1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/cpufeature.h> 14 #include <linux/interrupt.h> 15 #include <linux/kvm_host.h> 16 #include <linux/hrtimer.h> 17 #include <linux/mmu_context.h> 18 #include <linux/nospec.h> 19 #include <linux/signal.h> 20 #include <linux/slab.h> 21 #include <linux/bitmap.h> 22 #include <linux/vmalloc.h> 23 #include <asm/access-regs.h> 24 #include <asm/asm-offsets.h> 25 #include <asm/dis.h> 26 #include <linux/uaccess.h> 27 #include <asm/sclp.h> 28 #include <asm/isc.h> 29 #include <asm/gmap.h> 30 #include <asm/nmi.h> 31 #include <asm/airq.h> 32 #include <asm/tpi.h> 33 #include "kvm-s390.h" 34 #include "gaccess.h" 35 #include "trace-s390.h" 36 #include "pci.h" 37 38 #define PFAULT_INIT 0x0600 39 #define PFAULT_DONE 0x0680 40 #define VIRTIO_PARAM 0x0d00 41 42 static struct kvm_s390_gib *gib; 43 44 /* handle external calls via sigp interpretation facility */ 45 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 46 { 47 int c, scn; 48 49 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 50 return 0; 51 52 BUG_ON(!kvm_s390_use_sca_entries()); 53 read_lock(&vcpu->kvm->arch.sca_lock); 54 if (vcpu->kvm->arch.use_esca) { 55 struct esca_block *sca = vcpu->kvm->arch.sca; 56 union esca_sigp_ctrl sigp_ctrl = 57 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 58 59 c = sigp_ctrl.c; 60 scn = sigp_ctrl.scn; 61 } else { 62 struct bsca_block *sca = vcpu->kvm->arch.sca; 63 union bsca_sigp_ctrl sigp_ctrl = 64 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 65 66 c = sigp_ctrl.c; 67 scn = sigp_ctrl.scn; 68 } 69 read_unlock(&vcpu->kvm->arch.sca_lock); 70 71 if (src_id) 72 *src_id = scn; 73 74 return c; 75 } 76 77 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 78 { 79 int expect, rc; 80 81 BUG_ON(!kvm_s390_use_sca_entries()); 82 read_lock(&vcpu->kvm->arch.sca_lock); 83 if (vcpu->kvm->arch.use_esca) { 84 struct esca_block *sca = vcpu->kvm->arch.sca; 85 union esca_sigp_ctrl *sigp_ctrl = 86 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 87 union esca_sigp_ctrl new_val = {0}, old_val; 88 89 old_val = READ_ONCE(*sigp_ctrl); 90 new_val.scn = src_id; 91 new_val.c = 1; 92 old_val.c = 0; 93 94 expect = old_val.value; 95 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 96 } else { 97 struct bsca_block *sca = vcpu->kvm->arch.sca; 98 union bsca_sigp_ctrl *sigp_ctrl = 99 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 100 union bsca_sigp_ctrl new_val = {0}, old_val; 101 102 old_val = READ_ONCE(*sigp_ctrl); 103 new_val.scn = src_id; 104 new_val.c = 1; 105 old_val.c = 0; 106 107 expect = old_val.value; 108 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 109 } 110 read_unlock(&vcpu->kvm->arch.sca_lock); 111 112 if (rc != expect) { 113 /* another external call is pending */ 114 return -EBUSY; 115 } 116 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 117 return 0; 118 } 119 120 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 121 { 122 if (!kvm_s390_use_sca_entries()) 123 return; 124 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 125 read_lock(&vcpu->kvm->arch.sca_lock); 126 if (vcpu->kvm->arch.use_esca) { 127 struct esca_block *sca = vcpu->kvm->arch.sca; 128 union esca_sigp_ctrl *sigp_ctrl = 129 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 130 131 WRITE_ONCE(sigp_ctrl->value, 0); 132 } else { 133 struct bsca_block *sca = vcpu->kvm->arch.sca; 134 union bsca_sigp_ctrl *sigp_ctrl = 135 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 136 137 WRITE_ONCE(sigp_ctrl->value, 0); 138 } 139 read_unlock(&vcpu->kvm->arch.sca_lock); 140 } 141 142 int psw_extint_disabled(struct kvm_vcpu *vcpu) 143 { 144 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 145 } 146 147 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 148 { 149 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 150 } 151 152 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 153 { 154 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 155 } 156 157 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 158 { 159 return psw_extint_disabled(vcpu) && 160 psw_ioint_disabled(vcpu) && 161 psw_mchk_disabled(vcpu); 162 } 163 164 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 165 { 166 if (psw_extint_disabled(vcpu) || 167 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 168 return 0; 169 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 170 /* No timer interrupts when single stepping */ 171 return 0; 172 return 1; 173 } 174 175 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 176 { 177 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 178 const u64 ckc = vcpu->arch.sie_block->ckc; 179 180 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 181 if ((s64)ckc >= (s64)now) 182 return 0; 183 } else if (ckc >= now) { 184 return 0; 185 } 186 return ckc_interrupts_enabled(vcpu); 187 } 188 189 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 190 { 191 return !psw_extint_disabled(vcpu) && 192 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 193 } 194 195 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 196 { 197 if (!cpu_timer_interrupts_enabled(vcpu)) 198 return 0; 199 return kvm_s390_get_cpu_timer(vcpu) >> 63; 200 } 201 202 static uint64_t isc_to_isc_bits(int isc) 203 { 204 return (0x80 >> isc) << 24; 205 } 206 207 static inline u32 isc_to_int_word(u8 isc) 208 { 209 return ((u32)isc << 27) | 0x80000000; 210 } 211 212 static inline u8 int_word_to_isc(u32 int_word) 213 { 214 return (int_word & 0x38000000) >> 27; 215 } 216 217 /* 218 * To use atomic bitmap functions, we have to provide a bitmap address 219 * that is u64 aligned. However, the ipm might be u32 aligned. 220 * Therefore, we logically start the bitmap at the very beginning of the 221 * struct and fixup the bit number. 222 */ 223 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 224 225 /** 226 * gisa_set_iam - change the GISA interruption alert mask 227 * 228 * @gisa: gisa to operate on 229 * @iam: new IAM value to use 230 * 231 * Change the IAM atomically with the next alert address and the IPM 232 * of the GISA if the GISA is not part of the GIB alert list. All three 233 * fields are located in the first long word of the GISA. 234 * 235 * Returns: 0 on success 236 * -EBUSY in case the gisa is part of the alert list 237 */ 238 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 239 { 240 u64 word, _word; 241 242 word = READ_ONCE(gisa->u64.word[0]); 243 do { 244 if ((u64)gisa != word >> 32) 245 return -EBUSY; 246 _word = (word & ~0xffUL) | iam; 247 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 248 249 return 0; 250 } 251 252 /** 253 * gisa_clear_ipm - clear the GISA interruption pending mask 254 * 255 * @gisa: gisa to operate on 256 * 257 * Clear the IPM atomically with the next alert address and the IAM 258 * of the GISA unconditionally. All three fields are located in the 259 * first long word of the GISA. 260 */ 261 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 262 { 263 u64 word, _word; 264 265 word = READ_ONCE(gisa->u64.word[0]); 266 do { 267 _word = word & ~(0xffUL << 24); 268 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 269 } 270 271 /** 272 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 273 * 274 * @gi: gisa interrupt struct to work on 275 * 276 * Atomically restores the interruption alert mask if none of the 277 * relevant ISCs are pending and return the IPM. 278 * 279 * Returns: the relevant pending ISCs 280 */ 281 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 282 { 283 u8 pending_mask, alert_mask; 284 u64 word, _word; 285 286 word = READ_ONCE(gi->origin->u64.word[0]); 287 do { 288 alert_mask = READ_ONCE(gi->alert.mask); 289 pending_mask = (u8)(word >> 24) & alert_mask; 290 if (pending_mask) 291 return pending_mask; 292 _word = (word & ~0xffUL) | alert_mask; 293 } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word)); 294 295 return 0; 296 } 297 298 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 299 { 300 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 301 } 302 303 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 304 { 305 return READ_ONCE(gisa->ipm); 306 } 307 308 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 309 { 310 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 311 } 312 313 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 314 { 315 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 316 vcpu->arch.local_int.pending_irqs; 317 318 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 319 return pending; 320 } 321 322 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 323 { 324 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 325 unsigned long pending_mask; 326 327 pending_mask = pending_irqs_no_gisa(vcpu); 328 if (gi->origin) 329 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 330 return pending_mask; 331 } 332 333 static inline int isc_to_irq_type(unsigned long isc) 334 { 335 return IRQ_PEND_IO_ISC_0 - isc; 336 } 337 338 static inline int irq_type_to_isc(unsigned long irq_type) 339 { 340 return IRQ_PEND_IO_ISC_0 - irq_type; 341 } 342 343 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 344 unsigned long active_mask) 345 { 346 int i; 347 348 for (i = 0; i <= MAX_ISC; i++) 349 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 350 active_mask &= ~(1UL << (isc_to_irq_type(i))); 351 352 return active_mask; 353 } 354 355 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 356 { 357 unsigned long active_mask; 358 359 active_mask = pending_irqs(vcpu); 360 if (!active_mask) 361 return 0; 362 363 if (psw_extint_disabled(vcpu)) 364 active_mask &= ~IRQ_PEND_EXT_MASK; 365 if (psw_ioint_disabled(vcpu)) 366 active_mask &= ~IRQ_PEND_IO_MASK; 367 else 368 active_mask = disable_iscs(vcpu, active_mask); 369 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 370 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 371 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 372 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 373 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 374 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 375 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 376 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 377 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 378 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 379 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 380 } 381 if (psw_mchk_disabled(vcpu)) 382 active_mask &= ~IRQ_PEND_MCHK_MASK; 383 /* PV guest cpus can have a single interruption injected at a time. */ 384 if (kvm_s390_pv_cpu_get_handle(vcpu) && 385 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 386 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 387 IRQ_PEND_IO_MASK | 388 IRQ_PEND_MCHK_MASK); 389 /* 390 * Check both floating and local interrupt's cr14 because 391 * bit IRQ_PEND_MCHK_REP could be set in both cases. 392 */ 393 if (!(vcpu->arch.sie_block->gcr[14] & 394 (vcpu->kvm->arch.float_int.mchk.cr14 | 395 vcpu->arch.local_int.irq.mchk.cr14))) 396 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 397 398 /* 399 * STOP irqs will never be actively delivered. They are triggered via 400 * intercept requests and cleared when the stop intercept is performed. 401 */ 402 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 403 404 return active_mask; 405 } 406 407 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 408 { 409 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 410 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 411 } 412 413 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 414 { 415 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 416 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 417 } 418 419 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 420 { 421 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 422 CPUSTAT_STOP_INT); 423 vcpu->arch.sie_block->lctl = 0x0000; 424 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 425 426 if (guestdbg_enabled(vcpu)) { 427 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 428 LCTL_CR10 | LCTL_CR11); 429 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 430 } 431 } 432 433 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 434 { 435 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 436 return; 437 if (psw_ioint_disabled(vcpu)) 438 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 439 else 440 vcpu->arch.sie_block->lctl |= LCTL_CR6; 441 } 442 443 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 444 { 445 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 446 return; 447 if (psw_extint_disabled(vcpu)) 448 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 449 else 450 vcpu->arch.sie_block->lctl |= LCTL_CR0; 451 } 452 453 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 454 { 455 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 456 return; 457 if (psw_mchk_disabled(vcpu)) 458 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 459 else 460 vcpu->arch.sie_block->lctl |= LCTL_CR14; 461 } 462 463 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 464 { 465 if (kvm_s390_is_stop_irq_pending(vcpu)) 466 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 467 } 468 469 /* Set interception request for non-deliverable interrupts */ 470 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 471 { 472 set_intercept_indicators_io(vcpu); 473 set_intercept_indicators_ext(vcpu); 474 set_intercept_indicators_mchk(vcpu); 475 set_intercept_indicators_stop(vcpu); 476 } 477 478 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 479 { 480 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 481 int rc = 0; 482 483 vcpu->stat.deliver_cputm++; 484 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 485 0, 0); 486 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 487 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 488 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 489 } else { 490 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 491 (u16 *)__LC_EXT_INT_CODE); 492 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 493 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 494 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 495 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 496 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 497 } 498 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 499 return rc ? -EFAULT : 0; 500 } 501 502 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 503 { 504 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 505 int rc = 0; 506 507 vcpu->stat.deliver_ckc++; 508 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 509 0, 0); 510 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 511 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 512 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 513 } else { 514 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 515 (u16 __user *)__LC_EXT_INT_CODE); 516 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 517 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 518 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 519 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 520 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 521 } 522 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 523 return rc ? -EFAULT : 0; 524 } 525 526 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 527 { 528 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 529 struct kvm_s390_ext_info ext; 530 int rc; 531 532 spin_lock(&li->lock); 533 ext = li->irq.ext; 534 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 535 li->irq.ext.ext_params2 = 0; 536 spin_unlock(&li->lock); 537 538 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 539 ext.ext_params2); 540 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 541 KVM_S390_INT_PFAULT_INIT, 542 0, ext.ext_params2); 543 544 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 545 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 546 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 547 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 548 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 549 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 550 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 551 return rc ? -EFAULT : 0; 552 } 553 554 static int __write_machine_check(struct kvm_vcpu *vcpu, 555 struct kvm_s390_mchk_info *mchk) 556 { 557 unsigned long ext_sa_addr; 558 unsigned long lc; 559 freg_t fprs[NUM_FPRS]; 560 union mci mci; 561 int rc; 562 563 /* 564 * All other possible payload for a machine check (e.g. the register 565 * contents in the save area) will be handled by the ultravisor, as 566 * the hypervisor does not not have the needed information for 567 * protected guests. 568 */ 569 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 570 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 571 vcpu->arch.sie_block->mcic = mchk->mcic; 572 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 573 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 574 return 0; 575 } 576 577 mci.val = mchk->mcic; 578 /* take care of lazy register loading */ 579 kvm_s390_fpu_store(vcpu->run); 580 save_access_regs(vcpu->run->s.regs.acrs); 581 if (cpu_has_gs() && vcpu->arch.gs_enabled) 582 save_gs_cb(current->thread.gs_cb); 583 584 /* Extended save area */ 585 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 586 sizeof(unsigned long)); 587 /* Only bits 0 through 63-LC are used for address formation */ 588 lc = ext_sa_addr & MCESA_LC_MASK; 589 if (test_kvm_facility(vcpu->kvm, 133)) { 590 switch (lc) { 591 case 0: 592 case 10: 593 ext_sa_addr &= ~0x3ffUL; 594 break; 595 case 11: 596 ext_sa_addr &= ~0x7ffUL; 597 break; 598 case 12: 599 ext_sa_addr &= ~0xfffUL; 600 break; 601 default: 602 ext_sa_addr = 0; 603 break; 604 } 605 } else { 606 ext_sa_addr &= ~0x3ffUL; 607 } 608 609 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 610 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 611 512)) 612 mci.vr = 0; 613 } else { 614 mci.vr = 0; 615 } 616 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 617 && (lc == 11 || lc == 12)) { 618 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 619 &vcpu->run->s.regs.gscb, 32)) 620 mci.gs = 0; 621 } else { 622 mci.gs = 0; 623 } 624 625 /* General interruption information */ 626 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 627 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 628 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 629 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 630 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 631 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 632 633 /* Register-save areas */ 634 if (cpu_has_vx()) { 635 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 636 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 637 } else { 638 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 639 vcpu->run->s.regs.fprs, 128); 640 } 641 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 642 vcpu->run->s.regs.gprs, 128); 643 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, 644 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 645 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 646 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 647 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 648 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 649 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 650 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 651 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 652 &vcpu->run->s.regs.acrs, 64); 653 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 654 &vcpu->arch.sie_block->gcr, 128); 655 656 /* Extended interruption information */ 657 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 658 (u32 __user *) __LC_EXT_DAMAGE_CODE); 659 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 660 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 661 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 662 sizeof(mchk->fixed_logout)); 663 return rc ? -EFAULT : 0; 664 } 665 666 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 667 { 668 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 669 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 670 struct kvm_s390_mchk_info mchk = {}; 671 int deliver = 0; 672 int rc = 0; 673 674 spin_lock(&fi->lock); 675 spin_lock(&li->lock); 676 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 677 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 678 /* 679 * If there was an exigent machine check pending, then any 680 * repressible machine checks that might have been pending 681 * are indicated along with it, so always clear bits for 682 * repressible and exigent interrupts 683 */ 684 mchk = li->irq.mchk; 685 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 686 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 687 memset(&li->irq.mchk, 0, sizeof(mchk)); 688 deliver = 1; 689 } 690 /* 691 * We indicate floating repressible conditions along with 692 * other pending conditions. Channel Report Pending and Channel 693 * Subsystem damage are the only two and are indicated by 694 * bits in mcic and masked in cr14. 695 */ 696 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 697 mchk.mcic |= fi->mchk.mcic; 698 mchk.cr14 |= fi->mchk.cr14; 699 memset(&fi->mchk, 0, sizeof(mchk)); 700 deliver = 1; 701 } 702 spin_unlock(&li->lock); 703 spin_unlock(&fi->lock); 704 705 if (deliver) { 706 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 707 mchk.mcic); 708 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 709 KVM_S390_MCHK, 710 mchk.cr14, mchk.mcic); 711 vcpu->stat.deliver_machine_check++; 712 rc = __write_machine_check(vcpu, &mchk); 713 } 714 return rc; 715 } 716 717 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 718 { 719 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 720 int rc = 0; 721 722 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 723 vcpu->stat.deliver_restart_signal++; 724 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 725 726 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 727 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 728 } else { 729 rc = write_guest_lc(vcpu, 730 offsetof(struct lowcore, restart_old_psw), 731 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 732 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 733 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 734 } 735 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 736 return rc ? -EFAULT : 0; 737 } 738 739 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 740 { 741 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 742 struct kvm_s390_prefix_info prefix; 743 744 spin_lock(&li->lock); 745 prefix = li->irq.prefix; 746 li->irq.prefix.address = 0; 747 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 748 spin_unlock(&li->lock); 749 750 vcpu->stat.deliver_prefix_signal++; 751 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 752 KVM_S390_SIGP_SET_PREFIX, 753 prefix.address, 0); 754 755 kvm_s390_set_prefix(vcpu, prefix.address); 756 return 0; 757 } 758 759 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 760 { 761 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 762 int rc; 763 int cpu_addr; 764 765 spin_lock(&li->lock); 766 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 767 clear_bit(cpu_addr, li->sigp_emerg_pending); 768 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 769 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 770 spin_unlock(&li->lock); 771 772 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 773 vcpu->stat.deliver_emergency_signal++; 774 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 775 cpu_addr, 0); 776 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 777 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 778 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 779 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 780 return 0; 781 } 782 783 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 784 (u16 *)__LC_EXT_INT_CODE); 785 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 786 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 787 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 788 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 789 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 790 return rc ? -EFAULT : 0; 791 } 792 793 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 794 { 795 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 796 struct kvm_s390_extcall_info extcall; 797 int rc; 798 799 spin_lock(&li->lock); 800 extcall = li->irq.extcall; 801 li->irq.extcall.code = 0; 802 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 803 spin_unlock(&li->lock); 804 805 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 806 vcpu->stat.deliver_external_call++; 807 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 808 KVM_S390_INT_EXTERNAL_CALL, 809 extcall.code, 0); 810 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 811 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 812 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 813 vcpu->arch.sie_block->extcpuaddr = extcall.code; 814 return 0; 815 } 816 817 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 818 (u16 *)__LC_EXT_INT_CODE); 819 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 820 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 821 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 822 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 823 sizeof(psw_t)); 824 return rc ? -EFAULT : 0; 825 } 826 827 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 828 { 829 switch (code) { 830 case PGM_SPECIFICATION: 831 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 832 break; 833 case PGM_OPERAND: 834 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 835 break; 836 default: 837 return -EINVAL; 838 } 839 return 0; 840 } 841 842 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 843 { 844 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 845 struct kvm_s390_pgm_info pgm_info; 846 int rc = 0, nullifying = false; 847 u16 ilen; 848 849 spin_lock(&li->lock); 850 pgm_info = li->irq.pgm; 851 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 852 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 853 spin_unlock(&li->lock); 854 855 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 856 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 857 pgm_info.code, ilen); 858 vcpu->stat.deliver_program++; 859 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 860 pgm_info.code, 0); 861 862 /* PER is handled by the ultravisor */ 863 if (kvm_s390_pv_cpu_is_protected(vcpu)) 864 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 865 866 switch (pgm_info.code & ~PGM_PER) { 867 case PGM_AFX_TRANSLATION: 868 case PGM_ASX_TRANSLATION: 869 case PGM_EX_TRANSLATION: 870 case PGM_LFX_TRANSLATION: 871 case PGM_LSTE_SEQUENCE: 872 case PGM_LSX_TRANSLATION: 873 case PGM_LX_TRANSLATION: 874 case PGM_PRIMARY_AUTHORITY: 875 case PGM_SECONDARY_AUTHORITY: 876 nullifying = true; 877 fallthrough; 878 case PGM_SPACE_SWITCH: 879 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 880 (u64 *)__LC_TRANS_EXC_CODE); 881 break; 882 case PGM_ALEN_TRANSLATION: 883 case PGM_ALE_SEQUENCE: 884 case PGM_ASTE_INSTANCE: 885 case PGM_ASTE_SEQUENCE: 886 case PGM_ASTE_VALIDITY: 887 case PGM_EXTENDED_AUTHORITY: 888 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 889 (u8 *)__LC_EXC_ACCESS_ID); 890 nullifying = true; 891 break; 892 case PGM_ASCE_TYPE: 893 case PGM_PAGE_TRANSLATION: 894 case PGM_REGION_FIRST_TRANS: 895 case PGM_REGION_SECOND_TRANS: 896 case PGM_REGION_THIRD_TRANS: 897 case PGM_SEGMENT_TRANSLATION: 898 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 899 (u64 *)__LC_TRANS_EXC_CODE); 900 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 901 (u8 *)__LC_EXC_ACCESS_ID); 902 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 903 (u8 *)__LC_OP_ACCESS_ID); 904 nullifying = true; 905 break; 906 case PGM_MONITOR: 907 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 908 (u16 *)__LC_MON_CLASS_NR); 909 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 910 (u64 *)__LC_MON_CODE); 911 break; 912 case PGM_VECTOR_PROCESSING: 913 case PGM_DATA: 914 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 915 (u32 *)__LC_DATA_EXC_CODE); 916 break; 917 case PGM_PROTECTION: 918 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 919 (u64 *)__LC_TRANS_EXC_CODE); 920 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 921 (u8 *)__LC_EXC_ACCESS_ID); 922 break; 923 case PGM_STACK_FULL: 924 case PGM_STACK_EMPTY: 925 case PGM_STACK_SPECIFICATION: 926 case PGM_STACK_TYPE: 927 case PGM_STACK_OPERATION: 928 case PGM_TRACE_TABEL: 929 case PGM_CRYPTO_OPERATION: 930 nullifying = true; 931 break; 932 } 933 934 if (pgm_info.code & PGM_PER) { 935 rc |= put_guest_lc(vcpu, pgm_info.per_code, 936 (u8 *) __LC_PER_CODE); 937 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 938 (u8 *)__LC_PER_ATMID); 939 rc |= put_guest_lc(vcpu, pgm_info.per_address, 940 (u64 *) __LC_PER_ADDRESS); 941 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 942 (u8 *) __LC_PER_ACCESS_ID); 943 } 944 945 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 946 kvm_s390_rewind_psw(vcpu, ilen); 947 948 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 949 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 950 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 951 (u64 *) __LC_PGM_LAST_BREAK); 952 rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE); 953 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 954 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 955 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 956 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 957 return rc ? -EFAULT : 0; 958 } 959 960 #define SCCB_MASK 0xFFFFFFF8 961 #define SCCB_EVENT_PENDING 0x3 962 963 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 964 { 965 int rc; 966 967 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 968 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 969 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 970 vcpu->arch.sie_block->eiparams = parm; 971 return 0; 972 } 973 974 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 975 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 976 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 977 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 978 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 979 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 980 rc |= put_guest_lc(vcpu, parm, 981 (u32 *)__LC_EXT_PARAMS); 982 983 return rc ? -EFAULT : 0; 984 } 985 986 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 987 { 988 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 989 struct kvm_s390_ext_info ext; 990 991 spin_lock(&fi->lock); 992 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 993 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 994 spin_unlock(&fi->lock); 995 return 0; 996 } 997 ext = fi->srv_signal; 998 memset(&fi->srv_signal, 0, sizeof(ext)); 999 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1000 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1001 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1002 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1003 spin_unlock(&fi->lock); 1004 1005 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1006 ext.ext_params); 1007 vcpu->stat.deliver_service_signal++; 1008 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1009 ext.ext_params, 0); 1010 1011 return write_sclp(vcpu, ext.ext_params); 1012 } 1013 1014 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1015 { 1016 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1017 struct kvm_s390_ext_info ext; 1018 1019 spin_lock(&fi->lock); 1020 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1021 spin_unlock(&fi->lock); 1022 return 0; 1023 } 1024 ext = fi->srv_signal; 1025 /* only clear the event bits */ 1026 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1027 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1028 spin_unlock(&fi->lock); 1029 1030 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1031 vcpu->stat.deliver_service_signal++; 1032 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1033 ext.ext_params, 0); 1034 1035 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); 1036 } 1037 1038 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1039 { 1040 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1041 struct kvm_s390_interrupt_info *inti; 1042 int rc = 0; 1043 1044 spin_lock(&fi->lock); 1045 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1046 struct kvm_s390_interrupt_info, 1047 list); 1048 if (inti) { 1049 list_del(&inti->list); 1050 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1051 } 1052 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1053 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1054 spin_unlock(&fi->lock); 1055 1056 if (inti) { 1057 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1058 KVM_S390_INT_PFAULT_DONE, 0, 1059 inti->ext.ext_params2); 1060 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1061 inti->ext.ext_params2); 1062 1063 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1064 (u16 *)__LC_EXT_INT_CODE); 1065 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1066 (u16 *)__LC_EXT_CPU_ADDR); 1067 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1068 &vcpu->arch.sie_block->gpsw, 1069 sizeof(psw_t)); 1070 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1071 &vcpu->arch.sie_block->gpsw, 1072 sizeof(psw_t)); 1073 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1074 (u64 *)__LC_EXT_PARAMS2); 1075 kfree(inti); 1076 } 1077 return rc ? -EFAULT : 0; 1078 } 1079 1080 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1081 { 1082 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1083 struct kvm_s390_interrupt_info *inti; 1084 int rc = 0; 1085 1086 spin_lock(&fi->lock); 1087 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1088 struct kvm_s390_interrupt_info, 1089 list); 1090 if (inti) { 1091 VCPU_EVENT(vcpu, 4, 1092 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1093 inti->ext.ext_params, inti->ext.ext_params2); 1094 vcpu->stat.deliver_virtio++; 1095 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1096 inti->type, 1097 inti->ext.ext_params, 1098 inti->ext.ext_params2); 1099 list_del(&inti->list); 1100 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1101 } 1102 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1103 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1104 spin_unlock(&fi->lock); 1105 1106 if (inti) { 1107 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1108 (u16 *)__LC_EXT_INT_CODE); 1109 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1110 (u16 *)__LC_EXT_CPU_ADDR); 1111 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1112 &vcpu->arch.sie_block->gpsw, 1113 sizeof(psw_t)); 1114 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1115 &vcpu->arch.sie_block->gpsw, 1116 sizeof(psw_t)); 1117 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1118 (u32 *)__LC_EXT_PARAMS); 1119 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1120 (u64 *)__LC_EXT_PARAMS2); 1121 kfree(inti); 1122 } 1123 return rc ? -EFAULT : 0; 1124 } 1125 1126 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1127 { 1128 int rc; 1129 1130 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1131 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1132 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1133 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1134 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1135 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1136 return 0; 1137 } 1138 1139 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1140 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1141 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1142 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1143 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1144 &vcpu->arch.sie_block->gpsw, 1145 sizeof(psw_t)); 1146 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1147 &vcpu->arch.sie_block->gpsw, 1148 sizeof(psw_t)); 1149 return rc ? -EFAULT : 0; 1150 } 1151 1152 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1153 unsigned long irq_type) 1154 { 1155 struct list_head *isc_list; 1156 struct kvm_s390_float_interrupt *fi; 1157 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1158 struct kvm_s390_interrupt_info *inti = NULL; 1159 struct kvm_s390_io_info io; 1160 u32 isc; 1161 int rc = 0; 1162 1163 fi = &vcpu->kvm->arch.float_int; 1164 1165 spin_lock(&fi->lock); 1166 isc = irq_type_to_isc(irq_type); 1167 isc_list = &fi->lists[isc]; 1168 inti = list_first_entry_or_null(isc_list, 1169 struct kvm_s390_interrupt_info, 1170 list); 1171 if (inti) { 1172 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1173 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1174 else 1175 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1176 inti->io.subchannel_id >> 8, 1177 inti->io.subchannel_id >> 1 & 0x3, 1178 inti->io.subchannel_nr); 1179 1180 vcpu->stat.deliver_io++; 1181 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1182 inti->type, 1183 ((__u32)inti->io.subchannel_id << 16) | 1184 inti->io.subchannel_nr, 1185 ((__u64)inti->io.io_int_parm << 32) | 1186 inti->io.io_int_word); 1187 list_del(&inti->list); 1188 fi->counters[FIRQ_CNTR_IO] -= 1; 1189 } 1190 if (list_empty(isc_list)) 1191 clear_bit(irq_type, &fi->pending_irqs); 1192 spin_unlock(&fi->lock); 1193 1194 if (inti) { 1195 rc = __do_deliver_io(vcpu, &(inti->io)); 1196 kfree(inti); 1197 goto out; 1198 } 1199 1200 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1201 /* 1202 * in case an adapter interrupt was not delivered 1203 * in SIE context KVM will handle the delivery 1204 */ 1205 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1206 memset(&io, 0, sizeof(io)); 1207 io.io_int_word = isc_to_int_word(isc); 1208 vcpu->stat.deliver_io++; 1209 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1210 KVM_S390_INT_IO(1, 0, 0, 0), 1211 ((__u32)io.subchannel_id << 16) | 1212 io.subchannel_nr, 1213 ((__u64)io.io_int_parm << 32) | 1214 io.io_int_word); 1215 rc = __do_deliver_io(vcpu, &io); 1216 } 1217 out: 1218 return rc; 1219 } 1220 1221 /* Check whether an external call is pending (deliverable or not) */ 1222 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1223 { 1224 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1225 1226 if (!sclp.has_sigpif) 1227 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1228 1229 return sca_ext_call_pending(vcpu, NULL); 1230 } 1231 1232 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1233 { 1234 if (deliverable_irqs(vcpu)) 1235 return 1; 1236 1237 if (kvm_cpu_has_pending_timer(vcpu)) 1238 return 1; 1239 1240 /* external call pending and deliverable */ 1241 if (kvm_s390_ext_call_pending(vcpu) && 1242 !psw_extint_disabled(vcpu) && 1243 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1244 return 1; 1245 1246 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1247 return 1; 1248 return 0; 1249 } 1250 1251 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1252 { 1253 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1254 } 1255 1256 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1257 { 1258 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1259 const u64 ckc = vcpu->arch.sie_block->ckc; 1260 u64 cputm, sltime = 0; 1261 1262 if (ckc_interrupts_enabled(vcpu)) { 1263 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1264 if ((s64)now < (s64)ckc) 1265 sltime = tod_to_ns((s64)ckc - (s64)now); 1266 } else if (now < ckc) { 1267 sltime = tod_to_ns(ckc - now); 1268 } 1269 /* already expired */ 1270 if (!sltime) 1271 return 0; 1272 if (cpu_timer_interrupts_enabled(vcpu)) { 1273 cputm = kvm_s390_get_cpu_timer(vcpu); 1274 /* already expired? */ 1275 if (cputm >> 63) 1276 return 0; 1277 return min_t(u64, sltime, tod_to_ns(cputm)); 1278 } 1279 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1280 sltime = kvm_s390_get_cpu_timer(vcpu); 1281 /* already expired? */ 1282 if (sltime >> 63) 1283 return 0; 1284 } 1285 return sltime; 1286 } 1287 1288 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1289 { 1290 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1291 u64 sltime; 1292 1293 vcpu->stat.exit_wait_state++; 1294 1295 /* fast path */ 1296 if (kvm_arch_vcpu_runnable(vcpu)) 1297 return 0; 1298 1299 if (psw_interrupts_disabled(vcpu)) { 1300 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1301 return -EOPNOTSUPP; /* disabled wait */ 1302 } 1303 1304 if (gi->origin && 1305 (gisa_get_ipm_or_restore_iam(gi) & 1306 vcpu->arch.sie_block->gcr[6] >> 24)) 1307 return 0; 1308 1309 if (!ckc_interrupts_enabled(vcpu) && 1310 !cpu_timer_interrupts_enabled(vcpu)) { 1311 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1312 __set_cpu_idle(vcpu); 1313 goto no_timer; 1314 } 1315 1316 sltime = __calculate_sltime(vcpu); 1317 if (!sltime) 1318 return 0; 1319 1320 __set_cpu_idle(vcpu); 1321 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1322 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1323 no_timer: 1324 kvm_vcpu_srcu_read_unlock(vcpu); 1325 kvm_vcpu_halt(vcpu); 1326 vcpu->valid_wakeup = false; 1327 __unset_cpu_idle(vcpu); 1328 kvm_vcpu_srcu_read_lock(vcpu); 1329 1330 hrtimer_cancel(&vcpu->arch.ckc_timer); 1331 return 0; 1332 } 1333 1334 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1335 { 1336 vcpu->valid_wakeup = true; 1337 kvm_vcpu_wake_up(vcpu); 1338 1339 /* 1340 * The VCPU might not be sleeping but rather executing VSIE. Let's 1341 * kick it, so it leaves the SIE to process the request. 1342 */ 1343 kvm_s390_vsie_kick(vcpu); 1344 } 1345 1346 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1347 { 1348 struct kvm_vcpu *vcpu; 1349 u64 sltime; 1350 1351 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1352 sltime = __calculate_sltime(vcpu); 1353 1354 /* 1355 * If the monotonic clock runs faster than the tod clock we might be 1356 * woken up too early and have to go back to sleep to avoid deadlocks. 1357 */ 1358 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1359 return HRTIMER_RESTART; 1360 kvm_s390_vcpu_wakeup(vcpu); 1361 return HRTIMER_NORESTART; 1362 } 1363 1364 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1365 { 1366 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1367 1368 spin_lock(&li->lock); 1369 li->pending_irqs = 0; 1370 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1371 memset(&li->irq, 0, sizeof(li->irq)); 1372 spin_unlock(&li->lock); 1373 1374 sca_clear_ext_call(vcpu); 1375 } 1376 1377 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1378 { 1379 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1380 int rc = 0; 1381 bool delivered = false; 1382 unsigned long irq_type; 1383 unsigned long irqs; 1384 1385 __reset_intercept_indicators(vcpu); 1386 1387 /* pending ckc conditions might have been invalidated */ 1388 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1389 if (ckc_irq_pending(vcpu)) 1390 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1391 1392 /* pending cpu timer conditions might have been invalidated */ 1393 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1394 if (cpu_timer_irq_pending(vcpu)) 1395 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1396 1397 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1398 /* bits are in the reverse order of interrupt priority */ 1399 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1400 switch (irq_type) { 1401 case IRQ_PEND_IO_ISC_0: 1402 case IRQ_PEND_IO_ISC_1: 1403 case IRQ_PEND_IO_ISC_2: 1404 case IRQ_PEND_IO_ISC_3: 1405 case IRQ_PEND_IO_ISC_4: 1406 case IRQ_PEND_IO_ISC_5: 1407 case IRQ_PEND_IO_ISC_6: 1408 case IRQ_PEND_IO_ISC_7: 1409 rc = __deliver_io(vcpu, irq_type); 1410 break; 1411 case IRQ_PEND_MCHK_EX: 1412 case IRQ_PEND_MCHK_REP: 1413 rc = __deliver_machine_check(vcpu); 1414 break; 1415 case IRQ_PEND_PROG: 1416 rc = __deliver_prog(vcpu); 1417 break; 1418 case IRQ_PEND_EXT_EMERGENCY: 1419 rc = __deliver_emergency_signal(vcpu); 1420 break; 1421 case IRQ_PEND_EXT_EXTERNAL: 1422 rc = __deliver_external_call(vcpu); 1423 break; 1424 case IRQ_PEND_EXT_CLOCK_COMP: 1425 rc = __deliver_ckc(vcpu); 1426 break; 1427 case IRQ_PEND_EXT_CPU_TIMER: 1428 rc = __deliver_cpu_timer(vcpu); 1429 break; 1430 case IRQ_PEND_RESTART: 1431 rc = __deliver_restart(vcpu); 1432 break; 1433 case IRQ_PEND_SET_PREFIX: 1434 rc = __deliver_set_prefix(vcpu); 1435 break; 1436 case IRQ_PEND_PFAULT_INIT: 1437 rc = __deliver_pfault_init(vcpu); 1438 break; 1439 case IRQ_PEND_EXT_SERVICE: 1440 rc = __deliver_service(vcpu); 1441 break; 1442 case IRQ_PEND_EXT_SERVICE_EV: 1443 rc = __deliver_service_ev(vcpu); 1444 break; 1445 case IRQ_PEND_PFAULT_DONE: 1446 rc = __deliver_pfault_done(vcpu); 1447 break; 1448 case IRQ_PEND_VIRTIO: 1449 rc = __deliver_virtio(vcpu); 1450 break; 1451 default: 1452 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1453 clear_bit(irq_type, &li->pending_irqs); 1454 } 1455 delivered |= !rc; 1456 } 1457 1458 /* 1459 * We delivered at least one interrupt and modified the PC. Force a 1460 * singlestep event now. 1461 */ 1462 if (delivered && guestdbg_sstep_enabled(vcpu)) { 1463 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; 1464 1465 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; 1466 debug_exit->type = KVM_SINGLESTEP; 1467 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; 1468 } 1469 1470 set_intercept_indicators(vcpu); 1471 1472 return rc; 1473 } 1474 1475 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1476 { 1477 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1478 1479 vcpu->stat.inject_program++; 1480 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1481 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1482 irq->u.pgm.code, 0); 1483 1484 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1485 /* auto detection if no valid ILC was given */ 1486 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1487 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1488 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1489 } 1490 1491 if (irq->u.pgm.code == PGM_PER) { 1492 li->irq.pgm.code |= PGM_PER; 1493 li->irq.pgm.flags = irq->u.pgm.flags; 1494 /* only modify PER related information */ 1495 li->irq.pgm.per_address = irq->u.pgm.per_address; 1496 li->irq.pgm.per_code = irq->u.pgm.per_code; 1497 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1498 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1499 } else if (!(irq->u.pgm.code & PGM_PER)) { 1500 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1501 irq->u.pgm.code; 1502 li->irq.pgm.flags = irq->u.pgm.flags; 1503 /* only modify non-PER information */ 1504 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1505 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1506 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1507 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1508 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1509 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1510 } else { 1511 li->irq.pgm = irq->u.pgm; 1512 } 1513 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1514 return 0; 1515 } 1516 1517 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1518 { 1519 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1520 1521 vcpu->stat.inject_pfault_init++; 1522 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1523 irq->u.ext.ext_params2); 1524 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1525 irq->u.ext.ext_params, 1526 irq->u.ext.ext_params2); 1527 1528 li->irq.ext = irq->u.ext; 1529 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1530 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1531 return 0; 1532 } 1533 1534 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1535 { 1536 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1537 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1538 uint16_t src_id = irq->u.extcall.code; 1539 1540 vcpu->stat.inject_external_call++; 1541 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1542 src_id); 1543 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1544 src_id, 0); 1545 1546 /* sending vcpu invalid */ 1547 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1548 return -EINVAL; 1549 1550 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1551 return sca_inject_ext_call(vcpu, src_id); 1552 1553 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1554 return -EBUSY; 1555 *extcall = irq->u.extcall; 1556 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1557 return 0; 1558 } 1559 1560 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1561 { 1562 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1563 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1564 1565 vcpu->stat.inject_set_prefix++; 1566 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1567 irq->u.prefix.address); 1568 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1569 irq->u.prefix.address, 0); 1570 1571 if (!is_vcpu_stopped(vcpu)) 1572 return -EBUSY; 1573 1574 *prefix = irq->u.prefix; 1575 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1576 return 0; 1577 } 1578 1579 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1580 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1581 { 1582 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1583 struct kvm_s390_stop_info *stop = &li->irq.stop; 1584 int rc = 0; 1585 1586 vcpu->stat.inject_stop_signal++; 1587 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1588 1589 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1590 return -EINVAL; 1591 1592 if (is_vcpu_stopped(vcpu)) { 1593 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1594 rc = kvm_s390_store_status_unloaded(vcpu, 1595 KVM_S390_STORE_STATUS_NOADDR); 1596 return rc; 1597 } 1598 1599 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1600 return -EBUSY; 1601 stop->flags = irq->u.stop.flags; 1602 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1603 return 0; 1604 } 1605 1606 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1607 { 1608 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1609 1610 vcpu->stat.inject_restart++; 1611 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1612 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1613 1614 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1615 return 0; 1616 } 1617 1618 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1619 struct kvm_s390_irq *irq) 1620 { 1621 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1622 1623 vcpu->stat.inject_emergency_signal++; 1624 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1625 irq->u.emerg.code); 1626 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1627 irq->u.emerg.code, 0); 1628 1629 /* sending vcpu invalid */ 1630 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1631 return -EINVAL; 1632 1633 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1634 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1635 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1636 return 0; 1637 } 1638 1639 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1640 { 1641 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1642 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1643 1644 vcpu->stat.inject_mchk++; 1645 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1646 irq->u.mchk.mcic); 1647 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1648 irq->u.mchk.mcic); 1649 1650 /* 1651 * Because repressible machine checks can be indicated along with 1652 * exigent machine checks (PoP, Chapter 11, Interruption action) 1653 * we need to combine cr14, mcic and external damage code. 1654 * Failing storage address and the logout area should not be or'ed 1655 * together, we just indicate the last occurrence of the corresponding 1656 * machine check 1657 */ 1658 mchk->cr14 |= irq->u.mchk.cr14; 1659 mchk->mcic |= irq->u.mchk.mcic; 1660 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1661 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1662 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1663 sizeof(mchk->fixed_logout)); 1664 if (mchk->mcic & MCHK_EX_MASK) 1665 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1666 else if (mchk->mcic & MCHK_REP_MASK) 1667 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1668 return 0; 1669 } 1670 1671 static int __inject_ckc(struct kvm_vcpu *vcpu) 1672 { 1673 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1674 1675 vcpu->stat.inject_ckc++; 1676 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1677 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1678 0, 0); 1679 1680 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1681 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1682 return 0; 1683 } 1684 1685 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1686 { 1687 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1688 1689 vcpu->stat.inject_cputm++; 1690 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1691 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1692 0, 0); 1693 1694 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1695 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1696 return 0; 1697 } 1698 1699 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1700 int isc, u32 schid) 1701 { 1702 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1703 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1704 struct kvm_s390_interrupt_info *iter; 1705 u16 id = (schid & 0xffff0000U) >> 16; 1706 u16 nr = schid & 0x0000ffffU; 1707 1708 spin_lock(&fi->lock); 1709 list_for_each_entry(iter, isc_list, list) { 1710 if (schid && (id != iter->io.subchannel_id || 1711 nr != iter->io.subchannel_nr)) 1712 continue; 1713 /* found an appropriate entry */ 1714 list_del_init(&iter->list); 1715 fi->counters[FIRQ_CNTR_IO] -= 1; 1716 if (list_empty(isc_list)) 1717 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1718 spin_unlock(&fi->lock); 1719 return iter; 1720 } 1721 spin_unlock(&fi->lock); 1722 return NULL; 1723 } 1724 1725 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1726 u64 isc_mask, u32 schid) 1727 { 1728 struct kvm_s390_interrupt_info *inti = NULL; 1729 int isc; 1730 1731 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1732 if (isc_mask & isc_to_isc_bits(isc)) 1733 inti = get_io_int(kvm, isc, schid); 1734 } 1735 return inti; 1736 } 1737 1738 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1739 { 1740 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1741 unsigned long active_mask; 1742 int isc; 1743 1744 if (schid) 1745 goto out; 1746 if (!gi->origin) 1747 goto out; 1748 1749 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1750 while (active_mask) { 1751 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1752 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1753 return isc; 1754 clear_bit_inv(isc, &active_mask); 1755 } 1756 out: 1757 return -EINVAL; 1758 } 1759 1760 /* 1761 * Dequeue and return an I/O interrupt matching any of the interruption 1762 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1763 * Take into account the interrupts pending in the interrupt list and in GISA. 1764 * 1765 * Note that for a guest that does not enable I/O interrupts 1766 * but relies on TPI, a flood of classic interrupts may starve 1767 * out adapter interrupts on the same isc. Linux does not do 1768 * that, and it is possible to work around the issue by configuring 1769 * different iscs for classic and adapter interrupts in the guest, 1770 * but we may want to revisit this in the future. 1771 */ 1772 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1773 u64 isc_mask, u32 schid) 1774 { 1775 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1776 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1777 int isc; 1778 1779 inti = get_top_io_int(kvm, isc_mask, schid); 1780 1781 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1782 if (isc < 0) 1783 /* no AI in GISA */ 1784 goto out; 1785 1786 if (!inti) 1787 /* AI in GISA but no classical IO int */ 1788 goto gisa_out; 1789 1790 /* both types of interrupts present */ 1791 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1792 /* classical IO int with higher priority */ 1793 gisa_set_ipm_gisc(gi->origin, isc); 1794 goto out; 1795 } 1796 gisa_out: 1797 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1798 if (tmp_inti) { 1799 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1800 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1801 if (inti) 1802 kvm_s390_reinject_io_int(kvm, inti); 1803 inti = tmp_inti; 1804 } else 1805 gisa_set_ipm_gisc(gi->origin, isc); 1806 out: 1807 return inti; 1808 } 1809 1810 static int __inject_service(struct kvm *kvm, 1811 struct kvm_s390_interrupt_info *inti) 1812 { 1813 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1814 1815 kvm->stat.inject_service_signal++; 1816 spin_lock(&fi->lock); 1817 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1818 1819 /* We always allow events, track them separately from the sccb ints */ 1820 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1821 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1822 1823 /* 1824 * Early versions of the QEMU s390 bios will inject several 1825 * service interrupts after another without handling a 1826 * condition code indicating busy. 1827 * We will silently ignore those superfluous sccb values. 1828 * A future version of QEMU will take care of serialization 1829 * of servc requests 1830 */ 1831 if (fi->srv_signal.ext_params & SCCB_MASK) 1832 goto out; 1833 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1834 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1835 out: 1836 spin_unlock(&fi->lock); 1837 kfree(inti); 1838 return 0; 1839 } 1840 1841 static int __inject_virtio(struct kvm *kvm, 1842 struct kvm_s390_interrupt_info *inti) 1843 { 1844 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1845 1846 kvm->stat.inject_virtio++; 1847 spin_lock(&fi->lock); 1848 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1849 spin_unlock(&fi->lock); 1850 return -EBUSY; 1851 } 1852 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1853 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1854 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1855 spin_unlock(&fi->lock); 1856 return 0; 1857 } 1858 1859 static int __inject_pfault_done(struct kvm *kvm, 1860 struct kvm_s390_interrupt_info *inti) 1861 { 1862 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1863 1864 kvm->stat.inject_pfault_done++; 1865 spin_lock(&fi->lock); 1866 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1867 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1868 spin_unlock(&fi->lock); 1869 return -EBUSY; 1870 } 1871 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1872 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1873 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1874 spin_unlock(&fi->lock); 1875 return 0; 1876 } 1877 1878 #define CR_PENDING_SUBCLASS 28 1879 static int __inject_float_mchk(struct kvm *kvm, 1880 struct kvm_s390_interrupt_info *inti) 1881 { 1882 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1883 1884 kvm->stat.inject_float_mchk++; 1885 spin_lock(&fi->lock); 1886 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1887 fi->mchk.mcic |= inti->mchk.mcic; 1888 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1889 spin_unlock(&fi->lock); 1890 kfree(inti); 1891 return 0; 1892 } 1893 1894 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1895 { 1896 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1897 struct kvm_s390_float_interrupt *fi; 1898 struct list_head *list; 1899 int isc; 1900 1901 kvm->stat.inject_io++; 1902 isc = int_word_to_isc(inti->io.io_int_word); 1903 1904 /* 1905 * We do not use the lock checking variant as this is just a 1906 * performance optimization and we do not hold the lock here. 1907 * This is ok as the code will pick interrupts from both "lists" 1908 * for delivery. 1909 */ 1910 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1911 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1912 gisa_set_ipm_gisc(gi->origin, isc); 1913 kfree(inti); 1914 return 0; 1915 } 1916 1917 fi = &kvm->arch.float_int; 1918 spin_lock(&fi->lock); 1919 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1920 spin_unlock(&fi->lock); 1921 return -EBUSY; 1922 } 1923 fi->counters[FIRQ_CNTR_IO] += 1; 1924 1925 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1926 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1927 else 1928 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1929 inti->io.subchannel_id >> 8, 1930 inti->io.subchannel_id >> 1 & 0x3, 1931 inti->io.subchannel_nr); 1932 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1933 list_add_tail(&inti->list, list); 1934 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1935 spin_unlock(&fi->lock); 1936 return 0; 1937 } 1938 1939 /* 1940 * Find a destination VCPU for a floating irq and kick it. 1941 */ 1942 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1943 { 1944 struct kvm_vcpu *dst_vcpu; 1945 int sigcpu, online_vcpus, nr_tries = 0; 1946 1947 online_vcpus = atomic_read(&kvm->online_vcpus); 1948 if (!online_vcpus) 1949 return; 1950 1951 /* find idle VCPUs first, then round robin */ 1952 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1953 if (sigcpu == online_vcpus) { 1954 do { 1955 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1956 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1957 /* avoid endless loops if all vcpus are stopped */ 1958 if (nr_tries++ >= online_vcpus) 1959 return; 1960 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1961 } 1962 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1963 1964 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1965 switch (type) { 1966 case KVM_S390_MCHK: 1967 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1968 break; 1969 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1970 if (!(type & KVM_S390_INT_IO_AI_MASK && 1971 kvm->arch.gisa_int.origin) || 1972 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1973 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1974 break; 1975 default: 1976 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1977 break; 1978 } 1979 kvm_s390_vcpu_wakeup(dst_vcpu); 1980 } 1981 1982 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1983 { 1984 u64 type = READ_ONCE(inti->type); 1985 int rc; 1986 1987 switch (type) { 1988 case KVM_S390_MCHK: 1989 rc = __inject_float_mchk(kvm, inti); 1990 break; 1991 case KVM_S390_INT_VIRTIO: 1992 rc = __inject_virtio(kvm, inti); 1993 break; 1994 case KVM_S390_INT_SERVICE: 1995 rc = __inject_service(kvm, inti); 1996 break; 1997 case KVM_S390_INT_PFAULT_DONE: 1998 rc = __inject_pfault_done(kvm, inti); 1999 break; 2000 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2001 rc = __inject_io(kvm, inti); 2002 break; 2003 default: 2004 rc = -EINVAL; 2005 } 2006 if (rc) 2007 return rc; 2008 2009 __floating_irq_kick(kvm, type); 2010 return 0; 2011 } 2012 2013 int kvm_s390_inject_vm(struct kvm *kvm, 2014 struct kvm_s390_interrupt *s390int) 2015 { 2016 struct kvm_s390_interrupt_info *inti; 2017 int rc; 2018 2019 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2020 if (!inti) 2021 return -ENOMEM; 2022 2023 inti->type = s390int->type; 2024 switch (inti->type) { 2025 case KVM_S390_INT_VIRTIO: 2026 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2027 s390int->parm, s390int->parm64); 2028 inti->ext.ext_params = s390int->parm; 2029 inti->ext.ext_params2 = s390int->parm64; 2030 break; 2031 case KVM_S390_INT_SERVICE: 2032 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2033 inti->ext.ext_params = s390int->parm; 2034 break; 2035 case KVM_S390_INT_PFAULT_DONE: 2036 inti->ext.ext_params2 = s390int->parm64; 2037 break; 2038 case KVM_S390_MCHK: 2039 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2040 s390int->parm64); 2041 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2042 inti->mchk.mcic = s390int->parm64; 2043 break; 2044 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2045 inti->io.subchannel_id = s390int->parm >> 16; 2046 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2047 inti->io.io_int_parm = s390int->parm64 >> 32; 2048 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2049 break; 2050 default: 2051 kfree(inti); 2052 return -EINVAL; 2053 } 2054 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2055 2); 2056 2057 rc = __inject_vm(kvm, inti); 2058 if (rc) 2059 kfree(inti); 2060 return rc; 2061 } 2062 2063 int kvm_s390_reinject_io_int(struct kvm *kvm, 2064 struct kvm_s390_interrupt_info *inti) 2065 { 2066 return __inject_vm(kvm, inti); 2067 } 2068 2069 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2070 struct kvm_s390_irq *irq) 2071 { 2072 irq->type = s390int->type; 2073 switch (irq->type) { 2074 case KVM_S390_PROGRAM_INT: 2075 if (s390int->parm & 0xffff0000) 2076 return -EINVAL; 2077 irq->u.pgm.code = s390int->parm; 2078 break; 2079 case KVM_S390_SIGP_SET_PREFIX: 2080 irq->u.prefix.address = s390int->parm; 2081 break; 2082 case KVM_S390_SIGP_STOP: 2083 irq->u.stop.flags = s390int->parm; 2084 break; 2085 case KVM_S390_INT_EXTERNAL_CALL: 2086 if (s390int->parm & 0xffff0000) 2087 return -EINVAL; 2088 irq->u.extcall.code = s390int->parm; 2089 break; 2090 case KVM_S390_INT_EMERGENCY: 2091 if (s390int->parm & 0xffff0000) 2092 return -EINVAL; 2093 irq->u.emerg.code = s390int->parm; 2094 break; 2095 case KVM_S390_MCHK: 2096 irq->u.mchk.mcic = s390int->parm64; 2097 break; 2098 case KVM_S390_INT_PFAULT_INIT: 2099 irq->u.ext.ext_params = s390int->parm; 2100 irq->u.ext.ext_params2 = s390int->parm64; 2101 break; 2102 case KVM_S390_RESTART: 2103 case KVM_S390_INT_CLOCK_COMP: 2104 case KVM_S390_INT_CPU_TIMER: 2105 break; 2106 default: 2107 return -EINVAL; 2108 } 2109 return 0; 2110 } 2111 2112 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2113 { 2114 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2115 2116 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2117 } 2118 2119 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2120 { 2121 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2122 2123 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2124 } 2125 2126 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2127 { 2128 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2129 2130 spin_lock(&li->lock); 2131 li->irq.stop.flags = 0; 2132 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2133 spin_unlock(&li->lock); 2134 } 2135 2136 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2137 { 2138 int rc; 2139 2140 switch (irq->type) { 2141 case KVM_S390_PROGRAM_INT: 2142 rc = __inject_prog(vcpu, irq); 2143 break; 2144 case KVM_S390_SIGP_SET_PREFIX: 2145 rc = __inject_set_prefix(vcpu, irq); 2146 break; 2147 case KVM_S390_SIGP_STOP: 2148 rc = __inject_sigp_stop(vcpu, irq); 2149 break; 2150 case KVM_S390_RESTART: 2151 rc = __inject_sigp_restart(vcpu); 2152 break; 2153 case KVM_S390_INT_CLOCK_COMP: 2154 rc = __inject_ckc(vcpu); 2155 break; 2156 case KVM_S390_INT_CPU_TIMER: 2157 rc = __inject_cpu_timer(vcpu); 2158 break; 2159 case KVM_S390_INT_EXTERNAL_CALL: 2160 rc = __inject_extcall(vcpu, irq); 2161 break; 2162 case KVM_S390_INT_EMERGENCY: 2163 rc = __inject_sigp_emergency(vcpu, irq); 2164 break; 2165 case KVM_S390_MCHK: 2166 rc = __inject_mchk(vcpu, irq); 2167 break; 2168 case KVM_S390_INT_PFAULT_INIT: 2169 rc = __inject_pfault_init(vcpu, irq); 2170 break; 2171 case KVM_S390_INT_VIRTIO: 2172 case KVM_S390_INT_SERVICE: 2173 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2174 default: 2175 rc = -EINVAL; 2176 } 2177 2178 return rc; 2179 } 2180 2181 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2182 { 2183 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2184 int rc; 2185 2186 spin_lock(&li->lock); 2187 rc = do_inject_vcpu(vcpu, irq); 2188 spin_unlock(&li->lock); 2189 if (!rc) 2190 kvm_s390_vcpu_wakeup(vcpu); 2191 return rc; 2192 } 2193 2194 static inline void clear_irq_list(struct list_head *_list) 2195 { 2196 struct kvm_s390_interrupt_info *inti, *n; 2197 2198 list_for_each_entry_safe(inti, n, _list, list) { 2199 list_del(&inti->list); 2200 kfree(inti); 2201 } 2202 } 2203 2204 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2205 struct kvm_s390_irq *irq) 2206 { 2207 irq->type = inti->type; 2208 switch (inti->type) { 2209 case KVM_S390_INT_PFAULT_INIT: 2210 case KVM_S390_INT_PFAULT_DONE: 2211 case KVM_S390_INT_VIRTIO: 2212 irq->u.ext = inti->ext; 2213 break; 2214 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2215 irq->u.io = inti->io; 2216 break; 2217 } 2218 } 2219 2220 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2221 { 2222 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2223 int i; 2224 2225 mutex_lock(&kvm->lock); 2226 if (!kvm_s390_pv_is_protected(kvm)) 2227 fi->masked_irqs = 0; 2228 mutex_unlock(&kvm->lock); 2229 spin_lock(&fi->lock); 2230 fi->pending_irqs = 0; 2231 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2232 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2233 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2234 clear_irq_list(&fi->lists[i]); 2235 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2236 fi->counters[i] = 0; 2237 spin_unlock(&fi->lock); 2238 kvm_s390_gisa_clear(kvm); 2239 }; 2240 2241 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2242 { 2243 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2244 struct kvm_s390_interrupt_info *inti; 2245 struct kvm_s390_float_interrupt *fi; 2246 struct kvm_s390_irq *buf; 2247 struct kvm_s390_irq *irq; 2248 int max_irqs; 2249 int ret = 0; 2250 int n = 0; 2251 int i; 2252 2253 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2254 return -EINVAL; 2255 2256 /* 2257 * We are already using -ENOMEM to signal 2258 * userspace it may retry with a bigger buffer, 2259 * so we need to use something else for this case 2260 */ 2261 buf = vzalloc(len); 2262 if (!buf) 2263 return -ENOBUFS; 2264 2265 max_irqs = len / sizeof(struct kvm_s390_irq); 2266 2267 if (gi->origin && gisa_get_ipm(gi->origin)) { 2268 for (i = 0; i <= MAX_ISC; i++) { 2269 if (n == max_irqs) { 2270 /* signal userspace to try again */ 2271 ret = -ENOMEM; 2272 goto out_nolock; 2273 } 2274 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2275 irq = (struct kvm_s390_irq *) &buf[n]; 2276 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2277 irq->u.io.io_int_word = isc_to_int_word(i); 2278 n++; 2279 } 2280 } 2281 } 2282 fi = &kvm->arch.float_int; 2283 spin_lock(&fi->lock); 2284 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2285 list_for_each_entry(inti, &fi->lists[i], list) { 2286 if (n == max_irqs) { 2287 /* signal userspace to try again */ 2288 ret = -ENOMEM; 2289 goto out; 2290 } 2291 inti_to_irq(inti, &buf[n]); 2292 n++; 2293 } 2294 } 2295 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2296 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2297 if (n == max_irqs) { 2298 /* signal userspace to try again */ 2299 ret = -ENOMEM; 2300 goto out; 2301 } 2302 irq = (struct kvm_s390_irq *) &buf[n]; 2303 irq->type = KVM_S390_INT_SERVICE; 2304 irq->u.ext = fi->srv_signal; 2305 n++; 2306 } 2307 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2308 if (n == max_irqs) { 2309 /* signal userspace to try again */ 2310 ret = -ENOMEM; 2311 goto out; 2312 } 2313 irq = (struct kvm_s390_irq *) &buf[n]; 2314 irq->type = KVM_S390_MCHK; 2315 irq->u.mchk = fi->mchk; 2316 n++; 2317 } 2318 2319 out: 2320 spin_unlock(&fi->lock); 2321 out_nolock: 2322 if (!ret && n > 0) { 2323 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2324 ret = -EFAULT; 2325 } 2326 vfree(buf); 2327 2328 return ret < 0 ? ret : n; 2329 } 2330 2331 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2332 { 2333 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2334 struct kvm_s390_ais_all ais; 2335 2336 if (attr->attr < sizeof(ais)) 2337 return -EINVAL; 2338 2339 if (!test_kvm_facility(kvm, 72)) 2340 return -EOPNOTSUPP; 2341 2342 mutex_lock(&fi->ais_lock); 2343 ais.simm = fi->simm; 2344 ais.nimm = fi->nimm; 2345 mutex_unlock(&fi->ais_lock); 2346 2347 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2348 return -EFAULT; 2349 2350 return 0; 2351 } 2352 2353 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2354 { 2355 int r; 2356 2357 switch (attr->group) { 2358 case KVM_DEV_FLIC_GET_ALL_IRQS: 2359 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2360 attr->attr); 2361 break; 2362 case KVM_DEV_FLIC_AISM_ALL: 2363 r = flic_ais_mode_get_all(dev->kvm, attr); 2364 break; 2365 default: 2366 r = -EINVAL; 2367 } 2368 2369 return r; 2370 } 2371 2372 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2373 u64 addr) 2374 { 2375 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2376 void *target = NULL; 2377 void __user *source; 2378 u64 size; 2379 2380 if (get_user(inti->type, (u64 __user *)addr)) 2381 return -EFAULT; 2382 2383 switch (inti->type) { 2384 case KVM_S390_INT_PFAULT_INIT: 2385 case KVM_S390_INT_PFAULT_DONE: 2386 case KVM_S390_INT_VIRTIO: 2387 case KVM_S390_INT_SERVICE: 2388 target = (void *) &inti->ext; 2389 source = &uptr->u.ext; 2390 size = sizeof(inti->ext); 2391 break; 2392 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2393 target = (void *) &inti->io; 2394 source = &uptr->u.io; 2395 size = sizeof(inti->io); 2396 break; 2397 case KVM_S390_MCHK: 2398 target = (void *) &inti->mchk; 2399 source = &uptr->u.mchk; 2400 size = sizeof(inti->mchk); 2401 break; 2402 default: 2403 return -EINVAL; 2404 } 2405 2406 if (copy_from_user(target, source, size)) 2407 return -EFAULT; 2408 2409 return 0; 2410 } 2411 2412 static int enqueue_floating_irq(struct kvm_device *dev, 2413 struct kvm_device_attr *attr) 2414 { 2415 struct kvm_s390_interrupt_info *inti = NULL; 2416 int r = 0; 2417 int len = attr->attr; 2418 2419 if (len % sizeof(struct kvm_s390_irq) != 0) 2420 return -EINVAL; 2421 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2422 return -EINVAL; 2423 2424 while (len >= sizeof(struct kvm_s390_irq)) { 2425 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2426 if (!inti) 2427 return -ENOMEM; 2428 2429 r = copy_irq_from_user(inti, attr->addr); 2430 if (r) { 2431 kfree(inti); 2432 return r; 2433 } 2434 r = __inject_vm(dev->kvm, inti); 2435 if (r) { 2436 kfree(inti); 2437 return r; 2438 } 2439 len -= sizeof(struct kvm_s390_irq); 2440 attr->addr += sizeof(struct kvm_s390_irq); 2441 } 2442 2443 return r; 2444 } 2445 2446 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2447 { 2448 if (id >= MAX_S390_IO_ADAPTERS) 2449 return NULL; 2450 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2451 return kvm->arch.adapters[id]; 2452 } 2453 2454 static int register_io_adapter(struct kvm_device *dev, 2455 struct kvm_device_attr *attr) 2456 { 2457 struct s390_io_adapter *adapter; 2458 struct kvm_s390_io_adapter adapter_info; 2459 2460 if (copy_from_user(&adapter_info, 2461 (void __user *)attr->addr, sizeof(adapter_info))) 2462 return -EFAULT; 2463 2464 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2465 return -EINVAL; 2466 2467 adapter_info.id = array_index_nospec(adapter_info.id, 2468 MAX_S390_IO_ADAPTERS); 2469 2470 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2471 return -EINVAL; 2472 2473 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2474 if (!adapter) 2475 return -ENOMEM; 2476 2477 adapter->id = adapter_info.id; 2478 adapter->isc = adapter_info.isc; 2479 adapter->maskable = adapter_info.maskable; 2480 adapter->masked = false; 2481 adapter->swap = adapter_info.swap; 2482 adapter->suppressible = (adapter_info.flags) & 2483 KVM_S390_ADAPTER_SUPPRESSIBLE; 2484 dev->kvm->arch.adapters[adapter->id] = adapter; 2485 2486 return 0; 2487 } 2488 2489 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2490 { 2491 int ret; 2492 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2493 2494 if (!adapter || !adapter->maskable) 2495 return -EINVAL; 2496 ret = adapter->masked; 2497 adapter->masked = masked; 2498 return ret; 2499 } 2500 2501 void kvm_s390_destroy_adapters(struct kvm *kvm) 2502 { 2503 int i; 2504 2505 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2506 kfree(kvm->arch.adapters[i]); 2507 } 2508 2509 static int modify_io_adapter(struct kvm_device *dev, 2510 struct kvm_device_attr *attr) 2511 { 2512 struct kvm_s390_io_adapter_req req; 2513 struct s390_io_adapter *adapter; 2514 int ret; 2515 2516 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2517 return -EFAULT; 2518 2519 adapter = get_io_adapter(dev->kvm, req.id); 2520 if (!adapter) 2521 return -EINVAL; 2522 switch (req.type) { 2523 case KVM_S390_IO_ADAPTER_MASK: 2524 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2525 if (ret > 0) 2526 ret = 0; 2527 break; 2528 /* 2529 * The following operations are no longer needed and therefore no-ops. 2530 * The gpa to hva translation is done when an IRQ route is set up. The 2531 * set_irq code uses get_user_pages_remote() to do the actual write. 2532 */ 2533 case KVM_S390_IO_ADAPTER_MAP: 2534 case KVM_S390_IO_ADAPTER_UNMAP: 2535 ret = 0; 2536 break; 2537 default: 2538 ret = -EINVAL; 2539 } 2540 2541 return ret; 2542 } 2543 2544 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2545 2546 { 2547 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2548 u32 schid; 2549 2550 if (attr->flags) 2551 return -EINVAL; 2552 if (attr->attr != sizeof(schid)) 2553 return -EINVAL; 2554 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2555 return -EFAULT; 2556 if (!schid) 2557 return -EINVAL; 2558 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2559 /* 2560 * If userspace is conforming to the architecture, we can have at most 2561 * one pending I/O interrupt per subchannel, so this is effectively a 2562 * clear all. 2563 */ 2564 return 0; 2565 } 2566 2567 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2568 { 2569 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2570 struct kvm_s390_ais_req req; 2571 int ret = 0; 2572 2573 if (!test_kvm_facility(kvm, 72)) 2574 return -EOPNOTSUPP; 2575 2576 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2577 return -EFAULT; 2578 2579 if (req.isc > MAX_ISC) 2580 return -EINVAL; 2581 2582 trace_kvm_s390_modify_ais_mode(req.isc, 2583 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2584 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2585 2 : KVM_S390_AIS_MODE_SINGLE : 2586 KVM_S390_AIS_MODE_ALL, req.mode); 2587 2588 mutex_lock(&fi->ais_lock); 2589 switch (req.mode) { 2590 case KVM_S390_AIS_MODE_ALL: 2591 fi->simm &= ~AIS_MODE_MASK(req.isc); 2592 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2593 break; 2594 case KVM_S390_AIS_MODE_SINGLE: 2595 fi->simm |= AIS_MODE_MASK(req.isc); 2596 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2597 break; 2598 default: 2599 ret = -EINVAL; 2600 } 2601 mutex_unlock(&fi->ais_lock); 2602 2603 return ret; 2604 } 2605 2606 static int kvm_s390_inject_airq(struct kvm *kvm, 2607 struct s390_io_adapter *adapter) 2608 { 2609 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2610 struct kvm_s390_interrupt s390int = { 2611 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2612 .parm = 0, 2613 .parm64 = isc_to_int_word(adapter->isc), 2614 }; 2615 int ret = 0; 2616 2617 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2618 return kvm_s390_inject_vm(kvm, &s390int); 2619 2620 mutex_lock(&fi->ais_lock); 2621 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2622 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2623 goto out; 2624 } 2625 2626 ret = kvm_s390_inject_vm(kvm, &s390int); 2627 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2628 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2629 trace_kvm_s390_modify_ais_mode(adapter->isc, 2630 KVM_S390_AIS_MODE_SINGLE, 2); 2631 } 2632 out: 2633 mutex_unlock(&fi->ais_lock); 2634 return ret; 2635 } 2636 2637 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2638 { 2639 unsigned int id = attr->attr; 2640 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2641 2642 if (!adapter) 2643 return -EINVAL; 2644 2645 return kvm_s390_inject_airq(kvm, adapter); 2646 } 2647 2648 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2649 { 2650 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2651 struct kvm_s390_ais_all ais; 2652 2653 if (!test_kvm_facility(kvm, 72)) 2654 return -EOPNOTSUPP; 2655 2656 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2657 return -EFAULT; 2658 2659 mutex_lock(&fi->ais_lock); 2660 fi->simm = ais.simm; 2661 fi->nimm = ais.nimm; 2662 mutex_unlock(&fi->ais_lock); 2663 2664 return 0; 2665 } 2666 2667 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2668 { 2669 int r = 0; 2670 unsigned long i; 2671 struct kvm_vcpu *vcpu; 2672 2673 switch (attr->group) { 2674 case KVM_DEV_FLIC_ENQUEUE: 2675 r = enqueue_floating_irq(dev, attr); 2676 break; 2677 case KVM_DEV_FLIC_CLEAR_IRQS: 2678 kvm_s390_clear_float_irqs(dev->kvm); 2679 break; 2680 case KVM_DEV_FLIC_APF_ENABLE: 2681 if (kvm_is_ucontrol(dev->kvm)) 2682 return -EINVAL; 2683 dev->kvm->arch.gmap->pfault_enabled = 1; 2684 break; 2685 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2686 if (kvm_is_ucontrol(dev->kvm)) 2687 return -EINVAL; 2688 dev->kvm->arch.gmap->pfault_enabled = 0; 2689 /* 2690 * Make sure no async faults are in transition when 2691 * clearing the queues. So we don't need to worry 2692 * about late coming workers. 2693 */ 2694 synchronize_srcu(&dev->kvm->srcu); 2695 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2696 kvm_clear_async_pf_completion_queue(vcpu); 2697 break; 2698 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2699 r = register_io_adapter(dev, attr); 2700 break; 2701 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2702 r = modify_io_adapter(dev, attr); 2703 break; 2704 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2705 r = clear_io_irq(dev->kvm, attr); 2706 break; 2707 case KVM_DEV_FLIC_AISM: 2708 r = modify_ais_mode(dev->kvm, attr); 2709 break; 2710 case KVM_DEV_FLIC_AIRQ_INJECT: 2711 r = flic_inject_airq(dev->kvm, attr); 2712 break; 2713 case KVM_DEV_FLIC_AISM_ALL: 2714 r = flic_ais_mode_set_all(dev->kvm, attr); 2715 break; 2716 default: 2717 r = -EINVAL; 2718 } 2719 2720 return r; 2721 } 2722 2723 static int flic_has_attr(struct kvm_device *dev, 2724 struct kvm_device_attr *attr) 2725 { 2726 switch (attr->group) { 2727 case KVM_DEV_FLIC_GET_ALL_IRQS: 2728 case KVM_DEV_FLIC_ENQUEUE: 2729 case KVM_DEV_FLIC_CLEAR_IRQS: 2730 case KVM_DEV_FLIC_APF_ENABLE: 2731 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2732 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2733 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2734 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2735 case KVM_DEV_FLIC_AISM: 2736 case KVM_DEV_FLIC_AIRQ_INJECT: 2737 case KVM_DEV_FLIC_AISM_ALL: 2738 return 0; 2739 } 2740 return -ENXIO; 2741 } 2742 2743 static int flic_create(struct kvm_device *dev, u32 type) 2744 { 2745 if (!dev) 2746 return -EINVAL; 2747 if (dev->kvm->arch.flic) 2748 return -EINVAL; 2749 dev->kvm->arch.flic = dev; 2750 return 0; 2751 } 2752 2753 static void flic_destroy(struct kvm_device *dev) 2754 { 2755 dev->kvm->arch.flic = NULL; 2756 kfree(dev); 2757 } 2758 2759 /* s390 floating irq controller (flic) */ 2760 struct kvm_device_ops kvm_flic_ops = { 2761 .name = "kvm-flic", 2762 .get_attr = flic_get_attr, 2763 .set_attr = flic_set_attr, 2764 .has_attr = flic_has_attr, 2765 .create = flic_create, 2766 .destroy = flic_destroy, 2767 }; 2768 2769 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2770 { 2771 unsigned long bit; 2772 2773 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2774 2775 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2776 } 2777 2778 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2779 { 2780 struct page *page = NULL; 2781 2782 mmap_read_lock(kvm->mm); 2783 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2784 &page, NULL); 2785 mmap_read_unlock(kvm->mm); 2786 return page; 2787 } 2788 2789 static int adapter_indicators_set(struct kvm *kvm, 2790 struct s390_io_adapter *adapter, 2791 struct kvm_s390_adapter_int *adapter_int) 2792 { 2793 unsigned long bit; 2794 int summary_set, idx; 2795 struct page *ind_page, *summary_page; 2796 void *map; 2797 2798 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2799 if (!ind_page) 2800 return -1; 2801 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2802 if (!summary_page) { 2803 put_page(ind_page); 2804 return -1; 2805 } 2806 2807 idx = srcu_read_lock(&kvm->srcu); 2808 map = page_address(ind_page); 2809 bit = get_ind_bit(adapter_int->ind_addr, 2810 adapter_int->ind_offset, adapter->swap); 2811 set_bit(bit, map); 2812 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2813 set_page_dirty_lock(ind_page); 2814 map = page_address(summary_page); 2815 bit = get_ind_bit(adapter_int->summary_addr, 2816 adapter_int->summary_offset, adapter->swap); 2817 summary_set = test_and_set_bit(bit, map); 2818 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2819 set_page_dirty_lock(summary_page); 2820 srcu_read_unlock(&kvm->srcu, idx); 2821 2822 put_page(ind_page); 2823 put_page(summary_page); 2824 return summary_set ? 0 : 1; 2825 } 2826 2827 /* 2828 * < 0 - not injected due to error 2829 * = 0 - coalesced, summary indicator already active 2830 * > 0 - injected interrupt 2831 */ 2832 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2833 struct kvm *kvm, int irq_source_id, int level, 2834 bool line_status) 2835 { 2836 int ret; 2837 struct s390_io_adapter *adapter; 2838 2839 /* We're only interested in the 0->1 transition. */ 2840 if (!level) 2841 return 0; 2842 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2843 if (!adapter) 2844 return -1; 2845 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2846 if ((ret > 0) && !adapter->masked) { 2847 ret = kvm_s390_inject_airq(kvm, adapter); 2848 if (ret == 0) 2849 ret = 1; 2850 } 2851 return ret; 2852 } 2853 2854 /* 2855 * Inject the machine check to the guest. 2856 */ 2857 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2858 struct mcck_volatile_info *mcck_info) 2859 { 2860 struct kvm_s390_interrupt_info inti; 2861 struct kvm_s390_irq irq; 2862 struct kvm_s390_mchk_info *mchk; 2863 union mci mci; 2864 __u64 cr14 = 0; /* upper bits are not used */ 2865 int rc; 2866 2867 mci.val = mcck_info->mcic; 2868 if (mci.sr) 2869 cr14 |= CR14_RECOVERY_SUBMASK; 2870 if (mci.dg) 2871 cr14 |= CR14_DEGRADATION_SUBMASK; 2872 if (mci.w) 2873 cr14 |= CR14_WARNING_SUBMASK; 2874 2875 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2876 mchk->cr14 = cr14; 2877 mchk->mcic = mcck_info->mcic; 2878 mchk->ext_damage_code = mcck_info->ext_damage_code; 2879 mchk->failing_storage_address = mcck_info->failing_storage_address; 2880 if (mci.ck) { 2881 /* Inject the floating machine check */ 2882 inti.type = KVM_S390_MCHK; 2883 rc = __inject_vm(vcpu->kvm, &inti); 2884 } else { 2885 /* Inject the machine check to specified vcpu */ 2886 irq.type = KVM_S390_MCHK; 2887 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2888 } 2889 WARN_ON_ONCE(rc); 2890 } 2891 2892 int kvm_set_routing_entry(struct kvm *kvm, 2893 struct kvm_kernel_irq_routing_entry *e, 2894 const struct kvm_irq_routing_entry *ue) 2895 { 2896 u64 uaddr_s, uaddr_i; 2897 int idx; 2898 2899 switch (ue->type) { 2900 /* we store the userspace addresses instead of the guest addresses */ 2901 case KVM_IRQ_ROUTING_S390_ADAPTER: 2902 if (kvm_is_ucontrol(kvm)) 2903 return -EINVAL; 2904 e->set = set_adapter_int; 2905 2906 idx = srcu_read_lock(&kvm->srcu); 2907 uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr); 2908 uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr); 2909 srcu_read_unlock(&kvm->srcu, idx); 2910 2911 if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i)) 2912 return -EFAULT; 2913 e->adapter.summary_addr = uaddr_s; 2914 e->adapter.ind_addr = uaddr_i; 2915 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2916 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2917 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2918 return 0; 2919 default: 2920 return -EINVAL; 2921 } 2922 } 2923 2924 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2925 int irq_source_id, int level, bool line_status) 2926 { 2927 return -EINVAL; 2928 } 2929 2930 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2931 { 2932 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2933 struct kvm_s390_irq *buf; 2934 int r = 0; 2935 int n; 2936 2937 buf = vmalloc(len); 2938 if (!buf) 2939 return -ENOMEM; 2940 2941 if (copy_from_user((void *) buf, irqstate, len)) { 2942 r = -EFAULT; 2943 goto out_free; 2944 } 2945 2946 /* 2947 * Don't allow setting the interrupt state 2948 * when there are already interrupts pending 2949 */ 2950 spin_lock(&li->lock); 2951 if (li->pending_irqs) { 2952 r = -EBUSY; 2953 goto out_unlock; 2954 } 2955 2956 for (n = 0; n < len / sizeof(*buf); n++) { 2957 r = do_inject_vcpu(vcpu, &buf[n]); 2958 if (r) 2959 break; 2960 } 2961 2962 out_unlock: 2963 spin_unlock(&li->lock); 2964 out_free: 2965 vfree(buf); 2966 2967 return r; 2968 } 2969 2970 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2971 struct kvm_s390_irq *irq, 2972 unsigned long irq_type) 2973 { 2974 switch (irq_type) { 2975 case IRQ_PEND_MCHK_EX: 2976 case IRQ_PEND_MCHK_REP: 2977 irq->type = KVM_S390_MCHK; 2978 irq->u.mchk = li->irq.mchk; 2979 break; 2980 case IRQ_PEND_PROG: 2981 irq->type = KVM_S390_PROGRAM_INT; 2982 irq->u.pgm = li->irq.pgm; 2983 break; 2984 case IRQ_PEND_PFAULT_INIT: 2985 irq->type = KVM_S390_INT_PFAULT_INIT; 2986 irq->u.ext = li->irq.ext; 2987 break; 2988 case IRQ_PEND_EXT_EXTERNAL: 2989 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2990 irq->u.extcall = li->irq.extcall; 2991 break; 2992 case IRQ_PEND_EXT_CLOCK_COMP: 2993 irq->type = KVM_S390_INT_CLOCK_COMP; 2994 break; 2995 case IRQ_PEND_EXT_CPU_TIMER: 2996 irq->type = KVM_S390_INT_CPU_TIMER; 2997 break; 2998 case IRQ_PEND_SIGP_STOP: 2999 irq->type = KVM_S390_SIGP_STOP; 3000 irq->u.stop = li->irq.stop; 3001 break; 3002 case IRQ_PEND_RESTART: 3003 irq->type = KVM_S390_RESTART; 3004 break; 3005 case IRQ_PEND_SET_PREFIX: 3006 irq->type = KVM_S390_SIGP_SET_PREFIX; 3007 irq->u.prefix = li->irq.prefix; 3008 break; 3009 } 3010 } 3011 3012 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3013 { 3014 int scn; 3015 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3016 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3017 unsigned long pending_irqs; 3018 struct kvm_s390_irq irq; 3019 unsigned long irq_type; 3020 int cpuaddr; 3021 int n = 0; 3022 3023 spin_lock(&li->lock); 3024 pending_irqs = li->pending_irqs; 3025 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3026 sizeof(sigp_emerg_pending)); 3027 spin_unlock(&li->lock); 3028 3029 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3030 memset(&irq, 0, sizeof(irq)); 3031 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3032 continue; 3033 if (n + sizeof(irq) > len) 3034 return -ENOBUFS; 3035 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3036 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3037 return -EFAULT; 3038 n += sizeof(irq); 3039 } 3040 3041 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3042 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3043 memset(&irq, 0, sizeof(irq)); 3044 if (n + sizeof(irq) > len) 3045 return -ENOBUFS; 3046 irq.type = KVM_S390_INT_EMERGENCY; 3047 irq.u.emerg.code = cpuaddr; 3048 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3049 return -EFAULT; 3050 n += sizeof(irq); 3051 } 3052 } 3053 3054 if (sca_ext_call_pending(vcpu, &scn)) { 3055 if (n + sizeof(irq) > len) 3056 return -ENOBUFS; 3057 memset(&irq, 0, sizeof(irq)); 3058 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3059 irq.u.extcall.code = scn; 3060 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3061 return -EFAULT; 3062 n += sizeof(irq); 3063 } 3064 3065 return n; 3066 } 3067 3068 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3069 { 3070 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3071 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3072 struct kvm_vcpu *vcpu; 3073 u8 vcpu_isc_mask; 3074 3075 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3076 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3077 if (psw_ioint_disabled(vcpu)) 3078 continue; 3079 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3080 if (deliverable_mask & vcpu_isc_mask) { 3081 /* lately kicked but not yet running */ 3082 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3083 return; 3084 kvm_s390_vcpu_wakeup(vcpu); 3085 return; 3086 } 3087 } 3088 } 3089 3090 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3091 { 3092 struct kvm_s390_gisa_interrupt *gi = 3093 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3094 struct kvm *kvm = 3095 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3096 u8 pending_mask; 3097 3098 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3099 if (pending_mask) { 3100 __airqs_kick_single_vcpu(kvm, pending_mask); 3101 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3102 return HRTIMER_RESTART; 3103 } 3104 3105 return HRTIMER_NORESTART; 3106 } 3107 3108 #define NULL_GISA_ADDR 0x00000000UL 3109 #define NONE_GISA_ADDR 0x00000001UL 3110 #define GISA_ADDR_MASK 0xfffff000UL 3111 3112 static void process_gib_alert_list(void) 3113 { 3114 struct kvm_s390_gisa_interrupt *gi; 3115 u32 final, gisa_phys, origin = 0UL; 3116 struct kvm_s390_gisa *gisa; 3117 struct kvm *kvm; 3118 3119 do { 3120 /* 3121 * If the NONE_GISA_ADDR is still stored in the alert list 3122 * origin, we will leave the outer loop. No further GISA has 3123 * been added to the alert list by millicode while processing 3124 * the current alert list. 3125 */ 3126 final = (origin & NONE_GISA_ADDR); 3127 /* 3128 * Cut off the alert list and store the NONE_GISA_ADDR in the 3129 * alert list origin to avoid further GAL interruptions. 3130 * A new alert list can be build up by millicode in parallel 3131 * for guests not in the yet cut-off alert list. When in the 3132 * final loop, store the NULL_GISA_ADDR instead. This will re- 3133 * enable GAL interruptions on the host again. 3134 */ 3135 origin = xchg(&gib->alert_list_origin, 3136 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3137 /* 3138 * Loop through the just cut-off alert list and start the 3139 * gisa timers to kick idle vcpus to consume the pending 3140 * interruptions asap. 3141 */ 3142 while (origin & GISA_ADDR_MASK) { 3143 gisa_phys = origin; 3144 gisa = phys_to_virt(gisa_phys); 3145 origin = gisa->next_alert; 3146 gisa->next_alert = gisa_phys; 3147 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3148 gi = &kvm->arch.gisa_int; 3149 if (hrtimer_active(&gi->timer)) 3150 hrtimer_cancel(&gi->timer); 3151 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3152 } 3153 } while (!final); 3154 3155 } 3156 3157 void kvm_s390_gisa_clear(struct kvm *kvm) 3158 { 3159 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3160 3161 if (!gi->origin) 3162 return; 3163 gisa_clear_ipm(gi->origin); 3164 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3165 } 3166 3167 void kvm_s390_gisa_init(struct kvm *kvm) 3168 { 3169 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3170 3171 if (!css_general_characteristics.aiv) 3172 return; 3173 gi->origin = &kvm->arch.sie_page2->gisa; 3174 gi->alert.mask = 0; 3175 spin_lock_init(&gi->alert.ref_lock); 3176 gi->expires = 50 * 1000; /* 50 usec */ 3177 hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3178 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3179 gi->origin->next_alert = (u32)virt_to_phys(gi->origin); 3180 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3181 } 3182 3183 void kvm_s390_gisa_enable(struct kvm *kvm) 3184 { 3185 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3186 struct kvm_vcpu *vcpu; 3187 unsigned long i; 3188 u32 gisa_desc; 3189 3190 if (gi->origin) 3191 return; 3192 kvm_s390_gisa_init(kvm); 3193 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3194 if (!gisa_desc) 3195 return; 3196 kvm_for_each_vcpu(i, vcpu, kvm) { 3197 mutex_lock(&vcpu->mutex); 3198 vcpu->arch.sie_block->gd = gisa_desc; 3199 vcpu->arch.sie_block->eca |= ECA_AIV; 3200 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3201 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3202 mutex_unlock(&vcpu->mutex); 3203 } 3204 } 3205 3206 void kvm_s390_gisa_destroy(struct kvm *kvm) 3207 { 3208 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3209 struct kvm_s390_gisa *gisa = gi->origin; 3210 3211 if (!gi->origin) 3212 return; 3213 WARN(gi->alert.mask != 0x00, 3214 "unexpected non zero alert.mask 0x%02x", 3215 gi->alert.mask); 3216 gi->alert.mask = 0x00; 3217 if (gisa_set_iam(gi->origin, gi->alert.mask)) 3218 process_gib_alert_list(); 3219 hrtimer_cancel(&gi->timer); 3220 gi->origin = NULL; 3221 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); 3222 } 3223 3224 void kvm_s390_gisa_disable(struct kvm *kvm) 3225 { 3226 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3227 struct kvm_vcpu *vcpu; 3228 unsigned long i; 3229 3230 if (!gi->origin) 3231 return; 3232 kvm_for_each_vcpu(i, vcpu, kvm) { 3233 mutex_lock(&vcpu->mutex); 3234 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3235 vcpu->arch.sie_block->gd = 0U; 3236 mutex_unlock(&vcpu->mutex); 3237 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3238 } 3239 kvm_s390_gisa_destroy(kvm); 3240 } 3241 3242 /** 3243 * kvm_s390_gisc_register - register a guest ISC 3244 * 3245 * @kvm: the kernel vm to work with 3246 * @gisc: the guest interruption sub class to register 3247 * 3248 * The function extends the vm specific alert mask to use. 3249 * The effective IAM mask in the GISA is updated as well 3250 * in case the GISA is not part of the GIB alert list. 3251 * It will be updated latest when the IAM gets restored 3252 * by gisa_get_ipm_or_restore_iam(). 3253 * 3254 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3255 * has registered with the channel subsystem. 3256 * -ENODEV in case the vm uses no GISA 3257 * -ERANGE in case the guest ISC is invalid 3258 */ 3259 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3260 { 3261 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3262 3263 if (!gi->origin) 3264 return -ENODEV; 3265 if (gisc > MAX_ISC) 3266 return -ERANGE; 3267 3268 spin_lock(&gi->alert.ref_lock); 3269 gi->alert.ref_count[gisc]++; 3270 if (gi->alert.ref_count[gisc] == 1) { 3271 gi->alert.mask |= 0x80 >> gisc; 3272 gisa_set_iam(gi->origin, gi->alert.mask); 3273 } 3274 spin_unlock(&gi->alert.ref_lock); 3275 3276 return gib->nisc; 3277 } 3278 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3279 3280 /** 3281 * kvm_s390_gisc_unregister - unregister a guest ISC 3282 * 3283 * @kvm: the kernel vm to work with 3284 * @gisc: the guest interruption sub class to register 3285 * 3286 * The function reduces the vm specific alert mask to use. 3287 * The effective IAM mask in the GISA is updated as well 3288 * in case the GISA is not part of the GIB alert list. 3289 * It will be updated latest when the IAM gets restored 3290 * by gisa_get_ipm_or_restore_iam(). 3291 * 3292 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3293 * has registered with the channel subsystem. 3294 * -ENODEV in case the vm uses no GISA 3295 * -ERANGE in case the guest ISC is invalid 3296 * -EINVAL in case the guest ISC is not registered 3297 */ 3298 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3299 { 3300 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3301 int rc = 0; 3302 3303 if (!gi->origin) 3304 return -ENODEV; 3305 if (gisc > MAX_ISC) 3306 return -ERANGE; 3307 3308 spin_lock(&gi->alert.ref_lock); 3309 if (gi->alert.ref_count[gisc] == 0) { 3310 rc = -EINVAL; 3311 goto out; 3312 } 3313 gi->alert.ref_count[gisc]--; 3314 if (gi->alert.ref_count[gisc] == 0) { 3315 gi->alert.mask &= ~(0x80 >> gisc); 3316 gisa_set_iam(gi->origin, gi->alert.mask); 3317 } 3318 out: 3319 spin_unlock(&gi->alert.ref_lock); 3320 3321 return rc; 3322 } 3323 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3324 3325 static void aen_host_forward(unsigned long si) 3326 { 3327 struct kvm_s390_gisa_interrupt *gi; 3328 struct zpci_gaite *gaite; 3329 struct kvm *kvm; 3330 3331 gaite = (struct zpci_gaite *)aift->gait + 3332 (si * sizeof(struct zpci_gaite)); 3333 if (gaite->count == 0) 3334 return; 3335 if (gaite->aisb != 0) 3336 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3337 3338 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3339 if (!kvm) 3340 return; 3341 gi = &kvm->arch.gisa_int; 3342 3343 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3344 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3345 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3346 if (hrtimer_active(&gi->timer)) 3347 hrtimer_cancel(&gi->timer); 3348 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3349 kvm->stat.aen_forward++; 3350 } 3351 } 3352 3353 static void aen_process_gait(u8 isc) 3354 { 3355 bool found = false, first = true; 3356 union zpci_sic_iib iib = {{0}}; 3357 unsigned long si, flags; 3358 3359 spin_lock_irqsave(&aift->gait_lock, flags); 3360 3361 if (!aift->gait) { 3362 spin_unlock_irqrestore(&aift->gait_lock, flags); 3363 return; 3364 } 3365 3366 for (si = 0;;) { 3367 /* Scan adapter summary indicator bit vector */ 3368 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3369 if (si == -1UL) { 3370 if (first || found) { 3371 /* Re-enable interrupts. */ 3372 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3373 &iib); 3374 first = found = false; 3375 } else { 3376 /* Interrupts on and all bits processed */ 3377 break; 3378 } 3379 found = false; 3380 si = 0; 3381 /* Scan again after re-enabling interrupts */ 3382 continue; 3383 } 3384 found = true; 3385 aen_host_forward(si); 3386 } 3387 3388 spin_unlock_irqrestore(&aift->gait_lock, flags); 3389 } 3390 3391 static void gib_alert_irq_handler(struct airq_struct *airq, 3392 struct tpi_info *tpi_info) 3393 { 3394 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3395 3396 inc_irq_stat(IRQIO_GAL); 3397 3398 if ((info->forward || info->error) && 3399 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3400 aen_process_gait(info->isc); 3401 if (info->aism != 0) 3402 process_gib_alert_list(); 3403 } else { 3404 process_gib_alert_list(); 3405 } 3406 } 3407 3408 static struct airq_struct gib_alert_irq = { 3409 .handler = gib_alert_irq_handler, 3410 }; 3411 3412 void kvm_s390_gib_destroy(void) 3413 { 3414 if (!gib) 3415 return; 3416 if (kvm_s390_pci_interp_allowed() && aift) { 3417 mutex_lock(&aift->aift_lock); 3418 kvm_s390_pci_aen_exit(); 3419 mutex_unlock(&aift->aift_lock); 3420 } 3421 chsc_sgib(0); 3422 unregister_adapter_interrupt(&gib_alert_irq); 3423 free_page((unsigned long)gib); 3424 gib = NULL; 3425 } 3426 3427 int __init kvm_s390_gib_init(u8 nisc) 3428 { 3429 u32 gib_origin; 3430 int rc = 0; 3431 3432 if (!css_general_characteristics.aiv) { 3433 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3434 goto out; 3435 } 3436 3437 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3438 if (!gib) { 3439 rc = -ENOMEM; 3440 goto out; 3441 } 3442 3443 gib_alert_irq.isc = nisc; 3444 if (register_adapter_interrupt(&gib_alert_irq)) { 3445 pr_err("Registering the GIB alert interruption handler failed\n"); 3446 rc = -EIO; 3447 goto out_free_gib; 3448 } 3449 /* adapter interrupts used for AP (applicable here) don't use the LSI */ 3450 *gib_alert_irq.lsi_ptr = 0xff; 3451 3452 gib->nisc = nisc; 3453 gib_origin = virt_to_phys(gib); 3454 if (chsc_sgib(gib_origin)) { 3455 pr_err("Associating the GIB with the AIV facility failed\n"); 3456 free_page((unsigned long)gib); 3457 gib = NULL; 3458 rc = -EIO; 3459 goto out_unreg_gal; 3460 } 3461 3462 if (kvm_s390_pci_interp_allowed()) { 3463 if (kvm_s390_pci_aen_init(nisc)) { 3464 pr_err("Initializing AEN for PCI failed\n"); 3465 rc = -EIO; 3466 goto out_unreg_gal; 3467 } 3468 } 3469 3470 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3471 goto out; 3472 3473 out_unreg_gal: 3474 unregister_adapter_interrupt(&gib_alert_irq); 3475 out_free_gib: 3476 free_page((unsigned long)gib); 3477 gib = NULL; 3478 out: 3479 return rc; 3480 } 3481