1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * kernel/stop_machine.c
4 *
5 * Copyright (C) 2008, 2005 IBM Corporation.
6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
7 * Copyright (C) 2010 SUSE Linux Products GmbH
8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25
26 /*
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
29 */
30 struct cpu_stop_done {
31 atomic_t nr_todo; /* nr left to execute */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34 };
35
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 struct task_struct *thread;
39
40 raw_spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45 unsigned long caller;
46 cpu_stop_fn_t fn;
47 };
48
49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
50 static bool stop_machine_initialized = false;
51
print_stop_info(const char * log_lvl,struct task_struct * task)52 void print_stop_info(const char *log_lvl, struct task_struct *task)
53 {
54 /*
55 * If @task is a stopper task, it cannot migrate and task_cpu() is
56 * stable.
57 */
58 struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
59
60 if (task != stopper->thread)
61 return;
62
63 printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
64 }
65
66 /* static data for stop_cpus */
67 static DEFINE_MUTEX(stop_cpus_mutex);
68 static bool stop_cpus_in_progress;
69
cpu_stop_init_done(struct cpu_stop_done * done,unsigned int nr_todo)70 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
71 {
72 memset(done, 0, sizeof(*done));
73 atomic_set(&done->nr_todo, nr_todo);
74 init_completion(&done->completion);
75 }
76
77 /* signal completion unless @done is NULL */
cpu_stop_signal_done(struct cpu_stop_done * done)78 static void cpu_stop_signal_done(struct cpu_stop_done *done)
79 {
80 if (atomic_dec_and_test(&done->nr_todo))
81 complete(&done->completion);
82 }
83
__cpu_stop_queue_work(struct cpu_stopper * stopper,struct cpu_stop_work * work)84 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
85 struct cpu_stop_work *work)
86 {
87 list_add_tail(&work->list, &stopper->works);
88 }
89
90 /* queue @work to @stopper. if offline, @work is completed immediately */
cpu_stop_queue_work(unsigned int cpu,struct cpu_stop_work * work)91 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
92 {
93 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
94 unsigned long flags;
95 bool enabled;
96
97 preempt_disable();
98 raw_spin_lock_irqsave(&stopper->lock, flags);
99 enabled = stopper->enabled;
100 if (enabled)
101 __cpu_stop_queue_work(stopper, work);
102 else if (work->done)
103 cpu_stop_signal_done(work->done);
104 raw_spin_unlock_irqrestore(&stopper->lock, flags);
105
106 if (enabled)
107 wake_up_process(stopper->thread);
108 preempt_enable();
109
110 return enabled;
111 }
112
113 /**
114 * stop_one_cpu - stop a cpu
115 * @cpu: cpu to stop
116 * @fn: function to execute
117 * @arg: argument to @fn
118 *
119 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
120 * the highest priority preempting any task on the cpu and
121 * monopolizing it. This function returns after the execution is
122 * complete.
123 *
124 * This function doesn't guarantee @cpu stays online till @fn
125 * completes. If @cpu goes down in the middle, execution may happen
126 * partially or fully on different cpus. @fn should either be ready
127 * for that or the caller should ensure that @cpu stays online until
128 * this function completes.
129 *
130 * CONTEXT:
131 * Might sleep.
132 *
133 * RETURNS:
134 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
135 * otherwise, the return value of @fn.
136 */
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)137 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
138 {
139 struct cpu_stop_done done;
140 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
141
142 cpu_stop_init_done(&done, 1);
143 if (!cpu_stop_queue_work(cpu, &work))
144 return -ENOENT;
145 /*
146 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
147 * cycle by doing a preemption:
148 */
149 cond_resched();
150 wait_for_completion(&done.completion);
151 return done.ret;
152 }
153
154 /* This controls the threads on each CPU. */
155 enum multi_stop_state {
156 /* Dummy starting state for thread. */
157 MULTI_STOP_NONE,
158 /* Awaiting everyone to be scheduled. */
159 MULTI_STOP_PREPARE,
160 /* Disable interrupts. */
161 MULTI_STOP_DISABLE_IRQ,
162 /* Run the function */
163 MULTI_STOP_RUN,
164 /* Exit */
165 MULTI_STOP_EXIT,
166 };
167
168 struct multi_stop_data {
169 cpu_stop_fn_t fn;
170 void *data;
171 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
172 unsigned int num_threads;
173 const struct cpumask *active_cpus;
174
175 enum multi_stop_state state;
176 atomic_t thread_ack;
177 };
178
set_state(struct multi_stop_data * msdata,enum multi_stop_state newstate)179 static void set_state(struct multi_stop_data *msdata,
180 enum multi_stop_state newstate)
181 {
182 /* Reset ack counter. */
183 atomic_set(&msdata->thread_ack, msdata->num_threads);
184 smp_wmb();
185 WRITE_ONCE(msdata->state, newstate);
186 }
187
188 /* Last one to ack a state moves to the next state. */
ack_state(struct multi_stop_data * msdata)189 static void ack_state(struct multi_stop_data *msdata)
190 {
191 if (atomic_dec_and_test(&msdata->thread_ack))
192 set_state(msdata, msdata->state + 1);
193 }
194
stop_machine_yield(const struct cpumask * cpumask)195 notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
196 {
197 cpu_relax();
198 }
199
200 /* This is the cpu_stop function which stops the CPU. */
multi_cpu_stop(void * data)201 static int multi_cpu_stop(void *data)
202 {
203 struct multi_stop_data *msdata = data;
204 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
205 int cpu = smp_processor_id(), err = 0;
206 const struct cpumask *cpumask;
207 unsigned long flags;
208 bool is_active;
209
210 /*
211 * When called from stop_machine_from_inactive_cpu(), irq might
212 * already be disabled. Save the state and restore it on exit.
213 */
214 local_save_flags(flags);
215
216 if (!msdata->active_cpus) {
217 cpumask = cpu_online_mask;
218 is_active = cpu == cpumask_first(cpumask);
219 } else {
220 cpumask = msdata->active_cpus;
221 is_active = cpumask_test_cpu(cpu, cpumask);
222 }
223
224 /* Simple state machine */
225 do {
226 /* Chill out and ensure we re-read multi_stop_state. */
227 stop_machine_yield(cpumask);
228 newstate = READ_ONCE(msdata->state);
229 if (newstate != curstate) {
230 curstate = newstate;
231 switch (curstate) {
232 case MULTI_STOP_DISABLE_IRQ:
233 local_irq_disable();
234 hard_irq_disable();
235 break;
236 case MULTI_STOP_RUN:
237 if (is_active)
238 err = msdata->fn(msdata->data);
239 break;
240 default:
241 break;
242 }
243 ack_state(msdata);
244 } else if (curstate > MULTI_STOP_PREPARE) {
245 /*
246 * At this stage all other CPUs we depend on must spin
247 * in the same loop. Any reason for hard-lockup should
248 * be detected and reported on their side.
249 */
250 touch_nmi_watchdog();
251 /* Also suppress RCU CPU stall warnings. */
252 rcu_momentary_eqs();
253 }
254 } while (curstate != MULTI_STOP_EXIT);
255
256 local_irq_restore(flags);
257 return err;
258 }
259
cpu_stop_queue_two_works(int cpu1,struct cpu_stop_work * work1,int cpu2,struct cpu_stop_work * work2)260 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
261 int cpu2, struct cpu_stop_work *work2)
262 {
263 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
264 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
265 int err;
266
267 retry:
268 /*
269 * The waking up of stopper threads has to happen in the same
270 * scheduling context as the queueing. Otherwise, there is a
271 * possibility of one of the above stoppers being woken up by another
272 * CPU, and preempting us. This will cause us to not wake up the other
273 * stopper forever.
274 */
275 preempt_disable();
276 raw_spin_lock_irq(&stopper1->lock);
277 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
278
279 if (!stopper1->enabled || !stopper2->enabled) {
280 err = -ENOENT;
281 goto unlock;
282 }
283
284 /*
285 * Ensure that if we race with __stop_cpus() the stoppers won't get
286 * queued up in reverse order leading to system deadlock.
287 *
288 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
289 * queued a work on cpu1 but not on cpu2, we hold both locks.
290 *
291 * It can be falsely true but it is safe to spin until it is cleared,
292 * queue_stop_cpus_work() does everything under preempt_disable().
293 */
294 if (unlikely(stop_cpus_in_progress)) {
295 err = -EDEADLK;
296 goto unlock;
297 }
298
299 err = 0;
300 __cpu_stop_queue_work(stopper1, work1);
301 __cpu_stop_queue_work(stopper2, work2);
302
303 unlock:
304 raw_spin_unlock(&stopper2->lock);
305 raw_spin_unlock_irq(&stopper1->lock);
306
307 if (unlikely(err == -EDEADLK)) {
308 preempt_enable();
309
310 while (stop_cpus_in_progress)
311 cpu_relax();
312
313 goto retry;
314 }
315
316 if (!err) {
317 wake_up_process(stopper1->thread);
318 wake_up_process(stopper2->thread);
319 }
320 preempt_enable();
321
322 return err;
323 }
324 /**
325 * stop_two_cpus - stops two cpus
326 * @cpu1: the cpu to stop
327 * @cpu2: the other cpu to stop
328 * @fn: function to execute
329 * @arg: argument to @fn
330 *
331 * Stops both the current and specified CPU and runs @fn on one of them.
332 *
333 * returns when both are completed.
334 */
stop_two_cpus(unsigned int cpu1,unsigned int cpu2,cpu_stop_fn_t fn,void * arg)335 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
336 {
337 struct cpu_stop_done done;
338 struct cpu_stop_work work1, work2;
339 struct multi_stop_data msdata;
340
341 msdata = (struct multi_stop_data){
342 .fn = fn,
343 .data = arg,
344 .num_threads = 2,
345 .active_cpus = cpumask_of(cpu1),
346 };
347
348 work1 = work2 = (struct cpu_stop_work){
349 .fn = multi_cpu_stop,
350 .arg = &msdata,
351 .done = &done,
352 .caller = _RET_IP_,
353 };
354
355 cpu_stop_init_done(&done, 2);
356 set_state(&msdata, MULTI_STOP_PREPARE);
357
358 if (cpu1 > cpu2)
359 swap(cpu1, cpu2);
360 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
361 return -ENOENT;
362
363 wait_for_completion(&done.completion);
364 return done.ret;
365 }
366
367 /**
368 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
369 * @cpu: cpu to stop
370 * @fn: function to execute
371 * @arg: argument to @fn
372 * @work_buf: pointer to cpu_stop_work structure
373 *
374 * Similar to stop_one_cpu() but doesn't wait for completion. The
375 * caller is responsible for ensuring @work_buf is currently unused
376 * and will remain untouched until stopper starts executing @fn.
377 *
378 * CONTEXT:
379 * Don't care.
380 *
381 * RETURNS:
382 * true if cpu_stop_work was queued successfully and @fn will be called,
383 * false otherwise.
384 */
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)385 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
386 struct cpu_stop_work *work_buf)
387 {
388 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
389 return cpu_stop_queue_work(cpu, work_buf);
390 }
391
queue_stop_cpus_work(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg,struct cpu_stop_done * done)392 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
393 cpu_stop_fn_t fn, void *arg,
394 struct cpu_stop_done *done)
395 {
396 struct cpu_stop_work *work;
397 unsigned int cpu;
398 bool queued = false;
399
400 /*
401 * Disable preemption while queueing to avoid getting
402 * preempted by a stopper which might wait for other stoppers
403 * to enter @fn which can lead to deadlock.
404 */
405 preempt_disable();
406 stop_cpus_in_progress = true;
407 barrier();
408 for_each_cpu(cpu, cpumask) {
409 work = &per_cpu(cpu_stopper.stop_work, cpu);
410 work->fn = fn;
411 work->arg = arg;
412 work->done = done;
413 work->caller = _RET_IP_;
414 if (cpu_stop_queue_work(cpu, work))
415 queued = true;
416 }
417 barrier();
418 stop_cpus_in_progress = false;
419 preempt_enable();
420
421 return queued;
422 }
423
__stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)424 static int __stop_cpus(const struct cpumask *cpumask,
425 cpu_stop_fn_t fn, void *arg)
426 {
427 struct cpu_stop_done done;
428
429 cpu_stop_init_done(&done, cpumask_weight(cpumask));
430 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
431 return -ENOENT;
432 wait_for_completion(&done.completion);
433 return done.ret;
434 }
435
436 /**
437 * stop_cpus - stop multiple cpus
438 * @cpumask: cpus to stop
439 * @fn: function to execute
440 * @arg: argument to @fn
441 *
442 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
443 * @fn is run in a process context with the highest priority
444 * preempting any task on the cpu and monopolizing it. This function
445 * returns after all executions are complete.
446 *
447 * This function doesn't guarantee the cpus in @cpumask stay online
448 * till @fn completes. If some cpus go down in the middle, execution
449 * on the cpu may happen partially or fully on different cpus. @fn
450 * should either be ready for that or the caller should ensure that
451 * the cpus stay online until this function completes.
452 *
453 * All stop_cpus() calls are serialized making it safe for @fn to wait
454 * for all cpus to start executing it.
455 *
456 * CONTEXT:
457 * Might sleep.
458 *
459 * RETURNS:
460 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
461 * @cpumask were offline; otherwise, 0 if all executions of @fn
462 * returned 0, any non zero return value if any returned non zero.
463 */
stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)464 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
465 {
466 int ret;
467
468 /* static works are used, process one request at a time */
469 mutex_lock(&stop_cpus_mutex);
470 ret = __stop_cpus(cpumask, fn, arg);
471 mutex_unlock(&stop_cpus_mutex);
472 return ret;
473 }
474
cpu_stop_should_run(unsigned int cpu)475 static int cpu_stop_should_run(unsigned int cpu)
476 {
477 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
478 unsigned long flags;
479 int run;
480
481 raw_spin_lock_irqsave(&stopper->lock, flags);
482 run = !list_empty(&stopper->works);
483 raw_spin_unlock_irqrestore(&stopper->lock, flags);
484 return run;
485 }
486
cpu_stopper_thread(unsigned int cpu)487 static void cpu_stopper_thread(unsigned int cpu)
488 {
489 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
490 struct cpu_stop_work *work;
491
492 repeat:
493 work = NULL;
494 raw_spin_lock_irq(&stopper->lock);
495 if (!list_empty(&stopper->works)) {
496 work = list_first_entry(&stopper->works,
497 struct cpu_stop_work, list);
498 list_del_init(&work->list);
499 }
500 raw_spin_unlock_irq(&stopper->lock);
501
502 if (work) {
503 cpu_stop_fn_t fn = work->fn;
504 void *arg = work->arg;
505 struct cpu_stop_done *done = work->done;
506 int ret;
507
508 /* cpu stop callbacks must not sleep, make in_atomic() == T */
509 stopper->caller = work->caller;
510 stopper->fn = fn;
511 preempt_count_inc();
512 ret = fn(arg);
513 if (done) {
514 if (ret)
515 done->ret = ret;
516 cpu_stop_signal_done(done);
517 }
518 preempt_count_dec();
519 stopper->fn = NULL;
520 stopper->caller = 0;
521 WARN_ONCE(preempt_count(),
522 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
523 goto repeat;
524 }
525 }
526
stop_machine_park(int cpu)527 void stop_machine_park(int cpu)
528 {
529 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
530 /*
531 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
532 * the pending works before it parks, until then it is fine to queue
533 * the new works.
534 */
535 stopper->enabled = false;
536 kthread_park(stopper->thread);
537 }
538
cpu_stop_create(unsigned int cpu)539 static void cpu_stop_create(unsigned int cpu)
540 {
541 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
542 }
543
cpu_stop_park(unsigned int cpu)544 static void cpu_stop_park(unsigned int cpu)
545 {
546 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
547
548 WARN_ON(!list_empty(&stopper->works));
549 }
550
stop_machine_unpark(int cpu)551 void stop_machine_unpark(int cpu)
552 {
553 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554
555 stopper->enabled = true;
556 kthread_unpark(stopper->thread);
557 }
558
559 static struct smp_hotplug_thread cpu_stop_threads = {
560 .store = &cpu_stopper.thread,
561 .thread_should_run = cpu_stop_should_run,
562 .thread_fn = cpu_stopper_thread,
563 .thread_comm = "migration/%u",
564 .create = cpu_stop_create,
565 .park = cpu_stop_park,
566 .selfparking = true,
567 };
568
cpu_stop_init(void)569 static int __init cpu_stop_init(void)
570 {
571 unsigned int cpu;
572
573 for_each_possible_cpu(cpu) {
574 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
575
576 raw_spin_lock_init(&stopper->lock);
577 INIT_LIST_HEAD(&stopper->works);
578 }
579
580 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
581 stop_machine_unpark(raw_smp_processor_id());
582 stop_machine_initialized = true;
583 return 0;
584 }
585 early_initcall(cpu_stop_init);
586
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)587 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
588 const struct cpumask *cpus)
589 {
590 struct multi_stop_data msdata = {
591 .fn = fn,
592 .data = data,
593 .num_threads = num_online_cpus(),
594 .active_cpus = cpus,
595 };
596
597 lockdep_assert_cpus_held();
598
599 if (!stop_machine_initialized) {
600 /*
601 * Handle the case where stop_machine() is called
602 * early in boot before stop_machine() has been
603 * initialized.
604 */
605 unsigned long flags;
606 int ret;
607
608 WARN_ON_ONCE(msdata.num_threads != 1);
609
610 local_irq_save(flags);
611 hard_irq_disable();
612 ret = (*fn)(data);
613 local_irq_restore(flags);
614
615 return ret;
616 }
617
618 /* Set the initial state and stop all online cpus. */
619 set_state(&msdata, MULTI_STOP_PREPARE);
620 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
621 }
622
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)623 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
624 {
625 int ret;
626
627 /* No CPUs can come up or down during this. */
628 cpus_read_lock();
629 ret = stop_machine_cpuslocked(fn, data, cpus);
630 cpus_read_unlock();
631 return ret;
632 }
633 EXPORT_SYMBOL_GPL(stop_machine);
634
635 #ifdef CONFIG_SCHED_SMT
stop_core_cpuslocked(unsigned int cpu,cpu_stop_fn_t fn,void * data)636 int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data)
637 {
638 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
639
640 struct multi_stop_data msdata = {
641 .fn = fn,
642 .data = data,
643 .num_threads = cpumask_weight(smt_mask),
644 .active_cpus = smt_mask,
645 };
646
647 lockdep_assert_cpus_held();
648
649 /* Set the initial state and stop all online cpus. */
650 set_state(&msdata, MULTI_STOP_PREPARE);
651 return stop_cpus(smt_mask, multi_cpu_stop, &msdata);
652 }
653 EXPORT_SYMBOL_GPL(stop_core_cpuslocked);
654 #endif
655
656 /**
657 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
658 * @fn: the function to run
659 * @data: the data ptr for the @fn()
660 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
661 *
662 * This is identical to stop_machine() but can be called from a CPU which
663 * is not active. The local CPU is in the process of hotplug (so no other
664 * CPU hotplug can start) and not marked active and doesn't have enough
665 * context to sleep.
666 *
667 * This function provides stop_machine() functionality for such state by
668 * using busy-wait for synchronization and executing @fn directly for local
669 * CPU.
670 *
671 * CONTEXT:
672 * Local CPU is inactive. Temporarily stops all active CPUs.
673 *
674 * RETURNS:
675 * 0 if all executions of @fn returned 0, any non zero return value if any
676 * returned non zero.
677 */
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)678 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
679 const struct cpumask *cpus)
680 {
681 struct multi_stop_data msdata = { .fn = fn, .data = data,
682 .active_cpus = cpus };
683 struct cpu_stop_done done;
684 int ret;
685
686 /* Local CPU must be inactive and CPU hotplug in progress. */
687 BUG_ON(cpu_active(raw_smp_processor_id()));
688 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
689
690 /* No proper task established and can't sleep - busy wait for lock. */
691 while (!mutex_trylock(&stop_cpus_mutex))
692 cpu_relax();
693
694 /* Schedule work on other CPUs and execute directly for local CPU */
695 set_state(&msdata, MULTI_STOP_PREPARE);
696 cpu_stop_init_done(&done, num_active_cpus());
697 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
698 &done);
699 ret = multi_cpu_stop(&msdata);
700
701 /* Busy wait for completion. */
702 while (!completion_done(&done.completion))
703 cpu_relax();
704
705 mutex_unlock(&stop_cpus_mutex);
706 return ret ?: done.ret;
707 }
708