xref: /linux/kernel/cpu.c (revision 622c508bcf4852ad56ae37bf6f08e9a4e6aa95b2)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 #include <linux/parser.h>
41 
42 #include <trace/events/power.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/cpuhp.h>
45 
46 #include "smpboot.h"
47 
48 /**
49  * struct cpuhp_cpu_state - Per cpu hotplug state storage
50  * @state:	The current cpu state
51  * @target:	The target state
52  * @fail:	Current CPU hotplug callback state
53  * @thread:	Pointer to the hotplug thread
54  * @should_run:	Thread should execute
55  * @rollback:	Perform a rollback
56  * @single:	Single callback invocation
57  * @bringup:	Single callback bringup or teardown selector
58  * @node:	Remote CPU node; for multi-instance, do a
59  *		single entry callback for install/remove
60  * @last:	For multi-instance rollback, remember how far we got
61  * @cb_state:	The state for a single callback (install/uninstall)
62  * @result:	Result of the operation
63  * @ap_sync_state:	State for AP synchronization
64  * @done_up:	Signal completion to the issuer of the task for cpu-up
65  * @done_down:	Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68 	enum cpuhp_state	state;
69 	enum cpuhp_state	target;
70 	enum cpuhp_state	fail;
71 #ifdef CONFIG_SMP
72 	struct task_struct	*thread;
73 	bool			should_run;
74 	bool			rollback;
75 	bool			single;
76 	bool			bringup;
77 	struct hlist_node	*node;
78 	struct hlist_node	*last;
79 	enum cpuhp_state	cb_state;
80 	int			result;
81 	atomic_t		ap_sync_state;
82 	struct completion	done_up;
83 	struct completion	done_down;
84 #endif
85 };
86 
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 	.fail = CPUHP_INVALID,
89 };
90 
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94 
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100 
101 
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112 
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115 
116 #endif
117 
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:	Name of the step
121  * @startup:	Startup function of the step
122  * @teardown:	Teardown function of the step
123  * @cant_stop:	Bringup/teardown can't be stopped at this step
124  * @multi_instance:	State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127 	const char		*name;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} startup;
133 	union {
134 		int		(*single)(unsigned int cpu);
135 		int		(*multi)(unsigned int cpu,
136 					 struct hlist_node *node);
137 	} teardown;
138 	/* private: */
139 	struct hlist_head	list;
140 	/* public: */
141 	bool			cant_stop;
142 	bool			multi_instance;
143 };
144 
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147 
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 	return cpuhp_hp_states + state;
151 }
152 
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 	return bringup ? !step->startup.single : !step->teardown.single;
156 }
157 
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:	The cpu for which the callback should be invoked
161  * @state:	The state to do callbacks for
162  * @bringup:	True if the bringup callback should be invoked
163  * @node:	For multi-instance, do a single entry callback for install/remove
164  * @lastp:	For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 				 bool bringup, struct hlist_node *node,
172 				 struct hlist_node **lastp)
173 {
174 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 	struct cpuhp_step *step = cpuhp_get_step(state);
176 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 	int (*cb)(unsigned int cpu);
178 	int ret, cnt;
179 
180 	if (st->fail == state) {
181 		st->fail = CPUHP_INVALID;
182 		return -EAGAIN;
183 	}
184 
185 	if (cpuhp_step_empty(bringup, step)) {
186 		WARN_ON_ONCE(1);
187 		return 0;
188 	}
189 
190 	if (!step->multi_instance) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		cb = bringup ? step->startup.single : step->teardown.single;
193 
194 		trace_cpuhp_enter(cpu, st->target, state, cb);
195 		ret = cb(cpu);
196 		trace_cpuhp_exit(cpu, st->state, state, ret);
197 		return ret;
198 	}
199 	cbm = bringup ? step->startup.multi : step->teardown.multi;
200 
201 	/* Single invocation for instance add/remove */
202 	if (node) {
203 		WARN_ON_ONCE(lastp && *lastp);
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		return ret;
208 	}
209 
210 	/* State transition. Invoke on all instances */
211 	cnt = 0;
212 	hlist_for_each(node, &step->list) {
213 		if (lastp && node == *lastp)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		if (ret) {
220 			if (!lastp)
221 				goto err;
222 
223 			*lastp = node;
224 			return ret;
225 		}
226 		cnt++;
227 	}
228 	if (lastp)
229 		*lastp = NULL;
230 	return 0;
231 err:
232 	/* Rollback the instances if one failed */
233 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 	if (!cbm)
235 		return ret;
236 
237 	hlist_for_each(node, &step->list) {
238 		if (!cnt--)
239 			break;
240 
241 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 		ret = cbm(cpu, node);
243 		trace_cpuhp_exit(cpu, st->state, state, ret);
244 		/*
245 		 * Rollback must not fail,
246 		 */
247 		WARN_ON_ONCE(ret);
248 	}
249 	return ret;
250 }
251 
252 /*
253  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
254  */
255 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
256 {
257 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
258 }
259 
260 #ifdef CONFIG_SMP
261 static bool cpuhp_is_ap_state(enum cpuhp_state state)
262 {
263 	/*
264 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
265 	 * purposes as that state is handled explicitly in cpu_down.
266 	 */
267 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
268 }
269 
270 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
271 {
272 	struct completion *done = bringup ? &st->done_up : &st->done_down;
273 	wait_for_completion(done);
274 }
275 
276 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
277 {
278 	struct completion *done = bringup ? &st->done_up : &st->done_down;
279 	complete(done);
280 }
281 
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 	SYNC_STATE_DEAD,
285 	SYNC_STATE_KICKED,
286 	SYNC_STATE_SHOULD_DIE,
287 	SYNC_STATE_ALIVE,
288 	SYNC_STATE_SHOULD_ONLINE,
289 	SYNC_STATE_ONLINE,
290 };
291 
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:	The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 
304 	(void)atomic_xchg(st, state);
305 }
306 
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 				      enum cpuhp_sync_state next_state)
311 {
312 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 	ktime_t now, end, start = ktime_get();
314 	int sync;
315 
316 	end = start + 10ULL * NSEC_PER_SEC;
317 
318 	sync = atomic_read(st);
319 	while (1) {
320 		if (sync == state) {
321 			if (!atomic_try_cmpxchg(st, &sync, next_state))
322 				continue;
323 			return true;
324 		}
325 
326 		now = ktime_get();
327 		if (now > end) {
328 			/* Timeout. Leave the state unchanged */
329 			return false;
330 		} else if (now - start < NSEC_PER_MSEC) {
331 			/* Poll for one millisecond */
332 			arch_cpuhp_sync_state_poll();
333 		} else {
334 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
335 		}
336 		sync = atomic_read(st);
337 	}
338 	return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354 
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356 
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 	int sync = atomic_read(st);
365 
366 	do {
367 		/* CPU can have reported dead already. Don't overwrite that! */
368 		if (sync == SYNC_STATE_DEAD)
369 			break;
370 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 
372 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 		/* CPU reached dead state. Invoke the cleanup function */
374 		arch_cpuhp_cleanup_dead_cpu(cpu);
375 		return;
376 	}
377 
378 	/* No further action possible. Emit message and give up. */
379 	pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 
396 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 
398 	/* Wait for the control CPU to release it. */
399 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 		cpu_relax();
401 }
402 
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 	int sync = atomic_read(st);
407 
408 again:
409 	switch (sync) {
410 	case SYNC_STATE_DEAD:
411 		/* CPU is properly dead */
412 		break;
413 	case SYNC_STATE_KICKED:
414 		/* CPU did not come up in previous attempt */
415 		break;
416 	case SYNC_STATE_ALIVE:
417 		/* CPU is stuck cpuhp_ap_sync_alive(). */
418 		break;
419 	default:
420 		/* CPU failed to report online or dead and is in limbo state. */
421 		return false;
422 	}
423 
424 	/* Prepare for booting */
425 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 		goto again;
427 
428 	return true;
429 }
430 
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432 
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 	int ret = 0;
440 
441 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 		return 0;
443 
444 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 		pr_err("CPU%u failed to report alive state\n", cpu);
446 		ret = -EIO;
447 	}
448 
449 	/* Let the architecture cleanup the kick alive mechanics. */
450 	arch_cpuhp_cleanup_kick_cpu(cpu);
451 	return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462 
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469 	mutex_lock(&cpu_add_remove_lock);
470 }
471 
472 void cpu_maps_update_done(void)
473 {
474 	mutex_unlock(&cpu_add_remove_lock);
475 }
476 
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 
487 static bool cpu_hotplug_offline_disabled __ro_after_init;
488 
489 void cpus_read_lock(void)
490 {
491 	percpu_down_read(&cpu_hotplug_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpus_read_lock);
494 
495 int cpus_read_trylock(void)
496 {
497 	return percpu_down_read_trylock(&cpu_hotplug_lock);
498 }
499 EXPORT_SYMBOL_GPL(cpus_read_trylock);
500 
501 void cpus_read_unlock(void)
502 {
503 	percpu_up_read(&cpu_hotplug_lock);
504 }
505 EXPORT_SYMBOL_GPL(cpus_read_unlock);
506 
507 void cpus_write_lock(void)
508 {
509 	percpu_down_write(&cpu_hotplug_lock);
510 }
511 
512 void cpus_write_unlock(void)
513 {
514 	percpu_up_write(&cpu_hotplug_lock);
515 }
516 
517 void lockdep_assert_cpus_held(void)
518 {
519 	/*
520 	 * We can't have hotplug operations before userspace starts running,
521 	 * and some init codepaths will knowingly not take the hotplug lock.
522 	 * This is all valid, so mute lockdep until it makes sense to report
523 	 * unheld locks.
524 	 */
525 	if (system_state < SYSTEM_RUNNING)
526 		return;
527 
528 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
529 }
530 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held);
531 
532 #ifdef CONFIG_LOCKDEP
533 int lockdep_is_cpus_held(void)
534 {
535 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
536 }
537 
538 int lockdep_is_cpus_write_held(void)
539 {
540 	return percpu_rwsem_is_write_held(&cpu_hotplug_lock);
541 }
542 #endif
543 
544 static void lockdep_acquire_cpus_lock(void)
545 {
546 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
547 }
548 
549 static void lockdep_release_cpus_lock(void)
550 {
551 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
552 }
553 
554 /* Declare CPU offlining not supported */
555 void cpu_hotplug_disable_offlining(void)
556 {
557 	cpu_maps_update_begin();
558 	cpu_hotplug_offline_disabled = true;
559 	cpu_maps_update_done();
560 }
561 
562 /*
563  * Wait for currently running CPU hotplug operations to complete (if any) and
564  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
565  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
566  * hotplug path before performing hotplug operations. So acquiring that lock
567  * guarantees mutual exclusion from any currently running hotplug operations.
568  */
569 void cpu_hotplug_disable(void)
570 {
571 	cpu_maps_update_begin();
572 	cpu_hotplug_disabled++;
573 	cpu_maps_update_done();
574 }
575 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
576 
577 static void __cpu_hotplug_enable(void)
578 {
579 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
580 		return;
581 	cpu_hotplug_disabled--;
582 }
583 
584 void cpu_hotplug_enable(void)
585 {
586 	cpu_maps_update_begin();
587 	__cpu_hotplug_enable();
588 	cpu_maps_update_done();
589 }
590 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
591 
592 #else
593 
594 static void lockdep_acquire_cpus_lock(void)
595 {
596 }
597 
598 static void lockdep_release_cpus_lock(void)
599 {
600 }
601 
602 #endif	/* CONFIG_HOTPLUG_CPU */
603 
604 /*
605  * Architectures that need SMT-specific errata handling during SMT hotplug
606  * should override this.
607  */
608 void __weak arch_smt_update(void) { }
609 
610 #ifdef CONFIG_HOTPLUG_SMT
611 
612 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
613 static unsigned int cpu_smt_max_threads __ro_after_init;
614 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
615 
616 void __init cpu_smt_disable(bool force)
617 {
618 	if (!cpu_smt_possible())
619 		return;
620 
621 	if (force) {
622 		pr_info("SMT: Force disabled\n");
623 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
624 	} else {
625 		pr_info("SMT: disabled\n");
626 		cpu_smt_control = CPU_SMT_DISABLED;
627 	}
628 	cpu_smt_num_threads = 1;
629 }
630 
631 /*
632  * The decision whether SMT is supported can only be done after the full
633  * CPU identification. Called from architecture code.
634  */
635 void __init cpu_smt_set_num_threads(unsigned int num_threads,
636 				    unsigned int max_threads)
637 {
638 	WARN_ON(!num_threads || (num_threads > max_threads));
639 
640 	if (max_threads == 1)
641 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
642 
643 	cpu_smt_max_threads = max_threads;
644 
645 	/*
646 	 * If SMT has been disabled via the kernel command line or SMT is
647 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
648 	 * If enabled, take the architecture requested number of threads
649 	 * to bring up into account.
650 	 */
651 	if (cpu_smt_control != CPU_SMT_ENABLED)
652 		cpu_smt_num_threads = 1;
653 	else if (num_threads < cpu_smt_num_threads)
654 		cpu_smt_num_threads = num_threads;
655 }
656 
657 static int __init smt_cmdline_disable(char *str)
658 {
659 	cpu_smt_disable(str && !strcmp(str, "force"));
660 	return 0;
661 }
662 early_param("nosmt", smt_cmdline_disable);
663 
664 /*
665  * For Archicture supporting partial SMT states check if the thread is allowed.
666  * Otherwise this has already been checked through cpu_smt_max_threads when
667  * setting the SMT level.
668  */
669 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
670 {
671 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
672 	return topology_smt_thread_allowed(cpu);
673 #else
674 	return true;
675 #endif
676 }
677 
678 static inline bool cpu_bootable(unsigned int cpu)
679 {
680 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
681 		return true;
682 
683 	/* All CPUs are bootable if controls are not configured */
684 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
685 		return true;
686 
687 	/* All CPUs are bootable if CPU is not SMT capable */
688 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
689 		return true;
690 
691 	if (topology_is_primary_thread(cpu))
692 		return true;
693 
694 	/*
695 	 * On x86 it's required to boot all logical CPUs at least once so
696 	 * that the init code can get a chance to set CR4.MCE on each
697 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
698 	 * core will shutdown the machine.
699 	 */
700 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
701 }
702 
703 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
704 bool cpu_smt_possible(void)
705 {
706 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
707 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
708 }
709 EXPORT_SYMBOL_GPL(cpu_smt_possible);
710 
711 #else
712 static inline bool cpu_bootable(unsigned int cpu) { return true; }
713 #endif
714 
715 static inline enum cpuhp_state
716 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
717 {
718 	enum cpuhp_state prev_state = st->state;
719 	bool bringup = st->state < target;
720 
721 	st->rollback = false;
722 	st->last = NULL;
723 
724 	st->target = target;
725 	st->single = false;
726 	st->bringup = bringup;
727 	if (cpu_dying(cpu) != !bringup)
728 		set_cpu_dying(cpu, !bringup);
729 
730 	return prev_state;
731 }
732 
733 static inline void
734 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
735 		  enum cpuhp_state prev_state)
736 {
737 	bool bringup = !st->bringup;
738 
739 	st->target = prev_state;
740 
741 	/*
742 	 * Already rolling back. No need invert the bringup value or to change
743 	 * the current state.
744 	 */
745 	if (st->rollback)
746 		return;
747 
748 	st->rollback = true;
749 
750 	/*
751 	 * If we have st->last we need to undo partial multi_instance of this
752 	 * state first. Otherwise start undo at the previous state.
753 	 */
754 	if (!st->last) {
755 		if (st->bringup)
756 			st->state--;
757 		else
758 			st->state++;
759 	}
760 
761 	st->bringup = bringup;
762 	if (cpu_dying(cpu) != !bringup)
763 		set_cpu_dying(cpu, !bringup);
764 }
765 
766 /* Regular hotplug invocation of the AP hotplug thread */
767 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
768 {
769 	if (!st->single && st->state == st->target)
770 		return;
771 
772 	st->result = 0;
773 	/*
774 	 * Make sure the above stores are visible before should_run becomes
775 	 * true. Paired with the mb() above in cpuhp_thread_fun()
776 	 */
777 	smp_mb();
778 	st->should_run = true;
779 	wake_up_process(st->thread);
780 	wait_for_ap_thread(st, st->bringup);
781 }
782 
783 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
784 			 enum cpuhp_state target)
785 {
786 	enum cpuhp_state prev_state;
787 	int ret;
788 
789 	prev_state = cpuhp_set_state(cpu, st, target);
790 	__cpuhp_kick_ap(st);
791 	if ((ret = st->result)) {
792 		cpuhp_reset_state(cpu, st, prev_state);
793 		__cpuhp_kick_ap(st);
794 	}
795 
796 	return ret;
797 }
798 
799 static int bringup_wait_for_ap_online(unsigned int cpu)
800 {
801 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
802 
803 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
804 	wait_for_ap_thread(st, true);
805 	if (WARN_ON_ONCE((!cpu_online(cpu))))
806 		return -ECANCELED;
807 
808 	/* Unpark the hotplug thread of the target cpu */
809 	kthread_unpark(st->thread);
810 
811 	/*
812 	 * SMT soft disabling on X86 requires to bring the CPU out of the
813 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
814 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
815 	 * cpu_bootable() check will now return false if this is not the
816 	 * primary sibling.
817 	 */
818 	if (!cpu_bootable(cpu))
819 		return -ECANCELED;
820 	return 0;
821 }
822 
823 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
824 static int cpuhp_kick_ap_alive(unsigned int cpu)
825 {
826 	if (!cpuhp_can_boot_ap(cpu))
827 		return -EAGAIN;
828 
829 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
830 }
831 
832 static int cpuhp_bringup_ap(unsigned int cpu)
833 {
834 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
835 	int ret;
836 
837 	/*
838 	 * Some architectures have to walk the irq descriptors to
839 	 * setup the vector space for the cpu which comes online.
840 	 * Prevent irq alloc/free across the bringup.
841 	 */
842 	irq_lock_sparse();
843 
844 	ret = cpuhp_bp_sync_alive(cpu);
845 	if (ret)
846 		goto out_unlock;
847 
848 	ret = bringup_wait_for_ap_online(cpu);
849 	if (ret)
850 		goto out_unlock;
851 
852 	irq_unlock_sparse();
853 
854 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
855 		return 0;
856 
857 	return cpuhp_kick_ap(cpu, st, st->target);
858 
859 out_unlock:
860 	irq_unlock_sparse();
861 	return ret;
862 }
863 #else
864 static int bringup_cpu(unsigned int cpu)
865 {
866 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
867 	struct task_struct *idle = idle_thread_get(cpu);
868 	int ret;
869 
870 	if (!cpuhp_can_boot_ap(cpu))
871 		return -EAGAIN;
872 
873 	/*
874 	 * Some architectures have to walk the irq descriptors to
875 	 * setup the vector space for the cpu which comes online.
876 	 *
877 	 * Prevent irq alloc/free across the bringup by acquiring the
878 	 * sparse irq lock. Hold it until the upcoming CPU completes the
879 	 * startup in cpuhp_online_idle() which allows to avoid
880 	 * intermediate synchronization points in the architecture code.
881 	 */
882 	irq_lock_sparse();
883 
884 	ret = __cpu_up(cpu, idle);
885 	if (ret)
886 		goto out_unlock;
887 
888 	ret = cpuhp_bp_sync_alive(cpu);
889 	if (ret)
890 		goto out_unlock;
891 
892 	ret = bringup_wait_for_ap_online(cpu);
893 	if (ret)
894 		goto out_unlock;
895 
896 	irq_unlock_sparse();
897 
898 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
899 		return 0;
900 
901 	return cpuhp_kick_ap(cpu, st, st->target);
902 
903 out_unlock:
904 	irq_unlock_sparse();
905 	return ret;
906 }
907 #endif
908 
909 static int finish_cpu(unsigned int cpu)
910 {
911 	struct task_struct *idle = idle_thread_get(cpu);
912 	struct mm_struct *mm = idle->active_mm;
913 
914 	/*
915 	 * sched_force_init_mm() ensured the use of &init_mm,
916 	 * drop that refcount now that the CPU has stopped.
917 	 */
918 	WARN_ON(mm != &init_mm);
919 	idle->active_mm = NULL;
920 	mmdrop_lazy_tlb(mm);
921 
922 	return 0;
923 }
924 
925 /*
926  * Hotplug state machine related functions
927  */
928 
929 /*
930  * Get the next state to run. Empty ones will be skipped. Returns true if a
931  * state must be run.
932  *
933  * st->state will be modified ahead of time, to match state_to_run, as if it
934  * has already ran.
935  */
936 static bool cpuhp_next_state(bool bringup,
937 			     enum cpuhp_state *state_to_run,
938 			     struct cpuhp_cpu_state *st,
939 			     enum cpuhp_state target)
940 {
941 	do {
942 		if (bringup) {
943 			if (st->state >= target)
944 				return false;
945 
946 			*state_to_run = ++st->state;
947 		} else {
948 			if (st->state <= target)
949 				return false;
950 
951 			*state_to_run = st->state--;
952 		}
953 
954 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
955 			break;
956 	} while (true);
957 
958 	return true;
959 }
960 
961 static int __cpuhp_invoke_callback_range(bool bringup,
962 					 unsigned int cpu,
963 					 struct cpuhp_cpu_state *st,
964 					 enum cpuhp_state target,
965 					 bool nofail)
966 {
967 	enum cpuhp_state state;
968 	int ret = 0;
969 
970 	while (cpuhp_next_state(bringup, &state, st, target)) {
971 		int err;
972 
973 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
974 		if (!err)
975 			continue;
976 
977 		if (nofail) {
978 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
979 				cpu, bringup ? "UP" : "DOWN",
980 				cpuhp_get_step(st->state)->name,
981 				st->state, err);
982 			ret = -1;
983 		} else {
984 			ret = err;
985 			break;
986 		}
987 	}
988 
989 	return ret;
990 }
991 
992 static inline int cpuhp_invoke_callback_range(bool bringup,
993 					      unsigned int cpu,
994 					      struct cpuhp_cpu_state *st,
995 					      enum cpuhp_state target)
996 {
997 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
998 }
999 
1000 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
1001 						      unsigned int cpu,
1002 						      struct cpuhp_cpu_state *st,
1003 						      enum cpuhp_state target)
1004 {
1005 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1006 }
1007 
1008 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1009 {
1010 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1011 		return true;
1012 	/*
1013 	 * When CPU hotplug is disabled, then taking the CPU down is not
1014 	 * possible because takedown_cpu() and the architecture and
1015 	 * subsystem specific mechanisms are not available. So the CPU
1016 	 * which would be completely unplugged again needs to stay around
1017 	 * in the current state.
1018 	 */
1019 	return st->state <= CPUHP_BRINGUP_CPU;
1020 }
1021 
1022 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1023 			      enum cpuhp_state target)
1024 {
1025 	enum cpuhp_state prev_state = st->state;
1026 	int ret = 0;
1027 
1028 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1029 	if (ret) {
1030 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1031 			 ret, cpu, cpuhp_get_step(st->state)->name,
1032 			 st->state);
1033 
1034 		cpuhp_reset_state(cpu, st, prev_state);
1035 		if (can_rollback_cpu(st))
1036 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1037 							    prev_state));
1038 	}
1039 	return ret;
1040 }
1041 
1042 /*
1043  * The cpu hotplug threads manage the bringup and teardown of the cpus
1044  */
1045 static int cpuhp_should_run(unsigned int cpu)
1046 {
1047 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1048 
1049 	return st->should_run;
1050 }
1051 
1052 /*
1053  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1054  * callbacks when a state gets [un]installed at runtime.
1055  *
1056  * Each invocation of this function by the smpboot thread does a single AP
1057  * state callback.
1058  *
1059  * It has 3 modes of operation:
1060  *  - single: runs st->cb_state
1061  *  - up:     runs ++st->state, while st->state < st->target
1062  *  - down:   runs st->state--, while st->state > st->target
1063  *
1064  * When complete or on error, should_run is cleared and the completion is fired.
1065  */
1066 static void cpuhp_thread_fun(unsigned int cpu)
1067 {
1068 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1069 	bool bringup = st->bringup;
1070 	enum cpuhp_state state;
1071 
1072 	if (WARN_ON_ONCE(!st->should_run))
1073 		return;
1074 
1075 	/*
1076 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1077 	 * that if we see ->should_run we also see the rest of the state.
1078 	 */
1079 	smp_mb();
1080 
1081 	/*
1082 	 * The BP holds the hotplug lock, but we're now running on the AP,
1083 	 * ensure that anybody asserting the lock is held, will actually find
1084 	 * it so.
1085 	 */
1086 	lockdep_acquire_cpus_lock();
1087 	cpuhp_lock_acquire(bringup);
1088 
1089 	if (st->single) {
1090 		state = st->cb_state;
1091 		st->should_run = false;
1092 	} else {
1093 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1094 		if (!st->should_run)
1095 			goto end;
1096 	}
1097 
1098 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1099 
1100 	if (cpuhp_is_atomic_state(state)) {
1101 		local_irq_disable();
1102 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103 		local_irq_enable();
1104 
1105 		/*
1106 		 * STARTING/DYING must not fail!
1107 		 */
1108 		WARN_ON_ONCE(st->result);
1109 	} else {
1110 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1111 	}
1112 
1113 	if (st->result) {
1114 		/*
1115 		 * If we fail on a rollback, we're up a creek without no
1116 		 * paddle, no way forward, no way back. We loose, thanks for
1117 		 * playing.
1118 		 */
1119 		WARN_ON_ONCE(st->rollback);
1120 		st->should_run = false;
1121 	}
1122 
1123 end:
1124 	cpuhp_lock_release(bringup);
1125 	lockdep_release_cpus_lock();
1126 
1127 	if (!st->should_run)
1128 		complete_ap_thread(st, bringup);
1129 }
1130 
1131 /* Invoke a single callback on a remote cpu */
1132 static int
1133 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1134 			 struct hlist_node *node)
1135 {
1136 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1137 	int ret;
1138 
1139 	if (!cpu_online(cpu))
1140 		return 0;
1141 
1142 	cpuhp_lock_acquire(false);
1143 	cpuhp_lock_release(false);
1144 
1145 	cpuhp_lock_acquire(true);
1146 	cpuhp_lock_release(true);
1147 
1148 	/*
1149 	 * If we are up and running, use the hotplug thread. For early calls
1150 	 * we invoke the thread function directly.
1151 	 */
1152 	if (!st->thread)
1153 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1154 
1155 	st->rollback = false;
1156 	st->last = NULL;
1157 
1158 	st->node = node;
1159 	st->bringup = bringup;
1160 	st->cb_state = state;
1161 	st->single = true;
1162 
1163 	__cpuhp_kick_ap(st);
1164 
1165 	/*
1166 	 * If we failed and did a partial, do a rollback.
1167 	 */
1168 	if ((ret = st->result) && st->last) {
1169 		st->rollback = true;
1170 		st->bringup = !bringup;
1171 
1172 		__cpuhp_kick_ap(st);
1173 	}
1174 
1175 	/*
1176 	 * Clean up the leftovers so the next hotplug operation wont use stale
1177 	 * data.
1178 	 */
1179 	st->node = st->last = NULL;
1180 	return ret;
1181 }
1182 
1183 static int cpuhp_kick_ap_work(unsigned int cpu)
1184 {
1185 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1186 	enum cpuhp_state prev_state = st->state;
1187 	int ret;
1188 
1189 	cpuhp_lock_acquire(false);
1190 	cpuhp_lock_release(false);
1191 
1192 	cpuhp_lock_acquire(true);
1193 	cpuhp_lock_release(true);
1194 
1195 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1196 	ret = cpuhp_kick_ap(cpu, st, st->target);
1197 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1198 
1199 	return ret;
1200 }
1201 
1202 static struct smp_hotplug_thread cpuhp_threads = {
1203 	.store			= &cpuhp_state.thread,
1204 	.thread_should_run	= cpuhp_should_run,
1205 	.thread_fn		= cpuhp_thread_fun,
1206 	.thread_comm		= "cpuhp/%u",
1207 	.selfparking		= true,
1208 };
1209 
1210 static __init void cpuhp_init_state(void)
1211 {
1212 	struct cpuhp_cpu_state *st;
1213 	int cpu;
1214 
1215 	for_each_possible_cpu(cpu) {
1216 		st = per_cpu_ptr(&cpuhp_state, cpu);
1217 		init_completion(&st->done_up);
1218 		init_completion(&st->done_down);
1219 	}
1220 }
1221 
1222 void __init cpuhp_threads_init(void)
1223 {
1224 	cpuhp_init_state();
1225 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1226 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1227 }
1228 
1229 #ifdef CONFIG_HOTPLUG_CPU
1230 #ifndef arch_clear_mm_cpumask_cpu
1231 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1232 #endif
1233 
1234 /**
1235  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1236  * @cpu: a CPU id
1237  *
1238  * This function walks all processes, finds a valid mm struct for each one and
1239  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1240  * trivial, there are various non-obvious corner cases, which this function
1241  * tries to solve in a safe manner.
1242  *
1243  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1244  * be called only for an already offlined CPU.
1245  */
1246 void clear_tasks_mm_cpumask(int cpu)
1247 {
1248 	struct task_struct *p;
1249 
1250 	/*
1251 	 * This function is called after the cpu is taken down and marked
1252 	 * offline, so its not like new tasks will ever get this cpu set in
1253 	 * their mm mask. -- Peter Zijlstra
1254 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1255 	 * full-fledged tasklist_lock.
1256 	 */
1257 	WARN_ON(cpu_online(cpu));
1258 	rcu_read_lock();
1259 	for_each_process(p) {
1260 		struct task_struct *t;
1261 
1262 		/*
1263 		 * Main thread might exit, but other threads may still have
1264 		 * a valid mm. Find one.
1265 		 */
1266 		t = find_lock_task_mm(p);
1267 		if (!t)
1268 			continue;
1269 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1270 		task_unlock(t);
1271 	}
1272 	rcu_read_unlock();
1273 }
1274 
1275 /* Take this CPU down. */
1276 static int take_cpu_down(void *_param)
1277 {
1278 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1279 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1280 	int err, cpu = smp_processor_id();
1281 
1282 	/* Ensure this CPU doesn't handle any more interrupts. */
1283 	err = __cpu_disable();
1284 	if (err < 0)
1285 		return err;
1286 
1287 	/*
1288 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1289 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1290 	 */
1291 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1292 
1293 	/*
1294 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1295 	 */
1296 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1297 
1298 	/* Park the stopper thread */
1299 	stop_machine_park(cpu);
1300 	return 0;
1301 }
1302 
1303 static int takedown_cpu(unsigned int cpu)
1304 {
1305 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1306 	int err;
1307 
1308 	/* Park the smpboot threads */
1309 	kthread_park(st->thread);
1310 
1311 	/*
1312 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1313 	 * interrupt affinities.
1314 	 */
1315 	irq_lock_sparse();
1316 
1317 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1318 	if (err) {
1319 		/* CPU refused to die */
1320 		irq_unlock_sparse();
1321 		/* Unpark the hotplug thread so we can rollback there */
1322 		kthread_unpark(st->thread);
1323 		return err;
1324 	}
1325 	BUG_ON(cpu_online(cpu));
1326 
1327 	/*
1328 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1329 	 * all runnable tasks from the CPU, there's only the idle task left now
1330 	 * that the migration thread is done doing the stop_machine thing.
1331 	 *
1332 	 * Wait for the stop thread to go away.
1333 	 */
1334 	wait_for_ap_thread(st, false);
1335 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1336 
1337 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1338 	irq_unlock_sparse();
1339 
1340 	hotplug_cpu__broadcast_tick_pull(cpu);
1341 	/* This actually kills the CPU. */
1342 	__cpu_die(cpu);
1343 
1344 	cpuhp_bp_sync_dead(cpu);
1345 
1346 	lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1347 
1348 	/*
1349 	 * Callbacks must be re-integrated right away to the RCU state machine.
1350 	 * Otherwise an RCU callback could block a further teardown function
1351 	 * waiting for its completion.
1352 	 */
1353 	rcutree_migrate_callbacks(cpu);
1354 
1355 	return 0;
1356 }
1357 
1358 static void cpuhp_complete_idle_dead(void *arg)
1359 {
1360 	struct cpuhp_cpu_state *st = arg;
1361 
1362 	complete_ap_thread(st, false);
1363 }
1364 
1365 void cpuhp_report_idle_dead(void)
1366 {
1367 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1368 
1369 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1370 	tick_assert_timekeeping_handover();
1371 	rcutree_report_cpu_dead();
1372 	st->state = CPUHP_AP_IDLE_DEAD;
1373 	/*
1374 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1375 	 * to an online cpu.
1376 	 */
1377 	smp_call_function_single(cpumask_first(cpu_online_mask),
1378 				 cpuhp_complete_idle_dead, st, 0);
1379 }
1380 
1381 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1382 				enum cpuhp_state target)
1383 {
1384 	enum cpuhp_state prev_state = st->state;
1385 	int ret = 0;
1386 
1387 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1388 	if (ret) {
1389 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1390 			 ret, cpu, cpuhp_get_step(st->state)->name,
1391 			 st->state);
1392 
1393 		cpuhp_reset_state(cpu, st, prev_state);
1394 
1395 		if (st->state < prev_state)
1396 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1397 							    prev_state));
1398 	}
1399 
1400 	return ret;
1401 }
1402 
1403 /* Requires cpu_add_remove_lock to be held */
1404 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1405 			   enum cpuhp_state target)
1406 {
1407 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1408 	int prev_state, ret = 0;
1409 
1410 	if (num_online_cpus() == 1)
1411 		return -EBUSY;
1412 
1413 	if (!cpu_present(cpu))
1414 		return -EINVAL;
1415 
1416 	cpus_write_lock();
1417 
1418 	/*
1419 	 * Keep at least one housekeeping cpu onlined to avoid generating
1420 	 * an empty sched_domain span.
1421 	 */
1422 	if (cpumask_any_and(cpu_online_mask,
1423 			    housekeeping_cpumask(HK_TYPE_DOMAIN)) >= nr_cpu_ids) {
1424 		ret = -EBUSY;
1425 		goto out;
1426 	}
1427 
1428 	cpuhp_tasks_frozen = tasks_frozen;
1429 
1430 	prev_state = cpuhp_set_state(cpu, st, target);
1431 	/*
1432 	 * If the current CPU state is in the range of the AP hotplug thread,
1433 	 * then we need to kick the thread.
1434 	 */
1435 	if (st->state > CPUHP_TEARDOWN_CPU) {
1436 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1437 		ret = cpuhp_kick_ap_work(cpu);
1438 		/*
1439 		 * The AP side has done the error rollback already. Just
1440 		 * return the error code..
1441 		 */
1442 		if (ret)
1443 			goto out;
1444 
1445 		/*
1446 		 * We might have stopped still in the range of the AP hotplug
1447 		 * thread. Nothing to do anymore.
1448 		 */
1449 		if (st->state > CPUHP_TEARDOWN_CPU)
1450 			goto out;
1451 
1452 		st->target = target;
1453 	}
1454 	/*
1455 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1456 	 * to do the further cleanups.
1457 	 */
1458 	ret = cpuhp_down_callbacks(cpu, st, target);
1459 	if (ret && st->state < prev_state) {
1460 		if (st->state == CPUHP_TEARDOWN_CPU) {
1461 			cpuhp_reset_state(cpu, st, prev_state);
1462 			__cpuhp_kick_ap(st);
1463 		} else {
1464 			WARN(1, "DEAD callback error for CPU%d", cpu);
1465 		}
1466 	}
1467 
1468 out:
1469 	cpus_write_unlock();
1470 	arch_smt_update();
1471 	return ret;
1472 }
1473 
1474 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1475 {
1476 	/*
1477 	 * If the platform does not support hotplug, report it explicitly to
1478 	 * differentiate it from a transient offlining failure.
1479 	 */
1480 	if (cpu_hotplug_offline_disabled)
1481 		return -EOPNOTSUPP;
1482 	if (cpu_hotplug_disabled)
1483 		return -EBUSY;
1484 	return _cpu_down(cpu, 0, target);
1485 }
1486 
1487 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1488 {
1489 	int err;
1490 
1491 	cpu_maps_update_begin();
1492 	err = cpu_down_maps_locked(cpu, target);
1493 	cpu_maps_update_done();
1494 	return err;
1495 }
1496 
1497 /**
1498  * cpu_device_down - Bring down a cpu device
1499  * @dev: Pointer to the cpu device to offline
1500  *
1501  * This function is meant to be used by device core cpu subsystem only.
1502  *
1503  * Other subsystems should use remove_cpu() instead.
1504  *
1505  * Return: %0 on success or a negative errno code
1506  */
1507 int cpu_device_down(struct device *dev)
1508 {
1509 	return cpu_down(dev->id, CPUHP_OFFLINE);
1510 }
1511 
1512 int remove_cpu(unsigned int cpu)
1513 {
1514 	int ret;
1515 
1516 	lock_device_hotplug();
1517 	ret = device_offline(get_cpu_device(cpu));
1518 	unlock_device_hotplug();
1519 
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(remove_cpu);
1523 
1524 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1525 {
1526 	unsigned int cpu;
1527 	int error;
1528 
1529 	cpu_maps_update_begin();
1530 
1531 	/*
1532 	 * Make certain the cpu I'm about to reboot on is online.
1533 	 *
1534 	 * This is inline to what migrate_to_reboot_cpu() already do.
1535 	 */
1536 	if (!cpu_online(primary_cpu))
1537 		primary_cpu = cpumask_first(cpu_online_mask);
1538 
1539 	for_each_online_cpu(cpu) {
1540 		if (cpu == primary_cpu)
1541 			continue;
1542 
1543 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1544 		if (error) {
1545 			pr_err("Failed to offline CPU%d - error=%d",
1546 				cpu, error);
1547 			break;
1548 		}
1549 	}
1550 
1551 	/*
1552 	 * Ensure all but the reboot CPU are offline.
1553 	 */
1554 	BUG_ON(num_online_cpus() > 1);
1555 
1556 	/*
1557 	 * Make sure the CPUs won't be enabled by someone else after this
1558 	 * point. Kexec will reboot to a new kernel shortly resetting
1559 	 * everything along the way.
1560 	 */
1561 	cpu_hotplug_disabled++;
1562 
1563 	cpu_maps_update_done();
1564 }
1565 
1566 #else
1567 #define takedown_cpu		NULL
1568 #endif /*CONFIG_HOTPLUG_CPU*/
1569 
1570 /**
1571  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1572  * @cpu: cpu that just started
1573  *
1574  * It must be called by the arch code on the new cpu, before the new cpu
1575  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1576  */
1577 void notify_cpu_starting(unsigned int cpu)
1578 {
1579 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1580 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1581 
1582 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1583 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1584 
1585 	/*
1586 	 * STARTING must not fail!
1587 	 */
1588 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1589 }
1590 
1591 /*
1592  * Called from the idle task. Wake up the controlling task which brings the
1593  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1594  * online bringup to the hotplug thread.
1595  */
1596 void cpuhp_online_idle(enum cpuhp_state state)
1597 {
1598 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1599 
1600 	/* Happens for the boot cpu */
1601 	if (state != CPUHP_AP_ONLINE_IDLE)
1602 		return;
1603 
1604 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1605 
1606 	/*
1607 	 * Unpark the stopper thread before we start the idle loop (and start
1608 	 * scheduling); this ensures the stopper task is always available.
1609 	 */
1610 	stop_machine_unpark(smp_processor_id());
1611 
1612 	st->state = CPUHP_AP_ONLINE_IDLE;
1613 	complete_ap_thread(st, true);
1614 }
1615 
1616 /* Requires cpu_add_remove_lock to be held */
1617 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1618 {
1619 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1620 	struct task_struct *idle;
1621 	int ret = 0;
1622 
1623 	cpus_write_lock();
1624 
1625 	if (!cpu_present(cpu)) {
1626 		ret = -EINVAL;
1627 		goto out;
1628 	}
1629 
1630 	/*
1631 	 * The caller of cpu_up() might have raced with another
1632 	 * caller. Nothing to do.
1633 	 */
1634 	if (st->state >= target)
1635 		goto out;
1636 
1637 	if (st->state == CPUHP_OFFLINE) {
1638 		/* Let it fail before we try to bring the cpu up */
1639 		idle = idle_thread_get(cpu);
1640 		if (IS_ERR(idle)) {
1641 			ret = PTR_ERR(idle);
1642 			goto out;
1643 		}
1644 
1645 		/*
1646 		 * Reset stale stack state from the last time this CPU was online.
1647 		 */
1648 		scs_task_reset(idle);
1649 		kasan_unpoison_task_stack(idle);
1650 	}
1651 
1652 	cpuhp_tasks_frozen = tasks_frozen;
1653 
1654 	cpuhp_set_state(cpu, st, target);
1655 	/*
1656 	 * If the current CPU state is in the range of the AP hotplug thread,
1657 	 * then we need to kick the thread once more.
1658 	 */
1659 	if (st->state > CPUHP_BRINGUP_CPU) {
1660 		ret = cpuhp_kick_ap_work(cpu);
1661 		/*
1662 		 * The AP side has done the error rollback already. Just
1663 		 * return the error code..
1664 		 */
1665 		if (ret)
1666 			goto out;
1667 	}
1668 
1669 	/*
1670 	 * Try to reach the target state. We max out on the BP at
1671 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1672 	 * responsible for bringing it up to the target state.
1673 	 */
1674 	target = min((int)target, CPUHP_BRINGUP_CPU);
1675 	ret = cpuhp_up_callbacks(cpu, st, target);
1676 out:
1677 	cpus_write_unlock();
1678 	arch_smt_update();
1679 	return ret;
1680 }
1681 
1682 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1683 {
1684 	int err = 0;
1685 
1686 	if (!cpu_possible(cpu)) {
1687 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1688 		       cpu);
1689 		return -EINVAL;
1690 	}
1691 
1692 	err = try_online_node(cpu_to_node(cpu));
1693 	if (err)
1694 		return err;
1695 
1696 	cpu_maps_update_begin();
1697 
1698 	if (cpu_hotplug_disabled) {
1699 		err = -EBUSY;
1700 		goto out;
1701 	}
1702 	if (!cpu_bootable(cpu)) {
1703 		err = -EPERM;
1704 		goto out;
1705 	}
1706 
1707 	err = _cpu_up(cpu, 0, target);
1708 out:
1709 	cpu_maps_update_done();
1710 	return err;
1711 }
1712 
1713 /**
1714  * cpu_device_up - Bring up a cpu device
1715  * @dev: Pointer to the cpu device to online
1716  *
1717  * This function is meant to be used by device core cpu subsystem only.
1718  *
1719  * Other subsystems should use add_cpu() instead.
1720  *
1721  * Return: %0 on success or a negative errno code
1722  */
1723 int cpu_device_up(struct device *dev)
1724 {
1725 	return cpu_up(dev->id, CPUHP_ONLINE);
1726 }
1727 
1728 int add_cpu(unsigned int cpu)
1729 {
1730 	int ret;
1731 
1732 	lock_device_hotplug();
1733 	ret = device_online(get_cpu_device(cpu));
1734 	unlock_device_hotplug();
1735 
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(add_cpu);
1739 
1740 /**
1741  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1742  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1743  *
1744  * On some architectures like arm64, we can hibernate on any CPU, but on
1745  * wake up the CPU we hibernated on might be offline as a side effect of
1746  * using maxcpus= for example.
1747  *
1748  * Return: %0 on success or a negative errno code
1749  */
1750 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1751 {
1752 	int ret;
1753 
1754 	if (!cpu_online(sleep_cpu)) {
1755 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1756 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1757 		if (ret) {
1758 			pr_err("Failed to bring hibernate-CPU up!\n");
1759 			return ret;
1760 		}
1761 	}
1762 	return 0;
1763 }
1764 
1765 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1766 				      enum cpuhp_state target)
1767 {
1768 	unsigned int cpu;
1769 
1770 	for_each_cpu(cpu, mask) {
1771 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1772 
1773 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1774 			/*
1775 			 * If this failed then cpu_up() might have only
1776 			 * rolled back to CPUHP_BP_KICK_AP for the final
1777 			 * online. Clean it up. NOOP if already rolled back.
1778 			 */
1779 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1780 		}
1781 
1782 		if (!--ncpus)
1783 			break;
1784 	}
1785 }
1786 
1787 #ifdef CONFIG_HOTPLUG_PARALLEL
1788 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1789 
1790 static int __init parallel_bringup_parse_param(char *arg)
1791 {
1792 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1793 }
1794 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1795 
1796 #ifdef CONFIG_HOTPLUG_SMT
1797 static inline bool cpuhp_smt_aware(void)
1798 {
1799 	return cpu_smt_max_threads > 1;
1800 }
1801 
1802 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1803 {
1804 	return cpu_primary_thread_mask;
1805 }
1806 #else
1807 static inline bool cpuhp_smt_aware(void)
1808 {
1809 	return false;
1810 }
1811 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1812 {
1813 	return cpu_none_mask;
1814 }
1815 #endif
1816 
1817 bool __weak arch_cpuhp_init_parallel_bringup(void)
1818 {
1819 	return true;
1820 }
1821 
1822 /*
1823  * On architectures which have enabled parallel bringup this invokes all BP
1824  * prepare states for each of the to be onlined APs first. The last state
1825  * sends the startup IPI to the APs. The APs proceed through the low level
1826  * bringup code in parallel and then wait for the control CPU to release
1827  * them one by one for the final onlining procedure.
1828  *
1829  * This avoids waiting for each AP to respond to the startup IPI in
1830  * CPUHP_BRINGUP_CPU.
1831  */
1832 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1833 {
1834 	const struct cpumask *mask = cpu_present_mask;
1835 
1836 	if (__cpuhp_parallel_bringup)
1837 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1838 	if (!__cpuhp_parallel_bringup)
1839 		return false;
1840 
1841 	if (cpuhp_smt_aware()) {
1842 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1843 		static struct cpumask tmp_mask __initdata;
1844 
1845 		/*
1846 		 * X86 requires to prevent that SMT siblings stopped while
1847 		 * the primary thread does a microcode update for various
1848 		 * reasons. Bring the primary threads up first.
1849 		 */
1850 		cpumask_and(&tmp_mask, mask, pmask);
1851 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1852 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1853 		/* Account for the online CPUs */
1854 		ncpus -= num_online_cpus();
1855 		if (!ncpus)
1856 			return true;
1857 		/* Create the mask for secondary CPUs */
1858 		cpumask_andnot(&tmp_mask, mask, pmask);
1859 		mask = &tmp_mask;
1860 	}
1861 
1862 	/* Bring the not-yet started CPUs up */
1863 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1864 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1865 	return true;
1866 }
1867 #else
1868 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1869 #endif /* CONFIG_HOTPLUG_PARALLEL */
1870 
1871 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1872 {
1873 	if (!max_cpus)
1874 		return;
1875 
1876 	/* Try parallel bringup optimization if enabled */
1877 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1878 		return;
1879 
1880 	/* Full per CPU serialized bringup */
1881 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1882 }
1883 
1884 #ifdef CONFIG_PM_SLEEP_SMP
1885 static cpumask_var_t frozen_cpus;
1886 
1887 int freeze_secondary_cpus(int primary)
1888 {
1889 	int cpu, error = 0;
1890 
1891 	cpu_maps_update_begin();
1892 	if (primary == -1) {
1893 		primary = cpumask_first(cpu_online_mask);
1894 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1895 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1896 	} else {
1897 		if (!cpu_online(primary))
1898 			primary = cpumask_first(cpu_online_mask);
1899 	}
1900 
1901 	/*
1902 	 * We take down all of the non-boot CPUs in one shot to avoid races
1903 	 * with the userspace trying to use the CPU hotplug at the same time
1904 	 */
1905 	cpumask_clear(frozen_cpus);
1906 
1907 	pr_info("Disabling non-boot CPUs ...\n");
1908 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1909 		if (!cpu_online(cpu) || cpu == primary)
1910 			continue;
1911 
1912 		if (pm_wakeup_pending()) {
1913 			pr_info("Wakeup pending. Abort CPU freeze\n");
1914 			error = -EBUSY;
1915 			break;
1916 		}
1917 
1918 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1919 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1920 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1921 		if (!error)
1922 			cpumask_set_cpu(cpu, frozen_cpus);
1923 		else {
1924 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1925 			break;
1926 		}
1927 	}
1928 
1929 	if (!error)
1930 		BUG_ON(num_online_cpus() > 1);
1931 	else
1932 		pr_err("Non-boot CPUs are not disabled\n");
1933 
1934 	/*
1935 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1936 	 * this even in case of failure as all freeze_secondary_cpus() users are
1937 	 * supposed to do thaw_secondary_cpus() on the failure path.
1938 	 */
1939 	cpu_hotplug_disabled++;
1940 
1941 	cpu_maps_update_done();
1942 	return error;
1943 }
1944 
1945 void __weak arch_thaw_secondary_cpus_begin(void)
1946 {
1947 }
1948 
1949 void __weak arch_thaw_secondary_cpus_end(void)
1950 {
1951 }
1952 
1953 void thaw_secondary_cpus(void)
1954 {
1955 	int cpu, error;
1956 
1957 	/* Allow everyone to use the CPU hotplug again */
1958 	cpu_maps_update_begin();
1959 	__cpu_hotplug_enable();
1960 	if (cpumask_empty(frozen_cpus))
1961 		goto out;
1962 
1963 	pr_info("Enabling non-boot CPUs ...\n");
1964 
1965 	arch_thaw_secondary_cpus_begin();
1966 
1967 	for_each_cpu(cpu, frozen_cpus) {
1968 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1969 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1970 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1971 		if (!error) {
1972 			pr_info("CPU%d is up\n", cpu);
1973 			continue;
1974 		}
1975 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1976 	}
1977 
1978 	arch_thaw_secondary_cpus_end();
1979 
1980 	cpumask_clear(frozen_cpus);
1981 out:
1982 	cpu_maps_update_done();
1983 }
1984 
1985 static int __init alloc_frozen_cpus(void)
1986 {
1987 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1988 		return -ENOMEM;
1989 	return 0;
1990 }
1991 core_initcall(alloc_frozen_cpus);
1992 
1993 /*
1994  * When callbacks for CPU hotplug notifications are being executed, we must
1995  * ensure that the state of the system with respect to the tasks being frozen
1996  * or not, as reported by the notification, remains unchanged *throughout the
1997  * duration* of the execution of the callbacks.
1998  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1999  *
2000  * This synchronization is implemented by mutually excluding regular CPU
2001  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2002  * Hibernate notifications.
2003  */
2004 static int
2005 cpu_hotplug_pm_callback(struct notifier_block *nb,
2006 			unsigned long action, void *ptr)
2007 {
2008 	switch (action) {
2009 
2010 	case PM_SUSPEND_PREPARE:
2011 	case PM_HIBERNATION_PREPARE:
2012 		cpu_hotplug_disable();
2013 		break;
2014 
2015 	case PM_POST_SUSPEND:
2016 	case PM_POST_HIBERNATION:
2017 		cpu_hotplug_enable();
2018 		break;
2019 
2020 	default:
2021 		return NOTIFY_DONE;
2022 	}
2023 
2024 	return NOTIFY_OK;
2025 }
2026 
2027 
2028 static int __init cpu_hotplug_pm_sync_init(void)
2029 {
2030 	/*
2031 	 * cpu_hotplug_pm_callback has higher priority than x86
2032 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2033 	 * to disable cpu hotplug to avoid cpu hotplug race.
2034 	 */
2035 	pm_notifier(cpu_hotplug_pm_callback, 0);
2036 	return 0;
2037 }
2038 core_initcall(cpu_hotplug_pm_sync_init);
2039 
2040 #endif /* CONFIG_PM_SLEEP_SMP */
2041 
2042 int __boot_cpu_id;
2043 
2044 #endif /* CONFIG_SMP */
2045 
2046 /* Boot processor state steps */
2047 static struct cpuhp_step cpuhp_hp_states[] = {
2048 	[CPUHP_OFFLINE] = {
2049 		.name			= "offline",
2050 		.startup.single		= NULL,
2051 		.teardown.single	= NULL,
2052 	},
2053 #ifdef CONFIG_SMP
2054 	[CPUHP_CREATE_THREADS]= {
2055 		.name			= "threads:prepare",
2056 		.startup.single		= smpboot_create_threads,
2057 		.teardown.single	= NULL,
2058 		.cant_stop		= true,
2059 	},
2060 	[CPUHP_RANDOM_PREPARE] = {
2061 		.name			= "random:prepare",
2062 		.startup.single		= random_prepare_cpu,
2063 		.teardown.single	= NULL,
2064 	},
2065 	[CPUHP_WORKQUEUE_PREP] = {
2066 		.name			= "workqueue:prepare",
2067 		.startup.single		= workqueue_prepare_cpu,
2068 		.teardown.single	= NULL,
2069 	},
2070 	[CPUHP_HRTIMERS_PREPARE] = {
2071 		.name			= "hrtimers:prepare",
2072 		.startup.single		= hrtimers_prepare_cpu,
2073 		.teardown.single	= NULL,
2074 	},
2075 	[CPUHP_SMPCFD_PREPARE] = {
2076 		.name			= "smpcfd:prepare",
2077 		.startup.single		= smpcfd_prepare_cpu,
2078 		.teardown.single	= smpcfd_dead_cpu,
2079 	},
2080 	[CPUHP_RELAY_PREPARE] = {
2081 		.name			= "relay:prepare",
2082 		.startup.single		= relay_prepare_cpu,
2083 		.teardown.single	= NULL,
2084 	},
2085 	[CPUHP_RCUTREE_PREP] = {
2086 		.name			= "RCU/tree:prepare",
2087 		.startup.single		= rcutree_prepare_cpu,
2088 		.teardown.single	= rcutree_dead_cpu,
2089 	},
2090 	/*
2091 	 * On the tear-down path, timers_dead_cpu() must be invoked
2092 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2093 	 * otherwise a RCU stall occurs.
2094 	 */
2095 	[CPUHP_TIMERS_PREPARE] = {
2096 		.name			= "timers:prepare",
2097 		.startup.single		= timers_prepare_cpu,
2098 		.teardown.single	= timers_dead_cpu,
2099 	},
2100 
2101 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2102 	/*
2103 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2104 	 * the next step will release it.
2105 	 */
2106 	[CPUHP_BP_KICK_AP] = {
2107 		.name			= "cpu:kick_ap",
2108 		.startup.single		= cpuhp_kick_ap_alive,
2109 	},
2110 
2111 	/*
2112 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2113 	 * releases it for the complete bringup.
2114 	 */
2115 	[CPUHP_BRINGUP_CPU] = {
2116 		.name			= "cpu:bringup",
2117 		.startup.single		= cpuhp_bringup_ap,
2118 		.teardown.single	= finish_cpu,
2119 		.cant_stop		= true,
2120 	},
2121 #else
2122 	/*
2123 	 * All-in-one CPU bringup state which includes the kick alive.
2124 	 */
2125 	[CPUHP_BRINGUP_CPU] = {
2126 		.name			= "cpu:bringup",
2127 		.startup.single		= bringup_cpu,
2128 		.teardown.single	= finish_cpu,
2129 		.cant_stop		= true,
2130 	},
2131 #endif
2132 	/* Final state before CPU kills itself */
2133 	[CPUHP_AP_IDLE_DEAD] = {
2134 		.name			= "idle:dead",
2135 	},
2136 	/*
2137 	 * Last state before CPU enters the idle loop to die. Transient state
2138 	 * for synchronization.
2139 	 */
2140 	[CPUHP_AP_OFFLINE] = {
2141 		.name			= "ap:offline",
2142 		.cant_stop		= true,
2143 	},
2144 	/* First state is scheduler control. Interrupts are disabled */
2145 	[CPUHP_AP_SCHED_STARTING] = {
2146 		.name			= "sched:starting",
2147 		.startup.single		= sched_cpu_starting,
2148 		.teardown.single	= sched_cpu_dying,
2149 	},
2150 	[CPUHP_AP_RCUTREE_DYING] = {
2151 		.name			= "RCU/tree:dying",
2152 		.startup.single		= NULL,
2153 		.teardown.single	= rcutree_dying_cpu,
2154 	},
2155 	[CPUHP_AP_SMPCFD_DYING] = {
2156 		.name			= "smpcfd:dying",
2157 		.startup.single		= NULL,
2158 		.teardown.single	= smpcfd_dying_cpu,
2159 	},
2160 	[CPUHP_AP_HRTIMERS_DYING] = {
2161 		.name			= "hrtimers:dying",
2162 		.startup.single		= hrtimers_cpu_starting,
2163 		.teardown.single	= hrtimers_cpu_dying,
2164 	},
2165 	[CPUHP_AP_TICK_DYING] = {
2166 		.name			= "tick:dying",
2167 		.startup.single		= NULL,
2168 		.teardown.single	= tick_cpu_dying,
2169 	},
2170 	/* Entry state on starting. Interrupts enabled from here on. Transient
2171 	 * state for synchronsization */
2172 	[CPUHP_AP_ONLINE] = {
2173 		.name			= "ap:online",
2174 	},
2175 	/*
2176 	 * Handled on control processor until the plugged processor manages
2177 	 * this itself.
2178 	 */
2179 	[CPUHP_TEARDOWN_CPU] = {
2180 		.name			= "cpu:teardown",
2181 		.startup.single		= NULL,
2182 		.teardown.single	= takedown_cpu,
2183 		.cant_stop		= true,
2184 	},
2185 
2186 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2187 		.name			= "sched:waitempty",
2188 		.startup.single		= NULL,
2189 		.teardown.single	= sched_cpu_wait_empty,
2190 	},
2191 
2192 	/* Handle smpboot threads park/unpark */
2193 	[CPUHP_AP_SMPBOOT_THREADS] = {
2194 		.name			= "smpboot/threads:online",
2195 		.startup.single		= smpboot_unpark_threads,
2196 		.teardown.single	= smpboot_park_threads,
2197 	},
2198 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2199 		.name			= "irq/affinity:online",
2200 		.startup.single		= irq_affinity_online_cpu,
2201 		.teardown.single	= NULL,
2202 	},
2203 	[CPUHP_AP_PERF_ONLINE] = {
2204 		.name			= "perf:online",
2205 		.startup.single		= perf_event_init_cpu,
2206 		.teardown.single	= perf_event_exit_cpu,
2207 	},
2208 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2209 		.name			= "lockup_detector:online",
2210 		.startup.single		= lockup_detector_online_cpu,
2211 		.teardown.single	= lockup_detector_offline_cpu,
2212 	},
2213 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2214 		.name			= "workqueue:online",
2215 		.startup.single		= workqueue_online_cpu,
2216 		.teardown.single	= workqueue_offline_cpu,
2217 	},
2218 	[CPUHP_AP_RANDOM_ONLINE] = {
2219 		.name			= "random:online",
2220 		.startup.single		= random_online_cpu,
2221 		.teardown.single	= NULL,
2222 	},
2223 	[CPUHP_AP_RCUTREE_ONLINE] = {
2224 		.name			= "RCU/tree:online",
2225 		.startup.single		= rcutree_online_cpu,
2226 		.teardown.single	= rcutree_offline_cpu,
2227 	},
2228 #endif
2229 	/*
2230 	 * The dynamically registered state space is here
2231 	 */
2232 
2233 #ifdef CONFIG_SMP
2234 	/* Last state is scheduler control setting the cpu active */
2235 	[CPUHP_AP_ACTIVE] = {
2236 		.name			= "sched:active",
2237 		.startup.single		= sched_cpu_activate,
2238 		.teardown.single	= sched_cpu_deactivate,
2239 	},
2240 #endif
2241 
2242 	/* CPU is fully up and running. */
2243 	[CPUHP_ONLINE] = {
2244 		.name			= "online",
2245 		.startup.single		= NULL,
2246 		.teardown.single	= NULL,
2247 	},
2248 };
2249 
2250 /* Sanity check for callbacks */
2251 static int cpuhp_cb_check(enum cpuhp_state state)
2252 {
2253 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2254 		return -EINVAL;
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Returns a free for dynamic slot assignment of the Online state. The states
2260  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2261  * by having no name assigned.
2262  */
2263 static int cpuhp_reserve_state(enum cpuhp_state state)
2264 {
2265 	enum cpuhp_state i, end;
2266 	struct cpuhp_step *step;
2267 
2268 	switch (state) {
2269 	case CPUHP_AP_ONLINE_DYN:
2270 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2271 		end = CPUHP_AP_ONLINE_DYN_END;
2272 		break;
2273 	case CPUHP_BP_PREPARE_DYN:
2274 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2275 		end = CPUHP_BP_PREPARE_DYN_END;
2276 		break;
2277 	default:
2278 		return -EINVAL;
2279 	}
2280 
2281 	for (i = state; i <= end; i++, step++) {
2282 		if (!step->name)
2283 			return i;
2284 	}
2285 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2286 	return -ENOSPC;
2287 }
2288 
2289 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2290 				 int (*startup)(unsigned int cpu),
2291 				 int (*teardown)(unsigned int cpu),
2292 				 bool multi_instance)
2293 {
2294 	/* (Un)Install the callbacks for further cpu hotplug operations */
2295 	struct cpuhp_step *sp;
2296 	int ret = 0;
2297 
2298 	/*
2299 	 * If name is NULL, then the state gets removed.
2300 	 *
2301 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2302 	 * the first allocation from these dynamic ranges, so the removal
2303 	 * would trigger a new allocation and clear the wrong (already
2304 	 * empty) state, leaving the callbacks of the to be cleared state
2305 	 * dangling, which causes wreckage on the next hotplug operation.
2306 	 */
2307 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2308 		     state == CPUHP_BP_PREPARE_DYN)) {
2309 		ret = cpuhp_reserve_state(state);
2310 		if (ret < 0)
2311 			return ret;
2312 		state = ret;
2313 	}
2314 	sp = cpuhp_get_step(state);
2315 	if (name && sp->name)
2316 		return -EBUSY;
2317 
2318 	sp->startup.single = startup;
2319 	sp->teardown.single = teardown;
2320 	sp->name = name;
2321 	sp->multi_instance = multi_instance;
2322 	INIT_HLIST_HEAD(&sp->list);
2323 	return ret;
2324 }
2325 
2326 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2327 {
2328 	return cpuhp_get_step(state)->teardown.single;
2329 }
2330 
2331 /*
2332  * Call the startup/teardown function for a step either on the AP or
2333  * on the current CPU.
2334  */
2335 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2336 			    struct hlist_node *node)
2337 {
2338 	struct cpuhp_step *sp = cpuhp_get_step(state);
2339 	int ret;
2340 
2341 	/*
2342 	 * If there's nothing to do, we done.
2343 	 * Relies on the union for multi_instance.
2344 	 */
2345 	if (cpuhp_step_empty(bringup, sp))
2346 		return 0;
2347 	/*
2348 	 * The non AP bound callbacks can fail on bringup. On teardown
2349 	 * e.g. module removal we crash for now.
2350 	 */
2351 #ifdef CONFIG_SMP
2352 	if (cpuhp_is_ap_state(state))
2353 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2354 	else
2355 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2356 #else
2357 	if (cpuhp_is_atomic_state(state)) {
2358 		guard(irqsave)();
2359 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2360 		/* STARTING/DYING must not fail! */
2361 		WARN_ON_ONCE(ret);
2362 	} else {
2363 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2364 	}
2365 #endif
2366 	BUG_ON(ret && !bringup);
2367 	return ret;
2368 }
2369 
2370 /*
2371  * Called from __cpuhp_setup_state on a recoverable failure.
2372  *
2373  * Note: The teardown callbacks for rollback are not allowed to fail!
2374  */
2375 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2376 				   struct hlist_node *node)
2377 {
2378 	int cpu;
2379 
2380 	/* Roll back the already executed steps on the other cpus */
2381 	for_each_present_cpu(cpu) {
2382 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2383 		int cpustate = st->state;
2384 
2385 		if (cpu >= failedcpu)
2386 			break;
2387 
2388 		/* Did we invoke the startup call on that cpu ? */
2389 		if (cpustate >= state)
2390 			cpuhp_issue_call(cpu, state, false, node);
2391 	}
2392 }
2393 
2394 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2395 					  struct hlist_node *node,
2396 					  bool invoke)
2397 {
2398 	struct cpuhp_step *sp;
2399 	int cpu;
2400 	int ret;
2401 
2402 	lockdep_assert_cpus_held();
2403 
2404 	sp = cpuhp_get_step(state);
2405 	if (sp->multi_instance == false)
2406 		return -EINVAL;
2407 
2408 	mutex_lock(&cpuhp_state_mutex);
2409 
2410 	if (!invoke || !sp->startup.multi)
2411 		goto add_node;
2412 
2413 	/*
2414 	 * Try to call the startup callback for each present cpu
2415 	 * depending on the hotplug state of the cpu.
2416 	 */
2417 	for_each_present_cpu(cpu) {
2418 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2419 		int cpustate = st->state;
2420 
2421 		if (cpustate < state)
2422 			continue;
2423 
2424 		ret = cpuhp_issue_call(cpu, state, true, node);
2425 		if (ret) {
2426 			if (sp->teardown.multi)
2427 				cpuhp_rollback_install(cpu, state, node);
2428 			goto unlock;
2429 		}
2430 	}
2431 add_node:
2432 	ret = 0;
2433 	hlist_add_head(node, &sp->list);
2434 unlock:
2435 	mutex_unlock(&cpuhp_state_mutex);
2436 	return ret;
2437 }
2438 
2439 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2440 			       bool invoke)
2441 {
2442 	int ret;
2443 
2444 	cpus_read_lock();
2445 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2446 	cpus_read_unlock();
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2450 
2451 /**
2452  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2453  * @state:		The state to setup
2454  * @name:		Name of the step
2455  * @invoke:		If true, the startup function is invoked for cpus where
2456  *			cpu state >= @state
2457  * @startup:		startup callback function
2458  * @teardown:		teardown callback function
2459  * @multi_instance:	State is set up for multiple instances which get
2460  *			added afterwards.
2461  *
2462  * The caller needs to hold cpus read locked while calling this function.
2463  * Return:
2464  *   On success:
2465  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2466  *      0 for all other states
2467  *   On failure: proper (negative) error code
2468  */
2469 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2470 				   const char *name, bool invoke,
2471 				   int (*startup)(unsigned int cpu),
2472 				   int (*teardown)(unsigned int cpu),
2473 				   bool multi_instance)
2474 {
2475 	int cpu, ret = 0;
2476 	bool dynstate;
2477 
2478 	lockdep_assert_cpus_held();
2479 
2480 	if (cpuhp_cb_check(state) || !name)
2481 		return -EINVAL;
2482 
2483 	mutex_lock(&cpuhp_state_mutex);
2484 
2485 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2486 				    multi_instance);
2487 
2488 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2489 	if (ret > 0 && dynstate) {
2490 		state = ret;
2491 		ret = 0;
2492 	}
2493 
2494 	if (ret || !invoke || !startup)
2495 		goto out;
2496 
2497 	/*
2498 	 * Try to call the startup callback for each present cpu
2499 	 * depending on the hotplug state of the cpu.
2500 	 */
2501 	for_each_present_cpu(cpu) {
2502 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2503 		int cpustate = st->state;
2504 
2505 		if (cpustate < state)
2506 			continue;
2507 
2508 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2509 		if (ret) {
2510 			if (teardown)
2511 				cpuhp_rollback_install(cpu, state, NULL);
2512 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2513 			goto out;
2514 		}
2515 	}
2516 out:
2517 	mutex_unlock(&cpuhp_state_mutex);
2518 	/*
2519 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2520 	 * return the dynamically allocated state in case of success.
2521 	 */
2522 	if (!ret && dynstate)
2523 		return state;
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2527 
2528 int __cpuhp_setup_state(enum cpuhp_state state,
2529 			const char *name, bool invoke,
2530 			int (*startup)(unsigned int cpu),
2531 			int (*teardown)(unsigned int cpu),
2532 			bool multi_instance)
2533 {
2534 	int ret;
2535 
2536 	cpus_read_lock();
2537 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2538 					     teardown, multi_instance);
2539 	cpus_read_unlock();
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL(__cpuhp_setup_state);
2543 
2544 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2545 				  struct hlist_node *node, bool invoke)
2546 {
2547 	struct cpuhp_step *sp = cpuhp_get_step(state);
2548 	int cpu;
2549 
2550 	BUG_ON(cpuhp_cb_check(state));
2551 
2552 	if (!sp->multi_instance)
2553 		return -EINVAL;
2554 
2555 	cpus_read_lock();
2556 	mutex_lock(&cpuhp_state_mutex);
2557 
2558 	if (!invoke || !cpuhp_get_teardown_cb(state))
2559 		goto remove;
2560 	/*
2561 	 * Call the teardown callback for each present cpu depending
2562 	 * on the hotplug state of the cpu. This function is not
2563 	 * allowed to fail currently!
2564 	 */
2565 	for_each_present_cpu(cpu) {
2566 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2567 		int cpustate = st->state;
2568 
2569 		if (cpustate >= state)
2570 			cpuhp_issue_call(cpu, state, false, node);
2571 	}
2572 
2573 remove:
2574 	hlist_del(node);
2575 	mutex_unlock(&cpuhp_state_mutex);
2576 	cpus_read_unlock();
2577 
2578 	return 0;
2579 }
2580 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2581 
2582 /**
2583  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2584  * @state:	The state to remove
2585  * @invoke:	If true, the teardown function is invoked for cpus where
2586  *		cpu state >= @state
2587  *
2588  * The caller needs to hold cpus read locked while calling this function.
2589  * The teardown callback is currently not allowed to fail. Think
2590  * about module removal!
2591  */
2592 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2593 {
2594 	struct cpuhp_step *sp = cpuhp_get_step(state);
2595 	int cpu;
2596 
2597 	BUG_ON(cpuhp_cb_check(state));
2598 
2599 	lockdep_assert_cpus_held();
2600 
2601 	mutex_lock(&cpuhp_state_mutex);
2602 	if (sp->multi_instance) {
2603 		WARN(!hlist_empty(&sp->list),
2604 		     "Error: Removing state %d which has instances left.\n",
2605 		     state);
2606 		goto remove;
2607 	}
2608 
2609 	if (!invoke || !cpuhp_get_teardown_cb(state))
2610 		goto remove;
2611 
2612 	/*
2613 	 * Call the teardown callback for each present cpu depending
2614 	 * on the hotplug state of the cpu. This function is not
2615 	 * allowed to fail currently!
2616 	 */
2617 	for_each_present_cpu(cpu) {
2618 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2619 		int cpustate = st->state;
2620 
2621 		if (cpustate >= state)
2622 			cpuhp_issue_call(cpu, state, false, NULL);
2623 	}
2624 remove:
2625 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2626 	mutex_unlock(&cpuhp_state_mutex);
2627 }
2628 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2629 
2630 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2631 {
2632 	cpus_read_lock();
2633 	__cpuhp_remove_state_cpuslocked(state, invoke);
2634 	cpus_read_unlock();
2635 }
2636 EXPORT_SYMBOL(__cpuhp_remove_state);
2637 
2638 #ifdef CONFIG_HOTPLUG_SMT
2639 static void cpuhp_offline_cpu_device(unsigned int cpu)
2640 {
2641 	struct device *dev = get_cpu_device(cpu);
2642 
2643 	dev->offline = true;
2644 	/* Tell user space about the state change */
2645 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2646 }
2647 
2648 static void cpuhp_online_cpu_device(unsigned int cpu)
2649 {
2650 	struct device *dev = get_cpu_device(cpu);
2651 
2652 	dev->offline = false;
2653 	/* Tell user space about the state change */
2654 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2655 }
2656 
2657 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2658 {
2659 	int cpu, ret = 0;
2660 
2661 	cpu_maps_update_begin();
2662 	for_each_online_cpu(cpu) {
2663 		if (topology_is_primary_thread(cpu))
2664 			continue;
2665 		/*
2666 		 * Disable can be called with CPU_SMT_ENABLED when changing
2667 		 * from a higher to lower number of SMT threads per core.
2668 		 */
2669 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2670 			continue;
2671 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2672 		if (ret)
2673 			break;
2674 		/*
2675 		 * As this needs to hold the cpu maps lock it's impossible
2676 		 * to call device_offline() because that ends up calling
2677 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2678 		 * needs to be held as this might race against in kernel
2679 		 * abusers of the hotplug machinery (thermal management).
2680 		 *
2681 		 * So nothing would update device:offline state. That would
2682 		 * leave the sysfs entry stale and prevent onlining after
2683 		 * smt control has been changed to 'off' again. This is
2684 		 * called under the sysfs hotplug lock, so it is properly
2685 		 * serialized against the regular offline usage.
2686 		 */
2687 		cpuhp_offline_cpu_device(cpu);
2688 	}
2689 	if (!ret)
2690 		cpu_smt_control = ctrlval;
2691 	cpu_maps_update_done();
2692 	return ret;
2693 }
2694 
2695 /* Check if the core a CPU belongs to is online */
2696 #if !defined(topology_is_core_online)
2697 static inline bool topology_is_core_online(unsigned int cpu)
2698 {
2699 	return true;
2700 }
2701 #endif
2702 
2703 int cpuhp_smt_enable(void)
2704 {
2705 	int cpu, ret = 0;
2706 
2707 	cpu_maps_update_begin();
2708 	cpu_smt_control = CPU_SMT_ENABLED;
2709 	for_each_present_cpu(cpu) {
2710 		/* Skip online CPUs and CPUs on offline nodes */
2711 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2712 			continue;
2713 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2714 			continue;
2715 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2716 		if (ret)
2717 			break;
2718 		/* See comment in cpuhp_smt_disable() */
2719 		cpuhp_online_cpu_device(cpu);
2720 	}
2721 	cpu_maps_update_done();
2722 	return ret;
2723 }
2724 #endif
2725 
2726 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2727 static ssize_t state_show(struct device *dev,
2728 			  struct device_attribute *attr, char *buf)
2729 {
2730 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2731 
2732 	return sprintf(buf, "%d\n", st->state);
2733 }
2734 static DEVICE_ATTR_RO(state);
2735 
2736 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2737 			    const char *buf, size_t count)
2738 {
2739 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2740 	struct cpuhp_step *sp;
2741 	int target, ret;
2742 
2743 	ret = kstrtoint(buf, 10, &target);
2744 	if (ret)
2745 		return ret;
2746 
2747 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2748 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2749 		return -EINVAL;
2750 #else
2751 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2752 		return -EINVAL;
2753 #endif
2754 
2755 	ret = lock_device_hotplug_sysfs();
2756 	if (ret)
2757 		return ret;
2758 
2759 	mutex_lock(&cpuhp_state_mutex);
2760 	sp = cpuhp_get_step(target);
2761 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2762 	mutex_unlock(&cpuhp_state_mutex);
2763 	if (ret)
2764 		goto out;
2765 
2766 	if (st->state < target)
2767 		ret = cpu_up(dev->id, target);
2768 	else if (st->state > target)
2769 		ret = cpu_down(dev->id, target);
2770 	else if (WARN_ON(st->target != target))
2771 		st->target = target;
2772 out:
2773 	unlock_device_hotplug();
2774 	return ret ? ret : count;
2775 }
2776 
2777 static ssize_t target_show(struct device *dev,
2778 			   struct device_attribute *attr, char *buf)
2779 {
2780 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2781 
2782 	return sprintf(buf, "%d\n", st->target);
2783 }
2784 static DEVICE_ATTR_RW(target);
2785 
2786 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2787 			  const char *buf, size_t count)
2788 {
2789 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2790 	struct cpuhp_step *sp;
2791 	int fail, ret;
2792 
2793 	ret = kstrtoint(buf, 10, &fail);
2794 	if (ret)
2795 		return ret;
2796 
2797 	if (fail == CPUHP_INVALID) {
2798 		st->fail = fail;
2799 		return count;
2800 	}
2801 
2802 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2803 		return -EINVAL;
2804 
2805 	/*
2806 	 * Cannot fail STARTING/DYING callbacks.
2807 	 */
2808 	if (cpuhp_is_atomic_state(fail))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * DEAD callbacks cannot fail...
2813 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2814 	 * triggering STARTING callbacks, a failure in this state would
2815 	 * hinder rollback.
2816 	 */
2817 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2818 		return -EINVAL;
2819 
2820 	/*
2821 	 * Cannot fail anything that doesn't have callbacks.
2822 	 */
2823 	mutex_lock(&cpuhp_state_mutex);
2824 	sp = cpuhp_get_step(fail);
2825 	if (!sp->startup.single && !sp->teardown.single)
2826 		ret = -EINVAL;
2827 	mutex_unlock(&cpuhp_state_mutex);
2828 	if (ret)
2829 		return ret;
2830 
2831 	st->fail = fail;
2832 
2833 	return count;
2834 }
2835 
2836 static ssize_t fail_show(struct device *dev,
2837 			 struct device_attribute *attr, char *buf)
2838 {
2839 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2840 
2841 	return sprintf(buf, "%d\n", st->fail);
2842 }
2843 
2844 static DEVICE_ATTR_RW(fail);
2845 
2846 static struct attribute *cpuhp_cpu_attrs[] = {
2847 	&dev_attr_state.attr,
2848 	&dev_attr_target.attr,
2849 	&dev_attr_fail.attr,
2850 	NULL
2851 };
2852 
2853 static const struct attribute_group cpuhp_cpu_attr_group = {
2854 	.attrs = cpuhp_cpu_attrs,
2855 	.name = "hotplug",
2856 };
2857 
2858 static ssize_t states_show(struct device *dev,
2859 				 struct device_attribute *attr, char *buf)
2860 {
2861 	ssize_t cur, res = 0;
2862 	int i;
2863 
2864 	mutex_lock(&cpuhp_state_mutex);
2865 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2866 		struct cpuhp_step *sp = cpuhp_get_step(i);
2867 
2868 		if (sp->name) {
2869 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2870 			buf += cur;
2871 			res += cur;
2872 		}
2873 	}
2874 	mutex_unlock(&cpuhp_state_mutex);
2875 	return res;
2876 }
2877 static DEVICE_ATTR_RO(states);
2878 
2879 static struct attribute *cpuhp_cpu_root_attrs[] = {
2880 	&dev_attr_states.attr,
2881 	NULL
2882 };
2883 
2884 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2885 	.attrs = cpuhp_cpu_root_attrs,
2886 	.name = "hotplug",
2887 };
2888 
2889 #ifdef CONFIG_HOTPLUG_SMT
2890 
2891 static bool cpu_smt_num_threads_valid(unsigned int threads)
2892 {
2893 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2894 		return threads >= 1 && threads <= cpu_smt_max_threads;
2895 	return threads == 1 || threads == cpu_smt_max_threads;
2896 }
2897 
2898 static ssize_t
2899 __store_smt_control(struct device *dev, struct device_attribute *attr,
2900 		    const char *buf, size_t count)
2901 {
2902 	int ctrlval, ret, num_threads, orig_threads;
2903 	bool force_off;
2904 
2905 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2906 		return -EPERM;
2907 
2908 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2909 		return -ENODEV;
2910 
2911 	if (sysfs_streq(buf, "on")) {
2912 		ctrlval = CPU_SMT_ENABLED;
2913 		num_threads = cpu_smt_max_threads;
2914 	} else if (sysfs_streq(buf, "off")) {
2915 		ctrlval = CPU_SMT_DISABLED;
2916 		num_threads = 1;
2917 	} else if (sysfs_streq(buf, "forceoff")) {
2918 		ctrlval = CPU_SMT_FORCE_DISABLED;
2919 		num_threads = 1;
2920 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2921 		if (num_threads == 1)
2922 			ctrlval = CPU_SMT_DISABLED;
2923 		else if (cpu_smt_num_threads_valid(num_threads))
2924 			ctrlval = CPU_SMT_ENABLED;
2925 		else
2926 			return -EINVAL;
2927 	} else {
2928 		return -EINVAL;
2929 	}
2930 
2931 	ret = lock_device_hotplug_sysfs();
2932 	if (ret)
2933 		return ret;
2934 
2935 	orig_threads = cpu_smt_num_threads;
2936 	cpu_smt_num_threads = num_threads;
2937 
2938 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2939 
2940 	if (num_threads > orig_threads)
2941 		ret = cpuhp_smt_enable();
2942 	else if (num_threads < orig_threads || force_off)
2943 		ret = cpuhp_smt_disable(ctrlval);
2944 
2945 	unlock_device_hotplug();
2946 	return ret ? ret : count;
2947 }
2948 
2949 #else /* !CONFIG_HOTPLUG_SMT */
2950 static ssize_t
2951 __store_smt_control(struct device *dev, struct device_attribute *attr,
2952 		    const char *buf, size_t count)
2953 {
2954 	return -ENODEV;
2955 }
2956 #endif /* CONFIG_HOTPLUG_SMT */
2957 
2958 static const char *smt_states[] = {
2959 	[CPU_SMT_ENABLED]		= "on",
2960 	[CPU_SMT_DISABLED]		= "off",
2961 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2962 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2963 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2964 };
2965 
2966 static ssize_t control_show(struct device *dev,
2967 			    struct device_attribute *attr, char *buf)
2968 {
2969 	const char *state = smt_states[cpu_smt_control];
2970 
2971 #ifdef CONFIG_HOTPLUG_SMT
2972 	/*
2973 	 * If SMT is enabled but not all threads are enabled then show the
2974 	 * number of threads. If all threads are enabled show "on". Otherwise
2975 	 * show the state name.
2976 	 */
2977 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2978 	    cpu_smt_num_threads != cpu_smt_max_threads)
2979 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2980 #endif
2981 
2982 	return sysfs_emit(buf, "%s\n", state);
2983 }
2984 
2985 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2986 			     const char *buf, size_t count)
2987 {
2988 	return __store_smt_control(dev, attr, buf, count);
2989 }
2990 static DEVICE_ATTR_RW(control);
2991 
2992 static ssize_t active_show(struct device *dev,
2993 			   struct device_attribute *attr, char *buf)
2994 {
2995 	return sysfs_emit(buf, "%d\n", sched_smt_active());
2996 }
2997 static DEVICE_ATTR_RO(active);
2998 
2999 static struct attribute *cpuhp_smt_attrs[] = {
3000 	&dev_attr_control.attr,
3001 	&dev_attr_active.attr,
3002 	NULL
3003 };
3004 
3005 static const struct attribute_group cpuhp_smt_attr_group = {
3006 	.attrs = cpuhp_smt_attrs,
3007 	.name = "smt",
3008 };
3009 
3010 static int __init cpu_smt_sysfs_init(void)
3011 {
3012 	struct device *dev_root;
3013 	int ret = -ENODEV;
3014 
3015 	dev_root = bus_get_dev_root(&cpu_subsys);
3016 	if (dev_root) {
3017 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3018 		put_device(dev_root);
3019 	}
3020 	return ret;
3021 }
3022 
3023 static int __init cpuhp_sysfs_init(void)
3024 {
3025 	struct device *dev_root;
3026 	int cpu, ret;
3027 
3028 	ret = cpu_smt_sysfs_init();
3029 	if (ret)
3030 		return ret;
3031 
3032 	dev_root = bus_get_dev_root(&cpu_subsys);
3033 	if (dev_root) {
3034 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3035 		put_device(dev_root);
3036 		if (ret)
3037 			return ret;
3038 	}
3039 
3040 	for_each_possible_cpu(cpu) {
3041 		struct device *dev = get_cpu_device(cpu);
3042 
3043 		if (!dev)
3044 			continue;
3045 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3046 		if (ret)
3047 			return ret;
3048 	}
3049 	return 0;
3050 }
3051 device_initcall(cpuhp_sysfs_init);
3052 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3053 
3054 /*
3055  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3056  * represents all NR_CPUS bits binary values of 1<<nr.
3057  *
3058  * It is used by cpumask_of() to get a constant address to a CPU
3059  * mask value that has a single bit set only.
3060  */
3061 
3062 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3063 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3064 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3065 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3066 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3067 
3068 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3069 
3070 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3071 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3072 #if BITS_PER_LONG > 32
3073 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3074 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3075 #endif
3076 };
3077 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3078 
3079 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3080 EXPORT_SYMBOL(cpu_all_bits);
3081 
3082 #ifdef CONFIG_INIT_ALL_POSSIBLE
3083 struct cpumask __cpu_possible_mask __ro_after_init
3084 	= {CPU_BITS_ALL};
3085 unsigned int __num_possible_cpus __ro_after_init = NR_CPUS;
3086 #else
3087 struct cpumask __cpu_possible_mask __ro_after_init;
3088 unsigned int __num_possible_cpus __ro_after_init;
3089 #endif
3090 EXPORT_SYMBOL(__cpu_possible_mask);
3091 EXPORT_SYMBOL(__num_possible_cpus);
3092 
3093 struct cpumask __cpu_online_mask __read_mostly;
3094 EXPORT_SYMBOL(__cpu_online_mask);
3095 
3096 struct cpumask __cpu_enabled_mask __read_mostly;
3097 EXPORT_SYMBOL(__cpu_enabled_mask);
3098 
3099 struct cpumask __cpu_present_mask __read_mostly;
3100 EXPORT_SYMBOL(__cpu_present_mask);
3101 
3102 struct cpumask __cpu_active_mask __read_mostly;
3103 EXPORT_SYMBOL(__cpu_active_mask);
3104 
3105 struct cpumask __cpu_dying_mask __read_mostly;
3106 EXPORT_SYMBOL(__cpu_dying_mask);
3107 
3108 atomic_t __num_online_cpus __read_mostly;
3109 EXPORT_SYMBOL(__num_online_cpus);
3110 
3111 void init_cpu_present(const struct cpumask *src)
3112 {
3113 	cpumask_copy(&__cpu_present_mask, src);
3114 }
3115 
3116 void init_cpu_possible(const struct cpumask *src)
3117 {
3118 	cpumask_copy(&__cpu_possible_mask, src);
3119 	__num_possible_cpus = cpumask_weight(&__cpu_possible_mask);
3120 }
3121 
3122 void set_cpu_online(unsigned int cpu, bool online)
3123 {
3124 	/*
3125 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3126 	 * function by the reboot and kexec code which invoke it from
3127 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3128 	 * regular CPU hotplug is properly serialized.
3129 	 *
3130 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3131 	 * does not protect readers which are not serialized against
3132 	 * concurrent hotplug operations.
3133 	 */
3134 	if (online) {
3135 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3136 			atomic_inc(&__num_online_cpus);
3137 	} else {
3138 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3139 			atomic_dec(&__num_online_cpus);
3140 	}
3141 }
3142 
3143 /*
3144  * This should be marked __init, but there is a boatload of call sites
3145  * which need to be fixed up to do so. Sigh...
3146  */
3147 void set_cpu_possible(unsigned int cpu, bool possible)
3148 {
3149 	if (possible) {
3150 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_possible_mask))
3151 			__num_possible_cpus++;
3152 	} else {
3153 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_possible_mask))
3154 			__num_possible_cpus--;
3155 	}
3156 }
3157 
3158 /*
3159  * Activate the first processor.
3160  */
3161 void __init boot_cpu_init(void)
3162 {
3163 	int cpu = smp_processor_id();
3164 
3165 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3166 	set_cpu_online(cpu, true);
3167 	set_cpu_active(cpu, true);
3168 	set_cpu_present(cpu, true);
3169 	set_cpu_possible(cpu, true);
3170 
3171 #ifdef CONFIG_SMP
3172 	__boot_cpu_id = cpu;
3173 #endif
3174 }
3175 
3176 /*
3177  * Must be called _AFTER_ setting up the per_cpu areas
3178  */
3179 void __init boot_cpu_hotplug_init(void)
3180 {
3181 #ifdef CONFIG_SMP
3182 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3183 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3184 #endif
3185 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3186 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3187 }
3188 
3189 #ifdef CONFIG_CPU_MITIGATIONS
3190 /*
3191  * All except the cross-thread attack vector are mitigated by default.
3192  * Cross-thread mitigation often requires disabling SMT which is expensive
3193  * so cross-thread mitigations are only partially enabled by default.
3194  *
3195  * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is
3196  * present.
3197  */
3198 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = {
3199 	[CPU_MITIGATE_USER_KERNEL] = true,
3200 	[CPU_MITIGATE_USER_USER] = true,
3201 	[CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM),
3202 	[CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM),
3203 };
3204 
3205 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v)
3206 {
3207 	if (v < NR_CPU_ATTACK_VECTORS)
3208 		return attack_vectors[v];
3209 
3210 	WARN_ONCE(1, "Invalid attack vector %d\n", v);
3211 	return false;
3212 }
3213 
3214 /*
3215  * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally
3216  * be combined with attack-vector disables which follow them.
3217  *
3218  * Examples:
3219  *   mitigations=auto,no_user_kernel,no_user_user,no_cross_thread
3220  *   mitigations=auto,nosmt,no_guest_host,no_guest_guest
3221  *
3222  * mitigations=off is equivalent to disabling all attack vectors.
3223  */
3224 enum cpu_mitigations {
3225 	CPU_MITIGATIONS_OFF,
3226 	CPU_MITIGATIONS_AUTO,
3227 	CPU_MITIGATIONS_AUTO_NOSMT,
3228 };
3229 
3230 enum {
3231 	NO_USER_KERNEL,
3232 	NO_USER_USER,
3233 	NO_GUEST_HOST,
3234 	NO_GUEST_GUEST,
3235 	NO_CROSS_THREAD,
3236 	NR_VECTOR_PARAMS,
3237 };
3238 
3239 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO;
3240 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3241 
3242 static const match_table_t global_mitigations = {
3243 	{ CPU_MITIGATIONS_AUTO_NOSMT,	"auto,nosmt"},
3244 	{ CPU_MITIGATIONS_AUTO,		"auto"},
3245 	{ CPU_MITIGATIONS_OFF,		"off"},
3246 };
3247 
3248 static const match_table_t vector_mitigations = {
3249 	{ NO_USER_KERNEL,	"no_user_kernel"},
3250 	{ NO_USER_USER,		"no_user_user"},
3251 	{ NO_GUEST_HOST,	"no_guest_host"},
3252 	{ NO_GUEST_GUEST,	"no_guest_guest"},
3253 	{ NO_CROSS_THREAD,	"no_cross_thread"},
3254 	{ NR_VECTOR_PARAMS,	NULL},
3255 };
3256 
3257 static int __init mitigations_parse_global_opt(char *arg)
3258 {
3259 	int i;
3260 
3261 	for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) {
3262 		const char *pattern = global_mitigations[i].pattern;
3263 
3264 		if (!strncmp(arg, pattern, strlen(pattern))) {
3265 			cpu_mitigations = global_mitigations[i].token;
3266 			return strlen(pattern);
3267 		}
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static int __init mitigations_parse_cmdline(char *arg)
3274 {
3275 	char *s, *p;
3276 	int len;
3277 
3278 	len = mitigations_parse_global_opt(arg);
3279 
3280 	if (cpu_mitigations_off()) {
3281 		memset(attack_vectors, 0, sizeof(attack_vectors));
3282 		smt_mitigations = SMT_MITIGATIONS_OFF;
3283 	} else if (cpu_mitigations_auto_nosmt()) {
3284 		smt_mitigations = SMT_MITIGATIONS_ON;
3285 	}
3286 
3287 	p = arg + len;
3288 
3289 	if (!*p)
3290 		return 0;
3291 
3292 	/* Attack vector controls may come after the ',' */
3293 	if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) {
3294 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",	arg);
3295 		return 0;
3296 	}
3297 
3298 	while ((s = strsep(&p, ",")) != NULL) {
3299 		switch (match_token(s, vector_mitigations, NULL)) {
3300 		case NO_USER_KERNEL:
3301 			attack_vectors[CPU_MITIGATE_USER_KERNEL] = false;
3302 			break;
3303 		case NO_USER_USER:
3304 			attack_vectors[CPU_MITIGATE_USER_USER] = false;
3305 			break;
3306 		case NO_GUEST_HOST:
3307 			attack_vectors[CPU_MITIGATE_GUEST_HOST] = false;
3308 			break;
3309 		case NO_GUEST_GUEST:
3310 			attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false;
3311 			break;
3312 		case NO_CROSS_THREAD:
3313 			smt_mitigations = SMT_MITIGATIONS_OFF;
3314 			break;
3315 		default:
3316 			pr_crit("Unsupported mitigations options %s\n",	s);
3317 			return 0;
3318 		}
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 /* mitigations=off */
3325 bool cpu_mitigations_off(void)
3326 {
3327 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3328 }
3329 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3330 
3331 /* mitigations=auto,nosmt */
3332 bool cpu_mitigations_auto_nosmt(void)
3333 {
3334 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3335 }
3336 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3337 #else
3338 static int __init mitigations_parse_cmdline(char *arg)
3339 {
3340 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3341 	return 0;
3342 }
3343 #endif
3344 early_param("mitigations", mitigations_parse_cmdline);
3345