1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14 #undef DEBUG
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
39
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cputhreads.h>
52 #include <asm/cputable.h>
53 #include <asm/mpic.h>
54 #include <asm/vdso_datapage.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/paca.h>
57 #endif
58 #include <asm/vdso.h>
59 #include <asm/debug.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 #include <asm/systemcfg.h>
65
66 #include <trace/events/ipi.h>
67
68 #ifdef DEBUG
69 #include <asm/udbg.h>
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74
75 #ifdef CONFIG_HOTPLUG_CPU
76 /* State of each CPU during hotplug phases */
77 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
78 #endif
79
80 struct task_struct *secondary_current;
81 bool has_big_cores __ro_after_init;
82 bool coregroup_enabled __ro_after_init;
83 bool thread_group_shares_l2 __ro_after_init;
84 bool thread_group_shares_l3 __ro_after_init;
85
86 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
88 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
89 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
90 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
91
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
95 EXPORT_SYMBOL_GPL(has_big_cores);
96
97 #define MAX_THREAD_LIST_SIZE 8
98 #define THREAD_GROUP_SHARE_L1 1
99 #define THREAD_GROUP_SHARE_L2_L3 2
100 struct thread_groups {
101 unsigned int property;
102 unsigned int nr_groups;
103 unsigned int threads_per_group;
104 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
105 };
106
107 /* Maximum number of properties that groups of threads within a core can share */
108 #define MAX_THREAD_GROUP_PROPERTIES 2
109
110 struct thread_groups_list {
111 unsigned int nr_properties;
112 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
113 };
114
115 static struct thread_groups_list tgl[NR_CPUS] __initdata;
116 /*
117 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
118 * the set its siblings that share the L1-cache.
119 */
120 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
121
122 /*
123 * On some big-cores system, thread_group_l2_cache_map for each CPU
124 * corresponds to the set its siblings within the core that share the
125 * L2-cache.
126 */
127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
128
129 /*
130 * On P10, thread_group_l3_cache_map for each CPU is equal to the
131 * thread_group_l2_cache_map
132 */
133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
134
135 /* SMP operations for this machine */
136 struct smp_ops_t *smp_ops;
137
138 /* Can't be static due to PowerMac hackery */
139 volatile unsigned int cpu_callin_map[NR_CPUS];
140
141 int smt_enabled_at_boot = 1;
142
143 /*
144 * Returns 1 if the specified cpu should be brought up during boot.
145 * Used to inhibit booting threads if they've been disabled or
146 * limited on the command line
147 */
smp_generic_cpu_bootable(unsigned int nr)148 int smp_generic_cpu_bootable(unsigned int nr)
149 {
150 /* Special case - we inhibit secondary thread startup
151 * during boot if the user requests it.
152 */
153 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
154 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
155 return 0;
156 if (smt_enabled_at_boot
157 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
158 return 0;
159 }
160
161 return 1;
162 }
163
164
165 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)166 int smp_generic_kick_cpu(int nr)
167 {
168 if (nr < 0 || nr >= nr_cpu_ids)
169 return -EINVAL;
170
171 /*
172 * The processor is currently spinning, waiting for the
173 * cpu_start field to become non-zero After we set cpu_start,
174 * the processor will continue on to secondary_start
175 */
176 if (!paca_ptrs[nr]->cpu_start) {
177 paca_ptrs[nr]->cpu_start = 1;
178 smp_mb();
179 return 0;
180 }
181
182 #ifdef CONFIG_HOTPLUG_CPU
183 /*
184 * Ok it's not there, so it might be soft-unplugged, let's
185 * try to bring it back
186 */
187 generic_set_cpu_up(nr);
188 smp_wmb();
189 smp_send_reschedule(nr);
190 #endif /* CONFIG_HOTPLUG_CPU */
191
192 return 0;
193 }
194 #endif /* CONFIG_PPC64 */
195
call_function_action(int irq,void * data)196 static irqreturn_t call_function_action(int irq, void *data)
197 {
198 generic_smp_call_function_interrupt();
199 return IRQ_HANDLED;
200 }
201
reschedule_action(int irq,void * data)202 static irqreturn_t reschedule_action(int irq, void *data)
203 {
204 scheduler_ipi();
205 return IRQ_HANDLED;
206 }
207
208 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast_ipi_action(int irq,void * data)209 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
210 {
211 timer_broadcast_interrupt();
212 return IRQ_HANDLED;
213 }
214 #endif
215
216 #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)217 static irqreturn_t nmi_ipi_action(int irq, void *data)
218 {
219 smp_handle_nmi_ipi(get_irq_regs());
220 return IRQ_HANDLED;
221 }
222 #endif
223
224 static irq_handler_t smp_ipi_action[] = {
225 [PPC_MSG_CALL_FUNCTION] = call_function_action,
226 [PPC_MSG_RESCHEDULE] = reschedule_action,
227 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
228 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
229 #endif
230 #ifdef CONFIG_NMI_IPI
231 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
232 #endif
233 };
234
235 /*
236 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
237 * than going through the call function infrastructure, and strongly
238 * serialized, so it is more appropriate for debugging.
239 */
240 const char *smp_ipi_name[] = {
241 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
242 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
243 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
244 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
245 #endif
246 #ifdef CONFIG_NMI_IPI
247 [PPC_MSG_NMI_IPI] = "nmi ipi",
248 #endif
249 };
250
251 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)252 int smp_request_message_ipi(int virq, int msg)
253 {
254 int err;
255
256 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
257 return -EINVAL;
258 #ifndef CONFIG_NMI_IPI
259 if (msg == PPC_MSG_NMI_IPI)
260 return 1;
261 #endif
262
263 err = request_irq(virq, smp_ipi_action[msg],
264 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
265 smp_ipi_name[msg], NULL);
266 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
267 virq, smp_ipi_name[msg], err);
268
269 return err;
270 }
271
272 #ifdef CONFIG_PPC_SMP_MUXED_IPI
273 struct cpu_messages {
274 long messages; /* current messages */
275 };
276 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
277
smp_muxed_ipi_set_message(int cpu,int msg)278 void smp_muxed_ipi_set_message(int cpu, int msg)
279 {
280 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
281 char *message = (char *)&info->messages;
282
283 /*
284 * Order previous accesses before accesses in the IPI handler.
285 */
286 smp_mb();
287 WRITE_ONCE(message[msg], 1);
288 }
289
smp_muxed_ipi_message_pass(int cpu,int msg)290 void smp_muxed_ipi_message_pass(int cpu, int msg)
291 {
292 smp_muxed_ipi_set_message(cpu, msg);
293
294 /*
295 * cause_ipi functions are required to include a full barrier
296 * before doing whatever causes the IPI.
297 */
298 smp_ops->cause_ipi(cpu);
299 }
300
301 #ifdef __BIG_ENDIAN__
302 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
303 #else
304 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
305 #endif
306
smp_ipi_demux(void)307 irqreturn_t smp_ipi_demux(void)
308 {
309 mb(); /* order any irq clear */
310
311 return smp_ipi_demux_relaxed();
312 }
313
314 /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)315 irqreturn_t smp_ipi_demux_relaxed(void)
316 {
317 struct cpu_messages *info;
318 unsigned long all;
319
320 info = this_cpu_ptr(&ipi_message);
321 do {
322 all = xchg(&info->messages, 0);
323 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
324 /*
325 * Must check for PPC_MSG_RM_HOST_ACTION messages
326 * before PPC_MSG_CALL_FUNCTION messages because when
327 * a VM is destroyed, we call kick_all_cpus_sync()
328 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
329 * messages have completed before we free any VCPUs.
330 */
331 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
332 kvmppc_xics_ipi_action();
333 #endif
334 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
335 generic_smp_call_function_interrupt();
336 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
337 scheduler_ipi();
338 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
339 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
340 timer_broadcast_interrupt();
341 #endif
342 #ifdef CONFIG_NMI_IPI
343 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
344 nmi_ipi_action(0, NULL);
345 #endif
346 } while (READ_ONCE(info->messages));
347
348 return IRQ_HANDLED;
349 }
350 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
351
do_message_pass(int cpu,int msg)352 static inline void do_message_pass(int cpu, int msg)
353 {
354 if (smp_ops->message_pass)
355 smp_ops->message_pass(cpu, msg);
356 #ifdef CONFIG_PPC_SMP_MUXED_IPI
357 else
358 smp_muxed_ipi_message_pass(cpu, msg);
359 #endif
360 }
361
arch_smp_send_reschedule(int cpu)362 void arch_smp_send_reschedule(int cpu)
363 {
364 if (likely(smp_ops))
365 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
366 }
367 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
368
arch_send_call_function_single_ipi(int cpu)369 void arch_send_call_function_single_ipi(int cpu)
370 {
371 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
372 }
373
arch_send_call_function_ipi_mask(const struct cpumask * mask)374 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
375 {
376 unsigned int cpu;
377
378 for_each_cpu(cpu, mask)
379 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
380 }
381
382 #ifdef CONFIG_NMI_IPI
383
384 /*
385 * "NMI IPI" system.
386 *
387 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
388 * a running system. They can be used for crash, debug, halt/reboot, etc.
389 *
390 * The IPI call waits with interrupts disabled until all targets enter the
391 * NMI handler, then returns. Subsequent IPIs can be issued before targets
392 * have returned from their handlers, so there is no guarantee about
393 * concurrency or re-entrancy.
394 *
395 * A new NMI can be issued before all targets exit the handler.
396 *
397 * The IPI call may time out without all targets entering the NMI handler.
398 * In that case, there is some logic to recover (and ignore subsequent
399 * NMI interrupts that may eventually be raised), but the platform interrupt
400 * handler may not be able to distinguish this from other exception causes,
401 * which may cause a crash.
402 */
403
404 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
405 static struct cpumask nmi_ipi_pending_mask;
406 static bool nmi_ipi_busy = false;
407 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
408
nmi_ipi_lock_start(unsigned long * flags)409 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
410 {
411 raw_local_irq_save(*flags);
412 hard_irq_disable();
413 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
414 raw_local_irq_restore(*flags);
415 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
416 raw_local_irq_save(*flags);
417 hard_irq_disable();
418 }
419 }
420
nmi_ipi_lock(void)421 noinstr static void nmi_ipi_lock(void)
422 {
423 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
424 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
425 }
426
nmi_ipi_unlock(void)427 noinstr static void nmi_ipi_unlock(void)
428 {
429 smp_mb();
430 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
431 raw_atomic_set(&__nmi_ipi_lock, 0);
432 }
433
nmi_ipi_unlock_end(unsigned long * flags)434 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
435 {
436 nmi_ipi_unlock();
437 raw_local_irq_restore(*flags);
438 }
439
440 /*
441 * Platform NMI handler calls this to ack
442 */
smp_handle_nmi_ipi(struct pt_regs * regs)443 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
444 {
445 void (*fn)(struct pt_regs *) = NULL;
446 unsigned long flags;
447 int me = raw_smp_processor_id();
448 int ret = 0;
449
450 /*
451 * Unexpected NMIs are possible here because the interrupt may not
452 * be able to distinguish NMI IPIs from other types of NMIs, or
453 * because the caller may have timed out.
454 */
455 nmi_ipi_lock_start(&flags);
456 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
457 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
458 fn = READ_ONCE(nmi_ipi_function);
459 WARN_ON_ONCE(!fn);
460 ret = 1;
461 }
462 nmi_ipi_unlock_end(&flags);
463
464 if (fn)
465 fn(regs);
466
467 return ret;
468 }
469
do_smp_send_nmi_ipi(int cpu,bool safe)470 static void do_smp_send_nmi_ipi(int cpu, bool safe)
471 {
472 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
473 return;
474
475 if (cpu >= 0) {
476 do_message_pass(cpu, PPC_MSG_NMI_IPI);
477 } else {
478 int c;
479
480 for_each_online_cpu(c) {
481 if (c == raw_smp_processor_id())
482 continue;
483 do_message_pass(c, PPC_MSG_NMI_IPI);
484 }
485 }
486 }
487
488 /*
489 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
490 * - fn is the target callback function.
491 * - delay_us > 0 is the delay before giving up waiting for targets to
492 * begin executing the handler, == 0 specifies indefinite delay.
493 */
__smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us,bool safe)494 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
495 u64 delay_us, bool safe)
496 {
497 unsigned long flags;
498 int me = raw_smp_processor_id();
499 int ret = 1;
500
501 BUG_ON(cpu == me);
502 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
503
504 if (unlikely(!smp_ops))
505 return 0;
506
507 nmi_ipi_lock_start(&flags);
508 while (nmi_ipi_busy) {
509 nmi_ipi_unlock_end(&flags);
510 spin_until_cond(!nmi_ipi_busy);
511 nmi_ipi_lock_start(&flags);
512 }
513 nmi_ipi_busy = true;
514 nmi_ipi_function = fn;
515
516 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
517
518 if (cpu < 0) {
519 /* ALL_OTHERS */
520 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
521 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
522 } else {
523 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
524 }
525
526 nmi_ipi_unlock();
527
528 /* Interrupts remain hard disabled */
529
530 do_smp_send_nmi_ipi(cpu, safe);
531
532 nmi_ipi_lock();
533 /* nmi_ipi_busy is set here, so unlock/lock is okay */
534 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
535 nmi_ipi_unlock();
536 udelay(1);
537 nmi_ipi_lock();
538 if (delay_us) {
539 delay_us--;
540 if (!delay_us)
541 break;
542 }
543 }
544
545 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
546 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
547 ret = 0;
548 cpumask_clear(&nmi_ipi_pending_mask);
549 }
550
551 nmi_ipi_function = NULL;
552 nmi_ipi_busy = false;
553
554 nmi_ipi_unlock_end(&flags);
555
556 return ret;
557 }
558
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)559 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
560 {
561 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
562 }
563
smp_send_safe_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)564 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
565 {
566 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
567 }
568 #endif /* CONFIG_NMI_IPI */
569
570 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)571 void tick_broadcast(const struct cpumask *mask)
572 {
573 unsigned int cpu;
574
575 for_each_cpu(cpu, mask)
576 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
577 }
578 #endif
579
580 #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)581 static void debugger_ipi_callback(struct pt_regs *regs)
582 {
583 debugger_ipi(regs);
584 }
585
smp_send_debugger_break(void)586 void smp_send_debugger_break(void)
587 {
588 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
589 }
590 #endif
591
592 #ifdef CONFIG_CRASH_DUMP
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))593 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
594 {
595 int cpu;
596
597 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
598 if (kdump_in_progress() && crash_wake_offline) {
599 for_each_present_cpu(cpu) {
600 if (cpu_online(cpu))
601 continue;
602 /*
603 * crash_ipi_callback will wait for
604 * all cpus, including offline CPUs.
605 * We don't care about nmi_ipi_function.
606 * Offline cpus will jump straight into
607 * crash_ipi_callback, we can skip the
608 * entire NMI dance and waiting for
609 * cpus to clear pending mask, etc.
610 */
611 do_smp_send_nmi_ipi(cpu, false);
612 }
613 }
614 }
615 #endif
616
crash_smp_send_stop(void)617 void crash_smp_send_stop(void)
618 {
619 static bool stopped = false;
620
621 /*
622 * In case of fadump, register data for all CPUs is captured by f/w
623 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
624 * this rtas call to avoid tricky post processing of those CPUs'
625 * backtraces.
626 */
627 if (should_fadump_crash())
628 return;
629
630 if (stopped)
631 return;
632
633 stopped = true;
634
635 #ifdef CONFIG_CRASH_DUMP
636 if (kexec_crash_image) {
637 crash_kexec_prepare();
638 return;
639 }
640 #endif
641
642 smp_send_stop();
643 }
644
645 #ifdef CONFIG_NMI_IPI
nmi_stop_this_cpu(struct pt_regs * regs)646 static void nmi_stop_this_cpu(struct pt_regs *regs)
647 {
648 /*
649 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
650 */
651 set_cpu_online(smp_processor_id(), false);
652
653 spin_begin();
654 while (1)
655 spin_cpu_relax();
656 }
657
smp_send_stop(void)658 void smp_send_stop(void)
659 {
660 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
661 }
662
663 #else /* CONFIG_NMI_IPI */
664
stop_this_cpu(void * dummy)665 static void stop_this_cpu(void *dummy)
666 {
667 hard_irq_disable();
668
669 /*
670 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
671 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
672 * to know other CPUs are offline before it breaks locks to flush
673 * printk buffers, in case we panic()ed while holding the lock.
674 */
675 set_cpu_online(smp_processor_id(), false);
676
677 spin_begin();
678 while (1)
679 spin_cpu_relax();
680 }
681
smp_send_stop(void)682 void smp_send_stop(void)
683 {
684 static bool stopped = false;
685
686 /*
687 * Prevent waiting on csd lock from a previous smp_send_stop.
688 * This is racy, but in general callers try to do the right
689 * thing and only fire off one smp_send_stop (e.g., see
690 * kernel/panic.c)
691 */
692 if (stopped)
693 return;
694
695 stopped = true;
696
697 smp_call_function(stop_this_cpu, NULL, 0);
698 }
699 #endif /* CONFIG_NMI_IPI */
700
701 static struct task_struct *current_set[NR_CPUS];
702
smp_store_cpu_info(int id)703 static void smp_store_cpu_info(int id)
704 {
705 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
706 #ifdef CONFIG_PPC_E500
707 per_cpu(next_tlbcam_idx, id)
708 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
709 #endif
710 }
711
712 /*
713 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
714 * rather than just passing around the cpumask we pass around a function that
715 * returns the that cpumask for the given CPU.
716 */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))717 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
718 {
719 cpumask_set_cpu(i, get_cpumask(j));
720 cpumask_set_cpu(j, get_cpumask(i));
721 }
722
723 #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))724 static void set_cpus_unrelated(int i, int j,
725 struct cpumask *(*get_cpumask)(int))
726 {
727 cpumask_clear_cpu(i, get_cpumask(j));
728 cpumask_clear_cpu(j, get_cpumask(i));
729 }
730 #endif
731
732 /*
733 * Extends set_cpus_related. Instead of setting one CPU at a time in
734 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
735 */
or_cpumasks_related(int i,int j,struct cpumask * (* srcmask)(int),struct cpumask * (* dstmask)(int))736 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
737 struct cpumask *(*dstmask)(int))
738 {
739 struct cpumask *mask;
740 int k;
741
742 mask = srcmask(j);
743 for_each_cpu(k, srcmask(i))
744 cpumask_or(dstmask(k), dstmask(k), mask);
745
746 if (i == j)
747 return;
748
749 mask = srcmask(i);
750 for_each_cpu(k, srcmask(j))
751 cpumask_or(dstmask(k), dstmask(k), mask);
752 }
753
754 /*
755 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
756 * property for the CPU device node @dn and stores
757 * the parsed output in the thread_groups_list
758 * structure @tglp.
759 *
760 * @dn: The device node of the CPU device.
761 * @tglp: Pointer to a thread group list structure into which the parsed
762 * output of "ibm,thread-groups" is stored.
763 *
764 * ibm,thread-groups[0..N-1] array defines which group of threads in
765 * the CPU-device node can be grouped together based on the property.
766 *
767 * This array can represent thread groupings for multiple properties.
768 *
769 * ibm,thread-groups[i + 0] tells us the property based on which the
770 * threads are being grouped together. If this value is 1, it implies
771 * that the threads in the same group share L1, translation cache. If
772 * the value is 2, it implies that the threads in the same group share
773 * the same L2 cache.
774 *
775 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
776 * property ibm,thread-groups[i]
777 *
778 * ibm,thread-groups[i+2] tells us the number of threads in each such
779 * group.
780 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
781 *
782 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
783 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
784 * the grouping.
785 *
786 * Example:
787 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
788 * This can be decomposed up into two consecutive arrays:
789 * a) [1,2,4,8,10,12,14,9,11,13,15]
790 * b) [2,2,4,8,10,12,14,9,11,13,15]
791 *
792 * where in,
793 *
794 * a) provides information of Property "1" being shared by "2" groups,
795 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
796 * the first group is {8,10,12,14} and the
797 * "ibm,ppc-interrupt-server#s" of the second group is
798 * {9,11,13,15}. Property "1" is indicative of the thread in the
799 * group sharing L1 cache, translation cache and Instruction Data
800 * flow.
801 *
802 * b) provides information of Property "2" being shared by "2" groups,
803 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
804 * the first group is {8,10,12,14} and the
805 * "ibm,ppc-interrupt-server#s" of the second group is
806 * {9,11,13,15}. Property "2" indicates that the threads in each
807 * group share the L2-cache.
808 *
809 * Returns 0 on success, -EINVAL if the property does not exist,
810 * -ENODATA if property does not have a value, and -EOVERFLOW if the
811 * property data isn't large enough.
812 */
parse_thread_groups(struct device_node * dn,struct thread_groups_list * tglp)813 static int parse_thread_groups(struct device_node *dn,
814 struct thread_groups_list *tglp)
815 {
816 unsigned int property_idx = 0;
817 u32 *thread_group_array;
818 size_t total_threads;
819 int ret = 0, count;
820 u32 *thread_list;
821 int i = 0;
822
823 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
824 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
825 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
826 thread_group_array, count);
827 if (ret)
828 goto out_free;
829
830 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
831 int j;
832 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
833
834 tg->property = thread_group_array[i];
835 tg->nr_groups = thread_group_array[i + 1];
836 tg->threads_per_group = thread_group_array[i + 2];
837 total_threads = tg->nr_groups * tg->threads_per_group;
838
839 thread_list = &thread_group_array[i + 3];
840
841 for (j = 0; j < total_threads; j++)
842 tg->thread_list[j] = thread_list[j];
843 i = i + 3 + total_threads;
844 }
845
846 tglp->nr_properties = property_idx;
847
848 out_free:
849 kfree(thread_group_array);
850 return ret;
851 }
852
853 /*
854 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
855 * that @cpu belongs to.
856 *
857 * @cpu : The logical CPU whose thread group is being searched.
858 * @tg : The thread-group structure of the CPU node which @cpu belongs
859 * to.
860 *
861 * Returns the index to tg->thread_list that points to the start
862 * of the thread_group that @cpu belongs to.
863 *
864 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
865 * tg->thread_list.
866 */
get_cpu_thread_group_start(int cpu,struct thread_groups * tg)867 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
868 {
869 int hw_cpu_id = get_hard_smp_processor_id(cpu);
870 int i, j;
871
872 for (i = 0; i < tg->nr_groups; i++) {
873 int group_start = i * tg->threads_per_group;
874
875 for (j = 0; j < tg->threads_per_group; j++) {
876 int idx = group_start + j;
877
878 if (tg->thread_list[idx] == hw_cpu_id)
879 return group_start;
880 }
881 }
882
883 return -1;
884 }
885
get_thread_groups(int cpu,int group_property,int * err)886 static struct thread_groups *__init get_thread_groups(int cpu,
887 int group_property,
888 int *err)
889 {
890 struct device_node *dn = of_get_cpu_node(cpu, NULL);
891 struct thread_groups_list *cpu_tgl = &tgl[cpu];
892 struct thread_groups *tg = NULL;
893 int i;
894 *err = 0;
895
896 if (!dn) {
897 *err = -ENODATA;
898 return NULL;
899 }
900
901 if (!cpu_tgl->nr_properties) {
902 *err = parse_thread_groups(dn, cpu_tgl);
903 if (*err)
904 goto out;
905 }
906
907 for (i = 0; i < cpu_tgl->nr_properties; i++) {
908 if (cpu_tgl->property_tgs[i].property == group_property) {
909 tg = &cpu_tgl->property_tgs[i];
910 break;
911 }
912 }
913
914 if (!tg)
915 *err = -EINVAL;
916 out:
917 of_node_put(dn);
918 return tg;
919 }
920
update_mask_from_threadgroup(cpumask_var_t * mask,struct thread_groups * tg,int cpu,int cpu_group_start)921 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
922 int cpu, int cpu_group_start)
923 {
924 int first_thread = cpu_first_thread_sibling(cpu);
925 int i;
926
927 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
928
929 for (i = first_thread; i < first_thread + threads_per_core; i++) {
930 int i_group_start = get_cpu_thread_group_start(i, tg);
931
932 if (unlikely(i_group_start == -1)) {
933 WARN_ON_ONCE(1);
934 return -ENODATA;
935 }
936
937 if (i_group_start == cpu_group_start)
938 cpumask_set_cpu(i, *mask);
939 }
940
941 return 0;
942 }
943
init_thread_group_cache_map(int cpu,int cache_property)944 static int __init init_thread_group_cache_map(int cpu, int cache_property)
945
946 {
947 int cpu_group_start = -1, err = 0;
948 struct thread_groups *tg = NULL;
949 cpumask_var_t *mask = NULL;
950
951 if (cache_property != THREAD_GROUP_SHARE_L1 &&
952 cache_property != THREAD_GROUP_SHARE_L2_L3)
953 return -EINVAL;
954
955 tg = get_thread_groups(cpu, cache_property, &err);
956
957 if (!tg)
958 return err;
959
960 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
961
962 if (unlikely(cpu_group_start == -1)) {
963 WARN_ON_ONCE(1);
964 return -ENODATA;
965 }
966
967 if (cache_property == THREAD_GROUP_SHARE_L1) {
968 mask = &per_cpu(thread_group_l1_cache_map, cpu);
969 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
970 }
971 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
972 mask = &per_cpu(thread_group_l2_cache_map, cpu);
973 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
974 mask = &per_cpu(thread_group_l3_cache_map, cpu);
975 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
976 }
977
978
979 return 0;
980 }
981
982 static bool shared_caches __ro_after_init;
983
984 #ifdef CONFIG_SCHED_SMT
985 /* cpumask of CPUs with asymmetric SMT dependency */
powerpc_smt_flags(void)986 static int powerpc_smt_flags(void)
987 {
988 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
989
990 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
991 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
992 flags |= SD_ASYM_PACKING;
993 }
994 return flags;
995 }
996 #endif
997
998 /*
999 * On shared processor LPARs scheduled on a big core (which has two or more
1000 * independent thread groups per core), prefer lower numbered CPUs, so
1001 * that workload consolidates to lesser number of cores.
1002 */
1003 static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1004
1005 /*
1006 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1007 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1008 * since the migrated task remains cache hot. We want to take advantage of this
1009 * at the scheduler level so an extra topology level is required.
1010 */
powerpc_shared_cache_flags(void)1011 static int powerpc_shared_cache_flags(void)
1012 {
1013 if (static_branch_unlikely(&splpar_asym_pack))
1014 return SD_SHARE_LLC | SD_ASYM_PACKING;
1015
1016 return SD_SHARE_LLC;
1017 }
1018
powerpc_shared_proc_flags(void)1019 static int powerpc_shared_proc_flags(void)
1020 {
1021 if (static_branch_unlikely(&splpar_asym_pack))
1022 return SD_ASYM_PACKING;
1023
1024 return 0;
1025 }
1026
1027 /*
1028 * We can't just pass cpu_l2_cache_mask() directly because
1029 * returns a non-const pointer and the compiler barfs on that.
1030 */
tl_cache_mask(struct sched_domain_topology_level * tl,int cpu)1031 static const struct cpumask *tl_cache_mask(struct sched_domain_topology_level *tl, int cpu)
1032 {
1033 return per_cpu(cpu_l2_cache_map, cpu);
1034 }
1035
1036 #ifdef CONFIG_SCHED_SMT
tl_smallcore_smt_mask(struct sched_domain_topology_level * tl,int cpu)1037 static const struct cpumask *tl_smallcore_smt_mask(struct sched_domain_topology_level *tl, int cpu)
1038 {
1039 return cpu_smallcore_mask(cpu);
1040 }
1041 #endif
1042
cpu_coregroup_mask(int cpu)1043 struct cpumask *cpu_coregroup_mask(int cpu)
1044 {
1045 return per_cpu(cpu_coregroup_map, cpu);
1046 }
1047
has_coregroup_support(void)1048 static bool has_coregroup_support(void)
1049 {
1050 /* Coregroup identification not available on shared systems */
1051 if (is_shared_processor())
1052 return 0;
1053
1054 return coregroup_enabled;
1055 }
1056
init_big_cores(void)1057 static int __init init_big_cores(void)
1058 {
1059 int cpu;
1060
1061 for_each_possible_cpu(cpu) {
1062 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1063
1064 if (err)
1065 return err;
1066
1067 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1068 GFP_KERNEL,
1069 cpu_to_node(cpu));
1070 }
1071
1072 has_big_cores = true;
1073
1074 for_each_possible_cpu(cpu) {
1075 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1076
1077 if (err)
1078 return err;
1079 }
1080
1081 thread_group_shares_l2 = true;
1082 thread_group_shares_l3 = true;
1083 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * die_mask and die_id are only available on systems which support
1090 * multiple coregroups within a same package. On all other systems, die_mask
1091 * would be same as package mask and die_id would be set to -1.
1092 */
cpu_die_mask(int cpu)1093 const struct cpumask *cpu_die_mask(int cpu)
1094 {
1095 if (has_coregroup_support())
1096 return per_cpu(cpu_coregroup_map, cpu);
1097 else
1098 return cpu_node_mask(cpu);
1099 }
1100 EXPORT_SYMBOL_GPL(cpu_die_mask);
1101
cpu_die_id(int cpu)1102 int cpu_die_id(int cpu)
1103 {
1104 if (has_coregroup_support())
1105 return cpu_to_coregroup_id(cpu);
1106 else
1107 return -1;
1108 }
1109 EXPORT_SYMBOL_GPL(cpu_die_id);
1110
smp_prepare_cpus(unsigned int max_cpus)1111 void __init smp_prepare_cpus(unsigned int max_cpus)
1112 {
1113 unsigned int cpu, num_threads;
1114
1115 DBG("smp_prepare_cpus\n");
1116
1117 /*
1118 * setup_cpu may need to be called on the boot cpu. We haven't
1119 * spun any cpus up but lets be paranoid.
1120 */
1121 BUG_ON(boot_cpuid != smp_processor_id());
1122
1123 /* Fixup boot cpu */
1124 smp_store_cpu_info(boot_cpuid);
1125 cpu_callin_map[boot_cpuid] = 1;
1126
1127 for_each_possible_cpu(cpu) {
1128 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1129 GFP_KERNEL, cpu_to_node(cpu));
1130 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1131 GFP_KERNEL, cpu_to_node(cpu));
1132 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1133 GFP_KERNEL, cpu_to_node(cpu));
1134 if (has_coregroup_support())
1135 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1136 GFP_KERNEL, cpu_to_node(cpu));
1137
1138 #ifdef CONFIG_NUMA
1139 /*
1140 * numa_node_id() works after this.
1141 */
1142 if (cpu_present(cpu)) {
1143 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1144 set_cpu_numa_mem(cpu,
1145 local_memory_node(numa_cpu_lookup_table[cpu]));
1146 }
1147 #endif
1148 }
1149
1150 /* Init the cpumasks so the boot CPU is related to itself */
1151 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1152 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1153 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1154
1155 if (has_coregroup_support())
1156 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1157
1158 init_big_cores();
1159 if (has_big_cores) {
1160 cpumask_set_cpu(boot_cpuid,
1161 cpu_smallcore_mask(boot_cpuid));
1162 }
1163
1164 if (cpu_to_chip_id(boot_cpuid) != -1) {
1165 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1166
1167 /*
1168 * All threads of a core will all belong to the same core,
1169 * chip_id_lookup_table will have one entry per core.
1170 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1171 * other CPUs, will also not have chip-id.
1172 */
1173 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1174 if (chip_id_lookup_table)
1175 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1176 }
1177
1178 if (smp_ops && smp_ops->probe)
1179 smp_ops->probe();
1180
1181 // Initalise the generic SMT topology support
1182 num_threads = 1;
1183 if (smt_enabled_at_boot)
1184 num_threads = smt_enabled_at_boot;
1185 cpu_smt_set_num_threads(num_threads, threads_per_core);
1186 }
1187
smp_prepare_boot_cpu(void)1188 void __init smp_prepare_boot_cpu(void)
1189 {
1190 BUG_ON(smp_processor_id() != boot_cpuid);
1191 #ifdef CONFIG_PPC64
1192 paca_ptrs[boot_cpuid]->__current = current;
1193 #endif
1194 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1195 current_set[boot_cpuid] = current;
1196 }
1197
1198 #ifdef CONFIG_HOTPLUG_CPU
1199
generic_cpu_disable(void)1200 int generic_cpu_disable(void)
1201 {
1202 unsigned int cpu = smp_processor_id();
1203
1204 if (cpu == boot_cpuid)
1205 return -EBUSY;
1206
1207 set_cpu_online(cpu, false);
1208 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1209 systemcfg->processorCount--;
1210 #endif
1211 /* Update affinity of all IRQs previously aimed at this CPU */
1212 irq_migrate_all_off_this_cpu();
1213
1214 /*
1215 * Depending on the details of the interrupt controller, it's possible
1216 * that one of the interrupts we just migrated away from this CPU is
1217 * actually already pending on this CPU. If we leave it in that state
1218 * the interrupt will never be EOI'ed, and will never fire again. So
1219 * temporarily enable interrupts here, to allow any pending interrupt to
1220 * be received (and EOI'ed), before we take this CPU offline.
1221 */
1222 local_irq_enable();
1223 mdelay(1);
1224 local_irq_disable();
1225
1226 return 0;
1227 }
1228
generic_cpu_die(unsigned int cpu)1229 void generic_cpu_die(unsigned int cpu)
1230 {
1231 int i;
1232
1233 for (i = 0; i < 100; i++) {
1234 smp_rmb();
1235 if (is_cpu_dead(cpu))
1236 return;
1237 msleep(100);
1238 }
1239 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1240 }
1241
generic_set_cpu_dead(unsigned int cpu)1242 void generic_set_cpu_dead(unsigned int cpu)
1243 {
1244 per_cpu(cpu_state, cpu) = CPU_DEAD;
1245 }
1246
1247 /*
1248 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1249 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1250 * which makes the delay in generic_cpu_die() not happen.
1251 */
generic_set_cpu_up(unsigned int cpu)1252 void generic_set_cpu_up(unsigned int cpu)
1253 {
1254 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1255 }
1256
generic_check_cpu_restart(unsigned int cpu)1257 int generic_check_cpu_restart(unsigned int cpu)
1258 {
1259 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1260 }
1261
is_cpu_dead(unsigned int cpu)1262 int is_cpu_dead(unsigned int cpu)
1263 {
1264 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1265 }
1266
secondaries_inhibited(void)1267 static bool secondaries_inhibited(void)
1268 {
1269 return kvm_hv_mode_active();
1270 }
1271
1272 #else /* HOTPLUG_CPU */
1273
1274 #define secondaries_inhibited() 0
1275
1276 #endif
1277
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)1278 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1279 {
1280 #ifdef CONFIG_PPC64
1281 paca_ptrs[cpu]->__current = idle;
1282 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1283 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1284 #endif
1285 task_thread_info(idle)->cpu = cpu;
1286 secondary_current = current_set[cpu] = idle;
1287 }
1288
__cpu_up(unsigned int cpu,struct task_struct * tidle)1289 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1290 {
1291 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1292 const bool booting = system_state < SYSTEM_RUNNING;
1293 const unsigned long hp_spin_ms = 1;
1294 unsigned long deadline;
1295 int rc;
1296 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1297
1298 /*
1299 * Don't allow secondary threads to come online if inhibited
1300 */
1301 if (threads_per_core > 1 && secondaries_inhibited() &&
1302 cpu_thread_in_subcore(cpu))
1303 return -EBUSY;
1304
1305 if (smp_ops == NULL ||
1306 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1307 return -EINVAL;
1308
1309 cpu_idle_thread_init(cpu, tidle);
1310
1311 /*
1312 * The platform might need to allocate resources prior to bringing
1313 * up the CPU
1314 */
1315 if (smp_ops->prepare_cpu) {
1316 rc = smp_ops->prepare_cpu(cpu);
1317 if (rc)
1318 return rc;
1319 }
1320
1321 /* Make sure callin-map entry is 0 (can be leftover a CPU
1322 * hotplug
1323 */
1324 cpu_callin_map[cpu] = 0;
1325
1326 /* The information for processor bringup must
1327 * be written out to main store before we release
1328 * the processor.
1329 */
1330 smp_mb();
1331
1332 /* wake up cpus */
1333 DBG("smp: kicking cpu %d\n", cpu);
1334 rc = smp_ops->kick_cpu(cpu);
1335 if (rc) {
1336 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1337 return rc;
1338 }
1339
1340 /*
1341 * At boot time, simply spin on the callin word until the
1342 * deadline passes.
1343 *
1344 * At run time, spin for an optimistic amount of time to avoid
1345 * sleeping in the common case.
1346 */
1347 deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1348 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1349
1350 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1351 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1352 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1353
1354 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1355 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1356 fsleep(sleep_interval_us);
1357 }
1358
1359 if (!cpu_callin_map[cpu]) {
1360 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1361 return -ENOENT;
1362 }
1363
1364 DBG("Processor %u found.\n", cpu);
1365
1366 if (smp_ops->give_timebase)
1367 smp_ops->give_timebase();
1368
1369 /* Wait until cpu puts itself in the online & active maps */
1370 spin_until_cond(cpu_online(cpu));
1371
1372 return 0;
1373 }
1374
1375 /* Return the value of the reg property corresponding to the given
1376 * logical cpu.
1377 */
cpu_to_core_id(int cpu)1378 int cpu_to_core_id(int cpu)
1379 {
1380 struct device_node *np;
1381 int id = -1;
1382
1383 np = of_get_cpu_node(cpu, NULL);
1384 if (!np)
1385 goto out;
1386
1387 id = of_get_cpu_hwid(np, 0);
1388 out:
1389 of_node_put(np);
1390 return id;
1391 }
1392 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1393
1394 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)1395 int cpu_core_index_of_thread(int cpu)
1396 {
1397 return cpu >> threads_shift;
1398 }
1399 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1400
cpu_first_thread_of_core(int core)1401 int cpu_first_thread_of_core(int core)
1402 {
1403 return core << threads_shift;
1404 }
1405 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1406
1407 /* Must be called when no change can occur to cpu_present_mask,
1408 * i.e. during cpu online or offline.
1409 */
cpu_to_l2cache(int cpu)1410 static struct device_node *cpu_to_l2cache(int cpu)
1411 {
1412 struct device_node *np;
1413 struct device_node *cache;
1414
1415 if (!cpu_present(cpu))
1416 return NULL;
1417
1418 np = of_get_cpu_node(cpu, NULL);
1419 if (np == NULL)
1420 return NULL;
1421
1422 cache = of_find_next_cache_node(np);
1423
1424 of_node_put(np);
1425
1426 return cache;
1427 }
1428
update_mask_by_l2(int cpu,cpumask_var_t * mask)1429 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1430 {
1431 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1432 struct device_node *l2_cache, *np;
1433 int i;
1434
1435 if (has_big_cores)
1436 submask_fn = cpu_smallcore_mask;
1437
1438 /*
1439 * If the threads in a thread-group share L2 cache, then the
1440 * L2-mask can be obtained from thread_group_l2_cache_map.
1441 */
1442 if (thread_group_shares_l2) {
1443 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1444
1445 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1446 if (cpu_online(i))
1447 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1448 }
1449
1450 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1451 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1452 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1453 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1454 cpu);
1455 }
1456
1457 return true;
1458 }
1459
1460 l2_cache = cpu_to_l2cache(cpu);
1461 if (!l2_cache || !*mask) {
1462 /* Assume only core siblings share cache with this CPU */
1463 for_each_cpu(i, cpu_sibling_mask(cpu))
1464 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1465
1466 return false;
1467 }
1468
1469 cpumask_and(*mask, cpu_online_mask, cpu_node_mask(cpu));
1470
1471 /* Update l2-cache mask with all the CPUs that are part of submask */
1472 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1473
1474 /* Skip all CPUs already part of current CPU l2-cache mask */
1475 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1476
1477 for_each_cpu(i, *mask) {
1478 /*
1479 * when updating the marks the current CPU has not been marked
1480 * online, but we need to update the cache masks
1481 */
1482 np = cpu_to_l2cache(i);
1483
1484 /* Skip all CPUs already part of current CPU l2-cache */
1485 if (np == l2_cache) {
1486 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1487 cpumask_andnot(*mask, *mask, submask_fn(i));
1488 } else {
1489 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1490 }
1491
1492 of_node_put(np);
1493 }
1494 of_node_put(l2_cache);
1495
1496 return true;
1497 }
1498
1499 #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)1500 static void remove_cpu_from_masks(int cpu)
1501 {
1502 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1503 int i;
1504
1505 unmap_cpu_from_node(cpu);
1506
1507 if (shared_caches)
1508 mask_fn = cpu_l2_cache_mask;
1509
1510 for_each_cpu(i, mask_fn(cpu)) {
1511 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1512 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1513 if (has_big_cores)
1514 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1515 }
1516
1517 for_each_cpu(i, cpu_core_mask(cpu))
1518 set_cpus_unrelated(cpu, i, cpu_core_mask);
1519
1520 if (has_coregroup_support()) {
1521 for_each_cpu(i, cpu_coregroup_mask(cpu))
1522 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1523 }
1524 }
1525 #endif
1526
add_cpu_to_smallcore_masks(int cpu)1527 static inline void add_cpu_to_smallcore_masks(int cpu)
1528 {
1529 int i;
1530
1531 if (!has_big_cores)
1532 return;
1533
1534 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1535
1536 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1537 if (cpu_online(i))
1538 set_cpus_related(i, cpu, cpu_smallcore_mask);
1539 }
1540 }
1541
update_coregroup_mask(int cpu,cpumask_var_t * mask)1542 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1543 {
1544 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1545 int coregroup_id = cpu_to_coregroup_id(cpu);
1546 int i;
1547
1548 if (shared_caches)
1549 submask_fn = cpu_l2_cache_mask;
1550
1551 if (!*mask) {
1552 /* Assume only siblings are part of this CPU's coregroup */
1553 for_each_cpu(i, submask_fn(cpu))
1554 set_cpus_related(cpu, i, cpu_coregroup_mask);
1555
1556 return;
1557 }
1558
1559 cpumask_and(*mask, cpu_online_mask, cpu_node_mask(cpu));
1560
1561 /* Update coregroup mask with all the CPUs that are part of submask */
1562 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1563
1564 /* Skip all CPUs already part of coregroup mask */
1565 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1566
1567 for_each_cpu(i, *mask) {
1568 /* Skip all CPUs not part of this coregroup */
1569 if (coregroup_id == cpu_to_coregroup_id(i)) {
1570 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1571 cpumask_andnot(*mask, *mask, submask_fn(i));
1572 } else {
1573 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1574 }
1575 }
1576 }
1577
add_cpu_to_masks(int cpu)1578 static void add_cpu_to_masks(int cpu)
1579 {
1580 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1581 int first_thread = cpu_first_thread_sibling(cpu);
1582 cpumask_var_t mask;
1583 int chip_id = -1;
1584 bool ret;
1585 int i;
1586
1587 /*
1588 * This CPU will not be in the online mask yet so we need to manually
1589 * add it to its own thread sibling mask.
1590 */
1591 map_cpu_to_node(cpu, cpu_to_node(cpu));
1592 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1593 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1594
1595 for (i = first_thread; i < first_thread + threads_per_core; i++)
1596 if (cpu_online(i))
1597 set_cpus_related(i, cpu, cpu_sibling_mask);
1598
1599 add_cpu_to_smallcore_masks(cpu);
1600
1601 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1602 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1603 update_mask_by_l2(cpu, &mask);
1604
1605 if (has_coregroup_support())
1606 update_coregroup_mask(cpu, &mask);
1607
1608 if (chip_id_lookup_table && ret)
1609 chip_id = cpu_to_chip_id(cpu);
1610
1611 if (shared_caches)
1612 submask_fn = cpu_l2_cache_mask;
1613
1614 /* Update core_mask with all the CPUs that are part of submask */
1615 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1616
1617 /* Skip all CPUs already part of current CPU core mask */
1618 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1619
1620 /* If chip_id is -1; limit the cpu_core_mask to within PKG */
1621 if (chip_id == -1)
1622 cpumask_and(mask, mask, cpu_node_mask(cpu));
1623
1624 for_each_cpu(i, mask) {
1625 if (chip_id == cpu_to_chip_id(i)) {
1626 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1627 cpumask_andnot(mask, mask, submask_fn(i));
1628 } else {
1629 cpumask_andnot(mask, mask, cpu_core_mask(i));
1630 }
1631 }
1632
1633 free_cpumask_var(mask);
1634 }
1635
1636 /* Activate a secondary processor. */
1637 __no_stack_protector
start_secondary(void * unused)1638 void start_secondary(void *unused)
1639 {
1640 unsigned int cpu = raw_smp_processor_id();
1641
1642 /* PPC64 calls setup_kup() in early_setup_secondary() */
1643 if (IS_ENABLED(CONFIG_PPC32))
1644 setup_kup();
1645
1646 mmgrab_lazy_tlb(&init_mm);
1647 current->active_mm = &init_mm;
1648 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1649 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1650 inc_mm_active_cpus(&init_mm);
1651
1652 smp_store_cpu_info(cpu);
1653 set_dec(tb_ticks_per_jiffy);
1654 rcutree_report_cpu_starting(cpu);
1655 cpu_callin_map[cpu] = 1;
1656
1657 if (smp_ops->setup_cpu)
1658 smp_ops->setup_cpu(cpu);
1659 if (smp_ops->take_timebase)
1660 smp_ops->take_timebase();
1661
1662 secondary_cpu_time_init();
1663
1664 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1665 if (system_state == SYSTEM_RUNNING)
1666 systemcfg->processorCount++;
1667 #endif
1668
1669 #ifdef CONFIG_PPC64
1670 vdso_getcpu_init();
1671 #endif
1672 set_numa_node(numa_cpu_lookup_table[cpu]);
1673 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1674
1675 /* Update topology CPU masks */
1676 add_cpu_to_masks(cpu);
1677
1678 /*
1679 * Check for any shared caches. Note that this must be done on a
1680 * per-core basis because one core in the pair might be disabled.
1681 */
1682 if (!shared_caches) {
1683 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1684 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1685
1686 if (has_big_cores)
1687 sibling_mask = cpu_smallcore_mask;
1688
1689 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1690 shared_caches = true;
1691 }
1692
1693 smp_wmb();
1694 notify_cpu_starting(cpu);
1695 set_cpu_online(cpu, true);
1696
1697 boot_init_stack_canary();
1698
1699 local_irq_enable();
1700
1701 /* We can enable ftrace for secondary cpus now */
1702 this_cpu_enable_ftrace();
1703
1704 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1705
1706 BUG();
1707 }
1708
1709 static struct sched_domain_topology_level powerpc_topology[6];
1710
build_sched_topology(void)1711 static void __init build_sched_topology(void)
1712 {
1713 int i = 0;
1714
1715 if (is_shared_processor() && has_big_cores)
1716 static_branch_enable(&splpar_asym_pack);
1717
1718 #ifdef CONFIG_SCHED_SMT
1719 if (has_big_cores) {
1720 pr_info("Big cores detected but using small core scheduling\n");
1721 powerpc_topology[i++] =
1722 SDTL_INIT(tl_smallcore_smt_mask, powerpc_smt_flags, SMT);
1723 } else {
1724 powerpc_topology[i++] = SDTL_INIT(tl_smt_mask, powerpc_smt_flags, SMT);
1725 }
1726 #endif
1727 if (shared_caches) {
1728 powerpc_topology[i++] =
1729 SDTL_INIT(tl_cache_mask, powerpc_shared_cache_flags, CACHE);
1730 }
1731
1732 if (has_coregroup_support()) {
1733 powerpc_topology[i++] =
1734 SDTL_INIT(tl_mc_mask, powerpc_shared_proc_flags, MC);
1735 }
1736
1737 powerpc_topology[i++] = SDTL_INIT(tl_pkg_mask, powerpc_shared_proc_flags, PKG);
1738
1739 /* There must be one trailing NULL entry left. */
1740 BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1741
1742 set_sched_topology(powerpc_topology);
1743 }
1744
smp_cpus_done(unsigned int max_cpus)1745 void __init smp_cpus_done(unsigned int max_cpus)
1746 {
1747 /*
1748 * We are running pinned to the boot CPU, see rest_init().
1749 */
1750 if (smp_ops && smp_ops->setup_cpu)
1751 smp_ops->setup_cpu(boot_cpuid);
1752
1753 if (smp_ops && smp_ops->bringup_done)
1754 smp_ops->bringup_done();
1755
1756 dump_numa_cpu_topology();
1757 build_sched_topology();
1758 }
1759
1760 /*
1761 * For asym packing, by default lower numbered CPU has higher priority.
1762 * On shared processors, pack to lower numbered core. However avoid moving
1763 * between thread_groups within the same core.
1764 */
arch_asym_cpu_priority(int cpu)1765 int arch_asym_cpu_priority(int cpu)
1766 {
1767 if (static_branch_unlikely(&splpar_asym_pack))
1768 return -cpu / threads_per_core;
1769
1770 return -cpu;
1771 }
1772
1773 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1774 int __cpu_disable(void)
1775 {
1776 int cpu = smp_processor_id();
1777 int err;
1778
1779 if (!smp_ops->cpu_disable)
1780 return -ENOSYS;
1781
1782 this_cpu_disable_ftrace();
1783
1784 err = smp_ops->cpu_disable();
1785 if (err)
1786 return err;
1787
1788 /* Update sibling maps */
1789 remove_cpu_from_masks(cpu);
1790
1791 return 0;
1792 }
1793
__cpu_die(unsigned int cpu)1794 void __cpu_die(unsigned int cpu)
1795 {
1796 /*
1797 * This could perhaps be a generic call in idlea_task_dead(), but
1798 * that requires testing from all archs, so first put it here to
1799 */
1800 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1801 dec_mm_active_cpus(&init_mm);
1802 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1803
1804 if (smp_ops->cpu_die)
1805 smp_ops->cpu_die(cpu);
1806 }
1807
arch_cpu_idle_dead(void)1808 void __noreturn arch_cpu_idle_dead(void)
1809 {
1810 /*
1811 * Disable on the down path. This will be re-enabled by
1812 * start_secondary() via start_secondary_resume() below
1813 */
1814 this_cpu_disable_ftrace();
1815
1816 if (smp_ops->cpu_offline_self)
1817 smp_ops->cpu_offline_self();
1818
1819 /* If we return, we re-enter start_secondary */
1820 start_secondary_resume();
1821 }
1822
1823 #endif
1824