1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/task_work.h>
19
20 #include "posix-timers.h"
21
22 static void posix_cpu_timer_rearm(struct k_itimer *timer);
23
posix_cputimers_group_init(struct posix_cputimers * pct,u64 cpu_limit)24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
25 {
26 posix_cputimers_init(pct);
27 if (cpu_limit != RLIM_INFINITY) {
28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
29 pct->timers_active = true;
30 }
31 }
32
33 /*
34 * Called after updating RLIMIT_CPU to run cpu timer and update
35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
36 * necessary. Needs siglock protection since other code may update the
37 * expiration cache as well.
38 *
39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and
40 * we cannot lock_task_sighand. Cannot fail if task is current.
41 */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
43 {
44 u64 nsecs = rlim_new * NSEC_PER_SEC;
45 unsigned long irq_fl;
46
47 if (!lock_task_sighand(task, &irq_fl))
48 return -ESRCH;
49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
50 unlock_task_sighand(task, &irq_fl);
51 return 0;
52 }
53
54 /*
55 * Functions for validating access to tasks.
56 */
pid_for_clock(const clockid_t clock,bool gettime)57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
58 {
59 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
60 const pid_t upid = CPUCLOCK_PID(clock);
61 struct pid *pid;
62
63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
64 return NULL;
65
66 /*
67 * If the encoded PID is 0, then the timer is targeted at current
68 * or the process to which current belongs.
69 */
70 if (upid == 0)
71 return thread ? task_pid(current) : task_tgid(current);
72
73 pid = find_vpid(upid);
74 if (!pid)
75 return NULL;
76
77 if (thread) {
78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
80 }
81
82 /*
83 * For clock_gettime(PROCESS) allow finding the process by
84 * with the pid of the current task. The code needs the tgid
85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
86 * used to find the process.
87 */
88 if (gettime && (pid == task_pid(current)))
89 return task_tgid(current);
90
91 /*
92 * For processes require that pid identifies a process.
93 */
94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
95 }
96
validate_clock_permissions(const clockid_t clock)97 static inline int validate_clock_permissions(const clockid_t clock)
98 {
99 int ret;
100
101 rcu_read_lock();
102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
103 rcu_read_unlock();
104
105 return ret;
106 }
107
clock_pid_type(const clockid_t clock)108 static inline enum pid_type clock_pid_type(const clockid_t clock)
109 {
110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
111 }
112
cpu_timer_task_rcu(struct k_itimer * timer)113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
114 {
115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
116 }
117
118 /*
119 * Update expiry time from increment, and increase overrun count,
120 * given the current clock sample.
121 */
bump_cpu_timer(struct k_itimer * timer,u64 now)122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
123 {
124 u64 delta, incr, expires = timer->it.cpu.node.expires;
125 int i;
126
127 if (!timer->it_interval)
128 return expires;
129
130 if (now < expires)
131 return expires;
132
133 incr = timer->it_interval;
134 delta = now + incr - expires;
135
136 /* Don't use (incr*2 < delta), incr*2 might overflow. */
137 for (i = 0; incr < delta - incr; i++)
138 incr = incr << 1;
139
140 for (; i >= 0; incr >>= 1, i--) {
141 if (delta < incr)
142 continue;
143
144 timer->it.cpu.node.expires += incr;
145 timer->it_overrun += 1LL << i;
146 delta -= incr;
147 }
148 return timer->it.cpu.node.expires;
149 }
150
151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
expiry_cache_is_inactive(const struct posix_cputimers * pct)152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
153 {
154 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
155 ~pct->bases[CPUCLOCK_VIRT].nextevt |
156 ~pct->bases[CPUCLOCK_SCHED].nextevt);
157 }
158
159 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
161 {
162 int error = validate_clock_permissions(which_clock);
163
164 if (!error) {
165 tp->tv_sec = 0;
166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
168 /*
169 * If sched_clock is using a cycle counter, we
170 * don't have any idea of its true resolution
171 * exported, but it is much more than 1s/HZ.
172 */
173 tp->tv_nsec = 1;
174 }
175 }
176 return error;
177 }
178
179 static int
posix_cpu_clock_set(const clockid_t clock,const struct timespec64 * tp)180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
181 {
182 int error = validate_clock_permissions(clock);
183
184 /*
185 * You can never reset a CPU clock, but we check for other errors
186 * in the call before failing with EPERM.
187 */
188 return error ? : -EPERM;
189 }
190
191 /*
192 * Sample a per-thread clock for the given task. clkid is validated.
193 */
cpu_clock_sample(const clockid_t clkid,struct task_struct * p)194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
195 {
196 u64 utime, stime;
197
198 if (clkid == CPUCLOCK_SCHED)
199 return task_sched_runtime(p);
200
201 task_cputime(p, &utime, &stime);
202
203 switch (clkid) {
204 case CPUCLOCK_PROF:
205 return utime + stime;
206 case CPUCLOCK_VIRT:
207 return utime;
208 default:
209 WARN_ON_ONCE(1);
210 }
211 return 0;
212 }
213
store_samples(u64 * samples,u64 stime,u64 utime,u64 rtime)214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
215 {
216 samples[CPUCLOCK_PROF] = stime + utime;
217 samples[CPUCLOCK_VIRT] = utime;
218 samples[CPUCLOCK_SCHED] = rtime;
219 }
220
task_sample_cputime(struct task_struct * p,u64 * samples)221 static void task_sample_cputime(struct task_struct *p, u64 *samples)
222 {
223 u64 stime, utime;
224
225 task_cputime(p, &utime, &stime);
226 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
227 }
228
proc_sample_cputime_atomic(struct task_cputime_atomic * at,u64 * samples)229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
230 u64 *samples)
231 {
232 u64 stime, utime, rtime;
233
234 utime = atomic64_read(&at->utime);
235 stime = atomic64_read(&at->stime);
236 rtime = atomic64_read(&at->sum_exec_runtime);
237 store_samples(samples, stime, utime, rtime);
238 }
239
240 /*
241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
242 * to avoid race conditions with concurrent updates to cputime.
243 */
__update_gt_cputime(atomic64_t * cputime,u64 sum_cputime)244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
245 {
246 u64 curr_cputime = atomic64_read(cputime);
247
248 do {
249 if (sum_cputime <= curr_cputime)
250 return;
251 } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
252 }
253
update_gt_cputime(struct task_cputime_atomic * cputime_atomic,struct task_cputime * sum)254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
255 struct task_cputime *sum)
256 {
257 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
258 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
259 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
260 }
261
262 /**
263 * thread_group_sample_cputime - Sample cputime for a given task
264 * @tsk: Task for which cputime needs to be started
265 * @samples: Storage for time samples
266 *
267 * Called from sys_getitimer() to calculate the expiry time of an active
268 * timer. That means group cputime accounting is already active. Called
269 * with task sighand lock held.
270 *
271 * Updates @times with an uptodate sample of the thread group cputimes.
272 */
thread_group_sample_cputime(struct task_struct * tsk,u64 * samples)273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
274 {
275 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
276 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
277
278 WARN_ON_ONCE(!pct->timers_active);
279
280 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
281 }
282
283 /**
284 * thread_group_start_cputime - Start cputime and return a sample
285 * @tsk: Task for which cputime needs to be started
286 * @samples: Storage for time samples
287 *
288 * The thread group cputime accounting is avoided when there are no posix
289 * CPU timers armed. Before starting a timer it's required to check whether
290 * the time accounting is active. If not, a full update of the atomic
291 * accounting store needs to be done and the accounting enabled.
292 *
293 * Updates @times with an uptodate sample of the thread group cputimes.
294 */
thread_group_start_cputime(struct task_struct * tsk,u64 * samples)295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
296 {
297 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
298 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
299
300 lockdep_assert_task_sighand_held(tsk);
301
302 /* Check if cputimer isn't running. This is accessed without locking. */
303 if (!READ_ONCE(pct->timers_active)) {
304 struct task_cputime sum;
305
306 /*
307 * The POSIX timer interface allows for absolute time expiry
308 * values through the TIMER_ABSTIME flag, therefore we have
309 * to synchronize the timer to the clock every time we start it.
310 */
311 thread_group_cputime(tsk, &sum);
312 update_gt_cputime(&cputimer->cputime_atomic, &sum);
313
314 /*
315 * We're setting timers_active without a lock. Ensure this
316 * only gets written to in one operation. We set it after
317 * update_gt_cputime() as a small optimization, but
318 * barriers are not required because update_gt_cputime()
319 * can handle concurrent updates.
320 */
321 WRITE_ONCE(pct->timers_active, true);
322 }
323 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
324 }
325
__thread_group_cputime(struct task_struct * tsk,u64 * samples)326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
327 {
328 struct task_cputime ct;
329
330 thread_group_cputime(tsk, &ct);
331 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
332 }
333
334 /*
335 * Sample a process (thread group) clock for the given task clkid. If the
336 * group's cputime accounting is already enabled, read the atomic
337 * store. Otherwise a full update is required. clkid is already validated.
338 */
cpu_clock_sample_group(const clockid_t clkid,struct task_struct * p,bool start)339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
340 bool start)
341 {
342 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
343 struct posix_cputimers *pct = &p->signal->posix_cputimers;
344 u64 samples[CPUCLOCK_MAX];
345
346 if (!READ_ONCE(pct->timers_active)) {
347 if (start)
348 thread_group_start_cputime(p, samples);
349 else
350 __thread_group_cputime(p, samples);
351 } else {
352 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
353 }
354
355 return samples[clkid];
356 }
357
posix_cpu_clock_get(const clockid_t clock,struct timespec64 * tp)358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
359 {
360 const clockid_t clkid = CPUCLOCK_WHICH(clock);
361 struct task_struct *tsk;
362 u64 t;
363
364 rcu_read_lock();
365 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
366 if (!tsk) {
367 rcu_read_unlock();
368 return -EINVAL;
369 }
370
371 if (CPUCLOCK_PERTHREAD(clock))
372 t = cpu_clock_sample(clkid, tsk);
373 else
374 t = cpu_clock_sample_group(clkid, tsk, false);
375 rcu_read_unlock();
376
377 *tp = ns_to_timespec64(t);
378 return 0;
379 }
380
381 /*
382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
384 * new timer already all-zeros initialized.
385 */
posix_cpu_timer_create(struct k_itimer * new_timer)386 static int posix_cpu_timer_create(struct k_itimer *new_timer)
387 {
388 static struct lock_class_key posix_cpu_timers_key;
389 struct pid *pid;
390
391 rcu_read_lock();
392 pid = pid_for_clock(new_timer->it_clock, false);
393 if (!pid) {
394 rcu_read_unlock();
395 return -EINVAL;
396 }
397
398 /*
399 * If posix timer expiry is handled in task work context then
400 * timer::it_lock can be taken without disabling interrupts as all
401 * other locking happens in task context. This requires a separate
402 * lock class key otherwise regular posix timer expiry would record
403 * the lock class being taken in interrupt context and generate a
404 * false positive warning.
405 */
406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
407 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
408
409 new_timer->kclock = &clock_posix_cpu;
410 timerqueue_init(&new_timer->it.cpu.node);
411 new_timer->it.cpu.pid = get_pid(pid);
412 rcu_read_unlock();
413 return 0;
414 }
415
timer_base(struct k_itimer * timer,struct task_struct * tsk)416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
417 struct task_struct *tsk)
418 {
419 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
420
421 if (CPUCLOCK_PERTHREAD(timer->it_clock))
422 return tsk->posix_cputimers.bases + clkidx;
423 else
424 return tsk->signal->posix_cputimers.bases + clkidx;
425 }
426
427 /*
428 * Force recalculating the base earliest expiration on the next tick.
429 * This will also re-evaluate the need to keep around the process wide
430 * cputime counter and tick dependency and eventually shut these down
431 * if necessary.
432 */
trigger_base_recalc_expires(struct k_itimer * timer,struct task_struct * tsk)433 static void trigger_base_recalc_expires(struct k_itimer *timer,
434 struct task_struct *tsk)
435 {
436 struct posix_cputimer_base *base = timer_base(timer, tsk);
437
438 base->nextevt = 0;
439 }
440
441 /*
442 * Dequeue the timer and reset the base if it was its earliest expiration.
443 * It makes sure the next tick recalculates the base next expiration so we
444 * don't keep the costly process wide cputime counter around for a random
445 * amount of time, along with the tick dependency.
446 *
447 * If another timer gets queued between this and the next tick, its
448 * expiration will update the base next event if necessary on the next
449 * tick.
450 */
disarm_timer(struct k_itimer * timer,struct task_struct * p)451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
452 {
453 struct cpu_timer *ctmr = &timer->it.cpu;
454 struct posix_cputimer_base *base;
455
456 timer->it_active = 0;
457 if (!cpu_timer_dequeue(ctmr))
458 return;
459
460 base = timer_base(timer, p);
461 if (cpu_timer_getexpires(ctmr) == base->nextevt)
462 trigger_base_recalc_expires(timer, p);
463 }
464
465
466 /*
467 * Clean up a CPU-clock timer that is about to be destroyed.
468 * This is called from timer deletion with the timer already locked.
469 * If we return TIMER_RETRY, it's necessary to release the timer's lock
470 * and try again. (This happens when the timer is in the middle of firing.)
471 */
posix_cpu_timer_del(struct k_itimer * timer)472 static int posix_cpu_timer_del(struct k_itimer *timer)
473 {
474 struct cpu_timer *ctmr = &timer->it.cpu;
475 struct sighand_struct *sighand;
476 struct task_struct *p;
477 unsigned long flags;
478 int ret = 0;
479
480 rcu_read_lock();
481 p = cpu_timer_task_rcu(timer);
482 if (!p)
483 goto out;
484
485 /*
486 * Protect against sighand release/switch in exit/exec and process/
487 * thread timer list entry concurrent read/writes.
488 */
489 sighand = lock_task_sighand(p, &flags);
490 if (unlikely(sighand == NULL)) {
491 /*
492 * This raced with the reaping of the task. The exit cleanup
493 * should have removed this timer from the timer queue.
494 */
495 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
496 } else {
497 if (timer->it.cpu.firing)
498 ret = TIMER_RETRY;
499 else
500 disarm_timer(timer, p);
501
502 unlock_task_sighand(p, &flags);
503 }
504
505 out:
506 rcu_read_unlock();
507 if (!ret)
508 put_pid(ctmr->pid);
509
510 return ret;
511 }
512
cleanup_timerqueue(struct timerqueue_head * head)513 static void cleanup_timerqueue(struct timerqueue_head *head)
514 {
515 struct timerqueue_node *node;
516 struct cpu_timer *ctmr;
517
518 while ((node = timerqueue_getnext(head))) {
519 timerqueue_del(head, node);
520 ctmr = container_of(node, struct cpu_timer, node);
521 ctmr->head = NULL;
522 }
523 }
524
525 /*
526 * Clean out CPU timers which are still armed when a thread exits. The
527 * timers are only removed from the list. No other updates are done. The
528 * corresponding posix timers are still accessible, but cannot be rearmed.
529 *
530 * This must be called with the siglock held.
531 */
cleanup_timers(struct posix_cputimers * pct)532 static void cleanup_timers(struct posix_cputimers *pct)
533 {
534 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
535 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
536 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
537 }
538
539 /*
540 * These are both called with the siglock held, when the current thread
541 * is being reaped. When the final (leader) thread in the group is reaped,
542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
543 */
posix_cpu_timers_exit(struct task_struct * tsk)544 void posix_cpu_timers_exit(struct task_struct *tsk)
545 {
546 cleanup_timers(&tsk->posix_cputimers);
547 }
posix_cpu_timers_exit_group(struct task_struct * tsk)548 void posix_cpu_timers_exit_group(struct task_struct *tsk)
549 {
550 cleanup_timers(&tsk->signal->posix_cputimers);
551 }
552
553 /*
554 * Insert the timer on the appropriate list before any timers that
555 * expire later. This must be called with the sighand lock held.
556 */
arm_timer(struct k_itimer * timer,struct task_struct * p)557 static void arm_timer(struct k_itimer *timer, struct task_struct *p)
558 {
559 struct posix_cputimer_base *base = timer_base(timer, p);
560 struct cpu_timer *ctmr = &timer->it.cpu;
561 u64 newexp = cpu_timer_getexpires(ctmr);
562
563 timer->it_active = 1;
564 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
565 return;
566
567 /*
568 * We are the new earliest-expiring POSIX 1.b timer, hence
569 * need to update expiration cache. Take into account that
570 * for process timers we share expiration cache with itimers
571 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
572 */
573 if (newexp < base->nextevt)
574 base->nextevt = newexp;
575
576 if (CPUCLOCK_PERTHREAD(timer->it_clock))
577 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
578 else
579 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
580 }
581
582 /*
583 * The timer is locked, fire it and arrange for its reload.
584 */
cpu_timer_fire(struct k_itimer * timer)585 static void cpu_timer_fire(struct k_itimer *timer)
586 {
587 struct cpu_timer *ctmr = &timer->it.cpu;
588
589 timer->it_active = 0;
590 if (unlikely(timer->sigq == NULL)) {
591 /*
592 * This a special case for clock_nanosleep,
593 * not a normal timer from sys_timer_create.
594 */
595 wake_up_process(timer->it_process);
596 cpu_timer_setexpires(ctmr, 0);
597 } else if (!timer->it_interval) {
598 /*
599 * One-shot timer. Clear it as soon as it's fired.
600 */
601 posix_timer_queue_signal(timer);
602 cpu_timer_setexpires(ctmr, 0);
603 } else if (posix_timer_queue_signal(timer)) {
604 /*
605 * The signal did not get queued because the signal
606 * was ignored, so we won't get any callback to
607 * reload the timer. But we need to keep it
608 * ticking in case the signal is deliverable next time.
609 */
610 posix_cpu_timer_rearm(timer);
611 ++timer->it_requeue_pending;
612 }
613 }
614
615 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
616
617 /*
618 * Guts of sys_timer_settime for CPU timers.
619 * This is called with the timer locked and interrupts disabled.
620 * If we return TIMER_RETRY, it's necessary to release the timer's lock
621 * and try again. (This happens when the timer is in the middle of firing.)
622 */
posix_cpu_timer_set(struct k_itimer * timer,int timer_flags,struct itimerspec64 * new,struct itimerspec64 * old)623 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
624 struct itimerspec64 *new, struct itimerspec64 *old)
625 {
626 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
627 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
628 struct cpu_timer *ctmr = &timer->it.cpu;
629 u64 old_expires, new_expires, now;
630 struct sighand_struct *sighand;
631 struct task_struct *p;
632 unsigned long flags;
633 int ret = 0;
634
635 rcu_read_lock();
636 p = cpu_timer_task_rcu(timer);
637 if (!p) {
638 /*
639 * If p has just been reaped, we can no
640 * longer get any information about it at all.
641 */
642 rcu_read_unlock();
643 return -ESRCH;
644 }
645
646 /*
647 * Use the to_ktime conversion because that clamps the maximum
648 * value to KTIME_MAX and avoid multiplication overflows.
649 */
650 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
651
652 /*
653 * Protect against sighand release/switch in exit/exec and p->cpu_timers
654 * and p->signal->cpu_timers read/write in arm_timer()
655 */
656 sighand = lock_task_sighand(p, &flags);
657 /*
658 * If p has just been reaped, we can no
659 * longer get any information about it at all.
660 */
661 if (unlikely(sighand == NULL)) {
662 rcu_read_unlock();
663 return -ESRCH;
664 }
665
666 /* Retrieve the current expiry time before disarming the timer */
667 old_expires = cpu_timer_getexpires(ctmr);
668
669 if (unlikely(timer->it.cpu.firing)) {
670 timer->it.cpu.firing = -1;
671 ret = TIMER_RETRY;
672 } else {
673 cpu_timer_dequeue(ctmr);
674 timer->it_active = 0;
675 }
676
677 /*
678 * Sample the current clock for saving the previous setting
679 * and for rearming the timer.
680 */
681 if (CPUCLOCK_PERTHREAD(timer->it_clock))
682 now = cpu_clock_sample(clkid, p);
683 else
684 now = cpu_clock_sample_group(clkid, p, !sigev_none);
685
686 /* Retrieve the previous expiry value if requested. */
687 if (old) {
688 old->it_value = (struct timespec64){ };
689 if (old_expires)
690 __posix_cpu_timer_get(timer, old, now);
691 }
692
693 /* Retry if the timer expiry is running concurrently */
694 if (unlikely(ret)) {
695 unlock_task_sighand(p, &flags);
696 goto out;
697 }
698
699 /* Convert relative expiry time to absolute */
700 if (new_expires && !(timer_flags & TIMER_ABSTIME))
701 new_expires += now;
702
703 /* Set the new expiry time (might be 0) */
704 cpu_timer_setexpires(ctmr, new_expires);
705
706 /*
707 * Arm the timer if it is not disabled, the new expiry value has
708 * not yet expired and the timer requires signal delivery.
709 * SIGEV_NONE timers are never armed. In case the timer is not
710 * armed, enforce the reevaluation of the timer base so that the
711 * process wide cputime counter can be disabled eventually.
712 */
713 if (likely(!sigev_none)) {
714 if (new_expires && now < new_expires)
715 arm_timer(timer, p);
716 else
717 trigger_base_recalc_expires(timer, p);
718 }
719
720 unlock_task_sighand(p, &flags);
721
722 posix_timer_set_common(timer, new);
723
724 /*
725 * If the new expiry time was already in the past the timer was not
726 * queued. Fire it immediately even if the thread never runs to
727 * accumulate more time on this clock.
728 */
729 if (!sigev_none && new_expires && now >= new_expires)
730 cpu_timer_fire(timer);
731 out:
732 rcu_read_unlock();
733 return ret;
734 }
735
__posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec64 * itp,u64 now)736 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
737 {
738 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
739 u64 expires, iv = timer->it_interval;
740
741 /*
742 * Make sure that interval timers are moved forward for the
743 * following cases:
744 * - SIGEV_NONE timers which are never armed
745 * - Timers which expired, but the signal has not yet been
746 * delivered
747 */
748 if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none))
749 expires = bump_cpu_timer(timer, now);
750 else
751 expires = cpu_timer_getexpires(&timer->it.cpu);
752
753 /*
754 * Expired interval timers cannot have a remaining time <= 0.
755 * The kernel has to move them forward so that the next
756 * timer expiry is > @now.
757 */
758 if (now < expires) {
759 itp->it_value = ns_to_timespec64(expires - now);
760 } else {
761 /*
762 * A single shot SIGEV_NONE timer must return 0, when it is
763 * expired! Timers which have a real signal delivery mode
764 * must return a remaining time greater than 0 because the
765 * signal has not yet been delivered.
766 */
767 if (!sigev_none)
768 itp->it_value.tv_nsec = 1;
769 }
770 }
771
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec64 * itp)772 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
773 {
774 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
775 struct task_struct *p;
776 u64 now;
777
778 rcu_read_lock();
779 p = cpu_timer_task_rcu(timer);
780 if (p && cpu_timer_getexpires(&timer->it.cpu)) {
781 itp->it_interval = ktime_to_timespec64(timer->it_interval);
782
783 if (CPUCLOCK_PERTHREAD(timer->it_clock))
784 now = cpu_clock_sample(clkid, p);
785 else
786 now = cpu_clock_sample_group(clkid, p, false);
787
788 __posix_cpu_timer_get(timer, itp, now);
789 }
790 rcu_read_unlock();
791 }
792
793 #define MAX_COLLECTED 20
794
collect_timerqueue(struct timerqueue_head * head,struct list_head * firing,u64 now)795 static u64 collect_timerqueue(struct timerqueue_head *head,
796 struct list_head *firing, u64 now)
797 {
798 struct timerqueue_node *next;
799 int i = 0;
800
801 while ((next = timerqueue_getnext(head))) {
802 struct cpu_timer *ctmr;
803 u64 expires;
804
805 ctmr = container_of(next, struct cpu_timer, node);
806 expires = cpu_timer_getexpires(ctmr);
807 /* Limit the number of timers to expire at once */
808 if (++i == MAX_COLLECTED || now < expires)
809 return expires;
810
811 ctmr->firing = 1;
812 /* See posix_cpu_timer_wait_running() */
813 rcu_assign_pointer(ctmr->handling, current);
814 cpu_timer_dequeue(ctmr);
815 list_add_tail(&ctmr->elist, firing);
816 }
817
818 return U64_MAX;
819 }
820
collect_posix_cputimers(struct posix_cputimers * pct,u64 * samples,struct list_head * firing)821 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
822 struct list_head *firing)
823 {
824 struct posix_cputimer_base *base = pct->bases;
825 int i;
826
827 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
828 base->nextevt = collect_timerqueue(&base->tqhead, firing,
829 samples[i]);
830 }
831 }
832
check_dl_overrun(struct task_struct * tsk)833 static inline void check_dl_overrun(struct task_struct *tsk)
834 {
835 if (tsk->dl.dl_overrun) {
836 tsk->dl.dl_overrun = 0;
837 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
838 }
839 }
840
check_rlimit(u64 time,u64 limit,int signo,bool rt,bool hard)841 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
842 {
843 if (time < limit)
844 return false;
845
846 if (print_fatal_signals) {
847 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
848 rt ? "RT" : "CPU", hard ? "hard" : "soft",
849 current->comm, task_pid_nr(current));
850 }
851 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
852 return true;
853 }
854
855 /*
856 * Check for any per-thread CPU timers that have fired and move them off
857 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
858 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
859 */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)860 static void check_thread_timers(struct task_struct *tsk,
861 struct list_head *firing)
862 {
863 struct posix_cputimers *pct = &tsk->posix_cputimers;
864 u64 samples[CPUCLOCK_MAX];
865 unsigned long soft;
866
867 if (dl_task(tsk))
868 check_dl_overrun(tsk);
869
870 if (expiry_cache_is_inactive(pct))
871 return;
872
873 task_sample_cputime(tsk, samples);
874 collect_posix_cputimers(pct, samples, firing);
875
876 /*
877 * Check for the special case thread timers.
878 */
879 soft = task_rlimit(tsk, RLIMIT_RTTIME);
880 if (soft != RLIM_INFINITY) {
881 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
882 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
883 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
884
885 /* At the hard limit, send SIGKILL. No further action. */
886 if (hard != RLIM_INFINITY &&
887 check_rlimit(rttime, hard, SIGKILL, true, true))
888 return;
889
890 /* At the soft limit, send a SIGXCPU every second */
891 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
892 soft += USEC_PER_SEC;
893 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
894 }
895 }
896
897 if (expiry_cache_is_inactive(pct))
898 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
899 }
900
stop_process_timers(struct signal_struct * sig)901 static inline void stop_process_timers(struct signal_struct *sig)
902 {
903 struct posix_cputimers *pct = &sig->posix_cputimers;
904
905 /* Turn off the active flag. This is done without locking. */
906 WRITE_ONCE(pct->timers_active, false);
907 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
908 }
909
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,u64 * expires,u64 cur_time,int signo)910 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
911 u64 *expires, u64 cur_time, int signo)
912 {
913 if (!it->expires)
914 return;
915
916 if (cur_time >= it->expires) {
917 if (it->incr)
918 it->expires += it->incr;
919 else
920 it->expires = 0;
921
922 trace_itimer_expire(signo == SIGPROF ?
923 ITIMER_PROF : ITIMER_VIRTUAL,
924 task_tgid(tsk), cur_time);
925 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
926 }
927
928 if (it->expires && it->expires < *expires)
929 *expires = it->expires;
930 }
931
932 /*
933 * Check for any per-thread CPU timers that have fired and move them
934 * off the tsk->*_timers list onto the firing list. Per-thread timers
935 * have already been taken off.
936 */
check_process_timers(struct task_struct * tsk,struct list_head * firing)937 static void check_process_timers(struct task_struct *tsk,
938 struct list_head *firing)
939 {
940 struct signal_struct *const sig = tsk->signal;
941 struct posix_cputimers *pct = &sig->posix_cputimers;
942 u64 samples[CPUCLOCK_MAX];
943 unsigned long soft;
944
945 /*
946 * If there are no active process wide timers (POSIX 1.b, itimers,
947 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
948 * processing when there is already another task handling them.
949 */
950 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
951 return;
952
953 /*
954 * Signify that a thread is checking for process timers.
955 * Write access to this field is protected by the sighand lock.
956 */
957 pct->expiry_active = true;
958
959 /*
960 * Collect the current process totals. Group accounting is active
961 * so the sample can be taken directly.
962 */
963 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
964 collect_posix_cputimers(pct, samples, firing);
965
966 /*
967 * Check for the special case process timers.
968 */
969 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
970 &pct->bases[CPUCLOCK_PROF].nextevt,
971 samples[CPUCLOCK_PROF], SIGPROF);
972 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
973 &pct->bases[CPUCLOCK_VIRT].nextevt,
974 samples[CPUCLOCK_VIRT], SIGVTALRM);
975
976 soft = task_rlimit(tsk, RLIMIT_CPU);
977 if (soft != RLIM_INFINITY) {
978 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
979 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
980 u64 ptime = samples[CPUCLOCK_PROF];
981 u64 softns = (u64)soft * NSEC_PER_SEC;
982 u64 hardns = (u64)hard * NSEC_PER_SEC;
983
984 /* At the hard limit, send SIGKILL. No further action. */
985 if (hard != RLIM_INFINITY &&
986 check_rlimit(ptime, hardns, SIGKILL, false, true))
987 return;
988
989 /* At the soft limit, send a SIGXCPU every second */
990 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
991 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
992 softns += NSEC_PER_SEC;
993 }
994
995 /* Update the expiry cache */
996 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
997 pct->bases[CPUCLOCK_PROF].nextevt = softns;
998 }
999
1000 if (expiry_cache_is_inactive(pct))
1001 stop_process_timers(sig);
1002
1003 pct->expiry_active = false;
1004 }
1005
1006 /*
1007 * This is called from the signal code (via posixtimer_rearm)
1008 * when the last timer signal was delivered and we have to reload the timer.
1009 */
posix_cpu_timer_rearm(struct k_itimer * timer)1010 static void posix_cpu_timer_rearm(struct k_itimer *timer)
1011 {
1012 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1013 struct task_struct *p;
1014 struct sighand_struct *sighand;
1015 unsigned long flags;
1016 u64 now;
1017
1018 rcu_read_lock();
1019 p = cpu_timer_task_rcu(timer);
1020 if (!p)
1021 goto out;
1022
1023 /* Protect timer list r/w in arm_timer() */
1024 sighand = lock_task_sighand(p, &flags);
1025 if (unlikely(sighand == NULL))
1026 goto out;
1027
1028 /*
1029 * Fetch the current sample and update the timer's expiry time.
1030 */
1031 if (CPUCLOCK_PERTHREAD(timer->it_clock))
1032 now = cpu_clock_sample(clkid, p);
1033 else
1034 now = cpu_clock_sample_group(clkid, p, true);
1035
1036 bump_cpu_timer(timer, now);
1037
1038 /*
1039 * Now re-arm for the new expiry time.
1040 */
1041 arm_timer(timer, p);
1042 unlock_task_sighand(p, &flags);
1043 out:
1044 rcu_read_unlock();
1045 }
1046
1047 /**
1048 * task_cputimers_expired - Check whether posix CPU timers are expired
1049 *
1050 * @samples: Array of current samples for the CPUCLOCK clocks
1051 * @pct: Pointer to a posix_cputimers container
1052 *
1053 * Returns true if any member of @samples is greater than the corresponding
1054 * member of @pct->bases[CLK].nextevt. False otherwise
1055 */
1056 static inline bool
task_cputimers_expired(const u64 * samples,struct posix_cputimers * pct)1057 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1058 {
1059 int i;
1060
1061 for (i = 0; i < CPUCLOCK_MAX; i++) {
1062 if (samples[i] >= pct->bases[i].nextevt)
1063 return true;
1064 }
1065 return false;
1066 }
1067
1068 /**
1069 * fastpath_timer_check - POSIX CPU timers fast path.
1070 *
1071 * @tsk: The task (thread) being checked.
1072 *
1073 * Check the task and thread group timers. If both are zero (there are no
1074 * timers set) return false. Otherwise snapshot the task and thread group
1075 * timers and compare them with the corresponding expiration times. Return
1076 * true if a timer has expired, else return false.
1077 */
fastpath_timer_check(struct task_struct * tsk)1078 static inline bool fastpath_timer_check(struct task_struct *tsk)
1079 {
1080 struct posix_cputimers *pct = &tsk->posix_cputimers;
1081 struct signal_struct *sig;
1082
1083 if (!expiry_cache_is_inactive(pct)) {
1084 u64 samples[CPUCLOCK_MAX];
1085
1086 task_sample_cputime(tsk, samples);
1087 if (task_cputimers_expired(samples, pct))
1088 return true;
1089 }
1090
1091 sig = tsk->signal;
1092 pct = &sig->posix_cputimers;
1093 /*
1094 * Check if thread group timers expired when timers are active and
1095 * no other thread in the group is already handling expiry for
1096 * thread group cputimers. These fields are read without the
1097 * sighand lock. However, this is fine because this is meant to be
1098 * a fastpath heuristic to determine whether we should try to
1099 * acquire the sighand lock to handle timer expiry.
1100 *
1101 * In the worst case scenario, if concurrently timers_active is set
1102 * or expiry_active is cleared, but the current thread doesn't see
1103 * the change yet, the timer checks are delayed until the next
1104 * thread in the group gets a scheduler interrupt to handle the
1105 * timer. This isn't an issue in practice because these types of
1106 * delays with signals actually getting sent are expected.
1107 */
1108 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1109 u64 samples[CPUCLOCK_MAX];
1110
1111 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1112 samples);
1113
1114 if (task_cputimers_expired(samples, pct))
1115 return true;
1116 }
1117
1118 if (dl_task(tsk) && tsk->dl.dl_overrun)
1119 return true;
1120
1121 return false;
1122 }
1123
1124 static void handle_posix_cpu_timers(struct task_struct *tsk);
1125
1126 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
posix_cpu_timers_work(struct callback_head * work)1127 static void posix_cpu_timers_work(struct callback_head *work)
1128 {
1129 struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
1130
1131 mutex_lock(&cw->mutex);
1132 handle_posix_cpu_timers(current);
1133 mutex_unlock(&cw->mutex);
1134 }
1135
1136 /*
1137 * Invoked from the posix-timer core when a cancel operation failed because
1138 * the timer is marked firing. The caller holds rcu_read_lock(), which
1139 * protects the timer and the task which is expiring it from being freed.
1140 */
posix_cpu_timer_wait_running(struct k_itimer * timr)1141 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1142 {
1143 struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
1144
1145 /* Has the handling task completed expiry already? */
1146 if (!tsk)
1147 return;
1148
1149 /* Ensure that the task cannot go away */
1150 get_task_struct(tsk);
1151 /* Now drop the RCU protection so the mutex can be locked */
1152 rcu_read_unlock();
1153 /* Wait on the expiry mutex */
1154 mutex_lock(&tsk->posix_cputimers_work.mutex);
1155 /* Release it immediately again. */
1156 mutex_unlock(&tsk->posix_cputimers_work.mutex);
1157 /* Drop the task reference. */
1158 put_task_struct(tsk);
1159 /* Relock RCU so the callsite is balanced */
1160 rcu_read_lock();
1161 }
1162
posix_cpu_timer_wait_running_nsleep(struct k_itimer * timr)1163 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1164 {
1165 /* Ensure that timr->it.cpu.handling task cannot go away */
1166 rcu_read_lock();
1167 spin_unlock_irq(&timr->it_lock);
1168 posix_cpu_timer_wait_running(timr);
1169 rcu_read_unlock();
1170 /* @timr is on stack and is valid */
1171 spin_lock_irq(&timr->it_lock);
1172 }
1173
1174 /*
1175 * Clear existing posix CPU timers task work.
1176 */
clear_posix_cputimers_work(struct task_struct * p)1177 void clear_posix_cputimers_work(struct task_struct *p)
1178 {
1179 /*
1180 * A copied work entry from the old task is not meaningful, clear it.
1181 * N.B. init_task_work will not do this.
1182 */
1183 memset(&p->posix_cputimers_work.work, 0,
1184 sizeof(p->posix_cputimers_work.work));
1185 init_task_work(&p->posix_cputimers_work.work,
1186 posix_cpu_timers_work);
1187 mutex_init(&p->posix_cputimers_work.mutex);
1188 p->posix_cputimers_work.scheduled = false;
1189 }
1190
1191 /*
1192 * Initialize posix CPU timers task work in init task. Out of line to
1193 * keep the callback static and to avoid header recursion hell.
1194 */
posix_cputimers_init_work(void)1195 void __init posix_cputimers_init_work(void)
1196 {
1197 clear_posix_cputimers_work(current);
1198 }
1199
1200 /*
1201 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1202 * in hard interrupt context or in task context with interrupts
1203 * disabled. Aside of that the writer/reader interaction is always in the
1204 * context of the current task, which means they are strict per CPU.
1205 */
posix_cpu_timers_work_scheduled(struct task_struct * tsk)1206 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1207 {
1208 return tsk->posix_cputimers_work.scheduled;
1209 }
1210
__run_posix_cpu_timers(struct task_struct * tsk)1211 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1212 {
1213 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1214 return;
1215
1216 /* Schedule task work to actually expire the timers */
1217 tsk->posix_cputimers_work.scheduled = true;
1218 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1219 }
1220
posix_cpu_timers_enable_work(struct task_struct * tsk,unsigned long start)1221 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1222 unsigned long start)
1223 {
1224 bool ret = true;
1225
1226 /*
1227 * On !RT kernels interrupts are disabled while collecting expired
1228 * timers, so no tick can happen and the fast path check can be
1229 * reenabled without further checks.
1230 */
1231 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1232 tsk->posix_cputimers_work.scheduled = false;
1233 return true;
1234 }
1235
1236 /*
1237 * On RT enabled kernels ticks can happen while the expired timers
1238 * are collected under sighand lock. But any tick which observes
1239 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1240 * checks. So reenabling the tick work has do be done carefully:
1241 *
1242 * Disable interrupts and run the fast path check if jiffies have
1243 * advanced since the collecting of expired timers started. If
1244 * jiffies have not advanced or the fast path check did not find
1245 * newly expired timers, reenable the fast path check in the timer
1246 * interrupt. If there are newly expired timers, return false and
1247 * let the collection loop repeat.
1248 */
1249 local_irq_disable();
1250 if (start != jiffies && fastpath_timer_check(tsk))
1251 ret = false;
1252 else
1253 tsk->posix_cputimers_work.scheduled = false;
1254 local_irq_enable();
1255
1256 return ret;
1257 }
1258 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
__run_posix_cpu_timers(struct task_struct * tsk)1259 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1260 {
1261 lockdep_posixtimer_enter();
1262 handle_posix_cpu_timers(tsk);
1263 lockdep_posixtimer_exit();
1264 }
1265
posix_cpu_timer_wait_running(struct k_itimer * timr)1266 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1267 {
1268 cpu_relax();
1269 }
1270
posix_cpu_timer_wait_running_nsleep(struct k_itimer * timr)1271 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1272 {
1273 spin_unlock_irq(&timr->it_lock);
1274 cpu_relax();
1275 spin_lock_irq(&timr->it_lock);
1276 }
1277
posix_cpu_timers_work_scheduled(struct task_struct * tsk)1278 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1279 {
1280 return false;
1281 }
1282
posix_cpu_timers_enable_work(struct task_struct * tsk,unsigned long start)1283 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1284 unsigned long start)
1285 {
1286 return true;
1287 }
1288 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1289
handle_posix_cpu_timers(struct task_struct * tsk)1290 static void handle_posix_cpu_timers(struct task_struct *tsk)
1291 {
1292 struct k_itimer *timer, *next;
1293 unsigned long flags, start;
1294 LIST_HEAD(firing);
1295
1296 if (!lock_task_sighand(tsk, &flags))
1297 return;
1298
1299 do {
1300 /*
1301 * On RT locking sighand lock does not disable interrupts,
1302 * so this needs to be careful vs. ticks. Store the current
1303 * jiffies value.
1304 */
1305 start = READ_ONCE(jiffies);
1306 barrier();
1307
1308 /*
1309 * Here we take off tsk->signal->cpu_timers[N] and
1310 * tsk->cpu_timers[N] all the timers that are firing, and
1311 * put them on the firing list.
1312 */
1313 check_thread_timers(tsk, &firing);
1314
1315 check_process_timers(tsk, &firing);
1316
1317 /*
1318 * The above timer checks have updated the expiry cache and
1319 * because nothing can have queued or modified timers after
1320 * sighand lock was taken above it is guaranteed to be
1321 * consistent. So the next timer interrupt fastpath check
1322 * will find valid data.
1323 *
1324 * If timer expiry runs in the timer interrupt context then
1325 * the loop is not relevant as timers will be directly
1326 * expired in interrupt context. The stub function below
1327 * returns always true which allows the compiler to
1328 * optimize the loop out.
1329 *
1330 * If timer expiry is deferred to task work context then
1331 * the following rules apply:
1332 *
1333 * - On !RT kernels no tick can have happened on this CPU
1334 * after sighand lock was acquired because interrupts are
1335 * disabled. So reenabling task work before dropping
1336 * sighand lock and reenabling interrupts is race free.
1337 *
1338 * - On RT kernels ticks might have happened but the tick
1339 * work ignored posix CPU timer handling because the
1340 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1341 * must be done very carefully including a check whether
1342 * ticks have happened since the start of the timer
1343 * expiry checks. posix_cpu_timers_enable_work() takes
1344 * care of that and eventually lets the expiry checks
1345 * run again.
1346 */
1347 } while (!posix_cpu_timers_enable_work(tsk, start));
1348
1349 /*
1350 * We must release sighand lock before taking any timer's lock.
1351 * There is a potential race with timer deletion here, as the
1352 * siglock now protects our private firing list. We have set
1353 * the firing flag in each timer, so that a deletion attempt
1354 * that gets the timer lock before we do will give it up and
1355 * spin until we've taken care of that timer below.
1356 */
1357 unlock_task_sighand(tsk, &flags);
1358
1359 /*
1360 * Now that all the timers on our list have the firing flag,
1361 * no one will touch their list entries but us. We'll take
1362 * each timer's lock before clearing its firing flag, so no
1363 * timer call will interfere.
1364 */
1365 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1366 int cpu_firing;
1367
1368 /*
1369 * spin_lock() is sufficient here even independent of the
1370 * expiry context. If expiry happens in hard interrupt
1371 * context it's obvious. For task work context it's safe
1372 * because all other operations on timer::it_lock happen in
1373 * task context (syscall or exit).
1374 */
1375 spin_lock(&timer->it_lock);
1376 list_del_init(&timer->it.cpu.elist);
1377 cpu_firing = timer->it.cpu.firing;
1378 timer->it.cpu.firing = 0;
1379 /*
1380 * The firing flag is -1 if we collided with a reset
1381 * of the timer, which already reported this
1382 * almost-firing as an overrun. So don't generate an event.
1383 */
1384 if (likely(cpu_firing >= 0))
1385 cpu_timer_fire(timer);
1386 /* See posix_cpu_timer_wait_running() */
1387 rcu_assign_pointer(timer->it.cpu.handling, NULL);
1388 spin_unlock(&timer->it_lock);
1389 }
1390 }
1391
1392 /*
1393 * This is called from the timer interrupt handler. The irq handler has
1394 * already updated our counts. We need to check if any timers fire now.
1395 * Interrupts are disabled.
1396 */
run_posix_cpu_timers(void)1397 void run_posix_cpu_timers(void)
1398 {
1399 struct task_struct *tsk = current;
1400
1401 lockdep_assert_irqs_disabled();
1402
1403 /*
1404 * If the actual expiry is deferred to task work context and the
1405 * work is already scheduled there is no point to do anything here.
1406 */
1407 if (posix_cpu_timers_work_scheduled(tsk))
1408 return;
1409
1410 /*
1411 * The fast path checks that there are no expired thread or thread
1412 * group timers. If that's so, just return.
1413 */
1414 if (!fastpath_timer_check(tsk))
1415 return;
1416
1417 __run_posix_cpu_timers(tsk);
1418 }
1419
1420 /*
1421 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1422 * The tsk->sighand->siglock must be held by the caller.
1423 */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clkid,u64 * newval,u64 * oldval)1424 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1425 u64 *newval, u64 *oldval)
1426 {
1427 u64 now, *nextevt;
1428
1429 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1430 return;
1431
1432 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1433 now = cpu_clock_sample_group(clkid, tsk, true);
1434
1435 if (oldval) {
1436 /*
1437 * We are setting itimer. The *oldval is absolute and we update
1438 * it to be relative, *newval argument is relative and we update
1439 * it to be absolute.
1440 */
1441 if (*oldval) {
1442 if (*oldval <= now) {
1443 /* Just about to fire. */
1444 *oldval = TICK_NSEC;
1445 } else {
1446 *oldval -= now;
1447 }
1448 }
1449
1450 if (*newval)
1451 *newval += now;
1452 }
1453
1454 /*
1455 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1456 * expiry cache is also used by RLIMIT_CPU!.
1457 */
1458 if (*newval < *nextevt)
1459 *nextevt = *newval;
1460
1461 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1462 }
1463
do_cpu_nanosleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1464 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1465 const struct timespec64 *rqtp)
1466 {
1467 struct itimerspec64 it;
1468 struct k_itimer timer;
1469 u64 expires;
1470 int error;
1471
1472 /*
1473 * Set up a temporary timer and then wait for it to go off.
1474 */
1475 memset(&timer, 0, sizeof timer);
1476 spin_lock_init(&timer.it_lock);
1477 timer.it_clock = which_clock;
1478 timer.it_overrun = -1;
1479 error = posix_cpu_timer_create(&timer);
1480 timer.it_process = current;
1481
1482 if (!error) {
1483 static struct itimerspec64 zero_it;
1484 struct restart_block *restart;
1485
1486 memset(&it, 0, sizeof(it));
1487 it.it_value = *rqtp;
1488
1489 spin_lock_irq(&timer.it_lock);
1490 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1491 if (error) {
1492 spin_unlock_irq(&timer.it_lock);
1493 return error;
1494 }
1495
1496 while (!signal_pending(current)) {
1497 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1498 /*
1499 * Our timer fired and was reset, below
1500 * deletion can not fail.
1501 */
1502 posix_cpu_timer_del(&timer);
1503 spin_unlock_irq(&timer.it_lock);
1504 return 0;
1505 }
1506
1507 /*
1508 * Block until cpu_timer_fire (or a signal) wakes us.
1509 */
1510 __set_current_state(TASK_INTERRUPTIBLE);
1511 spin_unlock_irq(&timer.it_lock);
1512 schedule();
1513 spin_lock_irq(&timer.it_lock);
1514 }
1515
1516 /*
1517 * We were interrupted by a signal.
1518 */
1519 expires = cpu_timer_getexpires(&timer.it.cpu);
1520 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1521 if (!error) {
1522 /* Timer is now unarmed, deletion can not fail. */
1523 posix_cpu_timer_del(&timer);
1524 } else {
1525 while (error == TIMER_RETRY) {
1526 posix_cpu_timer_wait_running_nsleep(&timer);
1527 error = posix_cpu_timer_del(&timer);
1528 }
1529 }
1530
1531 spin_unlock_irq(&timer.it_lock);
1532
1533 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1534 /*
1535 * It actually did fire already.
1536 */
1537 return 0;
1538 }
1539
1540 error = -ERESTART_RESTARTBLOCK;
1541 /*
1542 * Report back to the user the time still remaining.
1543 */
1544 restart = ¤t->restart_block;
1545 restart->nanosleep.expires = expires;
1546 if (restart->nanosleep.type != TT_NONE)
1547 error = nanosleep_copyout(restart, &it.it_value);
1548 }
1549
1550 return error;
1551 }
1552
1553 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1554
posix_cpu_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1555 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1556 const struct timespec64 *rqtp)
1557 {
1558 struct restart_block *restart_block = ¤t->restart_block;
1559 int error;
1560
1561 /*
1562 * Diagnose required errors first.
1563 */
1564 if (CPUCLOCK_PERTHREAD(which_clock) &&
1565 (CPUCLOCK_PID(which_clock) == 0 ||
1566 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1567 return -EINVAL;
1568
1569 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1570
1571 if (error == -ERESTART_RESTARTBLOCK) {
1572
1573 if (flags & TIMER_ABSTIME)
1574 return -ERESTARTNOHAND;
1575
1576 restart_block->nanosleep.clockid = which_clock;
1577 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1578 }
1579 return error;
1580 }
1581
posix_cpu_nsleep_restart(struct restart_block * restart_block)1582 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1583 {
1584 clockid_t which_clock = restart_block->nanosleep.clockid;
1585 struct timespec64 t;
1586
1587 t = ns_to_timespec64(restart_block->nanosleep.expires);
1588
1589 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1590 }
1591
1592 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1593 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1594
process_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)1595 static int process_cpu_clock_getres(const clockid_t which_clock,
1596 struct timespec64 *tp)
1597 {
1598 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1599 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec64 * tp)1600 static int process_cpu_clock_get(const clockid_t which_clock,
1601 struct timespec64 *tp)
1602 {
1603 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1604 }
process_cpu_timer_create(struct k_itimer * timer)1605 static int process_cpu_timer_create(struct k_itimer *timer)
1606 {
1607 timer->it_clock = PROCESS_CLOCK;
1608 return posix_cpu_timer_create(timer);
1609 }
process_cpu_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1610 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1611 const struct timespec64 *rqtp)
1612 {
1613 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1614 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)1615 static int thread_cpu_clock_getres(const clockid_t which_clock,
1616 struct timespec64 *tp)
1617 {
1618 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1619 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec64 * tp)1620 static int thread_cpu_clock_get(const clockid_t which_clock,
1621 struct timespec64 *tp)
1622 {
1623 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1624 }
thread_cpu_timer_create(struct k_itimer * timer)1625 static int thread_cpu_timer_create(struct k_itimer *timer)
1626 {
1627 timer->it_clock = THREAD_CLOCK;
1628 return posix_cpu_timer_create(timer);
1629 }
1630
1631 const struct k_clock clock_posix_cpu = {
1632 .clock_getres = posix_cpu_clock_getres,
1633 .clock_set = posix_cpu_clock_set,
1634 .clock_get_timespec = posix_cpu_clock_get,
1635 .timer_create = posix_cpu_timer_create,
1636 .nsleep = posix_cpu_nsleep,
1637 .timer_set = posix_cpu_timer_set,
1638 .timer_del = posix_cpu_timer_del,
1639 .timer_get = posix_cpu_timer_get,
1640 .timer_rearm = posix_cpu_timer_rearm,
1641 .timer_wait_running = posix_cpu_timer_wait_running,
1642 };
1643
1644 const struct k_clock clock_process = {
1645 .clock_getres = process_cpu_clock_getres,
1646 .clock_get_timespec = process_cpu_clock_get,
1647 .timer_create = process_cpu_timer_create,
1648 .nsleep = process_cpu_nsleep,
1649 };
1650
1651 const struct k_clock clock_thread = {
1652 .clock_getres = thread_cpu_clock_getres,
1653 .clock_get_timespec = thread_cpu_clock_get,
1654 .timer_create = thread_cpu_timer_create,
1655 };
1656