xref: /linux/kernel/sched/fair.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
81 
82 __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 #ifdef CONFIG_SMP
92 /*
93  * For asym packing, by default the lower numbered CPU has higher priority.
94  */
arch_asym_cpu_priority(int cpu)95 int __weak arch_asym_cpu_priority(int cpu)
96 {
97 	return -cpu;
98 }
99 
100 /*
101  * The margin used when comparing utilization with CPU capacity.
102  *
103  * (default: ~20%)
104  */
105 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
106 
107 /*
108  * The margin used when comparing CPU capacities.
109  * is 'cap1' noticeably greater than 'cap2'
110  *
111  * (default: ~5%)
112  */
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
114 #endif
115 
116 #ifdef CONFIG_CFS_BANDWIDTH
117 /*
118  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119  * each time a cfs_rq requests quota.
120  *
121  * Note: in the case that the slice exceeds the runtime remaining (either due
122  * to consumption or the quota being specified to be smaller than the slice)
123  * we will always only issue the remaining available time.
124  *
125  * (default: 5 msec, units: microseconds)
126  */
127 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
128 #endif
129 
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 #endif
134 
135 #ifdef CONFIG_SYSCTL
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
138 	{
139 		.procname       = "sched_cfs_bandwidth_slice_us",
140 		.data           = &sysctl_sched_cfs_bandwidth_slice,
141 		.maxlen         = sizeof(unsigned int),
142 		.mode           = 0644,
143 		.proc_handler   = proc_dointvec_minmax,
144 		.extra1         = SYSCTL_ONE,
145 	},
146 #endif
147 #ifdef CONFIG_NUMA_BALANCING
148 	{
149 		.procname	= "numa_balancing_promote_rate_limit_MBps",
150 		.data		= &sysctl_numa_balancing_promote_rate_limit,
151 		.maxlen		= sizeof(unsigned int),
152 		.mode		= 0644,
153 		.proc_handler	= proc_dointvec_minmax,
154 		.extra1		= SYSCTL_ZERO,
155 	},
156 #endif /* CONFIG_NUMA_BALANCING */
157 };
158 
sched_fair_sysctl_init(void)159 static int __init sched_fair_sysctl_init(void)
160 {
161 	register_sysctl_init("kernel", sched_fair_sysctls);
162 	return 0;
163 }
164 late_initcall(sched_fair_sysctl_init);
165 #endif
166 
update_load_add(struct load_weight * lw,unsigned long inc)167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
168 {
169 	lw->weight += inc;
170 	lw->inv_weight = 0;
171 }
172 
update_load_sub(struct load_weight * lw,unsigned long dec)173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
174 {
175 	lw->weight -= dec;
176 	lw->inv_weight = 0;
177 }
178 
update_load_set(struct load_weight * lw,unsigned long w)179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
180 {
181 	lw->weight = w;
182 	lw->inv_weight = 0;
183 }
184 
185 /*
186  * Increase the granularity value when there are more CPUs,
187  * because with more CPUs the 'effective latency' as visible
188  * to users decreases. But the relationship is not linear,
189  * so pick a second-best guess by going with the log2 of the
190  * number of CPUs.
191  *
192  * This idea comes from the SD scheduler of Con Kolivas:
193  */
get_update_sysctl_factor(void)194 static unsigned int get_update_sysctl_factor(void)
195 {
196 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
197 	unsigned int factor;
198 
199 	switch (sysctl_sched_tunable_scaling) {
200 	case SCHED_TUNABLESCALING_NONE:
201 		factor = 1;
202 		break;
203 	case SCHED_TUNABLESCALING_LINEAR:
204 		factor = cpus;
205 		break;
206 	case SCHED_TUNABLESCALING_LOG:
207 	default:
208 		factor = 1 + ilog2(cpus);
209 		break;
210 	}
211 
212 	return factor;
213 }
214 
update_sysctl(void)215 static void update_sysctl(void)
216 {
217 	unsigned int factor = get_update_sysctl_factor();
218 
219 #define SET_SYSCTL(name) \
220 	(sysctl_##name = (factor) * normalized_sysctl_##name)
221 	SET_SYSCTL(sched_base_slice);
222 #undef SET_SYSCTL
223 }
224 
sched_init_granularity(void)225 void __init sched_init_granularity(void)
226 {
227 	update_sysctl();
228 }
229 
230 #define WMULT_CONST	(~0U)
231 #define WMULT_SHIFT	32
232 
__update_inv_weight(struct load_weight * lw)233 static void __update_inv_weight(struct load_weight *lw)
234 {
235 	unsigned long w;
236 
237 	if (likely(lw->inv_weight))
238 		return;
239 
240 	w = scale_load_down(lw->weight);
241 
242 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
243 		lw->inv_weight = 1;
244 	else if (unlikely(!w))
245 		lw->inv_weight = WMULT_CONST;
246 	else
247 		lw->inv_weight = WMULT_CONST / w;
248 }
249 
250 /*
251  * delta_exec * weight / lw.weight
252  *   OR
253  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
254  *
255  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256  * we're guaranteed shift stays positive because inv_weight is guaranteed to
257  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
258  *
259  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260  * weight/lw.weight <= 1, and therefore our shift will also be positive.
261  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
263 {
264 	u64 fact = scale_load_down(weight);
265 	u32 fact_hi = (u32)(fact >> 32);
266 	int shift = WMULT_SHIFT;
267 	int fs;
268 
269 	__update_inv_weight(lw);
270 
271 	if (unlikely(fact_hi)) {
272 		fs = fls(fact_hi);
273 		shift -= fs;
274 		fact >>= fs;
275 	}
276 
277 	fact = mul_u32_u32(fact, lw->inv_weight);
278 
279 	fact_hi = (u32)(fact >> 32);
280 	if (fact_hi) {
281 		fs = fls(fact_hi);
282 		shift -= fs;
283 		fact >>= fs;
284 	}
285 
286 	return mul_u64_u32_shr(delta_exec, fact, shift);
287 }
288 
289 /*
290  * delta /= w
291  */
calc_delta_fair(u64 delta,struct sched_entity * se)292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
293 {
294 	if (unlikely(se->load.weight != NICE_0_LOAD))
295 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
296 
297 	return delta;
298 }
299 
300 const struct sched_class fair_sched_class;
301 
302 /**************************************************************
303  * CFS operations on generic schedulable entities:
304  */
305 
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 		for (; se; se = se->parent)
311 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	struct rq *rq = rq_of(cfs_rq);
315 	int cpu = cpu_of(rq);
316 
317 	if (cfs_rq->on_list)
318 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
319 
320 	cfs_rq->on_list = 1;
321 
322 	/*
323 	 * Ensure we either appear before our parent (if already
324 	 * enqueued) or force our parent to appear after us when it is
325 	 * enqueued. The fact that we always enqueue bottom-up
326 	 * reduces this to two cases and a special case for the root
327 	 * cfs_rq. Furthermore, it also means that we will always reset
328 	 * tmp_alone_branch either when the branch is connected
329 	 * to a tree or when we reach the top of the tree
330 	 */
331 	if (cfs_rq->tg->parent &&
332 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
333 		/*
334 		 * If parent is already on the list, we add the child
335 		 * just before. Thanks to circular linked property of
336 		 * the list, this means to put the child at the tail
337 		 * of the list that starts by parent.
338 		 */
339 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
341 		/*
342 		 * The branch is now connected to its tree so we can
343 		 * reset tmp_alone_branch to the beginning of the
344 		 * list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	if (!cfs_rq->tg->parent) {
351 		/*
352 		 * cfs rq without parent should be put
353 		 * at the tail of the list.
354 		 */
355 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 			&rq->leaf_cfs_rq_list);
357 		/*
358 		 * We have reach the top of a tree so we can reset
359 		 * tmp_alone_branch to the beginning of the list.
360 		 */
361 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 		return true;
363 	}
364 
365 	/*
366 	 * The parent has not already been added so we want to
367 	 * make sure that it will be put after us.
368 	 * tmp_alone_branch points to the begin of the branch
369 	 * where we will add parent.
370 	 */
371 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
372 	/*
373 	 * update tmp_alone_branch to points to the new begin
374 	 * of the branch
375 	 */
376 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 	return false;
378 }
379 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
381 {
382 	if (cfs_rq->on_list) {
383 		struct rq *rq = rq_of(cfs_rq);
384 
385 		/*
386 		 * With cfs_rq being unthrottled/throttled during an enqueue,
387 		 * it can happen the tmp_alone_branch points to the leaf that
388 		 * we finally want to delete. In this case, tmp_alone_branch moves
389 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 		 * at the end of the enqueue.
391 		 */
392 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
394 
395 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
396 		cfs_rq->on_list = 0;
397 	}
398 }
399 
assert_list_leaf_cfs_rq(struct rq * rq)400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
401 {
402 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
403 }
404 
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
407 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
408 				 leaf_cfs_rq_list)
409 
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
413 {
414 	if (se->cfs_rq == pse->cfs_rq)
415 		return se->cfs_rq;
416 
417 	return NULL;
418 }
419 
parent_entity(const struct sched_entity * se)420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
421 {
422 	return se->parent;
423 }
424 
425 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427 {
428 	int se_depth, pse_depth;
429 
430 	/*
431 	 * preemption test can be made between sibling entities who are in the
432 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 	 * both tasks until we find their ancestors who are siblings of common
434 	 * parent.
435 	 */
436 
437 	/* First walk up until both entities are at same depth */
438 	se_depth = (*se)->depth;
439 	pse_depth = (*pse)->depth;
440 
441 	while (se_depth > pse_depth) {
442 		se_depth--;
443 		*se = parent_entity(*se);
444 	}
445 
446 	while (pse_depth > se_depth) {
447 		pse_depth--;
448 		*pse = parent_entity(*pse);
449 	}
450 
451 	while (!is_same_group(*se, *pse)) {
452 		*se = parent_entity(*se);
453 		*pse = parent_entity(*pse);
454 	}
455 }
456 
tg_is_idle(struct task_group * tg)457 static int tg_is_idle(struct task_group *tg)
458 {
459 	return tg->idle > 0;
460 }
461 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
463 {
464 	return cfs_rq->idle > 0;
465 }
466 
se_is_idle(struct sched_entity * se)467 static int se_is_idle(struct sched_entity *se)
468 {
469 	if (entity_is_task(se))
470 		return task_has_idle_policy(task_of(se));
471 	return cfs_rq_is_idle(group_cfs_rq(se));
472 }
473 
474 #else	/* !CONFIG_FAIR_GROUP_SCHED */
475 
476 #define for_each_sched_entity(se) \
477 		for (; se; se = NULL)
478 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
480 {
481 	return true;
482 }
483 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 {
486 }
487 
assert_list_leaf_cfs_rq(struct rq * rq)488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 {
490 }
491 
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
493 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
494 
parent_entity(struct sched_entity * se)495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
496 {
497 	return NULL;
498 }
499 
500 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 {
503 }
504 
tg_is_idle(struct task_group * tg)505 static inline int tg_is_idle(struct task_group *tg)
506 {
507 	return 0;
508 }
509 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
511 {
512 	return 0;
513 }
514 
se_is_idle(struct sched_entity * se)515 static int se_is_idle(struct sched_entity *se)
516 {
517 	return task_has_idle_policy(task_of(se));
518 }
519 
520 #endif	/* CONFIG_FAIR_GROUP_SCHED */
521 
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
524 
525 /**************************************************************
526  * Scheduling class tree data structure manipulation methods:
527  */
528 
max_vruntime(u64 max_vruntime,u64 vruntime)529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - max_vruntime);
532 	if (delta > 0)
533 		max_vruntime = vruntime;
534 
535 	return max_vruntime;
536 }
537 
min_vruntime(u64 min_vruntime,u64 vruntime)538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
539 {
540 	s64 delta = (s64)(vruntime - min_vruntime);
541 	if (delta < 0)
542 		min_vruntime = vruntime;
543 
544 	return min_vruntime;
545 }
546 
entity_before(const struct sched_entity * a,const struct sched_entity * b)547 static inline bool entity_before(const struct sched_entity *a,
548 				 const struct sched_entity *b)
549 {
550 	/*
551 	 * Tiebreak on vruntime seems unnecessary since it can
552 	 * hardly happen.
553 	 */
554 	return (s64)(a->deadline - b->deadline) < 0;
555 }
556 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561 
562 #define __node_2_se(node) \
563 	rb_entry((node), struct sched_entity, run_node)
564 
565 /*
566  * Compute virtual time from the per-task service numbers:
567  *
568  * Fair schedulers conserve lag:
569  *
570  *   \Sum lag_i = 0
571  *
572  * Where lag_i is given by:
573  *
574  *   lag_i = S - s_i = w_i * (V - v_i)
575  *
576  * Where S is the ideal service time and V is it's virtual time counterpart.
577  * Therefore:
578  *
579  *   \Sum lag_i = 0
580  *   \Sum w_i * (V - v_i) = 0
581  *   \Sum w_i * V - w_i * v_i = 0
582  *
583  * From which we can solve an expression for V in v_i (which we have in
584  * se->vruntime):
585  *
586  *       \Sum v_i * w_i   \Sum v_i * w_i
587  *   V = -------------- = --------------
588  *          \Sum w_i            W
589  *
590  * Specifically, this is the weighted average of all entity virtual runtimes.
591  *
592  * [[ NOTE: this is only equal to the ideal scheduler under the condition
593  *          that join/leave operations happen at lag_i = 0, otherwise the
594  *          virtual time has non-contiguous motion equivalent to:
595  *
596  *	      V +-= lag_i / W
597  *
598  *	    Also see the comment in place_entity() that deals with this. ]]
599  *
600  * However, since v_i is u64, and the multiplication could easily overflow
601  * transform it into a relative form that uses smaller quantities:
602  *
603  * Substitute: v_i == (v_i - v0) + v0
604  *
605  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
606  * V = ---------------------------- = --------------------- + v0
607  *                  W                            W
608  *
609  * Which we track using:
610  *
611  *                    v0 := cfs_rq->min_vruntime
612  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613  *              \Sum w_i := cfs_rq->avg_load
614  *
615  * Since min_vruntime is a monotonic increasing variable that closely tracks
616  * the per-task service, these deltas: (v_i - v), will be in the order of the
617  * maximal (virtual) lag induced in the system due to quantisation.
618  *
619  * Also, we use scale_load_down() to reduce the size.
620  *
621  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622  */
623 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	unsigned long weight = scale_load_down(se->load.weight);
627 	s64 key = entity_key(cfs_rq, se);
628 
629 	cfs_rq->avg_vruntime += key * weight;
630 	cfs_rq->avg_load += weight;
631 }
632 
633 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 	unsigned long weight = scale_load_down(se->load.weight);
637 	s64 key = entity_key(cfs_rq, se);
638 
639 	cfs_rq->avg_vruntime -= key * weight;
640 	cfs_rq->avg_load -= weight;
641 }
642 
643 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 	/*
647 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 	 */
649 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651 
652 /*
653  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654  * For this to be so, the result of this function must have a left bias.
655  */
avg_vruntime(struct cfs_rq * cfs_rq)656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 	struct sched_entity *curr = cfs_rq->curr;
659 	s64 avg = cfs_rq->avg_vruntime;
660 	long load = cfs_rq->avg_load;
661 
662 	if (curr && curr->on_rq) {
663 		unsigned long weight = scale_load_down(curr->load.weight);
664 
665 		avg += entity_key(cfs_rq, curr) * weight;
666 		load += weight;
667 	}
668 
669 	if (load) {
670 		/* sign flips effective floor / ceiling */
671 		if (avg < 0)
672 			avg -= (load - 1);
673 		avg = div_s64(avg, load);
674 	}
675 
676 	return cfs_rq->min_vruntime + avg;
677 }
678 
679 /*
680  * lag_i = S - s_i = w_i * (V - v_i)
681  *
682  * However, since V is approximated by the weighted average of all entities it
683  * is possible -- by addition/removal/reweight to the tree -- to move V around
684  * and end up with a larger lag than we started with.
685  *
686  * Limit this to either double the slice length with a minimum of TICK_NSEC
687  * since that is the timing granularity.
688  *
689  * EEVDF gives the following limit for a steady state system:
690  *
691  *   -r_max < lag < max(r_max, q)
692  *
693  * XXX could add max_slice to the augmented data to track this.
694  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 	s64 vlag, limit;
698 
699 	WARN_ON_ONCE(!se->on_rq);
700 
701 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703 
704 	se->vlag = clamp(vlag, -limit, limit);
705 }
706 
707 /*
708  * Entity is eligible once it received less service than it ought to have,
709  * eg. lag >= 0.
710  *
711  * lag_i = S - s_i = w_i*(V - v_i)
712  *
713  * lag_i >= 0 -> V >= v_i
714  *
715  *     \Sum (v_i - v)*w_i
716  * V = ------------------ + v
717  *          \Sum w_i
718  *
719  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
720  *
721  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722  *       to the loss in precision caused by the division.
723  */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
725 {
726 	struct sched_entity *curr = cfs_rq->curr;
727 	s64 avg = cfs_rq->avg_vruntime;
728 	long load = cfs_rq->avg_load;
729 
730 	if (curr && curr->on_rq) {
731 		unsigned long weight = scale_load_down(curr->load.weight);
732 
733 		avg += entity_key(cfs_rq, curr) * weight;
734 		load += weight;
735 	}
736 
737 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
738 }
739 
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 	return vruntime_eligible(cfs_rq, se->vruntime);
743 }
744 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
746 {
747 	u64 min_vruntime = cfs_rq->min_vruntime;
748 	/*
749 	 * open coded max_vruntime() to allow updating avg_vruntime
750 	 */
751 	s64 delta = (s64)(vruntime - min_vruntime);
752 	if (delta > 0) {
753 		avg_vruntime_update(cfs_rq, delta);
754 		min_vruntime = vruntime;
755 	}
756 	return min_vruntime;
757 }
758 
update_min_vruntime(struct cfs_rq * cfs_rq)759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
760 {
761 	struct sched_entity *se = __pick_root_entity(cfs_rq);
762 	struct sched_entity *curr = cfs_rq->curr;
763 	u64 vruntime = cfs_rq->min_vruntime;
764 
765 	if (curr) {
766 		if (curr->on_rq)
767 			vruntime = curr->vruntime;
768 		else
769 			curr = NULL;
770 	}
771 
772 	if (se) {
773 		if (!curr)
774 			vruntime = se->min_vruntime;
775 		else
776 			vruntime = min_vruntime(vruntime, se->min_vruntime);
777 	}
778 
779 	/* ensure we never gain time by being placed backwards. */
780 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
781 }
782 
cfs_rq_min_slice(struct cfs_rq * cfs_rq)783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
784 {
785 	struct sched_entity *root = __pick_root_entity(cfs_rq);
786 	struct sched_entity *curr = cfs_rq->curr;
787 	u64 min_slice = ~0ULL;
788 
789 	if (curr && curr->on_rq)
790 		min_slice = curr->slice;
791 
792 	if (root)
793 		min_slice = min(min_slice, root->min_slice);
794 
795 	return min_slice;
796 }
797 
__entity_less(struct rb_node * a,const struct rb_node * b)798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
799 {
800 	return entity_before(__node_2_se(a), __node_2_se(b));
801 }
802 
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
804 
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
806 {
807 	if (node) {
808 		struct sched_entity *rse = __node_2_se(node);
809 		if (vruntime_gt(min_vruntime, se, rse))
810 			se->min_vruntime = rse->min_vruntime;
811 	}
812 }
813 
__min_slice_update(struct sched_entity * se,struct rb_node * node)814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
815 {
816 	if (node) {
817 		struct sched_entity *rse = __node_2_se(node);
818 		if (rse->min_slice < se->min_slice)
819 			se->min_slice = rse->min_slice;
820 	}
821 }
822 
823 /*
824  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
825  */
min_vruntime_update(struct sched_entity * se,bool exit)826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
827 {
828 	u64 old_min_vruntime = se->min_vruntime;
829 	u64 old_min_slice = se->min_slice;
830 	struct rb_node *node = &se->run_node;
831 
832 	se->min_vruntime = se->vruntime;
833 	__min_vruntime_update(se, node->rb_right);
834 	__min_vruntime_update(se, node->rb_left);
835 
836 	se->min_slice = se->slice;
837 	__min_slice_update(se, node->rb_right);
838 	__min_slice_update(se, node->rb_left);
839 
840 	return se->min_vruntime == old_min_vruntime &&
841 	       se->min_slice == old_min_slice;
842 }
843 
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 		     run_node, min_vruntime, min_vruntime_update);
846 
847 /*
848  * Enqueue an entity into the rb-tree:
849  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 	avg_vruntime_add(cfs_rq, se);
853 	se->min_vruntime = se->vruntime;
854 	se->min_slice = se->slice;
855 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 				__entity_less, &min_vruntime_cb);
857 }
858 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
860 {
861 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
862 				  &min_vruntime_cb);
863 	avg_vruntime_sub(cfs_rq, se);
864 }
865 
__pick_root_entity(struct cfs_rq * cfs_rq)866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
867 {
868 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
869 
870 	if (!root)
871 		return NULL;
872 
873 	return __node_2_se(root);
874 }
875 
__pick_first_entity(struct cfs_rq * cfs_rq)876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
877 {
878 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
879 
880 	if (!left)
881 		return NULL;
882 
883 	return __node_2_se(left);
884 }
885 
886 /*
887  * HACK, stash a copy of deadline at the point of pick in vlag,
888  * which isn't used until dequeue.
889  */
set_protect_slice(struct sched_entity * se)890 static inline void set_protect_slice(struct sched_entity *se)
891 {
892 	se->vlag = se->deadline;
893 }
894 
protect_slice(struct sched_entity * se)895 static inline bool protect_slice(struct sched_entity *se)
896 {
897 	return se->vlag == se->deadline;
898 }
899 
cancel_protect_slice(struct sched_entity * se)900 static inline void cancel_protect_slice(struct sched_entity *se)
901 {
902 	if (protect_slice(se))
903 		se->vlag = se->deadline + 1;
904 }
905 
906 /*
907  * Earliest Eligible Virtual Deadline First
908  *
909  * In order to provide latency guarantees for different request sizes
910  * EEVDF selects the best runnable task from two criteria:
911  *
912  *  1) the task must be eligible (must be owed service)
913  *
914  *  2) from those tasks that meet 1), we select the one
915  *     with the earliest virtual deadline.
916  *
917  * We can do this in O(log n) time due to an augmented RB-tree. The
918  * tree keeps the entries sorted on deadline, but also functions as a
919  * heap based on the vruntime by keeping:
920  *
921  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
922  *
923  * Which allows tree pruning through eligibility.
924  */
pick_eevdf(struct cfs_rq * cfs_rq)925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
926 {
927 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
928 	struct sched_entity *se = __pick_first_entity(cfs_rq);
929 	struct sched_entity *curr = cfs_rq->curr;
930 	struct sched_entity *best = NULL;
931 
932 	/*
933 	 * We can safely skip eligibility check if there is only one entity
934 	 * in this cfs_rq, saving some cycles.
935 	 */
936 	if (cfs_rq->nr_queued == 1)
937 		return curr && curr->on_rq ? curr : se;
938 
939 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
940 		curr = NULL;
941 
942 	if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
943 		return curr;
944 
945 	/* Pick the leftmost entity if it's eligible */
946 	if (se && entity_eligible(cfs_rq, se)) {
947 		best = se;
948 		goto found;
949 	}
950 
951 	/* Heap search for the EEVD entity */
952 	while (node) {
953 		struct rb_node *left = node->rb_left;
954 
955 		/*
956 		 * Eligible entities in left subtree are always better
957 		 * choices, since they have earlier deadlines.
958 		 */
959 		if (left && vruntime_eligible(cfs_rq,
960 					__node_2_se(left)->min_vruntime)) {
961 			node = left;
962 			continue;
963 		}
964 
965 		se = __node_2_se(node);
966 
967 		/*
968 		 * The left subtree either is empty or has no eligible
969 		 * entity, so check the current node since it is the one
970 		 * with earliest deadline that might be eligible.
971 		 */
972 		if (entity_eligible(cfs_rq, se)) {
973 			best = se;
974 			break;
975 		}
976 
977 		node = node->rb_right;
978 	}
979 found:
980 	if (!best || (curr && entity_before(curr, best)))
981 		best = curr;
982 
983 	return best;
984 }
985 
__pick_last_entity(struct cfs_rq * cfs_rq)986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
987 {
988 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
989 
990 	if (!last)
991 		return NULL;
992 
993 	return __node_2_se(last);
994 }
995 
996 /**************************************************************
997  * Scheduling class statistics methods:
998  */
999 #ifdef CONFIG_SMP
sched_update_scaling(void)1000 int sched_update_scaling(void)
1001 {
1002 	unsigned int factor = get_update_sysctl_factor();
1003 
1004 #define WRT_SYSCTL(name) \
1005 	(normalized_sysctl_##name = sysctl_##name / (factor))
1006 	WRT_SYSCTL(sched_base_slice);
1007 #undef WRT_SYSCTL
1008 
1009 	return 0;
1010 }
1011 #endif
1012 
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1014 
1015 /*
1016  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017  * this is probably good enough.
1018  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 	if ((s64)(se->vruntime - se->deadline) < 0)
1022 		return false;
1023 
1024 	/*
1025 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 	 * nice) while the request time r_i is determined by
1027 	 * sysctl_sched_base_slice.
1028 	 */
1029 	if (!se->custom_slice)
1030 		se->slice = sysctl_sched_base_slice;
1031 
1032 	/*
1033 	 * EEVDF: vd_i = ve_i + r_i / w_i
1034 	 */
1035 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1036 
1037 	/*
1038 	 * The task has consumed its request, reschedule.
1039 	 */
1040 	return true;
1041 }
1042 
1043 #include "pelt.h"
1044 #ifdef CONFIG_SMP
1045 
1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1047 static unsigned long task_h_load(struct task_struct *p);
1048 static unsigned long capacity_of(int cpu);
1049 
1050 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1051 void init_entity_runnable_average(struct sched_entity *se)
1052 {
1053 	struct sched_avg *sa = &se->avg;
1054 
1055 	memset(sa, 0, sizeof(*sa));
1056 
1057 	/*
1058 	 * Tasks are initialized with full load to be seen as heavy tasks until
1059 	 * they get a chance to stabilize to their real load level.
1060 	 * Group entities are initialized with zero load to reflect the fact that
1061 	 * nothing has been attached to the task group yet.
1062 	 */
1063 	if (entity_is_task(se))
1064 		sa->load_avg = scale_load_down(se->load.weight);
1065 
1066 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1067 }
1068 
1069 /*
1070  * With new tasks being created, their initial util_avgs are extrapolated
1071  * based on the cfs_rq's current util_avg:
1072  *
1073  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1074  *		* se_weight(se)
1075  *
1076  * However, in many cases, the above util_avg does not give a desired
1077  * value. Moreover, the sum of the util_avgs may be divergent, such
1078  * as when the series is a harmonic series.
1079  *
1080  * To solve this problem, we also cap the util_avg of successive tasks to
1081  * only 1/2 of the left utilization budget:
1082  *
1083  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1084  *
1085  * where n denotes the nth task and cpu_scale the CPU capacity.
1086  *
1087  * For example, for a CPU with 1024 of capacity, a simplest series from
1088  * the beginning would be like:
1089  *
1090  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1091  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1092  *
1093  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1094  * if util_avg > util_avg_cap.
1095  */
post_init_entity_util_avg(struct task_struct * p)1096 void post_init_entity_util_avg(struct task_struct *p)
1097 {
1098 	struct sched_entity *se = &p->se;
1099 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1100 	struct sched_avg *sa = &se->avg;
1101 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1102 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1103 
1104 	if (p->sched_class != &fair_sched_class) {
1105 		/*
1106 		 * For !fair tasks do:
1107 		 *
1108 		update_cfs_rq_load_avg(now, cfs_rq);
1109 		attach_entity_load_avg(cfs_rq, se);
1110 		switched_from_fair(rq, p);
1111 		 *
1112 		 * such that the next switched_to_fair() has the
1113 		 * expected state.
1114 		 */
1115 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1116 		return;
1117 	}
1118 
1119 	if (cap > 0) {
1120 		if (cfs_rq->avg.util_avg != 0) {
1121 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1122 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1123 
1124 			if (sa->util_avg > cap)
1125 				sa->util_avg = cap;
1126 		} else {
1127 			sa->util_avg = cap;
1128 		}
1129 	}
1130 
1131 	sa->runnable_avg = sa->util_avg;
1132 }
1133 
1134 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1135 void init_entity_runnable_average(struct sched_entity *se)
1136 {
1137 }
post_init_entity_util_avg(struct task_struct * p)1138 void post_init_entity_util_avg(struct task_struct *p)
1139 {
1140 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1142 {
1143 }
1144 #endif /* CONFIG_SMP */
1145 
update_curr_se(struct rq * rq,struct sched_entity * curr)1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1147 {
1148 	u64 now = rq_clock_task(rq);
1149 	s64 delta_exec;
1150 
1151 	delta_exec = now - curr->exec_start;
1152 	if (unlikely(delta_exec <= 0))
1153 		return delta_exec;
1154 
1155 	curr->exec_start = now;
1156 	curr->sum_exec_runtime += delta_exec;
1157 
1158 	if (schedstat_enabled()) {
1159 		struct sched_statistics *stats;
1160 
1161 		stats = __schedstats_from_se(curr);
1162 		__schedstat_set(stats->exec_max,
1163 				max(delta_exec, stats->exec_max));
1164 	}
1165 
1166 	return delta_exec;
1167 }
1168 
update_curr_task(struct task_struct * p,s64 delta_exec)1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1170 {
1171 	trace_sched_stat_runtime(p, delta_exec);
1172 	account_group_exec_runtime(p, delta_exec);
1173 	cgroup_account_cputime(p, delta_exec);
1174 }
1175 
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1177 {
1178 	if (!sched_feat(PREEMPT_SHORT))
1179 		return false;
1180 
1181 	if (curr->vlag == curr->deadline)
1182 		return false;
1183 
1184 	return !entity_eligible(cfs_rq, curr);
1185 }
1186 
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1188 				    struct sched_entity *pse, struct sched_entity *se)
1189 {
1190 	if (!sched_feat(PREEMPT_SHORT))
1191 		return false;
1192 
1193 	if (pse->slice >= se->slice)
1194 		return false;
1195 
1196 	if (!entity_eligible(cfs_rq, pse))
1197 		return false;
1198 
1199 	if (entity_before(pse, se))
1200 		return true;
1201 
1202 	if (!entity_eligible(cfs_rq, se))
1203 		return true;
1204 
1205 	return false;
1206 }
1207 
1208 /*
1209  * Used by other classes to account runtime.
1210  */
update_curr_common(struct rq * rq)1211 s64 update_curr_common(struct rq *rq)
1212 {
1213 	struct task_struct *donor = rq->donor;
1214 	s64 delta_exec;
1215 
1216 	delta_exec = update_curr_se(rq, &donor->se);
1217 	if (likely(delta_exec > 0))
1218 		update_curr_task(donor, delta_exec);
1219 
1220 	return delta_exec;
1221 }
1222 
1223 /*
1224  * Update the current task's runtime statistics.
1225  */
update_curr(struct cfs_rq * cfs_rq)1226 static void update_curr(struct cfs_rq *cfs_rq)
1227 {
1228 	struct sched_entity *curr = cfs_rq->curr;
1229 	struct rq *rq = rq_of(cfs_rq);
1230 	s64 delta_exec;
1231 	bool resched;
1232 
1233 	if (unlikely(!curr))
1234 		return;
1235 
1236 	delta_exec = update_curr_se(rq, curr);
1237 	if (unlikely(delta_exec <= 0))
1238 		return;
1239 
1240 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1241 	resched = update_deadline(cfs_rq, curr);
1242 	update_min_vruntime(cfs_rq);
1243 
1244 	if (entity_is_task(curr)) {
1245 		struct task_struct *p = task_of(curr);
1246 
1247 		update_curr_task(p, delta_exec);
1248 
1249 		/*
1250 		 * If the fair_server is active, we need to account for the
1251 		 * fair_server time whether or not the task is running on
1252 		 * behalf of fair_server or not:
1253 		 *  - If the task is running on behalf of fair_server, we need
1254 		 *    to limit its time based on the assigned runtime.
1255 		 *  - Fair task that runs outside of fair_server should account
1256 		 *    against fair_server such that it can account for this time
1257 		 *    and possibly avoid running this period.
1258 		 */
1259 		if (dl_server_active(&rq->fair_server))
1260 			dl_server_update(&rq->fair_server, delta_exec);
1261 	}
1262 
1263 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1264 
1265 	if (cfs_rq->nr_queued == 1)
1266 		return;
1267 
1268 	if (resched || did_preempt_short(cfs_rq, curr)) {
1269 		resched_curr_lazy(rq);
1270 		clear_buddies(cfs_rq, curr);
1271 	}
1272 }
1273 
update_curr_fair(struct rq * rq)1274 static void update_curr_fair(struct rq *rq)
1275 {
1276 	update_curr(cfs_rq_of(&rq->donor->se));
1277 }
1278 
1279 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 	struct sched_statistics *stats;
1283 	struct task_struct *p = NULL;
1284 
1285 	if (!schedstat_enabled())
1286 		return;
1287 
1288 	stats = __schedstats_from_se(se);
1289 
1290 	if (entity_is_task(se))
1291 		p = task_of(se);
1292 
1293 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1294 }
1295 
1296 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1298 {
1299 	struct sched_statistics *stats;
1300 	struct task_struct *p = NULL;
1301 
1302 	if (!schedstat_enabled())
1303 		return;
1304 
1305 	stats = __schedstats_from_se(se);
1306 
1307 	/*
1308 	 * When the sched_schedstat changes from 0 to 1, some sched se
1309 	 * maybe already in the runqueue, the se->statistics.wait_start
1310 	 * will be 0.So it will let the delta wrong. We need to avoid this
1311 	 * scenario.
1312 	 */
1313 	if (unlikely(!schedstat_val(stats->wait_start)))
1314 		return;
1315 
1316 	if (entity_is_task(se))
1317 		p = task_of(se);
1318 
1319 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1320 }
1321 
1322 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1324 {
1325 	struct sched_statistics *stats;
1326 	struct task_struct *tsk = NULL;
1327 
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	stats = __schedstats_from_se(se);
1332 
1333 	if (entity_is_task(se))
1334 		tsk = task_of(se);
1335 
1336 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1337 }
1338 
1339 /*
1340  * Task is being enqueued - update stats:
1341  */
1342 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 	if (!schedstat_enabled())
1346 		return;
1347 
1348 	/*
1349 	 * Are we enqueueing a waiting task? (for current tasks
1350 	 * a dequeue/enqueue event is a NOP)
1351 	 */
1352 	if (se != cfs_rq->curr)
1353 		update_stats_wait_start_fair(cfs_rq, se);
1354 
1355 	if (flags & ENQUEUE_WAKEUP)
1356 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1357 }
1358 
1359 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1361 {
1362 
1363 	if (!schedstat_enabled())
1364 		return;
1365 
1366 	/*
1367 	 * Mark the end of the wait period if dequeueing a
1368 	 * waiting task:
1369 	 */
1370 	if (se != cfs_rq->curr)
1371 		update_stats_wait_end_fair(cfs_rq, se);
1372 
1373 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1374 		struct task_struct *tsk = task_of(se);
1375 		unsigned int state;
1376 
1377 		/* XXX racy against TTWU */
1378 		state = READ_ONCE(tsk->__state);
1379 		if (state & TASK_INTERRUPTIBLE)
1380 			__schedstat_set(tsk->stats.sleep_start,
1381 				      rq_clock(rq_of(cfs_rq)));
1382 		if (state & TASK_UNINTERRUPTIBLE)
1383 			__schedstat_set(tsk->stats.block_start,
1384 				      rq_clock(rq_of(cfs_rq)));
1385 	}
1386 }
1387 
1388 /*
1389  * We are picking a new current task - update its stats:
1390  */
1391 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1393 {
1394 	/*
1395 	 * We are starting a new run period:
1396 	 */
1397 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1398 }
1399 
1400 /**************************************************
1401  * Scheduling class queueing methods:
1402  */
1403 
is_core_idle(int cpu)1404 static inline bool is_core_idle(int cpu)
1405 {
1406 #ifdef CONFIG_SCHED_SMT
1407 	int sibling;
1408 
1409 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1410 		if (cpu == sibling)
1411 			continue;
1412 
1413 		if (!idle_cpu(sibling))
1414 			return false;
1415 	}
1416 #endif
1417 
1418 	return true;
1419 }
1420 
1421 #ifdef CONFIG_NUMA
1422 #define NUMA_IMBALANCE_MIN 2
1423 
1424 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1426 {
1427 	/*
1428 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1429 	 * threshold. Above this threshold, individual tasks may be contending
1430 	 * for both memory bandwidth and any shared HT resources.  This is an
1431 	 * approximation as the number of running tasks may not be related to
1432 	 * the number of busy CPUs due to sched_setaffinity.
1433 	 */
1434 	if (dst_running > imb_numa_nr)
1435 		return imbalance;
1436 
1437 	/*
1438 	 * Allow a small imbalance based on a simple pair of communicating
1439 	 * tasks that remain local when the destination is lightly loaded.
1440 	 */
1441 	if (imbalance <= NUMA_IMBALANCE_MIN)
1442 		return 0;
1443 
1444 	return imbalance;
1445 }
1446 #endif /* CONFIG_NUMA */
1447 
1448 #ifdef CONFIG_NUMA_BALANCING
1449 /*
1450  * Approximate time to scan a full NUMA task in ms. The task scan period is
1451  * calculated based on the tasks virtual memory size and
1452  * numa_balancing_scan_size.
1453  */
1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1456 
1457 /* Portion of address space to scan in MB */
1458 unsigned int sysctl_numa_balancing_scan_size = 256;
1459 
1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1461 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1462 
1463 /* The page with hint page fault latency < threshold in ms is considered hot */
1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1465 
1466 struct numa_group {
1467 	refcount_t refcount;
1468 
1469 	spinlock_t lock; /* nr_tasks, tasks */
1470 	int nr_tasks;
1471 	pid_t gid;
1472 	int active_nodes;
1473 
1474 	struct rcu_head rcu;
1475 	unsigned long total_faults;
1476 	unsigned long max_faults_cpu;
1477 	/*
1478 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1479 	 *
1480 	 * Faults_cpu is used to decide whether memory should move
1481 	 * towards the CPU. As a consequence, these stats are weighted
1482 	 * more by CPU use than by memory faults.
1483 	 */
1484 	unsigned long faults[];
1485 };
1486 
1487 /*
1488  * For functions that can be called in multiple contexts that permit reading
1489  * ->numa_group (see struct task_struct for locking rules).
1490  */
deref_task_numa_group(struct task_struct * p)1491 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1492 {
1493 	return rcu_dereference_check(p->numa_group, p == current ||
1494 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1495 }
1496 
deref_curr_numa_group(struct task_struct * p)1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1498 {
1499 	return rcu_dereference_protected(p->numa_group, p == current);
1500 }
1501 
1502 static inline unsigned long group_faults_priv(struct numa_group *ng);
1503 static inline unsigned long group_faults_shared(struct numa_group *ng);
1504 
task_nr_scan_windows(struct task_struct * p)1505 static unsigned int task_nr_scan_windows(struct task_struct *p)
1506 {
1507 	unsigned long rss = 0;
1508 	unsigned long nr_scan_pages;
1509 
1510 	/*
1511 	 * Calculations based on RSS as non-present and empty pages are skipped
1512 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1513 	 * on resident pages
1514 	 */
1515 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1516 	rss = get_mm_rss(p->mm);
1517 	if (!rss)
1518 		rss = nr_scan_pages;
1519 
1520 	rss = round_up(rss, nr_scan_pages);
1521 	return rss / nr_scan_pages;
1522 }
1523 
1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1525 #define MAX_SCAN_WINDOW 2560
1526 
task_scan_min(struct task_struct * p)1527 static unsigned int task_scan_min(struct task_struct *p)
1528 {
1529 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1530 	unsigned int scan, floor;
1531 	unsigned int windows = 1;
1532 
1533 	if (scan_size < MAX_SCAN_WINDOW)
1534 		windows = MAX_SCAN_WINDOW / scan_size;
1535 	floor = 1000 / windows;
1536 
1537 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1538 	return max_t(unsigned int, floor, scan);
1539 }
1540 
task_scan_start(struct task_struct * p)1541 static unsigned int task_scan_start(struct task_struct *p)
1542 {
1543 	unsigned long smin = task_scan_min(p);
1544 	unsigned long period = smin;
1545 	struct numa_group *ng;
1546 
1547 	/* Scale the maximum scan period with the amount of shared memory. */
1548 	rcu_read_lock();
1549 	ng = rcu_dereference(p->numa_group);
1550 	if (ng) {
1551 		unsigned long shared = group_faults_shared(ng);
1552 		unsigned long private = group_faults_priv(ng);
1553 
1554 		period *= refcount_read(&ng->refcount);
1555 		period *= shared + 1;
1556 		period /= private + shared + 1;
1557 	}
1558 	rcu_read_unlock();
1559 
1560 	return max(smin, period);
1561 }
1562 
task_scan_max(struct task_struct * p)1563 static unsigned int task_scan_max(struct task_struct *p)
1564 {
1565 	unsigned long smin = task_scan_min(p);
1566 	unsigned long smax;
1567 	struct numa_group *ng;
1568 
1569 	/* Watch for min being lower than max due to floor calculations */
1570 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1571 
1572 	/* Scale the maximum scan period with the amount of shared memory. */
1573 	ng = deref_curr_numa_group(p);
1574 	if (ng) {
1575 		unsigned long shared = group_faults_shared(ng);
1576 		unsigned long private = group_faults_priv(ng);
1577 		unsigned long period = smax;
1578 
1579 		period *= refcount_read(&ng->refcount);
1580 		period *= shared + 1;
1581 		period /= private + shared + 1;
1582 
1583 		smax = max(smax, period);
1584 	}
1585 
1586 	return max(smin, smax);
1587 }
1588 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1590 {
1591 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1592 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1593 }
1594 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1596 {
1597 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1598 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1599 }
1600 
1601 /* Shared or private faults. */
1602 #define NR_NUMA_HINT_FAULT_TYPES 2
1603 
1604 /* Memory and CPU locality */
1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1606 
1607 /* Averaged statistics, and temporary buffers. */
1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1609 
task_numa_group_id(struct task_struct * p)1610 pid_t task_numa_group_id(struct task_struct *p)
1611 {
1612 	struct numa_group *ng;
1613 	pid_t gid = 0;
1614 
1615 	rcu_read_lock();
1616 	ng = rcu_dereference(p->numa_group);
1617 	if (ng)
1618 		gid = ng->gid;
1619 	rcu_read_unlock();
1620 
1621 	return gid;
1622 }
1623 
1624 /*
1625  * The averaged statistics, shared & private, memory & CPU,
1626  * occupy the first half of the array. The second half of the
1627  * array is for current counters, which are averaged into the
1628  * first set by task_numa_placement.
1629  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1631 {
1632 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1633 }
1634 
task_faults(struct task_struct * p,int nid)1635 static inline unsigned long task_faults(struct task_struct *p, int nid)
1636 {
1637 	if (!p->numa_faults)
1638 		return 0;
1639 
1640 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1641 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1642 }
1643 
group_faults(struct task_struct * p,int nid)1644 static inline unsigned long group_faults(struct task_struct *p, int nid)
1645 {
1646 	struct numa_group *ng = deref_task_numa_group(p);
1647 
1648 	if (!ng)
1649 		return 0;
1650 
1651 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1652 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1653 }
1654 
group_faults_cpu(struct numa_group * group,int nid)1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1656 {
1657 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1658 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1659 }
1660 
group_faults_priv(struct numa_group * ng)1661 static inline unsigned long group_faults_priv(struct numa_group *ng)
1662 {
1663 	unsigned long faults = 0;
1664 	int node;
1665 
1666 	for_each_online_node(node) {
1667 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1668 	}
1669 
1670 	return faults;
1671 }
1672 
group_faults_shared(struct numa_group * ng)1673 static inline unsigned long group_faults_shared(struct numa_group *ng)
1674 {
1675 	unsigned long faults = 0;
1676 	int node;
1677 
1678 	for_each_online_node(node) {
1679 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1680 	}
1681 
1682 	return faults;
1683 }
1684 
1685 /*
1686  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1687  * considered part of a numa group's pseudo-interleaving set. Migrations
1688  * between these nodes are slowed down, to allow things to settle down.
1689  */
1690 #define ACTIVE_NODE_FRACTION 3
1691 
numa_is_active_node(int nid,struct numa_group * ng)1692 static bool numa_is_active_node(int nid, struct numa_group *ng)
1693 {
1694 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1695 }
1696 
1697 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1699 					int lim_dist, bool task)
1700 {
1701 	unsigned long score = 0;
1702 	int node, max_dist;
1703 
1704 	/*
1705 	 * All nodes are directly connected, and the same distance
1706 	 * from each other. No need for fancy placement algorithms.
1707 	 */
1708 	if (sched_numa_topology_type == NUMA_DIRECT)
1709 		return 0;
1710 
1711 	/* sched_max_numa_distance may be changed in parallel. */
1712 	max_dist = READ_ONCE(sched_max_numa_distance);
1713 	/*
1714 	 * This code is called for each node, introducing N^2 complexity,
1715 	 * which should be OK given the number of nodes rarely exceeds 8.
1716 	 */
1717 	for_each_online_node(node) {
1718 		unsigned long faults;
1719 		int dist = node_distance(nid, node);
1720 
1721 		/*
1722 		 * The furthest away nodes in the system are not interesting
1723 		 * for placement; nid was already counted.
1724 		 */
1725 		if (dist >= max_dist || node == nid)
1726 			continue;
1727 
1728 		/*
1729 		 * On systems with a backplane NUMA topology, compare groups
1730 		 * of nodes, and move tasks towards the group with the most
1731 		 * memory accesses. When comparing two nodes at distance
1732 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1733 		 * of each group. Skip other nodes.
1734 		 */
1735 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1736 			continue;
1737 
1738 		/* Add up the faults from nearby nodes. */
1739 		if (task)
1740 			faults = task_faults(p, node);
1741 		else
1742 			faults = group_faults(p, node);
1743 
1744 		/*
1745 		 * On systems with a glueless mesh NUMA topology, there are
1746 		 * no fixed "groups of nodes". Instead, nodes that are not
1747 		 * directly connected bounce traffic through intermediate
1748 		 * nodes; a numa_group can occupy any set of nodes.
1749 		 * The further away a node is, the less the faults count.
1750 		 * This seems to result in good task placement.
1751 		 */
1752 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1753 			faults *= (max_dist - dist);
1754 			faults /= (max_dist - LOCAL_DISTANCE);
1755 		}
1756 
1757 		score += faults;
1758 	}
1759 
1760 	return score;
1761 }
1762 
1763 /*
1764  * These return the fraction of accesses done by a particular task, or
1765  * task group, on a particular numa node.  The group weight is given a
1766  * larger multiplier, in order to group tasks together that are almost
1767  * evenly spread out between numa nodes.
1768  */
task_weight(struct task_struct * p,int nid,int dist)1769 static inline unsigned long task_weight(struct task_struct *p, int nid,
1770 					int dist)
1771 {
1772 	unsigned long faults, total_faults;
1773 
1774 	if (!p->numa_faults)
1775 		return 0;
1776 
1777 	total_faults = p->total_numa_faults;
1778 
1779 	if (!total_faults)
1780 		return 0;
1781 
1782 	faults = task_faults(p, nid);
1783 	faults += score_nearby_nodes(p, nid, dist, true);
1784 
1785 	return 1000 * faults / total_faults;
1786 }
1787 
group_weight(struct task_struct * p,int nid,int dist)1788 static inline unsigned long group_weight(struct task_struct *p, int nid,
1789 					 int dist)
1790 {
1791 	struct numa_group *ng = deref_task_numa_group(p);
1792 	unsigned long faults, total_faults;
1793 
1794 	if (!ng)
1795 		return 0;
1796 
1797 	total_faults = ng->total_faults;
1798 
1799 	if (!total_faults)
1800 		return 0;
1801 
1802 	faults = group_faults(p, nid);
1803 	faults += score_nearby_nodes(p, nid, dist, false);
1804 
1805 	return 1000 * faults / total_faults;
1806 }
1807 
1808 /*
1809  * If memory tiering mode is enabled, cpupid of slow memory page is
1810  * used to record scan time instead of CPU and PID.  When tiering mode
1811  * is disabled at run time, the scan time (in cpupid) will be
1812  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1813  * access out of array bound.
1814  */
cpupid_valid(int cpupid)1815 static inline bool cpupid_valid(int cpupid)
1816 {
1817 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1818 }
1819 
1820 /*
1821  * For memory tiering mode, if there are enough free pages (more than
1822  * enough watermark defined here) in fast memory node, to take full
1823  * advantage of fast memory capacity, all recently accessed slow
1824  * memory pages will be migrated to fast memory node without
1825  * considering hot threshold.
1826  */
pgdat_free_space_enough(struct pglist_data * pgdat)1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1828 {
1829 	int z;
1830 	unsigned long enough_wmark;
1831 
1832 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1833 			   pgdat->node_present_pages >> 4);
1834 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1835 		struct zone *zone = pgdat->node_zones + z;
1836 
1837 		if (!populated_zone(zone))
1838 			continue;
1839 
1840 		if (zone_watermark_ok(zone, 0,
1841 				      promo_wmark_pages(zone) + enough_wmark,
1842 				      ZONE_MOVABLE, 0))
1843 			return true;
1844 	}
1845 	return false;
1846 }
1847 
1848 /*
1849  * For memory tiering mode, when page tables are scanned, the scan
1850  * time will be recorded in struct page in addition to make page
1851  * PROT_NONE for slow memory page.  So when the page is accessed, in
1852  * hint page fault handler, the hint page fault latency is calculated
1853  * via,
1854  *
1855  *	hint page fault latency = hint page fault time - scan time
1856  *
1857  * The smaller the hint page fault latency, the higher the possibility
1858  * for the page to be hot.
1859  */
numa_hint_fault_latency(struct folio * folio)1860 static int numa_hint_fault_latency(struct folio *folio)
1861 {
1862 	int last_time, time;
1863 
1864 	time = jiffies_to_msecs(jiffies);
1865 	last_time = folio_xchg_access_time(folio, time);
1866 
1867 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1868 }
1869 
1870 /*
1871  * For memory tiering mode, too high promotion/demotion throughput may
1872  * hurt application latency.  So we provide a mechanism to rate limit
1873  * the number of pages that are tried to be promoted.
1874  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1876 				      unsigned long rate_limit, int nr)
1877 {
1878 	unsigned long nr_cand;
1879 	unsigned int now, start;
1880 
1881 	now = jiffies_to_msecs(jiffies);
1882 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1883 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1884 	start = pgdat->nbp_rl_start;
1885 	if (now - start > MSEC_PER_SEC &&
1886 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1887 		pgdat->nbp_rl_nr_cand = nr_cand;
1888 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1889 		return true;
1890 	return false;
1891 }
1892 
1893 #define NUMA_MIGRATION_ADJUST_STEPS	16
1894 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1896 					    unsigned long rate_limit,
1897 					    unsigned int ref_th)
1898 {
1899 	unsigned int now, start, th_period, unit_th, th;
1900 	unsigned long nr_cand, ref_cand, diff_cand;
1901 
1902 	now = jiffies_to_msecs(jiffies);
1903 	th_period = sysctl_numa_balancing_scan_period_max;
1904 	start = pgdat->nbp_th_start;
1905 	if (now - start > th_period &&
1906 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1907 		ref_cand = rate_limit *
1908 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1909 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1910 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1911 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1912 		th = pgdat->nbp_threshold ? : ref_th;
1913 		if (diff_cand > ref_cand * 11 / 10)
1914 			th = max(th - unit_th, unit_th);
1915 		else if (diff_cand < ref_cand * 9 / 10)
1916 			th = min(th + unit_th, ref_th * 2);
1917 		pgdat->nbp_th_nr_cand = nr_cand;
1918 		pgdat->nbp_threshold = th;
1919 	}
1920 }
1921 
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1923 				int src_nid, int dst_cpu)
1924 {
1925 	struct numa_group *ng = deref_curr_numa_group(p);
1926 	int dst_nid = cpu_to_node(dst_cpu);
1927 	int last_cpupid, this_cpupid;
1928 
1929 	/*
1930 	 * Cannot migrate to memoryless nodes.
1931 	 */
1932 	if (!node_state(dst_nid, N_MEMORY))
1933 		return false;
1934 
1935 	/*
1936 	 * The pages in slow memory node should be migrated according
1937 	 * to hot/cold instead of private/shared.
1938 	 */
1939 	if (folio_use_access_time(folio)) {
1940 		struct pglist_data *pgdat;
1941 		unsigned long rate_limit;
1942 		unsigned int latency, th, def_th;
1943 
1944 		pgdat = NODE_DATA(dst_nid);
1945 		if (pgdat_free_space_enough(pgdat)) {
1946 			/* workload changed, reset hot threshold */
1947 			pgdat->nbp_threshold = 0;
1948 			return true;
1949 		}
1950 
1951 		def_th = sysctl_numa_balancing_hot_threshold;
1952 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1953 			(20 - PAGE_SHIFT);
1954 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1955 
1956 		th = pgdat->nbp_threshold ? : def_th;
1957 		latency = numa_hint_fault_latency(folio);
1958 		if (latency >= th)
1959 			return false;
1960 
1961 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1962 						  folio_nr_pages(folio));
1963 	}
1964 
1965 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1966 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1967 
1968 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1969 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1970 		return false;
1971 
1972 	/*
1973 	 * Allow first faults or private faults to migrate immediately early in
1974 	 * the lifetime of a task. The magic number 4 is based on waiting for
1975 	 * two full passes of the "multi-stage node selection" test that is
1976 	 * executed below.
1977 	 */
1978 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1979 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1980 		return true;
1981 
1982 	/*
1983 	 * Multi-stage node selection is used in conjunction with a periodic
1984 	 * migration fault to build a temporal task<->page relation. By using
1985 	 * a two-stage filter we remove short/unlikely relations.
1986 	 *
1987 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1988 	 * a task's usage of a particular page (n_p) per total usage of this
1989 	 * page (n_t) (in a given time-span) to a probability.
1990 	 *
1991 	 * Our periodic faults will sample this probability and getting the
1992 	 * same result twice in a row, given these samples are fully
1993 	 * independent, is then given by P(n)^2, provided our sample period
1994 	 * is sufficiently short compared to the usage pattern.
1995 	 *
1996 	 * This quadric squishes small probabilities, making it less likely we
1997 	 * act on an unlikely task<->page relation.
1998 	 */
1999 	if (!cpupid_pid_unset(last_cpupid) &&
2000 				cpupid_to_nid(last_cpupid) != dst_nid)
2001 		return false;
2002 
2003 	/* Always allow migrate on private faults */
2004 	if (cpupid_match_pid(p, last_cpupid))
2005 		return true;
2006 
2007 	/* A shared fault, but p->numa_group has not been set up yet. */
2008 	if (!ng)
2009 		return true;
2010 
2011 	/*
2012 	 * Destination node is much more heavily used than the source
2013 	 * node? Allow migration.
2014 	 */
2015 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2016 					ACTIVE_NODE_FRACTION)
2017 		return true;
2018 
2019 	/*
2020 	 * Distribute memory according to CPU & memory use on each node,
2021 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2022 	 *
2023 	 * faults_cpu(dst)   3   faults_cpu(src)
2024 	 * --------------- * - > ---------------
2025 	 * faults_mem(dst)   4   faults_mem(src)
2026 	 */
2027 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2028 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2029 }
2030 
2031 /*
2032  * 'numa_type' describes the node at the moment of load balancing.
2033  */
2034 enum numa_type {
2035 	/* The node has spare capacity that can be used to run more tasks.  */
2036 	node_has_spare = 0,
2037 	/*
2038 	 * The node is fully used and the tasks don't compete for more CPU
2039 	 * cycles. Nevertheless, some tasks might wait before running.
2040 	 */
2041 	node_fully_busy,
2042 	/*
2043 	 * The node is overloaded and can't provide expected CPU cycles to all
2044 	 * tasks.
2045 	 */
2046 	node_overloaded
2047 };
2048 
2049 /* Cached statistics for all CPUs within a node */
2050 struct numa_stats {
2051 	unsigned long load;
2052 	unsigned long runnable;
2053 	unsigned long util;
2054 	/* Total compute capacity of CPUs on a node */
2055 	unsigned long compute_capacity;
2056 	unsigned int nr_running;
2057 	unsigned int weight;
2058 	enum numa_type node_type;
2059 	int idle_cpu;
2060 };
2061 
2062 struct task_numa_env {
2063 	struct task_struct *p;
2064 
2065 	int src_cpu, src_nid;
2066 	int dst_cpu, dst_nid;
2067 	int imb_numa_nr;
2068 
2069 	struct numa_stats src_stats, dst_stats;
2070 
2071 	int imbalance_pct;
2072 	int dist;
2073 
2074 	struct task_struct *best_task;
2075 	long best_imp;
2076 	int best_cpu;
2077 };
2078 
2079 static unsigned long cpu_load(struct rq *rq);
2080 static unsigned long cpu_runnable(struct rq *rq);
2081 
2082 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2083 numa_type numa_classify(unsigned int imbalance_pct,
2084 			 struct numa_stats *ns)
2085 {
2086 	if ((ns->nr_running > ns->weight) &&
2087 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2088 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2089 		return node_overloaded;
2090 
2091 	if ((ns->nr_running < ns->weight) ||
2092 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2093 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2094 		return node_has_spare;
2095 
2096 	return node_fully_busy;
2097 }
2098 
2099 #ifdef CONFIG_SCHED_SMT
2100 /* Forward declarations of select_idle_sibling helpers */
2101 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2102 static inline int numa_idle_core(int idle_core, int cpu)
2103 {
2104 	if (!static_branch_likely(&sched_smt_present) ||
2105 	    idle_core >= 0 || !test_idle_cores(cpu))
2106 		return idle_core;
2107 
2108 	/*
2109 	 * Prefer cores instead of packing HT siblings
2110 	 * and triggering future load balancing.
2111 	 */
2112 	if (is_core_idle(cpu))
2113 		idle_core = cpu;
2114 
2115 	return idle_core;
2116 }
2117 #else
numa_idle_core(int idle_core,int cpu)2118 static inline int numa_idle_core(int idle_core, int cpu)
2119 {
2120 	return idle_core;
2121 }
2122 #endif
2123 
2124 /*
2125  * Gather all necessary information to make NUMA balancing placement
2126  * decisions that are compatible with standard load balancer. This
2127  * borrows code and logic from update_sg_lb_stats but sharing a
2128  * common implementation is impractical.
2129  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2130 static void update_numa_stats(struct task_numa_env *env,
2131 			      struct numa_stats *ns, int nid,
2132 			      bool find_idle)
2133 {
2134 	int cpu, idle_core = -1;
2135 
2136 	memset(ns, 0, sizeof(*ns));
2137 	ns->idle_cpu = -1;
2138 
2139 	rcu_read_lock();
2140 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2141 		struct rq *rq = cpu_rq(cpu);
2142 
2143 		ns->load += cpu_load(rq);
2144 		ns->runnable += cpu_runnable(rq);
2145 		ns->util += cpu_util_cfs(cpu);
2146 		ns->nr_running += rq->cfs.h_nr_runnable;
2147 		ns->compute_capacity += capacity_of(cpu);
2148 
2149 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2150 			if (READ_ONCE(rq->numa_migrate_on) ||
2151 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2152 				continue;
2153 
2154 			if (ns->idle_cpu == -1)
2155 				ns->idle_cpu = cpu;
2156 
2157 			idle_core = numa_idle_core(idle_core, cpu);
2158 		}
2159 	}
2160 	rcu_read_unlock();
2161 
2162 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2163 
2164 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2165 
2166 	if (idle_core >= 0)
2167 		ns->idle_cpu = idle_core;
2168 }
2169 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2170 static void task_numa_assign(struct task_numa_env *env,
2171 			     struct task_struct *p, long imp)
2172 {
2173 	struct rq *rq = cpu_rq(env->dst_cpu);
2174 
2175 	/* Check if run-queue part of active NUMA balance. */
2176 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2177 		int cpu;
2178 		int start = env->dst_cpu;
2179 
2180 		/* Find alternative idle CPU. */
2181 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2182 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2183 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2184 				continue;
2185 			}
2186 
2187 			env->dst_cpu = cpu;
2188 			rq = cpu_rq(env->dst_cpu);
2189 			if (!xchg(&rq->numa_migrate_on, 1))
2190 				goto assign;
2191 		}
2192 
2193 		/* Failed to find an alternative idle CPU */
2194 		return;
2195 	}
2196 
2197 assign:
2198 	/*
2199 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2200 	 * found a better CPU to move/swap.
2201 	 */
2202 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2203 		rq = cpu_rq(env->best_cpu);
2204 		WRITE_ONCE(rq->numa_migrate_on, 0);
2205 	}
2206 
2207 	if (env->best_task)
2208 		put_task_struct(env->best_task);
2209 	if (p)
2210 		get_task_struct(p);
2211 
2212 	env->best_task = p;
2213 	env->best_imp = imp;
2214 	env->best_cpu = env->dst_cpu;
2215 }
2216 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2217 static bool load_too_imbalanced(long src_load, long dst_load,
2218 				struct task_numa_env *env)
2219 {
2220 	long imb, old_imb;
2221 	long orig_src_load, orig_dst_load;
2222 	long src_capacity, dst_capacity;
2223 
2224 	/*
2225 	 * The load is corrected for the CPU capacity available on each node.
2226 	 *
2227 	 * src_load        dst_load
2228 	 * ------------ vs ---------
2229 	 * src_capacity    dst_capacity
2230 	 */
2231 	src_capacity = env->src_stats.compute_capacity;
2232 	dst_capacity = env->dst_stats.compute_capacity;
2233 
2234 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2235 
2236 	orig_src_load = env->src_stats.load;
2237 	orig_dst_load = env->dst_stats.load;
2238 
2239 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2240 
2241 	/* Would this change make things worse? */
2242 	return (imb > old_imb);
2243 }
2244 
2245 /*
2246  * Maximum NUMA importance can be 1998 (2*999);
2247  * SMALLIMP @ 30 would be close to 1998/64.
2248  * Used to deter task migration.
2249  */
2250 #define SMALLIMP	30
2251 
2252 /*
2253  * This checks if the overall compute and NUMA accesses of the system would
2254  * be improved if the source tasks was migrated to the target dst_cpu taking
2255  * into account that it might be best if task running on the dst_cpu should
2256  * be exchanged with the source task
2257  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2258 static bool task_numa_compare(struct task_numa_env *env,
2259 			      long taskimp, long groupimp, bool maymove)
2260 {
2261 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2262 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2263 	long imp = p_ng ? groupimp : taskimp;
2264 	struct task_struct *cur;
2265 	long src_load, dst_load;
2266 	int dist = env->dist;
2267 	long moveimp = imp;
2268 	long load;
2269 	bool stopsearch = false;
2270 
2271 	if (READ_ONCE(dst_rq->numa_migrate_on))
2272 		return false;
2273 
2274 	rcu_read_lock();
2275 	cur = rcu_dereference(dst_rq->curr);
2276 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2277 		    !cur->mm))
2278 		cur = NULL;
2279 
2280 	/*
2281 	 * Because we have preemption enabled we can get migrated around and
2282 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2283 	 */
2284 	if (cur == env->p) {
2285 		stopsearch = true;
2286 		goto unlock;
2287 	}
2288 
2289 	if (!cur) {
2290 		if (maymove && moveimp >= env->best_imp)
2291 			goto assign;
2292 		else
2293 			goto unlock;
2294 	}
2295 
2296 	/* Skip this swap candidate if cannot move to the source cpu. */
2297 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2298 		goto unlock;
2299 
2300 	/*
2301 	 * Skip this swap candidate if it is not moving to its preferred
2302 	 * node and the best task is.
2303 	 */
2304 	if (env->best_task &&
2305 	    env->best_task->numa_preferred_nid == env->src_nid &&
2306 	    cur->numa_preferred_nid != env->src_nid) {
2307 		goto unlock;
2308 	}
2309 
2310 	/*
2311 	 * "imp" is the fault differential for the source task between the
2312 	 * source and destination node. Calculate the total differential for
2313 	 * the source task and potential destination task. The more negative
2314 	 * the value is, the more remote accesses that would be expected to
2315 	 * be incurred if the tasks were swapped.
2316 	 *
2317 	 * If dst and source tasks are in the same NUMA group, or not
2318 	 * in any group then look only at task weights.
2319 	 */
2320 	cur_ng = rcu_dereference(cur->numa_group);
2321 	if (cur_ng == p_ng) {
2322 		/*
2323 		 * Do not swap within a group or between tasks that have
2324 		 * no group if there is spare capacity. Swapping does
2325 		 * not address the load imbalance and helps one task at
2326 		 * the cost of punishing another.
2327 		 */
2328 		if (env->dst_stats.node_type == node_has_spare)
2329 			goto unlock;
2330 
2331 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2332 		      task_weight(cur, env->dst_nid, dist);
2333 		/*
2334 		 * Add some hysteresis to prevent swapping the
2335 		 * tasks within a group over tiny differences.
2336 		 */
2337 		if (cur_ng)
2338 			imp -= imp / 16;
2339 	} else {
2340 		/*
2341 		 * Compare the group weights. If a task is all by itself
2342 		 * (not part of a group), use the task weight instead.
2343 		 */
2344 		if (cur_ng && p_ng)
2345 			imp += group_weight(cur, env->src_nid, dist) -
2346 			       group_weight(cur, env->dst_nid, dist);
2347 		else
2348 			imp += task_weight(cur, env->src_nid, dist) -
2349 			       task_weight(cur, env->dst_nid, dist);
2350 	}
2351 
2352 	/* Discourage picking a task already on its preferred node */
2353 	if (cur->numa_preferred_nid == env->dst_nid)
2354 		imp -= imp / 16;
2355 
2356 	/*
2357 	 * Encourage picking a task that moves to its preferred node.
2358 	 * This potentially makes imp larger than it's maximum of
2359 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2360 	 * case, it does not matter.
2361 	 */
2362 	if (cur->numa_preferred_nid == env->src_nid)
2363 		imp += imp / 8;
2364 
2365 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2366 		imp = moveimp;
2367 		cur = NULL;
2368 		goto assign;
2369 	}
2370 
2371 	/*
2372 	 * Prefer swapping with a task moving to its preferred node over a
2373 	 * task that is not.
2374 	 */
2375 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2376 	    env->best_task->numa_preferred_nid != env->src_nid) {
2377 		goto assign;
2378 	}
2379 
2380 	/*
2381 	 * If the NUMA importance is less than SMALLIMP,
2382 	 * task migration might only result in ping pong
2383 	 * of tasks and also hurt performance due to cache
2384 	 * misses.
2385 	 */
2386 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2387 		goto unlock;
2388 
2389 	/*
2390 	 * In the overloaded case, try and keep the load balanced.
2391 	 */
2392 	load = task_h_load(env->p) - task_h_load(cur);
2393 	if (!load)
2394 		goto assign;
2395 
2396 	dst_load = env->dst_stats.load + load;
2397 	src_load = env->src_stats.load - load;
2398 
2399 	if (load_too_imbalanced(src_load, dst_load, env))
2400 		goto unlock;
2401 
2402 assign:
2403 	/* Evaluate an idle CPU for a task numa move. */
2404 	if (!cur) {
2405 		int cpu = env->dst_stats.idle_cpu;
2406 
2407 		/* Nothing cached so current CPU went idle since the search. */
2408 		if (cpu < 0)
2409 			cpu = env->dst_cpu;
2410 
2411 		/*
2412 		 * If the CPU is no longer truly idle and the previous best CPU
2413 		 * is, keep using it.
2414 		 */
2415 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2416 		    idle_cpu(env->best_cpu)) {
2417 			cpu = env->best_cpu;
2418 		}
2419 
2420 		env->dst_cpu = cpu;
2421 	}
2422 
2423 	task_numa_assign(env, cur, imp);
2424 
2425 	/*
2426 	 * If a move to idle is allowed because there is capacity or load
2427 	 * balance improves then stop the search. While a better swap
2428 	 * candidate may exist, a search is not free.
2429 	 */
2430 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2431 		stopsearch = true;
2432 
2433 	/*
2434 	 * If a swap candidate must be identified and the current best task
2435 	 * moves its preferred node then stop the search.
2436 	 */
2437 	if (!maymove && env->best_task &&
2438 	    env->best_task->numa_preferred_nid == env->src_nid) {
2439 		stopsearch = true;
2440 	}
2441 unlock:
2442 	rcu_read_unlock();
2443 
2444 	return stopsearch;
2445 }
2446 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2447 static void task_numa_find_cpu(struct task_numa_env *env,
2448 				long taskimp, long groupimp)
2449 {
2450 	bool maymove = false;
2451 	int cpu;
2452 
2453 	/*
2454 	 * If dst node has spare capacity, then check if there is an
2455 	 * imbalance that would be overruled by the load balancer.
2456 	 */
2457 	if (env->dst_stats.node_type == node_has_spare) {
2458 		unsigned int imbalance;
2459 		int src_running, dst_running;
2460 
2461 		/*
2462 		 * Would movement cause an imbalance? Note that if src has
2463 		 * more running tasks that the imbalance is ignored as the
2464 		 * move improves the imbalance from the perspective of the
2465 		 * CPU load balancer.
2466 		 * */
2467 		src_running = env->src_stats.nr_running - 1;
2468 		dst_running = env->dst_stats.nr_running + 1;
2469 		imbalance = max(0, dst_running - src_running);
2470 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2471 						  env->imb_numa_nr);
2472 
2473 		/* Use idle CPU if there is no imbalance */
2474 		if (!imbalance) {
2475 			maymove = true;
2476 			if (env->dst_stats.idle_cpu >= 0) {
2477 				env->dst_cpu = env->dst_stats.idle_cpu;
2478 				task_numa_assign(env, NULL, 0);
2479 				return;
2480 			}
2481 		}
2482 	} else {
2483 		long src_load, dst_load, load;
2484 		/*
2485 		 * If the improvement from just moving env->p direction is better
2486 		 * than swapping tasks around, check if a move is possible.
2487 		 */
2488 		load = task_h_load(env->p);
2489 		dst_load = env->dst_stats.load + load;
2490 		src_load = env->src_stats.load - load;
2491 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2492 	}
2493 
2494 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2495 		/* Skip this CPU if the source task cannot migrate */
2496 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2497 			continue;
2498 
2499 		env->dst_cpu = cpu;
2500 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2501 			break;
2502 	}
2503 }
2504 
task_numa_migrate(struct task_struct * p)2505 static int task_numa_migrate(struct task_struct *p)
2506 {
2507 	struct task_numa_env env = {
2508 		.p = p,
2509 
2510 		.src_cpu = task_cpu(p),
2511 		.src_nid = task_node(p),
2512 
2513 		.imbalance_pct = 112,
2514 
2515 		.best_task = NULL,
2516 		.best_imp = 0,
2517 		.best_cpu = -1,
2518 	};
2519 	unsigned long taskweight, groupweight;
2520 	struct sched_domain *sd;
2521 	long taskimp, groupimp;
2522 	struct numa_group *ng;
2523 	struct rq *best_rq;
2524 	int nid, ret, dist;
2525 
2526 	/*
2527 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2528 	 * imbalance and would be the first to start moving tasks about.
2529 	 *
2530 	 * And we want to avoid any moving of tasks about, as that would create
2531 	 * random movement of tasks -- counter the numa conditions we're trying
2532 	 * to satisfy here.
2533 	 */
2534 	rcu_read_lock();
2535 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2536 	if (sd) {
2537 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2538 		env.imb_numa_nr = sd->imb_numa_nr;
2539 	}
2540 	rcu_read_unlock();
2541 
2542 	/*
2543 	 * Cpusets can break the scheduler domain tree into smaller
2544 	 * balance domains, some of which do not cross NUMA boundaries.
2545 	 * Tasks that are "trapped" in such domains cannot be migrated
2546 	 * elsewhere, so there is no point in (re)trying.
2547 	 */
2548 	if (unlikely(!sd)) {
2549 		sched_setnuma(p, task_node(p));
2550 		return -EINVAL;
2551 	}
2552 
2553 	env.dst_nid = p->numa_preferred_nid;
2554 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2555 	taskweight = task_weight(p, env.src_nid, dist);
2556 	groupweight = group_weight(p, env.src_nid, dist);
2557 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2558 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2559 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2560 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2561 
2562 	/* Try to find a spot on the preferred nid. */
2563 	task_numa_find_cpu(&env, taskimp, groupimp);
2564 
2565 	/*
2566 	 * Look at other nodes in these cases:
2567 	 * - there is no space available on the preferred_nid
2568 	 * - the task is part of a numa_group that is interleaved across
2569 	 *   multiple NUMA nodes; in order to better consolidate the group,
2570 	 *   we need to check other locations.
2571 	 */
2572 	ng = deref_curr_numa_group(p);
2573 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2574 		for_each_node_state(nid, N_CPU) {
2575 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2576 				continue;
2577 
2578 			dist = node_distance(env.src_nid, env.dst_nid);
2579 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2580 						dist != env.dist) {
2581 				taskweight = task_weight(p, env.src_nid, dist);
2582 				groupweight = group_weight(p, env.src_nid, dist);
2583 			}
2584 
2585 			/* Only consider nodes where both task and groups benefit */
2586 			taskimp = task_weight(p, nid, dist) - taskweight;
2587 			groupimp = group_weight(p, nid, dist) - groupweight;
2588 			if (taskimp < 0 && groupimp < 0)
2589 				continue;
2590 
2591 			env.dist = dist;
2592 			env.dst_nid = nid;
2593 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2594 			task_numa_find_cpu(&env, taskimp, groupimp);
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * If the task is part of a workload that spans multiple NUMA nodes,
2600 	 * and is migrating into one of the workload's active nodes, remember
2601 	 * this node as the task's preferred numa node, so the workload can
2602 	 * settle down.
2603 	 * A task that migrated to a second choice node will be better off
2604 	 * trying for a better one later. Do not set the preferred node here.
2605 	 */
2606 	if (ng) {
2607 		if (env.best_cpu == -1)
2608 			nid = env.src_nid;
2609 		else
2610 			nid = cpu_to_node(env.best_cpu);
2611 
2612 		if (nid != p->numa_preferred_nid)
2613 			sched_setnuma(p, nid);
2614 	}
2615 
2616 	/* No better CPU than the current one was found. */
2617 	if (env.best_cpu == -1) {
2618 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2619 		return -EAGAIN;
2620 	}
2621 
2622 	best_rq = cpu_rq(env.best_cpu);
2623 	if (env.best_task == NULL) {
2624 		ret = migrate_task_to(p, env.best_cpu);
2625 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2626 		if (ret != 0)
2627 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2628 		return ret;
2629 	}
2630 
2631 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2632 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2633 
2634 	if (ret != 0)
2635 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2636 	put_task_struct(env.best_task);
2637 	return ret;
2638 }
2639 
2640 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2641 static void numa_migrate_preferred(struct task_struct *p)
2642 {
2643 	unsigned long interval = HZ;
2644 
2645 	/* This task has no NUMA fault statistics yet */
2646 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2647 		return;
2648 
2649 	/* Periodically retry migrating the task to the preferred node */
2650 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2651 	p->numa_migrate_retry = jiffies + interval;
2652 
2653 	/* Success if task is already running on preferred CPU */
2654 	if (task_node(p) == p->numa_preferred_nid)
2655 		return;
2656 
2657 	/* Otherwise, try migrate to a CPU on the preferred node */
2658 	task_numa_migrate(p);
2659 }
2660 
2661 /*
2662  * Find out how many nodes the workload is actively running on. Do this by
2663  * tracking the nodes from which NUMA hinting faults are triggered. This can
2664  * be different from the set of nodes where the workload's memory is currently
2665  * located.
2666  */
numa_group_count_active_nodes(struct numa_group * numa_group)2667 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2668 {
2669 	unsigned long faults, max_faults = 0;
2670 	int nid, active_nodes = 0;
2671 
2672 	for_each_node_state(nid, N_CPU) {
2673 		faults = group_faults_cpu(numa_group, nid);
2674 		if (faults > max_faults)
2675 			max_faults = faults;
2676 	}
2677 
2678 	for_each_node_state(nid, N_CPU) {
2679 		faults = group_faults_cpu(numa_group, nid);
2680 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2681 			active_nodes++;
2682 	}
2683 
2684 	numa_group->max_faults_cpu = max_faults;
2685 	numa_group->active_nodes = active_nodes;
2686 }
2687 
2688 /*
2689  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2690  * increments. The more local the fault statistics are, the higher the scan
2691  * period will be for the next scan window. If local/(local+remote) ratio is
2692  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2693  * the scan period will decrease. Aim for 70% local accesses.
2694  */
2695 #define NUMA_PERIOD_SLOTS 10
2696 #define NUMA_PERIOD_THRESHOLD 7
2697 
2698 /*
2699  * Increase the scan period (slow down scanning) if the majority of
2700  * our memory is already on our local node, or if the majority of
2701  * the page accesses are shared with other processes.
2702  * Otherwise, decrease the scan period.
2703  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2704 static void update_task_scan_period(struct task_struct *p,
2705 			unsigned long shared, unsigned long private)
2706 {
2707 	unsigned int period_slot;
2708 	int lr_ratio, ps_ratio;
2709 	int diff;
2710 
2711 	unsigned long remote = p->numa_faults_locality[0];
2712 	unsigned long local = p->numa_faults_locality[1];
2713 
2714 	/*
2715 	 * If there were no record hinting faults then either the task is
2716 	 * completely idle or all activity is in areas that are not of interest
2717 	 * to automatic numa balancing. Related to that, if there were failed
2718 	 * migration then it implies we are migrating too quickly or the local
2719 	 * node is overloaded. In either case, scan slower
2720 	 */
2721 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2722 		p->numa_scan_period = min(p->numa_scan_period_max,
2723 			p->numa_scan_period << 1);
2724 
2725 		p->mm->numa_next_scan = jiffies +
2726 			msecs_to_jiffies(p->numa_scan_period);
2727 
2728 		return;
2729 	}
2730 
2731 	/*
2732 	 * Prepare to scale scan period relative to the current period.
2733 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2734 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2735 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2736 	 */
2737 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2738 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2739 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2740 
2741 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2742 		/*
2743 		 * Most memory accesses are local. There is no need to
2744 		 * do fast NUMA scanning, since memory is already local.
2745 		 */
2746 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2747 		if (!slot)
2748 			slot = 1;
2749 		diff = slot * period_slot;
2750 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2751 		/*
2752 		 * Most memory accesses are shared with other tasks.
2753 		 * There is no point in continuing fast NUMA scanning,
2754 		 * since other tasks may just move the memory elsewhere.
2755 		 */
2756 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2757 		if (!slot)
2758 			slot = 1;
2759 		diff = slot * period_slot;
2760 	} else {
2761 		/*
2762 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2763 		 * yet they are not on the local NUMA node. Speed up
2764 		 * NUMA scanning to get the memory moved over.
2765 		 */
2766 		int ratio = max(lr_ratio, ps_ratio);
2767 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2768 	}
2769 
2770 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2771 			task_scan_min(p), task_scan_max(p));
2772 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2773 }
2774 
2775 /*
2776  * Get the fraction of time the task has been running since the last
2777  * NUMA placement cycle. The scheduler keeps similar statistics, but
2778  * decays those on a 32ms period, which is orders of magnitude off
2779  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2780  * stats only if the task is so new there are no NUMA statistics yet.
2781  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2782 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2783 {
2784 	u64 runtime, delta, now;
2785 	/* Use the start of this time slice to avoid calculations. */
2786 	now = p->se.exec_start;
2787 	runtime = p->se.sum_exec_runtime;
2788 
2789 	if (p->last_task_numa_placement) {
2790 		delta = runtime - p->last_sum_exec_runtime;
2791 		*period = now - p->last_task_numa_placement;
2792 
2793 		/* Avoid time going backwards, prevent potential divide error: */
2794 		if (unlikely((s64)*period < 0))
2795 			*period = 0;
2796 	} else {
2797 		delta = p->se.avg.load_sum;
2798 		*period = LOAD_AVG_MAX;
2799 	}
2800 
2801 	p->last_sum_exec_runtime = runtime;
2802 	p->last_task_numa_placement = now;
2803 
2804 	return delta;
2805 }
2806 
2807 /*
2808  * Determine the preferred nid for a task in a numa_group. This needs to
2809  * be done in a way that produces consistent results with group_weight,
2810  * otherwise workloads might not converge.
2811  */
preferred_group_nid(struct task_struct * p,int nid)2812 static int preferred_group_nid(struct task_struct *p, int nid)
2813 {
2814 	nodemask_t nodes;
2815 	int dist;
2816 
2817 	/* Direct connections between all NUMA nodes. */
2818 	if (sched_numa_topology_type == NUMA_DIRECT)
2819 		return nid;
2820 
2821 	/*
2822 	 * On a system with glueless mesh NUMA topology, group_weight
2823 	 * scores nodes according to the number of NUMA hinting faults on
2824 	 * both the node itself, and on nearby nodes.
2825 	 */
2826 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2827 		unsigned long score, max_score = 0;
2828 		int node, max_node = nid;
2829 
2830 		dist = sched_max_numa_distance;
2831 
2832 		for_each_node_state(node, N_CPU) {
2833 			score = group_weight(p, node, dist);
2834 			if (score > max_score) {
2835 				max_score = score;
2836 				max_node = node;
2837 			}
2838 		}
2839 		return max_node;
2840 	}
2841 
2842 	/*
2843 	 * Finding the preferred nid in a system with NUMA backplane
2844 	 * interconnect topology is more involved. The goal is to locate
2845 	 * tasks from numa_groups near each other in the system, and
2846 	 * untangle workloads from different sides of the system. This requires
2847 	 * searching down the hierarchy of node groups, recursively searching
2848 	 * inside the highest scoring group of nodes. The nodemask tricks
2849 	 * keep the complexity of the search down.
2850 	 */
2851 	nodes = node_states[N_CPU];
2852 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2853 		unsigned long max_faults = 0;
2854 		nodemask_t max_group = NODE_MASK_NONE;
2855 		int a, b;
2856 
2857 		/* Are there nodes at this distance from each other? */
2858 		if (!find_numa_distance(dist))
2859 			continue;
2860 
2861 		for_each_node_mask(a, nodes) {
2862 			unsigned long faults = 0;
2863 			nodemask_t this_group;
2864 			nodes_clear(this_group);
2865 
2866 			/* Sum group's NUMA faults; includes a==b case. */
2867 			for_each_node_mask(b, nodes) {
2868 				if (node_distance(a, b) < dist) {
2869 					faults += group_faults(p, b);
2870 					node_set(b, this_group);
2871 					node_clear(b, nodes);
2872 				}
2873 			}
2874 
2875 			/* Remember the top group. */
2876 			if (faults > max_faults) {
2877 				max_faults = faults;
2878 				max_group = this_group;
2879 				/*
2880 				 * subtle: at the smallest distance there is
2881 				 * just one node left in each "group", the
2882 				 * winner is the preferred nid.
2883 				 */
2884 				nid = a;
2885 			}
2886 		}
2887 		/* Next round, evaluate the nodes within max_group. */
2888 		if (!max_faults)
2889 			break;
2890 		nodes = max_group;
2891 	}
2892 	return nid;
2893 }
2894 
task_numa_placement(struct task_struct * p)2895 static void task_numa_placement(struct task_struct *p)
2896 {
2897 	int seq, nid, max_nid = NUMA_NO_NODE;
2898 	unsigned long max_faults = 0;
2899 	unsigned long fault_types[2] = { 0, 0 };
2900 	unsigned long total_faults;
2901 	u64 runtime, period;
2902 	spinlock_t *group_lock = NULL;
2903 	struct numa_group *ng;
2904 
2905 	/*
2906 	 * The p->mm->numa_scan_seq field gets updated without
2907 	 * exclusive access. Use READ_ONCE() here to ensure
2908 	 * that the field is read in a single access:
2909 	 */
2910 	seq = READ_ONCE(p->mm->numa_scan_seq);
2911 	if (p->numa_scan_seq == seq)
2912 		return;
2913 	p->numa_scan_seq = seq;
2914 	p->numa_scan_period_max = task_scan_max(p);
2915 
2916 	total_faults = p->numa_faults_locality[0] +
2917 		       p->numa_faults_locality[1];
2918 	runtime = numa_get_avg_runtime(p, &period);
2919 
2920 	/* If the task is part of a group prevent parallel updates to group stats */
2921 	ng = deref_curr_numa_group(p);
2922 	if (ng) {
2923 		group_lock = &ng->lock;
2924 		spin_lock_irq(group_lock);
2925 	}
2926 
2927 	/* Find the node with the highest number of faults */
2928 	for_each_online_node(nid) {
2929 		/* Keep track of the offsets in numa_faults array */
2930 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2931 		unsigned long faults = 0, group_faults = 0;
2932 		int priv;
2933 
2934 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2935 			long diff, f_diff, f_weight;
2936 
2937 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2938 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2939 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2940 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2941 
2942 			/* Decay existing window, copy faults since last scan */
2943 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2944 			fault_types[priv] += p->numa_faults[membuf_idx];
2945 			p->numa_faults[membuf_idx] = 0;
2946 
2947 			/*
2948 			 * Normalize the faults_from, so all tasks in a group
2949 			 * count according to CPU use, instead of by the raw
2950 			 * number of faults. Tasks with little runtime have
2951 			 * little over-all impact on throughput, and thus their
2952 			 * faults are less important.
2953 			 */
2954 			f_weight = div64_u64(runtime << 16, period + 1);
2955 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2956 				   (total_faults + 1);
2957 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2958 			p->numa_faults[cpubuf_idx] = 0;
2959 
2960 			p->numa_faults[mem_idx] += diff;
2961 			p->numa_faults[cpu_idx] += f_diff;
2962 			faults += p->numa_faults[mem_idx];
2963 			p->total_numa_faults += diff;
2964 			if (ng) {
2965 				/*
2966 				 * safe because we can only change our own group
2967 				 *
2968 				 * mem_idx represents the offset for a given
2969 				 * nid and priv in a specific region because it
2970 				 * is at the beginning of the numa_faults array.
2971 				 */
2972 				ng->faults[mem_idx] += diff;
2973 				ng->faults[cpu_idx] += f_diff;
2974 				ng->total_faults += diff;
2975 				group_faults += ng->faults[mem_idx];
2976 			}
2977 		}
2978 
2979 		if (!ng) {
2980 			if (faults > max_faults) {
2981 				max_faults = faults;
2982 				max_nid = nid;
2983 			}
2984 		} else if (group_faults > max_faults) {
2985 			max_faults = group_faults;
2986 			max_nid = nid;
2987 		}
2988 	}
2989 
2990 	/* Cannot migrate task to CPU-less node */
2991 	max_nid = numa_nearest_node(max_nid, N_CPU);
2992 
2993 	if (ng) {
2994 		numa_group_count_active_nodes(ng);
2995 		spin_unlock_irq(group_lock);
2996 		max_nid = preferred_group_nid(p, max_nid);
2997 	}
2998 
2999 	if (max_faults) {
3000 		/* Set the new preferred node */
3001 		if (max_nid != p->numa_preferred_nid)
3002 			sched_setnuma(p, max_nid);
3003 	}
3004 
3005 	update_task_scan_period(p, fault_types[0], fault_types[1]);
3006 }
3007 
get_numa_group(struct numa_group * grp)3008 static inline int get_numa_group(struct numa_group *grp)
3009 {
3010 	return refcount_inc_not_zero(&grp->refcount);
3011 }
3012 
put_numa_group(struct numa_group * grp)3013 static inline void put_numa_group(struct numa_group *grp)
3014 {
3015 	if (refcount_dec_and_test(&grp->refcount))
3016 		kfree_rcu(grp, rcu);
3017 }
3018 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3019 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3020 			int *priv)
3021 {
3022 	struct numa_group *grp, *my_grp;
3023 	struct task_struct *tsk;
3024 	bool join = false;
3025 	int cpu = cpupid_to_cpu(cpupid);
3026 	int i;
3027 
3028 	if (unlikely(!deref_curr_numa_group(p))) {
3029 		unsigned int size = sizeof(struct numa_group) +
3030 				    NR_NUMA_HINT_FAULT_STATS *
3031 				    nr_node_ids * sizeof(unsigned long);
3032 
3033 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3034 		if (!grp)
3035 			return;
3036 
3037 		refcount_set(&grp->refcount, 1);
3038 		grp->active_nodes = 1;
3039 		grp->max_faults_cpu = 0;
3040 		spin_lock_init(&grp->lock);
3041 		grp->gid = p->pid;
3042 
3043 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3044 			grp->faults[i] = p->numa_faults[i];
3045 
3046 		grp->total_faults = p->total_numa_faults;
3047 
3048 		grp->nr_tasks++;
3049 		rcu_assign_pointer(p->numa_group, grp);
3050 	}
3051 
3052 	rcu_read_lock();
3053 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3054 
3055 	if (!cpupid_match_pid(tsk, cpupid))
3056 		goto no_join;
3057 
3058 	grp = rcu_dereference(tsk->numa_group);
3059 	if (!grp)
3060 		goto no_join;
3061 
3062 	my_grp = deref_curr_numa_group(p);
3063 	if (grp == my_grp)
3064 		goto no_join;
3065 
3066 	/*
3067 	 * Only join the other group if its bigger; if we're the bigger group,
3068 	 * the other task will join us.
3069 	 */
3070 	if (my_grp->nr_tasks > grp->nr_tasks)
3071 		goto no_join;
3072 
3073 	/*
3074 	 * Tie-break on the grp address.
3075 	 */
3076 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3077 		goto no_join;
3078 
3079 	/* Always join threads in the same process. */
3080 	if (tsk->mm == current->mm)
3081 		join = true;
3082 
3083 	/* Simple filter to avoid false positives due to PID collisions */
3084 	if (flags & TNF_SHARED)
3085 		join = true;
3086 
3087 	/* Update priv based on whether false sharing was detected */
3088 	*priv = !join;
3089 
3090 	if (join && !get_numa_group(grp))
3091 		goto no_join;
3092 
3093 	rcu_read_unlock();
3094 
3095 	if (!join)
3096 		return;
3097 
3098 	WARN_ON_ONCE(irqs_disabled());
3099 	double_lock_irq(&my_grp->lock, &grp->lock);
3100 
3101 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3102 		my_grp->faults[i] -= p->numa_faults[i];
3103 		grp->faults[i] += p->numa_faults[i];
3104 	}
3105 	my_grp->total_faults -= p->total_numa_faults;
3106 	grp->total_faults += p->total_numa_faults;
3107 
3108 	my_grp->nr_tasks--;
3109 	grp->nr_tasks++;
3110 
3111 	spin_unlock(&my_grp->lock);
3112 	spin_unlock_irq(&grp->lock);
3113 
3114 	rcu_assign_pointer(p->numa_group, grp);
3115 
3116 	put_numa_group(my_grp);
3117 	return;
3118 
3119 no_join:
3120 	rcu_read_unlock();
3121 	return;
3122 }
3123 
3124 /*
3125  * Get rid of NUMA statistics associated with a task (either current or dead).
3126  * If @final is set, the task is dead and has reached refcount zero, so we can
3127  * safely free all relevant data structures. Otherwise, there might be
3128  * concurrent reads from places like load balancing and procfs, and we should
3129  * reset the data back to default state without freeing ->numa_faults.
3130  */
task_numa_free(struct task_struct * p,bool final)3131 void task_numa_free(struct task_struct *p, bool final)
3132 {
3133 	/* safe: p either is current or is being freed by current */
3134 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3135 	unsigned long *numa_faults = p->numa_faults;
3136 	unsigned long flags;
3137 	int i;
3138 
3139 	if (!numa_faults)
3140 		return;
3141 
3142 	if (grp) {
3143 		spin_lock_irqsave(&grp->lock, flags);
3144 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3145 			grp->faults[i] -= p->numa_faults[i];
3146 		grp->total_faults -= p->total_numa_faults;
3147 
3148 		grp->nr_tasks--;
3149 		spin_unlock_irqrestore(&grp->lock, flags);
3150 		RCU_INIT_POINTER(p->numa_group, NULL);
3151 		put_numa_group(grp);
3152 	}
3153 
3154 	if (final) {
3155 		p->numa_faults = NULL;
3156 		kfree(numa_faults);
3157 	} else {
3158 		p->total_numa_faults = 0;
3159 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3160 			numa_faults[i] = 0;
3161 	}
3162 }
3163 
3164 /*
3165  * Got a PROT_NONE fault for a page on @node.
3166  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3167 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3168 {
3169 	struct task_struct *p = current;
3170 	bool migrated = flags & TNF_MIGRATED;
3171 	int cpu_node = task_node(current);
3172 	int local = !!(flags & TNF_FAULT_LOCAL);
3173 	struct numa_group *ng;
3174 	int priv;
3175 
3176 	if (!static_branch_likely(&sched_numa_balancing))
3177 		return;
3178 
3179 	/* for example, ksmd faulting in a user's mm */
3180 	if (!p->mm)
3181 		return;
3182 
3183 	/*
3184 	 * NUMA faults statistics are unnecessary for the slow memory
3185 	 * node for memory tiering mode.
3186 	 */
3187 	if (!node_is_toptier(mem_node) &&
3188 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3189 	     !cpupid_valid(last_cpupid)))
3190 		return;
3191 
3192 	/* Allocate buffer to track faults on a per-node basis */
3193 	if (unlikely(!p->numa_faults)) {
3194 		int size = sizeof(*p->numa_faults) *
3195 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3196 
3197 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3198 		if (!p->numa_faults)
3199 			return;
3200 
3201 		p->total_numa_faults = 0;
3202 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3203 	}
3204 
3205 	/*
3206 	 * First accesses are treated as private, otherwise consider accesses
3207 	 * to be private if the accessing pid has not changed
3208 	 */
3209 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3210 		priv = 1;
3211 	} else {
3212 		priv = cpupid_match_pid(p, last_cpupid);
3213 		if (!priv && !(flags & TNF_NO_GROUP))
3214 			task_numa_group(p, last_cpupid, flags, &priv);
3215 	}
3216 
3217 	/*
3218 	 * If a workload spans multiple NUMA nodes, a shared fault that
3219 	 * occurs wholly within the set of nodes that the workload is
3220 	 * actively using should be counted as local. This allows the
3221 	 * scan rate to slow down when a workload has settled down.
3222 	 */
3223 	ng = deref_curr_numa_group(p);
3224 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3225 				numa_is_active_node(cpu_node, ng) &&
3226 				numa_is_active_node(mem_node, ng))
3227 		local = 1;
3228 
3229 	/*
3230 	 * Retry to migrate task to preferred node periodically, in case it
3231 	 * previously failed, or the scheduler moved us.
3232 	 */
3233 	if (time_after(jiffies, p->numa_migrate_retry)) {
3234 		task_numa_placement(p);
3235 		numa_migrate_preferred(p);
3236 	}
3237 
3238 	if (migrated)
3239 		p->numa_pages_migrated += pages;
3240 	if (flags & TNF_MIGRATE_FAIL)
3241 		p->numa_faults_locality[2] += pages;
3242 
3243 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3244 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3245 	p->numa_faults_locality[local] += pages;
3246 }
3247 
reset_ptenuma_scan(struct task_struct * p)3248 static void reset_ptenuma_scan(struct task_struct *p)
3249 {
3250 	/*
3251 	 * We only did a read acquisition of the mmap sem, so
3252 	 * p->mm->numa_scan_seq is written to without exclusive access
3253 	 * and the update is not guaranteed to be atomic. That's not
3254 	 * much of an issue though, since this is just used for
3255 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3256 	 * expensive, to avoid any form of compiler optimizations:
3257 	 */
3258 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3259 	p->mm->numa_scan_offset = 0;
3260 }
3261 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3262 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3263 {
3264 	unsigned long pids;
3265 	/*
3266 	 * Allow unconditional access first two times, so that all the (pages)
3267 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3268 	 * This is also done to avoid any side effect of task scanning
3269 	 * amplifying the unfairness of disjoint set of VMAs' access.
3270 	 */
3271 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3272 		return true;
3273 
3274 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3275 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3276 		return true;
3277 
3278 	/*
3279 	 * Complete a scan that has already started regardless of PID access, or
3280 	 * some VMAs may never be scanned in multi-threaded applications:
3281 	 */
3282 	if (mm->numa_scan_offset > vma->vm_start) {
3283 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3284 		return true;
3285 	}
3286 
3287 	/*
3288 	 * This vma has not been accessed for a while, and if the number
3289 	 * the threads in the same process is low, which means no other
3290 	 * threads can help scan this vma, force a vma scan.
3291 	 */
3292 	if (READ_ONCE(mm->numa_scan_seq) >
3293 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3294 		return true;
3295 
3296 	return false;
3297 }
3298 
3299 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3300 
3301 /*
3302  * The expensive part of numa migration is done from task_work context.
3303  * Triggered from task_tick_numa().
3304  */
task_numa_work(struct callback_head * work)3305 static void task_numa_work(struct callback_head *work)
3306 {
3307 	unsigned long migrate, next_scan, now = jiffies;
3308 	struct task_struct *p = current;
3309 	struct mm_struct *mm = p->mm;
3310 	u64 runtime = p->se.sum_exec_runtime;
3311 	struct vm_area_struct *vma;
3312 	unsigned long start, end;
3313 	unsigned long nr_pte_updates = 0;
3314 	long pages, virtpages;
3315 	struct vma_iterator vmi;
3316 	bool vma_pids_skipped;
3317 	bool vma_pids_forced = false;
3318 
3319 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3320 
3321 	work->next = work;
3322 	/*
3323 	 * Who cares about NUMA placement when they're dying.
3324 	 *
3325 	 * NOTE: make sure not to dereference p->mm before this check,
3326 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3327 	 * without p->mm even though we still had it when we enqueued this
3328 	 * work.
3329 	 */
3330 	if (p->flags & PF_EXITING)
3331 		return;
3332 
3333 	/*
3334 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3335 	 * no page can be migrated.
3336 	 */
3337 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3338 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3339 		return;
3340 	}
3341 
3342 	if (!mm->numa_next_scan) {
3343 		mm->numa_next_scan = now +
3344 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3345 	}
3346 
3347 	/*
3348 	 * Enforce maximal scan/migration frequency..
3349 	 */
3350 	migrate = mm->numa_next_scan;
3351 	if (time_before(now, migrate))
3352 		return;
3353 
3354 	if (p->numa_scan_period == 0) {
3355 		p->numa_scan_period_max = task_scan_max(p);
3356 		p->numa_scan_period = task_scan_start(p);
3357 	}
3358 
3359 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3360 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3361 		return;
3362 
3363 	/*
3364 	 * Delay this task enough that another task of this mm will likely win
3365 	 * the next time around.
3366 	 */
3367 	p->node_stamp += 2 * TICK_NSEC;
3368 
3369 	pages = sysctl_numa_balancing_scan_size;
3370 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3371 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3372 	if (!pages)
3373 		return;
3374 
3375 
3376 	if (!mmap_read_trylock(mm))
3377 		return;
3378 
3379 	/*
3380 	 * VMAs are skipped if the current PID has not trapped a fault within
3381 	 * the VMA recently. Allow scanning to be forced if there is no
3382 	 * suitable VMA remaining.
3383 	 */
3384 	vma_pids_skipped = false;
3385 
3386 retry_pids:
3387 	start = mm->numa_scan_offset;
3388 	vma_iter_init(&vmi, mm, start);
3389 	vma = vma_next(&vmi);
3390 	if (!vma) {
3391 		reset_ptenuma_scan(p);
3392 		start = 0;
3393 		vma_iter_set(&vmi, start);
3394 		vma = vma_next(&vmi);
3395 	}
3396 
3397 	for (; vma; vma = vma_next(&vmi)) {
3398 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3399 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3400 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3401 			continue;
3402 		}
3403 
3404 		/*
3405 		 * Shared library pages mapped by multiple processes are not
3406 		 * migrated as it is expected they are cache replicated. Avoid
3407 		 * hinting faults in read-only file-backed mappings or the vDSO
3408 		 * as migrating the pages will be of marginal benefit.
3409 		 */
3410 		if (!vma->vm_mm ||
3411 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3412 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3413 			continue;
3414 		}
3415 
3416 		/*
3417 		 * Skip inaccessible VMAs to avoid any confusion between
3418 		 * PROT_NONE and NUMA hinting PTEs
3419 		 */
3420 		if (!vma_is_accessible(vma)) {
3421 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3422 			continue;
3423 		}
3424 
3425 		/* Initialise new per-VMA NUMAB state. */
3426 		if (!vma->numab_state) {
3427 			struct vma_numab_state *ptr;
3428 
3429 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3430 			if (!ptr)
3431 				continue;
3432 
3433 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3434 				kfree(ptr);
3435 				continue;
3436 			}
3437 
3438 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3439 
3440 			vma->numab_state->next_scan = now +
3441 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3442 
3443 			/* Reset happens after 4 times scan delay of scan start */
3444 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3445 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3446 
3447 			/*
3448 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3449 			 * to prevent VMAs being skipped prematurely on the
3450 			 * first scan:
3451 			 */
3452 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3453 		}
3454 
3455 		/*
3456 		 * Scanning the VMAs of short lived tasks add more overhead. So
3457 		 * delay the scan for new VMAs.
3458 		 */
3459 		if (mm->numa_scan_seq && time_before(jiffies,
3460 						vma->numab_state->next_scan)) {
3461 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3462 			continue;
3463 		}
3464 
3465 		/* RESET access PIDs regularly for old VMAs. */
3466 		if (mm->numa_scan_seq &&
3467 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3468 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3469 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3470 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3471 			vma->numab_state->pids_active[1] = 0;
3472 		}
3473 
3474 		/* Do not rescan VMAs twice within the same sequence. */
3475 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3476 			mm->numa_scan_offset = vma->vm_end;
3477 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3478 			continue;
3479 		}
3480 
3481 		/*
3482 		 * Do not scan the VMA if task has not accessed it, unless no other
3483 		 * VMA candidate exists.
3484 		 */
3485 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3486 			vma_pids_skipped = true;
3487 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3488 			continue;
3489 		}
3490 
3491 		do {
3492 			start = max(start, vma->vm_start);
3493 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3494 			end = min(end, vma->vm_end);
3495 			nr_pte_updates = change_prot_numa(vma, start, end);
3496 
3497 			/*
3498 			 * Try to scan sysctl_numa_balancing_size worth of
3499 			 * hpages that have at least one present PTE that
3500 			 * is not already PTE-numa. If the VMA contains
3501 			 * areas that are unused or already full of prot_numa
3502 			 * PTEs, scan up to virtpages, to skip through those
3503 			 * areas faster.
3504 			 */
3505 			if (nr_pte_updates)
3506 				pages -= (end - start) >> PAGE_SHIFT;
3507 			virtpages -= (end - start) >> PAGE_SHIFT;
3508 
3509 			start = end;
3510 			if (pages <= 0 || virtpages <= 0)
3511 				goto out;
3512 
3513 			cond_resched();
3514 		} while (end != vma->vm_end);
3515 
3516 		/* VMA scan is complete, do not scan until next sequence. */
3517 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3518 
3519 		/*
3520 		 * Only force scan within one VMA at a time, to limit the
3521 		 * cost of scanning a potentially uninteresting VMA.
3522 		 */
3523 		if (vma_pids_forced)
3524 			break;
3525 	}
3526 
3527 	/*
3528 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3529 	 * not accessing the VMA previously, then force a scan to ensure
3530 	 * forward progress:
3531 	 */
3532 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3533 		vma_pids_forced = true;
3534 		goto retry_pids;
3535 	}
3536 
3537 out:
3538 	/*
3539 	 * It is possible to reach the end of the VMA list but the last few
3540 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3541 	 * would find the !migratable VMA on the next scan but not reset the
3542 	 * scanner to the start so check it now.
3543 	 */
3544 	if (vma)
3545 		mm->numa_scan_offset = start;
3546 	else
3547 		reset_ptenuma_scan(p);
3548 	mmap_read_unlock(mm);
3549 
3550 	/*
3551 	 * Make sure tasks use at least 32x as much time to run other code
3552 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3553 	 * Usually update_task_scan_period slows down scanning enough; on an
3554 	 * overloaded system we need to limit overhead on a per task basis.
3555 	 */
3556 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3557 		u64 diff = p->se.sum_exec_runtime - runtime;
3558 		p->node_stamp += 32 * diff;
3559 	}
3560 }
3561 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3562 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3563 {
3564 	int mm_users = 0;
3565 	struct mm_struct *mm = p->mm;
3566 
3567 	if (mm) {
3568 		mm_users = atomic_read(&mm->mm_users);
3569 		if (mm_users == 1) {
3570 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3571 			mm->numa_scan_seq = 0;
3572 		}
3573 	}
3574 	p->node_stamp			= 0;
3575 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3576 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3577 	p->numa_migrate_retry		= 0;
3578 	/* Protect against double add, see task_tick_numa and task_numa_work */
3579 	p->numa_work.next		= &p->numa_work;
3580 	p->numa_faults			= NULL;
3581 	p->numa_pages_migrated		= 0;
3582 	p->total_numa_faults		= 0;
3583 	RCU_INIT_POINTER(p->numa_group, NULL);
3584 	p->last_task_numa_placement	= 0;
3585 	p->last_sum_exec_runtime	= 0;
3586 
3587 	init_task_work(&p->numa_work, task_numa_work);
3588 
3589 	/* New address space, reset the preferred nid */
3590 	if (!(clone_flags & CLONE_VM)) {
3591 		p->numa_preferred_nid = NUMA_NO_NODE;
3592 		return;
3593 	}
3594 
3595 	/*
3596 	 * New thread, keep existing numa_preferred_nid which should be copied
3597 	 * already by arch_dup_task_struct but stagger when scans start.
3598 	 */
3599 	if (mm) {
3600 		unsigned int delay;
3601 
3602 		delay = min_t(unsigned int, task_scan_max(current),
3603 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3604 		delay += 2 * TICK_NSEC;
3605 		p->node_stamp = delay;
3606 	}
3607 }
3608 
3609 /*
3610  * Drive the periodic memory faults..
3611  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3612 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3613 {
3614 	struct callback_head *work = &curr->numa_work;
3615 	u64 period, now;
3616 
3617 	/*
3618 	 * We don't care about NUMA placement if we don't have memory.
3619 	 */
3620 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3621 		return;
3622 
3623 	/*
3624 	 * Using runtime rather than walltime has the dual advantage that
3625 	 * we (mostly) drive the selection from busy threads and that the
3626 	 * task needs to have done some actual work before we bother with
3627 	 * NUMA placement.
3628 	 */
3629 	now = curr->se.sum_exec_runtime;
3630 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3631 
3632 	if (now > curr->node_stamp + period) {
3633 		if (!curr->node_stamp)
3634 			curr->numa_scan_period = task_scan_start(curr);
3635 		curr->node_stamp += period;
3636 
3637 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3638 			task_work_add(curr, work, TWA_RESUME);
3639 	}
3640 }
3641 
update_scan_period(struct task_struct * p,int new_cpu)3642 static void update_scan_period(struct task_struct *p, int new_cpu)
3643 {
3644 	int src_nid = cpu_to_node(task_cpu(p));
3645 	int dst_nid = cpu_to_node(new_cpu);
3646 
3647 	if (!static_branch_likely(&sched_numa_balancing))
3648 		return;
3649 
3650 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3651 		return;
3652 
3653 	if (src_nid == dst_nid)
3654 		return;
3655 
3656 	/*
3657 	 * Allow resets if faults have been trapped before one scan
3658 	 * has completed. This is most likely due to a new task that
3659 	 * is pulled cross-node due to wakeups or load balancing.
3660 	 */
3661 	if (p->numa_scan_seq) {
3662 		/*
3663 		 * Avoid scan adjustments if moving to the preferred
3664 		 * node or if the task was not previously running on
3665 		 * the preferred node.
3666 		 */
3667 		if (dst_nid == p->numa_preferred_nid ||
3668 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3669 			src_nid != p->numa_preferred_nid))
3670 			return;
3671 	}
3672 
3673 	p->numa_scan_period = task_scan_start(p);
3674 }
3675 
3676 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3677 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3678 {
3679 }
3680 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3681 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3682 {
3683 }
3684 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3685 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3686 {
3687 }
3688 
update_scan_period(struct task_struct * p,int new_cpu)3689 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3690 {
3691 }
3692 
3693 #endif /* CONFIG_NUMA_BALANCING */
3694 
3695 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3696 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3697 {
3698 	update_load_add(&cfs_rq->load, se->load.weight);
3699 #ifdef CONFIG_SMP
3700 	if (entity_is_task(se)) {
3701 		struct rq *rq = rq_of(cfs_rq);
3702 
3703 		account_numa_enqueue(rq, task_of(se));
3704 		list_add(&se->group_node, &rq->cfs_tasks);
3705 	}
3706 #endif
3707 	cfs_rq->nr_queued++;
3708 }
3709 
3710 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3711 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3712 {
3713 	update_load_sub(&cfs_rq->load, se->load.weight);
3714 #ifdef CONFIG_SMP
3715 	if (entity_is_task(se)) {
3716 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3717 		list_del_init(&se->group_node);
3718 	}
3719 #endif
3720 	cfs_rq->nr_queued--;
3721 }
3722 
3723 /*
3724  * Signed add and clamp on underflow.
3725  *
3726  * Explicitly do a load-store to ensure the intermediate value never hits
3727  * memory. This allows lockless observations without ever seeing the negative
3728  * values.
3729  */
3730 #define add_positive(_ptr, _val) do {                           \
3731 	typeof(_ptr) ptr = (_ptr);                              \
3732 	typeof(_val) val = (_val);                              \
3733 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3734 								\
3735 	res = var + val;                                        \
3736 								\
3737 	if (val < 0 && res > var)                               \
3738 		res = 0;                                        \
3739 								\
3740 	WRITE_ONCE(*ptr, res);                                  \
3741 } while (0)
3742 
3743 /*
3744  * Unsigned subtract and clamp on underflow.
3745  *
3746  * Explicitly do a load-store to ensure the intermediate value never hits
3747  * memory. This allows lockless observations without ever seeing the negative
3748  * values.
3749  */
3750 #define sub_positive(_ptr, _val) do {				\
3751 	typeof(_ptr) ptr = (_ptr);				\
3752 	typeof(*ptr) val = (_val);				\
3753 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3754 	res = var - val;					\
3755 	if (res > var)						\
3756 		res = 0;					\
3757 	WRITE_ONCE(*ptr, res);					\
3758 } while (0)
3759 
3760 /*
3761  * Remove and clamp on negative, from a local variable.
3762  *
3763  * A variant of sub_positive(), which does not use explicit load-store
3764  * and is thus optimized for local variable updates.
3765  */
3766 #define lsub_positive(_ptr, _val) do {				\
3767 	typeof(_ptr) ptr = (_ptr);				\
3768 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3769 } while (0)
3770 
3771 #ifdef CONFIG_SMP
3772 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3773 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774 {
3775 	cfs_rq->avg.load_avg += se->avg.load_avg;
3776 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3777 }
3778 
3779 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3780 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3781 {
3782 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3783 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3784 	/* See update_cfs_rq_load_avg() */
3785 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3786 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3787 }
3788 #else
3789 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3790 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3791 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3792 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3793 #endif
3794 
3795 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3796 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3797 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3798 			    unsigned long weight)
3799 {
3800 	bool curr = cfs_rq->curr == se;
3801 
3802 	if (se->on_rq) {
3803 		/* commit outstanding execution time */
3804 		update_curr(cfs_rq);
3805 		update_entity_lag(cfs_rq, se);
3806 		se->deadline -= se->vruntime;
3807 		se->rel_deadline = 1;
3808 		cfs_rq->nr_queued--;
3809 		if (!curr)
3810 			__dequeue_entity(cfs_rq, se);
3811 		update_load_sub(&cfs_rq->load, se->load.weight);
3812 	}
3813 	dequeue_load_avg(cfs_rq, se);
3814 
3815 	/*
3816 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3817 	 * we need to scale se->vlag when w_i changes.
3818 	 */
3819 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3820 	if (se->rel_deadline)
3821 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3822 
3823 	update_load_set(&se->load, weight);
3824 
3825 #ifdef CONFIG_SMP
3826 	do {
3827 		u32 divider = get_pelt_divider(&se->avg);
3828 
3829 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3830 	} while (0);
3831 #endif
3832 
3833 	enqueue_load_avg(cfs_rq, se);
3834 	if (se->on_rq) {
3835 		place_entity(cfs_rq, se, 0);
3836 		update_load_add(&cfs_rq->load, se->load.weight);
3837 		if (!curr)
3838 			__enqueue_entity(cfs_rq, se);
3839 		cfs_rq->nr_queued++;
3840 
3841 		/*
3842 		 * The entity's vruntime has been adjusted, so let's check
3843 		 * whether the rq-wide min_vruntime needs updated too. Since
3844 		 * the calculations above require stable min_vruntime rather
3845 		 * than up-to-date one, we do the update at the end of the
3846 		 * reweight process.
3847 		 */
3848 		update_min_vruntime(cfs_rq);
3849 	}
3850 }
3851 
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3852 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3853 			       const struct load_weight *lw)
3854 {
3855 	struct sched_entity *se = &p->se;
3856 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3857 	struct load_weight *load = &se->load;
3858 
3859 	reweight_entity(cfs_rq, se, lw->weight);
3860 	load->inv_weight = lw->inv_weight;
3861 }
3862 
3863 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3864 
3865 #ifdef CONFIG_FAIR_GROUP_SCHED
3866 #ifdef CONFIG_SMP
3867 /*
3868  * All this does is approximate the hierarchical proportion which includes that
3869  * global sum we all love to hate.
3870  *
3871  * That is, the weight of a group entity, is the proportional share of the
3872  * group weight based on the group runqueue weights. That is:
3873  *
3874  *                     tg->weight * grq->load.weight
3875  *   ge->load.weight = -----------------------------               (1)
3876  *                       \Sum grq->load.weight
3877  *
3878  * Now, because computing that sum is prohibitively expensive to compute (been
3879  * there, done that) we approximate it with this average stuff. The average
3880  * moves slower and therefore the approximation is cheaper and more stable.
3881  *
3882  * So instead of the above, we substitute:
3883  *
3884  *   grq->load.weight -> grq->avg.load_avg                         (2)
3885  *
3886  * which yields the following:
3887  *
3888  *                     tg->weight * grq->avg.load_avg
3889  *   ge->load.weight = ------------------------------              (3)
3890  *                             tg->load_avg
3891  *
3892  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3893  *
3894  * That is shares_avg, and it is right (given the approximation (2)).
3895  *
3896  * The problem with it is that because the average is slow -- it was designed
3897  * to be exactly that of course -- this leads to transients in boundary
3898  * conditions. In specific, the case where the group was idle and we start the
3899  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3900  * yielding bad latency etc..
3901  *
3902  * Now, in that special case (1) reduces to:
3903  *
3904  *                     tg->weight * grq->load.weight
3905  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3906  *                         grp->load.weight
3907  *
3908  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3909  *
3910  * So what we do is modify our approximation (3) to approach (4) in the (near)
3911  * UP case, like:
3912  *
3913  *   ge->load.weight =
3914  *
3915  *              tg->weight * grq->load.weight
3916  *     ---------------------------------------------------         (5)
3917  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3918  *
3919  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3920  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3921  *
3922  *
3923  *                     tg->weight * grq->load.weight
3924  *   ge->load.weight = -----------------------------		   (6)
3925  *                             tg_load_avg'
3926  *
3927  * Where:
3928  *
3929  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3930  *                  max(grq->load.weight, grq->avg.load_avg)
3931  *
3932  * And that is shares_weight and is icky. In the (near) UP case it approaches
3933  * (4) while in the normal case it approaches (3). It consistently
3934  * overestimates the ge->load.weight and therefore:
3935  *
3936  *   \Sum ge->load.weight >= tg->weight
3937  *
3938  * hence icky!
3939  */
calc_group_shares(struct cfs_rq * cfs_rq)3940 static long calc_group_shares(struct cfs_rq *cfs_rq)
3941 {
3942 	long tg_weight, tg_shares, load, shares;
3943 	struct task_group *tg = cfs_rq->tg;
3944 
3945 	tg_shares = READ_ONCE(tg->shares);
3946 
3947 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3948 
3949 	tg_weight = atomic_long_read(&tg->load_avg);
3950 
3951 	/* Ensure tg_weight >= load */
3952 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3953 	tg_weight += load;
3954 
3955 	shares = (tg_shares * load);
3956 	if (tg_weight)
3957 		shares /= tg_weight;
3958 
3959 	/*
3960 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3961 	 * of a group with small tg->shares value. It is a floor value which is
3962 	 * assigned as a minimum load.weight to the sched_entity representing
3963 	 * the group on a CPU.
3964 	 *
3965 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3966 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3967 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3968 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3969 	 * instead of 0.
3970 	 */
3971 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3972 }
3973 #endif /* CONFIG_SMP */
3974 
3975 /*
3976  * Recomputes the group entity based on the current state of its group
3977  * runqueue.
3978  */
update_cfs_group(struct sched_entity * se)3979 static void update_cfs_group(struct sched_entity *se)
3980 {
3981 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3982 	long shares;
3983 
3984 	/*
3985 	 * When a group becomes empty, preserve its weight. This matters for
3986 	 * DELAY_DEQUEUE.
3987 	 */
3988 	if (!gcfs_rq || !gcfs_rq->load.weight)
3989 		return;
3990 
3991 	if (throttled_hierarchy(gcfs_rq))
3992 		return;
3993 
3994 #ifndef CONFIG_SMP
3995 	shares = READ_ONCE(gcfs_rq->tg->shares);
3996 #else
3997 	shares = calc_group_shares(gcfs_rq);
3998 #endif
3999 	if (unlikely(se->load.weight != shares))
4000 		reweight_entity(cfs_rq_of(se), se, shares);
4001 }
4002 
4003 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4004 static inline void update_cfs_group(struct sched_entity *se)
4005 {
4006 }
4007 #endif /* CONFIG_FAIR_GROUP_SCHED */
4008 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4009 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4010 {
4011 	struct rq *rq = rq_of(cfs_rq);
4012 
4013 	if (&rq->cfs == cfs_rq) {
4014 		/*
4015 		 * There are a few boundary cases this might miss but it should
4016 		 * get called often enough that that should (hopefully) not be
4017 		 * a real problem.
4018 		 *
4019 		 * It will not get called when we go idle, because the idle
4020 		 * thread is a different class (!fair), nor will the utilization
4021 		 * number include things like RT tasks.
4022 		 *
4023 		 * As is, the util number is not freq-invariant (we'd have to
4024 		 * implement arch_scale_freq_capacity() for that).
4025 		 *
4026 		 * See cpu_util_cfs().
4027 		 */
4028 		cpufreq_update_util(rq, flags);
4029 	}
4030 }
4031 
4032 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4033 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4034 {
4035 	if (sa->load_sum)
4036 		return false;
4037 
4038 	if (sa->util_sum)
4039 		return false;
4040 
4041 	if (sa->runnable_sum)
4042 		return false;
4043 
4044 	/*
4045 	 * _avg must be null when _sum are null because _avg = _sum / divider
4046 	 * Make sure that rounding and/or propagation of PELT values never
4047 	 * break this.
4048 	 */
4049 	WARN_ON_ONCE(sa->load_avg ||
4050 		      sa->util_avg ||
4051 		      sa->runnable_avg);
4052 
4053 	return true;
4054 }
4055 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4056 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4057 {
4058 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4059 				 cfs_rq->last_update_time_copy);
4060 }
4061 #ifdef CONFIG_FAIR_GROUP_SCHED
4062 /*
4063  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4064  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4065  * bottom-up, we only have to test whether the cfs_rq before us on the list
4066  * is our child.
4067  * If cfs_rq is not on the list, test whether a child needs its to be added to
4068  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4069  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4070 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4071 {
4072 	struct cfs_rq *prev_cfs_rq;
4073 	struct list_head *prev;
4074 	struct rq *rq = rq_of(cfs_rq);
4075 
4076 	if (cfs_rq->on_list) {
4077 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4078 	} else {
4079 		prev = rq->tmp_alone_branch;
4080 	}
4081 
4082 	if (prev == &rq->leaf_cfs_rq_list)
4083 		return false;
4084 
4085 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4086 
4087 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4088 }
4089 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4090 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4091 {
4092 	if (cfs_rq->load.weight)
4093 		return false;
4094 
4095 	if (!load_avg_is_decayed(&cfs_rq->avg))
4096 		return false;
4097 
4098 	if (child_cfs_rq_on_list(cfs_rq))
4099 		return false;
4100 
4101 	return true;
4102 }
4103 
4104 /**
4105  * update_tg_load_avg - update the tg's load avg
4106  * @cfs_rq: the cfs_rq whose avg changed
4107  *
4108  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4109  * However, because tg->load_avg is a global value there are performance
4110  * considerations.
4111  *
4112  * In order to avoid having to look at the other cfs_rq's, we use a
4113  * differential update where we store the last value we propagated. This in
4114  * turn allows skipping updates if the differential is 'small'.
4115  *
4116  * Updating tg's load_avg is necessary before update_cfs_share().
4117  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4118 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4119 {
4120 	long delta;
4121 	u64 now;
4122 
4123 	/*
4124 	 * No need to update load_avg for root_task_group as it is not used.
4125 	 */
4126 	if (cfs_rq->tg == &root_task_group)
4127 		return;
4128 
4129 	/* rq has been offline and doesn't contribute to the share anymore: */
4130 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4131 		return;
4132 
4133 	/*
4134 	 * For migration heavy workloads, access to tg->load_avg can be
4135 	 * unbound. Limit the update rate to at most once per ms.
4136 	 */
4137 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4138 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4139 		return;
4140 
4141 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4142 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4143 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4144 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4145 		cfs_rq->last_update_tg_load_avg = now;
4146 	}
4147 }
4148 
clear_tg_load_avg(struct cfs_rq * cfs_rq)4149 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4150 {
4151 	long delta;
4152 	u64 now;
4153 
4154 	/*
4155 	 * No need to update load_avg for root_task_group, as it is not used.
4156 	 */
4157 	if (cfs_rq->tg == &root_task_group)
4158 		return;
4159 
4160 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4161 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4162 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4163 	cfs_rq->tg_load_avg_contrib = 0;
4164 	cfs_rq->last_update_tg_load_avg = now;
4165 }
4166 
4167 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4168 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4169 {
4170 	struct task_group *tg;
4171 
4172 	lockdep_assert_rq_held(rq);
4173 
4174 	/*
4175 	 * The rq clock has already been updated in
4176 	 * set_rq_offline(), so we should skip updating
4177 	 * the rq clock again in unthrottle_cfs_rq().
4178 	 */
4179 	rq_clock_start_loop_update(rq);
4180 
4181 	rcu_read_lock();
4182 	list_for_each_entry_rcu(tg, &task_groups, list) {
4183 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4184 
4185 		clear_tg_load_avg(cfs_rq);
4186 	}
4187 	rcu_read_unlock();
4188 
4189 	rq_clock_stop_loop_update(rq);
4190 }
4191 
4192 /*
4193  * Called within set_task_rq() right before setting a task's CPU. The
4194  * caller only guarantees p->pi_lock is held; no other assumptions,
4195  * including the state of rq->lock, should be made.
4196  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4197 void set_task_rq_fair(struct sched_entity *se,
4198 		      struct cfs_rq *prev, struct cfs_rq *next)
4199 {
4200 	u64 p_last_update_time;
4201 	u64 n_last_update_time;
4202 
4203 	if (!sched_feat(ATTACH_AGE_LOAD))
4204 		return;
4205 
4206 	/*
4207 	 * We are supposed to update the task to "current" time, then its up to
4208 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4209 	 * getting what current time is, so simply throw away the out-of-date
4210 	 * time. This will result in the wakee task is less decayed, but giving
4211 	 * the wakee more load sounds not bad.
4212 	 */
4213 	if (!(se->avg.last_update_time && prev))
4214 		return;
4215 
4216 	p_last_update_time = cfs_rq_last_update_time(prev);
4217 	n_last_update_time = cfs_rq_last_update_time(next);
4218 
4219 	__update_load_avg_blocked_se(p_last_update_time, se);
4220 	se->avg.last_update_time = n_last_update_time;
4221 }
4222 
4223 /*
4224  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4225  * propagate its contribution. The key to this propagation is the invariant
4226  * that for each group:
4227  *
4228  *   ge->avg == grq->avg						(1)
4229  *
4230  * _IFF_ we look at the pure running and runnable sums. Because they
4231  * represent the very same entity, just at different points in the hierarchy.
4232  *
4233  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4234  * and simply copies the running/runnable sum over (but still wrong, because
4235  * the group entity and group rq do not have their PELT windows aligned).
4236  *
4237  * However, update_tg_cfs_load() is more complex. So we have:
4238  *
4239  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4240  *
4241  * And since, like util, the runnable part should be directly transferable,
4242  * the following would _appear_ to be the straight forward approach:
4243  *
4244  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4245  *
4246  * And per (1) we have:
4247  *
4248  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4249  *
4250  * Which gives:
4251  *
4252  *                      ge->load.weight * grq->avg.load_avg
4253  *   ge->avg.load_avg = -----------------------------------		(4)
4254  *                               grq->load.weight
4255  *
4256  * Except that is wrong!
4257  *
4258  * Because while for entities historical weight is not important and we
4259  * really only care about our future and therefore can consider a pure
4260  * runnable sum, runqueues can NOT do this.
4261  *
4262  * We specifically want runqueues to have a load_avg that includes
4263  * historical weights. Those represent the blocked load, the load we expect
4264  * to (shortly) return to us. This only works by keeping the weights as
4265  * integral part of the sum. We therefore cannot decompose as per (3).
4266  *
4267  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4268  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4269  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4270  * runnable section of these tasks overlap (or not). If they were to perfectly
4271  * align the rq as a whole would be runnable 2/3 of the time. If however we
4272  * always have at least 1 runnable task, the rq as a whole is always runnable.
4273  *
4274  * So we'll have to approximate.. :/
4275  *
4276  * Given the constraint:
4277  *
4278  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4279  *
4280  * We can construct a rule that adds runnable to a rq by assuming minimal
4281  * overlap.
4282  *
4283  * On removal, we'll assume each task is equally runnable; which yields:
4284  *
4285  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4286  *
4287  * XXX: only do this for the part of runnable > running ?
4288  *
4289  */
4290 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4291 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4292 {
4293 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4294 	u32 new_sum, divider;
4295 
4296 	/* Nothing to update */
4297 	if (!delta_avg)
4298 		return;
4299 
4300 	/*
4301 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4302 	 * See ___update_load_avg() for details.
4303 	 */
4304 	divider = get_pelt_divider(&cfs_rq->avg);
4305 
4306 
4307 	/* Set new sched_entity's utilization */
4308 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4309 	new_sum = se->avg.util_avg * divider;
4310 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4311 	se->avg.util_sum = new_sum;
4312 
4313 	/* Update parent cfs_rq utilization */
4314 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4315 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4316 
4317 	/* See update_cfs_rq_load_avg() */
4318 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4319 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4320 }
4321 
4322 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4323 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4324 {
4325 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4326 	u32 new_sum, divider;
4327 
4328 	/* Nothing to update */
4329 	if (!delta_avg)
4330 		return;
4331 
4332 	/*
4333 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4334 	 * See ___update_load_avg() for details.
4335 	 */
4336 	divider = get_pelt_divider(&cfs_rq->avg);
4337 
4338 	/* Set new sched_entity's runnable */
4339 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4340 	new_sum = se->avg.runnable_avg * divider;
4341 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4342 	se->avg.runnable_sum = new_sum;
4343 
4344 	/* Update parent cfs_rq runnable */
4345 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4346 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4347 	/* See update_cfs_rq_load_avg() */
4348 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4349 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4350 }
4351 
4352 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4353 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4354 {
4355 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4356 	unsigned long load_avg;
4357 	u64 load_sum = 0;
4358 	s64 delta_sum;
4359 	u32 divider;
4360 
4361 	if (!runnable_sum)
4362 		return;
4363 
4364 	gcfs_rq->prop_runnable_sum = 0;
4365 
4366 	/*
4367 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4368 	 * See ___update_load_avg() for details.
4369 	 */
4370 	divider = get_pelt_divider(&cfs_rq->avg);
4371 
4372 	if (runnable_sum >= 0) {
4373 		/*
4374 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4375 		 * the CPU is saturated running == runnable.
4376 		 */
4377 		runnable_sum += se->avg.load_sum;
4378 		runnable_sum = min_t(long, runnable_sum, divider);
4379 	} else {
4380 		/*
4381 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4382 		 * assuming all tasks are equally runnable.
4383 		 */
4384 		if (scale_load_down(gcfs_rq->load.weight)) {
4385 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4386 				scale_load_down(gcfs_rq->load.weight));
4387 		}
4388 
4389 		/* But make sure to not inflate se's runnable */
4390 		runnable_sum = min(se->avg.load_sum, load_sum);
4391 	}
4392 
4393 	/*
4394 	 * runnable_sum can't be lower than running_sum
4395 	 * Rescale running sum to be in the same range as runnable sum
4396 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4397 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4398 	 */
4399 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4400 	runnable_sum = max(runnable_sum, running_sum);
4401 
4402 	load_sum = se_weight(se) * runnable_sum;
4403 	load_avg = div_u64(load_sum, divider);
4404 
4405 	delta_avg = load_avg - se->avg.load_avg;
4406 	if (!delta_avg)
4407 		return;
4408 
4409 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4410 
4411 	se->avg.load_sum = runnable_sum;
4412 	se->avg.load_avg = load_avg;
4413 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4414 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4415 	/* See update_cfs_rq_load_avg() */
4416 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4417 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4418 }
4419 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4420 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4421 {
4422 	cfs_rq->propagate = 1;
4423 	cfs_rq->prop_runnable_sum += runnable_sum;
4424 }
4425 
4426 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4427 static inline int propagate_entity_load_avg(struct sched_entity *se)
4428 {
4429 	struct cfs_rq *cfs_rq, *gcfs_rq;
4430 
4431 	if (entity_is_task(se))
4432 		return 0;
4433 
4434 	gcfs_rq = group_cfs_rq(se);
4435 	if (!gcfs_rq->propagate)
4436 		return 0;
4437 
4438 	gcfs_rq->propagate = 0;
4439 
4440 	cfs_rq = cfs_rq_of(se);
4441 
4442 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4443 
4444 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4445 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4446 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4447 
4448 	trace_pelt_cfs_tp(cfs_rq);
4449 	trace_pelt_se_tp(se);
4450 
4451 	return 1;
4452 }
4453 
4454 /*
4455  * Check if we need to update the load and the utilization of a blocked
4456  * group_entity:
4457  */
skip_blocked_update(struct sched_entity * se)4458 static inline bool skip_blocked_update(struct sched_entity *se)
4459 {
4460 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4461 
4462 	/*
4463 	 * If sched_entity still have not zero load or utilization, we have to
4464 	 * decay it:
4465 	 */
4466 	if (se->avg.load_avg || se->avg.util_avg)
4467 		return false;
4468 
4469 	/*
4470 	 * If there is a pending propagation, we have to update the load and
4471 	 * the utilization of the sched_entity:
4472 	 */
4473 	if (gcfs_rq->propagate)
4474 		return false;
4475 
4476 	/*
4477 	 * Otherwise, the load and the utilization of the sched_entity is
4478 	 * already zero and there is no pending propagation, so it will be a
4479 	 * waste of time to try to decay it:
4480 	 */
4481 	return true;
4482 }
4483 
4484 #else /* CONFIG_FAIR_GROUP_SCHED */
4485 
update_tg_load_avg(struct cfs_rq * cfs_rq)4486 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4487 
clear_tg_offline_cfs_rqs(struct rq * rq)4488 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4489 
propagate_entity_load_avg(struct sched_entity * se)4490 static inline int propagate_entity_load_avg(struct sched_entity *se)
4491 {
4492 	return 0;
4493 }
4494 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4495 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4496 
4497 #endif /* CONFIG_FAIR_GROUP_SCHED */
4498 
4499 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4500 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4501 {
4502 	u64 throttled = 0, now, lut;
4503 	struct cfs_rq *cfs_rq;
4504 	struct rq *rq;
4505 	bool is_idle;
4506 
4507 	if (load_avg_is_decayed(&se->avg))
4508 		return;
4509 
4510 	cfs_rq = cfs_rq_of(se);
4511 	rq = rq_of(cfs_rq);
4512 
4513 	rcu_read_lock();
4514 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4515 	rcu_read_unlock();
4516 
4517 	/*
4518 	 * The lag estimation comes with a cost we don't want to pay all the
4519 	 * time. Hence, limiting to the case where the source CPU is idle and
4520 	 * we know we are at the greatest risk to have an outdated clock.
4521 	 */
4522 	if (!is_idle)
4523 		return;
4524 
4525 	/*
4526 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4527 	 *
4528 	 *   last_update_time (the cfs_rq's last_update_time)
4529 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4530 	 *      = rq_clock_pelt()@cfs_rq_idle
4531 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4532 	 *
4533 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4534 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4535 	 *
4536 	 *   rq_idle_lag (delta between now and rq's update)
4537 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4538 	 *
4539 	 * We can then write:
4540 	 *
4541 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4542 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4543 	 * Where:
4544 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4545 	 *      rq_clock()@rq_idle      is rq->clock_idle
4546 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4547 	 *                              is cfs_rq->throttled_pelt_idle
4548 	 */
4549 
4550 #ifdef CONFIG_CFS_BANDWIDTH
4551 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4552 	/* The clock has been stopped for throttling */
4553 	if (throttled == U64_MAX)
4554 		return;
4555 #endif
4556 	now = u64_u32_load(rq->clock_pelt_idle);
4557 	/*
4558 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4559 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4560 	 * which lead to an underestimation. The opposite would lead to an
4561 	 * overestimation.
4562 	 */
4563 	smp_rmb();
4564 	lut = cfs_rq_last_update_time(cfs_rq);
4565 
4566 	now -= throttled;
4567 	if (now < lut)
4568 		/*
4569 		 * cfs_rq->avg.last_update_time is more recent than our
4570 		 * estimation, let's use it.
4571 		 */
4572 		now = lut;
4573 	else
4574 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4575 
4576 	__update_load_avg_blocked_se(now, se);
4577 }
4578 #else
migrate_se_pelt_lag(struct sched_entity * se)4579 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4580 #endif
4581 
4582 /**
4583  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4584  * @now: current time, as per cfs_rq_clock_pelt()
4585  * @cfs_rq: cfs_rq to update
4586  *
4587  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4588  * avg. The immediate corollary is that all (fair) tasks must be attached.
4589  *
4590  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4591  *
4592  * Return: true if the load decayed or we removed load.
4593  *
4594  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4595  * call update_tg_load_avg() when this function returns true.
4596  */
4597 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4598 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4599 {
4600 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4601 	struct sched_avg *sa = &cfs_rq->avg;
4602 	int decayed = 0;
4603 
4604 	if (cfs_rq->removed.nr) {
4605 		unsigned long r;
4606 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4607 
4608 		raw_spin_lock(&cfs_rq->removed.lock);
4609 		swap(cfs_rq->removed.util_avg, removed_util);
4610 		swap(cfs_rq->removed.load_avg, removed_load);
4611 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4612 		cfs_rq->removed.nr = 0;
4613 		raw_spin_unlock(&cfs_rq->removed.lock);
4614 
4615 		r = removed_load;
4616 		sub_positive(&sa->load_avg, r);
4617 		sub_positive(&sa->load_sum, r * divider);
4618 		/* See sa->util_sum below */
4619 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4620 
4621 		r = removed_util;
4622 		sub_positive(&sa->util_avg, r);
4623 		sub_positive(&sa->util_sum, r * divider);
4624 		/*
4625 		 * Because of rounding, se->util_sum might ends up being +1 more than
4626 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4627 		 * a lot of tasks with the rounding problem between 2 updates of
4628 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4629 		 * cfs_util_avg is not.
4630 		 * Check that util_sum is still above its lower bound for the new
4631 		 * util_avg. Given that period_contrib might have moved since the last
4632 		 * sync, we are only sure that util_sum must be above or equal to
4633 		 *    util_avg * minimum possible divider
4634 		 */
4635 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4636 
4637 		r = removed_runnable;
4638 		sub_positive(&sa->runnable_avg, r);
4639 		sub_positive(&sa->runnable_sum, r * divider);
4640 		/* See sa->util_sum above */
4641 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4642 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4643 
4644 		/*
4645 		 * removed_runnable is the unweighted version of removed_load so we
4646 		 * can use it to estimate removed_load_sum.
4647 		 */
4648 		add_tg_cfs_propagate(cfs_rq,
4649 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4650 
4651 		decayed = 1;
4652 	}
4653 
4654 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4655 	u64_u32_store_copy(sa->last_update_time,
4656 			   cfs_rq->last_update_time_copy,
4657 			   sa->last_update_time);
4658 	return decayed;
4659 }
4660 
4661 /**
4662  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4663  * @cfs_rq: cfs_rq to attach to
4664  * @se: sched_entity to attach
4665  *
4666  * Must call update_cfs_rq_load_avg() before this, since we rely on
4667  * cfs_rq->avg.last_update_time being current.
4668  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4669 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4670 {
4671 	/*
4672 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4673 	 * See ___update_load_avg() for details.
4674 	 */
4675 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4676 
4677 	/*
4678 	 * When we attach the @se to the @cfs_rq, we must align the decay
4679 	 * window because without that, really weird and wonderful things can
4680 	 * happen.
4681 	 *
4682 	 * XXX illustrate
4683 	 */
4684 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4685 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4686 
4687 	/*
4688 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4689 	 * period_contrib. This isn't strictly correct, but since we're
4690 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4691 	 * _sum a little.
4692 	 */
4693 	se->avg.util_sum = se->avg.util_avg * divider;
4694 
4695 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4696 
4697 	se->avg.load_sum = se->avg.load_avg * divider;
4698 	if (se_weight(se) < se->avg.load_sum)
4699 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4700 	else
4701 		se->avg.load_sum = 1;
4702 
4703 	enqueue_load_avg(cfs_rq, se);
4704 	cfs_rq->avg.util_avg += se->avg.util_avg;
4705 	cfs_rq->avg.util_sum += se->avg.util_sum;
4706 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4707 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4708 
4709 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4710 
4711 	cfs_rq_util_change(cfs_rq, 0);
4712 
4713 	trace_pelt_cfs_tp(cfs_rq);
4714 }
4715 
4716 /**
4717  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4718  * @cfs_rq: cfs_rq to detach from
4719  * @se: sched_entity to detach
4720  *
4721  * Must call update_cfs_rq_load_avg() before this, since we rely on
4722  * cfs_rq->avg.last_update_time being current.
4723  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4724 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4725 {
4726 	dequeue_load_avg(cfs_rq, se);
4727 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4728 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4729 	/* See update_cfs_rq_load_avg() */
4730 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4731 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4732 
4733 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4734 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4735 	/* See update_cfs_rq_load_avg() */
4736 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4737 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4738 
4739 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4740 
4741 	cfs_rq_util_change(cfs_rq, 0);
4742 
4743 	trace_pelt_cfs_tp(cfs_rq);
4744 }
4745 
4746 /*
4747  * Optional action to be done while updating the load average
4748  */
4749 #define UPDATE_TG	0x1
4750 #define SKIP_AGE_LOAD	0x2
4751 #define DO_ATTACH	0x4
4752 #define DO_DETACH	0x8
4753 
4754 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4755 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4756 {
4757 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4758 	int decayed;
4759 
4760 	/*
4761 	 * Track task load average for carrying it to new CPU after migrated, and
4762 	 * track group sched_entity load average for task_h_load calculation in migration
4763 	 */
4764 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4765 		__update_load_avg_se(now, cfs_rq, se);
4766 
4767 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4768 	decayed |= propagate_entity_load_avg(se);
4769 
4770 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4771 
4772 		/*
4773 		 * DO_ATTACH means we're here from enqueue_entity().
4774 		 * !last_update_time means we've passed through
4775 		 * migrate_task_rq_fair() indicating we migrated.
4776 		 *
4777 		 * IOW we're enqueueing a task on a new CPU.
4778 		 */
4779 		attach_entity_load_avg(cfs_rq, se);
4780 		update_tg_load_avg(cfs_rq);
4781 
4782 	} else if (flags & DO_DETACH) {
4783 		/*
4784 		 * DO_DETACH means we're here from dequeue_entity()
4785 		 * and we are migrating task out of the CPU.
4786 		 */
4787 		detach_entity_load_avg(cfs_rq, se);
4788 		update_tg_load_avg(cfs_rq);
4789 	} else if (decayed) {
4790 		cfs_rq_util_change(cfs_rq, 0);
4791 
4792 		if (flags & UPDATE_TG)
4793 			update_tg_load_avg(cfs_rq);
4794 	}
4795 }
4796 
4797 /*
4798  * Synchronize entity load avg of dequeued entity without locking
4799  * the previous rq.
4800  */
sync_entity_load_avg(struct sched_entity * se)4801 static void sync_entity_load_avg(struct sched_entity *se)
4802 {
4803 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4804 	u64 last_update_time;
4805 
4806 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4807 	__update_load_avg_blocked_se(last_update_time, se);
4808 }
4809 
4810 /*
4811  * Task first catches up with cfs_rq, and then subtract
4812  * itself from the cfs_rq (task must be off the queue now).
4813  */
remove_entity_load_avg(struct sched_entity * se)4814 static void remove_entity_load_avg(struct sched_entity *se)
4815 {
4816 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4817 	unsigned long flags;
4818 
4819 	/*
4820 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4821 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4822 	 * so we can remove unconditionally.
4823 	 */
4824 
4825 	sync_entity_load_avg(se);
4826 
4827 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4828 	++cfs_rq->removed.nr;
4829 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4830 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4831 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4832 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4833 }
4834 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4835 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4836 {
4837 	return cfs_rq->avg.runnable_avg;
4838 }
4839 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4840 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4841 {
4842 	return cfs_rq->avg.load_avg;
4843 }
4844 
4845 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4846 
task_util(struct task_struct * p)4847 static inline unsigned long task_util(struct task_struct *p)
4848 {
4849 	return READ_ONCE(p->se.avg.util_avg);
4850 }
4851 
task_runnable(struct task_struct * p)4852 static inline unsigned long task_runnable(struct task_struct *p)
4853 {
4854 	return READ_ONCE(p->se.avg.runnable_avg);
4855 }
4856 
_task_util_est(struct task_struct * p)4857 static inline unsigned long _task_util_est(struct task_struct *p)
4858 {
4859 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4860 }
4861 
task_util_est(struct task_struct * p)4862 static inline unsigned long task_util_est(struct task_struct *p)
4863 {
4864 	return max(task_util(p), _task_util_est(p));
4865 }
4866 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4867 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4868 				    struct task_struct *p)
4869 {
4870 	unsigned int enqueued;
4871 
4872 	if (!sched_feat(UTIL_EST))
4873 		return;
4874 
4875 	/* Update root cfs_rq's estimated utilization */
4876 	enqueued  = cfs_rq->avg.util_est;
4877 	enqueued += _task_util_est(p);
4878 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4879 
4880 	trace_sched_util_est_cfs_tp(cfs_rq);
4881 }
4882 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4883 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4884 				    struct task_struct *p)
4885 {
4886 	unsigned int enqueued;
4887 
4888 	if (!sched_feat(UTIL_EST))
4889 		return;
4890 
4891 	/* Update root cfs_rq's estimated utilization */
4892 	enqueued  = cfs_rq->avg.util_est;
4893 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4894 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4895 
4896 	trace_sched_util_est_cfs_tp(cfs_rq);
4897 }
4898 
4899 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4900 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4901 static inline void util_est_update(struct cfs_rq *cfs_rq,
4902 				   struct task_struct *p,
4903 				   bool task_sleep)
4904 {
4905 	unsigned int ewma, dequeued, last_ewma_diff;
4906 
4907 	if (!sched_feat(UTIL_EST))
4908 		return;
4909 
4910 	/*
4911 	 * Skip update of task's estimated utilization when the task has not
4912 	 * yet completed an activation, e.g. being migrated.
4913 	 */
4914 	if (!task_sleep)
4915 		return;
4916 
4917 	/* Get current estimate of utilization */
4918 	ewma = READ_ONCE(p->se.avg.util_est);
4919 
4920 	/*
4921 	 * If the PELT values haven't changed since enqueue time,
4922 	 * skip the util_est update.
4923 	 */
4924 	if (ewma & UTIL_AVG_UNCHANGED)
4925 		return;
4926 
4927 	/* Get utilization at dequeue */
4928 	dequeued = task_util(p);
4929 
4930 	/*
4931 	 * Reset EWMA on utilization increases, the moving average is used only
4932 	 * to smooth utilization decreases.
4933 	 */
4934 	if (ewma <= dequeued) {
4935 		ewma = dequeued;
4936 		goto done;
4937 	}
4938 
4939 	/*
4940 	 * Skip update of task's estimated utilization when its members are
4941 	 * already ~1% close to its last activation value.
4942 	 */
4943 	last_ewma_diff = ewma - dequeued;
4944 	if (last_ewma_diff < UTIL_EST_MARGIN)
4945 		goto done;
4946 
4947 	/*
4948 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4949 	 * we cannot grant that thread got all CPU time it wanted.
4950 	 */
4951 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4952 		goto done;
4953 
4954 
4955 	/*
4956 	 * Update Task's estimated utilization
4957 	 *
4958 	 * When *p completes an activation we can consolidate another sample
4959 	 * of the task size. This is done by using this value to update the
4960 	 * Exponential Weighted Moving Average (EWMA):
4961 	 *
4962 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4963 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4964 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4965 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4966 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4967 	 *
4968 	 * Where 'w' is the weight of new samples, which is configured to be
4969 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4970 	 */
4971 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4972 	ewma  -= last_ewma_diff;
4973 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4974 done:
4975 	ewma |= UTIL_AVG_UNCHANGED;
4976 	WRITE_ONCE(p->se.avg.util_est, ewma);
4977 
4978 	trace_sched_util_est_se_tp(&p->se);
4979 }
4980 
get_actual_cpu_capacity(int cpu)4981 static inline unsigned long get_actual_cpu_capacity(int cpu)
4982 {
4983 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4984 
4985 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4986 
4987 	return capacity;
4988 }
4989 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4990 static inline int util_fits_cpu(unsigned long util,
4991 				unsigned long uclamp_min,
4992 				unsigned long uclamp_max,
4993 				int cpu)
4994 {
4995 	unsigned long capacity = capacity_of(cpu);
4996 	unsigned long capacity_orig;
4997 	bool fits, uclamp_max_fits;
4998 
4999 	/*
5000 	 * Check if the real util fits without any uclamp boost/cap applied.
5001 	 */
5002 	fits = fits_capacity(util, capacity);
5003 
5004 	if (!uclamp_is_used())
5005 		return fits;
5006 
5007 	/*
5008 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5009 	 * uclamp_max. We only care about capacity pressure (by using
5010 	 * capacity_of()) for comparing against the real util.
5011 	 *
5012 	 * If a task is boosted to 1024 for example, we don't want a tiny
5013 	 * pressure to skew the check whether it fits a CPU or not.
5014 	 *
5015 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5016 	 * should fit a little cpu even if there's some pressure.
5017 	 *
5018 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5019 	 * on available OPP of the system.
5020 	 *
5021 	 * We honour it for uclamp_min only as a drop in performance level
5022 	 * could result in not getting the requested minimum performance level.
5023 	 *
5024 	 * For uclamp_max, we can tolerate a drop in performance level as the
5025 	 * goal is to cap the task. So it's okay if it's getting less.
5026 	 */
5027 	capacity_orig = arch_scale_cpu_capacity(cpu);
5028 
5029 	/*
5030 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5031 	 * But we do have some corner cases to cater for..
5032 	 *
5033 	 *
5034 	 *                                 C=z
5035 	 *   |                             ___
5036 	 *   |                  C=y       |   |
5037 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5038 	 *   |      C=x        |   |      |   |
5039 	 *   |      ___        |   |      |   |
5040 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5041 	 *   |     |   |       |   |      |   |
5042 	 *   |     |   |       |   |      |   |
5043 	 *   +----------------------------------------
5044 	 *         CPU0        CPU1       CPU2
5045 	 *
5046 	 *   In the above example if a task is capped to a specific performance
5047 	 *   point, y, then when:
5048 	 *
5049 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5050 	 *     to CPU1
5051 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5052 	 *     uclamp_max request.
5053 	 *
5054 	 *   which is what we're enforcing here. A task always fits if
5055 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5056 	 *   the normal upmigration rules should withhold still.
5057 	 *
5058 	 *   Only exception is when we are on max capacity, then we need to be
5059 	 *   careful not to block overutilized state. This is so because:
5060 	 *
5061 	 *     1. There's no concept of capping at max_capacity! We can't go
5062 	 *        beyond this performance level anyway.
5063 	 *     2. The system is being saturated when we're operating near
5064 	 *        max capacity, it doesn't make sense to block overutilized.
5065 	 */
5066 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5067 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5068 	fits = fits || uclamp_max_fits;
5069 
5070 	/*
5071 	 *
5072 	 *                                 C=z
5073 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5074 	 *   |                  C=y       |   |
5075 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5076 	 *   |      C=x        |   |      |   |
5077 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5078 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5079 	 *   |     |   |       |   |      |   |
5080 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5081 	 *   +----------------------------------------
5082 	 *         CPU0        CPU1       CPU2
5083 	 *
5084 	 * a) If util > uclamp_max, then we're capped, we don't care about
5085 	 *    actual fitness value here. We only care if uclamp_max fits
5086 	 *    capacity without taking margin/pressure into account.
5087 	 *    See comment above.
5088 	 *
5089 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5090 	 *    fits_capacity() rules apply. Except we need to ensure that we
5091 	 *    enforce we remain within uclamp_max, see comment above.
5092 	 *
5093 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5094 	 *    need to take into account the boosted value fits the CPU without
5095 	 *    taking margin/pressure into account.
5096 	 *
5097 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5098 	 * just need to consider an extra check for case (c) after ensuring we
5099 	 * handle the case uclamp_min > uclamp_max.
5100 	 */
5101 	uclamp_min = min(uclamp_min, uclamp_max);
5102 	if (fits && (util < uclamp_min) &&
5103 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5104 		return -1;
5105 
5106 	return fits;
5107 }
5108 
task_fits_cpu(struct task_struct * p,int cpu)5109 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5110 {
5111 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5112 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5113 	unsigned long util = task_util_est(p);
5114 	/*
5115 	 * Return true only if the cpu fully fits the task requirements, which
5116 	 * include the utilization but also the performance hints.
5117 	 */
5118 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5119 }
5120 
update_misfit_status(struct task_struct * p,struct rq * rq)5121 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5122 {
5123 	int cpu = cpu_of(rq);
5124 
5125 	if (!sched_asym_cpucap_active())
5126 		return;
5127 
5128 	/*
5129 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5130 	 * available CPU already? Or do we fit into this CPU ?
5131 	 */
5132 	if (!p || (p->nr_cpus_allowed == 1) ||
5133 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5134 	    task_fits_cpu(p, cpu)) {
5135 
5136 		rq->misfit_task_load = 0;
5137 		return;
5138 	}
5139 
5140 	/*
5141 	 * Make sure that misfit_task_load will not be null even if
5142 	 * task_h_load() returns 0.
5143 	 */
5144 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5145 }
5146 
5147 #else /* CONFIG_SMP */
5148 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5149 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5150 {
5151 	return !cfs_rq->nr_queued;
5152 }
5153 
5154 #define UPDATE_TG	0x0
5155 #define SKIP_AGE_LOAD	0x0
5156 #define DO_ATTACH	0x0
5157 #define DO_DETACH	0x0
5158 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5159 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5160 {
5161 	cfs_rq_util_change(cfs_rq, 0);
5162 }
5163 
remove_entity_load_avg(struct sched_entity * se)5164 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5165 
5166 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5167 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5168 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5169 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5170 
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5171 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5172 {
5173 	return 0;
5174 }
5175 
5176 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5177 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5178 
5179 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5180 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5181 
5182 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5183 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5184 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5185 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5186 
5187 #endif /* CONFIG_SMP */
5188 
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5189 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5190 {
5191 	struct sched_entity *se = &p->se;
5192 
5193 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5194 	if (attr->sched_runtime) {
5195 		se->custom_slice = 1;
5196 		se->slice = clamp_t(u64, attr->sched_runtime,
5197 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5198 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5199 	} else {
5200 		se->custom_slice = 0;
5201 		se->slice = sysctl_sched_base_slice;
5202 	}
5203 }
5204 
5205 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5206 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5207 {
5208 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5209 	s64 lag = 0;
5210 
5211 	if (!se->custom_slice)
5212 		se->slice = sysctl_sched_base_slice;
5213 	vslice = calc_delta_fair(se->slice, se);
5214 
5215 	/*
5216 	 * Due to how V is constructed as the weighted average of entities,
5217 	 * adding tasks with positive lag, or removing tasks with negative lag
5218 	 * will move 'time' backwards, this can screw around with the lag of
5219 	 * other tasks.
5220 	 *
5221 	 * EEVDF: placement strategy #1 / #2
5222 	 */
5223 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5224 		struct sched_entity *curr = cfs_rq->curr;
5225 		unsigned long load;
5226 
5227 		lag = se->vlag;
5228 
5229 		/*
5230 		 * If we want to place a task and preserve lag, we have to
5231 		 * consider the effect of the new entity on the weighted
5232 		 * average and compensate for this, otherwise lag can quickly
5233 		 * evaporate.
5234 		 *
5235 		 * Lag is defined as:
5236 		 *
5237 		 *   lag_i = S - s_i = w_i * (V - v_i)
5238 		 *
5239 		 * To avoid the 'w_i' term all over the place, we only track
5240 		 * the virtual lag:
5241 		 *
5242 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5243 		 *
5244 		 * And we take V to be the weighted average of all v:
5245 		 *
5246 		 *   V = (\Sum w_j*v_j) / W
5247 		 *
5248 		 * Where W is: \Sum w_j
5249 		 *
5250 		 * Then, the weighted average after adding an entity with lag
5251 		 * vl_i is given by:
5252 		 *
5253 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5254 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5255 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5256 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5257 		 *      = V - w_i*vl_i / (W + w_i)
5258 		 *
5259 		 * And the actual lag after adding an entity with vl_i is:
5260 		 *
5261 		 *   vl'_i = V' - v_i
5262 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5263 		 *         = vl_i - w_i*vl_i / (W + w_i)
5264 		 *
5265 		 * Which is strictly less than vl_i. So in order to preserve lag
5266 		 * we should inflate the lag before placement such that the
5267 		 * effective lag after placement comes out right.
5268 		 *
5269 		 * As such, invert the above relation for vl'_i to get the vl_i
5270 		 * we need to use such that the lag after placement is the lag
5271 		 * we computed before dequeue.
5272 		 *
5273 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5274 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5275 		 *
5276 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5277 		 *                   = W*vl_i
5278 		 *
5279 		 *   vl_i = (W + w_i)*vl'_i / W
5280 		 */
5281 		load = cfs_rq->avg_load;
5282 		if (curr && curr->on_rq)
5283 			load += scale_load_down(curr->load.weight);
5284 
5285 		lag *= load + scale_load_down(se->load.weight);
5286 		if (WARN_ON_ONCE(!load))
5287 			load = 1;
5288 		lag = div_s64(lag, load);
5289 	}
5290 
5291 	se->vruntime = vruntime - lag;
5292 
5293 	if (se->rel_deadline) {
5294 		se->deadline += se->vruntime;
5295 		se->rel_deadline = 0;
5296 		return;
5297 	}
5298 
5299 	/*
5300 	 * When joining the competition; the existing tasks will be,
5301 	 * on average, halfway through their slice, as such start tasks
5302 	 * off with half a slice to ease into the competition.
5303 	 */
5304 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5305 		vslice /= 2;
5306 
5307 	/*
5308 	 * EEVDF: vd_i = ve_i + r_i/w_i
5309 	 */
5310 	se->deadline = se->vruntime + vslice;
5311 }
5312 
5313 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5314 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5315 
5316 static void
5317 requeue_delayed_entity(struct sched_entity *se);
5318 
5319 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5320 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5321 {
5322 	bool curr = cfs_rq->curr == se;
5323 
5324 	/*
5325 	 * If we're the current task, we must renormalise before calling
5326 	 * update_curr().
5327 	 */
5328 	if (curr)
5329 		place_entity(cfs_rq, se, flags);
5330 
5331 	update_curr(cfs_rq);
5332 
5333 	/*
5334 	 * When enqueuing a sched_entity, we must:
5335 	 *   - Update loads to have both entity and cfs_rq synced with now.
5336 	 *   - For group_entity, update its runnable_weight to reflect the new
5337 	 *     h_nr_runnable of its group cfs_rq.
5338 	 *   - For group_entity, update its weight to reflect the new share of
5339 	 *     its group cfs_rq
5340 	 *   - Add its new weight to cfs_rq->load.weight
5341 	 */
5342 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5343 	se_update_runnable(se);
5344 	/*
5345 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5346 	 * but update_cfs_group() here will re-adjust the weight and have to
5347 	 * undo/redo all that. Seems wasteful.
5348 	 */
5349 	update_cfs_group(se);
5350 
5351 	/*
5352 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5353 	 * we can place the entity.
5354 	 */
5355 	if (!curr)
5356 		place_entity(cfs_rq, se, flags);
5357 
5358 	account_entity_enqueue(cfs_rq, se);
5359 
5360 	/* Entity has migrated, no longer consider this task hot */
5361 	if (flags & ENQUEUE_MIGRATED)
5362 		se->exec_start = 0;
5363 
5364 	check_schedstat_required();
5365 	update_stats_enqueue_fair(cfs_rq, se, flags);
5366 	if (!curr)
5367 		__enqueue_entity(cfs_rq, se);
5368 	se->on_rq = 1;
5369 
5370 	if (cfs_rq->nr_queued == 1) {
5371 		check_enqueue_throttle(cfs_rq);
5372 		if (!throttled_hierarchy(cfs_rq)) {
5373 			list_add_leaf_cfs_rq(cfs_rq);
5374 		} else {
5375 #ifdef CONFIG_CFS_BANDWIDTH
5376 			struct rq *rq = rq_of(cfs_rq);
5377 
5378 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5379 				cfs_rq->throttled_clock = rq_clock(rq);
5380 			if (!cfs_rq->throttled_clock_self)
5381 				cfs_rq->throttled_clock_self = rq_clock(rq);
5382 #endif
5383 		}
5384 	}
5385 }
5386 
__clear_buddies_next(struct sched_entity * se)5387 static void __clear_buddies_next(struct sched_entity *se)
5388 {
5389 	for_each_sched_entity(se) {
5390 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5391 		if (cfs_rq->next != se)
5392 			break;
5393 
5394 		cfs_rq->next = NULL;
5395 	}
5396 }
5397 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5398 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5399 {
5400 	if (cfs_rq->next == se)
5401 		__clear_buddies_next(se);
5402 }
5403 
5404 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5405 
set_delayed(struct sched_entity * se)5406 static void set_delayed(struct sched_entity *se)
5407 {
5408 	se->sched_delayed = 1;
5409 
5410 	/*
5411 	 * Delayed se of cfs_rq have no tasks queued on them.
5412 	 * Do not adjust h_nr_runnable since dequeue_entities()
5413 	 * will account it for blocked tasks.
5414 	 */
5415 	if (!entity_is_task(se))
5416 		return;
5417 
5418 	for_each_sched_entity(se) {
5419 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5420 
5421 		cfs_rq->h_nr_runnable--;
5422 		if (cfs_rq_throttled(cfs_rq))
5423 			break;
5424 	}
5425 }
5426 
clear_delayed(struct sched_entity * se)5427 static void clear_delayed(struct sched_entity *se)
5428 {
5429 	se->sched_delayed = 0;
5430 
5431 	/*
5432 	 * Delayed se of cfs_rq have no tasks queued on them.
5433 	 * Do not adjust h_nr_runnable since a dequeue has
5434 	 * already accounted for it or an enqueue of a task
5435 	 * below it will account for it in enqueue_task_fair().
5436 	 */
5437 	if (!entity_is_task(se))
5438 		return;
5439 
5440 	for_each_sched_entity(se) {
5441 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5442 
5443 		cfs_rq->h_nr_runnable++;
5444 		if (cfs_rq_throttled(cfs_rq))
5445 			break;
5446 	}
5447 }
5448 
finish_delayed_dequeue_entity(struct sched_entity * se)5449 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5450 {
5451 	clear_delayed(se);
5452 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5453 		se->vlag = 0;
5454 }
5455 
5456 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5457 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5458 {
5459 	bool sleep = flags & DEQUEUE_SLEEP;
5460 	int action = UPDATE_TG;
5461 
5462 	update_curr(cfs_rq);
5463 	clear_buddies(cfs_rq, se);
5464 
5465 	if (flags & DEQUEUE_DELAYED) {
5466 		WARN_ON_ONCE(!se->sched_delayed);
5467 	} else {
5468 		bool delay = sleep;
5469 		/*
5470 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5471 		 * states must not suffer spurious wakeups, excempt them.
5472 		 */
5473 		if (flags & DEQUEUE_SPECIAL)
5474 			delay = false;
5475 
5476 		WARN_ON_ONCE(delay && se->sched_delayed);
5477 
5478 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5479 		    !entity_eligible(cfs_rq, se)) {
5480 			update_load_avg(cfs_rq, se, 0);
5481 			set_delayed(se);
5482 			return false;
5483 		}
5484 	}
5485 
5486 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5487 		action |= DO_DETACH;
5488 
5489 	/*
5490 	 * When dequeuing a sched_entity, we must:
5491 	 *   - Update loads to have both entity and cfs_rq synced with now.
5492 	 *   - For group_entity, update its runnable_weight to reflect the new
5493 	 *     h_nr_runnable of its group cfs_rq.
5494 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5495 	 *   - For group entity, update its weight to reflect the new share
5496 	 *     of its group cfs_rq.
5497 	 */
5498 	update_load_avg(cfs_rq, se, action);
5499 	se_update_runnable(se);
5500 
5501 	update_stats_dequeue_fair(cfs_rq, se, flags);
5502 
5503 	update_entity_lag(cfs_rq, se);
5504 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5505 		se->deadline -= se->vruntime;
5506 		se->rel_deadline = 1;
5507 	}
5508 
5509 	if (se != cfs_rq->curr)
5510 		__dequeue_entity(cfs_rq, se);
5511 	se->on_rq = 0;
5512 	account_entity_dequeue(cfs_rq, se);
5513 
5514 	/* return excess runtime on last dequeue */
5515 	return_cfs_rq_runtime(cfs_rq);
5516 
5517 	update_cfs_group(se);
5518 
5519 	/*
5520 	 * Now advance min_vruntime if @se was the entity holding it back,
5521 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5522 	 * put back on, and if we advance min_vruntime, we'll be placed back
5523 	 * further than we started -- i.e. we'll be penalized.
5524 	 */
5525 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5526 		update_min_vruntime(cfs_rq);
5527 
5528 	if (flags & DEQUEUE_DELAYED)
5529 		finish_delayed_dequeue_entity(se);
5530 
5531 	if (cfs_rq->nr_queued == 0)
5532 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5533 
5534 	return true;
5535 }
5536 
5537 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5538 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5539 {
5540 	clear_buddies(cfs_rq, se);
5541 
5542 	/* 'current' is not kept within the tree. */
5543 	if (se->on_rq) {
5544 		/*
5545 		 * Any task has to be enqueued before it get to execute on
5546 		 * a CPU. So account for the time it spent waiting on the
5547 		 * runqueue.
5548 		 */
5549 		update_stats_wait_end_fair(cfs_rq, se);
5550 		__dequeue_entity(cfs_rq, se);
5551 		update_load_avg(cfs_rq, se, UPDATE_TG);
5552 
5553 		set_protect_slice(se);
5554 	}
5555 
5556 	update_stats_curr_start(cfs_rq, se);
5557 	WARN_ON_ONCE(cfs_rq->curr);
5558 	cfs_rq->curr = se;
5559 
5560 	/*
5561 	 * Track our maximum slice length, if the CPU's load is at
5562 	 * least twice that of our own weight (i.e. don't track it
5563 	 * when there are only lesser-weight tasks around):
5564 	 */
5565 	if (schedstat_enabled() &&
5566 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5567 		struct sched_statistics *stats;
5568 
5569 		stats = __schedstats_from_se(se);
5570 		__schedstat_set(stats->slice_max,
5571 				max((u64)stats->slice_max,
5572 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5573 	}
5574 
5575 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5576 }
5577 
5578 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5579 
5580 /*
5581  * Pick the next process, keeping these things in mind, in this order:
5582  * 1) keep things fair between processes/task groups
5583  * 2) pick the "next" process, since someone really wants that to run
5584  * 3) pick the "last" process, for cache locality
5585  * 4) do not run the "skip" process, if something else is available
5586  */
5587 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5588 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5589 {
5590 	struct sched_entity *se;
5591 
5592 	/*
5593 	 * Picking the ->next buddy will affect latency but not fairness.
5594 	 */
5595 	if (sched_feat(PICK_BUDDY) &&
5596 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5597 		/* ->next will never be delayed */
5598 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5599 		return cfs_rq->next;
5600 	}
5601 
5602 	se = pick_eevdf(cfs_rq);
5603 	if (se->sched_delayed) {
5604 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5605 		/*
5606 		 * Must not reference @se again, see __block_task().
5607 		 */
5608 		return NULL;
5609 	}
5610 	return se;
5611 }
5612 
5613 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5614 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5615 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5616 {
5617 	/*
5618 	 * If still on the runqueue then deactivate_task()
5619 	 * was not called and update_curr() has to be done:
5620 	 */
5621 	if (prev->on_rq)
5622 		update_curr(cfs_rq);
5623 
5624 	/* throttle cfs_rqs exceeding runtime */
5625 	check_cfs_rq_runtime(cfs_rq);
5626 
5627 	if (prev->on_rq) {
5628 		update_stats_wait_start_fair(cfs_rq, prev);
5629 		/* Put 'current' back into the tree. */
5630 		__enqueue_entity(cfs_rq, prev);
5631 		/* in !on_rq case, update occurred at dequeue */
5632 		update_load_avg(cfs_rq, prev, 0);
5633 	}
5634 	WARN_ON_ONCE(cfs_rq->curr != prev);
5635 	cfs_rq->curr = NULL;
5636 }
5637 
5638 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5640 {
5641 	/*
5642 	 * Update run-time statistics of the 'current'.
5643 	 */
5644 	update_curr(cfs_rq);
5645 
5646 	/*
5647 	 * Ensure that runnable average is periodically updated.
5648 	 */
5649 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5650 	update_cfs_group(curr);
5651 
5652 #ifdef CONFIG_SCHED_HRTICK
5653 	/*
5654 	 * queued ticks are scheduled to match the slice, so don't bother
5655 	 * validating it and just reschedule.
5656 	 */
5657 	if (queued) {
5658 		resched_curr_lazy(rq_of(cfs_rq));
5659 		return;
5660 	}
5661 #endif
5662 }
5663 
5664 
5665 /**************************************************
5666  * CFS bandwidth control machinery
5667  */
5668 
5669 #ifdef CONFIG_CFS_BANDWIDTH
5670 
5671 #ifdef CONFIG_JUMP_LABEL
5672 static struct static_key __cfs_bandwidth_used;
5673 
cfs_bandwidth_used(void)5674 static inline bool cfs_bandwidth_used(void)
5675 {
5676 	return static_key_false(&__cfs_bandwidth_used);
5677 }
5678 
cfs_bandwidth_usage_inc(void)5679 void cfs_bandwidth_usage_inc(void)
5680 {
5681 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5682 }
5683 
cfs_bandwidth_usage_dec(void)5684 void cfs_bandwidth_usage_dec(void)
5685 {
5686 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5687 }
5688 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5689 static bool cfs_bandwidth_used(void)
5690 {
5691 	return true;
5692 }
5693 
cfs_bandwidth_usage_inc(void)5694 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5695 void cfs_bandwidth_usage_dec(void) {}
5696 #endif /* CONFIG_JUMP_LABEL */
5697 
5698 /*
5699  * default period for cfs group bandwidth.
5700  * default: 0.1s, units: nanoseconds
5701  */
default_cfs_period(void)5702 static inline u64 default_cfs_period(void)
5703 {
5704 	return 100000000ULL;
5705 }
5706 
sched_cfs_bandwidth_slice(void)5707 static inline u64 sched_cfs_bandwidth_slice(void)
5708 {
5709 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5710 }
5711 
5712 /*
5713  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5714  * directly instead of rq->clock to avoid adding additional synchronization
5715  * around rq->lock.
5716  *
5717  * requires cfs_b->lock
5718  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5719 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5720 {
5721 	s64 runtime;
5722 
5723 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5724 		return;
5725 
5726 	cfs_b->runtime += cfs_b->quota;
5727 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5728 	if (runtime > 0) {
5729 		cfs_b->burst_time += runtime;
5730 		cfs_b->nr_burst++;
5731 	}
5732 
5733 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5734 	cfs_b->runtime_snap = cfs_b->runtime;
5735 }
5736 
tg_cfs_bandwidth(struct task_group * tg)5737 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5738 {
5739 	return &tg->cfs_bandwidth;
5740 }
5741 
5742 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5743 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5744 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5745 {
5746 	u64 min_amount, amount = 0;
5747 
5748 	lockdep_assert_held(&cfs_b->lock);
5749 
5750 	/* note: this is a positive sum as runtime_remaining <= 0 */
5751 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5752 
5753 	if (cfs_b->quota == RUNTIME_INF)
5754 		amount = min_amount;
5755 	else {
5756 		start_cfs_bandwidth(cfs_b);
5757 
5758 		if (cfs_b->runtime > 0) {
5759 			amount = min(cfs_b->runtime, min_amount);
5760 			cfs_b->runtime -= amount;
5761 			cfs_b->idle = 0;
5762 		}
5763 	}
5764 
5765 	cfs_rq->runtime_remaining += amount;
5766 
5767 	return cfs_rq->runtime_remaining > 0;
5768 }
5769 
5770 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5771 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5772 {
5773 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5774 	int ret;
5775 
5776 	raw_spin_lock(&cfs_b->lock);
5777 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5778 	raw_spin_unlock(&cfs_b->lock);
5779 
5780 	return ret;
5781 }
5782 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5783 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5784 {
5785 	/* dock delta_exec before expiring quota (as it could span periods) */
5786 	cfs_rq->runtime_remaining -= delta_exec;
5787 
5788 	if (likely(cfs_rq->runtime_remaining > 0))
5789 		return;
5790 
5791 	if (cfs_rq->throttled)
5792 		return;
5793 	/*
5794 	 * if we're unable to extend our runtime we resched so that the active
5795 	 * hierarchy can be throttled
5796 	 */
5797 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5798 		resched_curr(rq_of(cfs_rq));
5799 }
5800 
5801 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5802 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5803 {
5804 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5805 		return;
5806 
5807 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5808 }
5809 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5810 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5811 {
5812 	return cfs_bandwidth_used() && cfs_rq->throttled;
5813 }
5814 
5815 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5816 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5817 {
5818 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5819 }
5820 
5821 /*
5822  * Ensure that neither of the group entities corresponding to src_cpu or
5823  * dest_cpu are members of a throttled hierarchy when performing group
5824  * load-balance operations.
5825  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5826 static inline int throttled_lb_pair(struct task_group *tg,
5827 				    int src_cpu, int dest_cpu)
5828 {
5829 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5830 
5831 	src_cfs_rq = tg->cfs_rq[src_cpu];
5832 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5833 
5834 	return throttled_hierarchy(src_cfs_rq) ||
5835 	       throttled_hierarchy(dest_cfs_rq);
5836 }
5837 
tg_unthrottle_up(struct task_group * tg,void * data)5838 static int tg_unthrottle_up(struct task_group *tg, void *data)
5839 {
5840 	struct rq *rq = data;
5841 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5842 
5843 	cfs_rq->throttle_count--;
5844 	if (!cfs_rq->throttle_count) {
5845 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5846 					     cfs_rq->throttled_clock_pelt;
5847 
5848 		/* Add cfs_rq with load or one or more already running entities to the list */
5849 		if (!cfs_rq_is_decayed(cfs_rq))
5850 			list_add_leaf_cfs_rq(cfs_rq);
5851 
5852 		if (cfs_rq->throttled_clock_self) {
5853 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5854 
5855 			cfs_rq->throttled_clock_self = 0;
5856 
5857 			if (WARN_ON_ONCE((s64)delta < 0))
5858 				delta = 0;
5859 
5860 			cfs_rq->throttled_clock_self_time += delta;
5861 		}
5862 	}
5863 
5864 	return 0;
5865 }
5866 
tg_throttle_down(struct task_group * tg,void * data)5867 static int tg_throttle_down(struct task_group *tg, void *data)
5868 {
5869 	struct rq *rq = data;
5870 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5871 
5872 	/* group is entering throttled state, stop time */
5873 	if (!cfs_rq->throttle_count) {
5874 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5875 		list_del_leaf_cfs_rq(cfs_rq);
5876 
5877 		WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5878 		if (cfs_rq->nr_queued)
5879 			cfs_rq->throttled_clock_self = rq_clock(rq);
5880 	}
5881 	cfs_rq->throttle_count++;
5882 
5883 	return 0;
5884 }
5885 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5886 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5887 {
5888 	struct rq *rq = rq_of(cfs_rq);
5889 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5890 	struct sched_entity *se;
5891 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5892 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5893 
5894 	raw_spin_lock(&cfs_b->lock);
5895 	/* This will start the period timer if necessary */
5896 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5897 		/*
5898 		 * We have raced with bandwidth becoming available, and if we
5899 		 * actually throttled the timer might not unthrottle us for an
5900 		 * entire period. We additionally needed to make sure that any
5901 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5902 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5903 		 * for 1ns of runtime rather than just check cfs_b.
5904 		 */
5905 		dequeue = 0;
5906 	} else {
5907 		list_add_tail_rcu(&cfs_rq->throttled_list,
5908 				  &cfs_b->throttled_cfs_rq);
5909 	}
5910 	raw_spin_unlock(&cfs_b->lock);
5911 
5912 	if (!dequeue)
5913 		return false;  /* Throttle no longer required. */
5914 
5915 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5916 
5917 	/* freeze hierarchy runnable averages while throttled */
5918 	rcu_read_lock();
5919 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5920 	rcu_read_unlock();
5921 
5922 	queued_delta = cfs_rq->h_nr_queued;
5923 	runnable_delta = cfs_rq->h_nr_runnable;
5924 	idle_delta = cfs_rq->h_nr_idle;
5925 	for_each_sched_entity(se) {
5926 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5927 		int flags;
5928 
5929 		/* throttled entity or throttle-on-deactivate */
5930 		if (!se->on_rq)
5931 			goto done;
5932 
5933 		/*
5934 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5935 		 * This avoids teaching dequeue_entities() about throttled
5936 		 * entities and keeps things relatively simple.
5937 		 */
5938 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5939 		if (se->sched_delayed)
5940 			flags |= DEQUEUE_DELAYED;
5941 		dequeue_entity(qcfs_rq, se, flags);
5942 
5943 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5944 			idle_delta = cfs_rq->h_nr_queued;
5945 
5946 		qcfs_rq->h_nr_queued -= queued_delta;
5947 		qcfs_rq->h_nr_runnable -= runnable_delta;
5948 		qcfs_rq->h_nr_idle -= idle_delta;
5949 
5950 		if (qcfs_rq->load.weight) {
5951 			/* Avoid re-evaluating load for this entity: */
5952 			se = parent_entity(se);
5953 			break;
5954 		}
5955 	}
5956 
5957 	for_each_sched_entity(se) {
5958 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5959 		/* throttled entity or throttle-on-deactivate */
5960 		if (!se->on_rq)
5961 			goto done;
5962 
5963 		update_load_avg(qcfs_rq, se, 0);
5964 		se_update_runnable(se);
5965 
5966 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5967 			idle_delta = cfs_rq->h_nr_queued;
5968 
5969 		qcfs_rq->h_nr_queued -= queued_delta;
5970 		qcfs_rq->h_nr_runnable -= runnable_delta;
5971 		qcfs_rq->h_nr_idle -= idle_delta;
5972 	}
5973 
5974 	/* At this point se is NULL and we are at root level*/
5975 	sub_nr_running(rq, queued_delta);
5976 
5977 	/* Stop the fair server if throttling resulted in no runnable tasks */
5978 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5979 		dl_server_stop(&rq->fair_server);
5980 done:
5981 	/*
5982 	 * Note: distribution will already see us throttled via the
5983 	 * throttled-list.  rq->lock protects completion.
5984 	 */
5985 	cfs_rq->throttled = 1;
5986 	WARN_ON_ONCE(cfs_rq->throttled_clock);
5987 	if (cfs_rq->nr_queued)
5988 		cfs_rq->throttled_clock = rq_clock(rq);
5989 	return true;
5990 }
5991 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5992 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5993 {
5994 	struct rq *rq = rq_of(cfs_rq);
5995 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5996 	struct sched_entity *se;
5997 	long queued_delta, runnable_delta, idle_delta;
5998 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5999 
6000 	se = cfs_rq->tg->se[cpu_of(rq)];
6001 
6002 	cfs_rq->throttled = 0;
6003 
6004 	update_rq_clock(rq);
6005 
6006 	raw_spin_lock(&cfs_b->lock);
6007 	if (cfs_rq->throttled_clock) {
6008 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6009 		cfs_rq->throttled_clock = 0;
6010 	}
6011 	list_del_rcu(&cfs_rq->throttled_list);
6012 	raw_spin_unlock(&cfs_b->lock);
6013 
6014 	/* update hierarchical throttle state */
6015 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6016 
6017 	if (!cfs_rq->load.weight) {
6018 		if (!cfs_rq->on_list)
6019 			return;
6020 		/*
6021 		 * Nothing to run but something to decay (on_list)?
6022 		 * Complete the branch.
6023 		 */
6024 		for_each_sched_entity(se) {
6025 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6026 				break;
6027 		}
6028 		goto unthrottle_throttle;
6029 	}
6030 
6031 	queued_delta = cfs_rq->h_nr_queued;
6032 	runnable_delta = cfs_rq->h_nr_runnable;
6033 	idle_delta = cfs_rq->h_nr_idle;
6034 	for_each_sched_entity(se) {
6035 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6036 
6037 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6038 		if (se->sched_delayed) {
6039 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6040 
6041 			dequeue_entity(qcfs_rq, se, flags);
6042 		} else if (se->on_rq)
6043 			break;
6044 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6045 
6046 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6047 			idle_delta = cfs_rq->h_nr_queued;
6048 
6049 		qcfs_rq->h_nr_queued += queued_delta;
6050 		qcfs_rq->h_nr_runnable += runnable_delta;
6051 		qcfs_rq->h_nr_idle += idle_delta;
6052 
6053 		/* end evaluation on encountering a throttled cfs_rq */
6054 		if (cfs_rq_throttled(qcfs_rq))
6055 			goto unthrottle_throttle;
6056 	}
6057 
6058 	for_each_sched_entity(se) {
6059 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6060 
6061 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6062 		se_update_runnable(se);
6063 
6064 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6065 			idle_delta = cfs_rq->h_nr_queued;
6066 
6067 		qcfs_rq->h_nr_queued += queued_delta;
6068 		qcfs_rq->h_nr_runnable += runnable_delta;
6069 		qcfs_rq->h_nr_idle += idle_delta;
6070 
6071 		/* end evaluation on encountering a throttled cfs_rq */
6072 		if (cfs_rq_throttled(qcfs_rq))
6073 			goto unthrottle_throttle;
6074 	}
6075 
6076 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6077 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6078 		dl_server_start(&rq->fair_server);
6079 
6080 	/* At this point se is NULL and we are at root level*/
6081 	add_nr_running(rq, queued_delta);
6082 
6083 unthrottle_throttle:
6084 	assert_list_leaf_cfs_rq(rq);
6085 
6086 	/* Determine whether we need to wake up potentially idle CPU: */
6087 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6088 		resched_curr(rq);
6089 }
6090 
6091 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6092 static void __cfsb_csd_unthrottle(void *arg)
6093 {
6094 	struct cfs_rq *cursor, *tmp;
6095 	struct rq *rq = arg;
6096 	struct rq_flags rf;
6097 
6098 	rq_lock(rq, &rf);
6099 
6100 	/*
6101 	 * Iterating over the list can trigger several call to
6102 	 * update_rq_clock() in unthrottle_cfs_rq().
6103 	 * Do it once and skip the potential next ones.
6104 	 */
6105 	update_rq_clock(rq);
6106 	rq_clock_start_loop_update(rq);
6107 
6108 	/*
6109 	 * Since we hold rq lock we're safe from concurrent manipulation of
6110 	 * the CSD list. However, this RCU critical section annotates the
6111 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6112 	 * race with group being freed in the window between removing it
6113 	 * from the list and advancing to the next entry in the list.
6114 	 */
6115 	rcu_read_lock();
6116 
6117 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6118 				 throttled_csd_list) {
6119 		list_del_init(&cursor->throttled_csd_list);
6120 
6121 		if (cfs_rq_throttled(cursor))
6122 			unthrottle_cfs_rq(cursor);
6123 	}
6124 
6125 	rcu_read_unlock();
6126 
6127 	rq_clock_stop_loop_update(rq);
6128 	rq_unlock(rq, &rf);
6129 }
6130 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6131 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6132 {
6133 	struct rq *rq = rq_of(cfs_rq);
6134 	bool first;
6135 
6136 	if (rq == this_rq()) {
6137 		unthrottle_cfs_rq(cfs_rq);
6138 		return;
6139 	}
6140 
6141 	/* Already enqueued */
6142 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6143 		return;
6144 
6145 	first = list_empty(&rq->cfsb_csd_list);
6146 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6147 	if (first)
6148 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6149 }
6150 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6151 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6152 {
6153 	unthrottle_cfs_rq(cfs_rq);
6154 }
6155 #endif
6156 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6157 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6158 {
6159 	lockdep_assert_rq_held(rq_of(cfs_rq));
6160 
6161 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6162 	    cfs_rq->runtime_remaining <= 0))
6163 		return;
6164 
6165 	__unthrottle_cfs_rq_async(cfs_rq);
6166 }
6167 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6168 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6169 {
6170 	int this_cpu = smp_processor_id();
6171 	u64 runtime, remaining = 1;
6172 	bool throttled = false;
6173 	struct cfs_rq *cfs_rq, *tmp;
6174 	struct rq_flags rf;
6175 	struct rq *rq;
6176 	LIST_HEAD(local_unthrottle);
6177 
6178 	rcu_read_lock();
6179 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6180 				throttled_list) {
6181 		rq = rq_of(cfs_rq);
6182 
6183 		if (!remaining) {
6184 			throttled = true;
6185 			break;
6186 		}
6187 
6188 		rq_lock_irqsave(rq, &rf);
6189 		if (!cfs_rq_throttled(cfs_rq))
6190 			goto next;
6191 
6192 		/* Already queued for async unthrottle */
6193 		if (!list_empty(&cfs_rq->throttled_csd_list))
6194 			goto next;
6195 
6196 		/* By the above checks, this should never be true */
6197 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6198 
6199 		raw_spin_lock(&cfs_b->lock);
6200 		runtime = -cfs_rq->runtime_remaining + 1;
6201 		if (runtime > cfs_b->runtime)
6202 			runtime = cfs_b->runtime;
6203 		cfs_b->runtime -= runtime;
6204 		remaining = cfs_b->runtime;
6205 		raw_spin_unlock(&cfs_b->lock);
6206 
6207 		cfs_rq->runtime_remaining += runtime;
6208 
6209 		/* we check whether we're throttled above */
6210 		if (cfs_rq->runtime_remaining > 0) {
6211 			if (cpu_of(rq) != this_cpu) {
6212 				unthrottle_cfs_rq_async(cfs_rq);
6213 			} else {
6214 				/*
6215 				 * We currently only expect to be unthrottling
6216 				 * a single cfs_rq locally.
6217 				 */
6218 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
6219 				list_add_tail(&cfs_rq->throttled_csd_list,
6220 					      &local_unthrottle);
6221 			}
6222 		} else {
6223 			throttled = true;
6224 		}
6225 
6226 next:
6227 		rq_unlock_irqrestore(rq, &rf);
6228 	}
6229 
6230 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6231 				 throttled_csd_list) {
6232 		struct rq *rq = rq_of(cfs_rq);
6233 
6234 		rq_lock_irqsave(rq, &rf);
6235 
6236 		list_del_init(&cfs_rq->throttled_csd_list);
6237 
6238 		if (cfs_rq_throttled(cfs_rq))
6239 			unthrottle_cfs_rq(cfs_rq);
6240 
6241 		rq_unlock_irqrestore(rq, &rf);
6242 	}
6243 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
6244 
6245 	rcu_read_unlock();
6246 
6247 	return throttled;
6248 }
6249 
6250 /*
6251  * Responsible for refilling a task_group's bandwidth and unthrottling its
6252  * cfs_rqs as appropriate. If there has been no activity within the last
6253  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6254  * used to track this state.
6255  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6256 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6257 {
6258 	int throttled;
6259 
6260 	/* no need to continue the timer with no bandwidth constraint */
6261 	if (cfs_b->quota == RUNTIME_INF)
6262 		goto out_deactivate;
6263 
6264 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6265 	cfs_b->nr_periods += overrun;
6266 
6267 	/* Refill extra burst quota even if cfs_b->idle */
6268 	__refill_cfs_bandwidth_runtime(cfs_b);
6269 
6270 	/*
6271 	 * idle depends on !throttled (for the case of a large deficit), and if
6272 	 * we're going inactive then everything else can be deferred
6273 	 */
6274 	if (cfs_b->idle && !throttled)
6275 		goto out_deactivate;
6276 
6277 	if (!throttled) {
6278 		/* mark as potentially idle for the upcoming period */
6279 		cfs_b->idle = 1;
6280 		return 0;
6281 	}
6282 
6283 	/* account preceding periods in which throttling occurred */
6284 	cfs_b->nr_throttled += overrun;
6285 
6286 	/*
6287 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6288 	 */
6289 	while (throttled && cfs_b->runtime > 0) {
6290 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6291 		/* we can't nest cfs_b->lock while distributing bandwidth */
6292 		throttled = distribute_cfs_runtime(cfs_b);
6293 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6294 	}
6295 
6296 	/*
6297 	 * While we are ensured activity in the period following an
6298 	 * unthrottle, this also covers the case in which the new bandwidth is
6299 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6300 	 * timer to remain active while there are any throttled entities.)
6301 	 */
6302 	cfs_b->idle = 0;
6303 
6304 	return 0;
6305 
6306 out_deactivate:
6307 	return 1;
6308 }
6309 
6310 /* a cfs_rq won't donate quota below this amount */
6311 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6312 /* minimum remaining period time to redistribute slack quota */
6313 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6314 /* how long we wait to gather additional slack before distributing */
6315 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6316 
6317 /*
6318  * Are we near the end of the current quota period?
6319  *
6320  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6321  * hrtimer base being cleared by hrtimer_start. In the case of
6322  * migrate_hrtimers, base is never cleared, so we are fine.
6323  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6324 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6325 {
6326 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6327 	s64 remaining;
6328 
6329 	/* if the call-back is running a quota refresh is already occurring */
6330 	if (hrtimer_callback_running(refresh_timer))
6331 		return 1;
6332 
6333 	/* is a quota refresh about to occur? */
6334 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6335 	if (remaining < (s64)min_expire)
6336 		return 1;
6337 
6338 	return 0;
6339 }
6340 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6341 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6342 {
6343 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6344 
6345 	/* if there's a quota refresh soon don't bother with slack */
6346 	if (runtime_refresh_within(cfs_b, min_left))
6347 		return;
6348 
6349 	/* don't push forwards an existing deferred unthrottle */
6350 	if (cfs_b->slack_started)
6351 		return;
6352 	cfs_b->slack_started = true;
6353 
6354 	hrtimer_start(&cfs_b->slack_timer,
6355 			ns_to_ktime(cfs_bandwidth_slack_period),
6356 			HRTIMER_MODE_REL);
6357 }
6358 
6359 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6360 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6361 {
6362 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6363 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6364 
6365 	if (slack_runtime <= 0)
6366 		return;
6367 
6368 	raw_spin_lock(&cfs_b->lock);
6369 	if (cfs_b->quota != RUNTIME_INF) {
6370 		cfs_b->runtime += slack_runtime;
6371 
6372 		/* we are under rq->lock, defer unthrottling using a timer */
6373 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6374 		    !list_empty(&cfs_b->throttled_cfs_rq))
6375 			start_cfs_slack_bandwidth(cfs_b);
6376 	}
6377 	raw_spin_unlock(&cfs_b->lock);
6378 
6379 	/* even if it's not valid for return we don't want to try again */
6380 	cfs_rq->runtime_remaining -= slack_runtime;
6381 }
6382 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6384 {
6385 	if (!cfs_bandwidth_used())
6386 		return;
6387 
6388 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6389 		return;
6390 
6391 	__return_cfs_rq_runtime(cfs_rq);
6392 }
6393 
6394 /*
6395  * This is done with a timer (instead of inline with bandwidth return) since
6396  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6397  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6399 {
6400 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6401 	unsigned long flags;
6402 
6403 	/* confirm we're still not at a refresh boundary */
6404 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6405 	cfs_b->slack_started = false;
6406 
6407 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6408 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6409 		return;
6410 	}
6411 
6412 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6413 		runtime = cfs_b->runtime;
6414 
6415 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6416 
6417 	if (!runtime)
6418 		return;
6419 
6420 	distribute_cfs_runtime(cfs_b);
6421 }
6422 
6423 /*
6424  * When a group wakes up we want to make sure that its quota is not already
6425  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6426  * runtime as update_curr() throttling can not trigger until it's on-rq.
6427  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6428 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6429 {
6430 	if (!cfs_bandwidth_used())
6431 		return;
6432 
6433 	/* an active group must be handled by the update_curr()->put() path */
6434 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6435 		return;
6436 
6437 	/* ensure the group is not already throttled */
6438 	if (cfs_rq_throttled(cfs_rq))
6439 		return;
6440 
6441 	/* update runtime allocation */
6442 	account_cfs_rq_runtime(cfs_rq, 0);
6443 	if (cfs_rq->runtime_remaining <= 0)
6444 		throttle_cfs_rq(cfs_rq);
6445 }
6446 
sync_throttle(struct task_group * tg,int cpu)6447 static void sync_throttle(struct task_group *tg, int cpu)
6448 {
6449 	struct cfs_rq *pcfs_rq, *cfs_rq;
6450 
6451 	if (!cfs_bandwidth_used())
6452 		return;
6453 
6454 	if (!tg->parent)
6455 		return;
6456 
6457 	cfs_rq = tg->cfs_rq[cpu];
6458 	pcfs_rq = tg->parent->cfs_rq[cpu];
6459 
6460 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6461 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6462 }
6463 
6464 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6465 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6466 {
6467 	if (!cfs_bandwidth_used())
6468 		return false;
6469 
6470 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6471 		return false;
6472 
6473 	/*
6474 	 * it's possible for a throttled entity to be forced into a running
6475 	 * state (e.g. set_curr_task), in this case we're finished.
6476 	 */
6477 	if (cfs_rq_throttled(cfs_rq))
6478 		return true;
6479 
6480 	return throttle_cfs_rq(cfs_rq);
6481 }
6482 
sched_cfs_slack_timer(struct hrtimer * timer)6483 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6484 {
6485 	struct cfs_bandwidth *cfs_b =
6486 		container_of(timer, struct cfs_bandwidth, slack_timer);
6487 
6488 	do_sched_cfs_slack_timer(cfs_b);
6489 
6490 	return HRTIMER_NORESTART;
6491 }
6492 
6493 extern const u64 max_cfs_quota_period;
6494 
sched_cfs_period_timer(struct hrtimer * timer)6495 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6496 {
6497 	struct cfs_bandwidth *cfs_b =
6498 		container_of(timer, struct cfs_bandwidth, period_timer);
6499 	unsigned long flags;
6500 	int overrun;
6501 	int idle = 0;
6502 	int count = 0;
6503 
6504 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6505 	for (;;) {
6506 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6507 		if (!overrun)
6508 			break;
6509 
6510 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6511 
6512 		if (++count > 3) {
6513 			u64 new, old = ktime_to_ns(cfs_b->period);
6514 
6515 			/*
6516 			 * Grow period by a factor of 2 to avoid losing precision.
6517 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6518 			 * to fail.
6519 			 */
6520 			new = old * 2;
6521 			if (new < max_cfs_quota_period) {
6522 				cfs_b->period = ns_to_ktime(new);
6523 				cfs_b->quota *= 2;
6524 				cfs_b->burst *= 2;
6525 
6526 				pr_warn_ratelimited(
6527 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6528 					smp_processor_id(),
6529 					div_u64(new, NSEC_PER_USEC),
6530 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6531 			} else {
6532 				pr_warn_ratelimited(
6533 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6534 					smp_processor_id(),
6535 					div_u64(old, NSEC_PER_USEC),
6536 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6537 			}
6538 
6539 			/* reset count so we don't come right back in here */
6540 			count = 0;
6541 		}
6542 	}
6543 	if (idle)
6544 		cfs_b->period_active = 0;
6545 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6546 
6547 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6548 }
6549 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6550 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6551 {
6552 	raw_spin_lock_init(&cfs_b->lock);
6553 	cfs_b->runtime = 0;
6554 	cfs_b->quota = RUNTIME_INF;
6555 	cfs_b->period = ns_to_ktime(default_cfs_period());
6556 	cfs_b->burst = 0;
6557 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6558 
6559 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6560 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6561 		      HRTIMER_MODE_ABS_PINNED);
6562 
6563 	/* Add a random offset so that timers interleave */
6564 	hrtimer_set_expires(&cfs_b->period_timer,
6565 			    get_random_u32_below(cfs_b->period));
6566 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6567 		      HRTIMER_MODE_REL);
6568 	cfs_b->slack_started = false;
6569 }
6570 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6571 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6572 {
6573 	cfs_rq->runtime_enabled = 0;
6574 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6575 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6576 }
6577 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6578 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6579 {
6580 	lockdep_assert_held(&cfs_b->lock);
6581 
6582 	if (cfs_b->period_active)
6583 		return;
6584 
6585 	cfs_b->period_active = 1;
6586 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6587 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6588 }
6589 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6590 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6591 {
6592 	int __maybe_unused i;
6593 
6594 	/* init_cfs_bandwidth() was not called */
6595 	if (!cfs_b->throttled_cfs_rq.next)
6596 		return;
6597 
6598 	hrtimer_cancel(&cfs_b->period_timer);
6599 	hrtimer_cancel(&cfs_b->slack_timer);
6600 
6601 	/*
6602 	 * It is possible that we still have some cfs_rq's pending on a CSD
6603 	 * list, though this race is very rare. In order for this to occur, we
6604 	 * must have raced with the last task leaving the group while there
6605 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6606 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6607 	 * we can simply flush all pending CSD work inline here. We're
6608 	 * guaranteed at this point that no additional cfs_rq of this group can
6609 	 * join a CSD list.
6610 	 */
6611 #ifdef CONFIG_SMP
6612 	for_each_possible_cpu(i) {
6613 		struct rq *rq = cpu_rq(i);
6614 		unsigned long flags;
6615 
6616 		if (list_empty(&rq->cfsb_csd_list))
6617 			continue;
6618 
6619 		local_irq_save(flags);
6620 		__cfsb_csd_unthrottle(rq);
6621 		local_irq_restore(flags);
6622 	}
6623 #endif
6624 }
6625 
6626 /*
6627  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6628  *
6629  * The race is harmless, since modifying bandwidth settings of unhooked group
6630  * bits doesn't do much.
6631  */
6632 
6633 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6634 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6635 {
6636 	struct task_group *tg;
6637 
6638 	lockdep_assert_rq_held(rq);
6639 
6640 	rcu_read_lock();
6641 	list_for_each_entry_rcu(tg, &task_groups, list) {
6642 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6643 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6644 
6645 		raw_spin_lock(&cfs_b->lock);
6646 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6647 		raw_spin_unlock(&cfs_b->lock);
6648 	}
6649 	rcu_read_unlock();
6650 }
6651 
6652 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6653 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6654 {
6655 	struct task_group *tg;
6656 
6657 	lockdep_assert_rq_held(rq);
6658 
6659 	// Do not unthrottle for an active CPU
6660 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6661 		return;
6662 
6663 	/*
6664 	 * The rq clock has already been updated in the
6665 	 * set_rq_offline(), so we should skip updating
6666 	 * the rq clock again in unthrottle_cfs_rq().
6667 	 */
6668 	rq_clock_start_loop_update(rq);
6669 
6670 	rcu_read_lock();
6671 	list_for_each_entry_rcu(tg, &task_groups, list) {
6672 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6673 
6674 		if (!cfs_rq->runtime_enabled)
6675 			continue;
6676 
6677 		/*
6678 		 * Offline rq is schedulable till CPU is completely disabled
6679 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6680 		 */
6681 		cfs_rq->runtime_enabled = 0;
6682 
6683 		if (!cfs_rq_throttled(cfs_rq))
6684 			continue;
6685 
6686 		/*
6687 		 * clock_task is not advancing so we just need to make sure
6688 		 * there's some valid quota amount
6689 		 */
6690 		cfs_rq->runtime_remaining = 1;
6691 		unthrottle_cfs_rq(cfs_rq);
6692 	}
6693 	rcu_read_unlock();
6694 
6695 	rq_clock_stop_loop_update(rq);
6696 }
6697 
cfs_task_bw_constrained(struct task_struct * p)6698 bool cfs_task_bw_constrained(struct task_struct *p)
6699 {
6700 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6701 
6702 	if (!cfs_bandwidth_used())
6703 		return false;
6704 
6705 	if (cfs_rq->runtime_enabled ||
6706 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6707 		return true;
6708 
6709 	return false;
6710 }
6711 
6712 #ifdef CONFIG_NO_HZ_FULL
6713 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6714 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6715 {
6716 	int cpu = cpu_of(rq);
6717 
6718 	if (!cfs_bandwidth_used())
6719 		return;
6720 
6721 	if (!tick_nohz_full_cpu(cpu))
6722 		return;
6723 
6724 	if (rq->nr_running != 1)
6725 		return;
6726 
6727 	/*
6728 	 *  We know there is only one task runnable and we've just picked it. The
6729 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6730 	 *  be otherwise able to stop the tick. Just need to check if we are using
6731 	 *  bandwidth control.
6732 	 */
6733 	if (cfs_task_bw_constrained(p))
6734 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6735 }
6736 #endif
6737 
6738 #else /* CONFIG_CFS_BANDWIDTH */
6739 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6740 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6741 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6742 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6743 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6744 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6745 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6746 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6747 {
6748 	return 0;
6749 }
6750 
throttled_hierarchy(struct cfs_rq * cfs_rq)6751 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6752 {
6753 	return 0;
6754 }
6755 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6756 static inline int throttled_lb_pair(struct task_group *tg,
6757 				    int src_cpu, int dest_cpu)
6758 {
6759 	return 0;
6760 }
6761 
6762 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6763 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6764 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6765 #endif
6766 
tg_cfs_bandwidth(struct task_group * tg)6767 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6768 {
6769 	return NULL;
6770 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6771 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6772 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6773 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6774 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6775 bool cfs_task_bw_constrained(struct task_struct *p)
6776 {
6777 	return false;
6778 }
6779 #endif
6780 #endif /* CONFIG_CFS_BANDWIDTH */
6781 
6782 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6783 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6784 #endif
6785 
6786 /**************************************************
6787  * CFS operations on tasks:
6788  */
6789 
6790 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6791 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6792 {
6793 	struct sched_entity *se = &p->se;
6794 
6795 	WARN_ON_ONCE(task_rq(p) != rq);
6796 
6797 	if (rq->cfs.h_nr_queued > 1) {
6798 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6799 		u64 slice = se->slice;
6800 		s64 delta = slice - ran;
6801 
6802 		if (delta < 0) {
6803 			if (task_current_donor(rq, p))
6804 				resched_curr(rq);
6805 			return;
6806 		}
6807 		hrtick_start(rq, delta);
6808 	}
6809 }
6810 
6811 /*
6812  * called from enqueue/dequeue and updates the hrtick when the
6813  * current task is from our class and nr_running is low enough
6814  * to matter.
6815  */
hrtick_update(struct rq * rq)6816 static void hrtick_update(struct rq *rq)
6817 {
6818 	struct task_struct *donor = rq->donor;
6819 
6820 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6821 		return;
6822 
6823 	hrtick_start_fair(rq, donor);
6824 }
6825 #else /* !CONFIG_SCHED_HRTICK */
6826 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6827 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6828 {
6829 }
6830 
hrtick_update(struct rq * rq)6831 static inline void hrtick_update(struct rq *rq)
6832 {
6833 }
6834 #endif
6835 
6836 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6837 static inline bool cpu_overutilized(int cpu)
6838 {
6839 	unsigned long  rq_util_min, rq_util_max;
6840 
6841 	if (!sched_energy_enabled())
6842 		return false;
6843 
6844 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6845 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6846 
6847 	/* Return true only if the utilization doesn't fit CPU's capacity */
6848 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6849 }
6850 
6851 /*
6852  * overutilized value make sense only if EAS is enabled
6853  */
is_rd_overutilized(struct root_domain * rd)6854 static inline bool is_rd_overutilized(struct root_domain *rd)
6855 {
6856 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6857 }
6858 
set_rd_overutilized(struct root_domain * rd,bool flag)6859 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6860 {
6861 	if (!sched_energy_enabled())
6862 		return;
6863 
6864 	WRITE_ONCE(rd->overutilized, flag);
6865 	trace_sched_overutilized_tp(rd, flag);
6866 }
6867 
check_update_overutilized_status(struct rq * rq)6868 static inline void check_update_overutilized_status(struct rq *rq)
6869 {
6870 	/*
6871 	 * overutilized field is used for load balancing decisions only
6872 	 * if energy aware scheduler is being used
6873 	 */
6874 
6875 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6876 		set_rd_overutilized(rq->rd, 1);
6877 }
6878 #else
check_update_overutilized_status(struct rq * rq)6879 static inline void check_update_overutilized_status(struct rq *rq) { }
6880 #endif
6881 
6882 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6883 static int sched_idle_rq(struct rq *rq)
6884 {
6885 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6886 			rq->nr_running);
6887 }
6888 
6889 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6890 static int sched_idle_cpu(int cpu)
6891 {
6892 	return sched_idle_rq(cpu_rq(cpu));
6893 }
6894 #endif
6895 
6896 static void
requeue_delayed_entity(struct sched_entity * se)6897 requeue_delayed_entity(struct sched_entity *se)
6898 {
6899 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6900 
6901 	/*
6902 	 * se->sched_delayed should imply: se->on_rq == 1.
6903 	 * Because a delayed entity is one that is still on
6904 	 * the runqueue competing until elegibility.
6905 	 */
6906 	WARN_ON_ONCE(!se->sched_delayed);
6907 	WARN_ON_ONCE(!se->on_rq);
6908 
6909 	if (sched_feat(DELAY_ZERO)) {
6910 		update_entity_lag(cfs_rq, se);
6911 		if (se->vlag > 0) {
6912 			cfs_rq->nr_queued--;
6913 			if (se != cfs_rq->curr)
6914 				__dequeue_entity(cfs_rq, se);
6915 			se->vlag = 0;
6916 			place_entity(cfs_rq, se, 0);
6917 			if (se != cfs_rq->curr)
6918 				__enqueue_entity(cfs_rq, se);
6919 			cfs_rq->nr_queued++;
6920 		}
6921 	}
6922 
6923 	update_load_avg(cfs_rq, se, 0);
6924 	clear_delayed(se);
6925 }
6926 
6927 /*
6928  * The enqueue_task method is called before nr_running is
6929  * increased. Here we update the fair scheduling stats and
6930  * then put the task into the rbtree:
6931  */
6932 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6933 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6934 {
6935 	struct cfs_rq *cfs_rq;
6936 	struct sched_entity *se = &p->se;
6937 	int h_nr_idle = task_has_idle_policy(p);
6938 	int h_nr_runnable = 1;
6939 	int task_new = !(flags & ENQUEUE_WAKEUP);
6940 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6941 	u64 slice = 0;
6942 
6943 	/*
6944 	 * The code below (indirectly) updates schedutil which looks at
6945 	 * the cfs_rq utilization to select a frequency.
6946 	 * Let's add the task's estimated utilization to the cfs_rq's
6947 	 * estimated utilization, before we update schedutil.
6948 	 */
6949 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6950 		util_est_enqueue(&rq->cfs, p);
6951 
6952 	if (flags & ENQUEUE_DELAYED) {
6953 		requeue_delayed_entity(se);
6954 		return;
6955 	}
6956 
6957 	/*
6958 	 * If in_iowait is set, the code below may not trigger any cpufreq
6959 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6960 	 * passed.
6961 	 */
6962 	if (p->in_iowait)
6963 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6964 
6965 	if (task_new && se->sched_delayed)
6966 		h_nr_runnable = 0;
6967 
6968 	for_each_sched_entity(se) {
6969 		if (se->on_rq) {
6970 			if (se->sched_delayed)
6971 				requeue_delayed_entity(se);
6972 			break;
6973 		}
6974 		cfs_rq = cfs_rq_of(se);
6975 
6976 		/*
6977 		 * Basically set the slice of group entries to the min_slice of
6978 		 * their respective cfs_rq. This ensures the group can service
6979 		 * its entities in the desired time-frame.
6980 		 */
6981 		if (slice) {
6982 			se->slice = slice;
6983 			se->custom_slice = 1;
6984 		}
6985 		enqueue_entity(cfs_rq, se, flags);
6986 		slice = cfs_rq_min_slice(cfs_rq);
6987 
6988 		cfs_rq->h_nr_runnable += h_nr_runnable;
6989 		cfs_rq->h_nr_queued++;
6990 		cfs_rq->h_nr_idle += h_nr_idle;
6991 
6992 		if (cfs_rq_is_idle(cfs_rq))
6993 			h_nr_idle = 1;
6994 
6995 		/* end evaluation on encountering a throttled cfs_rq */
6996 		if (cfs_rq_throttled(cfs_rq))
6997 			goto enqueue_throttle;
6998 
6999 		flags = ENQUEUE_WAKEUP;
7000 	}
7001 
7002 	for_each_sched_entity(se) {
7003 		cfs_rq = cfs_rq_of(se);
7004 
7005 		update_load_avg(cfs_rq, se, UPDATE_TG);
7006 		se_update_runnable(se);
7007 		update_cfs_group(se);
7008 
7009 		se->slice = slice;
7010 		if (se != cfs_rq->curr)
7011 			min_vruntime_cb_propagate(&se->run_node, NULL);
7012 		slice = cfs_rq_min_slice(cfs_rq);
7013 
7014 		cfs_rq->h_nr_runnable += h_nr_runnable;
7015 		cfs_rq->h_nr_queued++;
7016 		cfs_rq->h_nr_idle += h_nr_idle;
7017 
7018 		if (cfs_rq_is_idle(cfs_rq))
7019 			h_nr_idle = 1;
7020 
7021 		/* end evaluation on encountering a throttled cfs_rq */
7022 		if (cfs_rq_throttled(cfs_rq))
7023 			goto enqueue_throttle;
7024 	}
7025 
7026 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7027 		/* Account for idle runtime */
7028 		if (!rq->nr_running)
7029 			dl_server_update_idle_time(rq, rq->curr);
7030 		dl_server_start(&rq->fair_server);
7031 	}
7032 
7033 	/* At this point se is NULL and we are at root level*/
7034 	add_nr_running(rq, 1);
7035 
7036 	/*
7037 	 * Since new tasks are assigned an initial util_avg equal to
7038 	 * half of the spare capacity of their CPU, tiny tasks have the
7039 	 * ability to cross the overutilized threshold, which will
7040 	 * result in the load balancer ruining all the task placement
7041 	 * done by EAS. As a way to mitigate that effect, do not account
7042 	 * for the first enqueue operation of new tasks during the
7043 	 * overutilized flag detection.
7044 	 *
7045 	 * A better way of solving this problem would be to wait for
7046 	 * the PELT signals of tasks to converge before taking them
7047 	 * into account, but that is not straightforward to implement,
7048 	 * and the following generally works well enough in practice.
7049 	 */
7050 	if (!task_new)
7051 		check_update_overutilized_status(rq);
7052 
7053 enqueue_throttle:
7054 	assert_list_leaf_cfs_rq(rq);
7055 
7056 	hrtick_update(rq);
7057 }
7058 
7059 static void set_next_buddy(struct sched_entity *se);
7060 
7061 /*
7062  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7063  * failing half-way through and resume the dequeue later.
7064  *
7065  * Returns:
7066  * -1 - dequeue delayed
7067  *  0 - dequeue throttled
7068  *  1 - dequeue complete
7069  */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7070 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7071 {
7072 	bool was_sched_idle = sched_idle_rq(rq);
7073 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
7074 	bool task_sleep = flags & DEQUEUE_SLEEP;
7075 	bool task_delayed = flags & DEQUEUE_DELAYED;
7076 	struct task_struct *p = NULL;
7077 	int h_nr_idle = 0;
7078 	int h_nr_queued = 0;
7079 	int h_nr_runnable = 0;
7080 	struct cfs_rq *cfs_rq;
7081 	u64 slice = 0;
7082 
7083 	if (entity_is_task(se)) {
7084 		p = task_of(se);
7085 		h_nr_queued = 1;
7086 		h_nr_idle = task_has_idle_policy(p);
7087 		if (task_sleep || task_delayed || !se->sched_delayed)
7088 			h_nr_runnable = 1;
7089 	}
7090 
7091 	for_each_sched_entity(se) {
7092 		cfs_rq = cfs_rq_of(se);
7093 
7094 		if (!dequeue_entity(cfs_rq, se, flags)) {
7095 			if (p && &p->se == se)
7096 				return -1;
7097 
7098 			slice = cfs_rq_min_slice(cfs_rq);
7099 			break;
7100 		}
7101 
7102 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7103 		cfs_rq->h_nr_queued -= h_nr_queued;
7104 		cfs_rq->h_nr_idle -= h_nr_idle;
7105 
7106 		if (cfs_rq_is_idle(cfs_rq))
7107 			h_nr_idle = h_nr_queued;
7108 
7109 		/* end evaluation on encountering a throttled cfs_rq */
7110 		if (cfs_rq_throttled(cfs_rq))
7111 			return 0;
7112 
7113 		/* Don't dequeue parent if it has other entities besides us */
7114 		if (cfs_rq->load.weight) {
7115 			slice = cfs_rq_min_slice(cfs_rq);
7116 
7117 			/* Avoid re-evaluating load for this entity: */
7118 			se = parent_entity(se);
7119 			/*
7120 			 * Bias pick_next to pick a task from this cfs_rq, as
7121 			 * p is sleeping when it is within its sched_slice.
7122 			 */
7123 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7124 				set_next_buddy(se);
7125 			break;
7126 		}
7127 		flags |= DEQUEUE_SLEEP;
7128 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7129 	}
7130 
7131 	for_each_sched_entity(se) {
7132 		cfs_rq = cfs_rq_of(se);
7133 
7134 		update_load_avg(cfs_rq, se, UPDATE_TG);
7135 		se_update_runnable(se);
7136 		update_cfs_group(se);
7137 
7138 		se->slice = slice;
7139 		if (se != cfs_rq->curr)
7140 			min_vruntime_cb_propagate(&se->run_node, NULL);
7141 		slice = cfs_rq_min_slice(cfs_rq);
7142 
7143 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7144 		cfs_rq->h_nr_queued -= h_nr_queued;
7145 		cfs_rq->h_nr_idle -= h_nr_idle;
7146 
7147 		if (cfs_rq_is_idle(cfs_rq))
7148 			h_nr_idle = h_nr_queued;
7149 
7150 		/* end evaluation on encountering a throttled cfs_rq */
7151 		if (cfs_rq_throttled(cfs_rq))
7152 			return 0;
7153 	}
7154 
7155 	sub_nr_running(rq, h_nr_queued);
7156 
7157 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7158 		dl_server_stop(&rq->fair_server);
7159 
7160 	/* balance early to pull high priority tasks */
7161 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7162 		rq->next_balance = jiffies;
7163 
7164 	if (p && task_delayed) {
7165 		WARN_ON_ONCE(!task_sleep);
7166 		WARN_ON_ONCE(p->on_rq != 1);
7167 
7168 		/* Fix-up what dequeue_task_fair() skipped */
7169 		hrtick_update(rq);
7170 
7171 		/*
7172 		 * Fix-up what block_task() skipped.
7173 		 *
7174 		 * Must be last, @p might not be valid after this.
7175 		 */
7176 		__block_task(rq, p);
7177 	}
7178 
7179 	return 1;
7180 }
7181 
7182 /*
7183  * The dequeue_task method is called before nr_running is
7184  * decreased. We remove the task from the rbtree and
7185  * update the fair scheduling stats:
7186  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7187 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7188 {
7189 	if (!p->se.sched_delayed)
7190 		util_est_dequeue(&rq->cfs, p);
7191 
7192 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7193 	if (dequeue_entities(rq, &p->se, flags) < 0)
7194 		return false;
7195 
7196 	/*
7197 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7198 	 */
7199 
7200 	hrtick_update(rq);
7201 	return true;
7202 }
7203 
cfs_h_nr_delayed(struct rq * rq)7204 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7205 {
7206 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7207 }
7208 
7209 #ifdef CONFIG_SMP
7210 
7211 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7212 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7213 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7214 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7215 
7216 #ifdef CONFIG_NO_HZ_COMMON
7217 
7218 static struct {
7219 	cpumask_var_t idle_cpus_mask;
7220 	atomic_t nr_cpus;
7221 	int has_blocked;		/* Idle CPUS has blocked load */
7222 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7223 	unsigned long next_balance;     /* in jiffy units */
7224 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7225 } nohz ____cacheline_aligned;
7226 
7227 #endif /* CONFIG_NO_HZ_COMMON */
7228 
cpu_load(struct rq * rq)7229 static unsigned long cpu_load(struct rq *rq)
7230 {
7231 	return cfs_rq_load_avg(&rq->cfs);
7232 }
7233 
7234 /*
7235  * cpu_load_without - compute CPU load without any contributions from *p
7236  * @cpu: the CPU which load is requested
7237  * @p: the task which load should be discounted
7238  *
7239  * The load of a CPU is defined by the load of tasks currently enqueued on that
7240  * CPU as well as tasks which are currently sleeping after an execution on that
7241  * CPU.
7242  *
7243  * This method returns the load of the specified CPU by discounting the load of
7244  * the specified task, whenever the task is currently contributing to the CPU
7245  * load.
7246  */
cpu_load_without(struct rq * rq,struct task_struct * p)7247 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7248 {
7249 	struct cfs_rq *cfs_rq;
7250 	unsigned int load;
7251 
7252 	/* Task has no contribution or is new */
7253 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7254 		return cpu_load(rq);
7255 
7256 	cfs_rq = &rq->cfs;
7257 	load = READ_ONCE(cfs_rq->avg.load_avg);
7258 
7259 	/* Discount task's util from CPU's util */
7260 	lsub_positive(&load, task_h_load(p));
7261 
7262 	return load;
7263 }
7264 
cpu_runnable(struct rq * rq)7265 static unsigned long cpu_runnable(struct rq *rq)
7266 {
7267 	return cfs_rq_runnable_avg(&rq->cfs);
7268 }
7269 
cpu_runnable_without(struct rq * rq,struct task_struct * p)7270 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7271 {
7272 	struct cfs_rq *cfs_rq;
7273 	unsigned int runnable;
7274 
7275 	/* Task has no contribution or is new */
7276 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7277 		return cpu_runnable(rq);
7278 
7279 	cfs_rq = &rq->cfs;
7280 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7281 
7282 	/* Discount task's runnable from CPU's runnable */
7283 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7284 
7285 	return runnable;
7286 }
7287 
capacity_of(int cpu)7288 static unsigned long capacity_of(int cpu)
7289 {
7290 	return cpu_rq(cpu)->cpu_capacity;
7291 }
7292 
record_wakee(struct task_struct * p)7293 static void record_wakee(struct task_struct *p)
7294 {
7295 	/*
7296 	 * Only decay a single time; tasks that have less then 1 wakeup per
7297 	 * jiffy will not have built up many flips.
7298 	 */
7299 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7300 		current->wakee_flips >>= 1;
7301 		current->wakee_flip_decay_ts = jiffies;
7302 	}
7303 
7304 	if (current->last_wakee != p) {
7305 		current->last_wakee = p;
7306 		current->wakee_flips++;
7307 	}
7308 }
7309 
7310 /*
7311  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7312  *
7313  * A waker of many should wake a different task than the one last awakened
7314  * at a frequency roughly N times higher than one of its wakees.
7315  *
7316  * In order to determine whether we should let the load spread vs consolidating
7317  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7318  * partner, and a factor of lls_size higher frequency in the other.
7319  *
7320  * With both conditions met, we can be relatively sure that the relationship is
7321  * non-monogamous, with partner count exceeding socket size.
7322  *
7323  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7324  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7325  * socket size.
7326  */
wake_wide(struct task_struct * p)7327 static int wake_wide(struct task_struct *p)
7328 {
7329 	unsigned int master = current->wakee_flips;
7330 	unsigned int slave = p->wakee_flips;
7331 	int factor = __this_cpu_read(sd_llc_size);
7332 
7333 	if (master < slave)
7334 		swap(master, slave);
7335 	if (slave < factor || master < slave * factor)
7336 		return 0;
7337 	return 1;
7338 }
7339 
7340 /*
7341  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7342  * soonest. For the purpose of speed we only consider the waking and previous
7343  * CPU.
7344  *
7345  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7346  *			cache-affine and is (or	will be) idle.
7347  *
7348  * wake_affine_weight() - considers the weight to reflect the average
7349  *			  scheduling latency of the CPUs. This seems to work
7350  *			  for the overloaded case.
7351  */
7352 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7353 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7354 {
7355 	/*
7356 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7357 	 * context. Only allow the move if cache is shared. Otherwise an
7358 	 * interrupt intensive workload could force all tasks onto one
7359 	 * node depending on the IO topology or IRQ affinity settings.
7360 	 *
7361 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7362 	 * There is no guarantee that the cache hot data from an interrupt
7363 	 * is more important than cache hot data on the prev_cpu and from
7364 	 * a cpufreq perspective, it's better to have higher utilisation
7365 	 * on one CPU.
7366 	 */
7367 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7368 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7369 
7370 	if (sync) {
7371 		struct rq *rq = cpu_rq(this_cpu);
7372 
7373 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7374 			return this_cpu;
7375 	}
7376 
7377 	if (available_idle_cpu(prev_cpu))
7378 		return prev_cpu;
7379 
7380 	return nr_cpumask_bits;
7381 }
7382 
7383 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7385 		   int this_cpu, int prev_cpu, int sync)
7386 {
7387 	s64 this_eff_load, prev_eff_load;
7388 	unsigned long task_load;
7389 
7390 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7391 
7392 	if (sync) {
7393 		unsigned long current_load = task_h_load(current);
7394 
7395 		if (current_load > this_eff_load)
7396 			return this_cpu;
7397 
7398 		this_eff_load -= current_load;
7399 	}
7400 
7401 	task_load = task_h_load(p);
7402 
7403 	this_eff_load += task_load;
7404 	if (sched_feat(WA_BIAS))
7405 		this_eff_load *= 100;
7406 	this_eff_load *= capacity_of(prev_cpu);
7407 
7408 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7409 	prev_eff_load -= task_load;
7410 	if (sched_feat(WA_BIAS))
7411 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7412 	prev_eff_load *= capacity_of(this_cpu);
7413 
7414 	/*
7415 	 * If sync, adjust the weight of prev_eff_load such that if
7416 	 * prev_eff == this_eff that select_idle_sibling() will consider
7417 	 * stacking the wakee on top of the waker if no other CPU is
7418 	 * idle.
7419 	 */
7420 	if (sync)
7421 		prev_eff_load += 1;
7422 
7423 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7424 }
7425 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7427 		       int this_cpu, int prev_cpu, int sync)
7428 {
7429 	int target = nr_cpumask_bits;
7430 
7431 	if (sched_feat(WA_IDLE))
7432 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7433 
7434 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7435 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7436 
7437 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7438 	if (target != this_cpu)
7439 		return prev_cpu;
7440 
7441 	schedstat_inc(sd->ttwu_move_affine);
7442 	schedstat_inc(p->stats.nr_wakeups_affine);
7443 	return target;
7444 }
7445 
7446 static struct sched_group *
7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7448 
7449 /*
7450  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7451  */
7452 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7454 {
7455 	unsigned long load, min_load = ULONG_MAX;
7456 	unsigned int min_exit_latency = UINT_MAX;
7457 	u64 latest_idle_timestamp = 0;
7458 	int least_loaded_cpu = this_cpu;
7459 	int shallowest_idle_cpu = -1;
7460 	int i;
7461 
7462 	/* Check if we have any choice: */
7463 	if (group->group_weight == 1)
7464 		return cpumask_first(sched_group_span(group));
7465 
7466 	/* Traverse only the allowed CPUs */
7467 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7468 		struct rq *rq = cpu_rq(i);
7469 
7470 		if (!sched_core_cookie_match(rq, p))
7471 			continue;
7472 
7473 		if (sched_idle_cpu(i))
7474 			return i;
7475 
7476 		if (available_idle_cpu(i)) {
7477 			struct cpuidle_state *idle = idle_get_state(rq);
7478 			if (idle && idle->exit_latency < min_exit_latency) {
7479 				/*
7480 				 * We give priority to a CPU whose idle state
7481 				 * has the smallest exit latency irrespective
7482 				 * of any idle timestamp.
7483 				 */
7484 				min_exit_latency = idle->exit_latency;
7485 				latest_idle_timestamp = rq->idle_stamp;
7486 				shallowest_idle_cpu = i;
7487 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7488 				   rq->idle_stamp > latest_idle_timestamp) {
7489 				/*
7490 				 * If equal or no active idle state, then
7491 				 * the most recently idled CPU might have
7492 				 * a warmer cache.
7493 				 */
7494 				latest_idle_timestamp = rq->idle_stamp;
7495 				shallowest_idle_cpu = i;
7496 			}
7497 		} else if (shallowest_idle_cpu == -1) {
7498 			load = cpu_load(cpu_rq(i));
7499 			if (load < min_load) {
7500 				min_load = load;
7501 				least_loaded_cpu = i;
7502 			}
7503 		}
7504 	}
7505 
7506 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7507 }
7508 
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7510 				  int cpu, int prev_cpu, int sd_flag)
7511 {
7512 	int new_cpu = cpu;
7513 
7514 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7515 		return prev_cpu;
7516 
7517 	/*
7518 	 * We need task's util for cpu_util_without, sync it up to
7519 	 * prev_cpu's last_update_time.
7520 	 */
7521 	if (!(sd_flag & SD_BALANCE_FORK))
7522 		sync_entity_load_avg(&p->se);
7523 
7524 	while (sd) {
7525 		struct sched_group *group;
7526 		struct sched_domain *tmp;
7527 		int weight;
7528 
7529 		if (!(sd->flags & sd_flag)) {
7530 			sd = sd->child;
7531 			continue;
7532 		}
7533 
7534 		group = sched_balance_find_dst_group(sd, p, cpu);
7535 		if (!group) {
7536 			sd = sd->child;
7537 			continue;
7538 		}
7539 
7540 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7541 		if (new_cpu == cpu) {
7542 			/* Now try balancing at a lower domain level of 'cpu': */
7543 			sd = sd->child;
7544 			continue;
7545 		}
7546 
7547 		/* Now try balancing at a lower domain level of 'new_cpu': */
7548 		cpu = new_cpu;
7549 		weight = sd->span_weight;
7550 		sd = NULL;
7551 		for_each_domain(cpu, tmp) {
7552 			if (weight <= tmp->span_weight)
7553 				break;
7554 			if (tmp->flags & sd_flag)
7555 				sd = tmp;
7556 		}
7557 	}
7558 
7559 	return new_cpu;
7560 }
7561 
__select_idle_cpu(int cpu,struct task_struct * p)7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7563 {
7564 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7565 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7566 		return cpu;
7567 
7568 	return -1;
7569 }
7570 
7571 #ifdef CONFIG_SCHED_SMT
7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7573 EXPORT_SYMBOL_GPL(sched_smt_present);
7574 
set_idle_cores(int cpu,int val)7575 static inline void set_idle_cores(int cpu, int val)
7576 {
7577 	struct sched_domain_shared *sds;
7578 
7579 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7580 	if (sds)
7581 		WRITE_ONCE(sds->has_idle_cores, val);
7582 }
7583 
test_idle_cores(int cpu)7584 static inline bool test_idle_cores(int cpu)
7585 {
7586 	struct sched_domain_shared *sds;
7587 
7588 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7589 	if (sds)
7590 		return READ_ONCE(sds->has_idle_cores);
7591 
7592 	return false;
7593 }
7594 
7595 /*
7596  * Scans the local SMT mask to see if the entire core is idle, and records this
7597  * information in sd_llc_shared->has_idle_cores.
7598  *
7599  * Since SMT siblings share all cache levels, inspecting this limited remote
7600  * state should be fairly cheap.
7601  */
__update_idle_core(struct rq * rq)7602 void __update_idle_core(struct rq *rq)
7603 {
7604 	int core = cpu_of(rq);
7605 	int cpu;
7606 
7607 	rcu_read_lock();
7608 	if (test_idle_cores(core))
7609 		goto unlock;
7610 
7611 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7612 		if (cpu == core)
7613 			continue;
7614 
7615 		if (!available_idle_cpu(cpu))
7616 			goto unlock;
7617 	}
7618 
7619 	set_idle_cores(core, 1);
7620 unlock:
7621 	rcu_read_unlock();
7622 }
7623 
7624 /*
7625  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626  * there are no idle cores left in the system; tracked through
7627  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7628  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7630 {
7631 	bool idle = true;
7632 	int cpu;
7633 
7634 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7635 		if (!available_idle_cpu(cpu)) {
7636 			idle = false;
7637 			if (*idle_cpu == -1) {
7638 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7639 					*idle_cpu = cpu;
7640 					break;
7641 				}
7642 				continue;
7643 			}
7644 			break;
7645 		}
7646 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7647 			*idle_cpu = cpu;
7648 	}
7649 
7650 	if (idle)
7651 		return core;
7652 
7653 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7654 	return -1;
7655 }
7656 
7657 /*
7658  * Scan the local SMT mask for idle CPUs.
7659  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7661 {
7662 	int cpu;
7663 
7664 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7665 		if (cpu == target)
7666 			continue;
7667 		/*
7668 		 * Check if the CPU is in the LLC scheduling domain of @target.
7669 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7670 		 */
7671 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7672 			continue;
7673 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7674 			return cpu;
7675 	}
7676 
7677 	return -1;
7678 }
7679 
7680 #else /* CONFIG_SCHED_SMT */
7681 
set_idle_cores(int cpu,int val)7682 static inline void set_idle_cores(int cpu, int val)
7683 {
7684 }
7685 
test_idle_cores(int cpu)7686 static inline bool test_idle_cores(int cpu)
7687 {
7688 	return false;
7689 }
7690 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7692 {
7693 	return __select_idle_cpu(core, p);
7694 }
7695 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7697 {
7698 	return -1;
7699 }
7700 
7701 #endif /* CONFIG_SCHED_SMT */
7702 
7703 /*
7704  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706  * average idle time for this rq (as found in rq->avg_idle).
7707  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7709 {
7710 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7711 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7712 	struct sched_domain_shared *sd_share;
7713 
7714 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7715 
7716 	if (sched_feat(SIS_UTIL)) {
7717 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7718 		if (sd_share) {
7719 			/* because !--nr is the condition to stop scan */
7720 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7721 			/* overloaded LLC is unlikely to have idle cpu/core */
7722 			if (nr == 1)
7723 				return -1;
7724 		}
7725 	}
7726 
7727 	if (static_branch_unlikely(&sched_cluster_active)) {
7728 		struct sched_group *sg = sd->groups;
7729 
7730 		if (sg->flags & SD_CLUSTER) {
7731 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7732 				if (!cpumask_test_cpu(cpu, cpus))
7733 					continue;
7734 
7735 				if (has_idle_core) {
7736 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7737 					if ((unsigned int)i < nr_cpumask_bits)
7738 						return i;
7739 				} else {
7740 					if (--nr <= 0)
7741 						return -1;
7742 					idle_cpu = __select_idle_cpu(cpu, p);
7743 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7744 						return idle_cpu;
7745 				}
7746 			}
7747 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7748 		}
7749 	}
7750 
7751 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7752 		if (has_idle_core) {
7753 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7754 			if ((unsigned int)i < nr_cpumask_bits)
7755 				return i;
7756 
7757 		} else {
7758 			if (--nr <= 0)
7759 				return -1;
7760 			idle_cpu = __select_idle_cpu(cpu, p);
7761 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7762 				break;
7763 		}
7764 	}
7765 
7766 	if (has_idle_core)
7767 		set_idle_cores(target, false);
7768 
7769 	return idle_cpu;
7770 }
7771 
7772 /*
7773  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774  * the task fits. If no CPU is big enough, but there are idle ones, try to
7775  * maximize capacity.
7776  */
7777 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7779 {
7780 	unsigned long task_util, util_min, util_max, best_cap = 0;
7781 	int fits, best_fits = 0;
7782 	int cpu, best_cpu = -1;
7783 	struct cpumask *cpus;
7784 
7785 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7786 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7787 
7788 	task_util = task_util_est(p);
7789 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7790 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7791 
7792 	for_each_cpu_wrap(cpu, cpus, target) {
7793 		unsigned long cpu_cap = capacity_of(cpu);
7794 
7795 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7796 			continue;
7797 
7798 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7799 
7800 		/* This CPU fits with all requirements */
7801 		if (fits > 0)
7802 			return cpu;
7803 		/*
7804 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805 		 * Look for the CPU with best capacity.
7806 		 */
7807 		else if (fits < 0)
7808 			cpu_cap = get_actual_cpu_capacity(cpu);
7809 
7810 		/*
7811 		 * First, select CPU which fits better (-1 being better than 0).
7812 		 * Then, select the one with best capacity at same level.
7813 		 */
7814 		if ((fits < best_fits) ||
7815 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7816 			best_cap = cpu_cap;
7817 			best_cpu = cpu;
7818 			best_fits = fits;
7819 		}
7820 	}
7821 
7822 	return best_cpu;
7823 }
7824 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7825 static inline bool asym_fits_cpu(unsigned long util,
7826 				 unsigned long util_min,
7827 				 unsigned long util_max,
7828 				 int cpu)
7829 {
7830 	if (sched_asym_cpucap_active())
7831 		/*
7832 		 * Return true only if the cpu fully fits the task requirements
7833 		 * which include the utilization and the performance hints.
7834 		 */
7835 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7836 
7837 	return true;
7838 }
7839 
7840 /*
7841  * Try and locate an idle core/thread in the LLC cache domain.
7842  */
select_idle_sibling(struct task_struct * p,int prev,int target)7843 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7844 {
7845 	bool has_idle_core = false;
7846 	struct sched_domain *sd;
7847 	unsigned long task_util, util_min, util_max;
7848 	int i, recent_used_cpu, prev_aff = -1;
7849 
7850 	/*
7851 	 * On asymmetric system, update task utilization because we will check
7852 	 * that the task fits with CPU's capacity.
7853 	 */
7854 	if (sched_asym_cpucap_active()) {
7855 		sync_entity_load_avg(&p->se);
7856 		task_util = task_util_est(p);
7857 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7858 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7859 	}
7860 
7861 	/*
7862 	 * per-cpu select_rq_mask usage
7863 	 */
7864 	lockdep_assert_irqs_disabled();
7865 
7866 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7867 	    asym_fits_cpu(task_util, util_min, util_max, target))
7868 		return target;
7869 
7870 	/*
7871 	 * If the previous CPU is cache affine and idle, don't be stupid:
7872 	 */
7873 	if (prev != target && cpus_share_cache(prev, target) &&
7874 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7875 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7876 
7877 		if (!static_branch_unlikely(&sched_cluster_active) ||
7878 		    cpus_share_resources(prev, target))
7879 			return prev;
7880 
7881 		prev_aff = prev;
7882 	}
7883 
7884 	/*
7885 	 * Allow a per-cpu kthread to stack with the wakee if the
7886 	 * kworker thread and the tasks previous CPUs are the same.
7887 	 * The assumption is that the wakee queued work for the
7888 	 * per-cpu kthread that is now complete and the wakeup is
7889 	 * essentially a sync wakeup. An obvious example of this
7890 	 * pattern is IO completions.
7891 	 */
7892 	if (is_per_cpu_kthread(current) &&
7893 	    in_task() &&
7894 	    prev == smp_processor_id() &&
7895 	    this_rq()->nr_running <= 1 &&
7896 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7897 		return prev;
7898 	}
7899 
7900 	/* Check a recently used CPU as a potential idle candidate: */
7901 	recent_used_cpu = p->recent_used_cpu;
7902 	p->recent_used_cpu = prev;
7903 	if (recent_used_cpu != prev &&
7904 	    recent_used_cpu != target &&
7905 	    cpus_share_cache(recent_used_cpu, target) &&
7906 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7907 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7908 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7909 
7910 		if (!static_branch_unlikely(&sched_cluster_active) ||
7911 		    cpus_share_resources(recent_used_cpu, target))
7912 			return recent_used_cpu;
7913 
7914 	} else {
7915 		recent_used_cpu = -1;
7916 	}
7917 
7918 	/*
7919 	 * For asymmetric CPU capacity systems, our domain of interest is
7920 	 * sd_asym_cpucapacity rather than sd_llc.
7921 	 */
7922 	if (sched_asym_cpucap_active()) {
7923 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7924 		/*
7925 		 * On an asymmetric CPU capacity system where an exclusive
7926 		 * cpuset defines a symmetric island (i.e. one unique
7927 		 * capacity_orig value through the cpuset), the key will be set
7928 		 * but the CPUs within that cpuset will not have a domain with
7929 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7930 		 * capacity path.
7931 		 */
7932 		if (sd) {
7933 			i = select_idle_capacity(p, sd, target);
7934 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7935 		}
7936 	}
7937 
7938 	sd = rcu_dereference(per_cpu(sd_llc, target));
7939 	if (!sd)
7940 		return target;
7941 
7942 	if (sched_smt_active()) {
7943 		has_idle_core = test_idle_cores(target);
7944 
7945 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7946 			i = select_idle_smt(p, sd, prev);
7947 			if ((unsigned int)i < nr_cpumask_bits)
7948 				return i;
7949 		}
7950 	}
7951 
7952 	i = select_idle_cpu(p, sd, has_idle_core, target);
7953 	if ((unsigned)i < nr_cpumask_bits)
7954 		return i;
7955 
7956 	/*
7957 	 * For cluster machines which have lower sharing cache like L2 or
7958 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960 	 * use them if possible when no idle CPU found in select_idle_cpu().
7961 	 */
7962 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7963 		return prev_aff;
7964 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7965 		return recent_used_cpu;
7966 
7967 	return target;
7968 }
7969 
7970 /**
7971  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972  * @cpu: the CPU to get the utilization for
7973  * @p: task for which the CPU utilization should be predicted or NULL
7974  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975  * @boost: 1 to enable boosting, otherwise 0
7976  *
7977  * The unit of the return value must be the same as the one of CPU capacity
7978  * so that CPU utilization can be compared with CPU capacity.
7979  *
7980  * CPU utilization is the sum of running time of runnable tasks plus the
7981  * recent utilization of currently non-runnable tasks on that CPU.
7982  * It represents the amount of CPU capacity currently used by CFS tasks in
7983  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984  * capacity at f_max.
7985  *
7986  * The estimated CPU utilization is defined as the maximum between CPU
7987  * utilization and sum of the estimated utilization of the currently
7988  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989  * previously-executed tasks, which helps better deduce how busy a CPU will
7990  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991  * of such a task would be significantly decayed at this point of time.
7992  *
7993  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995  * utilization. Boosting is implemented in cpu_util() so that internal
7996  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997  * latter via cpu_util_cfs_boost().
7998  *
7999  * CPU utilization can be higher than the current CPU capacity
8000  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001  * of rounding errors as well as task migrations or wakeups of new tasks.
8002  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005  * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006  * though since this is useful for predicting the CPU capacity required
8007  * after task migrations (scheduler-driven DVFS).
8008  *
8009  * Return: (Boosted) (estimated) utilization for the specified CPU.
8010  */
8011 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8013 {
8014 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8015 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8016 	unsigned long runnable;
8017 
8018 	if (boost) {
8019 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8020 		util = max(util, runnable);
8021 	}
8022 
8023 	/*
8024 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025 	 * contribution. If @p migrates from another CPU to @cpu add its
8026 	 * contribution. In all the other cases @cpu is not impacted by the
8027 	 * migration so its util_avg is already correct.
8028 	 */
8029 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8030 		lsub_positive(&util, task_util(p));
8031 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8032 		util += task_util(p);
8033 
8034 	if (sched_feat(UTIL_EST)) {
8035 		unsigned long util_est;
8036 
8037 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8038 
8039 		/*
8040 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8041 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043 		 * has been enqueued.
8044 		 *
8045 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8046 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8047 		 * Remove it to "simulate" cpu_util without @p's contribution.
8048 		 *
8049 		 * Despite the task_on_rq_queued(@p) check there is still a
8050 		 * small window for a possible race when an exec
8051 		 * select_task_rq_fair() races with LB's detach_task().
8052 		 *
8053 		 *   detach_task()
8054 		 *     deactivate_task()
8055 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8056 		 *       -------------------------------- A
8057 		 *       dequeue_task()                    \
8058 		 *         dequeue_task_fair()              + Race Time
8059 		 *           util_est_dequeue()            /
8060 		 *       -------------------------------- B
8061 		 *
8062 		 * The additional check "current == p" is required to further
8063 		 * reduce the race window.
8064 		 */
8065 		if (dst_cpu == cpu)
8066 			util_est += _task_util_est(p);
8067 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8068 			lsub_positive(&util_est, _task_util_est(p));
8069 
8070 		util = max(util, util_est);
8071 	}
8072 
8073 	return min(util, arch_scale_cpu_capacity(cpu));
8074 }
8075 
cpu_util_cfs(int cpu)8076 unsigned long cpu_util_cfs(int cpu)
8077 {
8078 	return cpu_util(cpu, NULL, -1, 0);
8079 }
8080 
cpu_util_cfs_boost(int cpu)8081 unsigned long cpu_util_cfs_boost(int cpu)
8082 {
8083 	return cpu_util(cpu, NULL, -1, 1);
8084 }
8085 
8086 /*
8087  * cpu_util_without: compute cpu utilization without any contributions from *p
8088  * @cpu: the CPU which utilization is requested
8089  * @p: the task which utilization should be discounted
8090  *
8091  * The utilization of a CPU is defined by the utilization of tasks currently
8092  * enqueued on that CPU as well as tasks which are currently sleeping after an
8093  * execution on that CPU.
8094  *
8095  * This method returns the utilization of the specified CPU by discounting the
8096  * utilization of the specified task, whenever the task is currently
8097  * contributing to the CPU utilization.
8098  */
cpu_util_without(int cpu,struct task_struct * p)8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8100 {
8101 	/* Task has no contribution or is new */
8102 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8103 		p = NULL;
8104 
8105 	return cpu_util(cpu, p, -1, 0);
8106 }
8107 
8108 /*
8109  * This function computes an effective utilization for the given CPU, to be
8110  * used for frequency selection given the linear relation: f = u * f_max.
8111  *
8112  * The scheduler tracks the following metrics:
8113  *
8114  *   cpu_util_{cfs,rt,dl,irq}()
8115  *   cpu_bw_dl()
8116  *
8117  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118  * synchronized windows and are thus directly comparable.
8119  *
8120  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121  * which excludes things like IRQ and steal-time. These latter are then accrued
8122  * in the IRQ utilization.
8123  *
8124  * The DL bandwidth number OTOH is not a measured metric but a value computed
8125  * based on the task model parameters and gives the minimal utilization
8126  * required to meet deadlines.
8127  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8129 				 unsigned long *min,
8130 				 unsigned long *max)
8131 {
8132 	unsigned long util, irq, scale;
8133 	struct rq *rq = cpu_rq(cpu);
8134 
8135 	scale = arch_scale_cpu_capacity(cpu);
8136 
8137 	/*
8138 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8139 	 * because of inaccuracies in how we track these -- see
8140 	 * update_irq_load_avg().
8141 	 */
8142 	irq = cpu_util_irq(rq);
8143 	if (unlikely(irq >= scale)) {
8144 		if (min)
8145 			*min = scale;
8146 		if (max)
8147 			*max = scale;
8148 		return scale;
8149 	}
8150 
8151 	if (min) {
8152 		/*
8153 		 * The minimum utilization returns the highest level between:
8154 		 * - the computed DL bandwidth needed with the IRQ pressure which
8155 		 *   steals time to the deadline task.
8156 		 * - The minimum performance requirement for CFS and/or RT.
8157 		 */
8158 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8159 
8160 		/*
8161 		 * When an RT task is runnable and uclamp is not used, we must
8162 		 * ensure that the task will run at maximum compute capacity.
8163 		 */
8164 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8165 			*min = max(*min, scale);
8166 	}
8167 
8168 	/*
8169 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170 	 * CFS tasks and we use the same metric to track the effective
8171 	 * utilization (PELT windows are synchronized) we can directly add them
8172 	 * to obtain the CPU's actual utilization.
8173 	 */
8174 	util = util_cfs + cpu_util_rt(rq);
8175 	util += cpu_util_dl(rq);
8176 
8177 	/*
8178 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8179 	 * than the actual utilization because of uclamp_max requirements.
8180 	 */
8181 	if (max)
8182 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8183 
8184 	if (util >= scale)
8185 		return scale;
8186 
8187 	/*
8188 	 * There is still idle time; further improve the number by using the
8189 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190 	 * need to scale the task numbers:
8191 	 *
8192 	 *              max - irq
8193 	 *   U' = irq + --------- * U
8194 	 *                 max
8195 	 */
8196 	util = scale_irq_capacity(util, irq, scale);
8197 	util += irq;
8198 
8199 	return min(scale, util);
8200 }
8201 
sched_cpu_util(int cpu)8202 unsigned long sched_cpu_util(int cpu)
8203 {
8204 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8205 }
8206 
8207 /*
8208  * energy_env - Utilization landscape for energy estimation.
8209  * @task_busy_time: Utilization contribution by the task for which we test the
8210  *                  placement. Given by eenv_task_busy_time().
8211  * @pd_busy_time:   Utilization of the whole perf domain without the task
8212  *                  contribution. Given by eenv_pd_busy_time().
8213  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8214  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8215  */
8216 struct energy_env {
8217 	unsigned long task_busy_time;
8218 	unsigned long pd_busy_time;
8219 	unsigned long cpu_cap;
8220 	unsigned long pd_cap;
8221 };
8222 
8223 /*
8224  * Compute the task busy time for compute_energy(). This time cannot be
8225  * injected directly into effective_cpu_util() because of the IRQ scaling.
8226  * The latter only makes sense with the most recent CPUs where the task has
8227  * run.
8228  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8229 static inline void eenv_task_busy_time(struct energy_env *eenv,
8230 				       struct task_struct *p, int prev_cpu)
8231 {
8232 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8233 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8234 
8235 	if (unlikely(irq >= max_cap))
8236 		busy_time = max_cap;
8237 	else
8238 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8239 
8240 	eenv->task_busy_time = busy_time;
8241 }
8242 
8243 /*
8244  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245  * utilization for each @pd_cpus, it however doesn't take into account
8246  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247  * scale the EM reported power consumption at the (eventually clamped)
8248  * cpu_capacity.
8249  *
8250  * The contribution of the task @p for which we want to estimate the
8251  * energy cost is removed (by cpu_util()) and must be calculated
8252  * separately (see eenv_task_busy_time). This ensures:
8253  *
8254  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8255  *     the task on.
8256  *
8257  *   - A fair comparison between CPUs as the task contribution (task_util())
8258  *     will always be the same no matter which CPU utilization we rely on
8259  *     (util_avg or util_est).
8260  *
8261  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262  * exceed @eenv->pd_cap.
8263  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8264 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8265 				     struct cpumask *pd_cpus,
8266 				     struct task_struct *p)
8267 {
8268 	unsigned long busy_time = 0;
8269 	int cpu;
8270 
8271 	for_each_cpu(cpu, pd_cpus) {
8272 		unsigned long util = cpu_util(cpu, p, -1, 0);
8273 
8274 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8275 	}
8276 
8277 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8278 }
8279 
8280 /*
8281  * Compute the maximum utilization for compute_energy() when the task @p
8282  * is placed on the cpu @dst_cpu.
8283  *
8284  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285  * exceed @eenv->cpu_cap.
8286  */
8287 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8289 		 struct task_struct *p, int dst_cpu)
8290 {
8291 	unsigned long max_util = 0;
8292 	int cpu;
8293 
8294 	for_each_cpu(cpu, pd_cpus) {
8295 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8296 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8297 		unsigned long eff_util, min, max;
8298 
8299 		/*
8300 		 * Performance domain frequency: utilization clamping
8301 		 * must be considered since it affects the selection
8302 		 * of the performance domain frequency.
8303 		 * NOTE: in case RT tasks are running, by default the min
8304 		 * utilization can be max OPP.
8305 		 */
8306 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8307 
8308 		/* Task's uclamp can modify min and max value */
8309 		if (tsk && uclamp_is_used()) {
8310 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8311 
8312 			/*
8313 			 * If there is no active max uclamp constraint,
8314 			 * directly use task's one, otherwise keep max.
8315 			 */
8316 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8317 				max = uclamp_eff_value(p, UCLAMP_MAX);
8318 			else
8319 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8320 		}
8321 
8322 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8323 		max_util = max(max_util, eff_util);
8324 	}
8325 
8326 	return min(max_util, eenv->cpu_cap);
8327 }
8328 
8329 /*
8330  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332  * contribution is ignored.
8333  */
8334 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8336 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8337 {
8338 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8339 	unsigned long busy_time = eenv->pd_busy_time;
8340 	unsigned long energy;
8341 
8342 	if (dst_cpu >= 0)
8343 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8344 
8345 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8346 
8347 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8348 
8349 	return energy;
8350 }
8351 
8352 /*
8353  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355  * spare capacity in each performance domain and uses it as a potential
8356  * candidate to execute the task. Then, it uses the Energy Model to figure
8357  * out which of the CPU candidates is the most energy-efficient.
8358  *
8359  * The rationale for this heuristic is as follows. In a performance domain,
8360  * all the most energy efficient CPU candidates (according to the Energy
8361  * Model) are those for which we'll request a low frequency. When there are
8362  * several CPUs for which the frequency request will be the same, we don't
8363  * have enough data to break the tie between them, because the Energy Model
8364  * only includes active power costs. With this model, if we assume that
8365  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366  * the maximum spare capacity in a performance domain is guaranteed to be among
8367  * the best candidates of the performance domain.
8368  *
8369  * In practice, it could be preferable from an energy standpoint to pack
8370  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371  * but that could also hurt our chances to go cluster idle, and we have no
8372  * ways to tell with the current Energy Model if this is actually a good
8373  * idea or not. So, find_energy_efficient_cpu() basically favors
8374  * cluster-packing, and spreading inside a cluster. That should at least be
8375  * a good thing for latency, and this is consistent with the idea that most
8376  * of the energy savings of EAS come from the asymmetry of the system, and
8377  * not so much from breaking the tie between identical CPUs. That's also the
8378  * reason why EAS is enabled in the topology code only for systems where
8379  * SD_ASYM_CPUCAPACITY is set.
8380  *
8381  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382  * they don't have any useful utilization data yet and it's not possible to
8383  * forecast their impact on energy consumption. Consequently, they will be
8384  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385  * to be energy-inefficient in some use-cases. The alternative would be to
8386  * bias new tasks towards specific types of CPUs first, or to try to infer
8387  * their util_avg from the parent task, but those heuristics could hurt
8388  * other use-cases too. So, until someone finds a better way to solve this,
8389  * let's keep things simple by re-using the existing slow path.
8390  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8392 {
8393 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8394 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8395 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8396 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8397 	struct root_domain *rd = this_rq()->rd;
8398 	int cpu, best_energy_cpu, target = -1;
8399 	int prev_fits = -1, best_fits = -1;
8400 	unsigned long best_actual_cap = 0;
8401 	unsigned long prev_actual_cap = 0;
8402 	struct sched_domain *sd;
8403 	struct perf_domain *pd;
8404 	struct energy_env eenv;
8405 
8406 	rcu_read_lock();
8407 	pd = rcu_dereference(rd->pd);
8408 	if (!pd)
8409 		goto unlock;
8410 
8411 	/*
8412 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8413 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8414 	 */
8415 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8416 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8417 		sd = sd->parent;
8418 	if (!sd)
8419 		goto unlock;
8420 
8421 	target = prev_cpu;
8422 
8423 	sync_entity_load_avg(&p->se);
8424 	if (!task_util_est(p) && p_util_min == 0)
8425 		goto unlock;
8426 
8427 	eenv_task_busy_time(&eenv, p, prev_cpu);
8428 
8429 	for (; pd; pd = pd->next) {
8430 		unsigned long util_min = p_util_min, util_max = p_util_max;
8431 		unsigned long cpu_cap, cpu_actual_cap, util;
8432 		long prev_spare_cap = -1, max_spare_cap = -1;
8433 		unsigned long rq_util_min, rq_util_max;
8434 		unsigned long cur_delta, base_energy;
8435 		int max_spare_cap_cpu = -1;
8436 		int fits, max_fits = -1;
8437 
8438 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8439 
8440 		if (cpumask_empty(cpus))
8441 			continue;
8442 
8443 		/* Account external pressure for the energy estimation */
8444 		cpu = cpumask_first(cpus);
8445 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8446 
8447 		eenv.cpu_cap = cpu_actual_cap;
8448 		eenv.pd_cap = 0;
8449 
8450 		for_each_cpu(cpu, cpus) {
8451 			struct rq *rq = cpu_rq(cpu);
8452 
8453 			eenv.pd_cap += cpu_actual_cap;
8454 
8455 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8456 				continue;
8457 
8458 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8459 				continue;
8460 
8461 			util = cpu_util(cpu, p, cpu, 0);
8462 			cpu_cap = capacity_of(cpu);
8463 
8464 			/*
8465 			 * Skip CPUs that cannot satisfy the capacity request.
8466 			 * IOW, placing the task there would make the CPU
8467 			 * overutilized. Take uclamp into account to see how
8468 			 * much capacity we can get out of the CPU; this is
8469 			 * aligned with sched_cpu_util().
8470 			 */
8471 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8472 				/*
8473 				 * Open code uclamp_rq_util_with() except for
8474 				 * the clamp() part. I.e.: apply max aggregation
8475 				 * only. util_fits_cpu() logic requires to
8476 				 * operate on non clamped util but must use the
8477 				 * max-aggregated uclamp_{min, max}.
8478 				 */
8479 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8480 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8481 
8482 				util_min = max(rq_util_min, p_util_min);
8483 				util_max = max(rq_util_max, p_util_max);
8484 			}
8485 
8486 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8487 			if (!fits)
8488 				continue;
8489 
8490 			lsub_positive(&cpu_cap, util);
8491 
8492 			if (cpu == prev_cpu) {
8493 				/* Always use prev_cpu as a candidate. */
8494 				prev_spare_cap = cpu_cap;
8495 				prev_fits = fits;
8496 			} else if ((fits > max_fits) ||
8497 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8498 				/*
8499 				 * Find the CPU with the maximum spare capacity
8500 				 * among the remaining CPUs in the performance
8501 				 * domain.
8502 				 */
8503 				max_spare_cap = cpu_cap;
8504 				max_spare_cap_cpu = cpu;
8505 				max_fits = fits;
8506 			}
8507 		}
8508 
8509 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8510 			continue;
8511 
8512 		eenv_pd_busy_time(&eenv, cpus, p);
8513 		/* Compute the 'base' energy of the pd, without @p */
8514 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8515 
8516 		/* Evaluate the energy impact of using prev_cpu. */
8517 		if (prev_spare_cap > -1) {
8518 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8519 						    prev_cpu);
8520 			/* CPU utilization has changed */
8521 			if (prev_delta < base_energy)
8522 				goto unlock;
8523 			prev_delta -= base_energy;
8524 			prev_actual_cap = cpu_actual_cap;
8525 			best_delta = min(best_delta, prev_delta);
8526 		}
8527 
8528 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8529 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8530 			/* Current best energy cpu fits better */
8531 			if (max_fits < best_fits)
8532 				continue;
8533 
8534 			/*
8535 			 * Both don't fit performance hint (i.e. uclamp_min)
8536 			 * but best energy cpu has better capacity.
8537 			 */
8538 			if ((max_fits < 0) &&
8539 			    (cpu_actual_cap <= best_actual_cap))
8540 				continue;
8541 
8542 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8543 						   max_spare_cap_cpu);
8544 			/* CPU utilization has changed */
8545 			if (cur_delta < base_energy)
8546 				goto unlock;
8547 			cur_delta -= base_energy;
8548 
8549 			/*
8550 			 * Both fit for the task but best energy cpu has lower
8551 			 * energy impact.
8552 			 */
8553 			if ((max_fits > 0) && (best_fits > 0) &&
8554 			    (cur_delta >= best_delta))
8555 				continue;
8556 
8557 			best_delta = cur_delta;
8558 			best_energy_cpu = max_spare_cap_cpu;
8559 			best_fits = max_fits;
8560 			best_actual_cap = cpu_actual_cap;
8561 		}
8562 	}
8563 	rcu_read_unlock();
8564 
8565 	if ((best_fits > prev_fits) ||
8566 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8567 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8568 		target = best_energy_cpu;
8569 
8570 	return target;
8571 
8572 unlock:
8573 	rcu_read_unlock();
8574 
8575 	return target;
8576 }
8577 
8578 /*
8579  * select_task_rq_fair: Select target runqueue for the waking task in domains
8580  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8582  *
8583  * Balances load by selecting the idlest CPU in the idlest group, or under
8584  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8585  *
8586  * Returns the target CPU number.
8587  */
8588 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8590 {
8591 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8592 	struct sched_domain *tmp, *sd = NULL;
8593 	int cpu = smp_processor_id();
8594 	int new_cpu = prev_cpu;
8595 	int want_affine = 0;
8596 	/* SD_flags and WF_flags share the first nibble */
8597 	int sd_flag = wake_flags & 0xF;
8598 
8599 	/*
8600 	 * required for stable ->cpus_allowed
8601 	 */
8602 	lockdep_assert_held(&p->pi_lock);
8603 	if (wake_flags & WF_TTWU) {
8604 		record_wakee(p);
8605 
8606 		if ((wake_flags & WF_CURRENT_CPU) &&
8607 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8608 			return cpu;
8609 
8610 		if (!is_rd_overutilized(this_rq()->rd)) {
8611 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8612 			if (new_cpu >= 0)
8613 				return new_cpu;
8614 			new_cpu = prev_cpu;
8615 		}
8616 
8617 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8618 	}
8619 
8620 	rcu_read_lock();
8621 	for_each_domain(cpu, tmp) {
8622 		/*
8623 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624 		 * cpu is a valid SD_WAKE_AFFINE target.
8625 		 */
8626 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8627 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8628 			if (cpu != prev_cpu)
8629 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8630 
8631 			sd = NULL; /* Prefer wake_affine over balance flags */
8632 			break;
8633 		}
8634 
8635 		/*
8636 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638 		 * will usually go to the fast path.
8639 		 */
8640 		if (tmp->flags & sd_flag)
8641 			sd = tmp;
8642 		else if (!want_affine)
8643 			break;
8644 	}
8645 
8646 	if (unlikely(sd)) {
8647 		/* Slow path */
8648 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8649 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8650 		/* Fast path */
8651 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8652 	}
8653 	rcu_read_unlock();
8654 
8655 	return new_cpu;
8656 }
8657 
8658 /*
8659  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660  * cfs_rq_of(p) references at time of call are still valid and identify the
8661  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8662  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8664 {
8665 	struct sched_entity *se = &p->se;
8666 
8667 	if (!task_on_rq_migrating(p)) {
8668 		remove_entity_load_avg(se);
8669 
8670 		/*
8671 		 * Here, the task's PELT values have been updated according to
8672 		 * the current rq's clock. But if that clock hasn't been
8673 		 * updated in a while, a substantial idle time will be missed,
8674 		 * leading to an inflation after wake-up on the new rq.
8675 		 *
8676 		 * Estimate the missing time from the cfs_rq last_update_time
8677 		 * and update sched_avg to improve the PELT continuity after
8678 		 * migration.
8679 		 */
8680 		migrate_se_pelt_lag(se);
8681 	}
8682 
8683 	/* Tell new CPU we are migrated */
8684 	se->avg.last_update_time = 0;
8685 
8686 	update_scan_period(p, new_cpu);
8687 }
8688 
task_dead_fair(struct task_struct * p)8689 static void task_dead_fair(struct task_struct *p)
8690 {
8691 	struct sched_entity *se = &p->se;
8692 
8693 	if (se->sched_delayed) {
8694 		struct rq_flags rf;
8695 		struct rq *rq;
8696 
8697 		rq = task_rq_lock(p, &rf);
8698 		if (se->sched_delayed) {
8699 			update_rq_clock(rq);
8700 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8701 		}
8702 		task_rq_unlock(rq, p, &rf);
8703 	}
8704 
8705 	remove_entity_load_avg(se);
8706 }
8707 
8708 /*
8709  * Set the max capacity the task is allowed to run at for misfit detection.
8710  */
set_task_max_allowed_capacity(struct task_struct * p)8711 static void set_task_max_allowed_capacity(struct task_struct *p)
8712 {
8713 	struct asym_cap_data *entry;
8714 
8715 	if (!sched_asym_cpucap_active())
8716 		return;
8717 
8718 	rcu_read_lock();
8719 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8720 		cpumask_t *cpumask;
8721 
8722 		cpumask = cpu_capacity_span(entry);
8723 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8724 			continue;
8725 
8726 		p->max_allowed_capacity = entry->capacity;
8727 		break;
8728 	}
8729 	rcu_read_unlock();
8730 }
8731 
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8733 {
8734 	set_cpus_allowed_common(p, ctx);
8735 	set_task_max_allowed_capacity(p);
8736 }
8737 
8738 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8740 {
8741 	if (sched_fair_runnable(rq))
8742 		return 1;
8743 
8744 	return sched_balance_newidle(rq, rf) != 0;
8745 }
8746 #else
set_task_max_allowed_capacity(struct task_struct * p)8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8748 #endif /* CONFIG_SMP */
8749 
set_next_buddy(struct sched_entity * se)8750 static void set_next_buddy(struct sched_entity *se)
8751 {
8752 	for_each_sched_entity(se) {
8753 		if (WARN_ON_ONCE(!se->on_rq))
8754 			return;
8755 		if (se_is_idle(se))
8756 			return;
8757 		cfs_rq_of(se)->next = se;
8758 	}
8759 }
8760 
8761 /*
8762  * Preempt the current task with a newly woken task if needed:
8763  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8765 {
8766 	struct task_struct *donor = rq->donor;
8767 	struct sched_entity *se = &donor->se, *pse = &p->se;
8768 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8769 	int cse_is_idle, pse_is_idle;
8770 
8771 	if (unlikely(se == pse))
8772 		return;
8773 
8774 	/*
8775 	 * This is possible from callers such as attach_tasks(), in which we
8776 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8777 	 * lead to a throttle).  This both saves work and prevents false
8778 	 * next-buddy nomination below.
8779 	 */
8780 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8781 		return;
8782 
8783 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8784 		set_next_buddy(pse);
8785 	}
8786 
8787 	/*
8788 	 * We can come here with TIF_NEED_RESCHED already set from new task
8789 	 * wake up path.
8790 	 *
8791 	 * Note: this also catches the edge-case of curr being in a throttled
8792 	 * group (e.g. via set_curr_task), since update_curr() (in the
8793 	 * enqueue of curr) will have resulted in resched being set.  This
8794 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8795 	 * below.
8796 	 */
8797 	if (test_tsk_need_resched(rq->curr))
8798 		return;
8799 
8800 	if (!sched_feat(WAKEUP_PREEMPTION))
8801 		return;
8802 
8803 	find_matching_se(&se, &pse);
8804 	WARN_ON_ONCE(!pse);
8805 
8806 	cse_is_idle = se_is_idle(se);
8807 	pse_is_idle = se_is_idle(pse);
8808 
8809 	/*
8810 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811 	 * in the inverse case).
8812 	 */
8813 	if (cse_is_idle && !pse_is_idle) {
8814 		/*
8815 		 * When non-idle entity preempt an idle entity,
8816 		 * don't give idle entity slice protection.
8817 		 */
8818 		cancel_protect_slice(se);
8819 		goto preempt;
8820 	}
8821 
8822 	if (cse_is_idle != pse_is_idle)
8823 		return;
8824 
8825 	/*
8826 	 * BATCH and IDLE tasks do not preempt others.
8827 	 */
8828 	if (unlikely(!normal_policy(p->policy)))
8829 		return;
8830 
8831 	cfs_rq = cfs_rq_of(se);
8832 	update_curr(cfs_rq);
8833 	/*
8834 	 * If @p has a shorter slice than current and @p is eligible, override
8835 	 * current's slice protection in order to allow preemption.
8836 	 *
8837 	 * Note that even if @p does not turn out to be the most eligible
8838 	 * task at this moment, current's slice protection will be lost.
8839 	 */
8840 	if (do_preempt_short(cfs_rq, pse, se))
8841 		cancel_protect_slice(se);
8842 
8843 	/*
8844 	 * If @p has become the most eligible task, force preemption.
8845 	 */
8846 	if (pick_eevdf(cfs_rq) == pse)
8847 		goto preempt;
8848 
8849 	return;
8850 
8851 preempt:
8852 	resched_curr_lazy(rq);
8853 }
8854 
pick_task_fair(struct rq * rq)8855 static struct task_struct *pick_task_fair(struct rq *rq)
8856 {
8857 	struct sched_entity *se;
8858 	struct cfs_rq *cfs_rq;
8859 
8860 again:
8861 	cfs_rq = &rq->cfs;
8862 	if (!cfs_rq->nr_queued)
8863 		return NULL;
8864 
8865 	do {
8866 		/* Might not have done put_prev_entity() */
8867 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8868 			update_curr(cfs_rq);
8869 
8870 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8871 			goto again;
8872 
8873 		se = pick_next_entity(rq, cfs_rq);
8874 		if (!se)
8875 			goto again;
8876 		cfs_rq = group_cfs_rq(se);
8877 	} while (cfs_rq);
8878 
8879 	return task_of(se);
8880 }
8881 
8882 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8883 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8884 
8885 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8886 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8887 {
8888 	struct sched_entity *se;
8889 	struct task_struct *p;
8890 	int new_tasks;
8891 
8892 again:
8893 	p = pick_task_fair(rq);
8894 	if (!p)
8895 		goto idle;
8896 	se = &p->se;
8897 
8898 #ifdef CONFIG_FAIR_GROUP_SCHED
8899 	if (prev->sched_class != &fair_sched_class)
8900 		goto simple;
8901 
8902 	__put_prev_set_next_dl_server(rq, prev, p);
8903 
8904 	/*
8905 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8906 	 * likely that a next task is from the same cgroup as the current.
8907 	 *
8908 	 * Therefore attempt to avoid putting and setting the entire cgroup
8909 	 * hierarchy, only change the part that actually changes.
8910 	 *
8911 	 * Since we haven't yet done put_prev_entity and if the selected task
8912 	 * is a different task than we started out with, try and touch the
8913 	 * least amount of cfs_rqs.
8914 	 */
8915 	if (prev != p) {
8916 		struct sched_entity *pse = &prev->se;
8917 		struct cfs_rq *cfs_rq;
8918 
8919 		while (!(cfs_rq = is_same_group(se, pse))) {
8920 			int se_depth = se->depth;
8921 			int pse_depth = pse->depth;
8922 
8923 			if (se_depth <= pse_depth) {
8924 				put_prev_entity(cfs_rq_of(pse), pse);
8925 				pse = parent_entity(pse);
8926 			}
8927 			if (se_depth >= pse_depth) {
8928 				set_next_entity(cfs_rq_of(se), se);
8929 				se = parent_entity(se);
8930 			}
8931 		}
8932 
8933 		put_prev_entity(cfs_rq, pse);
8934 		set_next_entity(cfs_rq, se);
8935 
8936 		__set_next_task_fair(rq, p, true);
8937 	}
8938 
8939 	return p;
8940 
8941 simple:
8942 #endif
8943 	put_prev_set_next_task(rq, prev, p);
8944 	return p;
8945 
8946 idle:
8947 	if (!rf)
8948 		return NULL;
8949 
8950 	new_tasks = sched_balance_newidle(rq, rf);
8951 
8952 	/*
8953 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8954 	 * possible for any higher priority task to appear. In that case we
8955 	 * must re-start the pick_next_entity() loop.
8956 	 */
8957 	if (new_tasks < 0)
8958 		return RETRY_TASK;
8959 
8960 	if (new_tasks > 0)
8961 		goto again;
8962 
8963 	/*
8964 	 * rq is about to be idle, check if we need to update the
8965 	 * lost_idle_time of clock_pelt
8966 	 */
8967 	update_idle_rq_clock_pelt(rq);
8968 
8969 	return NULL;
8970 }
8971 
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8972 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8973 {
8974 	return pick_next_task_fair(rq, prev, NULL);
8975 }
8976 
fair_server_has_tasks(struct sched_dl_entity * dl_se)8977 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8978 {
8979 	return !!dl_se->rq->cfs.nr_queued;
8980 }
8981 
fair_server_pick_task(struct sched_dl_entity * dl_se)8982 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8983 {
8984 	return pick_task_fair(dl_se->rq);
8985 }
8986 
fair_server_init(struct rq * rq)8987 void fair_server_init(struct rq *rq)
8988 {
8989 	struct sched_dl_entity *dl_se = &rq->fair_server;
8990 
8991 	init_dl_entity(dl_se);
8992 
8993 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8994 }
8995 
8996 /*
8997  * Account for a descheduled task:
8998  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8999 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9000 {
9001 	struct sched_entity *se = &prev->se;
9002 	struct cfs_rq *cfs_rq;
9003 
9004 	for_each_sched_entity(se) {
9005 		cfs_rq = cfs_rq_of(se);
9006 		put_prev_entity(cfs_rq, se);
9007 	}
9008 }
9009 
9010 /*
9011  * sched_yield() is very simple
9012  */
yield_task_fair(struct rq * rq)9013 static void yield_task_fair(struct rq *rq)
9014 {
9015 	struct task_struct *curr = rq->curr;
9016 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9017 	struct sched_entity *se = &curr->se;
9018 
9019 	/*
9020 	 * Are we the only task in the tree?
9021 	 */
9022 	if (unlikely(rq->nr_running == 1))
9023 		return;
9024 
9025 	clear_buddies(cfs_rq, se);
9026 
9027 	update_rq_clock(rq);
9028 	/*
9029 	 * Update run-time statistics of the 'current'.
9030 	 */
9031 	update_curr(cfs_rq);
9032 	/*
9033 	 * Tell update_rq_clock() that we've just updated,
9034 	 * so we don't do microscopic update in schedule()
9035 	 * and double the fastpath cost.
9036 	 */
9037 	rq_clock_skip_update(rq);
9038 
9039 	se->deadline += calc_delta_fair(se->slice, se);
9040 }
9041 
yield_to_task_fair(struct rq * rq,struct task_struct * p)9042 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9043 {
9044 	struct sched_entity *se = &p->se;
9045 
9046 	/* throttled hierarchies are not runnable */
9047 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9048 		return false;
9049 
9050 	/* Tell the scheduler that we'd really like se to run next. */
9051 	set_next_buddy(se);
9052 
9053 	yield_task_fair(rq);
9054 
9055 	return true;
9056 }
9057 
9058 #ifdef CONFIG_SMP
9059 /**************************************************
9060  * Fair scheduling class load-balancing methods.
9061  *
9062  * BASICS
9063  *
9064  * The purpose of load-balancing is to achieve the same basic fairness the
9065  * per-CPU scheduler provides, namely provide a proportional amount of compute
9066  * time to each task. This is expressed in the following equation:
9067  *
9068  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9069  *
9070  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9071  * W_i,0 is defined as:
9072  *
9073  *   W_i,0 = \Sum_j w_i,j                                             (2)
9074  *
9075  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9076  * is derived from the nice value as per sched_prio_to_weight[].
9077  *
9078  * The weight average is an exponential decay average of the instantaneous
9079  * weight:
9080  *
9081  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9082  *
9083  * C_i is the compute capacity of CPU i, typically it is the
9084  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9085  * can also include other factors [XXX].
9086  *
9087  * To achieve this balance we define a measure of imbalance which follows
9088  * directly from (1):
9089  *
9090  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9091  *
9092  * We them move tasks around to minimize the imbalance. In the continuous
9093  * function space it is obvious this converges, in the discrete case we get
9094  * a few fun cases generally called infeasible weight scenarios.
9095  *
9096  * [XXX expand on:
9097  *     - infeasible weights;
9098  *     - local vs global optima in the discrete case. ]
9099  *
9100  *
9101  * SCHED DOMAINS
9102  *
9103  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9104  * for all i,j solution, we create a tree of CPUs that follows the hardware
9105  * topology where each level pairs two lower groups (or better). This results
9106  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9107  * tree to only the first of the previous level and we decrease the frequency
9108  * of load-balance at each level inversely proportional to the number of CPUs in
9109  * the groups.
9110  *
9111  * This yields:
9112  *
9113  *     log_2 n     1     n
9114  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9115  *     i = 0      2^i   2^i
9116  *                               `- size of each group
9117  *         |         |     `- number of CPUs doing load-balance
9118  *         |         `- freq
9119  *         `- sum over all levels
9120  *
9121  * Coupled with a limit on how many tasks we can migrate every balance pass,
9122  * this makes (5) the runtime complexity of the balancer.
9123  *
9124  * An important property here is that each CPU is still (indirectly) connected
9125  * to every other CPU in at most O(log n) steps:
9126  *
9127  * The adjacency matrix of the resulting graph is given by:
9128  *
9129  *             log_2 n
9130  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9131  *             k = 0
9132  *
9133  * And you'll find that:
9134  *
9135  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9136  *
9137  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9138  * The task movement gives a factor of O(m), giving a convergence complexity
9139  * of:
9140  *
9141  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9142  *
9143  *
9144  * WORK CONSERVING
9145  *
9146  * In order to avoid CPUs going idle while there's still work to do, new idle
9147  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9148  * tree itself instead of relying on other CPUs to bring it work.
9149  *
9150  * This adds some complexity to both (5) and (8) but it reduces the total idle
9151  * time.
9152  *
9153  * [XXX more?]
9154  *
9155  *
9156  * CGROUPS
9157  *
9158  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9159  *
9160  *                                s_k,i
9161  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9162  *                                 S_k
9163  *
9164  * Where
9165  *
9166  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9167  *
9168  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9169  *
9170  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9171  * property.
9172  *
9173  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9174  *      rewrite all of this once again.]
9175  */
9176 
9177 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9178 
9179 enum fbq_type { regular, remote, all };
9180 
9181 /*
9182  * 'group_type' describes the group of CPUs at the moment of load balancing.
9183  *
9184  * The enum is ordered by pulling priority, with the group with lowest priority
9185  * first so the group_type can simply be compared when selecting the busiest
9186  * group. See update_sd_pick_busiest().
9187  */
9188 enum group_type {
9189 	/* The group has spare capacity that can be used to run more tasks.  */
9190 	group_has_spare = 0,
9191 	/*
9192 	 * The group is fully used and the tasks don't compete for more CPU
9193 	 * cycles. Nevertheless, some tasks might wait before running.
9194 	 */
9195 	group_fully_busy,
9196 	/*
9197 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9198 	 * more powerful CPU.
9199 	 */
9200 	group_misfit_task,
9201 	/*
9202 	 * Balance SMT group that's fully busy. Can benefit from migration
9203 	 * a task on SMT with busy sibling to another CPU on idle core.
9204 	 */
9205 	group_smt_balance,
9206 	/*
9207 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9208 	 * and the task should be migrated to it instead of running on the
9209 	 * current CPU.
9210 	 */
9211 	group_asym_packing,
9212 	/*
9213 	 * The tasks' affinity constraints previously prevented the scheduler
9214 	 * from balancing the load across the system.
9215 	 */
9216 	group_imbalanced,
9217 	/*
9218 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9219 	 * tasks.
9220 	 */
9221 	group_overloaded
9222 };
9223 
9224 enum migration_type {
9225 	migrate_load = 0,
9226 	migrate_util,
9227 	migrate_task,
9228 	migrate_misfit
9229 };
9230 
9231 #define LBF_ALL_PINNED	0x01
9232 #define LBF_NEED_BREAK	0x02
9233 #define LBF_DST_PINNED  0x04
9234 #define LBF_SOME_PINNED	0x08
9235 #define LBF_ACTIVE_LB	0x10
9236 
9237 struct lb_env {
9238 	struct sched_domain	*sd;
9239 
9240 	struct rq		*src_rq;
9241 	int			src_cpu;
9242 
9243 	int			dst_cpu;
9244 	struct rq		*dst_rq;
9245 
9246 	struct cpumask		*dst_grpmask;
9247 	int			new_dst_cpu;
9248 	enum cpu_idle_type	idle;
9249 	long			imbalance;
9250 	/* The set of CPUs under consideration for load-balancing */
9251 	struct cpumask		*cpus;
9252 
9253 	unsigned int		flags;
9254 
9255 	unsigned int		loop;
9256 	unsigned int		loop_break;
9257 	unsigned int		loop_max;
9258 
9259 	enum fbq_type		fbq_type;
9260 	enum migration_type	migration_type;
9261 	struct list_head	tasks;
9262 };
9263 
9264 /*
9265  * Is this task likely cache-hot:
9266  */
task_hot(struct task_struct * p,struct lb_env * env)9267 static int task_hot(struct task_struct *p, struct lb_env *env)
9268 {
9269 	s64 delta;
9270 
9271 	lockdep_assert_rq_held(env->src_rq);
9272 
9273 	if (p->sched_class != &fair_sched_class)
9274 		return 0;
9275 
9276 	if (unlikely(task_has_idle_policy(p)))
9277 		return 0;
9278 
9279 	/* SMT siblings share cache */
9280 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9281 		return 0;
9282 
9283 	/*
9284 	 * Buddy candidates are cache hot:
9285 	 */
9286 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9287 	    (&p->se == cfs_rq_of(&p->se)->next))
9288 		return 1;
9289 
9290 	if (sysctl_sched_migration_cost == -1)
9291 		return 1;
9292 
9293 	/*
9294 	 * Don't migrate task if the task's cookie does not match
9295 	 * with the destination CPU's core cookie.
9296 	 */
9297 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9298 		return 1;
9299 
9300 	if (sysctl_sched_migration_cost == 0)
9301 		return 0;
9302 
9303 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9304 
9305 	return delta < (s64)sysctl_sched_migration_cost;
9306 }
9307 
9308 #ifdef CONFIG_NUMA_BALANCING
9309 /*
9310  * Returns a positive value, if task migration degrades locality.
9311  * Returns 0, if task migration is not affected by locality.
9312  * Returns a negative value, if task migration improves locality i.e migration preferred.
9313  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9314 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9315 {
9316 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9317 	unsigned long src_weight, dst_weight;
9318 	int src_nid, dst_nid, dist;
9319 
9320 	if (!static_branch_likely(&sched_numa_balancing))
9321 		return 0;
9322 
9323 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9324 		return 0;
9325 
9326 	src_nid = cpu_to_node(env->src_cpu);
9327 	dst_nid = cpu_to_node(env->dst_cpu);
9328 
9329 	if (src_nid == dst_nid)
9330 		return 0;
9331 
9332 	/* Migrating away from the preferred node is always bad. */
9333 	if (src_nid == p->numa_preferred_nid) {
9334 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9335 			return 1;
9336 		else
9337 			return 0;
9338 	}
9339 
9340 	/* Encourage migration to the preferred node. */
9341 	if (dst_nid == p->numa_preferred_nid)
9342 		return -1;
9343 
9344 	/* Leaving a core idle is often worse than degrading locality. */
9345 	if (env->idle == CPU_IDLE)
9346 		return 0;
9347 
9348 	dist = node_distance(src_nid, dst_nid);
9349 	if (numa_group) {
9350 		src_weight = group_weight(p, src_nid, dist);
9351 		dst_weight = group_weight(p, dst_nid, dist);
9352 	} else {
9353 		src_weight = task_weight(p, src_nid, dist);
9354 		dst_weight = task_weight(p, dst_nid, dist);
9355 	}
9356 
9357 	return src_weight - dst_weight;
9358 }
9359 
9360 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9361 static inline long migrate_degrades_locality(struct task_struct *p,
9362 					     struct lb_env *env)
9363 {
9364 	return 0;
9365 }
9366 #endif
9367 
9368 /*
9369  * Check whether the task is ineligible on the destination cpu
9370  *
9371  * When the PLACE_LAG scheduling feature is enabled and
9372  * dst_cfs_rq->nr_queued is greater than 1, if the task
9373  * is ineligible, it will also be ineligible when
9374  * it is migrated to the destination cpu.
9375  */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9376 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9377 {
9378 	struct cfs_rq *dst_cfs_rq;
9379 
9380 #ifdef CONFIG_FAIR_GROUP_SCHED
9381 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9382 #else
9383 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9384 #endif
9385 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9386 	    !entity_eligible(task_cfs_rq(p), &p->se))
9387 		return 1;
9388 
9389 	return 0;
9390 }
9391 
9392 /*
9393  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9394  */
9395 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9396 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9397 {
9398 	long degrades, hot;
9399 
9400 	lockdep_assert_rq_held(env->src_rq);
9401 	if (p->sched_task_hot)
9402 		p->sched_task_hot = 0;
9403 
9404 	/*
9405 	 * We do not migrate tasks that are:
9406 	 * 1) delayed dequeued unless we migrate load, or
9407 	 * 2) throttled_lb_pair, or
9408 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9409 	 * 4) running (obviously), or
9410 	 * 5) are cache-hot on their current CPU.
9411 	 */
9412 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9413 		return 0;
9414 
9415 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9416 		return 0;
9417 
9418 	/*
9419 	 * We want to prioritize the migration of eligible tasks.
9420 	 * For ineligible tasks we soft-limit them and only allow
9421 	 * them to migrate when nr_balance_failed is non-zero to
9422 	 * avoid load-balancing trying very hard to balance the load.
9423 	 */
9424 	if (!env->sd->nr_balance_failed &&
9425 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9426 		return 0;
9427 
9428 	/* Disregard percpu kthreads; they are where they need to be. */
9429 	if (kthread_is_per_cpu(p))
9430 		return 0;
9431 
9432 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9433 		int cpu;
9434 
9435 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9436 
9437 		env->flags |= LBF_SOME_PINNED;
9438 
9439 		/*
9440 		 * Remember if this task can be migrated to any other CPU in
9441 		 * our sched_group. We may want to revisit it if we couldn't
9442 		 * meet load balance goals by pulling other tasks on src_cpu.
9443 		 *
9444 		 * Avoid computing new_dst_cpu
9445 		 * - for NEWLY_IDLE
9446 		 * - if we have already computed one in current iteration
9447 		 * - if it's an active balance
9448 		 */
9449 		if (env->idle == CPU_NEWLY_IDLE ||
9450 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9451 			return 0;
9452 
9453 		/* Prevent to re-select dst_cpu via env's CPUs: */
9454 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9455 
9456 		if (cpu < nr_cpu_ids) {
9457 			env->flags |= LBF_DST_PINNED;
9458 			env->new_dst_cpu = cpu;
9459 		}
9460 
9461 		return 0;
9462 	}
9463 
9464 	/* Record that we found at least one task that could run on dst_cpu */
9465 	env->flags &= ~LBF_ALL_PINNED;
9466 
9467 	if (task_on_cpu(env->src_rq, p)) {
9468 		schedstat_inc(p->stats.nr_failed_migrations_running);
9469 		return 0;
9470 	}
9471 
9472 	/*
9473 	 * Aggressive migration if:
9474 	 * 1) active balance
9475 	 * 2) destination numa is preferred
9476 	 * 3) task is cache cold, or
9477 	 * 4) too many balance attempts have failed.
9478 	 */
9479 	if (env->flags & LBF_ACTIVE_LB)
9480 		return 1;
9481 
9482 	degrades = migrate_degrades_locality(p, env);
9483 	if (!degrades)
9484 		hot = task_hot(p, env);
9485 	else
9486 		hot = degrades > 0;
9487 
9488 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9489 		if (hot)
9490 			p->sched_task_hot = 1;
9491 		return 1;
9492 	}
9493 
9494 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9495 	return 0;
9496 }
9497 
9498 /*
9499  * detach_task() -- detach the task for the migration specified in env
9500  */
detach_task(struct task_struct * p,struct lb_env * env)9501 static void detach_task(struct task_struct *p, struct lb_env *env)
9502 {
9503 	lockdep_assert_rq_held(env->src_rq);
9504 
9505 	if (p->sched_task_hot) {
9506 		p->sched_task_hot = 0;
9507 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9508 		schedstat_inc(p->stats.nr_forced_migrations);
9509 	}
9510 
9511 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9512 	set_task_cpu(p, env->dst_cpu);
9513 }
9514 
9515 /*
9516  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9517  * part of active balancing operations within "domain".
9518  *
9519  * Returns a task if successful and NULL otherwise.
9520  */
detach_one_task(struct lb_env * env)9521 static struct task_struct *detach_one_task(struct lb_env *env)
9522 {
9523 	struct task_struct *p;
9524 
9525 	lockdep_assert_rq_held(env->src_rq);
9526 
9527 	list_for_each_entry_reverse(p,
9528 			&env->src_rq->cfs_tasks, se.group_node) {
9529 		if (!can_migrate_task(p, env))
9530 			continue;
9531 
9532 		detach_task(p, env);
9533 
9534 		/*
9535 		 * Right now, this is only the second place where
9536 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9537 		 * so we can safely collect stats here rather than
9538 		 * inside detach_tasks().
9539 		 */
9540 		schedstat_inc(env->sd->lb_gained[env->idle]);
9541 		return p;
9542 	}
9543 	return NULL;
9544 }
9545 
9546 /*
9547  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9548  * busiest_rq, as part of a balancing operation within domain "sd".
9549  *
9550  * Returns number of detached tasks if successful and 0 otherwise.
9551  */
detach_tasks(struct lb_env * env)9552 static int detach_tasks(struct lb_env *env)
9553 {
9554 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9555 	unsigned long util, load;
9556 	struct task_struct *p;
9557 	int detached = 0;
9558 
9559 	lockdep_assert_rq_held(env->src_rq);
9560 
9561 	/*
9562 	 * Source run queue has been emptied by another CPU, clear
9563 	 * LBF_ALL_PINNED flag as we will not test any task.
9564 	 */
9565 	if (env->src_rq->nr_running <= 1) {
9566 		env->flags &= ~LBF_ALL_PINNED;
9567 		return 0;
9568 	}
9569 
9570 	if (env->imbalance <= 0)
9571 		return 0;
9572 
9573 	while (!list_empty(tasks)) {
9574 		/*
9575 		 * We don't want to steal all, otherwise we may be treated likewise,
9576 		 * which could at worst lead to a livelock crash.
9577 		 */
9578 		if (env->idle && env->src_rq->nr_running <= 1)
9579 			break;
9580 
9581 		env->loop++;
9582 		/* We've more or less seen every task there is, call it quits */
9583 		if (env->loop > env->loop_max)
9584 			break;
9585 
9586 		/* take a breather every nr_migrate tasks */
9587 		if (env->loop > env->loop_break) {
9588 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9589 			env->flags |= LBF_NEED_BREAK;
9590 			break;
9591 		}
9592 
9593 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9594 
9595 		if (!can_migrate_task(p, env))
9596 			goto next;
9597 
9598 		switch (env->migration_type) {
9599 		case migrate_load:
9600 			/*
9601 			 * Depending of the number of CPUs and tasks and the
9602 			 * cgroup hierarchy, task_h_load() can return a null
9603 			 * value. Make sure that env->imbalance decreases
9604 			 * otherwise detach_tasks() will stop only after
9605 			 * detaching up to loop_max tasks.
9606 			 */
9607 			load = max_t(unsigned long, task_h_load(p), 1);
9608 
9609 			if (sched_feat(LB_MIN) &&
9610 			    load < 16 && !env->sd->nr_balance_failed)
9611 				goto next;
9612 
9613 			/*
9614 			 * Make sure that we don't migrate too much load.
9615 			 * Nevertheless, let relax the constraint if
9616 			 * scheduler fails to find a good waiting task to
9617 			 * migrate.
9618 			 */
9619 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9620 				goto next;
9621 
9622 			env->imbalance -= load;
9623 			break;
9624 
9625 		case migrate_util:
9626 			util = task_util_est(p);
9627 
9628 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9629 				goto next;
9630 
9631 			env->imbalance -= util;
9632 			break;
9633 
9634 		case migrate_task:
9635 			env->imbalance--;
9636 			break;
9637 
9638 		case migrate_misfit:
9639 			/* This is not a misfit task */
9640 			if (task_fits_cpu(p, env->src_cpu))
9641 				goto next;
9642 
9643 			env->imbalance = 0;
9644 			break;
9645 		}
9646 
9647 		detach_task(p, env);
9648 		list_add(&p->se.group_node, &env->tasks);
9649 
9650 		detached++;
9651 
9652 #ifdef CONFIG_PREEMPTION
9653 		/*
9654 		 * NEWIDLE balancing is a source of latency, so preemptible
9655 		 * kernels will stop after the first task is detached to minimize
9656 		 * the critical section.
9657 		 */
9658 		if (env->idle == CPU_NEWLY_IDLE)
9659 			break;
9660 #endif
9661 
9662 		/*
9663 		 * We only want to steal up to the prescribed amount of
9664 		 * load/util/tasks.
9665 		 */
9666 		if (env->imbalance <= 0)
9667 			break;
9668 
9669 		continue;
9670 next:
9671 		if (p->sched_task_hot)
9672 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9673 
9674 		list_move(&p->se.group_node, tasks);
9675 	}
9676 
9677 	/*
9678 	 * Right now, this is one of only two places we collect this stat
9679 	 * so we can safely collect detach_one_task() stats here rather
9680 	 * than inside detach_one_task().
9681 	 */
9682 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9683 
9684 	return detached;
9685 }
9686 
9687 /*
9688  * attach_task() -- attach the task detached by detach_task() to its new rq.
9689  */
attach_task(struct rq * rq,struct task_struct * p)9690 static void attach_task(struct rq *rq, struct task_struct *p)
9691 {
9692 	lockdep_assert_rq_held(rq);
9693 
9694 	WARN_ON_ONCE(task_rq(p) != rq);
9695 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9696 	wakeup_preempt(rq, p, 0);
9697 }
9698 
9699 /*
9700  * attach_one_task() -- attaches the task returned from detach_one_task() to
9701  * its new rq.
9702  */
attach_one_task(struct rq * rq,struct task_struct * p)9703 static void attach_one_task(struct rq *rq, struct task_struct *p)
9704 {
9705 	struct rq_flags rf;
9706 
9707 	rq_lock(rq, &rf);
9708 	update_rq_clock(rq);
9709 	attach_task(rq, p);
9710 	rq_unlock(rq, &rf);
9711 }
9712 
9713 /*
9714  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9715  * new rq.
9716  */
attach_tasks(struct lb_env * env)9717 static void attach_tasks(struct lb_env *env)
9718 {
9719 	struct list_head *tasks = &env->tasks;
9720 	struct task_struct *p;
9721 	struct rq_flags rf;
9722 
9723 	rq_lock(env->dst_rq, &rf);
9724 	update_rq_clock(env->dst_rq);
9725 
9726 	while (!list_empty(tasks)) {
9727 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9728 		list_del_init(&p->se.group_node);
9729 
9730 		attach_task(env->dst_rq, p);
9731 	}
9732 
9733 	rq_unlock(env->dst_rq, &rf);
9734 }
9735 
9736 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9737 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9738 {
9739 	if (cfs_rq->avg.load_avg)
9740 		return true;
9741 
9742 	if (cfs_rq->avg.util_avg)
9743 		return true;
9744 
9745 	return false;
9746 }
9747 
others_have_blocked(struct rq * rq)9748 static inline bool others_have_blocked(struct rq *rq)
9749 {
9750 	if (cpu_util_rt(rq))
9751 		return true;
9752 
9753 	if (cpu_util_dl(rq))
9754 		return true;
9755 
9756 	if (hw_load_avg(rq))
9757 		return true;
9758 
9759 	if (cpu_util_irq(rq))
9760 		return true;
9761 
9762 	return false;
9763 }
9764 
update_blocked_load_tick(struct rq * rq)9765 static inline void update_blocked_load_tick(struct rq *rq)
9766 {
9767 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9768 }
9769 
update_blocked_load_status(struct rq * rq,bool has_blocked)9770 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9771 {
9772 	if (!has_blocked)
9773 		rq->has_blocked_load = 0;
9774 }
9775 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9776 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9777 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9778 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9779 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9780 #endif
9781 
__update_blocked_others(struct rq * rq,bool * done)9782 static bool __update_blocked_others(struct rq *rq, bool *done)
9783 {
9784 	bool updated;
9785 
9786 	/*
9787 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9788 	 * DL and IRQ signals have been updated before updating CFS.
9789 	 */
9790 	updated = update_other_load_avgs(rq);
9791 
9792 	if (others_have_blocked(rq))
9793 		*done = false;
9794 
9795 	return updated;
9796 }
9797 
9798 #ifdef CONFIG_FAIR_GROUP_SCHED
9799 
__update_blocked_fair(struct rq * rq,bool * done)9800 static bool __update_blocked_fair(struct rq *rq, bool *done)
9801 {
9802 	struct cfs_rq *cfs_rq, *pos;
9803 	bool decayed = false;
9804 	int cpu = cpu_of(rq);
9805 
9806 	/*
9807 	 * Iterates the task_group tree in a bottom up fashion, see
9808 	 * list_add_leaf_cfs_rq() for details.
9809 	 */
9810 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9811 		struct sched_entity *se;
9812 
9813 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9814 			update_tg_load_avg(cfs_rq);
9815 
9816 			if (cfs_rq->nr_queued == 0)
9817 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9818 
9819 			if (cfs_rq == &rq->cfs)
9820 				decayed = true;
9821 		}
9822 
9823 		/* Propagate pending load changes to the parent, if any: */
9824 		se = cfs_rq->tg->se[cpu];
9825 		if (se && !skip_blocked_update(se))
9826 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9827 
9828 		/*
9829 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9830 		 * decayed cfs_rqs linger on the list.
9831 		 */
9832 		if (cfs_rq_is_decayed(cfs_rq))
9833 			list_del_leaf_cfs_rq(cfs_rq);
9834 
9835 		/* Don't need periodic decay once load/util_avg are null */
9836 		if (cfs_rq_has_blocked(cfs_rq))
9837 			*done = false;
9838 	}
9839 
9840 	return decayed;
9841 }
9842 
9843 /*
9844  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9845  * This needs to be done in a top-down fashion because the load of a child
9846  * group is a fraction of its parents load.
9847  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9848 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9849 {
9850 	struct rq *rq = rq_of(cfs_rq);
9851 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9852 	unsigned long now = jiffies;
9853 	unsigned long load;
9854 
9855 	if (cfs_rq->last_h_load_update == now)
9856 		return;
9857 
9858 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9859 	for_each_sched_entity(se) {
9860 		cfs_rq = cfs_rq_of(se);
9861 		WRITE_ONCE(cfs_rq->h_load_next, se);
9862 		if (cfs_rq->last_h_load_update == now)
9863 			break;
9864 	}
9865 
9866 	if (!se) {
9867 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9868 		cfs_rq->last_h_load_update = now;
9869 	}
9870 
9871 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9872 		load = cfs_rq->h_load;
9873 		load = div64_ul(load * se->avg.load_avg,
9874 			cfs_rq_load_avg(cfs_rq) + 1);
9875 		cfs_rq = group_cfs_rq(se);
9876 		cfs_rq->h_load = load;
9877 		cfs_rq->last_h_load_update = now;
9878 	}
9879 }
9880 
task_h_load(struct task_struct * p)9881 static unsigned long task_h_load(struct task_struct *p)
9882 {
9883 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9884 
9885 	update_cfs_rq_h_load(cfs_rq);
9886 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9887 			cfs_rq_load_avg(cfs_rq) + 1);
9888 }
9889 #else
__update_blocked_fair(struct rq * rq,bool * done)9890 static bool __update_blocked_fair(struct rq *rq, bool *done)
9891 {
9892 	struct cfs_rq *cfs_rq = &rq->cfs;
9893 	bool decayed;
9894 
9895 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9896 	if (cfs_rq_has_blocked(cfs_rq))
9897 		*done = false;
9898 
9899 	return decayed;
9900 }
9901 
task_h_load(struct task_struct * p)9902 static unsigned long task_h_load(struct task_struct *p)
9903 {
9904 	return p->se.avg.load_avg;
9905 }
9906 #endif
9907 
sched_balance_update_blocked_averages(int cpu)9908 static void sched_balance_update_blocked_averages(int cpu)
9909 {
9910 	bool decayed = false, done = true;
9911 	struct rq *rq = cpu_rq(cpu);
9912 	struct rq_flags rf;
9913 
9914 	rq_lock_irqsave(rq, &rf);
9915 	update_blocked_load_tick(rq);
9916 	update_rq_clock(rq);
9917 
9918 	decayed |= __update_blocked_others(rq, &done);
9919 	decayed |= __update_blocked_fair(rq, &done);
9920 
9921 	update_blocked_load_status(rq, !done);
9922 	if (decayed)
9923 		cpufreq_update_util(rq, 0);
9924 	rq_unlock_irqrestore(rq, &rf);
9925 }
9926 
9927 /********** Helpers for sched_balance_find_src_group ************************/
9928 
9929 /*
9930  * sg_lb_stats - stats of a sched_group required for load-balancing:
9931  */
9932 struct sg_lb_stats {
9933 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9934 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9935 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9936 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9937 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9938 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9939 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9940 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9941 	unsigned int group_weight;
9942 	enum group_type group_type;
9943 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9944 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9945 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9946 #ifdef CONFIG_NUMA_BALANCING
9947 	unsigned int nr_numa_running;
9948 	unsigned int nr_preferred_running;
9949 #endif
9950 };
9951 
9952 /*
9953  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9954  */
9955 struct sd_lb_stats {
9956 	struct sched_group *busiest;		/* Busiest group in this sd */
9957 	struct sched_group *local;		/* Local group in this sd */
9958 	unsigned long total_load;		/* Total load of all groups in sd */
9959 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9960 	unsigned long avg_load;			/* Average load across all groups in sd */
9961 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9962 
9963 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9964 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9965 };
9966 
init_sd_lb_stats(struct sd_lb_stats * sds)9967 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9968 {
9969 	/*
9970 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9971 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9972 	 * We must however set busiest_stat::group_type and
9973 	 * busiest_stat::idle_cpus to the worst busiest group because
9974 	 * update_sd_pick_busiest() reads these before assignment.
9975 	 */
9976 	*sds = (struct sd_lb_stats){
9977 		.busiest = NULL,
9978 		.local = NULL,
9979 		.total_load = 0UL,
9980 		.total_capacity = 0UL,
9981 		.busiest_stat = {
9982 			.idle_cpus = UINT_MAX,
9983 			.group_type = group_has_spare,
9984 		},
9985 	};
9986 }
9987 
scale_rt_capacity(int cpu)9988 static unsigned long scale_rt_capacity(int cpu)
9989 {
9990 	unsigned long max = get_actual_cpu_capacity(cpu);
9991 	struct rq *rq = cpu_rq(cpu);
9992 	unsigned long used, free;
9993 	unsigned long irq;
9994 
9995 	irq = cpu_util_irq(rq);
9996 
9997 	if (unlikely(irq >= max))
9998 		return 1;
9999 
10000 	/*
10001 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
10002 	 * (running and not running) with weights 0 and 1024 respectively.
10003 	 */
10004 	used = cpu_util_rt(rq);
10005 	used += cpu_util_dl(rq);
10006 
10007 	if (unlikely(used >= max))
10008 		return 1;
10009 
10010 	free = max - used;
10011 
10012 	return scale_irq_capacity(free, irq, max);
10013 }
10014 
update_cpu_capacity(struct sched_domain * sd,int cpu)10015 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10016 {
10017 	unsigned long capacity = scale_rt_capacity(cpu);
10018 	struct sched_group *sdg = sd->groups;
10019 
10020 	if (!capacity)
10021 		capacity = 1;
10022 
10023 	cpu_rq(cpu)->cpu_capacity = capacity;
10024 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10025 
10026 	sdg->sgc->capacity = capacity;
10027 	sdg->sgc->min_capacity = capacity;
10028 	sdg->sgc->max_capacity = capacity;
10029 }
10030 
update_group_capacity(struct sched_domain * sd,int cpu)10031 void update_group_capacity(struct sched_domain *sd, int cpu)
10032 {
10033 	struct sched_domain *child = sd->child;
10034 	struct sched_group *group, *sdg = sd->groups;
10035 	unsigned long capacity, min_capacity, max_capacity;
10036 	unsigned long interval;
10037 
10038 	interval = msecs_to_jiffies(sd->balance_interval);
10039 	interval = clamp(interval, 1UL, max_load_balance_interval);
10040 	sdg->sgc->next_update = jiffies + interval;
10041 
10042 	if (!child) {
10043 		update_cpu_capacity(sd, cpu);
10044 		return;
10045 	}
10046 
10047 	capacity = 0;
10048 	min_capacity = ULONG_MAX;
10049 	max_capacity = 0;
10050 
10051 	if (child->flags & SD_OVERLAP) {
10052 		/*
10053 		 * SD_OVERLAP domains cannot assume that child groups
10054 		 * span the current group.
10055 		 */
10056 
10057 		for_each_cpu(cpu, sched_group_span(sdg)) {
10058 			unsigned long cpu_cap = capacity_of(cpu);
10059 
10060 			capacity += cpu_cap;
10061 			min_capacity = min(cpu_cap, min_capacity);
10062 			max_capacity = max(cpu_cap, max_capacity);
10063 		}
10064 	} else  {
10065 		/*
10066 		 * !SD_OVERLAP domains can assume that child groups
10067 		 * span the current group.
10068 		 */
10069 
10070 		group = child->groups;
10071 		do {
10072 			struct sched_group_capacity *sgc = group->sgc;
10073 
10074 			capacity += sgc->capacity;
10075 			min_capacity = min(sgc->min_capacity, min_capacity);
10076 			max_capacity = max(sgc->max_capacity, max_capacity);
10077 			group = group->next;
10078 		} while (group != child->groups);
10079 	}
10080 
10081 	sdg->sgc->capacity = capacity;
10082 	sdg->sgc->min_capacity = min_capacity;
10083 	sdg->sgc->max_capacity = max_capacity;
10084 }
10085 
10086 /*
10087  * Check whether the capacity of the rq has been noticeably reduced by side
10088  * activity. The imbalance_pct is used for the threshold.
10089  * Return true is the capacity is reduced
10090  */
10091 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10092 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10093 {
10094 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10095 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10096 }
10097 
10098 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10099 static inline bool check_misfit_status(struct rq *rq)
10100 {
10101 	return rq->misfit_task_load;
10102 }
10103 
10104 /*
10105  * Group imbalance indicates (and tries to solve) the problem where balancing
10106  * groups is inadequate due to ->cpus_ptr constraints.
10107  *
10108  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10109  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10110  * Something like:
10111  *
10112  *	{ 0 1 2 3 } { 4 5 6 7 }
10113  *	        *     * * *
10114  *
10115  * If we were to balance group-wise we'd place two tasks in the first group and
10116  * two tasks in the second group. Clearly this is undesired as it will overload
10117  * cpu 3 and leave one of the CPUs in the second group unused.
10118  *
10119  * The current solution to this issue is detecting the skew in the first group
10120  * by noticing the lower domain failed to reach balance and had difficulty
10121  * moving tasks due to affinity constraints.
10122  *
10123  * When this is so detected; this group becomes a candidate for busiest; see
10124  * update_sd_pick_busiest(). And calculate_imbalance() and
10125  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10126  * to create an effective group imbalance.
10127  *
10128  * This is a somewhat tricky proposition since the next run might not find the
10129  * group imbalance and decide the groups need to be balanced again. A most
10130  * subtle and fragile situation.
10131  */
10132 
sg_imbalanced(struct sched_group * group)10133 static inline int sg_imbalanced(struct sched_group *group)
10134 {
10135 	return group->sgc->imbalance;
10136 }
10137 
10138 /*
10139  * group_has_capacity returns true if the group has spare capacity that could
10140  * be used by some tasks.
10141  * We consider that a group has spare capacity if the number of task is
10142  * smaller than the number of CPUs or if the utilization is lower than the
10143  * available capacity for CFS tasks.
10144  * For the latter, we use a threshold to stabilize the state, to take into
10145  * account the variance of the tasks' load and to return true if the available
10146  * capacity in meaningful for the load balancer.
10147  * As an example, an available capacity of 1% can appear but it doesn't make
10148  * any benefit for the load balance.
10149  */
10150 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10151 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10152 {
10153 	if (sgs->sum_nr_running < sgs->group_weight)
10154 		return true;
10155 
10156 	if ((sgs->group_capacity * imbalance_pct) <
10157 			(sgs->group_runnable * 100))
10158 		return false;
10159 
10160 	if ((sgs->group_capacity * 100) >
10161 			(sgs->group_util * imbalance_pct))
10162 		return true;
10163 
10164 	return false;
10165 }
10166 
10167 /*
10168  *  group_is_overloaded returns true if the group has more tasks than it can
10169  *  handle.
10170  *  group_is_overloaded is not equals to !group_has_capacity because a group
10171  *  with the exact right number of tasks, has no more spare capacity but is not
10172  *  overloaded so both group_has_capacity and group_is_overloaded return
10173  *  false.
10174  */
10175 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10176 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10177 {
10178 	if (sgs->sum_nr_running <= sgs->group_weight)
10179 		return false;
10180 
10181 	if ((sgs->group_capacity * 100) <
10182 			(sgs->group_util * imbalance_pct))
10183 		return true;
10184 
10185 	if ((sgs->group_capacity * imbalance_pct) <
10186 			(sgs->group_runnable * 100))
10187 		return true;
10188 
10189 	return false;
10190 }
10191 
10192 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10193 group_type group_classify(unsigned int imbalance_pct,
10194 			  struct sched_group *group,
10195 			  struct sg_lb_stats *sgs)
10196 {
10197 	if (group_is_overloaded(imbalance_pct, sgs))
10198 		return group_overloaded;
10199 
10200 	if (sg_imbalanced(group))
10201 		return group_imbalanced;
10202 
10203 	if (sgs->group_asym_packing)
10204 		return group_asym_packing;
10205 
10206 	if (sgs->group_smt_balance)
10207 		return group_smt_balance;
10208 
10209 	if (sgs->group_misfit_task_load)
10210 		return group_misfit_task;
10211 
10212 	if (!group_has_capacity(imbalance_pct, sgs))
10213 		return group_fully_busy;
10214 
10215 	return group_has_spare;
10216 }
10217 
10218 /**
10219  * sched_use_asym_prio - Check whether asym_packing priority must be used
10220  * @sd:		The scheduling domain of the load balancing
10221  * @cpu:	A CPU
10222  *
10223  * Always use CPU priority when balancing load between SMT siblings. When
10224  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10225  * use CPU priority if the whole core is idle.
10226  *
10227  * Returns: True if the priority of @cpu must be followed. False otherwise.
10228  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10229 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10230 {
10231 	if (!(sd->flags & SD_ASYM_PACKING))
10232 		return false;
10233 
10234 	if (!sched_smt_active())
10235 		return true;
10236 
10237 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10238 }
10239 
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10240 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10241 {
10242 	/*
10243 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10244 	 * if it has higher priority than @src_cpu.
10245 	 */
10246 	return sched_use_asym_prio(sd, dst_cpu) &&
10247 		sched_asym_prefer(dst_cpu, src_cpu);
10248 }
10249 
10250 /**
10251  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10252  * @env:	The load balancing environment
10253  * @sgs:	Load-balancing statistics of the candidate busiest group
10254  * @group:	The candidate busiest group
10255  *
10256  * @env::dst_cpu can do asym_packing if it has higher priority than the
10257  * preferred CPU of @group.
10258  *
10259  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10260  * otherwise.
10261  */
10262 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10263 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10264 {
10265 	/*
10266 	 * CPU priorities do not make sense for SMT cores with more than one
10267 	 * busy sibling.
10268 	 */
10269 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10270 	    (sgs->group_weight - sgs->idle_cpus != 1))
10271 		return false;
10272 
10273 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10274 }
10275 
10276 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10277 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10278 				    struct sched_group *sg2)
10279 {
10280 	if (!sg1 || !sg2)
10281 		return false;
10282 
10283 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10284 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10285 }
10286 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10287 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10288 			       struct sched_group *group)
10289 {
10290 	if (!env->idle)
10291 		return false;
10292 
10293 	/*
10294 	 * For SMT source group, it is better to move a task
10295 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10296 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10297 	 * will not be on.
10298 	 */
10299 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10300 	    sgs->sum_h_nr_running > 1)
10301 		return true;
10302 
10303 	return false;
10304 }
10305 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10306 static inline long sibling_imbalance(struct lb_env *env,
10307 				    struct sd_lb_stats *sds,
10308 				    struct sg_lb_stats *busiest,
10309 				    struct sg_lb_stats *local)
10310 {
10311 	int ncores_busiest, ncores_local;
10312 	long imbalance;
10313 
10314 	if (!env->idle || !busiest->sum_nr_running)
10315 		return 0;
10316 
10317 	ncores_busiest = sds->busiest->cores;
10318 	ncores_local = sds->local->cores;
10319 
10320 	if (ncores_busiest == ncores_local) {
10321 		imbalance = busiest->sum_nr_running;
10322 		lsub_positive(&imbalance, local->sum_nr_running);
10323 		return imbalance;
10324 	}
10325 
10326 	/* Balance such that nr_running/ncores ratio are same on both groups */
10327 	imbalance = ncores_local * busiest->sum_nr_running;
10328 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10329 	/* Normalize imbalance and do rounding on normalization */
10330 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10331 	imbalance /= ncores_local + ncores_busiest;
10332 
10333 	/* Take advantage of resource in an empty sched group */
10334 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10335 	    busiest->sum_nr_running > 1)
10336 		imbalance = 2;
10337 
10338 	return imbalance;
10339 }
10340 
10341 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10342 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10343 {
10344 	/*
10345 	 * When there is more than 1 task, the group_overloaded case already
10346 	 * takes care of cpu with reduced capacity
10347 	 */
10348 	if (rq->cfs.h_nr_runnable != 1)
10349 		return false;
10350 
10351 	return check_cpu_capacity(rq, sd);
10352 }
10353 
10354 /**
10355  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10356  * @env: The load balancing environment.
10357  * @sds: Load-balancing data with statistics of the local group.
10358  * @group: sched_group whose statistics are to be updated.
10359  * @sgs: variable to hold the statistics for this group.
10360  * @sg_overloaded: sched_group is overloaded
10361  * @sg_overutilized: sched_group is overutilized
10362  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10363 static inline void update_sg_lb_stats(struct lb_env *env,
10364 				      struct sd_lb_stats *sds,
10365 				      struct sched_group *group,
10366 				      struct sg_lb_stats *sgs,
10367 				      bool *sg_overloaded,
10368 				      bool *sg_overutilized)
10369 {
10370 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10371 	bool balancing_at_rd = !env->sd->parent;
10372 
10373 	memset(sgs, 0, sizeof(*sgs));
10374 
10375 	local_group = group == sds->local;
10376 
10377 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10378 		struct rq *rq = cpu_rq(i);
10379 		unsigned long load = cpu_load(rq);
10380 
10381 		sgs->group_load += load;
10382 		sgs->group_util += cpu_util_cfs(i);
10383 		sgs->group_runnable += cpu_runnable(rq);
10384 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10385 
10386 		nr_running = rq->nr_running;
10387 		sgs->sum_nr_running += nr_running;
10388 
10389 		if (cpu_overutilized(i))
10390 			*sg_overutilized = 1;
10391 
10392 		/*
10393 		 * No need to call idle_cpu() if nr_running is not 0
10394 		 */
10395 		if (!nr_running && idle_cpu(i)) {
10396 			sgs->idle_cpus++;
10397 			/* Idle cpu can't have misfit task */
10398 			continue;
10399 		}
10400 
10401 		/* Overload indicator is only updated at root domain */
10402 		if (balancing_at_rd && nr_running > 1)
10403 			*sg_overloaded = 1;
10404 
10405 #ifdef CONFIG_NUMA_BALANCING
10406 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10407 		if (sd_flags & SD_NUMA) {
10408 			sgs->nr_numa_running += rq->nr_numa_running;
10409 			sgs->nr_preferred_running += rq->nr_preferred_running;
10410 		}
10411 #endif
10412 		if (local_group)
10413 			continue;
10414 
10415 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10416 			/* Check for a misfit task on the cpu */
10417 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10418 				sgs->group_misfit_task_load = rq->misfit_task_load;
10419 				*sg_overloaded = 1;
10420 			}
10421 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10422 			/* Check for a task running on a CPU with reduced capacity */
10423 			if (sgs->group_misfit_task_load < load)
10424 				sgs->group_misfit_task_load = load;
10425 		}
10426 	}
10427 
10428 	sgs->group_capacity = group->sgc->capacity;
10429 
10430 	sgs->group_weight = group->group_weight;
10431 
10432 	/* Check if dst CPU is idle and preferred to this group */
10433 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10434 	    sched_group_asym(env, sgs, group))
10435 		sgs->group_asym_packing = 1;
10436 
10437 	/* Check for loaded SMT group to be balanced to dst CPU */
10438 	if (!local_group && smt_balance(env, sgs, group))
10439 		sgs->group_smt_balance = 1;
10440 
10441 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10442 
10443 	/* Computing avg_load makes sense only when group is overloaded */
10444 	if (sgs->group_type == group_overloaded)
10445 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10446 				sgs->group_capacity;
10447 }
10448 
10449 /**
10450  * update_sd_pick_busiest - return 1 on busiest group
10451  * @env: The load balancing environment.
10452  * @sds: sched_domain statistics
10453  * @sg: sched_group candidate to be checked for being the busiest
10454  * @sgs: sched_group statistics
10455  *
10456  * Determine if @sg is a busier group than the previously selected
10457  * busiest group.
10458  *
10459  * Return: %true if @sg is a busier group than the previously selected
10460  * busiest group. %false otherwise.
10461  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10462 static bool update_sd_pick_busiest(struct lb_env *env,
10463 				   struct sd_lb_stats *sds,
10464 				   struct sched_group *sg,
10465 				   struct sg_lb_stats *sgs)
10466 {
10467 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10468 
10469 	/* Make sure that there is at least one task to pull */
10470 	if (!sgs->sum_h_nr_running)
10471 		return false;
10472 
10473 	/*
10474 	 * Don't try to pull misfit tasks we can't help.
10475 	 * We can use max_capacity here as reduction in capacity on some
10476 	 * CPUs in the group should either be possible to resolve
10477 	 * internally or be covered by avg_load imbalance (eventually).
10478 	 */
10479 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10480 	    (sgs->group_type == group_misfit_task) &&
10481 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10482 	     sds->local_stat.group_type != group_has_spare))
10483 		return false;
10484 
10485 	if (sgs->group_type > busiest->group_type)
10486 		return true;
10487 
10488 	if (sgs->group_type < busiest->group_type)
10489 		return false;
10490 
10491 	/*
10492 	 * The candidate and the current busiest group are the same type of
10493 	 * group. Let check which one is the busiest according to the type.
10494 	 */
10495 
10496 	switch (sgs->group_type) {
10497 	case group_overloaded:
10498 		/* Select the overloaded group with highest avg_load. */
10499 		return sgs->avg_load > busiest->avg_load;
10500 
10501 	case group_imbalanced:
10502 		/*
10503 		 * Select the 1st imbalanced group as we don't have any way to
10504 		 * choose one more than another.
10505 		 */
10506 		return false;
10507 
10508 	case group_asym_packing:
10509 		/* Prefer to move from lowest priority CPU's work */
10510 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10511 					 READ_ONCE(sg->asym_prefer_cpu));
10512 
10513 	case group_misfit_task:
10514 		/*
10515 		 * If we have more than one misfit sg go with the biggest
10516 		 * misfit.
10517 		 */
10518 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10519 
10520 	case group_smt_balance:
10521 		/*
10522 		 * Check if we have spare CPUs on either SMT group to
10523 		 * choose has spare or fully busy handling.
10524 		 */
10525 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10526 			goto has_spare;
10527 
10528 		fallthrough;
10529 
10530 	case group_fully_busy:
10531 		/*
10532 		 * Select the fully busy group with highest avg_load. In
10533 		 * theory, there is no need to pull task from such kind of
10534 		 * group because tasks have all compute capacity that they need
10535 		 * but we can still improve the overall throughput by reducing
10536 		 * contention when accessing shared HW resources.
10537 		 *
10538 		 * XXX for now avg_load is not computed and always 0 so we
10539 		 * select the 1st one, except if @sg is composed of SMT
10540 		 * siblings.
10541 		 */
10542 
10543 		if (sgs->avg_load < busiest->avg_load)
10544 			return false;
10545 
10546 		if (sgs->avg_load == busiest->avg_load) {
10547 			/*
10548 			 * SMT sched groups need more help than non-SMT groups.
10549 			 * If @sg happens to also be SMT, either choice is good.
10550 			 */
10551 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10552 				return false;
10553 		}
10554 
10555 		break;
10556 
10557 	case group_has_spare:
10558 		/*
10559 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10560 		 * as we do not want to pull task off SMT core with one task
10561 		 * and make the core idle.
10562 		 */
10563 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10564 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10565 				return false;
10566 			else
10567 				return true;
10568 		}
10569 has_spare:
10570 
10571 		/*
10572 		 * Select not overloaded group with lowest number of idle CPUs
10573 		 * and highest number of running tasks. We could also compare
10574 		 * the spare capacity which is more stable but it can end up
10575 		 * that the group has less spare capacity but finally more idle
10576 		 * CPUs which means less opportunity to pull tasks.
10577 		 */
10578 		if (sgs->idle_cpus > busiest->idle_cpus)
10579 			return false;
10580 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10581 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10582 			return false;
10583 
10584 		break;
10585 	}
10586 
10587 	/*
10588 	 * Candidate sg has no more than one task per CPU and has higher
10589 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10590 	 * throughput. Maximize throughput, power/energy consequences are not
10591 	 * considered.
10592 	 */
10593 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10594 	    (sgs->group_type <= group_fully_busy) &&
10595 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10596 		return false;
10597 
10598 	return true;
10599 }
10600 
10601 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10602 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10603 {
10604 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10605 		return regular;
10606 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10607 		return remote;
10608 	return all;
10609 }
10610 
fbq_classify_rq(struct rq * rq)10611 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10612 {
10613 	if (rq->nr_running > rq->nr_numa_running)
10614 		return regular;
10615 	if (rq->nr_running > rq->nr_preferred_running)
10616 		return remote;
10617 	return all;
10618 }
10619 #else
fbq_classify_group(struct sg_lb_stats * sgs)10620 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10621 {
10622 	return all;
10623 }
10624 
fbq_classify_rq(struct rq * rq)10625 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10626 {
10627 	return regular;
10628 }
10629 #endif /* CONFIG_NUMA_BALANCING */
10630 
10631 
10632 struct sg_lb_stats;
10633 
10634 /*
10635  * task_running_on_cpu - return 1 if @p is running on @cpu.
10636  */
10637 
task_running_on_cpu(int cpu,struct task_struct * p)10638 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10639 {
10640 	/* Task has no contribution or is new */
10641 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10642 		return 0;
10643 
10644 	if (task_on_rq_queued(p))
10645 		return 1;
10646 
10647 	return 0;
10648 }
10649 
10650 /**
10651  * idle_cpu_without - would a given CPU be idle without p ?
10652  * @cpu: the processor on which idleness is tested.
10653  * @p: task which should be ignored.
10654  *
10655  * Return: 1 if the CPU would be idle. 0 otherwise.
10656  */
idle_cpu_without(int cpu,struct task_struct * p)10657 static int idle_cpu_without(int cpu, struct task_struct *p)
10658 {
10659 	struct rq *rq = cpu_rq(cpu);
10660 
10661 	if (rq->curr != rq->idle && rq->curr != p)
10662 		return 0;
10663 
10664 	/*
10665 	 * rq->nr_running can't be used but an updated version without the
10666 	 * impact of p on cpu must be used instead. The updated nr_running
10667 	 * be computed and tested before calling idle_cpu_without().
10668 	 */
10669 
10670 	if (rq->ttwu_pending)
10671 		return 0;
10672 
10673 	return 1;
10674 }
10675 
10676 /*
10677  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10678  * @sd: The sched_domain level to look for idlest group.
10679  * @group: sched_group whose statistics are to be updated.
10680  * @sgs: variable to hold the statistics for this group.
10681  * @p: The task for which we look for the idlest group/CPU.
10682  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10683 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10684 					  struct sched_group *group,
10685 					  struct sg_lb_stats *sgs,
10686 					  struct task_struct *p)
10687 {
10688 	int i, nr_running;
10689 
10690 	memset(sgs, 0, sizeof(*sgs));
10691 
10692 	/* Assume that task can't fit any CPU of the group */
10693 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10694 		sgs->group_misfit_task_load = 1;
10695 
10696 	for_each_cpu(i, sched_group_span(group)) {
10697 		struct rq *rq = cpu_rq(i);
10698 		unsigned int local;
10699 
10700 		sgs->group_load += cpu_load_without(rq, p);
10701 		sgs->group_util += cpu_util_without(i, p);
10702 		sgs->group_runnable += cpu_runnable_without(rq, p);
10703 		local = task_running_on_cpu(i, p);
10704 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10705 
10706 		nr_running = rq->nr_running - local;
10707 		sgs->sum_nr_running += nr_running;
10708 
10709 		/*
10710 		 * No need to call idle_cpu_without() if nr_running is not 0
10711 		 */
10712 		if (!nr_running && idle_cpu_without(i, p))
10713 			sgs->idle_cpus++;
10714 
10715 		/* Check if task fits in the CPU */
10716 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10717 		    sgs->group_misfit_task_load &&
10718 		    task_fits_cpu(p, i))
10719 			sgs->group_misfit_task_load = 0;
10720 
10721 	}
10722 
10723 	sgs->group_capacity = group->sgc->capacity;
10724 
10725 	sgs->group_weight = group->group_weight;
10726 
10727 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10728 
10729 	/*
10730 	 * Computing avg_load makes sense only when group is fully busy or
10731 	 * overloaded
10732 	 */
10733 	if (sgs->group_type == group_fully_busy ||
10734 		sgs->group_type == group_overloaded)
10735 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10736 				sgs->group_capacity;
10737 }
10738 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10739 static bool update_pick_idlest(struct sched_group *idlest,
10740 			       struct sg_lb_stats *idlest_sgs,
10741 			       struct sched_group *group,
10742 			       struct sg_lb_stats *sgs)
10743 {
10744 	if (sgs->group_type < idlest_sgs->group_type)
10745 		return true;
10746 
10747 	if (sgs->group_type > idlest_sgs->group_type)
10748 		return false;
10749 
10750 	/*
10751 	 * The candidate and the current idlest group are the same type of
10752 	 * group. Let check which one is the idlest according to the type.
10753 	 */
10754 
10755 	switch (sgs->group_type) {
10756 	case group_overloaded:
10757 	case group_fully_busy:
10758 		/* Select the group with lowest avg_load. */
10759 		if (idlest_sgs->avg_load <= sgs->avg_load)
10760 			return false;
10761 		break;
10762 
10763 	case group_imbalanced:
10764 	case group_asym_packing:
10765 	case group_smt_balance:
10766 		/* Those types are not used in the slow wakeup path */
10767 		return false;
10768 
10769 	case group_misfit_task:
10770 		/* Select group with the highest max capacity */
10771 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10772 			return false;
10773 		break;
10774 
10775 	case group_has_spare:
10776 		/* Select group with most idle CPUs */
10777 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10778 			return false;
10779 
10780 		/* Select group with lowest group_util */
10781 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10782 			idlest_sgs->group_util <= sgs->group_util)
10783 			return false;
10784 
10785 		break;
10786 	}
10787 
10788 	return true;
10789 }
10790 
10791 /*
10792  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10793  * domain.
10794  *
10795  * Assumes p is allowed on at least one CPU in sd.
10796  */
10797 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10798 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10799 {
10800 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10801 	struct sg_lb_stats local_sgs, tmp_sgs;
10802 	struct sg_lb_stats *sgs;
10803 	unsigned long imbalance;
10804 	struct sg_lb_stats idlest_sgs = {
10805 			.avg_load = UINT_MAX,
10806 			.group_type = group_overloaded,
10807 	};
10808 
10809 	do {
10810 		int local_group;
10811 
10812 		/* Skip over this group if it has no CPUs allowed */
10813 		if (!cpumask_intersects(sched_group_span(group),
10814 					p->cpus_ptr))
10815 			continue;
10816 
10817 		/* Skip over this group if no cookie matched */
10818 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10819 			continue;
10820 
10821 		local_group = cpumask_test_cpu(this_cpu,
10822 					       sched_group_span(group));
10823 
10824 		if (local_group) {
10825 			sgs = &local_sgs;
10826 			local = group;
10827 		} else {
10828 			sgs = &tmp_sgs;
10829 		}
10830 
10831 		update_sg_wakeup_stats(sd, group, sgs, p);
10832 
10833 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10834 			idlest = group;
10835 			idlest_sgs = *sgs;
10836 		}
10837 
10838 	} while (group = group->next, group != sd->groups);
10839 
10840 
10841 	/* There is no idlest group to push tasks to */
10842 	if (!idlest)
10843 		return NULL;
10844 
10845 	/* The local group has been skipped because of CPU affinity */
10846 	if (!local)
10847 		return idlest;
10848 
10849 	/*
10850 	 * If the local group is idler than the selected idlest group
10851 	 * don't try and push the task.
10852 	 */
10853 	if (local_sgs.group_type < idlest_sgs.group_type)
10854 		return NULL;
10855 
10856 	/*
10857 	 * If the local group is busier than the selected idlest group
10858 	 * try and push the task.
10859 	 */
10860 	if (local_sgs.group_type > idlest_sgs.group_type)
10861 		return idlest;
10862 
10863 	switch (local_sgs.group_type) {
10864 	case group_overloaded:
10865 	case group_fully_busy:
10866 
10867 		/* Calculate allowed imbalance based on load */
10868 		imbalance = scale_load_down(NICE_0_LOAD) *
10869 				(sd->imbalance_pct-100) / 100;
10870 
10871 		/*
10872 		 * When comparing groups across NUMA domains, it's possible for
10873 		 * the local domain to be very lightly loaded relative to the
10874 		 * remote domains but "imbalance" skews the comparison making
10875 		 * remote CPUs look much more favourable. When considering
10876 		 * cross-domain, add imbalance to the load on the remote node
10877 		 * and consider staying local.
10878 		 */
10879 
10880 		if ((sd->flags & SD_NUMA) &&
10881 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10882 			return NULL;
10883 
10884 		/*
10885 		 * If the local group is less loaded than the selected
10886 		 * idlest group don't try and push any tasks.
10887 		 */
10888 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10889 			return NULL;
10890 
10891 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10892 			return NULL;
10893 		break;
10894 
10895 	case group_imbalanced:
10896 	case group_asym_packing:
10897 	case group_smt_balance:
10898 		/* Those type are not used in the slow wakeup path */
10899 		return NULL;
10900 
10901 	case group_misfit_task:
10902 		/* Select group with the highest max capacity */
10903 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10904 			return NULL;
10905 		break;
10906 
10907 	case group_has_spare:
10908 #ifdef CONFIG_NUMA
10909 		if (sd->flags & SD_NUMA) {
10910 			int imb_numa_nr = sd->imb_numa_nr;
10911 #ifdef CONFIG_NUMA_BALANCING
10912 			int idlest_cpu;
10913 			/*
10914 			 * If there is spare capacity at NUMA, try to select
10915 			 * the preferred node
10916 			 */
10917 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10918 				return NULL;
10919 
10920 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10921 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10922 				return idlest;
10923 #endif /* CONFIG_NUMA_BALANCING */
10924 			/*
10925 			 * Otherwise, keep the task close to the wakeup source
10926 			 * and improve locality if the number of running tasks
10927 			 * would remain below threshold where an imbalance is
10928 			 * allowed while accounting for the possibility the
10929 			 * task is pinned to a subset of CPUs. If there is a
10930 			 * real need of migration, periodic load balance will
10931 			 * take care of it.
10932 			 */
10933 			if (p->nr_cpus_allowed != NR_CPUS) {
10934 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10935 
10936 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10937 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10938 			}
10939 
10940 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10941 			if (!adjust_numa_imbalance(imbalance,
10942 						   local_sgs.sum_nr_running + 1,
10943 						   imb_numa_nr)) {
10944 				return NULL;
10945 			}
10946 		}
10947 #endif /* CONFIG_NUMA */
10948 
10949 		/*
10950 		 * Select group with highest number of idle CPUs. We could also
10951 		 * compare the utilization which is more stable but it can end
10952 		 * up that the group has less spare capacity but finally more
10953 		 * idle CPUs which means more opportunity to run task.
10954 		 */
10955 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10956 			return NULL;
10957 		break;
10958 	}
10959 
10960 	return idlest;
10961 }
10962 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10963 static void update_idle_cpu_scan(struct lb_env *env,
10964 				 unsigned long sum_util)
10965 {
10966 	struct sched_domain_shared *sd_share;
10967 	int llc_weight, pct;
10968 	u64 x, y, tmp;
10969 	/*
10970 	 * Update the number of CPUs to scan in LLC domain, which could
10971 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10972 	 * could be expensive because it is within a shared cache line.
10973 	 * So the write of this hint only occurs during periodic load
10974 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10975 	 * can fire way more frequently than the former.
10976 	 */
10977 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10978 		return;
10979 
10980 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10981 	if (env->sd->span_weight != llc_weight)
10982 		return;
10983 
10984 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10985 	if (!sd_share)
10986 		return;
10987 
10988 	/*
10989 	 * The number of CPUs to search drops as sum_util increases, when
10990 	 * sum_util hits 85% or above, the scan stops.
10991 	 * The reason to choose 85% as the threshold is because this is the
10992 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10993 	 *
10994 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10995 	 * and y'= y / SCHED_CAPACITY_SCALE
10996 	 *
10997 	 * x is the ratio of sum_util compared to the CPU capacity:
10998 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10999 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
11000 	 * and the number of CPUs to scan is calculated by:
11001 	 *
11002 	 * nr_scan = llc_weight * y'                                    [2]
11003 	 *
11004 	 * When x hits the threshold of overloaded, AKA, when
11005 	 * x = 100 / pct, y drops to 0. According to [1],
11006 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
11007 	 *
11008 	 * Scale x by SCHED_CAPACITY_SCALE:
11009 	 * x' = sum_util / llc_weight;                                  [3]
11010 	 *
11011 	 * and finally [1] becomes:
11012 	 * y = SCHED_CAPACITY_SCALE -
11013 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
11014 	 *
11015 	 */
11016 	/* equation [3] */
11017 	x = sum_util;
11018 	do_div(x, llc_weight);
11019 
11020 	/* equation [4] */
11021 	pct = env->sd->imbalance_pct;
11022 	tmp = x * x * pct * pct;
11023 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11024 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11025 	y = SCHED_CAPACITY_SCALE - tmp;
11026 
11027 	/* equation [2] */
11028 	y *= llc_weight;
11029 	do_div(y, SCHED_CAPACITY_SCALE);
11030 	if ((int)y != sd_share->nr_idle_scan)
11031 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11032 }
11033 
11034 /**
11035  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11036  * @env: The load balancing environment.
11037  * @sds: variable to hold the statistics for this sched_domain.
11038  */
11039 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11040 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11041 {
11042 	struct sched_group *sg = env->sd->groups;
11043 	struct sg_lb_stats *local = &sds->local_stat;
11044 	struct sg_lb_stats tmp_sgs;
11045 	unsigned long sum_util = 0;
11046 	bool sg_overloaded = 0, sg_overutilized = 0;
11047 
11048 	do {
11049 		struct sg_lb_stats *sgs = &tmp_sgs;
11050 		int local_group;
11051 
11052 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11053 		if (local_group) {
11054 			sds->local = sg;
11055 			sgs = local;
11056 
11057 			if (env->idle != CPU_NEWLY_IDLE ||
11058 			    time_after_eq(jiffies, sg->sgc->next_update))
11059 				update_group_capacity(env->sd, env->dst_cpu);
11060 		}
11061 
11062 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11063 
11064 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11065 			sds->busiest = sg;
11066 			sds->busiest_stat = *sgs;
11067 		}
11068 
11069 		/* Now, start updating sd_lb_stats */
11070 		sds->total_load += sgs->group_load;
11071 		sds->total_capacity += sgs->group_capacity;
11072 
11073 		sum_util += sgs->group_util;
11074 		sg = sg->next;
11075 	} while (sg != env->sd->groups);
11076 
11077 	/*
11078 	 * Indicate that the child domain of the busiest group prefers tasks
11079 	 * go to a child's sibling domains first. NB the flags of a sched group
11080 	 * are those of the child domain.
11081 	 */
11082 	if (sds->busiest)
11083 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11084 
11085 
11086 	if (env->sd->flags & SD_NUMA)
11087 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11088 
11089 	if (!env->sd->parent) {
11090 		/* update overload indicator if we are at root domain */
11091 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11092 
11093 		/* Update over-utilization (tipping point, U >= 0) indicator */
11094 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11095 	} else if (sg_overutilized) {
11096 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11097 	}
11098 
11099 	update_idle_cpu_scan(env, sum_util);
11100 }
11101 
11102 /**
11103  * calculate_imbalance - Calculate the amount of imbalance present within the
11104  *			 groups of a given sched_domain during load balance.
11105  * @env: load balance environment
11106  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11107  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11108 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11109 {
11110 	struct sg_lb_stats *local, *busiest;
11111 
11112 	local = &sds->local_stat;
11113 	busiest = &sds->busiest_stat;
11114 
11115 	if (busiest->group_type == group_misfit_task) {
11116 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11117 			/* Set imbalance to allow misfit tasks to be balanced. */
11118 			env->migration_type = migrate_misfit;
11119 			env->imbalance = 1;
11120 		} else {
11121 			/*
11122 			 * Set load imbalance to allow moving task from cpu
11123 			 * with reduced capacity.
11124 			 */
11125 			env->migration_type = migrate_load;
11126 			env->imbalance = busiest->group_misfit_task_load;
11127 		}
11128 		return;
11129 	}
11130 
11131 	if (busiest->group_type == group_asym_packing) {
11132 		/*
11133 		 * In case of asym capacity, we will try to migrate all load to
11134 		 * the preferred CPU.
11135 		 */
11136 		env->migration_type = migrate_task;
11137 		env->imbalance = busiest->sum_h_nr_running;
11138 		return;
11139 	}
11140 
11141 	if (busiest->group_type == group_smt_balance) {
11142 		/* Reduce number of tasks sharing CPU capacity */
11143 		env->migration_type = migrate_task;
11144 		env->imbalance = 1;
11145 		return;
11146 	}
11147 
11148 	if (busiest->group_type == group_imbalanced) {
11149 		/*
11150 		 * In the group_imb case we cannot rely on group-wide averages
11151 		 * to ensure CPU-load equilibrium, try to move any task to fix
11152 		 * the imbalance. The next load balance will take care of
11153 		 * balancing back the system.
11154 		 */
11155 		env->migration_type = migrate_task;
11156 		env->imbalance = 1;
11157 		return;
11158 	}
11159 
11160 	/*
11161 	 * Try to use spare capacity of local group without overloading it or
11162 	 * emptying busiest.
11163 	 */
11164 	if (local->group_type == group_has_spare) {
11165 		if ((busiest->group_type > group_fully_busy) &&
11166 		    !(env->sd->flags & SD_SHARE_LLC)) {
11167 			/*
11168 			 * If busiest is overloaded, try to fill spare
11169 			 * capacity. This might end up creating spare capacity
11170 			 * in busiest or busiest still being overloaded but
11171 			 * there is no simple way to directly compute the
11172 			 * amount of load to migrate in order to balance the
11173 			 * system.
11174 			 */
11175 			env->migration_type = migrate_util;
11176 			env->imbalance = max(local->group_capacity, local->group_util) -
11177 					 local->group_util;
11178 
11179 			/*
11180 			 * In some cases, the group's utilization is max or even
11181 			 * higher than capacity because of migrations but the
11182 			 * local CPU is (newly) idle. There is at least one
11183 			 * waiting task in this overloaded busiest group. Let's
11184 			 * try to pull it.
11185 			 */
11186 			if (env->idle && env->imbalance == 0) {
11187 				env->migration_type = migrate_task;
11188 				env->imbalance = 1;
11189 			}
11190 
11191 			return;
11192 		}
11193 
11194 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11195 			/*
11196 			 * When prefer sibling, evenly spread running tasks on
11197 			 * groups.
11198 			 */
11199 			env->migration_type = migrate_task;
11200 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11201 		} else {
11202 
11203 			/*
11204 			 * If there is no overload, we just want to even the number of
11205 			 * idle CPUs.
11206 			 */
11207 			env->migration_type = migrate_task;
11208 			env->imbalance = max_t(long, 0,
11209 					       (local->idle_cpus - busiest->idle_cpus));
11210 		}
11211 
11212 #ifdef CONFIG_NUMA
11213 		/* Consider allowing a small imbalance between NUMA groups */
11214 		if (env->sd->flags & SD_NUMA) {
11215 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11216 							       local->sum_nr_running + 1,
11217 							       env->sd->imb_numa_nr);
11218 		}
11219 #endif
11220 
11221 		/* Number of tasks to move to restore balance */
11222 		env->imbalance >>= 1;
11223 
11224 		return;
11225 	}
11226 
11227 	/*
11228 	 * Local is fully busy but has to take more load to relieve the
11229 	 * busiest group
11230 	 */
11231 	if (local->group_type < group_overloaded) {
11232 		/*
11233 		 * Local will become overloaded so the avg_load metrics are
11234 		 * finally needed.
11235 		 */
11236 
11237 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11238 				  local->group_capacity;
11239 
11240 		/*
11241 		 * If the local group is more loaded than the selected
11242 		 * busiest group don't try to pull any tasks.
11243 		 */
11244 		if (local->avg_load >= busiest->avg_load) {
11245 			env->imbalance = 0;
11246 			return;
11247 		}
11248 
11249 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11250 				sds->total_capacity;
11251 
11252 		/*
11253 		 * If the local group is more loaded than the average system
11254 		 * load, don't try to pull any tasks.
11255 		 */
11256 		if (local->avg_load >= sds->avg_load) {
11257 			env->imbalance = 0;
11258 			return;
11259 		}
11260 
11261 	}
11262 
11263 	/*
11264 	 * Both group are or will become overloaded and we're trying to get all
11265 	 * the CPUs to the average_load, so we don't want to push ourselves
11266 	 * above the average load, nor do we wish to reduce the max loaded CPU
11267 	 * below the average load. At the same time, we also don't want to
11268 	 * reduce the group load below the group capacity. Thus we look for
11269 	 * the minimum possible imbalance.
11270 	 */
11271 	env->migration_type = migrate_load;
11272 	env->imbalance = min(
11273 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11274 		(sds->avg_load - local->avg_load) * local->group_capacity
11275 	) / SCHED_CAPACITY_SCALE;
11276 }
11277 
11278 /******* sched_balance_find_src_group() helpers end here *********************/
11279 
11280 /*
11281  * Decision matrix according to the local and busiest group type:
11282  *
11283  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11284  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11285  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11286  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11287  * asym_packing     force     force      N/A    N/A  force      force
11288  * imbalanced       force     force      N/A    N/A  force      force
11289  * overloaded       force     force      N/A    N/A  force      avg_load
11290  *
11291  * N/A :      Not Applicable because already filtered while updating
11292  *            statistics.
11293  * balanced : The system is balanced for these 2 groups.
11294  * force :    Calculate the imbalance as load migration is probably needed.
11295  * avg_load : Only if imbalance is significant enough.
11296  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11297  *            different in groups.
11298  */
11299 
11300 /**
11301  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11302  * if there is an imbalance.
11303  * @env: The load balancing environment.
11304  *
11305  * Also calculates the amount of runnable load which should be moved
11306  * to restore balance.
11307  *
11308  * Return:	- The busiest group if imbalance exists.
11309  */
sched_balance_find_src_group(struct lb_env * env)11310 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11311 {
11312 	struct sg_lb_stats *local, *busiest;
11313 	struct sd_lb_stats sds;
11314 
11315 	init_sd_lb_stats(&sds);
11316 
11317 	/*
11318 	 * Compute the various statistics relevant for load balancing at
11319 	 * this level.
11320 	 */
11321 	update_sd_lb_stats(env, &sds);
11322 
11323 	/* There is no busy sibling group to pull tasks from */
11324 	if (!sds.busiest)
11325 		goto out_balanced;
11326 
11327 	busiest = &sds.busiest_stat;
11328 
11329 	/* Misfit tasks should be dealt with regardless of the avg load */
11330 	if (busiest->group_type == group_misfit_task)
11331 		goto force_balance;
11332 
11333 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11334 	    rcu_dereference(env->dst_rq->rd->pd))
11335 		goto out_balanced;
11336 
11337 	/* ASYM feature bypasses nice load balance check */
11338 	if (busiest->group_type == group_asym_packing)
11339 		goto force_balance;
11340 
11341 	/*
11342 	 * If the busiest group is imbalanced the below checks don't
11343 	 * work because they assume all things are equal, which typically
11344 	 * isn't true due to cpus_ptr constraints and the like.
11345 	 */
11346 	if (busiest->group_type == group_imbalanced)
11347 		goto force_balance;
11348 
11349 	local = &sds.local_stat;
11350 	/*
11351 	 * If the local group is busier than the selected busiest group
11352 	 * don't try and pull any tasks.
11353 	 */
11354 	if (local->group_type > busiest->group_type)
11355 		goto out_balanced;
11356 
11357 	/*
11358 	 * When groups are overloaded, use the avg_load to ensure fairness
11359 	 * between tasks.
11360 	 */
11361 	if (local->group_type == group_overloaded) {
11362 		/*
11363 		 * If the local group is more loaded than the selected
11364 		 * busiest group don't try to pull any tasks.
11365 		 */
11366 		if (local->avg_load >= busiest->avg_load)
11367 			goto out_balanced;
11368 
11369 		/* XXX broken for overlapping NUMA groups */
11370 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11371 				sds.total_capacity;
11372 
11373 		/*
11374 		 * Don't pull any tasks if this group is already above the
11375 		 * domain average load.
11376 		 */
11377 		if (local->avg_load >= sds.avg_load)
11378 			goto out_balanced;
11379 
11380 		/*
11381 		 * If the busiest group is more loaded, use imbalance_pct to be
11382 		 * conservative.
11383 		 */
11384 		if (100 * busiest->avg_load <=
11385 				env->sd->imbalance_pct * local->avg_load)
11386 			goto out_balanced;
11387 	}
11388 
11389 	/*
11390 	 * Try to move all excess tasks to a sibling domain of the busiest
11391 	 * group's child domain.
11392 	 */
11393 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11394 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11395 		goto force_balance;
11396 
11397 	if (busiest->group_type != group_overloaded) {
11398 		if (!env->idle) {
11399 			/*
11400 			 * If the busiest group is not overloaded (and as a
11401 			 * result the local one too) but this CPU is already
11402 			 * busy, let another idle CPU try to pull task.
11403 			 */
11404 			goto out_balanced;
11405 		}
11406 
11407 		if (busiest->group_type == group_smt_balance &&
11408 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11409 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11410 			goto force_balance;
11411 		}
11412 
11413 		if (busiest->group_weight > 1 &&
11414 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11415 			/*
11416 			 * If the busiest group is not overloaded
11417 			 * and there is no imbalance between this and busiest
11418 			 * group wrt idle CPUs, it is balanced. The imbalance
11419 			 * becomes significant if the diff is greater than 1
11420 			 * otherwise we might end up to just move the imbalance
11421 			 * on another group. Of course this applies only if
11422 			 * there is more than 1 CPU per group.
11423 			 */
11424 			goto out_balanced;
11425 		}
11426 
11427 		if (busiest->sum_h_nr_running == 1) {
11428 			/*
11429 			 * busiest doesn't have any tasks waiting to run
11430 			 */
11431 			goto out_balanced;
11432 		}
11433 	}
11434 
11435 force_balance:
11436 	/* Looks like there is an imbalance. Compute it */
11437 	calculate_imbalance(env, &sds);
11438 	return env->imbalance ? sds.busiest : NULL;
11439 
11440 out_balanced:
11441 	env->imbalance = 0;
11442 	return NULL;
11443 }
11444 
11445 /*
11446  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11447  */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11448 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11449 				     struct sched_group *group)
11450 {
11451 	struct rq *busiest = NULL, *rq;
11452 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11453 	unsigned int busiest_nr = 0;
11454 	int i;
11455 
11456 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11457 		unsigned long capacity, load, util;
11458 		unsigned int nr_running;
11459 		enum fbq_type rt;
11460 
11461 		rq = cpu_rq(i);
11462 		rt = fbq_classify_rq(rq);
11463 
11464 		/*
11465 		 * We classify groups/runqueues into three groups:
11466 		 *  - regular: there are !numa tasks
11467 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11468 		 *  - all:     there is no distinction
11469 		 *
11470 		 * In order to avoid migrating ideally placed numa tasks,
11471 		 * ignore those when there's better options.
11472 		 *
11473 		 * If we ignore the actual busiest queue to migrate another
11474 		 * task, the next balance pass can still reduce the busiest
11475 		 * queue by moving tasks around inside the node.
11476 		 *
11477 		 * If we cannot move enough load due to this classification
11478 		 * the next pass will adjust the group classification and
11479 		 * allow migration of more tasks.
11480 		 *
11481 		 * Both cases only affect the total convergence complexity.
11482 		 */
11483 		if (rt > env->fbq_type)
11484 			continue;
11485 
11486 		nr_running = rq->cfs.h_nr_runnable;
11487 		if (!nr_running)
11488 			continue;
11489 
11490 		capacity = capacity_of(i);
11491 
11492 		/*
11493 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11494 		 * eventually lead to active_balancing high->low capacity.
11495 		 * Higher per-CPU capacity is considered better than balancing
11496 		 * average load.
11497 		 */
11498 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11499 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11500 		    nr_running == 1)
11501 			continue;
11502 
11503 		/*
11504 		 * Make sure we only pull tasks from a CPU of lower priority
11505 		 * when balancing between SMT siblings.
11506 		 *
11507 		 * If balancing between cores, let lower priority CPUs help
11508 		 * SMT cores with more than one busy sibling.
11509 		 */
11510 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11511 			continue;
11512 
11513 		switch (env->migration_type) {
11514 		case migrate_load:
11515 			/*
11516 			 * When comparing with load imbalance, use cpu_load()
11517 			 * which is not scaled with the CPU capacity.
11518 			 */
11519 			load = cpu_load(rq);
11520 
11521 			if (nr_running == 1 && load > env->imbalance &&
11522 			    !check_cpu_capacity(rq, env->sd))
11523 				break;
11524 
11525 			/*
11526 			 * For the load comparisons with the other CPUs,
11527 			 * consider the cpu_load() scaled with the CPU
11528 			 * capacity, so that the load can be moved away
11529 			 * from the CPU that is potentially running at a
11530 			 * lower capacity.
11531 			 *
11532 			 * Thus we're looking for max(load_i / capacity_i),
11533 			 * crosswise multiplication to rid ourselves of the
11534 			 * division works out to:
11535 			 * load_i * capacity_j > load_j * capacity_i;
11536 			 * where j is our previous maximum.
11537 			 */
11538 			if (load * busiest_capacity > busiest_load * capacity) {
11539 				busiest_load = load;
11540 				busiest_capacity = capacity;
11541 				busiest = rq;
11542 			}
11543 			break;
11544 
11545 		case migrate_util:
11546 			util = cpu_util_cfs_boost(i);
11547 
11548 			/*
11549 			 * Don't try to pull utilization from a CPU with one
11550 			 * running task. Whatever its utilization, we will fail
11551 			 * detach the task.
11552 			 */
11553 			if (nr_running <= 1)
11554 				continue;
11555 
11556 			if (busiest_util < util) {
11557 				busiest_util = util;
11558 				busiest = rq;
11559 			}
11560 			break;
11561 
11562 		case migrate_task:
11563 			if (busiest_nr < nr_running) {
11564 				busiest_nr = nr_running;
11565 				busiest = rq;
11566 			}
11567 			break;
11568 
11569 		case migrate_misfit:
11570 			/*
11571 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11572 			 * simply seek the "biggest" misfit task.
11573 			 */
11574 			if (rq->misfit_task_load > busiest_load) {
11575 				busiest_load = rq->misfit_task_load;
11576 				busiest = rq;
11577 			}
11578 
11579 			break;
11580 
11581 		}
11582 	}
11583 
11584 	return busiest;
11585 }
11586 
11587 /*
11588  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11589  * so long as it is large enough.
11590  */
11591 #define MAX_PINNED_INTERVAL	512
11592 
11593 static inline bool
asym_active_balance(struct lb_env * env)11594 asym_active_balance(struct lb_env *env)
11595 {
11596 	/*
11597 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11598 	 * priority CPUs in order to pack all tasks in the highest priority
11599 	 * CPUs. When done between cores, do it only if the whole core if the
11600 	 * whole core is idle.
11601 	 *
11602 	 * If @env::src_cpu is an SMT core with busy siblings, let
11603 	 * the lower priority @env::dst_cpu help it. Do not follow
11604 	 * CPU priority.
11605 	 */
11606 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11607 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11608 		!sched_use_asym_prio(env->sd, env->src_cpu));
11609 }
11610 
11611 static inline bool
imbalanced_active_balance(struct lb_env * env)11612 imbalanced_active_balance(struct lb_env *env)
11613 {
11614 	struct sched_domain *sd = env->sd;
11615 
11616 	/*
11617 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11618 	 * distribution of the load on the system but also the even distribution of the
11619 	 * threads on a system with spare capacity
11620 	 */
11621 	if ((env->migration_type == migrate_task) &&
11622 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11623 		return 1;
11624 
11625 	return 0;
11626 }
11627 
need_active_balance(struct lb_env * env)11628 static int need_active_balance(struct lb_env *env)
11629 {
11630 	struct sched_domain *sd = env->sd;
11631 
11632 	if (asym_active_balance(env))
11633 		return 1;
11634 
11635 	if (imbalanced_active_balance(env))
11636 		return 1;
11637 
11638 	/*
11639 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11640 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11641 	 * because of other sched_class or IRQs if more capacity stays
11642 	 * available on dst_cpu.
11643 	 */
11644 	if (env->idle &&
11645 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11646 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11647 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11648 			return 1;
11649 	}
11650 
11651 	if (env->migration_type == migrate_misfit)
11652 		return 1;
11653 
11654 	return 0;
11655 }
11656 
11657 static int active_load_balance_cpu_stop(void *data);
11658 
should_we_balance(struct lb_env * env)11659 static int should_we_balance(struct lb_env *env)
11660 {
11661 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11662 	struct sched_group *sg = env->sd->groups;
11663 	int cpu, idle_smt = -1;
11664 
11665 	/*
11666 	 * Ensure the balancing environment is consistent; can happen
11667 	 * when the softirq triggers 'during' hotplug.
11668 	 */
11669 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11670 		return 0;
11671 
11672 	/*
11673 	 * In the newly idle case, we will allow all the CPUs
11674 	 * to do the newly idle load balance.
11675 	 *
11676 	 * However, we bail out if we already have tasks or a wakeup pending,
11677 	 * to optimize wakeup latency.
11678 	 */
11679 	if (env->idle == CPU_NEWLY_IDLE) {
11680 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11681 			return 0;
11682 		return 1;
11683 	}
11684 
11685 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11686 	/* Try to find first idle CPU */
11687 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11688 		if (!idle_cpu(cpu))
11689 			continue;
11690 
11691 		/*
11692 		 * Don't balance to idle SMT in busy core right away when
11693 		 * balancing cores, but remember the first idle SMT CPU for
11694 		 * later consideration.  Find CPU on an idle core first.
11695 		 */
11696 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11697 			if (idle_smt == -1)
11698 				idle_smt = cpu;
11699 			/*
11700 			 * If the core is not idle, and first SMT sibling which is
11701 			 * idle has been found, then its not needed to check other
11702 			 * SMT siblings for idleness:
11703 			 */
11704 #ifdef CONFIG_SCHED_SMT
11705 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11706 #endif
11707 			continue;
11708 		}
11709 
11710 		/*
11711 		 * Are we the first idle core in a non-SMT domain or higher,
11712 		 * or the first idle CPU in a SMT domain?
11713 		 */
11714 		return cpu == env->dst_cpu;
11715 	}
11716 
11717 	/* Are we the first idle CPU with busy siblings? */
11718 	if (idle_smt != -1)
11719 		return idle_smt == env->dst_cpu;
11720 
11721 	/* Are we the first CPU of this group ? */
11722 	return group_balance_cpu(sg) == env->dst_cpu;
11723 }
11724 
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11725 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11726 				     enum cpu_idle_type idle)
11727 {
11728 	if (!schedstat_enabled())
11729 		return;
11730 
11731 	switch (env->migration_type) {
11732 	case migrate_load:
11733 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11734 		break;
11735 	case migrate_util:
11736 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11737 		break;
11738 	case migrate_task:
11739 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11740 		break;
11741 	case migrate_misfit:
11742 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11743 		break;
11744 	}
11745 }
11746 
11747 /*
11748  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11749  * tasks if there is an imbalance.
11750  */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11751 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11752 			struct sched_domain *sd, enum cpu_idle_type idle,
11753 			int *continue_balancing)
11754 {
11755 	int ld_moved, cur_ld_moved, active_balance = 0;
11756 	struct sched_domain *sd_parent = sd->parent;
11757 	struct sched_group *group;
11758 	struct rq *busiest;
11759 	struct rq_flags rf;
11760 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11761 	struct lb_env env = {
11762 		.sd		= sd,
11763 		.dst_cpu	= this_cpu,
11764 		.dst_rq		= this_rq,
11765 		.dst_grpmask    = group_balance_mask(sd->groups),
11766 		.idle		= idle,
11767 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11768 		.cpus		= cpus,
11769 		.fbq_type	= all,
11770 		.tasks		= LIST_HEAD_INIT(env.tasks),
11771 	};
11772 
11773 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11774 
11775 	schedstat_inc(sd->lb_count[idle]);
11776 
11777 redo:
11778 	if (!should_we_balance(&env)) {
11779 		*continue_balancing = 0;
11780 		goto out_balanced;
11781 	}
11782 
11783 	group = sched_balance_find_src_group(&env);
11784 	if (!group) {
11785 		schedstat_inc(sd->lb_nobusyg[idle]);
11786 		goto out_balanced;
11787 	}
11788 
11789 	busiest = sched_balance_find_src_rq(&env, group);
11790 	if (!busiest) {
11791 		schedstat_inc(sd->lb_nobusyq[idle]);
11792 		goto out_balanced;
11793 	}
11794 
11795 	WARN_ON_ONCE(busiest == env.dst_rq);
11796 
11797 	update_lb_imbalance_stat(&env, sd, idle);
11798 
11799 	env.src_cpu = busiest->cpu;
11800 	env.src_rq = busiest;
11801 
11802 	ld_moved = 0;
11803 	/* Clear this flag as soon as we find a pullable task */
11804 	env.flags |= LBF_ALL_PINNED;
11805 	if (busiest->nr_running > 1) {
11806 		/*
11807 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11808 		 * an imbalance but busiest->nr_running <= 1, the group is
11809 		 * still unbalanced. ld_moved simply stays zero, so it is
11810 		 * correctly treated as an imbalance.
11811 		 */
11812 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11813 
11814 more_balance:
11815 		rq_lock_irqsave(busiest, &rf);
11816 		update_rq_clock(busiest);
11817 
11818 		/*
11819 		 * cur_ld_moved - load moved in current iteration
11820 		 * ld_moved     - cumulative load moved across iterations
11821 		 */
11822 		cur_ld_moved = detach_tasks(&env);
11823 
11824 		/*
11825 		 * We've detached some tasks from busiest_rq. Every
11826 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11827 		 * unlock busiest->lock, and we are able to be sure
11828 		 * that nobody can manipulate the tasks in parallel.
11829 		 * See task_rq_lock() family for the details.
11830 		 */
11831 
11832 		rq_unlock(busiest, &rf);
11833 
11834 		if (cur_ld_moved) {
11835 			attach_tasks(&env);
11836 			ld_moved += cur_ld_moved;
11837 		}
11838 
11839 		local_irq_restore(rf.flags);
11840 
11841 		if (env.flags & LBF_NEED_BREAK) {
11842 			env.flags &= ~LBF_NEED_BREAK;
11843 			goto more_balance;
11844 		}
11845 
11846 		/*
11847 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11848 		 * us and move them to an alternate dst_cpu in our sched_group
11849 		 * where they can run. The upper limit on how many times we
11850 		 * iterate on same src_cpu is dependent on number of CPUs in our
11851 		 * sched_group.
11852 		 *
11853 		 * This changes load balance semantics a bit on who can move
11854 		 * load to a given_cpu. In addition to the given_cpu itself
11855 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11856 		 * nohz-idle), we now have balance_cpu in a position to move
11857 		 * load to given_cpu. In rare situations, this may cause
11858 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11859 		 * _independently_ and at _same_ time to move some load to
11860 		 * given_cpu) causing excess load to be moved to given_cpu.
11861 		 * This however should not happen so much in practice and
11862 		 * moreover subsequent load balance cycles should correct the
11863 		 * excess load moved.
11864 		 */
11865 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11866 
11867 			/* Prevent to re-select dst_cpu via env's CPUs */
11868 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11869 
11870 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11871 			env.dst_cpu	 = env.new_dst_cpu;
11872 			env.flags	&= ~LBF_DST_PINNED;
11873 			env.loop	 = 0;
11874 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11875 
11876 			/*
11877 			 * Go back to "more_balance" rather than "redo" since we
11878 			 * need to continue with same src_cpu.
11879 			 */
11880 			goto more_balance;
11881 		}
11882 
11883 		/*
11884 		 * We failed to reach balance because of affinity.
11885 		 */
11886 		if (sd_parent) {
11887 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11888 
11889 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11890 				*group_imbalance = 1;
11891 		}
11892 
11893 		/* All tasks on this runqueue were pinned by CPU affinity */
11894 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11895 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11896 			/*
11897 			 * Attempting to continue load balancing at the current
11898 			 * sched_domain level only makes sense if there are
11899 			 * active CPUs remaining as possible busiest CPUs to
11900 			 * pull load from which are not contained within the
11901 			 * destination group that is receiving any migrated
11902 			 * load.
11903 			 */
11904 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11905 				env.loop = 0;
11906 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11907 				goto redo;
11908 			}
11909 			goto out_all_pinned;
11910 		}
11911 	}
11912 
11913 	if (!ld_moved) {
11914 		schedstat_inc(sd->lb_failed[idle]);
11915 		/*
11916 		 * Increment the failure counter only on periodic balance.
11917 		 * We do not want newidle balance, which can be very
11918 		 * frequent, pollute the failure counter causing
11919 		 * excessive cache_hot migrations and active balances.
11920 		 *
11921 		 * Similarly for migration_misfit which is not related to
11922 		 * load/util migration, don't pollute nr_balance_failed.
11923 		 */
11924 		if (idle != CPU_NEWLY_IDLE &&
11925 		    env.migration_type != migrate_misfit)
11926 			sd->nr_balance_failed++;
11927 
11928 		if (need_active_balance(&env)) {
11929 			unsigned long flags;
11930 
11931 			raw_spin_rq_lock_irqsave(busiest, flags);
11932 
11933 			/*
11934 			 * Don't kick the active_load_balance_cpu_stop,
11935 			 * if the curr task on busiest CPU can't be
11936 			 * moved to this_cpu:
11937 			 */
11938 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11939 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11940 				goto out_one_pinned;
11941 			}
11942 
11943 			/* Record that we found at least one task that could run on this_cpu */
11944 			env.flags &= ~LBF_ALL_PINNED;
11945 
11946 			/*
11947 			 * ->active_balance synchronizes accesses to
11948 			 * ->active_balance_work.  Once set, it's cleared
11949 			 * only after active load balance is finished.
11950 			 */
11951 			if (!busiest->active_balance) {
11952 				busiest->active_balance = 1;
11953 				busiest->push_cpu = this_cpu;
11954 				active_balance = 1;
11955 			}
11956 
11957 			preempt_disable();
11958 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11959 			if (active_balance) {
11960 				stop_one_cpu_nowait(cpu_of(busiest),
11961 					active_load_balance_cpu_stop, busiest,
11962 					&busiest->active_balance_work);
11963 			}
11964 			preempt_enable();
11965 		}
11966 	} else {
11967 		sd->nr_balance_failed = 0;
11968 	}
11969 
11970 	if (likely(!active_balance) || need_active_balance(&env)) {
11971 		/* We were unbalanced, so reset the balancing interval */
11972 		sd->balance_interval = sd->min_interval;
11973 	}
11974 
11975 	goto out;
11976 
11977 out_balanced:
11978 	/*
11979 	 * We reach balance although we may have faced some affinity
11980 	 * constraints. Clear the imbalance flag only if other tasks got
11981 	 * a chance to move and fix the imbalance.
11982 	 */
11983 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11984 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11985 
11986 		if (*group_imbalance)
11987 			*group_imbalance = 0;
11988 	}
11989 
11990 out_all_pinned:
11991 	/*
11992 	 * We reach balance because all tasks are pinned at this level so
11993 	 * we can't migrate them. Let the imbalance flag set so parent level
11994 	 * can try to migrate them.
11995 	 */
11996 	schedstat_inc(sd->lb_balanced[idle]);
11997 
11998 	sd->nr_balance_failed = 0;
11999 
12000 out_one_pinned:
12001 	ld_moved = 0;
12002 
12003 	/*
12004 	 * sched_balance_newidle() disregards balance intervals, so we could
12005 	 * repeatedly reach this code, which would lead to balance_interval
12006 	 * skyrocketing in a short amount of time. Skip the balance_interval
12007 	 * increase logic to avoid that.
12008 	 *
12009 	 * Similarly misfit migration which is not necessarily an indication of
12010 	 * the system being busy and requires lb to backoff to let it settle
12011 	 * down.
12012 	 */
12013 	if (env.idle == CPU_NEWLY_IDLE ||
12014 	    env.migration_type == migrate_misfit)
12015 		goto out;
12016 
12017 	/* tune up the balancing interval */
12018 	if ((env.flags & LBF_ALL_PINNED &&
12019 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
12020 	    sd->balance_interval < sd->max_interval)
12021 		sd->balance_interval *= 2;
12022 out:
12023 	return ld_moved;
12024 }
12025 
12026 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12027 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12028 {
12029 	unsigned long interval = sd->balance_interval;
12030 
12031 	if (cpu_busy)
12032 		interval *= sd->busy_factor;
12033 
12034 	/* scale ms to jiffies */
12035 	interval = msecs_to_jiffies(interval);
12036 
12037 	/*
12038 	 * Reduce likelihood of busy balancing at higher domains racing with
12039 	 * balancing at lower domains by preventing their balancing periods
12040 	 * from being multiples of each other.
12041 	 */
12042 	if (cpu_busy)
12043 		interval -= 1;
12044 
12045 	interval = clamp(interval, 1UL, max_load_balance_interval);
12046 
12047 	return interval;
12048 }
12049 
12050 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12051 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12052 {
12053 	unsigned long interval, next;
12054 
12055 	/* used by idle balance, so cpu_busy = 0 */
12056 	interval = get_sd_balance_interval(sd, 0);
12057 	next = sd->last_balance + interval;
12058 
12059 	if (time_after(*next_balance, next))
12060 		*next_balance = next;
12061 }
12062 
12063 /*
12064  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12065  * running tasks off the busiest CPU onto idle CPUs. It requires at
12066  * least 1 task to be running on each physical CPU where possible, and
12067  * avoids physical / logical imbalances.
12068  */
active_load_balance_cpu_stop(void * data)12069 static int active_load_balance_cpu_stop(void *data)
12070 {
12071 	struct rq *busiest_rq = data;
12072 	int busiest_cpu = cpu_of(busiest_rq);
12073 	int target_cpu = busiest_rq->push_cpu;
12074 	struct rq *target_rq = cpu_rq(target_cpu);
12075 	struct sched_domain *sd;
12076 	struct task_struct *p = NULL;
12077 	struct rq_flags rf;
12078 
12079 	rq_lock_irq(busiest_rq, &rf);
12080 	/*
12081 	 * Between queueing the stop-work and running it is a hole in which
12082 	 * CPUs can become inactive. We should not move tasks from or to
12083 	 * inactive CPUs.
12084 	 */
12085 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12086 		goto out_unlock;
12087 
12088 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12089 	if (unlikely(busiest_cpu != smp_processor_id() ||
12090 		     !busiest_rq->active_balance))
12091 		goto out_unlock;
12092 
12093 	/* Is there any task to move? */
12094 	if (busiest_rq->nr_running <= 1)
12095 		goto out_unlock;
12096 
12097 	/*
12098 	 * This condition is "impossible", if it occurs
12099 	 * we need to fix it. Originally reported by
12100 	 * Bjorn Helgaas on a 128-CPU setup.
12101 	 */
12102 	WARN_ON_ONCE(busiest_rq == target_rq);
12103 
12104 	/* Search for an sd spanning us and the target CPU. */
12105 	rcu_read_lock();
12106 	for_each_domain(target_cpu, sd) {
12107 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12108 			break;
12109 	}
12110 
12111 	if (likely(sd)) {
12112 		struct lb_env env = {
12113 			.sd		= sd,
12114 			.dst_cpu	= target_cpu,
12115 			.dst_rq		= target_rq,
12116 			.src_cpu	= busiest_rq->cpu,
12117 			.src_rq		= busiest_rq,
12118 			.idle		= CPU_IDLE,
12119 			.flags		= LBF_ACTIVE_LB,
12120 		};
12121 
12122 		schedstat_inc(sd->alb_count);
12123 		update_rq_clock(busiest_rq);
12124 
12125 		p = detach_one_task(&env);
12126 		if (p) {
12127 			schedstat_inc(sd->alb_pushed);
12128 			/* Active balancing done, reset the failure counter. */
12129 			sd->nr_balance_failed = 0;
12130 		} else {
12131 			schedstat_inc(sd->alb_failed);
12132 		}
12133 	}
12134 	rcu_read_unlock();
12135 out_unlock:
12136 	busiest_rq->active_balance = 0;
12137 	rq_unlock(busiest_rq, &rf);
12138 
12139 	if (p)
12140 		attach_one_task(target_rq, p);
12141 
12142 	local_irq_enable();
12143 
12144 	return 0;
12145 }
12146 
12147 /*
12148  * This flag serializes load-balancing passes over large domains
12149  * (above the NODE topology level) - only one load-balancing instance
12150  * may run at a time, to reduce overhead on very large systems with
12151  * lots of CPUs and large NUMA distances.
12152  *
12153  * - Note that load-balancing passes triggered while another one
12154  *   is executing are skipped and not re-tried.
12155  *
12156  * - Also note that this does not serialize rebalance_domains()
12157  *   execution, as non-SD_SERIALIZE domains will still be
12158  *   load-balanced in parallel.
12159  */
12160 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12161 
12162 /*
12163  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12164  * This trades load-balance latency on larger machines for less cross talk.
12165  */
update_max_interval(void)12166 void update_max_interval(void)
12167 {
12168 	max_load_balance_interval = HZ*num_online_cpus()/10;
12169 }
12170 
update_newidle_cost(struct sched_domain * sd,u64 cost)12171 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12172 {
12173 	if (cost > sd->max_newidle_lb_cost) {
12174 		/*
12175 		 * Track max cost of a domain to make sure to not delay the
12176 		 * next wakeup on the CPU.
12177 		 */
12178 		sd->max_newidle_lb_cost = cost;
12179 		sd->last_decay_max_lb_cost = jiffies;
12180 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12181 		/*
12182 		 * Decay the newidle max times by ~1% per second to ensure that
12183 		 * it is not outdated and the current max cost is actually
12184 		 * shorter.
12185 		 */
12186 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12187 		sd->last_decay_max_lb_cost = jiffies;
12188 
12189 		return true;
12190 	}
12191 
12192 	return false;
12193 }
12194 
12195 /*
12196  * It checks each scheduling domain to see if it is due to be balanced,
12197  * and initiates a balancing operation if so.
12198  *
12199  * Balancing parameters are set up in init_sched_domains.
12200  */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12201 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12202 {
12203 	int continue_balancing = 1;
12204 	int cpu = rq->cpu;
12205 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12206 	unsigned long interval;
12207 	struct sched_domain *sd;
12208 	/* Earliest time when we have to do rebalance again */
12209 	unsigned long next_balance = jiffies + 60*HZ;
12210 	int update_next_balance = 0;
12211 	int need_serialize, need_decay = 0;
12212 	u64 max_cost = 0;
12213 
12214 	rcu_read_lock();
12215 	for_each_domain(cpu, sd) {
12216 		/*
12217 		 * Decay the newidle max times here because this is a regular
12218 		 * visit to all the domains.
12219 		 */
12220 		need_decay = update_newidle_cost(sd, 0);
12221 		max_cost += sd->max_newidle_lb_cost;
12222 
12223 		/*
12224 		 * Stop the load balance at this level. There is another
12225 		 * CPU in our sched group which is doing load balancing more
12226 		 * actively.
12227 		 */
12228 		if (!continue_balancing) {
12229 			if (need_decay)
12230 				continue;
12231 			break;
12232 		}
12233 
12234 		interval = get_sd_balance_interval(sd, busy);
12235 
12236 		need_serialize = sd->flags & SD_SERIALIZE;
12237 		if (need_serialize) {
12238 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12239 				goto out;
12240 		}
12241 
12242 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12243 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12244 				/*
12245 				 * The LBF_DST_PINNED logic could have changed
12246 				 * env->dst_cpu, so we can't know our idle
12247 				 * state even if we migrated tasks. Update it.
12248 				 */
12249 				idle = idle_cpu(cpu);
12250 				busy = !idle && !sched_idle_cpu(cpu);
12251 			}
12252 			sd->last_balance = jiffies;
12253 			interval = get_sd_balance_interval(sd, busy);
12254 		}
12255 		if (need_serialize)
12256 			atomic_set_release(&sched_balance_running, 0);
12257 out:
12258 		if (time_after(next_balance, sd->last_balance + interval)) {
12259 			next_balance = sd->last_balance + interval;
12260 			update_next_balance = 1;
12261 		}
12262 	}
12263 	if (need_decay) {
12264 		/*
12265 		 * Ensure the rq-wide value also decays but keep it at a
12266 		 * reasonable floor to avoid funnies with rq->avg_idle.
12267 		 */
12268 		rq->max_idle_balance_cost =
12269 			max((u64)sysctl_sched_migration_cost, max_cost);
12270 	}
12271 	rcu_read_unlock();
12272 
12273 	/*
12274 	 * next_balance will be updated only when there is a need.
12275 	 * When the cpu is attached to null domain for ex, it will not be
12276 	 * updated.
12277 	 */
12278 	if (likely(update_next_balance))
12279 		rq->next_balance = next_balance;
12280 
12281 }
12282 
on_null_domain(struct rq * rq)12283 static inline int on_null_domain(struct rq *rq)
12284 {
12285 	return unlikely(!rcu_dereference_sched(rq->sd));
12286 }
12287 
12288 #ifdef CONFIG_NO_HZ_COMMON
12289 /*
12290  * NOHZ idle load balancing (ILB) details:
12291  *
12292  * - When one of the busy CPUs notices that there may be an idle rebalancing
12293  *   needed, they will kick the idle load balancer, which then does idle
12294  *   load balancing for all the idle CPUs.
12295  */
find_new_ilb(void)12296 static inline int find_new_ilb(void)
12297 {
12298 	const struct cpumask *hk_mask;
12299 	int ilb_cpu;
12300 
12301 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12302 
12303 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12304 
12305 		if (ilb_cpu == smp_processor_id())
12306 			continue;
12307 
12308 		if (idle_cpu(ilb_cpu))
12309 			return ilb_cpu;
12310 	}
12311 
12312 	return -1;
12313 }
12314 
12315 /*
12316  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12317  * SMP function call (IPI).
12318  *
12319  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12320  * (if there is one).
12321  */
kick_ilb(unsigned int flags)12322 static void kick_ilb(unsigned int flags)
12323 {
12324 	int ilb_cpu;
12325 
12326 	/*
12327 	 * Increase nohz.next_balance only when if full ilb is triggered but
12328 	 * not if we only update stats.
12329 	 */
12330 	if (flags & NOHZ_BALANCE_KICK)
12331 		nohz.next_balance = jiffies+1;
12332 
12333 	ilb_cpu = find_new_ilb();
12334 	if (ilb_cpu < 0)
12335 		return;
12336 
12337 	/*
12338 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12339 	 * i.e. all bits in flags are already set in ilb_cpu.
12340 	 */
12341 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12342 		return;
12343 
12344 	/*
12345 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12346 	 * the first flag owns it; cleared by nohz_csd_func().
12347 	 */
12348 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12349 	if (flags & NOHZ_KICK_MASK)
12350 		return;
12351 
12352 	/*
12353 	 * This way we generate an IPI on the target CPU which
12354 	 * is idle, and the softirq performing NOHZ idle load balancing
12355 	 * will be run before returning from the IPI.
12356 	 */
12357 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12358 }
12359 
12360 /*
12361  * Current decision point for kicking the idle load balancer in the presence
12362  * of idle CPUs in the system.
12363  */
nohz_balancer_kick(struct rq * rq)12364 static void nohz_balancer_kick(struct rq *rq)
12365 {
12366 	unsigned long now = jiffies;
12367 	struct sched_domain_shared *sds;
12368 	struct sched_domain *sd;
12369 	int nr_busy, i, cpu = rq->cpu;
12370 	unsigned int flags = 0;
12371 
12372 	if (unlikely(rq->idle_balance))
12373 		return;
12374 
12375 	/*
12376 	 * We may be recently in ticked or tickless idle mode. At the first
12377 	 * busy tick after returning from idle, we will update the busy stats.
12378 	 */
12379 	nohz_balance_exit_idle(rq);
12380 
12381 	/*
12382 	 * None are in tickless mode and hence no need for NOHZ idle load
12383 	 * balancing:
12384 	 */
12385 	if (likely(!atomic_read(&nohz.nr_cpus)))
12386 		return;
12387 
12388 	if (READ_ONCE(nohz.has_blocked) &&
12389 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12390 		flags = NOHZ_STATS_KICK;
12391 
12392 	if (time_before(now, nohz.next_balance))
12393 		goto out;
12394 
12395 	if (rq->nr_running >= 2) {
12396 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12397 		goto out;
12398 	}
12399 
12400 	rcu_read_lock();
12401 
12402 	sd = rcu_dereference(rq->sd);
12403 	if (sd) {
12404 		/*
12405 		 * If there's a runnable CFS task and the current CPU has reduced
12406 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12407 		 */
12408 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12409 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12410 			goto unlock;
12411 		}
12412 	}
12413 
12414 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12415 	if (sd) {
12416 		/*
12417 		 * When ASYM_PACKING; see if there's a more preferred CPU
12418 		 * currently idle; in which case, kick the ILB to move tasks
12419 		 * around.
12420 		 *
12421 		 * When balancing between cores, all the SMT siblings of the
12422 		 * preferred CPU must be idle.
12423 		 */
12424 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12425 			if (sched_asym(sd, i, cpu)) {
12426 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12427 				goto unlock;
12428 			}
12429 		}
12430 	}
12431 
12432 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12433 	if (sd) {
12434 		/*
12435 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12436 		 * to run the misfit task on.
12437 		 */
12438 		if (check_misfit_status(rq)) {
12439 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12440 			goto unlock;
12441 		}
12442 
12443 		/*
12444 		 * For asymmetric systems, we do not want to nicely balance
12445 		 * cache use, instead we want to embrace asymmetry and only
12446 		 * ensure tasks have enough CPU capacity.
12447 		 *
12448 		 * Skip the LLC logic because it's not relevant in that case.
12449 		 */
12450 		goto unlock;
12451 	}
12452 
12453 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12454 	if (sds) {
12455 		/*
12456 		 * If there is an imbalance between LLC domains (IOW we could
12457 		 * increase the overall cache utilization), we need a less-loaded LLC
12458 		 * domain to pull some load from. Likewise, we may need to spread
12459 		 * load within the current LLC domain (e.g. packed SMT cores but
12460 		 * other CPUs are idle). We can't really know from here how busy
12461 		 * the others are - so just get a NOHZ balance going if it looks
12462 		 * like this LLC domain has tasks we could move.
12463 		 */
12464 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12465 		if (nr_busy > 1) {
12466 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12467 			goto unlock;
12468 		}
12469 	}
12470 unlock:
12471 	rcu_read_unlock();
12472 out:
12473 	if (READ_ONCE(nohz.needs_update))
12474 		flags |= NOHZ_NEXT_KICK;
12475 
12476 	if (flags)
12477 		kick_ilb(flags);
12478 }
12479 
set_cpu_sd_state_busy(int cpu)12480 static void set_cpu_sd_state_busy(int cpu)
12481 {
12482 	struct sched_domain *sd;
12483 
12484 	rcu_read_lock();
12485 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12486 
12487 	if (!sd || !sd->nohz_idle)
12488 		goto unlock;
12489 	sd->nohz_idle = 0;
12490 
12491 	atomic_inc(&sd->shared->nr_busy_cpus);
12492 unlock:
12493 	rcu_read_unlock();
12494 }
12495 
nohz_balance_exit_idle(struct rq * rq)12496 void nohz_balance_exit_idle(struct rq *rq)
12497 {
12498 	WARN_ON_ONCE(rq != this_rq());
12499 
12500 	if (likely(!rq->nohz_tick_stopped))
12501 		return;
12502 
12503 	rq->nohz_tick_stopped = 0;
12504 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12505 	atomic_dec(&nohz.nr_cpus);
12506 
12507 	set_cpu_sd_state_busy(rq->cpu);
12508 }
12509 
set_cpu_sd_state_idle(int cpu)12510 static void set_cpu_sd_state_idle(int cpu)
12511 {
12512 	struct sched_domain *sd;
12513 
12514 	rcu_read_lock();
12515 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12516 
12517 	if (!sd || sd->nohz_idle)
12518 		goto unlock;
12519 	sd->nohz_idle = 1;
12520 
12521 	atomic_dec(&sd->shared->nr_busy_cpus);
12522 unlock:
12523 	rcu_read_unlock();
12524 }
12525 
12526 /*
12527  * This routine will record that the CPU is going idle with tick stopped.
12528  * This info will be used in performing idle load balancing in the future.
12529  */
nohz_balance_enter_idle(int cpu)12530 void nohz_balance_enter_idle(int cpu)
12531 {
12532 	struct rq *rq = cpu_rq(cpu);
12533 
12534 	WARN_ON_ONCE(cpu != smp_processor_id());
12535 
12536 	/* If this CPU is going down, then nothing needs to be done: */
12537 	if (!cpu_active(cpu))
12538 		return;
12539 
12540 	/*
12541 	 * Can be set safely without rq->lock held
12542 	 * If a clear happens, it will have evaluated last additions because
12543 	 * rq->lock is held during the check and the clear
12544 	 */
12545 	rq->has_blocked_load = 1;
12546 
12547 	/*
12548 	 * The tick is still stopped but load could have been added in the
12549 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12550 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12551 	 * of nohz.has_blocked can only happen after checking the new load
12552 	 */
12553 	if (rq->nohz_tick_stopped)
12554 		goto out;
12555 
12556 	/* If we're a completely isolated CPU, we don't play: */
12557 	if (on_null_domain(rq))
12558 		return;
12559 
12560 	rq->nohz_tick_stopped = 1;
12561 
12562 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12563 	atomic_inc(&nohz.nr_cpus);
12564 
12565 	/*
12566 	 * Ensures that if nohz_idle_balance() fails to observe our
12567 	 * @idle_cpus_mask store, it must observe the @has_blocked
12568 	 * and @needs_update stores.
12569 	 */
12570 	smp_mb__after_atomic();
12571 
12572 	set_cpu_sd_state_idle(cpu);
12573 
12574 	WRITE_ONCE(nohz.needs_update, 1);
12575 out:
12576 	/*
12577 	 * Each time a cpu enter idle, we assume that it has blocked load and
12578 	 * enable the periodic update of the load of idle CPUs
12579 	 */
12580 	WRITE_ONCE(nohz.has_blocked, 1);
12581 }
12582 
update_nohz_stats(struct rq * rq)12583 static bool update_nohz_stats(struct rq *rq)
12584 {
12585 	unsigned int cpu = rq->cpu;
12586 
12587 	if (!rq->has_blocked_load)
12588 		return false;
12589 
12590 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12591 		return false;
12592 
12593 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12594 		return true;
12595 
12596 	sched_balance_update_blocked_averages(cpu);
12597 
12598 	return rq->has_blocked_load;
12599 }
12600 
12601 /*
12602  * Internal function that runs load balance for all idle CPUs. The load balance
12603  * can be a simple update of blocked load or a complete load balance with
12604  * tasks movement depending of flags.
12605  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12606 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12607 {
12608 	/* Earliest time when we have to do rebalance again */
12609 	unsigned long now = jiffies;
12610 	unsigned long next_balance = now + 60*HZ;
12611 	bool has_blocked_load = false;
12612 	int update_next_balance = 0;
12613 	int this_cpu = this_rq->cpu;
12614 	int balance_cpu;
12615 	struct rq *rq;
12616 
12617 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12618 
12619 	/*
12620 	 * We assume there will be no idle load after this update and clear
12621 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12622 	 * set the has_blocked flag and trigger another update of idle load.
12623 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12624 	 * setting the flag, we are sure to not clear the state and not
12625 	 * check the load of an idle cpu.
12626 	 *
12627 	 * Same applies to idle_cpus_mask vs needs_update.
12628 	 */
12629 	if (flags & NOHZ_STATS_KICK)
12630 		WRITE_ONCE(nohz.has_blocked, 0);
12631 	if (flags & NOHZ_NEXT_KICK)
12632 		WRITE_ONCE(nohz.needs_update, 0);
12633 
12634 	/*
12635 	 * Ensures that if we miss the CPU, we must see the has_blocked
12636 	 * store from nohz_balance_enter_idle().
12637 	 */
12638 	smp_mb();
12639 
12640 	/*
12641 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12642 	 * chance for other idle cpu to pull load.
12643 	 */
12644 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12645 		if (!idle_cpu(balance_cpu))
12646 			continue;
12647 
12648 		/*
12649 		 * If this CPU gets work to do, stop the load balancing
12650 		 * work being done for other CPUs. Next load
12651 		 * balancing owner will pick it up.
12652 		 */
12653 		if (!idle_cpu(this_cpu) && need_resched()) {
12654 			if (flags & NOHZ_STATS_KICK)
12655 				has_blocked_load = true;
12656 			if (flags & NOHZ_NEXT_KICK)
12657 				WRITE_ONCE(nohz.needs_update, 1);
12658 			goto abort;
12659 		}
12660 
12661 		rq = cpu_rq(balance_cpu);
12662 
12663 		if (flags & NOHZ_STATS_KICK)
12664 			has_blocked_load |= update_nohz_stats(rq);
12665 
12666 		/*
12667 		 * If time for next balance is due,
12668 		 * do the balance.
12669 		 */
12670 		if (time_after_eq(jiffies, rq->next_balance)) {
12671 			struct rq_flags rf;
12672 
12673 			rq_lock_irqsave(rq, &rf);
12674 			update_rq_clock(rq);
12675 			rq_unlock_irqrestore(rq, &rf);
12676 
12677 			if (flags & NOHZ_BALANCE_KICK)
12678 				sched_balance_domains(rq, CPU_IDLE);
12679 		}
12680 
12681 		if (time_after(next_balance, rq->next_balance)) {
12682 			next_balance = rq->next_balance;
12683 			update_next_balance = 1;
12684 		}
12685 	}
12686 
12687 	/*
12688 	 * next_balance will be updated only when there is a need.
12689 	 * When the CPU is attached to null domain for ex, it will not be
12690 	 * updated.
12691 	 */
12692 	if (likely(update_next_balance))
12693 		nohz.next_balance = next_balance;
12694 
12695 	if (flags & NOHZ_STATS_KICK)
12696 		WRITE_ONCE(nohz.next_blocked,
12697 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12698 
12699 abort:
12700 	/* There is still blocked load, enable periodic update */
12701 	if (has_blocked_load)
12702 		WRITE_ONCE(nohz.has_blocked, 1);
12703 }
12704 
12705 /*
12706  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12707  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12708  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12709 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12710 {
12711 	unsigned int flags = this_rq->nohz_idle_balance;
12712 
12713 	if (!flags)
12714 		return false;
12715 
12716 	this_rq->nohz_idle_balance = 0;
12717 
12718 	if (idle != CPU_IDLE)
12719 		return false;
12720 
12721 	_nohz_idle_balance(this_rq, flags);
12722 
12723 	return true;
12724 }
12725 
12726 /*
12727  * Check if we need to directly run the ILB for updating blocked load before
12728  * entering idle state. Here we run ILB directly without issuing IPIs.
12729  *
12730  * Note that when this function is called, the tick may not yet be stopped on
12731  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12732  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12733  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12734  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12735  * called from this function on (this) CPU that's not yet in the mask. That's
12736  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12737  * updating the blocked load of already idle CPUs without waking up one of
12738  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12739  * cpu about to enter idle, because it can take a long time.
12740  */
nohz_run_idle_balance(int cpu)12741 void nohz_run_idle_balance(int cpu)
12742 {
12743 	unsigned int flags;
12744 
12745 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12746 
12747 	/*
12748 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12749 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12750 	 */
12751 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12752 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12753 }
12754 
nohz_newidle_balance(struct rq * this_rq)12755 static void nohz_newidle_balance(struct rq *this_rq)
12756 {
12757 	int this_cpu = this_rq->cpu;
12758 
12759 	/* Will wake up very soon. No time for doing anything else*/
12760 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12761 		return;
12762 
12763 	/* Don't need to update blocked load of idle CPUs*/
12764 	if (!READ_ONCE(nohz.has_blocked) ||
12765 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12766 		return;
12767 
12768 	/*
12769 	 * Set the need to trigger ILB in order to update blocked load
12770 	 * before entering idle state.
12771 	 */
12772 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12773 }
12774 
12775 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12776 static inline void nohz_balancer_kick(struct rq *rq) { }
12777 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12778 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12779 {
12780 	return false;
12781 }
12782 
nohz_newidle_balance(struct rq * this_rq)12783 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12784 #endif /* CONFIG_NO_HZ_COMMON */
12785 
12786 /*
12787  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12788  * idle. Attempts to pull tasks from other CPUs.
12789  *
12790  * Returns:
12791  *   < 0 - we released the lock and there are !fair tasks present
12792  *     0 - failed, no new tasks
12793  *   > 0 - success, new (fair) tasks present
12794  */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12795 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12796 {
12797 	unsigned long next_balance = jiffies + HZ;
12798 	int this_cpu = this_rq->cpu;
12799 	int continue_balancing = 1;
12800 	u64 t0, t1, curr_cost = 0;
12801 	struct sched_domain *sd;
12802 	int pulled_task = 0;
12803 
12804 	update_misfit_status(NULL, this_rq);
12805 
12806 	/*
12807 	 * There is a task waiting to run. No need to search for one.
12808 	 * Return 0; the task will be enqueued when switching to idle.
12809 	 */
12810 	if (this_rq->ttwu_pending)
12811 		return 0;
12812 
12813 	/*
12814 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12815 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12816 	 * as idle time.
12817 	 */
12818 	this_rq->idle_stamp = rq_clock(this_rq);
12819 
12820 	/*
12821 	 * Do not pull tasks towards !active CPUs...
12822 	 */
12823 	if (!cpu_active(this_cpu))
12824 		return 0;
12825 
12826 	/*
12827 	 * This is OK, because current is on_cpu, which avoids it being picked
12828 	 * for load-balance and preemption/IRQs are still disabled avoiding
12829 	 * further scheduler activity on it and we're being very careful to
12830 	 * re-start the picking loop.
12831 	 */
12832 	rq_unpin_lock(this_rq, rf);
12833 
12834 	rcu_read_lock();
12835 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12836 
12837 	if (!get_rd_overloaded(this_rq->rd) ||
12838 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12839 
12840 		if (sd)
12841 			update_next_balance(sd, &next_balance);
12842 		rcu_read_unlock();
12843 
12844 		goto out;
12845 	}
12846 	rcu_read_unlock();
12847 
12848 	raw_spin_rq_unlock(this_rq);
12849 
12850 	t0 = sched_clock_cpu(this_cpu);
12851 	sched_balance_update_blocked_averages(this_cpu);
12852 
12853 	rcu_read_lock();
12854 	for_each_domain(this_cpu, sd) {
12855 		u64 domain_cost;
12856 
12857 		update_next_balance(sd, &next_balance);
12858 
12859 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12860 			break;
12861 
12862 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12863 
12864 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12865 						   sd, CPU_NEWLY_IDLE,
12866 						   &continue_balancing);
12867 
12868 			t1 = sched_clock_cpu(this_cpu);
12869 			domain_cost = t1 - t0;
12870 			update_newidle_cost(sd, domain_cost);
12871 
12872 			curr_cost += domain_cost;
12873 			t0 = t1;
12874 		}
12875 
12876 		/*
12877 		 * Stop searching for tasks to pull if there are
12878 		 * now runnable tasks on this rq.
12879 		 */
12880 		if (pulled_task || !continue_balancing)
12881 			break;
12882 	}
12883 	rcu_read_unlock();
12884 
12885 	raw_spin_rq_lock(this_rq);
12886 
12887 	if (curr_cost > this_rq->max_idle_balance_cost)
12888 		this_rq->max_idle_balance_cost = curr_cost;
12889 
12890 	/*
12891 	 * While browsing the domains, we released the rq lock, a task could
12892 	 * have been enqueued in the meantime. Since we're not going idle,
12893 	 * pretend we pulled a task.
12894 	 */
12895 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12896 		pulled_task = 1;
12897 
12898 	/* Is there a task of a high priority class? */
12899 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12900 		pulled_task = -1;
12901 
12902 out:
12903 	/* Move the next balance forward */
12904 	if (time_after(this_rq->next_balance, next_balance))
12905 		this_rq->next_balance = next_balance;
12906 
12907 	if (pulled_task)
12908 		this_rq->idle_stamp = 0;
12909 	else
12910 		nohz_newidle_balance(this_rq);
12911 
12912 	rq_repin_lock(this_rq, rf);
12913 
12914 	return pulled_task;
12915 }
12916 
12917 /*
12918  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12919  *
12920  * - directly from the local sched_tick() for periodic load balancing
12921  *
12922  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12923  *   through the SMP cross-call nohz_csd_func()
12924  */
sched_balance_softirq(void)12925 static __latent_entropy void sched_balance_softirq(void)
12926 {
12927 	struct rq *this_rq = this_rq();
12928 	enum cpu_idle_type idle = this_rq->idle_balance;
12929 	/*
12930 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12931 	 * balancing on behalf of the other idle CPUs whose ticks are
12932 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12933 	 * give the idle CPUs a chance to load balance. Else we may
12934 	 * load balance only within the local sched_domain hierarchy
12935 	 * and abort nohz_idle_balance altogether if we pull some load.
12936 	 */
12937 	if (nohz_idle_balance(this_rq, idle))
12938 		return;
12939 
12940 	/* normal load balance */
12941 	sched_balance_update_blocked_averages(this_rq->cpu);
12942 	sched_balance_domains(this_rq, idle);
12943 }
12944 
12945 /*
12946  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12947  */
sched_balance_trigger(struct rq * rq)12948 void sched_balance_trigger(struct rq *rq)
12949 {
12950 	/*
12951 	 * Don't need to rebalance while attached to NULL domain or
12952 	 * runqueue CPU is not active
12953 	 */
12954 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12955 		return;
12956 
12957 	if (time_after_eq(jiffies, rq->next_balance))
12958 		raise_softirq(SCHED_SOFTIRQ);
12959 
12960 	nohz_balancer_kick(rq);
12961 }
12962 
rq_online_fair(struct rq * rq)12963 static void rq_online_fair(struct rq *rq)
12964 {
12965 	update_sysctl();
12966 
12967 	update_runtime_enabled(rq);
12968 }
12969 
rq_offline_fair(struct rq * rq)12970 static void rq_offline_fair(struct rq *rq)
12971 {
12972 	update_sysctl();
12973 
12974 	/* Ensure any throttled groups are reachable by pick_next_task */
12975 	unthrottle_offline_cfs_rqs(rq);
12976 
12977 	/* Ensure that we remove rq contribution to group share: */
12978 	clear_tg_offline_cfs_rqs(rq);
12979 }
12980 
12981 #endif /* CONFIG_SMP */
12982 
12983 #ifdef CONFIG_SCHED_CORE
12984 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12985 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12986 {
12987 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12988 	u64 slice = se->slice;
12989 
12990 	return (rtime * min_nr_tasks > slice);
12991 }
12992 
12993 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12994 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12995 {
12996 	if (!sched_core_enabled(rq))
12997 		return;
12998 
12999 	/*
13000 	 * If runqueue has only one task which used up its slice and
13001 	 * if the sibling is forced idle, then trigger schedule to
13002 	 * give forced idle task a chance.
13003 	 *
13004 	 * sched_slice() considers only this active rq and it gets the
13005 	 * whole slice. But during force idle, we have siblings acting
13006 	 * like a single runqueue and hence we need to consider runnable
13007 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
13008 	 * go through the forced idle rq, but that would be a perf hit.
13009 	 * We can assume that the forced idle CPU has at least
13010 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13011 	 * if we need to give up the CPU.
13012 	 */
13013 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13014 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13015 		resched_curr(rq);
13016 }
13017 
13018 /*
13019  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13020  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13021 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13022 			 bool forceidle)
13023 {
13024 	for_each_sched_entity(se) {
13025 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13026 
13027 		if (forceidle) {
13028 			if (cfs_rq->forceidle_seq == fi_seq)
13029 				break;
13030 			cfs_rq->forceidle_seq = fi_seq;
13031 		}
13032 
13033 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13034 	}
13035 }
13036 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13037 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13038 {
13039 	struct sched_entity *se = &p->se;
13040 
13041 	if (p->sched_class != &fair_sched_class)
13042 		return;
13043 
13044 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13045 }
13046 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13047 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13048 			bool in_fi)
13049 {
13050 	struct rq *rq = task_rq(a);
13051 	const struct sched_entity *sea = &a->se;
13052 	const struct sched_entity *seb = &b->se;
13053 	struct cfs_rq *cfs_rqa;
13054 	struct cfs_rq *cfs_rqb;
13055 	s64 delta;
13056 
13057 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
13058 
13059 #ifdef CONFIG_FAIR_GROUP_SCHED
13060 	/*
13061 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13062 	 * are immediate siblings.
13063 	 */
13064 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13065 		int sea_depth = sea->depth;
13066 		int seb_depth = seb->depth;
13067 
13068 		if (sea_depth >= seb_depth)
13069 			sea = parent_entity(sea);
13070 		if (sea_depth <= seb_depth)
13071 			seb = parent_entity(seb);
13072 	}
13073 
13074 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13075 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13076 
13077 	cfs_rqa = sea->cfs_rq;
13078 	cfs_rqb = seb->cfs_rq;
13079 #else
13080 	cfs_rqa = &task_rq(a)->cfs;
13081 	cfs_rqb = &task_rq(b)->cfs;
13082 #endif
13083 
13084 	/*
13085 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13086 	 * min_vruntime_fi, which would have been updated in prior calls
13087 	 * to se_fi_update().
13088 	 */
13089 	delta = (s64)(sea->vruntime - seb->vruntime) +
13090 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13091 
13092 	return delta > 0;
13093 }
13094 
task_is_throttled_fair(struct task_struct * p,int cpu)13095 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13096 {
13097 	struct cfs_rq *cfs_rq;
13098 
13099 #ifdef CONFIG_FAIR_GROUP_SCHED
13100 	cfs_rq = task_group(p)->cfs_rq[cpu];
13101 #else
13102 	cfs_rq = &cpu_rq(cpu)->cfs;
13103 #endif
13104 	return throttled_hierarchy(cfs_rq);
13105 }
13106 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13107 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13108 #endif
13109 
13110 /*
13111  * scheduler tick hitting a task of our scheduling class.
13112  *
13113  * NOTE: This function can be called remotely by the tick offload that
13114  * goes along full dynticks. Therefore no local assumption can be made
13115  * and everything must be accessed through the @rq and @curr passed in
13116  * parameters.
13117  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13118 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13119 {
13120 	struct cfs_rq *cfs_rq;
13121 	struct sched_entity *se = &curr->se;
13122 
13123 	for_each_sched_entity(se) {
13124 		cfs_rq = cfs_rq_of(se);
13125 		entity_tick(cfs_rq, se, queued);
13126 	}
13127 
13128 	if (static_branch_unlikely(&sched_numa_balancing))
13129 		task_tick_numa(rq, curr);
13130 
13131 	update_misfit_status(curr, rq);
13132 	check_update_overutilized_status(task_rq(curr));
13133 
13134 	task_tick_core(rq, curr);
13135 }
13136 
13137 /*
13138  * called on fork with the child task as argument from the parent's context
13139  *  - child not yet on the tasklist
13140  *  - preemption disabled
13141  */
task_fork_fair(struct task_struct * p)13142 static void task_fork_fair(struct task_struct *p)
13143 {
13144 	set_task_max_allowed_capacity(p);
13145 }
13146 
13147 /*
13148  * Priority of the task has changed. Check to see if we preempt
13149  * the current task.
13150  */
13151 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13152 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13153 {
13154 	if (!task_on_rq_queued(p))
13155 		return;
13156 
13157 	if (rq->cfs.nr_queued == 1)
13158 		return;
13159 
13160 	/*
13161 	 * Reschedule if we are currently running on this runqueue and
13162 	 * our priority decreased, or if we are not currently running on
13163 	 * this runqueue and our priority is higher than the current's
13164 	 */
13165 	if (task_current_donor(rq, p)) {
13166 		if (p->prio > oldprio)
13167 			resched_curr(rq);
13168 	} else
13169 		wakeup_preempt(rq, p, 0);
13170 }
13171 
13172 #ifdef CONFIG_FAIR_GROUP_SCHED
13173 /*
13174  * Propagate the changes of the sched_entity across the tg tree to make it
13175  * visible to the root
13176  */
propagate_entity_cfs_rq(struct sched_entity * se)13177 static void propagate_entity_cfs_rq(struct sched_entity *se)
13178 {
13179 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13180 
13181 	if (cfs_rq_throttled(cfs_rq))
13182 		return;
13183 
13184 	if (!throttled_hierarchy(cfs_rq))
13185 		list_add_leaf_cfs_rq(cfs_rq);
13186 
13187 	/* Start to propagate at parent */
13188 	se = se->parent;
13189 
13190 	for_each_sched_entity(se) {
13191 		cfs_rq = cfs_rq_of(se);
13192 
13193 		update_load_avg(cfs_rq, se, UPDATE_TG);
13194 
13195 		if (cfs_rq_throttled(cfs_rq))
13196 			break;
13197 
13198 		if (!throttled_hierarchy(cfs_rq))
13199 			list_add_leaf_cfs_rq(cfs_rq);
13200 	}
13201 }
13202 #else
propagate_entity_cfs_rq(struct sched_entity * se)13203 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13204 #endif
13205 
detach_entity_cfs_rq(struct sched_entity * se)13206 static void detach_entity_cfs_rq(struct sched_entity *se)
13207 {
13208 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13209 
13210 #ifdef CONFIG_SMP
13211 	/*
13212 	 * In case the task sched_avg hasn't been attached:
13213 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13214 	 * - A task which has been woken up by try_to_wake_up() but is
13215 	 *   waiting for actually being woken up by sched_ttwu_pending().
13216 	 */
13217 	if (!se->avg.last_update_time)
13218 		return;
13219 #endif
13220 
13221 	/* Catch up with the cfs_rq and remove our load when we leave */
13222 	update_load_avg(cfs_rq, se, 0);
13223 	detach_entity_load_avg(cfs_rq, se);
13224 	update_tg_load_avg(cfs_rq);
13225 	propagate_entity_cfs_rq(se);
13226 }
13227 
attach_entity_cfs_rq(struct sched_entity * se)13228 static void attach_entity_cfs_rq(struct sched_entity *se)
13229 {
13230 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13231 
13232 	/* Synchronize entity with its cfs_rq */
13233 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13234 	attach_entity_load_avg(cfs_rq, se);
13235 	update_tg_load_avg(cfs_rq);
13236 	propagate_entity_cfs_rq(se);
13237 }
13238 
detach_task_cfs_rq(struct task_struct * p)13239 static void detach_task_cfs_rq(struct task_struct *p)
13240 {
13241 	struct sched_entity *se = &p->se;
13242 
13243 	detach_entity_cfs_rq(se);
13244 }
13245 
attach_task_cfs_rq(struct task_struct * p)13246 static void attach_task_cfs_rq(struct task_struct *p)
13247 {
13248 	struct sched_entity *se = &p->se;
13249 
13250 	attach_entity_cfs_rq(se);
13251 }
13252 
switched_from_fair(struct rq * rq,struct task_struct * p)13253 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13254 {
13255 	detach_task_cfs_rq(p);
13256 }
13257 
switched_to_fair(struct rq * rq,struct task_struct * p)13258 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13259 {
13260 	WARN_ON_ONCE(p->se.sched_delayed);
13261 
13262 	attach_task_cfs_rq(p);
13263 
13264 	set_task_max_allowed_capacity(p);
13265 
13266 	if (task_on_rq_queued(p)) {
13267 		/*
13268 		 * We were most likely switched from sched_rt, so
13269 		 * kick off the schedule if running, otherwise just see
13270 		 * if we can still preempt the current task.
13271 		 */
13272 		if (task_current_donor(rq, p))
13273 			resched_curr(rq);
13274 		else
13275 			wakeup_preempt(rq, p, 0);
13276 	}
13277 }
13278 
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13279 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13280 {
13281 	struct sched_entity *se = &p->se;
13282 
13283 #ifdef CONFIG_SMP
13284 	if (task_on_rq_queued(p)) {
13285 		/*
13286 		 * Move the next running task to the front of the list, so our
13287 		 * cfs_tasks list becomes MRU one.
13288 		 */
13289 		list_move(&se->group_node, &rq->cfs_tasks);
13290 	}
13291 #endif
13292 	if (!first)
13293 		return;
13294 
13295 	WARN_ON_ONCE(se->sched_delayed);
13296 
13297 	if (hrtick_enabled_fair(rq))
13298 		hrtick_start_fair(rq, p);
13299 
13300 	update_misfit_status(p, rq);
13301 	sched_fair_update_stop_tick(rq, p);
13302 }
13303 
13304 /*
13305  * Account for a task changing its policy or group.
13306  *
13307  * This routine is mostly called to set cfs_rq->curr field when a task
13308  * migrates between groups/classes.
13309  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13310 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13311 {
13312 	struct sched_entity *se = &p->se;
13313 
13314 	for_each_sched_entity(se) {
13315 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13316 
13317 		set_next_entity(cfs_rq, se);
13318 		/* ensure bandwidth has been allocated on our new cfs_rq */
13319 		account_cfs_rq_runtime(cfs_rq, 0);
13320 	}
13321 
13322 	__set_next_task_fair(rq, p, first);
13323 }
13324 
init_cfs_rq(struct cfs_rq * cfs_rq)13325 void init_cfs_rq(struct cfs_rq *cfs_rq)
13326 {
13327 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13328 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13329 #ifdef CONFIG_SMP
13330 	raw_spin_lock_init(&cfs_rq->removed.lock);
13331 #endif
13332 }
13333 
13334 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13335 static void task_change_group_fair(struct task_struct *p)
13336 {
13337 	/*
13338 	 * We couldn't detach or attach a forked task which
13339 	 * hasn't been woken up by wake_up_new_task().
13340 	 */
13341 	if (READ_ONCE(p->__state) == TASK_NEW)
13342 		return;
13343 
13344 	detach_task_cfs_rq(p);
13345 
13346 #ifdef CONFIG_SMP
13347 	/* Tell se's cfs_rq has been changed -- migrated */
13348 	p->se.avg.last_update_time = 0;
13349 #endif
13350 	set_task_rq(p, task_cpu(p));
13351 	attach_task_cfs_rq(p);
13352 }
13353 
free_fair_sched_group(struct task_group * tg)13354 void free_fair_sched_group(struct task_group *tg)
13355 {
13356 	int i;
13357 
13358 	for_each_possible_cpu(i) {
13359 		if (tg->cfs_rq)
13360 			kfree(tg->cfs_rq[i]);
13361 		if (tg->se)
13362 			kfree(tg->se[i]);
13363 	}
13364 
13365 	kfree(tg->cfs_rq);
13366 	kfree(tg->se);
13367 }
13368 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13370 {
13371 	struct sched_entity *se;
13372 	struct cfs_rq *cfs_rq;
13373 	int i;
13374 
13375 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13376 	if (!tg->cfs_rq)
13377 		goto err;
13378 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13379 	if (!tg->se)
13380 		goto err;
13381 
13382 	tg->shares = NICE_0_LOAD;
13383 
13384 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13385 
13386 	for_each_possible_cpu(i) {
13387 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13388 				      GFP_KERNEL, cpu_to_node(i));
13389 		if (!cfs_rq)
13390 			goto err;
13391 
13392 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13393 				  GFP_KERNEL, cpu_to_node(i));
13394 		if (!se)
13395 			goto err_free_rq;
13396 
13397 		init_cfs_rq(cfs_rq);
13398 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13399 		init_entity_runnable_average(se);
13400 	}
13401 
13402 	return 1;
13403 
13404 err_free_rq:
13405 	kfree(cfs_rq);
13406 err:
13407 	return 0;
13408 }
13409 
online_fair_sched_group(struct task_group * tg)13410 void online_fair_sched_group(struct task_group *tg)
13411 {
13412 	struct sched_entity *se;
13413 	struct rq_flags rf;
13414 	struct rq *rq;
13415 	int i;
13416 
13417 	for_each_possible_cpu(i) {
13418 		rq = cpu_rq(i);
13419 		se = tg->se[i];
13420 		rq_lock_irq(rq, &rf);
13421 		update_rq_clock(rq);
13422 		attach_entity_cfs_rq(se);
13423 		sync_throttle(tg, i);
13424 		rq_unlock_irq(rq, &rf);
13425 	}
13426 }
13427 
unregister_fair_sched_group(struct task_group * tg)13428 void unregister_fair_sched_group(struct task_group *tg)
13429 {
13430 	int cpu;
13431 
13432 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13433 
13434 	for_each_possible_cpu(cpu) {
13435 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13436 		struct sched_entity *se = tg->se[cpu];
13437 		struct rq *rq = cpu_rq(cpu);
13438 
13439 		if (se) {
13440 			if (se->sched_delayed) {
13441 				guard(rq_lock_irqsave)(rq);
13442 				if (se->sched_delayed) {
13443 					update_rq_clock(rq);
13444 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13445 				}
13446 				list_del_leaf_cfs_rq(cfs_rq);
13447 			}
13448 			remove_entity_load_avg(se);
13449 		}
13450 
13451 		/*
13452 		 * Only empty task groups can be destroyed; so we can speculatively
13453 		 * check on_list without danger of it being re-added.
13454 		 */
13455 		if (cfs_rq->on_list) {
13456 			guard(rq_lock_irqsave)(rq);
13457 			list_del_leaf_cfs_rq(cfs_rq);
13458 		}
13459 	}
13460 }
13461 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13462 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13463 			struct sched_entity *se, int cpu,
13464 			struct sched_entity *parent)
13465 {
13466 	struct rq *rq = cpu_rq(cpu);
13467 
13468 	cfs_rq->tg = tg;
13469 	cfs_rq->rq = rq;
13470 	init_cfs_rq_runtime(cfs_rq);
13471 
13472 	tg->cfs_rq[cpu] = cfs_rq;
13473 	tg->se[cpu] = se;
13474 
13475 	/* se could be NULL for root_task_group */
13476 	if (!se)
13477 		return;
13478 
13479 	if (!parent) {
13480 		se->cfs_rq = &rq->cfs;
13481 		se->depth = 0;
13482 	} else {
13483 		se->cfs_rq = parent->my_q;
13484 		se->depth = parent->depth + 1;
13485 	}
13486 
13487 	se->my_q = cfs_rq;
13488 	/* guarantee group entities always have weight */
13489 	update_load_set(&se->load, NICE_0_LOAD);
13490 	se->parent = parent;
13491 }
13492 
13493 static DEFINE_MUTEX(shares_mutex);
13494 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13495 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13496 {
13497 	int i;
13498 
13499 	lockdep_assert_held(&shares_mutex);
13500 
13501 	/*
13502 	 * We can't change the weight of the root cgroup.
13503 	 */
13504 	if (!tg->se[0])
13505 		return -EINVAL;
13506 
13507 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13508 
13509 	if (tg->shares == shares)
13510 		return 0;
13511 
13512 	tg->shares = shares;
13513 	for_each_possible_cpu(i) {
13514 		struct rq *rq = cpu_rq(i);
13515 		struct sched_entity *se = tg->se[i];
13516 		struct rq_flags rf;
13517 
13518 		/* Propagate contribution to hierarchy */
13519 		rq_lock_irqsave(rq, &rf);
13520 		update_rq_clock(rq);
13521 		for_each_sched_entity(se) {
13522 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13523 			update_cfs_group(se);
13524 		}
13525 		rq_unlock_irqrestore(rq, &rf);
13526 	}
13527 
13528 	return 0;
13529 }
13530 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13531 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13532 {
13533 	int ret;
13534 
13535 	mutex_lock(&shares_mutex);
13536 	if (tg_is_idle(tg))
13537 		ret = -EINVAL;
13538 	else
13539 		ret = __sched_group_set_shares(tg, shares);
13540 	mutex_unlock(&shares_mutex);
13541 
13542 	return ret;
13543 }
13544 
sched_group_set_idle(struct task_group * tg,long idle)13545 int sched_group_set_idle(struct task_group *tg, long idle)
13546 {
13547 	int i;
13548 
13549 	if (tg == &root_task_group)
13550 		return -EINVAL;
13551 
13552 	if (idle < 0 || idle > 1)
13553 		return -EINVAL;
13554 
13555 	mutex_lock(&shares_mutex);
13556 
13557 	if (tg->idle == idle) {
13558 		mutex_unlock(&shares_mutex);
13559 		return 0;
13560 	}
13561 
13562 	tg->idle = idle;
13563 
13564 	for_each_possible_cpu(i) {
13565 		struct rq *rq = cpu_rq(i);
13566 		struct sched_entity *se = tg->se[i];
13567 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13568 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13569 		long idle_task_delta;
13570 		struct rq_flags rf;
13571 
13572 		rq_lock_irqsave(rq, &rf);
13573 
13574 		grp_cfs_rq->idle = idle;
13575 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13576 			goto next_cpu;
13577 
13578 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13579 				  grp_cfs_rq->h_nr_idle;
13580 		if (!cfs_rq_is_idle(grp_cfs_rq))
13581 			idle_task_delta *= -1;
13582 
13583 		for_each_sched_entity(se) {
13584 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13585 
13586 			if (!se->on_rq)
13587 				break;
13588 
13589 			cfs_rq->h_nr_idle += idle_task_delta;
13590 
13591 			/* Already accounted at parent level and above. */
13592 			if (cfs_rq_is_idle(cfs_rq))
13593 				break;
13594 		}
13595 
13596 next_cpu:
13597 		rq_unlock_irqrestore(rq, &rf);
13598 	}
13599 
13600 	/* Idle groups have minimum weight. */
13601 	if (tg_is_idle(tg))
13602 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13603 	else
13604 		__sched_group_set_shares(tg, NICE_0_LOAD);
13605 
13606 	mutex_unlock(&shares_mutex);
13607 	return 0;
13608 }
13609 
13610 #endif /* CONFIG_FAIR_GROUP_SCHED */
13611 
13612 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13613 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13614 {
13615 	struct sched_entity *se = &task->se;
13616 	unsigned int rr_interval = 0;
13617 
13618 	/*
13619 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13620 	 * idle runqueue:
13621 	 */
13622 	if (rq->cfs.load.weight)
13623 		rr_interval = NS_TO_JIFFIES(se->slice);
13624 
13625 	return rr_interval;
13626 }
13627 
13628 /*
13629  * All the scheduling class methods:
13630  */
13631 DEFINE_SCHED_CLASS(fair) = {
13632 
13633 	.enqueue_task		= enqueue_task_fair,
13634 	.dequeue_task		= dequeue_task_fair,
13635 	.yield_task		= yield_task_fair,
13636 	.yield_to_task		= yield_to_task_fair,
13637 
13638 	.wakeup_preempt		= check_preempt_wakeup_fair,
13639 
13640 	.pick_task		= pick_task_fair,
13641 	.pick_next_task		= __pick_next_task_fair,
13642 	.put_prev_task		= put_prev_task_fair,
13643 	.set_next_task          = set_next_task_fair,
13644 
13645 #ifdef CONFIG_SMP
13646 	.balance		= balance_fair,
13647 	.select_task_rq		= select_task_rq_fair,
13648 	.migrate_task_rq	= migrate_task_rq_fair,
13649 
13650 	.rq_online		= rq_online_fair,
13651 	.rq_offline		= rq_offline_fair,
13652 
13653 	.task_dead		= task_dead_fair,
13654 	.set_cpus_allowed	= set_cpus_allowed_fair,
13655 #endif
13656 
13657 	.task_tick		= task_tick_fair,
13658 	.task_fork		= task_fork_fair,
13659 
13660 	.reweight_task		= reweight_task_fair,
13661 	.prio_changed		= prio_changed_fair,
13662 	.switched_from		= switched_from_fair,
13663 	.switched_to		= switched_to_fair,
13664 
13665 	.get_rr_interval	= get_rr_interval_fair,
13666 
13667 	.update_curr		= update_curr_fair,
13668 
13669 #ifdef CONFIG_FAIR_GROUP_SCHED
13670 	.task_change_group	= task_change_group_fair,
13671 #endif
13672 
13673 #ifdef CONFIG_SCHED_CORE
13674 	.task_is_throttled	= task_is_throttled_fair,
13675 #endif
13676 
13677 #ifdef CONFIG_UCLAMP_TASK
13678 	.uclamp_enabled		= 1,
13679 #endif
13680 };
13681 
print_cfs_stats(struct seq_file * m,int cpu)13682 void print_cfs_stats(struct seq_file *m, int cpu)
13683 {
13684 	struct cfs_rq *cfs_rq, *pos;
13685 
13686 	rcu_read_lock();
13687 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13688 		print_cfs_rq(m, cpu, cfs_rq);
13689 	rcu_read_unlock();
13690 }
13691 
13692 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13693 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13694 {
13695 	int node;
13696 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13697 	struct numa_group *ng;
13698 
13699 	rcu_read_lock();
13700 	ng = rcu_dereference(p->numa_group);
13701 	for_each_online_node(node) {
13702 		if (p->numa_faults) {
13703 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13704 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13705 		}
13706 		if (ng) {
13707 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13708 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13709 		}
13710 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13711 	}
13712 	rcu_read_unlock();
13713 }
13714 #endif /* CONFIG_NUMA_BALANCING */
13715 
init_sched_fair_class(void)13716 __init void init_sched_fair_class(void)
13717 {
13718 #ifdef CONFIG_SMP
13719 	int i;
13720 
13721 	for_each_possible_cpu(i) {
13722 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13723 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13724 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13725 					GFP_KERNEL, cpu_to_node(i));
13726 
13727 #ifdef CONFIG_CFS_BANDWIDTH
13728 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13729 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13730 #endif
13731 	}
13732 
13733 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13734 
13735 #ifdef CONFIG_NO_HZ_COMMON
13736 	nohz.next_balance = jiffies;
13737 	nohz.next_blocked = jiffies;
13738 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13739 #endif
13740 #endif /* SMP */
13741 
13742 }
13743