory_failure_queue(unsigned long pfn, int flags); 4399 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4400 bool *migratable_cleared); 4401 void num_poisoned_pages_inc(unsigned long pfn); 4402 void num_poisoned_pages_sub(unsigned long pfn, long i); 4403 #else 4404 static inline void memory_failure_queue(unsigned long pfn, int flags) 4405 { 4406 } 4407 4408 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4409 bool *migratable_cleared) 4410 { 4411 return 0; 4412 } 4413 4414 static inline void num_poisoned_pages_inc(unsigned long pfn) 4415 { 4416 } 4417 4418 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4419 { 4420 } 4421 #endif 4422 4423 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4424 extern void memblk_nr_poison_inc(unsigned long pfn); 4425 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4426 #else 4427 static inline void memblk_nr_poison_inc(unsigned long pfn) 4428 { 4429 } 4430 4431 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4432 { 4433 } 4434 #endif 4435 4436 #ifndef arch_memory_failure 4437 static inline int arch_memory_failure(unsigned long pfn, int flags) 4438 { 4439 return -ENXIO; 4440 } 4441 #endif 4442 4443 #ifndef arch_is_platform_page 4444 static inline bool arch_is_platform_page(u64 paddr) 4445 { 4446 return false; 4447 } 4448 #endif 4449 4450 /* 4451 * Error handlers for various types of pages. 4452 */ 4453 enum mf_result { 4454 MF_IGNORED, /* Error: cannot be handled */ 4455 MF_FAILED, /* Error: handling failed */ 4456 MF_DELAYED, /* Will be handled later */ 4457 MF_RECOVERED, /* Successfully recovered */ 4458 }; 4459 4460 enum mf_action_page_type { 4461 MF_MSG_KERNEL, 4462 MF_MSG_KERNEL_HIGH_ORDER, 4463 MF_MSG_DIFFERENT_COMPOUND, 4464 MF_MSG_HUGE, 4465 MF_MSG_FREE_HUGE, 4466 MF_MSG_GET_HWPOISON, 4467 MF_MSG_UNMAP_FAILED, 4468 MF_MSG_DIRTY_SWAPCACHE, 4469 MF_MSG_CLEAN_SWAPCACHE, 4470 MF_MSG_DIRTY_MLOCKED_LRU, 4471 MF_MSG_CLEAN_MLOCKED_LRU, 4472 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4473 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4474 MF_MSG_DIRTY_LRU, 4475 MF_MSG_CLEAN_LRU, 4476 MF_MSG_TRUNCATED_LRU, 4477 MF_MSG_BUDDY, 4478 MF_MSG_DAX, 4479 MF_MSG_UNSPLIT_THP, 4480 MF_MSG_ALREADY_POISONED, 4481 MF_MSG_PFN_MAP, 4482 MF_MSG_UNKNOWN, 4483 }; 4484 4485 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4486 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4487 int copy_user_large_folio(struct folio *dst, struct folio *src, 4488 unsigned long addr_hint, 4489 struct vm_area_struct *vma); 4490 long copy_folio_from_user(struct folio *dst_folio, 4491 const void __user *usr_src, 4492 bool allow_pagefault); 4493 4494 /** 4495 * vma_is_special_huge - Are transhuge page-table entries considered special? 4496 * @vma: Pointer to the struct vm_area_struct to consider 4497 * 4498 * Whether transhuge page-table entries are considered "special" following 4499 * the definition in vm_normal_page(). 4500 * 4501 * Return: true if transhuge page-table entries should be considered special, 4502 * false otherwise. 4503 */ 4504 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4505 { 4506 return vma_is_dax(vma) || (vma->vm_file && 4507 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4508 } 4509 4510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4511 4512 #if MAX_NUMNODES > 1 4513 void __init setup_nr_node_ids(void); 4514 #else 4515 static inline void setup_nr_node_ids(void) {} 4516 #endif 4517 4518 extern int memcmp_pages(struct page *page1, struct page *page2); 4519 4520 static inline int pages_identical(struct page *page1, struct page *page2) 4521 { 4522 return !memcmp_pages(page1, page2); 4523 } 4524 4525 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4526 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4527 pgoff_t first_index, pgoff_t nr, 4528 pgoff_t bitmap_pgoff, 4529 unsigned long *bitmap, 4530 pgoff_t *start, 4531 pgoff_t *end); 4532 4533 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4534 pgoff_t first_index, pgoff_t nr); 4535 #endif 4536 4537 #ifdef CONFIG_ANON_VMA_NAME 4538 int set_anon_vma_name(unsigned long addr, unsigned long size, 4539 const char __user *uname); 4540 #else 4541 static inline 4542 int set_anon_vma_name(unsigned long addr, unsigned long size, 4543 const char __user *uname) 4544 { 4545 return -EINVAL; 4546 } 4547 #endif 4548 4549 #ifdef CONFIG_UNACCEPTED_MEMORY 4550 4551 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4552 void accept_memory(phys_addr_t start, unsigned long size); 4553 4554 #else 4555 4556 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4557 unsigned long size) 4558 { 4559 return false; 4560 } 4561 4562 static inline void accept_memory(phys_addr_t start, unsigned long size) 4563 { 4564 } 4565 4566 #endif 4567 4568 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4569 { 4570 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4571 } 4572 4573 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4574 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4575 4576 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4577 int reserve_mem_release_by_name(const char *name); 4578 4579 #ifdef CONFIG_64BIT 4580 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4581 #else 4582 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4583 { 4584 /* noop on 32 bit */ 4585 return 0; 4586 } 4587 #endif 4588 4589 /* 4590 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4591 * be zeroed or not. 4592 */ 4593 static inline bool user_alloc_needs_zeroing(void) 4594 { 4595 /* 4596 * for user folios, arch with cache aliasing requires cache flush and 4597 * arc changes folio->flags to make icache coherent with dcache, so 4598 * always return false to make caller use 4599 * clear_user_page()/clear_user_highpage(). 4600 */ 4601 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4602 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4603 &init_on_alloc); 4604 } 4605 4606 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4607 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4608 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4609 4610 /* 4611 * DMA mapping IDs for page_pool 4612 * 4613 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4614 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4615 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4616 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4617 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4618 * mistake a valid kernel pointer with any of the values we write into this 4619 * field. 4620 * 4621 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4622 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4623 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4624 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4625 * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is 4626 * known at compile-time. 4627 * 4628 * If the value of PAGE_OFFSET is not known at compile time, or if it is too 4629 * small to leave at least 8 bits available above PP_SIGNATURE, we define the 4630 * number of bits to be 0, which turns off the DMA index tracking altogether 4631 * (see page_pool_register_dma_index()). 4632 */ 4633 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4634 #if POISON_POINTER_DELTA > 0 4635 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4636 * index to not overlap with that if set 4637 */ 4638 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4639 #else 4640 /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */ 4641 #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8)) 4642 #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \ 4643 PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \ 4644 !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \ 4645 MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0) 4646 4647 #endif 4648 4649 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4650 PP_DMA_INDEX_SHIFT) 4651 4652 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4653 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4654 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4655 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4656 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4657 */ 4658 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4659 4660 #ifdef CONFIG_PAGE_POOL 4661 static inline bool page_pool_page_is_pp(const struct page *page) 4662 { 4663 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4664 } 4665 #else 4666 static inline bool page_pool_page_is_pp(const struct page *page) 4667 { 4668 return false; 4669 } 4670 #endif 4671 4672 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0) 4673 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) 4674 #define PAGE_SNAPSHOT_PG_IDLE (1 << 2) 4675 4676 struct page_snapshot { 4677 struct folio folio_snapshot; 4678 struct page page_snapshot; 4679 unsigned long pfn; 4680 unsigned long idx; 4681 unsigned long flags; 4682 }; 4683 4684 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) 4685 { 4686 return ps->flags & PAGE_SNAPSHOT_FAITHFUL; 4687 } 4688 4689 void snapshot_page(struct page_snapshot *ps, const struct page *page); 4690 4691 #endif /* _LINUX_MM_H */ 4692