xref: /linux/mm/slub.c (revision 537d196186e0a0ce28e494ca1881885accc35a12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51 
52 #include "internal.h"
53 
54 /*
55  * Lock order:
56  *   1. slab_mutex (Global Mutex)
57  *   2. node->list_lock (Spinlock)
58  *   3. kmem_cache->cpu_slab->lock (Local lock)
59  *   4. slab_lock(slab) (Only on some arches)
60  *   5. object_map_lock (Only for debugging)
61  *
62  *   slab_mutex
63  *
64  *   The role of the slab_mutex is to protect the list of all the slabs
65  *   and to synchronize major metadata changes to slab cache structures.
66  *   Also synchronizes memory hotplug callbacks.
67  *
68  *   slab_lock
69  *
70  *   The slab_lock is a wrapper around the page lock, thus it is a bit
71  *   spinlock.
72  *
73  *   The slab_lock is only used on arches that do not have the ability
74  *   to do a cmpxchg_double. It only protects:
75  *
76  *	A. slab->freelist	-> List of free objects in a slab
77  *	B. slab->inuse		-> Number of objects in use
78  *	C. slab->objects	-> Number of objects in slab
79  *	D. slab->frozen		-> frozen state
80  *
81  *   Frozen slabs
82  *
83  *   If a slab is frozen then it is exempt from list management. It is
84  *   the cpu slab which is actively allocated from by the processor that
85  *   froze it and it is not on any list. The processor that froze the
86  *   slab is the one who can perform list operations on the slab. Other
87  *   processors may put objects onto the freelist but the processor that
88  *   froze the slab is the only one that can retrieve the objects from the
89  *   slab's freelist.
90  *
91  *   CPU partial slabs
92  *
93  *   The partially empty slabs cached on the CPU partial list are used
94  *   for performance reasons, which speeds up the allocation process.
95  *   These slabs are not frozen, but are also exempt from list management,
96  *   by clearing the SL_partial flag when moving out of the node
97  *   partial list. Please see __slab_free() for more details.
98  *
99  *   To sum up, the current scheme is:
100  *   - node partial slab: SL_partial && !frozen
101  *   - cpu partial slab: !SL_partial && !frozen
102  *   - cpu slab: !SL_partial && frozen
103  *   - full slab: !SL_partial && !frozen
104  *
105  *   list_lock
106  *
107  *   The list_lock protects the partial and full list on each node and
108  *   the partial slab counter. If taken then no new slabs may be added or
109  *   removed from the lists nor make the number of partial slabs be modified.
110  *   (Note that the total number of slabs is an atomic value that may be
111  *   modified without taking the list lock).
112  *
113  *   The list_lock is a centralized lock and thus we avoid taking it as
114  *   much as possible. As long as SLUB does not have to handle partial
115  *   slabs, operations can continue without any centralized lock. F.e.
116  *   allocating a long series of objects that fill up slabs does not require
117  *   the list lock.
118  *
119  *   For debug caches, all allocations are forced to go through a list_lock
120  *   protected region to serialize against concurrent validation.
121  *
122  *   cpu_slab->lock local lock
123  *
124  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
125  *   except the stat counters. This is a percpu structure manipulated only by
126  *   the local cpu, so the lock protects against being preempted or interrupted
127  *   by an irq. Fast path operations rely on lockless operations instead.
128  *
129  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130  *   which means the lockless fastpath cannot be used as it might interfere with
131  *   an in-progress slow path operations. In this case the local lock is always
132  *   taken but it still utilizes the freelist for the common operations.
133  *
134  *   lockless fastpaths
135  *
136  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137  *   are fully lockless when satisfied from the percpu slab (and when
138  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
139  *   They also don't disable preemption or migration or irqs. They rely on
140  *   the transaction id (tid) field to detect being preempted or moved to
141  *   another cpu.
142  *
143  *   irq, preemption, migration considerations
144  *
145  *   Interrupts are disabled as part of list_lock or local_lock operations, or
146  *   around the slab_lock operation, in order to make the slab allocator safe
147  *   to use in the context of an irq.
148  *
149  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152  *   doesn't have to be revalidated in each section protected by the local lock.
153  *
154  * SLUB assigns one slab for allocation to each processor.
155  * Allocations only occur from these slabs called cpu slabs.
156  *
157  * Slabs with free elements are kept on a partial list and during regular
158  * operations no list for full slabs is used. If an object in a full slab is
159  * freed then the slab will show up again on the partial lists.
160  * We track full slabs for debugging purposes though because otherwise we
161  * cannot scan all objects.
162  *
163  * Slabs are freed when they become empty. Teardown and setup is
164  * minimal so we rely on the page allocators per cpu caches for
165  * fast frees and allocs.
166  *
167  * slab->frozen		The slab is frozen and exempt from list processing.
168  * 			This means that the slab is dedicated to a purpose
169  * 			such as satisfying allocations for a specific
170  * 			processor. Objects may be freed in the slab while
171  * 			it is frozen but slab_free will then skip the usual
172  * 			list operations. It is up to the processor holding
173  * 			the slab to integrate the slab into the slab lists
174  * 			when the slab is no longer needed.
175  *
176  * 			One use of this flag is to mark slabs that are
177  * 			used for allocations. Then such a slab becomes a cpu
178  * 			slab. The cpu slab may be equipped with an additional
179  * 			freelist that allows lockless access to
180  * 			free objects in addition to the regular freelist
181  * 			that requires the slab lock.
182  *
183  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
184  * 			options set. This moves	slab handling out of
185  * 			the fast path and disables lockless freelists.
186  */
187 
188 /**
189  * enum slab_flags - How the slab flags bits are used.
190  * @SL_locked: Is locked with slab_lock()
191  * @SL_partial: On the per-node partial list
192  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193  *
194  * The slab flags share space with the page flags but some bits have
195  * different interpretations.  The high bits are used for information
196  * like zone/node/section.
197  */
198 enum slab_flags {
199 	SL_locked = PG_locked,
200 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
201 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
202 };
203 
204 /*
205  * We could simply use migrate_disable()/enable() but as long as it's a
206  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207  */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH()	(true)
212 #else
213 #define slub_get_cpu_ptr(var)		\
214 ({					\
215 	migrate_disable();		\
216 	this_cpu_ptr(var);		\
217 })
218 #define slub_put_cpu_ptr(var)		\
219 do {					\
220 	(void)(var);			\
221 	migrate_enable();		\
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH()	(false)
224 #endif
225 
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231 
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif		/* CONFIG_SLUB_DEBUG */
239 
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243 
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 	gfp_t flags;
247 	unsigned int orig_size;
248 	void *object;
249 };
250 
kmem_cache_debug(struct kmem_cache * s)251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255 
fixup_red_left(struct kmem_cache * s,void * p)256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 		p += s->red_left_pad;
260 
261 	return p;
262 }
263 
kmem_cache_has_cpu_partial(struct kmem_cache * s)264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 	return !kmem_cache_debug(s);
268 #else
269 	return false;
270 #endif
271 }
272 
273 /*
274  * Issues still to be resolved:
275  *
276  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277  *
278  * - Variable sizing of the per node arrays
279  */
280 
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283 
284 #ifndef CONFIG_SLUB_TINY
285 /*
286  * Minimum number of partial slabs. These will be left on the partial
287  * lists even if they are empty. kmem_cache_shrink may reclaim them.
288  */
289 #define MIN_PARTIAL 5
290 
291 /*
292  * Maximum number of desirable partial slabs.
293  * The existence of more partial slabs makes kmem_cache_shrink
294  * sort the partial list by the number of objects in use.
295  */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301 
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 				SLAB_POISON | SLAB_STORE_USER)
304 
305 /*
306  * These debug flags cannot use CMPXCHG because there might be consistency
307  * issues when checking or reading debug information
308  */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 				SLAB_TRACE)
311 
312 
313 /*
314  * Debugging flags that require metadata to be stored in the slab.  These get
315  * disabled when slab_debug=O is used and a cache's min order increases with
316  * metadata.
317  */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319 
320 #define OO_SHIFT	16
321 #define OO_MASK		((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
323 
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328 
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
333 #endif
334 
335 /*
336  * Tracking user of a slab.
337  */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 	unsigned long addr;	/* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 	depot_stack_handle_t handle;
343 #endif
344 	int cpu;		/* Was running on cpu */
345 	int pid;		/* Pid context */
346 	unsigned long when;	/* When did the operation occur */
347 };
348 
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350 
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
sysfs_slab_add(struct kmem_cache * s)355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 							{ return 0; }
358 #endif
359 
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
debugfs_slab_add(struct kmem_cache * s)363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365 
366 enum stat_item {
367 	ALLOC_PCS,		/* Allocation from percpu sheaf */
368 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
369 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
370 	FREE_PCS,		/* Free to percpu sheaf */
371 	FREE_RCU_SHEAF,		/* Free to rcu_free sheaf */
372 	FREE_RCU_SHEAF_FAIL,	/* Failed to free to a rcu_free sheaf */
373 	FREE_FASTPATH,		/* Free to cpu slab */
374 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
375 	FREE_FROZEN,		/* Freeing to frozen slab */
376 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
377 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
378 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
379 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
380 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
381 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
382 	FREE_SLAB,		/* Slab freed to the page allocator */
383 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
384 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
385 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
386 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
387 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
388 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
390 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
391 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
393 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
394 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
395 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
396 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
397 	SHEAF_FLUSH,		/* Objects flushed from a sheaf */
398 	SHEAF_REFILL,		/* Objects refilled to a sheaf */
399 	SHEAF_ALLOC,		/* Allocation of an empty sheaf */
400 	SHEAF_FREE,		/* Freeing of an empty sheaf */
401 	BARN_GET,		/* Got full sheaf from barn */
402 	BARN_GET_FAIL,		/* Failed to get full sheaf from barn */
403 	BARN_PUT,		/* Put full sheaf to barn */
404 	BARN_PUT_FAIL,		/* Failed to put full sheaf to barn */
405 	SHEAF_PREFILL_FAST,	/* Sheaf prefill grabbed the spare sheaf */
406 	SHEAF_PREFILL_SLOW,	/* Sheaf prefill found no spare sheaf */
407 	SHEAF_PREFILL_OVERSIZE,	/* Allocation of oversize sheaf for prefill */
408 	SHEAF_RETURN_FAST,	/* Sheaf return reattached spare sheaf */
409 	SHEAF_RETURN_SLOW,	/* Sheaf return could not reattach spare */
410 	NR_SLUB_STAT_ITEMS
411 };
412 
413 #ifndef CONFIG_SLUB_TINY
414 /*
415  * When changing the layout, make sure freelist and tid are still compatible
416  * with this_cpu_cmpxchg_double() alignment requirements.
417  */
418 struct kmem_cache_cpu {
419 	union {
420 		struct {
421 			void **freelist;	/* Pointer to next available object */
422 			unsigned long tid;	/* Globally unique transaction id */
423 		};
424 		freelist_aba_t freelist_tid;
425 	};
426 	struct slab *slab;	/* The slab from which we are allocating */
427 #ifdef CONFIG_SLUB_CPU_PARTIAL
428 	struct slab *partial;	/* Partially allocated slabs */
429 #endif
430 	local_trylock_t lock;	/* Protects the fields above */
431 #ifdef CONFIG_SLUB_STATS
432 	unsigned int stat[NR_SLUB_STAT_ITEMS];
433 #endif
434 };
435 #endif /* CONFIG_SLUB_TINY */
436 
stat(const struct kmem_cache * s,enum stat_item si)437 static inline void stat(const struct kmem_cache *s, enum stat_item si)
438 {
439 #ifdef CONFIG_SLUB_STATS
440 	/*
441 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
442 	 * avoid this_cpu_add()'s irq-disable overhead.
443 	 */
444 	raw_cpu_inc(s->cpu_slab->stat[si]);
445 #endif
446 }
447 
448 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
450 {
451 #ifdef CONFIG_SLUB_STATS
452 	raw_cpu_add(s->cpu_slab->stat[si], v);
453 #endif
454 }
455 
456 #define MAX_FULL_SHEAVES	10
457 #define MAX_EMPTY_SHEAVES	10
458 
459 struct node_barn {
460 	spinlock_t lock;
461 	struct list_head sheaves_full;
462 	struct list_head sheaves_empty;
463 	unsigned int nr_full;
464 	unsigned int nr_empty;
465 };
466 
467 struct slab_sheaf {
468 	union {
469 		struct rcu_head rcu_head;
470 		struct list_head barn_list;
471 		/* only used for prefilled sheafs */
472 		unsigned int capacity;
473 	};
474 	struct kmem_cache *cache;
475 	unsigned int size;
476 	int node; /* only used for rcu_sheaf */
477 	void *objects[];
478 };
479 
480 struct slub_percpu_sheaves {
481 	local_trylock_t lock;
482 	struct slab_sheaf *main; /* never NULL when unlocked */
483 	struct slab_sheaf *spare; /* empty or full, may be NULL */
484 	struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
485 };
486 
487 /*
488  * The slab lists for all objects.
489  */
490 struct kmem_cache_node {
491 	spinlock_t list_lock;
492 	unsigned long nr_partial;
493 	struct list_head partial;
494 #ifdef CONFIG_SLUB_DEBUG
495 	atomic_long_t nr_slabs;
496 	atomic_long_t total_objects;
497 	struct list_head full;
498 #endif
499 	struct node_barn *barn;
500 };
501 
get_node(struct kmem_cache * s,int node)502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
503 {
504 	return s->node[node];
505 }
506 
507 /*
508  * Get the barn of the current cpu's closest memory node. It may not exist on
509  * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
510  */
get_barn(struct kmem_cache * s)511 static inline struct node_barn *get_barn(struct kmem_cache *s)
512 {
513 	struct kmem_cache_node *n = get_node(s, numa_mem_id());
514 
515 	if (!n)
516 		return NULL;
517 
518 	return n->barn;
519 }
520 
521 /*
522  * Iterator over all nodes. The body will be executed for each node that has
523  * a kmem_cache_node structure allocated (which is true for all online nodes)
524  */
525 #define for_each_kmem_cache_node(__s, __node, __n) \
526 	for (__node = 0; __node < nr_node_ids; __node++) \
527 		 if ((__n = get_node(__s, __node)))
528 
529 /*
530  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
531  * Corresponds to node_state[N_MEMORY], but can temporarily
532  * differ during memory hotplug/hotremove operations.
533  * Protected by slab_mutex.
534  */
535 static nodemask_t slab_nodes;
536 
537 /*
538  * Workqueue used for flush_cpu_slab().
539  */
540 static struct workqueue_struct *flushwq;
541 
542 struct slub_flush_work {
543 	struct work_struct work;
544 	struct kmem_cache *s;
545 	bool skip;
546 };
547 
548 static DEFINE_MUTEX(flush_lock);
549 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
550 
551 /********************************************************************
552  * 			Core slab cache functions
553  *******************************************************************/
554 
555 /*
556  * Returns freelist pointer (ptr). With hardening, this is obfuscated
557  * with an XOR of the address where the pointer is held and a per-cache
558  * random number.
559  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)560 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
561 					    void *ptr, unsigned long ptr_addr)
562 {
563 	unsigned long encoded;
564 
565 #ifdef CONFIG_SLAB_FREELIST_HARDENED
566 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
567 #else
568 	encoded = (unsigned long)ptr;
569 #endif
570 	return (freeptr_t){.v = encoded};
571 }
572 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)573 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
574 					freeptr_t ptr, unsigned long ptr_addr)
575 {
576 	void *decoded;
577 
578 #ifdef CONFIG_SLAB_FREELIST_HARDENED
579 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
580 #else
581 	decoded = (void *)ptr.v;
582 #endif
583 	return decoded;
584 }
585 
get_freepointer(struct kmem_cache * s,void * object)586 static inline void *get_freepointer(struct kmem_cache *s, void *object)
587 {
588 	unsigned long ptr_addr;
589 	freeptr_t p;
590 
591 	object = kasan_reset_tag(object);
592 	ptr_addr = (unsigned long)object + s->offset;
593 	p = *(freeptr_t *)(ptr_addr);
594 	return freelist_ptr_decode(s, p, ptr_addr);
595 }
596 
597 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)598 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
599 {
600 	prefetchw(object + s->offset);
601 }
602 #endif
603 
604 /*
605  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
606  * pointer value in the case the current thread loses the race for the next
607  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
608  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
609  * KMSAN will still check all arguments of cmpxchg because of imperfect
610  * handling of inline assembly.
611  * To work around this problem, we apply __no_kmsan_checks to ensure that
612  * get_freepointer_safe() returns initialized memory.
613  */
614 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)615 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
616 {
617 	unsigned long freepointer_addr;
618 	freeptr_t p;
619 
620 	if (!debug_pagealloc_enabled_static())
621 		return get_freepointer(s, object);
622 
623 	object = kasan_reset_tag(object);
624 	freepointer_addr = (unsigned long)object + s->offset;
625 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
626 	return freelist_ptr_decode(s, p, freepointer_addr);
627 }
628 
set_freepointer(struct kmem_cache * s,void * object,void * fp)629 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
630 {
631 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
632 
633 #ifdef CONFIG_SLAB_FREELIST_HARDENED
634 	BUG_ON(object == fp); /* naive detection of double free or corruption */
635 #endif
636 
637 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
638 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
639 }
640 
641 /*
642  * See comment in calculate_sizes().
643  */
freeptr_outside_object(struct kmem_cache * s)644 static inline bool freeptr_outside_object(struct kmem_cache *s)
645 {
646 	return s->offset >= s->inuse;
647 }
648 
649 /*
650  * Return offset of the end of info block which is inuse + free pointer if
651  * not overlapping with object.
652  */
get_info_end(struct kmem_cache * s)653 static inline unsigned int get_info_end(struct kmem_cache *s)
654 {
655 	if (freeptr_outside_object(s))
656 		return s->inuse + sizeof(void *);
657 	else
658 		return s->inuse;
659 }
660 
661 /* Loop over all objects in a slab */
662 #define for_each_object(__p, __s, __addr, __objects) \
663 	for (__p = fixup_red_left(__s, __addr); \
664 		__p < (__addr) + (__objects) * (__s)->size; \
665 		__p += (__s)->size)
666 
order_objects(unsigned int order,unsigned int size)667 static inline unsigned int order_objects(unsigned int order, unsigned int size)
668 {
669 	return ((unsigned int)PAGE_SIZE << order) / size;
670 }
671 
oo_make(unsigned int order,unsigned int size)672 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
673 		unsigned int size)
674 {
675 	struct kmem_cache_order_objects x = {
676 		(order << OO_SHIFT) + order_objects(order, size)
677 	};
678 
679 	return x;
680 }
681 
oo_order(struct kmem_cache_order_objects x)682 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
683 {
684 	return x.x >> OO_SHIFT;
685 }
686 
oo_objects(struct kmem_cache_order_objects x)687 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
688 {
689 	return x.x & OO_MASK;
690 }
691 
692 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)693 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
694 {
695 	unsigned int nr_slabs;
696 
697 	s->cpu_partial = nr_objects;
698 
699 	/*
700 	 * We take the number of objects but actually limit the number of
701 	 * slabs on the per cpu partial list, in order to limit excessive
702 	 * growth of the list. For simplicity we assume that the slabs will
703 	 * be half-full.
704 	 */
705 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
706 	s->cpu_partial_slabs = nr_slabs;
707 }
708 
slub_get_cpu_partial(struct kmem_cache * s)709 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
710 {
711 	return s->cpu_partial_slabs;
712 }
713 #else
714 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)715 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
716 {
717 }
718 
slub_get_cpu_partial(struct kmem_cache * s)719 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
720 {
721 	return 0;
722 }
723 #endif /* CONFIG_SLUB_CPU_PARTIAL */
724 
725 /*
726  * If network-based swap is enabled, slub must keep track of whether memory
727  * were allocated from pfmemalloc reserves.
728  */
slab_test_pfmemalloc(const struct slab * slab)729 static inline bool slab_test_pfmemalloc(const struct slab *slab)
730 {
731 	return test_bit(SL_pfmemalloc, &slab->flags.f);
732 }
733 
slab_set_pfmemalloc(struct slab * slab)734 static inline void slab_set_pfmemalloc(struct slab *slab)
735 {
736 	set_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738 
__slab_clear_pfmemalloc(struct slab * slab)739 static inline void __slab_clear_pfmemalloc(struct slab *slab)
740 {
741 	__clear_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743 
744 /*
745  * Per slab locking using the pagelock
746  */
slab_lock(struct slab * slab)747 static __always_inline void slab_lock(struct slab *slab)
748 {
749 	bit_spin_lock(SL_locked, &slab->flags.f);
750 }
751 
slab_unlock(struct slab * slab)752 static __always_inline void slab_unlock(struct slab *slab)
753 {
754 	bit_spin_unlock(SL_locked, &slab->flags.f);
755 }
756 
757 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)758 __update_freelist_fast(struct slab *slab,
759 		      void *freelist_old, unsigned long counters_old,
760 		      void *freelist_new, unsigned long counters_new)
761 {
762 #ifdef system_has_freelist_aba
763 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
764 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
765 
766 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
767 #else
768 	return false;
769 #endif
770 }
771 
772 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)773 __update_freelist_slow(struct slab *slab,
774 		      void *freelist_old, unsigned long counters_old,
775 		      void *freelist_new, unsigned long counters_new)
776 {
777 	bool ret = false;
778 
779 	slab_lock(slab);
780 	if (slab->freelist == freelist_old &&
781 	    slab->counters == counters_old) {
782 		slab->freelist = freelist_new;
783 		slab->counters = counters_new;
784 		ret = true;
785 	}
786 	slab_unlock(slab);
787 
788 	return ret;
789 }
790 
791 /*
792  * Interrupts must be disabled (for the fallback code to work right), typically
793  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
794  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
795  * allocation/ free operation in hardirq context. Therefore nothing can
796  * interrupt the operation.
797  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)798 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
799 		void *freelist_old, unsigned long counters_old,
800 		void *freelist_new, unsigned long counters_new,
801 		const char *n)
802 {
803 	bool ret;
804 
805 	if (USE_LOCKLESS_FAST_PATH())
806 		lockdep_assert_irqs_disabled();
807 
808 	if (s->flags & __CMPXCHG_DOUBLE) {
809 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
810 				            freelist_new, counters_new);
811 	} else {
812 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
813 				            freelist_new, counters_new);
814 	}
815 	if (likely(ret))
816 		return true;
817 
818 	cpu_relax();
819 	stat(s, CMPXCHG_DOUBLE_FAIL);
820 
821 #ifdef SLUB_DEBUG_CMPXCHG
822 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
823 #endif
824 
825 	return false;
826 }
827 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)828 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
829 		void *freelist_old, unsigned long counters_old,
830 		void *freelist_new, unsigned long counters_new,
831 		const char *n)
832 {
833 	bool ret;
834 
835 	if (s->flags & __CMPXCHG_DOUBLE) {
836 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
837 				            freelist_new, counters_new);
838 	} else {
839 		unsigned long flags;
840 
841 		local_irq_save(flags);
842 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
843 				            freelist_new, counters_new);
844 		local_irq_restore(flags);
845 	}
846 	if (likely(ret))
847 		return true;
848 
849 	cpu_relax();
850 	stat(s, CMPXCHG_DOUBLE_FAIL);
851 
852 #ifdef SLUB_DEBUG_CMPXCHG
853 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
854 #endif
855 
856 	return false;
857 }
858 
859 /*
860  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
861  * family will round up the real request size to these fixed ones, so
862  * there could be an extra area than what is requested. Save the original
863  * request size in the meta data area, for better debug and sanity check.
864  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)865 static inline void set_orig_size(struct kmem_cache *s,
866 				void *object, unsigned int orig_size)
867 {
868 	void *p = kasan_reset_tag(object);
869 
870 	if (!slub_debug_orig_size(s))
871 		return;
872 
873 	p += get_info_end(s);
874 	p += sizeof(struct track) * 2;
875 
876 	*(unsigned int *)p = orig_size;
877 }
878 
get_orig_size(struct kmem_cache * s,void * object)879 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
880 {
881 	void *p = kasan_reset_tag(object);
882 
883 	if (is_kfence_address(object))
884 		return kfence_ksize(object);
885 
886 	if (!slub_debug_orig_size(s))
887 		return s->object_size;
888 
889 	p += get_info_end(s);
890 	p += sizeof(struct track) * 2;
891 
892 	return *(unsigned int *)p;
893 }
894 
895 #ifdef CONFIG_SLUB_DEBUG
896 
897 /*
898  * For debugging context when we want to check if the struct slab pointer
899  * appears to be valid.
900  */
validate_slab_ptr(struct slab * slab)901 static inline bool validate_slab_ptr(struct slab *slab)
902 {
903 	return PageSlab(slab_page(slab));
904 }
905 
906 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
907 static DEFINE_SPINLOCK(object_map_lock);
908 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)909 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
910 		       struct slab *slab)
911 {
912 	void *addr = slab_address(slab);
913 	void *p;
914 
915 	bitmap_zero(obj_map, slab->objects);
916 
917 	for (p = slab->freelist; p; p = get_freepointer(s, p))
918 		set_bit(__obj_to_index(s, addr, p), obj_map);
919 }
920 
921 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)922 static bool slab_add_kunit_errors(void)
923 {
924 	struct kunit_resource *resource;
925 
926 	if (!kunit_get_current_test())
927 		return false;
928 
929 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
930 	if (!resource)
931 		return false;
932 
933 	(*(int *)resource->data)++;
934 	kunit_put_resource(resource);
935 	return true;
936 }
937 
slab_in_kunit_test(void)938 bool slab_in_kunit_test(void)
939 {
940 	struct kunit_resource *resource;
941 
942 	if (!kunit_get_current_test())
943 		return false;
944 
945 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
946 	if (!resource)
947 		return false;
948 
949 	kunit_put_resource(resource);
950 	return true;
951 }
952 #else
slab_add_kunit_errors(void)953 static inline bool slab_add_kunit_errors(void) { return false; }
954 #endif
955 
size_from_object(struct kmem_cache * s)956 static inline unsigned int size_from_object(struct kmem_cache *s)
957 {
958 	if (s->flags & SLAB_RED_ZONE)
959 		return s->size - s->red_left_pad;
960 
961 	return s->size;
962 }
963 
restore_red_left(struct kmem_cache * s,void * p)964 static inline void *restore_red_left(struct kmem_cache *s, void *p)
965 {
966 	if (s->flags & SLAB_RED_ZONE)
967 		p -= s->red_left_pad;
968 
969 	return p;
970 }
971 
972 /*
973  * Debug settings:
974  */
975 #if defined(CONFIG_SLUB_DEBUG_ON)
976 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
977 #else
978 static slab_flags_t slub_debug;
979 #endif
980 
981 static char *slub_debug_string;
982 static int disable_higher_order_debug;
983 
984 /*
985  * slub is about to manipulate internal object metadata.  This memory lies
986  * outside the range of the allocated object, so accessing it would normally
987  * be reported by kasan as a bounds error.  metadata_access_enable() is used
988  * to tell kasan that these accesses are OK.
989  */
metadata_access_enable(void)990 static inline void metadata_access_enable(void)
991 {
992 	kasan_disable_current();
993 	kmsan_disable_current();
994 }
995 
metadata_access_disable(void)996 static inline void metadata_access_disable(void)
997 {
998 	kmsan_enable_current();
999 	kasan_enable_current();
1000 }
1001 
1002 /*
1003  * Object debugging
1004  */
1005 
1006 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)1007 static inline int check_valid_pointer(struct kmem_cache *s,
1008 				struct slab *slab, void *object)
1009 {
1010 	void *base;
1011 
1012 	if (!object)
1013 		return 1;
1014 
1015 	base = slab_address(slab);
1016 	object = kasan_reset_tag(object);
1017 	object = restore_red_left(s, object);
1018 	if (object < base || object >= base + slab->objects * s->size ||
1019 		(object - base) % s->size) {
1020 		return 0;
1021 	}
1022 
1023 	return 1;
1024 }
1025 
print_section(char * level,char * text,u8 * addr,unsigned int length)1026 static void print_section(char *level, char *text, u8 *addr,
1027 			  unsigned int length)
1028 {
1029 	metadata_access_enable();
1030 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1031 			16, 1, kasan_reset_tag((void *)addr), length, 1);
1032 	metadata_access_disable();
1033 }
1034 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)1035 static struct track *get_track(struct kmem_cache *s, void *object,
1036 	enum track_item alloc)
1037 {
1038 	struct track *p;
1039 
1040 	p = object + get_info_end(s);
1041 
1042 	return kasan_reset_tag(p + alloc);
1043 }
1044 
1045 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)1046 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1047 {
1048 	depot_stack_handle_t handle;
1049 	unsigned long entries[TRACK_ADDRS_COUNT];
1050 	unsigned int nr_entries;
1051 
1052 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1053 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
1054 
1055 	return handle;
1056 }
1057 #else
set_track_prepare(gfp_t gfp_flags)1058 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1059 {
1060 	return 0;
1061 }
1062 #endif
1063 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)1064 static void set_track_update(struct kmem_cache *s, void *object,
1065 			     enum track_item alloc, unsigned long addr,
1066 			     depot_stack_handle_t handle)
1067 {
1068 	struct track *p = get_track(s, object, alloc);
1069 
1070 #ifdef CONFIG_STACKDEPOT
1071 	p->handle = handle;
1072 #endif
1073 	p->addr = addr;
1074 	p->cpu = smp_processor_id();
1075 	p->pid = current->pid;
1076 	p->when = jiffies;
1077 }
1078 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1079 static __always_inline void set_track(struct kmem_cache *s, void *object,
1080 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1081 {
1082 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1083 
1084 	set_track_update(s, object, alloc, addr, handle);
1085 }
1086 
init_tracking(struct kmem_cache * s,void * object)1087 static void init_tracking(struct kmem_cache *s, void *object)
1088 {
1089 	struct track *p;
1090 
1091 	if (!(s->flags & SLAB_STORE_USER))
1092 		return;
1093 
1094 	p = get_track(s, object, TRACK_ALLOC);
1095 	memset(p, 0, 2*sizeof(struct track));
1096 }
1097 
print_track(const char * s,struct track * t,unsigned long pr_time)1098 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1099 {
1100 	depot_stack_handle_t handle __maybe_unused;
1101 
1102 	if (!t->addr)
1103 		return;
1104 
1105 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1106 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1107 #ifdef CONFIG_STACKDEPOT
1108 	handle = READ_ONCE(t->handle);
1109 	if (handle)
1110 		stack_depot_print(handle);
1111 	else
1112 		pr_err("object allocation/free stack trace missing\n");
1113 #endif
1114 }
1115 
print_tracking(struct kmem_cache * s,void * object)1116 void print_tracking(struct kmem_cache *s, void *object)
1117 {
1118 	unsigned long pr_time = jiffies;
1119 	if (!(s->flags & SLAB_STORE_USER))
1120 		return;
1121 
1122 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1123 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1124 }
1125 
print_slab_info(const struct slab * slab)1126 static void print_slab_info(const struct slab *slab)
1127 {
1128 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1129 	       slab, slab->objects, slab->inuse, slab->freelist,
1130 	       &slab->flags.f);
1131 }
1132 
skip_orig_size_check(struct kmem_cache * s,const void * object)1133 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1134 {
1135 	set_orig_size(s, (void *)object, s->object_size);
1136 }
1137 
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1138 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1139 {
1140 	struct va_format vaf;
1141 	va_list args;
1142 
1143 	va_copy(args, argsp);
1144 	vaf.fmt = fmt;
1145 	vaf.va = &args;
1146 	pr_err("=============================================================================\n");
1147 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1148 	pr_err("-----------------------------------------------------------------------------\n\n");
1149 	va_end(args);
1150 }
1151 
slab_bug(struct kmem_cache * s,const char * fmt,...)1152 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1153 {
1154 	va_list args;
1155 
1156 	va_start(args, fmt);
1157 	__slab_bug(s, fmt, args);
1158 	va_end(args);
1159 }
1160 
1161 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1162 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1163 {
1164 	struct va_format vaf;
1165 	va_list args;
1166 
1167 	if (slab_add_kunit_errors())
1168 		return;
1169 
1170 	va_start(args, fmt);
1171 	vaf.fmt = fmt;
1172 	vaf.va = &args;
1173 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1174 	va_end(args);
1175 }
1176 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1177 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1178 {
1179 	unsigned int off;	/* Offset of last byte */
1180 	u8 *addr = slab_address(slab);
1181 
1182 	print_tracking(s, p);
1183 
1184 	print_slab_info(slab);
1185 
1186 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1187 	       p, p - addr, get_freepointer(s, p));
1188 
1189 	if (s->flags & SLAB_RED_ZONE)
1190 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1191 			      s->red_left_pad);
1192 	else if (p > addr + 16)
1193 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1194 
1195 	print_section(KERN_ERR,         "Object   ", p,
1196 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1197 	if (s->flags & SLAB_RED_ZONE)
1198 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1199 			s->inuse - s->object_size);
1200 
1201 	off = get_info_end(s);
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		off += 2 * sizeof(struct track);
1205 
1206 	if (slub_debug_orig_size(s))
1207 		off += sizeof(unsigned int);
1208 
1209 	off += kasan_metadata_size(s, false);
1210 
1211 	if (off != size_from_object(s))
1212 		/* Beginning of the filler is the free pointer */
1213 		print_section(KERN_ERR, "Padding  ", p + off,
1214 			      size_from_object(s) - off);
1215 }
1216 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1217 static void object_err(struct kmem_cache *s, struct slab *slab,
1218 			u8 *object, const char *reason)
1219 {
1220 	if (slab_add_kunit_errors())
1221 		return;
1222 
1223 	slab_bug(s, reason);
1224 	if (!object || !check_valid_pointer(s, slab, object)) {
1225 		print_slab_info(slab);
1226 		pr_err("Invalid pointer 0x%p\n", object);
1227 	} else {
1228 		print_trailer(s, slab, object);
1229 	}
1230 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1231 
1232 	WARN_ON(1);
1233 }
1234 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1235 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1236 			       void **freelist, void *nextfree)
1237 {
1238 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1239 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1240 		object_err(s, slab, *freelist, "Freechain corrupt");
1241 		*freelist = NULL;
1242 		slab_fix(s, "Isolate corrupted freechain");
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 
__slab_err(struct slab * slab)1249 static void __slab_err(struct slab *slab)
1250 {
1251 	if (slab_in_kunit_test())
1252 		return;
1253 
1254 	print_slab_info(slab);
1255 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1256 
1257 	WARN_ON(1);
1258 }
1259 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1260 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1261 			const char *fmt, ...)
1262 {
1263 	va_list args;
1264 
1265 	if (slab_add_kunit_errors())
1266 		return;
1267 
1268 	va_start(args, fmt);
1269 	__slab_bug(s, fmt, args);
1270 	va_end(args);
1271 
1272 	__slab_err(slab);
1273 }
1274 
init_object(struct kmem_cache * s,void * object,u8 val)1275 static void init_object(struct kmem_cache *s, void *object, u8 val)
1276 {
1277 	u8 *p = kasan_reset_tag(object);
1278 	unsigned int poison_size = s->object_size;
1279 
1280 	if (s->flags & SLAB_RED_ZONE) {
1281 		/*
1282 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1283 		 * the shadow makes it possible to distinguish uninit-value
1284 		 * from use-after-free.
1285 		 */
1286 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1287 					  s->red_left_pad);
1288 
1289 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1290 			/*
1291 			 * Redzone the extra allocated space by kmalloc than
1292 			 * requested, and the poison size will be limited to
1293 			 * the original request size accordingly.
1294 			 */
1295 			poison_size = get_orig_size(s, object);
1296 		}
1297 	}
1298 
1299 	if (s->flags & __OBJECT_POISON) {
1300 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1301 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1302 	}
1303 
1304 	if (s->flags & SLAB_RED_ZONE)
1305 		memset_no_sanitize_memory(p + poison_size, val,
1306 					  s->inuse - poison_size);
1307 }
1308 
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1309 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1310 						void *from, void *to)
1311 {
1312 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1313 	memset(from, data, to - from);
1314 }
1315 
1316 #ifdef CONFIG_KMSAN
1317 #define pad_check_attributes noinline __no_kmsan_checks
1318 #else
1319 #define pad_check_attributes
1320 #endif
1321 
1322 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1323 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1324 		       u8 *object, const char *what, u8 *start, unsigned int value,
1325 		       unsigned int bytes, bool slab_obj_print)
1326 {
1327 	u8 *fault;
1328 	u8 *end;
1329 	u8 *addr = slab_address(slab);
1330 
1331 	metadata_access_enable();
1332 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1333 	metadata_access_disable();
1334 	if (!fault)
1335 		return 1;
1336 
1337 	end = start + bytes;
1338 	while (end > fault && end[-1] == value)
1339 		end--;
1340 
1341 	if (slab_add_kunit_errors())
1342 		goto skip_bug_print;
1343 
1344 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1345 	       what, fault, end - 1, fault - addr, fault[0], value);
1346 
1347 	if (slab_obj_print)
1348 		object_err(s, slab, object, "Object corrupt");
1349 
1350 skip_bug_print:
1351 	restore_bytes(s, what, value, fault, end);
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Object layout:
1357  *
1358  * object address
1359  * 	Bytes of the object to be managed.
1360  * 	If the freepointer may overlay the object then the free
1361  *	pointer is at the middle of the object.
1362  *
1363  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1364  * 	0xa5 (POISON_END)
1365  *
1366  * object + s->object_size
1367  * 	Padding to reach word boundary. This is also used for Redzoning.
1368  * 	Padding is extended by another word if Redzoning is enabled and
1369  * 	object_size == inuse.
1370  *
1371  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1372  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1373  *
1374  * object + s->inuse
1375  * 	Meta data starts here.
1376  *
1377  * 	A. Free pointer (if we cannot overwrite object on free)
1378  * 	B. Tracking data for SLAB_STORE_USER
1379  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1380  *	D. Padding to reach required alignment boundary or at minimum
1381  * 		one word if debugging is on to be able to detect writes
1382  * 		before the word boundary.
1383  *
1384  *	Padding is done using 0x5a (POISON_INUSE)
1385  *
1386  * object + s->size
1387  * 	Nothing is used beyond s->size.
1388  *
1389  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1390  * ignored. And therefore no slab options that rely on these boundaries
1391  * may be used with merged slabcaches.
1392  */
1393 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1394 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1395 {
1396 	unsigned long off = get_info_end(s);	/* The end of info */
1397 
1398 	if (s->flags & SLAB_STORE_USER) {
1399 		/* We also have user information there */
1400 		off += 2 * sizeof(struct track);
1401 
1402 		if (s->flags & SLAB_KMALLOC)
1403 			off += sizeof(unsigned int);
1404 	}
1405 
1406 	off += kasan_metadata_size(s, false);
1407 
1408 	if (size_from_object(s) == off)
1409 		return 1;
1410 
1411 	return check_bytes_and_report(s, slab, p, "Object padding",
1412 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1413 }
1414 
1415 /* Check the pad bytes at the end of a slab page */
1416 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1417 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1418 {
1419 	u8 *start;
1420 	u8 *fault;
1421 	u8 *end;
1422 	u8 *pad;
1423 	int length;
1424 	int remainder;
1425 
1426 	if (!(s->flags & SLAB_POISON))
1427 		return;
1428 
1429 	start = slab_address(slab);
1430 	length = slab_size(slab);
1431 	end = start + length;
1432 	remainder = length % s->size;
1433 	if (!remainder)
1434 		return;
1435 
1436 	pad = end - remainder;
1437 	metadata_access_enable();
1438 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1439 	metadata_access_disable();
1440 	if (!fault)
1441 		return;
1442 	while (end > fault && end[-1] == POISON_INUSE)
1443 		end--;
1444 
1445 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1446 		 fault, end - 1, fault - start);
1447 	print_section(KERN_ERR, "Padding ", pad, remainder);
1448 	__slab_err(slab);
1449 
1450 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1451 }
1452 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1453 static int check_object(struct kmem_cache *s, struct slab *slab,
1454 					void *object, u8 val)
1455 {
1456 	u8 *p = object;
1457 	u8 *endobject = object + s->object_size;
1458 	unsigned int orig_size, kasan_meta_size;
1459 	int ret = 1;
1460 
1461 	if (s->flags & SLAB_RED_ZONE) {
1462 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1463 			object - s->red_left_pad, val, s->red_left_pad, ret))
1464 			ret = 0;
1465 
1466 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1467 			endobject, val, s->inuse - s->object_size, ret))
1468 			ret = 0;
1469 
1470 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1471 			orig_size = get_orig_size(s, object);
1472 
1473 			if (s->object_size > orig_size  &&
1474 				!check_bytes_and_report(s, slab, object,
1475 					"kmalloc Redzone", p + orig_size,
1476 					val, s->object_size - orig_size, ret)) {
1477 				ret = 0;
1478 			}
1479 		}
1480 	} else {
1481 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1482 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1483 				endobject, POISON_INUSE,
1484 				s->inuse - s->object_size, ret))
1485 				ret = 0;
1486 		}
1487 	}
1488 
1489 	if (s->flags & SLAB_POISON) {
1490 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1491 			/*
1492 			 * KASAN can save its free meta data inside of the
1493 			 * object at offset 0. Thus, skip checking the part of
1494 			 * the redzone that overlaps with the meta data.
1495 			 */
1496 			kasan_meta_size = kasan_metadata_size(s, true);
1497 			if (kasan_meta_size < s->object_size - 1 &&
1498 			    !check_bytes_and_report(s, slab, p, "Poison",
1499 					p + kasan_meta_size, POISON_FREE,
1500 					s->object_size - kasan_meta_size - 1, ret))
1501 				ret = 0;
1502 			if (kasan_meta_size < s->object_size &&
1503 			    !check_bytes_and_report(s, slab, p, "End Poison",
1504 					p + s->object_size - 1, POISON_END, 1, ret))
1505 				ret = 0;
1506 		}
1507 		/*
1508 		 * check_pad_bytes cleans up on its own.
1509 		 */
1510 		if (!check_pad_bytes(s, slab, p))
1511 			ret = 0;
1512 	}
1513 
1514 	/*
1515 	 * Cannot check freepointer while object is allocated if
1516 	 * object and freepointer overlap.
1517 	 */
1518 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1519 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1520 		object_err(s, slab, p, "Freepointer corrupt");
1521 		/*
1522 		 * No choice but to zap it and thus lose the remainder
1523 		 * of the free objects in this slab. May cause
1524 		 * another error because the object count is now wrong.
1525 		 */
1526 		set_freepointer(s, p, NULL);
1527 		ret = 0;
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Checks if the slab state looks sane. Assumes the struct slab pointer
1535  * was either obtained in a way that ensures it's valid, or validated
1536  * by validate_slab_ptr()
1537  */
check_slab(struct kmem_cache * s,struct slab * slab)1538 static int check_slab(struct kmem_cache *s, struct slab *slab)
1539 {
1540 	int maxobj;
1541 
1542 	maxobj = order_objects(slab_order(slab), s->size);
1543 	if (slab->objects > maxobj) {
1544 		slab_err(s, slab, "objects %u > max %u",
1545 			slab->objects, maxobj);
1546 		return 0;
1547 	}
1548 	if (slab->inuse > slab->objects) {
1549 		slab_err(s, slab, "inuse %u > max %u",
1550 			slab->inuse, slab->objects);
1551 		return 0;
1552 	}
1553 	if (slab->frozen) {
1554 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1555 		return 0;
1556 	}
1557 
1558 	/* Slab_pad_check fixes things up after itself */
1559 	slab_pad_check(s, slab);
1560 	return 1;
1561 }
1562 
1563 /*
1564  * Determine if a certain object in a slab is on the freelist. Must hold the
1565  * slab lock to guarantee that the chains are in a consistent state.
1566  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1567 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1568 {
1569 	int nr = 0;
1570 	void *fp;
1571 	void *object = NULL;
1572 	int max_objects;
1573 
1574 	fp = slab->freelist;
1575 	while (fp && nr <= slab->objects) {
1576 		if (fp == search)
1577 			return true;
1578 		if (!check_valid_pointer(s, slab, fp)) {
1579 			if (object) {
1580 				object_err(s, slab, object,
1581 					"Freechain corrupt");
1582 				set_freepointer(s, object, NULL);
1583 				break;
1584 			} else {
1585 				slab_err(s, slab, "Freepointer corrupt");
1586 				slab->freelist = NULL;
1587 				slab->inuse = slab->objects;
1588 				slab_fix(s, "Freelist cleared");
1589 				return false;
1590 			}
1591 		}
1592 		object = fp;
1593 		fp = get_freepointer(s, object);
1594 		nr++;
1595 	}
1596 
1597 	if (nr > slab->objects) {
1598 		slab_err(s, slab, "Freelist cycle detected");
1599 		slab->freelist = NULL;
1600 		slab->inuse = slab->objects;
1601 		slab_fix(s, "Freelist cleared");
1602 		return false;
1603 	}
1604 
1605 	max_objects = order_objects(slab_order(slab), s->size);
1606 	if (max_objects > MAX_OBJS_PER_PAGE)
1607 		max_objects = MAX_OBJS_PER_PAGE;
1608 
1609 	if (slab->objects != max_objects) {
1610 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1611 			 slab->objects, max_objects);
1612 		slab->objects = max_objects;
1613 		slab_fix(s, "Number of objects adjusted");
1614 	}
1615 	if (slab->inuse != slab->objects - nr) {
1616 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1617 			 slab->inuse, slab->objects - nr);
1618 		slab->inuse = slab->objects - nr;
1619 		slab_fix(s, "Object count adjusted");
1620 	}
1621 	return search == NULL;
1622 }
1623 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1624 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1625 								int alloc)
1626 {
1627 	if (s->flags & SLAB_TRACE) {
1628 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1629 			s->name,
1630 			alloc ? "alloc" : "free",
1631 			object, slab->inuse,
1632 			slab->freelist);
1633 
1634 		if (!alloc)
1635 			print_section(KERN_INFO, "Object ", (void *)object,
1636 					s->object_size);
1637 
1638 		dump_stack();
1639 	}
1640 }
1641 
1642 /*
1643  * Tracking of fully allocated slabs for debugging purposes.
1644  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1645 static void add_full(struct kmem_cache *s,
1646 	struct kmem_cache_node *n, struct slab *slab)
1647 {
1648 	if (!(s->flags & SLAB_STORE_USER))
1649 		return;
1650 
1651 	lockdep_assert_held(&n->list_lock);
1652 	list_add(&slab->slab_list, &n->full);
1653 }
1654 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1655 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1656 {
1657 	if (!(s->flags & SLAB_STORE_USER))
1658 		return;
1659 
1660 	lockdep_assert_held(&n->list_lock);
1661 	list_del(&slab->slab_list);
1662 }
1663 
node_nr_slabs(struct kmem_cache_node * n)1664 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1665 {
1666 	return atomic_long_read(&n->nr_slabs);
1667 }
1668 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1669 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1670 {
1671 	struct kmem_cache_node *n = get_node(s, node);
1672 
1673 	atomic_long_inc(&n->nr_slabs);
1674 	atomic_long_add(objects, &n->total_objects);
1675 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1676 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1677 {
1678 	struct kmem_cache_node *n = get_node(s, node);
1679 
1680 	atomic_long_dec(&n->nr_slabs);
1681 	atomic_long_sub(objects, &n->total_objects);
1682 }
1683 
1684 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1685 static void setup_object_debug(struct kmem_cache *s, void *object)
1686 {
1687 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1688 		return;
1689 
1690 	init_object(s, object, SLUB_RED_INACTIVE);
1691 	init_tracking(s, object);
1692 }
1693 
1694 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1695 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1696 {
1697 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1698 		return;
1699 
1700 	metadata_access_enable();
1701 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1702 	metadata_access_disable();
1703 }
1704 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1705 static inline int alloc_consistency_checks(struct kmem_cache *s,
1706 					struct slab *slab, void *object)
1707 {
1708 	if (!check_slab(s, slab))
1709 		return 0;
1710 
1711 	if (!check_valid_pointer(s, slab, object)) {
1712 		object_err(s, slab, object, "Freelist Pointer check fails");
1713 		return 0;
1714 	}
1715 
1716 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1717 		return 0;
1718 
1719 	return 1;
1720 }
1721 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1722 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1723 			struct slab *slab, void *object, int orig_size)
1724 {
1725 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1726 		if (!alloc_consistency_checks(s, slab, object))
1727 			goto bad;
1728 	}
1729 
1730 	/* Success. Perform special debug activities for allocs */
1731 	trace(s, slab, object, 1);
1732 	set_orig_size(s, object, orig_size);
1733 	init_object(s, object, SLUB_RED_ACTIVE);
1734 	return true;
1735 
1736 bad:
1737 	/*
1738 	 * Let's do the best we can to avoid issues in the future. Marking all
1739 	 * objects as used avoids touching the remaining objects.
1740 	 */
1741 	slab_fix(s, "Marking all objects used");
1742 	slab->inuse = slab->objects;
1743 	slab->freelist = NULL;
1744 	slab->frozen = 1; /* mark consistency-failed slab as frozen */
1745 
1746 	return false;
1747 }
1748 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1749 static inline int free_consistency_checks(struct kmem_cache *s,
1750 		struct slab *slab, void *object, unsigned long addr)
1751 {
1752 	if (!check_valid_pointer(s, slab, object)) {
1753 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1754 		return 0;
1755 	}
1756 
1757 	if (on_freelist(s, slab, object)) {
1758 		object_err(s, slab, object, "Object already free");
1759 		return 0;
1760 	}
1761 
1762 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1763 		return 0;
1764 
1765 	if (unlikely(s != slab->slab_cache)) {
1766 		if (!slab->slab_cache) {
1767 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1768 				 object);
1769 		} else {
1770 			object_err(s, slab, object,
1771 				   "page slab pointer corrupt.");
1772 		}
1773 		return 0;
1774 	}
1775 	return 1;
1776 }
1777 
1778 /*
1779  * Parse a block of slab_debug options. Blocks are delimited by ';'
1780  *
1781  * @str:    start of block
1782  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1783  * @slabs:  return start of list of slabs, or NULL when there's no list
1784  * @init:   assume this is initial parsing and not per-kmem-create parsing
1785  *
1786  * returns the start of next block if there's any, or NULL
1787  */
1788 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1789 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1790 {
1791 	bool higher_order_disable = false;
1792 
1793 	/* Skip any completely empty blocks */
1794 	while (*str && *str == ';')
1795 		str++;
1796 
1797 	if (*str == ',') {
1798 		/*
1799 		 * No options but restriction on slabs. This means full
1800 		 * debugging for slabs matching a pattern.
1801 		 */
1802 		*flags = DEBUG_DEFAULT_FLAGS;
1803 		goto check_slabs;
1804 	}
1805 	*flags = 0;
1806 
1807 	/* Determine which debug features should be switched on */
1808 	for (; *str && *str != ',' && *str != ';'; str++) {
1809 		switch (tolower(*str)) {
1810 		case '-':
1811 			*flags = 0;
1812 			break;
1813 		case 'f':
1814 			*flags |= SLAB_CONSISTENCY_CHECKS;
1815 			break;
1816 		case 'z':
1817 			*flags |= SLAB_RED_ZONE;
1818 			break;
1819 		case 'p':
1820 			*flags |= SLAB_POISON;
1821 			break;
1822 		case 'u':
1823 			*flags |= SLAB_STORE_USER;
1824 			break;
1825 		case 't':
1826 			*flags |= SLAB_TRACE;
1827 			break;
1828 		case 'a':
1829 			*flags |= SLAB_FAILSLAB;
1830 			break;
1831 		case 'o':
1832 			/*
1833 			 * Avoid enabling debugging on caches if its minimum
1834 			 * order would increase as a result.
1835 			 */
1836 			higher_order_disable = true;
1837 			break;
1838 		default:
1839 			if (init)
1840 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1841 		}
1842 	}
1843 check_slabs:
1844 	if (*str == ',')
1845 		*slabs = ++str;
1846 	else
1847 		*slabs = NULL;
1848 
1849 	/* Skip over the slab list */
1850 	while (*str && *str != ';')
1851 		str++;
1852 
1853 	/* Skip any completely empty blocks */
1854 	while (*str && *str == ';')
1855 		str++;
1856 
1857 	if (init && higher_order_disable)
1858 		disable_higher_order_debug = 1;
1859 
1860 	if (*str)
1861 		return str;
1862 	else
1863 		return NULL;
1864 }
1865 
setup_slub_debug(char * str)1866 static int __init setup_slub_debug(char *str)
1867 {
1868 	slab_flags_t flags;
1869 	slab_flags_t global_flags;
1870 	char *saved_str;
1871 	char *slab_list;
1872 	bool global_slub_debug_changed = false;
1873 	bool slab_list_specified = false;
1874 
1875 	global_flags = DEBUG_DEFAULT_FLAGS;
1876 	if (*str++ != '=' || !*str)
1877 		/*
1878 		 * No options specified. Switch on full debugging.
1879 		 */
1880 		goto out;
1881 
1882 	saved_str = str;
1883 	while (str) {
1884 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1885 
1886 		if (!slab_list) {
1887 			global_flags = flags;
1888 			global_slub_debug_changed = true;
1889 		} else {
1890 			slab_list_specified = true;
1891 			if (flags & SLAB_STORE_USER)
1892 				stack_depot_request_early_init();
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * For backwards compatibility, a single list of flags with list of
1898 	 * slabs means debugging is only changed for those slabs, so the global
1899 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1900 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1901 	 * long as there is no option specifying flags without a slab list.
1902 	 */
1903 	if (slab_list_specified) {
1904 		if (!global_slub_debug_changed)
1905 			global_flags = slub_debug;
1906 		slub_debug_string = saved_str;
1907 	}
1908 out:
1909 	slub_debug = global_flags;
1910 	if (slub_debug & SLAB_STORE_USER)
1911 		stack_depot_request_early_init();
1912 	if (slub_debug != 0 || slub_debug_string)
1913 		static_branch_enable(&slub_debug_enabled);
1914 	else
1915 		static_branch_disable(&slub_debug_enabled);
1916 	if ((static_branch_unlikely(&init_on_alloc) ||
1917 	     static_branch_unlikely(&init_on_free)) &&
1918 	    (slub_debug & SLAB_POISON))
1919 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1920 	return 1;
1921 }
1922 
1923 __setup("slab_debug", setup_slub_debug);
1924 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1925 
1926 /*
1927  * kmem_cache_flags - apply debugging options to the cache
1928  * @flags:		flags to set
1929  * @name:		name of the cache
1930  *
1931  * Debug option(s) are applied to @flags. In addition to the debug
1932  * option(s), if a slab name (or multiple) is specified i.e.
1933  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1934  * then only the select slabs will receive the debug option(s).
1935  */
kmem_cache_flags(slab_flags_t flags,const char * name)1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 	char *iter;
1939 	size_t len;
1940 	char *next_block;
1941 	slab_flags_t block_flags;
1942 	slab_flags_t slub_debug_local = slub_debug;
1943 
1944 	if (flags & SLAB_NO_USER_FLAGS)
1945 		return flags;
1946 
1947 	/*
1948 	 * If the slab cache is for debugging (e.g. kmemleak) then
1949 	 * don't store user (stack trace) information by default,
1950 	 * but let the user enable it via the command line below.
1951 	 */
1952 	if (flags & SLAB_NOLEAKTRACE)
1953 		slub_debug_local &= ~SLAB_STORE_USER;
1954 
1955 	len = strlen(name);
1956 	next_block = slub_debug_string;
1957 	/* Go through all blocks of debug options, see if any matches our slab's name */
1958 	while (next_block) {
1959 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1960 		if (!iter)
1961 			continue;
1962 		/* Found a block that has a slab list, search it */
1963 		while (*iter) {
1964 			char *end, *glob;
1965 			size_t cmplen;
1966 
1967 			end = strchrnul(iter, ',');
1968 			if (next_block && next_block < end)
1969 				end = next_block - 1;
1970 
1971 			glob = strnchr(iter, end - iter, '*');
1972 			if (glob)
1973 				cmplen = glob - iter;
1974 			else
1975 				cmplen = max_t(size_t, len, (end - iter));
1976 
1977 			if (!strncmp(name, iter, cmplen)) {
1978 				flags |= block_flags;
1979 				return flags;
1980 			}
1981 
1982 			if (!*end || *end == ';')
1983 				break;
1984 			iter = end + 1;
1985 		}
1986 	}
1987 
1988 	return flags | slub_debug_local;
1989 }
1990 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1991 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1992 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1993 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1994 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1995 static inline bool alloc_debug_processing(struct kmem_cache *s,
1996 	struct slab *slab, void *object, int orig_size) { return true; }
1997 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1998 static inline bool free_debug_processing(struct kmem_cache *s,
1999 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2000 	unsigned long addr, depot_stack_handle_t handle) { return true; }
2001 
slab_pad_check(struct kmem_cache * s,struct slab * slab)2002 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)2003 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2004 			void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)2005 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)2006 static inline void set_track(struct kmem_cache *s, void *object,
2007 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2008 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2010 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2011 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)2012 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2013 {
2014 	return flags;
2015 }
2016 #define slub_debug 0
2017 
2018 #define disable_higher_order_debug 0
2019 
node_nr_slabs(struct kmem_cache_node * n)2020 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2021 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)2022 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2023 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)2024 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2025 							int objects) {}
2026 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)2027 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2028 			       void **freelist, void *nextfree)
2029 {
2030 	return false;
2031 }
2032 #endif
2033 #endif /* CONFIG_SLUB_DEBUG */
2034 
2035 #ifdef CONFIG_SLAB_OBJ_EXT
2036 
2037 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2038 
mark_objexts_empty(struct slabobj_ext * obj_exts)2039 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2040 {
2041 	struct slabobj_ext *slab_exts;
2042 	struct slab *obj_exts_slab;
2043 
2044 	obj_exts_slab = virt_to_slab(obj_exts);
2045 	slab_exts = slab_obj_exts(obj_exts_slab);
2046 	if (slab_exts) {
2047 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2048 						 obj_exts_slab, obj_exts);
2049 
2050 		if (unlikely(is_codetag_empty(&slab_exts[offs].ref)))
2051 			return;
2052 
2053 		/* codetag should be NULL here */
2054 		WARN_ON(slab_exts[offs].ref.ct);
2055 		set_codetag_empty(&slab_exts[offs].ref);
2056 	}
2057 }
2058 
mark_failed_objexts_alloc(struct slab * slab)2059 static inline bool mark_failed_objexts_alloc(struct slab *slab)
2060 {
2061 	return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2062 }
2063 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2064 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2065 			struct slabobj_ext *vec, unsigned int objects)
2066 {
2067 	/*
2068 	 * If vector previously failed to allocate then we have live
2069 	 * objects with no tag reference. Mark all references in this
2070 	 * vector as empty to avoid warnings later on.
2071 	 */
2072 	if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2073 		unsigned int i;
2074 
2075 		for (i = 0; i < objects; i++)
2076 			set_codetag_empty(&vec[i].ref);
2077 	}
2078 }
2079 
2080 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2081 
mark_objexts_empty(struct slabobj_ext * obj_exts)2082 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2083 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2084 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2085 			struct slabobj_ext *vec, unsigned int objects) {}
2086 
2087 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2088 
2089 /*
2090  * The allocated objcg pointers array is not accounted directly.
2091  * Moreover, it should not come from DMA buffer and is not readily
2092  * reclaimable. So those GFP bits should be masked off.
2093  */
2094 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2095 				__GFP_ACCOUNT | __GFP_NOFAIL)
2096 
init_slab_obj_exts(struct slab * slab)2097 static inline void init_slab_obj_exts(struct slab *slab)
2098 {
2099 	slab->obj_exts = 0;
2100 }
2101 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2102 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2103 		        gfp_t gfp, bool new_slab)
2104 {
2105 	bool allow_spin = gfpflags_allow_spinning(gfp);
2106 	unsigned int objects = objs_per_slab(s, slab);
2107 	unsigned long new_exts;
2108 	unsigned long old_exts;
2109 	struct slabobj_ext *vec;
2110 
2111 	gfp &= ~OBJCGS_CLEAR_MASK;
2112 	/* Prevent recursive extension vector allocation */
2113 	gfp |= __GFP_NO_OBJ_EXT;
2114 
2115 	/*
2116 	 * Note that allow_spin may be false during early boot and its
2117 	 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2118 	 * architectures with cmpxchg16b, early obj_exts will be missing for
2119 	 * very early allocations on those.
2120 	 */
2121 	if (unlikely(!allow_spin)) {
2122 		size_t sz = objects * sizeof(struct slabobj_ext);
2123 
2124 		vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2125 				     slab_nid(slab));
2126 	} else {
2127 		vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2128 				   slab_nid(slab));
2129 	}
2130 	if (!vec) {
2131 		/*
2132 		 * Try to mark vectors which failed to allocate.
2133 		 * If this operation fails, there may be a racing process
2134 		 * that has already completed the allocation.
2135 		 */
2136 		if (!mark_failed_objexts_alloc(slab) &&
2137 		    slab_obj_exts(slab))
2138 			return 0;
2139 
2140 		return -ENOMEM;
2141 	}
2142 
2143 	new_exts = (unsigned long)vec;
2144 	if (unlikely(!allow_spin))
2145 		new_exts |= OBJEXTS_NOSPIN_ALLOC;
2146 #ifdef CONFIG_MEMCG
2147 	new_exts |= MEMCG_DATA_OBJEXTS;
2148 #endif
2149 retry:
2150 	old_exts = READ_ONCE(slab->obj_exts);
2151 	handle_failed_objexts_alloc(old_exts, vec, objects);
2152 	if (new_slab) {
2153 		/*
2154 		 * If the slab is brand new and nobody can yet access its
2155 		 * obj_exts, no synchronization is required and obj_exts can
2156 		 * be simply assigned.
2157 		 */
2158 		slab->obj_exts = new_exts;
2159 	} else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2160 		/*
2161 		 * If the slab is already in use, somebody can allocate and
2162 		 * assign slabobj_exts in parallel. In this case the existing
2163 		 * objcg vector should be reused.
2164 		 */
2165 		mark_objexts_empty(vec);
2166 		if (unlikely(!allow_spin))
2167 			kfree_nolock(vec);
2168 		else
2169 			kfree(vec);
2170 		return 0;
2171 	} else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2172 		/* Retry if a racing thread changed slab->obj_exts from under us. */
2173 		goto retry;
2174 	}
2175 
2176 	if (allow_spin)
2177 		kmemleak_not_leak(vec);
2178 	return 0;
2179 }
2180 
free_slab_obj_exts(struct slab * slab)2181 static inline void free_slab_obj_exts(struct slab *slab)
2182 {
2183 	struct slabobj_ext *obj_exts;
2184 
2185 	obj_exts = slab_obj_exts(slab);
2186 	if (!obj_exts) {
2187 		/*
2188 		 * If obj_exts allocation failed, slab->obj_exts is set to
2189 		 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2190 		 * clear the flag.
2191 		 */
2192 		slab->obj_exts = 0;
2193 		return;
2194 	}
2195 
2196 	/*
2197 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2198 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2199 	 * warning if slab has extensions but the extension of an object is
2200 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2201 	 * the extension for obj_exts is expected to be NULL.
2202 	 */
2203 	mark_objexts_empty(obj_exts);
2204 	if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2205 		kfree_nolock(obj_exts);
2206 	else
2207 		kfree(obj_exts);
2208 	slab->obj_exts = 0;
2209 }
2210 
2211 #else /* CONFIG_SLAB_OBJ_EXT */
2212 
init_slab_obj_exts(struct slab * slab)2213 static inline void init_slab_obj_exts(struct slab *slab)
2214 {
2215 }
2216 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2217 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2218 			       gfp_t gfp, bool new_slab)
2219 {
2220 	return 0;
2221 }
2222 
free_slab_obj_exts(struct slab * slab)2223 static inline void free_slab_obj_exts(struct slab *slab)
2224 {
2225 }
2226 
2227 #endif /* CONFIG_SLAB_OBJ_EXT */
2228 
2229 #ifdef CONFIG_MEM_ALLOC_PROFILING
2230 
2231 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2232 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2233 {
2234 	struct slab *slab;
2235 
2236 	slab = virt_to_slab(p);
2237 	if (!slab_obj_exts(slab) &&
2238 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2239 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2240 			     __func__, s->name);
2241 		return NULL;
2242 	}
2243 
2244 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2245 }
2246 
2247 /* Should be called only if mem_alloc_profiling_enabled() */
2248 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2249 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2250 {
2251 	struct slabobj_ext *obj_exts;
2252 
2253 	if (!object)
2254 		return;
2255 
2256 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2257 		return;
2258 
2259 	if (flags & __GFP_NO_OBJ_EXT)
2260 		return;
2261 
2262 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2263 	/*
2264 	 * Currently obj_exts is used only for allocation profiling.
2265 	 * If other users appear then mem_alloc_profiling_enabled()
2266 	 * check should be added before alloc_tag_add().
2267 	 */
2268 	if (likely(obj_exts))
2269 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2270 	else
2271 		alloc_tag_set_inaccurate(current->alloc_tag);
2272 }
2273 
2274 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2275 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2276 {
2277 	if (mem_alloc_profiling_enabled())
2278 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2279 }
2280 
2281 /* Should be called only if mem_alloc_profiling_enabled() */
2282 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2283 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2284 			       int objects)
2285 {
2286 	struct slabobj_ext *obj_exts;
2287 	int i;
2288 
2289 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2290 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2291 		return;
2292 
2293 	obj_exts = slab_obj_exts(slab);
2294 	if (!obj_exts)
2295 		return;
2296 
2297 	for (i = 0; i < objects; i++) {
2298 		unsigned int off = obj_to_index(s, slab, p[i]);
2299 
2300 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2301 	}
2302 }
2303 
2304 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2305 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2306 			     int objects)
2307 {
2308 	if (mem_alloc_profiling_enabled())
2309 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2310 }
2311 
2312 #else /* CONFIG_MEM_ALLOC_PROFILING */
2313 
2314 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2315 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2316 {
2317 }
2318 
2319 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2320 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2321 			     int objects)
2322 {
2323 }
2324 
2325 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2326 
2327 
2328 #ifdef CONFIG_MEMCG
2329 
2330 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2331 
2332 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2333 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2334 				gfp_t flags, size_t size, void **p)
2335 {
2336 	if (likely(!memcg_kmem_online()))
2337 		return true;
2338 
2339 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2340 		return true;
2341 
2342 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2343 		return true;
2344 
2345 	if (likely(size == 1)) {
2346 		memcg_alloc_abort_single(s, *p);
2347 		*p = NULL;
2348 	} else {
2349 		kmem_cache_free_bulk(s, size, p);
2350 	}
2351 
2352 	return false;
2353 }
2354 
2355 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2356 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2357 			  int objects)
2358 {
2359 	struct slabobj_ext *obj_exts;
2360 
2361 	if (!memcg_kmem_online())
2362 		return;
2363 
2364 	obj_exts = slab_obj_exts(slab);
2365 	if (likely(!obj_exts))
2366 		return;
2367 
2368 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2369 }
2370 
2371 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2372 bool memcg_slab_post_charge(void *p, gfp_t flags)
2373 {
2374 	struct slabobj_ext *slab_exts;
2375 	struct kmem_cache *s;
2376 	struct folio *folio;
2377 	struct slab *slab;
2378 	unsigned long off;
2379 
2380 	folio = virt_to_folio(p);
2381 	if (!folio_test_slab(folio)) {
2382 		int size;
2383 
2384 		if (folio_memcg_kmem(folio))
2385 			return true;
2386 
2387 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2388 					     folio_order(folio)))
2389 			return false;
2390 
2391 		/*
2392 		 * This folio has already been accounted in the global stats but
2393 		 * not in the memcg stats. So, subtract from the global and use
2394 		 * the interface which adds to both global and memcg stats.
2395 		 */
2396 		size = folio_size(folio);
2397 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2398 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2399 		return true;
2400 	}
2401 
2402 	slab = folio_slab(folio);
2403 	s = slab->slab_cache;
2404 
2405 	/*
2406 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2407 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2408 	 * becoming effectively unfreeable.
2409 	 */
2410 	if (is_kmalloc_normal(s))
2411 		return true;
2412 
2413 	/* Ignore already charged objects. */
2414 	slab_exts = slab_obj_exts(slab);
2415 	if (slab_exts) {
2416 		off = obj_to_index(s, slab, p);
2417 		if (unlikely(slab_exts[off].objcg))
2418 			return true;
2419 	}
2420 
2421 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2422 }
2423 
2424 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2425 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2426 					      struct list_lru *lru,
2427 					      gfp_t flags, size_t size,
2428 					      void **p)
2429 {
2430 	return true;
2431 }
2432 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2433 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2434 					void **p, int objects)
2435 {
2436 }
2437 
memcg_slab_post_charge(void * p,gfp_t flags)2438 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2439 {
2440 	return true;
2441 }
2442 #endif /* CONFIG_MEMCG */
2443 
2444 #ifdef CONFIG_SLUB_RCU_DEBUG
2445 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2446 
2447 struct rcu_delayed_free {
2448 	struct rcu_head head;
2449 	void *object;
2450 };
2451 #endif
2452 
2453 /*
2454  * Hooks for other subsystems that check memory allocations. In a typical
2455  * production configuration these hooks all should produce no code at all.
2456  *
2457  * Returns true if freeing of the object can proceed, false if its reuse
2458  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2459  * to KFENCE.
2460  */
2461 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2462 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2463 		    bool after_rcu_delay)
2464 {
2465 	/* Are the object contents still accessible? */
2466 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2467 
2468 	kmemleak_free_recursive(x, s->flags);
2469 	kmsan_slab_free(s, x);
2470 
2471 	debug_check_no_locks_freed(x, s->object_size);
2472 
2473 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2474 		debug_check_no_obj_freed(x, s->object_size);
2475 
2476 	/* Use KCSAN to help debug racy use-after-free. */
2477 	if (!still_accessible)
2478 		__kcsan_check_access(x, s->object_size,
2479 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2480 
2481 	if (kfence_free(x))
2482 		return false;
2483 
2484 	/*
2485 	 * Give KASAN a chance to notice an invalid free operation before we
2486 	 * modify the object.
2487 	 */
2488 	if (kasan_slab_pre_free(s, x))
2489 		return false;
2490 
2491 #ifdef CONFIG_SLUB_RCU_DEBUG
2492 	if (still_accessible) {
2493 		struct rcu_delayed_free *delayed_free;
2494 
2495 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2496 		if (delayed_free) {
2497 			/*
2498 			 * Let KASAN track our call stack as a "related work
2499 			 * creation", just like if the object had been freed
2500 			 * normally via kfree_rcu().
2501 			 * We have to do this manually because the rcu_head is
2502 			 * not located inside the object.
2503 			 */
2504 			kasan_record_aux_stack(x);
2505 
2506 			delayed_free->object = x;
2507 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2508 			return false;
2509 		}
2510 	}
2511 #endif /* CONFIG_SLUB_RCU_DEBUG */
2512 
2513 	/*
2514 	 * As memory initialization might be integrated into KASAN,
2515 	 * kasan_slab_free and initialization memset's must be
2516 	 * kept together to avoid discrepancies in behavior.
2517 	 *
2518 	 * The initialization memset's clear the object and the metadata,
2519 	 * but don't touch the SLAB redzone.
2520 	 *
2521 	 * The object's freepointer is also avoided if stored outside the
2522 	 * object.
2523 	 */
2524 	if (unlikely(init)) {
2525 		int rsize;
2526 		unsigned int inuse, orig_size;
2527 
2528 		inuse = get_info_end(s);
2529 		orig_size = get_orig_size(s, x);
2530 		if (!kasan_has_integrated_init())
2531 			memset(kasan_reset_tag(x), 0, orig_size);
2532 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2533 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2534 		       s->size - inuse - rsize);
2535 		/*
2536 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2537 		 * would be reported
2538 		 */
2539 		set_orig_size(s, x, orig_size);
2540 
2541 	}
2542 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2543 	return !kasan_slab_free(s, x, init, still_accessible, false);
2544 }
2545 
2546 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2547 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2548 			     int *cnt)
2549 {
2550 
2551 	void *object;
2552 	void *next = *head;
2553 	void *old_tail = *tail;
2554 	bool init;
2555 
2556 	if (is_kfence_address(next)) {
2557 		slab_free_hook(s, next, false, false);
2558 		return false;
2559 	}
2560 
2561 	/* Head and tail of the reconstructed freelist */
2562 	*head = NULL;
2563 	*tail = NULL;
2564 
2565 	init = slab_want_init_on_free(s);
2566 
2567 	do {
2568 		object = next;
2569 		next = get_freepointer(s, object);
2570 
2571 		/* If object's reuse doesn't have to be delayed */
2572 		if (likely(slab_free_hook(s, object, init, false))) {
2573 			/* Move object to the new freelist */
2574 			set_freepointer(s, object, *head);
2575 			*head = object;
2576 			if (!*tail)
2577 				*tail = object;
2578 		} else {
2579 			/*
2580 			 * Adjust the reconstructed freelist depth
2581 			 * accordingly if object's reuse is delayed.
2582 			 */
2583 			--(*cnt);
2584 		}
2585 	} while (object != old_tail);
2586 
2587 	return *head != NULL;
2588 }
2589 
setup_object(struct kmem_cache * s,void * object)2590 static void *setup_object(struct kmem_cache *s, void *object)
2591 {
2592 	setup_object_debug(s, object);
2593 	object = kasan_init_slab_obj(s, object);
2594 	if (unlikely(s->ctor)) {
2595 		kasan_unpoison_new_object(s, object);
2596 		s->ctor(object);
2597 		kasan_poison_new_object(s, object);
2598 	}
2599 	return object;
2600 }
2601 
alloc_empty_sheaf(struct kmem_cache * s,gfp_t gfp)2602 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2603 {
2604 	struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects,
2605 					s->sheaf_capacity), gfp);
2606 
2607 	if (unlikely(!sheaf))
2608 		return NULL;
2609 
2610 	sheaf->cache = s;
2611 
2612 	stat(s, SHEAF_ALLOC);
2613 
2614 	return sheaf;
2615 }
2616 
free_empty_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf)2617 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2618 {
2619 	kfree(sheaf);
2620 
2621 	stat(s, SHEAF_FREE);
2622 }
2623 
2624 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2625 				   size_t size, void **p);
2626 
2627 
refill_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)2628 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2629 			 gfp_t gfp)
2630 {
2631 	int to_fill = s->sheaf_capacity - sheaf->size;
2632 	int filled;
2633 
2634 	if (!to_fill)
2635 		return 0;
2636 
2637 	filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2638 					 &sheaf->objects[sheaf->size]);
2639 
2640 	sheaf->size += filled;
2641 
2642 	stat_add(s, SHEAF_REFILL, filled);
2643 
2644 	if (filled < to_fill)
2645 		return -ENOMEM;
2646 
2647 	return 0;
2648 }
2649 
2650 
alloc_full_sheaf(struct kmem_cache * s,gfp_t gfp)2651 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2652 {
2653 	struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2654 
2655 	if (!sheaf)
2656 		return NULL;
2657 
2658 	if (refill_sheaf(s, sheaf, gfp)) {
2659 		free_empty_sheaf(s, sheaf);
2660 		return NULL;
2661 	}
2662 
2663 	return sheaf;
2664 }
2665 
2666 /*
2667  * Maximum number of objects freed during a single flush of main pcs sheaf.
2668  * Translates directly to an on-stack array size.
2669  */
2670 #define PCS_BATCH_MAX	32U
2671 
2672 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2673 
2674 /*
2675  * Free all objects from the main sheaf. In order to perform
2676  * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2677  * object pointers are moved to a on-stack array under the lock. To bound the
2678  * stack usage, limit each batch to PCS_BATCH_MAX.
2679  *
2680  * returns true if at least partially flushed
2681  */
sheaf_flush_main(struct kmem_cache * s)2682 static bool sheaf_flush_main(struct kmem_cache *s)
2683 {
2684 	struct slub_percpu_sheaves *pcs;
2685 	unsigned int batch, remaining;
2686 	void *objects[PCS_BATCH_MAX];
2687 	struct slab_sheaf *sheaf;
2688 	bool ret = false;
2689 
2690 next_batch:
2691 	if (!local_trylock(&s->cpu_sheaves->lock))
2692 		return ret;
2693 
2694 	pcs = this_cpu_ptr(s->cpu_sheaves);
2695 	sheaf = pcs->main;
2696 
2697 	batch = min(PCS_BATCH_MAX, sheaf->size);
2698 
2699 	sheaf->size -= batch;
2700 	memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2701 
2702 	remaining = sheaf->size;
2703 
2704 	local_unlock(&s->cpu_sheaves->lock);
2705 
2706 	__kmem_cache_free_bulk(s, batch, &objects[0]);
2707 
2708 	stat_add(s, SHEAF_FLUSH, batch);
2709 
2710 	ret = true;
2711 
2712 	if (remaining)
2713 		goto next_batch;
2714 
2715 	return ret;
2716 }
2717 
2718 /*
2719  * Free all objects from a sheaf that's unused, i.e. not linked to any
2720  * cpu_sheaves, so we need no locking and batching. The locking is also not
2721  * necessary when flushing cpu's sheaves (both spare and main) during cpu
2722  * hotremove as the cpu is not executing anymore.
2723  */
sheaf_flush_unused(struct kmem_cache * s,struct slab_sheaf * sheaf)2724 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2725 {
2726 	if (!sheaf->size)
2727 		return;
2728 
2729 	stat_add(s, SHEAF_FLUSH, sheaf->size);
2730 
2731 	__kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2732 
2733 	sheaf->size = 0;
2734 }
2735 
__rcu_free_sheaf_prepare(struct kmem_cache * s,struct slab_sheaf * sheaf)2736 static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
2737 				     struct slab_sheaf *sheaf)
2738 {
2739 	bool init = slab_want_init_on_free(s);
2740 	void **p = &sheaf->objects[0];
2741 	unsigned int i = 0;
2742 
2743 	while (i < sheaf->size) {
2744 		struct slab *slab = virt_to_slab(p[i]);
2745 
2746 		memcg_slab_free_hook(s, slab, p + i, 1);
2747 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2748 
2749 		if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2750 			p[i] = p[--sheaf->size];
2751 			continue;
2752 		}
2753 
2754 		i++;
2755 	}
2756 }
2757 
rcu_free_sheaf_nobarn(struct rcu_head * head)2758 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2759 {
2760 	struct slab_sheaf *sheaf;
2761 	struct kmem_cache *s;
2762 
2763 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
2764 	s = sheaf->cache;
2765 
2766 	__rcu_free_sheaf_prepare(s, sheaf);
2767 
2768 	sheaf_flush_unused(s, sheaf);
2769 
2770 	free_empty_sheaf(s, sheaf);
2771 }
2772 
2773 /*
2774  * Caller needs to make sure migration is disabled in order to fully flush
2775  * single cpu's sheaves
2776  *
2777  * must not be called from an irq
2778  *
2779  * flushing operations are rare so let's keep it simple and flush to slabs
2780  * directly, skipping the barn
2781  */
pcs_flush_all(struct kmem_cache * s)2782 static void pcs_flush_all(struct kmem_cache *s)
2783 {
2784 	struct slub_percpu_sheaves *pcs;
2785 	struct slab_sheaf *spare, *rcu_free;
2786 
2787 	local_lock(&s->cpu_sheaves->lock);
2788 	pcs = this_cpu_ptr(s->cpu_sheaves);
2789 
2790 	spare = pcs->spare;
2791 	pcs->spare = NULL;
2792 
2793 	rcu_free = pcs->rcu_free;
2794 	pcs->rcu_free = NULL;
2795 
2796 	local_unlock(&s->cpu_sheaves->lock);
2797 
2798 	if (spare) {
2799 		sheaf_flush_unused(s, spare);
2800 		free_empty_sheaf(s, spare);
2801 	}
2802 
2803 	if (rcu_free)
2804 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2805 
2806 	sheaf_flush_main(s);
2807 }
2808 
__pcs_flush_all_cpu(struct kmem_cache * s,unsigned int cpu)2809 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2810 {
2811 	struct slub_percpu_sheaves *pcs;
2812 
2813 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2814 
2815 	/* The cpu is not executing anymore so we don't need pcs->lock */
2816 	sheaf_flush_unused(s, pcs->main);
2817 	if (pcs->spare) {
2818 		sheaf_flush_unused(s, pcs->spare);
2819 		free_empty_sheaf(s, pcs->spare);
2820 		pcs->spare = NULL;
2821 	}
2822 
2823 	if (pcs->rcu_free) {
2824 		call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2825 		pcs->rcu_free = NULL;
2826 	}
2827 }
2828 
pcs_destroy(struct kmem_cache * s)2829 static void pcs_destroy(struct kmem_cache *s)
2830 {
2831 	int cpu;
2832 
2833 	for_each_possible_cpu(cpu) {
2834 		struct slub_percpu_sheaves *pcs;
2835 
2836 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2837 
2838 		/* can happen when unwinding failed create */
2839 		if (!pcs->main)
2840 			continue;
2841 
2842 		/*
2843 		 * We have already passed __kmem_cache_shutdown() so everything
2844 		 * was flushed and there should be no objects allocated from
2845 		 * slabs, otherwise kmem_cache_destroy() would have aborted.
2846 		 * Therefore something would have to be really wrong if the
2847 		 * warnings here trigger, and we should rather leave objects and
2848 		 * sheaves to leak in that case.
2849 		 */
2850 
2851 		WARN_ON(pcs->spare);
2852 		WARN_ON(pcs->rcu_free);
2853 
2854 		if (!WARN_ON(pcs->main->size)) {
2855 			free_empty_sheaf(s, pcs->main);
2856 			pcs->main = NULL;
2857 		}
2858 	}
2859 
2860 	free_percpu(s->cpu_sheaves);
2861 	s->cpu_sheaves = NULL;
2862 }
2863 
barn_get_empty_sheaf(struct node_barn * barn)2864 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2865 {
2866 	struct slab_sheaf *empty = NULL;
2867 	unsigned long flags;
2868 
2869 	if (!data_race(barn->nr_empty))
2870 		return NULL;
2871 
2872 	spin_lock_irqsave(&barn->lock, flags);
2873 
2874 	if (likely(barn->nr_empty)) {
2875 		empty = list_first_entry(&barn->sheaves_empty,
2876 					 struct slab_sheaf, barn_list);
2877 		list_del(&empty->barn_list);
2878 		barn->nr_empty--;
2879 	}
2880 
2881 	spin_unlock_irqrestore(&barn->lock, flags);
2882 
2883 	return empty;
2884 }
2885 
2886 /*
2887  * The following two functions are used mainly in cases where we have to undo an
2888  * intended action due to a race or cpu migration. Thus they do not check the
2889  * empty or full sheaf limits for simplicity.
2890  */
2891 
barn_put_empty_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2892 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2893 {
2894 	unsigned long flags;
2895 
2896 	spin_lock_irqsave(&barn->lock, flags);
2897 
2898 	list_add(&sheaf->barn_list, &barn->sheaves_empty);
2899 	barn->nr_empty++;
2900 
2901 	spin_unlock_irqrestore(&barn->lock, flags);
2902 }
2903 
barn_put_full_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2904 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2905 {
2906 	unsigned long flags;
2907 
2908 	spin_lock_irqsave(&barn->lock, flags);
2909 
2910 	list_add(&sheaf->barn_list, &barn->sheaves_full);
2911 	barn->nr_full++;
2912 
2913 	spin_unlock_irqrestore(&barn->lock, flags);
2914 }
2915 
barn_get_full_or_empty_sheaf(struct node_barn * barn)2916 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2917 {
2918 	struct slab_sheaf *sheaf = NULL;
2919 	unsigned long flags;
2920 
2921 	if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2922 		return NULL;
2923 
2924 	spin_lock_irqsave(&barn->lock, flags);
2925 
2926 	if (barn->nr_full) {
2927 		sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2928 					barn_list);
2929 		list_del(&sheaf->barn_list);
2930 		barn->nr_full--;
2931 	} else if (barn->nr_empty) {
2932 		sheaf = list_first_entry(&barn->sheaves_empty,
2933 					 struct slab_sheaf, barn_list);
2934 		list_del(&sheaf->barn_list);
2935 		barn->nr_empty--;
2936 	}
2937 
2938 	spin_unlock_irqrestore(&barn->lock, flags);
2939 
2940 	return sheaf;
2941 }
2942 
2943 /*
2944  * If a full sheaf is available, return it and put the supplied empty one to
2945  * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2946  * change.
2947  */
2948 static struct slab_sheaf *
barn_replace_empty_sheaf(struct node_barn * barn,struct slab_sheaf * empty)2949 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2950 {
2951 	struct slab_sheaf *full = NULL;
2952 	unsigned long flags;
2953 
2954 	if (!data_race(barn->nr_full))
2955 		return NULL;
2956 
2957 	spin_lock_irqsave(&barn->lock, flags);
2958 
2959 	if (likely(barn->nr_full)) {
2960 		full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2961 					barn_list);
2962 		list_del(&full->barn_list);
2963 		list_add(&empty->barn_list, &barn->sheaves_empty);
2964 		barn->nr_full--;
2965 		barn->nr_empty++;
2966 	}
2967 
2968 	spin_unlock_irqrestore(&barn->lock, flags);
2969 
2970 	return full;
2971 }
2972 
2973 /*
2974  * If an empty sheaf is available, return it and put the supplied full one to
2975  * barn. But if there are too many full sheaves, reject this with -E2BIG.
2976  */
2977 static struct slab_sheaf *
barn_replace_full_sheaf(struct node_barn * barn,struct slab_sheaf * full)2978 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2979 {
2980 	struct slab_sheaf *empty;
2981 	unsigned long flags;
2982 
2983 	/* we don't repeat this check under barn->lock as it's not critical */
2984 	if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
2985 		return ERR_PTR(-E2BIG);
2986 	if (!data_race(barn->nr_empty))
2987 		return ERR_PTR(-ENOMEM);
2988 
2989 	spin_lock_irqsave(&barn->lock, flags);
2990 
2991 	if (likely(barn->nr_empty)) {
2992 		empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
2993 					 barn_list);
2994 		list_del(&empty->barn_list);
2995 		list_add(&full->barn_list, &barn->sheaves_full);
2996 		barn->nr_empty--;
2997 		barn->nr_full++;
2998 	} else {
2999 		empty = ERR_PTR(-ENOMEM);
3000 	}
3001 
3002 	spin_unlock_irqrestore(&barn->lock, flags);
3003 
3004 	return empty;
3005 }
3006 
barn_init(struct node_barn * barn)3007 static void barn_init(struct node_barn *barn)
3008 {
3009 	spin_lock_init(&barn->lock);
3010 	INIT_LIST_HEAD(&barn->sheaves_full);
3011 	INIT_LIST_HEAD(&barn->sheaves_empty);
3012 	barn->nr_full = 0;
3013 	barn->nr_empty = 0;
3014 }
3015 
barn_shrink(struct kmem_cache * s,struct node_barn * barn)3016 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3017 {
3018 	struct list_head empty_list;
3019 	struct list_head full_list;
3020 	struct slab_sheaf *sheaf, *sheaf2;
3021 	unsigned long flags;
3022 
3023 	INIT_LIST_HEAD(&empty_list);
3024 	INIT_LIST_HEAD(&full_list);
3025 
3026 	spin_lock_irqsave(&barn->lock, flags);
3027 
3028 	list_splice_init(&barn->sheaves_full, &full_list);
3029 	barn->nr_full = 0;
3030 	list_splice_init(&barn->sheaves_empty, &empty_list);
3031 	barn->nr_empty = 0;
3032 
3033 	spin_unlock_irqrestore(&barn->lock, flags);
3034 
3035 	list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3036 		sheaf_flush_unused(s, sheaf);
3037 		free_empty_sheaf(s, sheaf);
3038 	}
3039 
3040 	list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3041 		free_empty_sheaf(s, sheaf);
3042 }
3043 
3044 /*
3045  * Slab allocation and freeing
3046  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo,bool allow_spin)3047 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3048 					   struct kmem_cache_order_objects oo,
3049 					   bool allow_spin)
3050 {
3051 	struct folio *folio;
3052 	struct slab *slab;
3053 	unsigned int order = oo_order(oo);
3054 
3055 	if (unlikely(!allow_spin))
3056 		folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3057 								  node, order);
3058 	else if (node == NUMA_NO_NODE)
3059 		folio = (struct folio *)alloc_frozen_pages(flags, order);
3060 	else
3061 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
3062 
3063 	if (!folio)
3064 		return NULL;
3065 
3066 	slab = folio_slab(folio);
3067 	__folio_set_slab(folio);
3068 	if (folio_is_pfmemalloc(folio))
3069 		slab_set_pfmemalloc(slab);
3070 
3071 	return slab;
3072 }
3073 
3074 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3075 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)3076 static int init_cache_random_seq(struct kmem_cache *s)
3077 {
3078 	unsigned int count = oo_objects(s->oo);
3079 	int err;
3080 
3081 	/* Bailout if already initialised */
3082 	if (s->random_seq)
3083 		return 0;
3084 
3085 	err = cache_random_seq_create(s, count, GFP_KERNEL);
3086 	if (err) {
3087 		pr_err("SLUB: Unable to initialize free list for %s\n",
3088 			s->name);
3089 		return err;
3090 	}
3091 
3092 	/* Transform to an offset on the set of pages */
3093 	if (s->random_seq) {
3094 		unsigned int i;
3095 
3096 		for (i = 0; i < count; i++)
3097 			s->random_seq[i] *= s->size;
3098 	}
3099 	return 0;
3100 }
3101 
3102 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)3103 static void __init init_freelist_randomization(void)
3104 {
3105 	struct kmem_cache *s;
3106 
3107 	mutex_lock(&slab_mutex);
3108 
3109 	list_for_each_entry(s, &slab_caches, list)
3110 		init_cache_random_seq(s);
3111 
3112 	mutex_unlock(&slab_mutex);
3113 }
3114 
3115 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)3116 static void *next_freelist_entry(struct kmem_cache *s,
3117 				unsigned long *pos, void *start,
3118 				unsigned long page_limit,
3119 				unsigned long freelist_count)
3120 {
3121 	unsigned int idx;
3122 
3123 	/*
3124 	 * If the target page allocation failed, the number of objects on the
3125 	 * page might be smaller than the usual size defined by the cache.
3126 	 */
3127 	do {
3128 		idx = s->random_seq[*pos];
3129 		*pos += 1;
3130 		if (*pos >= freelist_count)
3131 			*pos = 0;
3132 	} while (unlikely(idx >= page_limit));
3133 
3134 	return (char *)start + idx;
3135 }
3136 
3137 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3138 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3139 {
3140 	void *start;
3141 	void *cur;
3142 	void *next;
3143 	unsigned long idx, pos, page_limit, freelist_count;
3144 
3145 	if (slab->objects < 2 || !s->random_seq)
3146 		return false;
3147 
3148 	freelist_count = oo_objects(s->oo);
3149 	pos = get_random_u32_below(freelist_count);
3150 
3151 	page_limit = slab->objects * s->size;
3152 	start = fixup_red_left(s, slab_address(slab));
3153 
3154 	/* First entry is used as the base of the freelist */
3155 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3156 	cur = setup_object(s, cur);
3157 	slab->freelist = cur;
3158 
3159 	for (idx = 1; idx < slab->objects; idx++) {
3160 		next = next_freelist_entry(s, &pos, start, page_limit,
3161 			freelist_count);
3162 		next = setup_object(s, next);
3163 		set_freepointer(s, cur, next);
3164 		cur = next;
3165 	}
3166 	set_freepointer(s, cur, NULL);
3167 
3168 	return true;
3169 }
3170 #else
init_cache_random_seq(struct kmem_cache * s)3171 static inline int init_cache_random_seq(struct kmem_cache *s)
3172 {
3173 	return 0;
3174 }
init_freelist_randomization(void)3175 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3176 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3177 {
3178 	return false;
3179 }
3180 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3181 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)3182 static __always_inline void account_slab(struct slab *slab, int order,
3183 					 struct kmem_cache *s, gfp_t gfp)
3184 {
3185 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3186 		alloc_slab_obj_exts(slab, s, gfp, true);
3187 
3188 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3189 			    PAGE_SIZE << order);
3190 }
3191 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)3192 static __always_inline void unaccount_slab(struct slab *slab, int order,
3193 					   struct kmem_cache *s)
3194 {
3195 	/*
3196 	 * The slab object extensions should now be freed regardless of
3197 	 * whether mem_alloc_profiling_enabled() or not because profiling
3198 	 * might have been disabled after slab->obj_exts got allocated.
3199 	 */
3200 	free_slab_obj_exts(slab);
3201 
3202 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3203 			    -(PAGE_SIZE << order));
3204 }
3205 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)3206 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3207 {
3208 	bool allow_spin = gfpflags_allow_spinning(flags);
3209 	struct slab *slab;
3210 	struct kmem_cache_order_objects oo = s->oo;
3211 	gfp_t alloc_gfp;
3212 	void *start, *p, *next;
3213 	int idx;
3214 	bool shuffle;
3215 
3216 	flags &= gfp_allowed_mask;
3217 
3218 	flags |= s->allocflags;
3219 
3220 	/*
3221 	 * Let the initial higher-order allocation fail under memory pressure
3222 	 * so we fall-back to the minimum order allocation.
3223 	 */
3224 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3225 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3226 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3227 
3228 	/*
3229 	 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3230 	 * so pass allow_spin flag directly.
3231 	 */
3232 	slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3233 	if (unlikely(!slab)) {
3234 		oo = s->min;
3235 		alloc_gfp = flags;
3236 		/*
3237 		 * Allocation may have failed due to fragmentation.
3238 		 * Try a lower order alloc if possible
3239 		 */
3240 		slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3241 		if (unlikely(!slab))
3242 			return NULL;
3243 		stat(s, ORDER_FALLBACK);
3244 	}
3245 
3246 	slab->objects = oo_objects(oo);
3247 	slab->inuse = 0;
3248 	slab->frozen = 0;
3249 	init_slab_obj_exts(slab);
3250 
3251 	account_slab(slab, oo_order(oo), s, flags);
3252 
3253 	slab->slab_cache = s;
3254 
3255 	kasan_poison_slab(slab);
3256 
3257 	start = slab_address(slab);
3258 
3259 	setup_slab_debug(s, slab, start);
3260 
3261 	shuffle = shuffle_freelist(s, slab);
3262 
3263 	if (!shuffle) {
3264 		start = fixup_red_left(s, start);
3265 		start = setup_object(s, start);
3266 		slab->freelist = start;
3267 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3268 			next = p + s->size;
3269 			next = setup_object(s, next);
3270 			set_freepointer(s, p, next);
3271 			p = next;
3272 		}
3273 		set_freepointer(s, p, NULL);
3274 	}
3275 
3276 	return slab;
3277 }
3278 
new_slab(struct kmem_cache * s,gfp_t flags,int node)3279 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3280 {
3281 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3282 		flags = kmalloc_fix_flags(flags);
3283 
3284 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3285 
3286 	return allocate_slab(s,
3287 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3288 }
3289 
__free_slab(struct kmem_cache * s,struct slab * slab)3290 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3291 {
3292 	struct folio *folio = slab_folio(slab);
3293 	int order = folio_order(folio);
3294 	int pages = 1 << order;
3295 
3296 	__slab_clear_pfmemalloc(slab);
3297 	folio->mapping = NULL;
3298 	__folio_clear_slab(folio);
3299 	mm_account_reclaimed_pages(pages);
3300 	unaccount_slab(slab, order, s);
3301 	free_frozen_pages(&folio->page, order);
3302 }
3303 
rcu_free_slab(struct rcu_head * h)3304 static void rcu_free_slab(struct rcu_head *h)
3305 {
3306 	struct slab *slab = container_of(h, struct slab, rcu_head);
3307 
3308 	__free_slab(slab->slab_cache, slab);
3309 }
3310 
free_slab(struct kmem_cache * s,struct slab * slab)3311 static void free_slab(struct kmem_cache *s, struct slab *slab)
3312 {
3313 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3314 		void *p;
3315 
3316 		slab_pad_check(s, slab);
3317 		for_each_object(p, s, slab_address(slab), slab->objects)
3318 			check_object(s, slab, p, SLUB_RED_INACTIVE);
3319 	}
3320 
3321 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3322 		call_rcu(&slab->rcu_head, rcu_free_slab);
3323 	else
3324 		__free_slab(s, slab);
3325 }
3326 
discard_slab(struct kmem_cache * s,struct slab * slab)3327 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3328 {
3329 	dec_slabs_node(s, slab_nid(slab), slab->objects);
3330 	free_slab(s, slab);
3331 }
3332 
slab_test_node_partial(const struct slab * slab)3333 static inline bool slab_test_node_partial(const struct slab *slab)
3334 {
3335 	return test_bit(SL_partial, &slab->flags.f);
3336 }
3337 
slab_set_node_partial(struct slab * slab)3338 static inline void slab_set_node_partial(struct slab *slab)
3339 {
3340 	set_bit(SL_partial, &slab->flags.f);
3341 }
3342 
slab_clear_node_partial(struct slab * slab)3343 static inline void slab_clear_node_partial(struct slab *slab)
3344 {
3345 	clear_bit(SL_partial, &slab->flags.f);
3346 }
3347 
3348 /*
3349  * Management of partially allocated slabs.
3350  */
3351 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3352 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3353 {
3354 	n->nr_partial++;
3355 	if (tail == DEACTIVATE_TO_TAIL)
3356 		list_add_tail(&slab->slab_list, &n->partial);
3357 	else
3358 		list_add(&slab->slab_list, &n->partial);
3359 	slab_set_node_partial(slab);
3360 }
3361 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3362 static inline void add_partial(struct kmem_cache_node *n,
3363 				struct slab *slab, int tail)
3364 {
3365 	lockdep_assert_held(&n->list_lock);
3366 	__add_partial(n, slab, tail);
3367 }
3368 
remove_partial(struct kmem_cache_node * n,struct slab * slab)3369 static inline void remove_partial(struct kmem_cache_node *n,
3370 					struct slab *slab)
3371 {
3372 	lockdep_assert_held(&n->list_lock);
3373 	list_del(&slab->slab_list);
3374 	slab_clear_node_partial(slab);
3375 	n->nr_partial--;
3376 }
3377 
3378 /*
3379  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3380  * slab from the n->partial list. Remove only a single object from the slab, do
3381  * the alloc_debug_processing() checks and leave the slab on the list, or move
3382  * it to full list if it was the last free object.
3383  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)3384 static void *alloc_single_from_partial(struct kmem_cache *s,
3385 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
3386 {
3387 	void *object;
3388 
3389 	lockdep_assert_held(&n->list_lock);
3390 
3391 #ifdef CONFIG_SLUB_DEBUG
3392 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3393 		if (!validate_slab_ptr(slab)) {
3394 			slab_err(s, slab, "Not a valid slab page");
3395 			return NULL;
3396 		}
3397 	}
3398 #endif
3399 
3400 	object = slab->freelist;
3401 	slab->freelist = get_freepointer(s, object);
3402 	slab->inuse++;
3403 
3404 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3405 		remove_partial(n, slab);
3406 		return NULL;
3407 	}
3408 
3409 	if (slab->inuse == slab->objects) {
3410 		remove_partial(n, slab);
3411 		add_full(s, n, slab);
3412 	}
3413 
3414 	return object;
3415 }
3416 
3417 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3418 
3419 /*
3420  * Called only for kmem_cache_debug() caches to allocate from a freshly
3421  * allocated slab. Allocate a single object instead of whole freelist
3422  * and put the slab to the partial (or full) list.
3423  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size,gfp_t gfpflags)3424 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3425 					int orig_size, gfp_t gfpflags)
3426 {
3427 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
3428 	int nid = slab_nid(slab);
3429 	struct kmem_cache_node *n = get_node(s, nid);
3430 	unsigned long flags;
3431 	void *object;
3432 
3433 	if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3434 		/* Unlucky, discard newly allocated slab */
3435 		defer_deactivate_slab(slab, NULL);
3436 		return NULL;
3437 	}
3438 
3439 	object = slab->freelist;
3440 	slab->freelist = get_freepointer(s, object);
3441 	slab->inuse = 1;
3442 
3443 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3444 		/*
3445 		 * It's not really expected that this would fail on a
3446 		 * freshly allocated slab, but a concurrent memory
3447 		 * corruption in theory could cause that.
3448 		 * Leak memory of allocated slab.
3449 		 */
3450 		if (!allow_spin)
3451 			spin_unlock_irqrestore(&n->list_lock, flags);
3452 		return NULL;
3453 	}
3454 
3455 	if (allow_spin)
3456 		spin_lock_irqsave(&n->list_lock, flags);
3457 
3458 	if (slab->inuse == slab->objects)
3459 		add_full(s, n, slab);
3460 	else
3461 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
3462 
3463 	inc_slabs_node(s, nid, slab->objects);
3464 	spin_unlock_irqrestore(&n->list_lock, flags);
3465 
3466 	return object;
3467 }
3468 
3469 #ifdef CONFIG_SLUB_CPU_PARTIAL
3470 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3471 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3472 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3473 				   int drain) { }
3474 #endif
3475 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3476 
3477 /*
3478  * Try to allocate a partial slab from a specific node.
3479  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)3480 static struct slab *get_partial_node(struct kmem_cache *s,
3481 				     struct kmem_cache_node *n,
3482 				     struct partial_context *pc)
3483 {
3484 	struct slab *slab, *slab2, *partial = NULL;
3485 	unsigned long flags;
3486 	unsigned int partial_slabs = 0;
3487 
3488 	/*
3489 	 * Racy check. If we mistakenly see no partial slabs then we
3490 	 * just allocate an empty slab. If we mistakenly try to get a
3491 	 * partial slab and there is none available then get_partial()
3492 	 * will return NULL.
3493 	 */
3494 	if (!n || !n->nr_partial)
3495 		return NULL;
3496 
3497 	if (gfpflags_allow_spinning(pc->flags))
3498 		spin_lock_irqsave(&n->list_lock, flags);
3499 	else if (!spin_trylock_irqsave(&n->list_lock, flags))
3500 		return NULL;
3501 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3502 		if (!pfmemalloc_match(slab, pc->flags))
3503 			continue;
3504 
3505 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3506 			void *object = alloc_single_from_partial(s, n, slab,
3507 							pc->orig_size);
3508 			if (object) {
3509 				partial = slab;
3510 				pc->object = object;
3511 				break;
3512 			}
3513 			continue;
3514 		}
3515 
3516 		remove_partial(n, slab);
3517 
3518 		if (!partial) {
3519 			partial = slab;
3520 			stat(s, ALLOC_FROM_PARTIAL);
3521 
3522 			if ((slub_get_cpu_partial(s) == 0)) {
3523 				break;
3524 			}
3525 		} else {
3526 			put_cpu_partial(s, slab, 0);
3527 			stat(s, CPU_PARTIAL_NODE);
3528 
3529 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3530 				break;
3531 			}
3532 		}
3533 	}
3534 	spin_unlock_irqrestore(&n->list_lock, flags);
3535 	return partial;
3536 }
3537 
3538 /*
3539  * Get a slab from somewhere. Search in increasing NUMA distances.
3540  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)3541 static struct slab *get_any_partial(struct kmem_cache *s,
3542 				    struct partial_context *pc)
3543 {
3544 #ifdef CONFIG_NUMA
3545 	struct zonelist *zonelist;
3546 	struct zoneref *z;
3547 	struct zone *zone;
3548 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3549 	struct slab *slab;
3550 	unsigned int cpuset_mems_cookie;
3551 
3552 	/*
3553 	 * The defrag ratio allows a configuration of the tradeoffs between
3554 	 * inter node defragmentation and node local allocations. A lower
3555 	 * defrag_ratio increases the tendency to do local allocations
3556 	 * instead of attempting to obtain partial slabs from other nodes.
3557 	 *
3558 	 * If the defrag_ratio is set to 0 then kmalloc() always
3559 	 * returns node local objects. If the ratio is higher then kmalloc()
3560 	 * may return off node objects because partial slabs are obtained
3561 	 * from other nodes and filled up.
3562 	 *
3563 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3564 	 * (which makes defrag_ratio = 1000) then every (well almost)
3565 	 * allocation will first attempt to defrag slab caches on other nodes.
3566 	 * This means scanning over all nodes to look for partial slabs which
3567 	 * may be expensive if we do it every time we are trying to find a slab
3568 	 * with available objects.
3569 	 */
3570 	if (!s->remote_node_defrag_ratio ||
3571 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
3572 		return NULL;
3573 
3574 	do {
3575 		cpuset_mems_cookie = read_mems_allowed_begin();
3576 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3577 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3578 			struct kmem_cache_node *n;
3579 
3580 			n = get_node(s, zone_to_nid(zone));
3581 
3582 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
3583 					n->nr_partial > s->min_partial) {
3584 				slab = get_partial_node(s, n, pc);
3585 				if (slab) {
3586 					/*
3587 					 * Don't check read_mems_allowed_retry()
3588 					 * here - if mems_allowed was updated in
3589 					 * parallel, that was a harmless race
3590 					 * between allocation and the cpuset
3591 					 * update
3592 					 */
3593 					return slab;
3594 				}
3595 			}
3596 		}
3597 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3598 #endif	/* CONFIG_NUMA */
3599 	return NULL;
3600 }
3601 
3602 /*
3603  * Get a partial slab, lock it and return it.
3604  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3605 static struct slab *get_partial(struct kmem_cache *s, int node,
3606 				struct partial_context *pc)
3607 {
3608 	struct slab *slab;
3609 	int searchnode = node;
3610 
3611 	if (node == NUMA_NO_NODE)
3612 		searchnode = numa_mem_id();
3613 
3614 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3615 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3616 		return slab;
3617 
3618 	return get_any_partial(s, pc);
3619 }
3620 
3621 #ifndef CONFIG_SLUB_TINY
3622 
3623 #ifdef CONFIG_PREEMPTION
3624 /*
3625  * Calculate the next globally unique transaction for disambiguation
3626  * during cmpxchg. The transactions start with the cpu number and are then
3627  * incremented by CONFIG_NR_CPUS.
3628  */
3629 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3630 #else
3631 /*
3632  * No preemption supported therefore also no need to check for
3633  * different cpus.
3634  */
3635 #define TID_STEP 1
3636 #endif /* CONFIG_PREEMPTION */
3637 
next_tid(unsigned long tid)3638 static inline unsigned long next_tid(unsigned long tid)
3639 {
3640 	return tid + TID_STEP;
3641 }
3642 
3643 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3644 static inline unsigned int tid_to_cpu(unsigned long tid)
3645 {
3646 	return tid % TID_STEP;
3647 }
3648 
tid_to_event(unsigned long tid)3649 static inline unsigned long tid_to_event(unsigned long tid)
3650 {
3651 	return tid / TID_STEP;
3652 }
3653 #endif
3654 
init_tid(int cpu)3655 static inline unsigned int init_tid(int cpu)
3656 {
3657 	return cpu;
3658 }
3659 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3660 static inline void note_cmpxchg_failure(const char *n,
3661 		const struct kmem_cache *s, unsigned long tid)
3662 {
3663 #ifdef SLUB_DEBUG_CMPXCHG
3664 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3665 
3666 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3667 
3668 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
3669 	    tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3670 		pr_warn("due to cpu change %d -> %d\n",
3671 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3672 	} else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3673 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3674 			tid_to_event(tid), tid_to_event(actual_tid));
3675 	} else {
3676 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3677 			actual_tid, tid, next_tid(tid));
3678 	}
3679 #endif
3680 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3681 }
3682 
init_kmem_cache_cpus(struct kmem_cache * s)3683 static void init_kmem_cache_cpus(struct kmem_cache *s)
3684 {
3685 #ifdef CONFIG_PREEMPT_RT
3686 	/*
3687 	 * Register lockdep key for non-boot kmem caches to avoid
3688 	 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3689 	 */
3690 	bool finegrain_lockdep = !init_section_contains(s, 1);
3691 #else
3692 	/*
3693 	 * Don't bother with different lockdep classes for each
3694 	 * kmem_cache, since we only use local_trylock_irqsave().
3695 	 */
3696 	bool finegrain_lockdep = false;
3697 #endif
3698 	int cpu;
3699 	struct kmem_cache_cpu *c;
3700 
3701 	if (finegrain_lockdep)
3702 		lockdep_register_key(&s->lock_key);
3703 	for_each_possible_cpu(cpu) {
3704 		c = per_cpu_ptr(s->cpu_slab, cpu);
3705 		local_trylock_init(&c->lock);
3706 		if (finegrain_lockdep)
3707 			lockdep_set_class(&c->lock, &s->lock_key);
3708 		c->tid = init_tid(cpu);
3709 	}
3710 }
3711 
3712 /*
3713  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3714  * unfreezes the slabs and puts it on the proper list.
3715  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3716  * by the caller.
3717  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3718 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3719 			    void *freelist)
3720 {
3721 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3722 	int free_delta = 0;
3723 	void *nextfree, *freelist_iter, *freelist_tail;
3724 	int tail = DEACTIVATE_TO_HEAD;
3725 	unsigned long flags = 0;
3726 	struct slab new;
3727 	struct slab old;
3728 
3729 	if (READ_ONCE(slab->freelist)) {
3730 		stat(s, DEACTIVATE_REMOTE_FREES);
3731 		tail = DEACTIVATE_TO_TAIL;
3732 	}
3733 
3734 	/*
3735 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3736 	 * remember the last object in freelist_tail for later splicing.
3737 	 */
3738 	freelist_tail = NULL;
3739 	freelist_iter = freelist;
3740 	while (freelist_iter) {
3741 		nextfree = get_freepointer(s, freelist_iter);
3742 
3743 		/*
3744 		 * If 'nextfree' is invalid, it is possible that the object at
3745 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3746 		 * starting at 'freelist_iter' by skipping them.
3747 		 */
3748 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3749 			break;
3750 
3751 		freelist_tail = freelist_iter;
3752 		free_delta++;
3753 
3754 		freelist_iter = nextfree;
3755 	}
3756 
3757 	/*
3758 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3759 	 * freelist to the head of slab's freelist.
3760 	 */
3761 	do {
3762 		old.freelist = READ_ONCE(slab->freelist);
3763 		old.counters = READ_ONCE(slab->counters);
3764 		VM_BUG_ON(!old.frozen);
3765 
3766 		/* Determine target state of the slab */
3767 		new.counters = old.counters;
3768 		new.frozen = 0;
3769 		if (freelist_tail) {
3770 			new.inuse -= free_delta;
3771 			set_freepointer(s, freelist_tail, old.freelist);
3772 			new.freelist = freelist;
3773 		} else {
3774 			new.freelist = old.freelist;
3775 		}
3776 	} while (!slab_update_freelist(s, slab,
3777 		old.freelist, old.counters,
3778 		new.freelist, new.counters,
3779 		"unfreezing slab"));
3780 
3781 	/*
3782 	 * Stage three: Manipulate the slab list based on the updated state.
3783 	 */
3784 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3785 		stat(s, DEACTIVATE_EMPTY);
3786 		discard_slab(s, slab);
3787 		stat(s, FREE_SLAB);
3788 	} else if (new.freelist) {
3789 		spin_lock_irqsave(&n->list_lock, flags);
3790 		add_partial(n, slab, tail);
3791 		spin_unlock_irqrestore(&n->list_lock, flags);
3792 		stat(s, tail);
3793 	} else {
3794 		stat(s, DEACTIVATE_FULL);
3795 	}
3796 }
3797 
3798 /*
3799  * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3800  * can be acquired without a deadlock before invoking the function.
3801  *
3802  * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3803  * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3804  * and kmalloc() is not used in an unsupported context.
3805  *
3806  * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3807  * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3808  * lockdep_assert() will catch a bug in case:
3809  * #1
3810  * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3811  * or
3812  * #2
3813  * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3814  *
3815  * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3816  * disabled context. The lock will always be acquired and if needed it
3817  * block and sleep until the lock is available.
3818  * #1 is possible in !PREEMPT_RT only.
3819  * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3820  * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3821  *    tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3822  *
3823  * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3824  */
3825 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3826 #define local_lock_cpu_slab(s, flags)	\
3827 	local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3828 #else
3829 #define local_lock_cpu_slab(s, flags)					       \
3830 	do {								       \
3831 		bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3832 		lockdep_assert(__l);					       \
3833 	} while (0)
3834 #endif
3835 
3836 #define local_unlock_cpu_slab(s, flags)	\
3837 	local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3838 
3839 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3840 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3841 {
3842 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3843 	struct slab *slab, *slab_to_discard = NULL;
3844 	unsigned long flags = 0;
3845 
3846 	while (partial_slab) {
3847 		slab = partial_slab;
3848 		partial_slab = slab->next;
3849 
3850 		n2 = get_node(s, slab_nid(slab));
3851 		if (n != n2) {
3852 			if (n)
3853 				spin_unlock_irqrestore(&n->list_lock, flags);
3854 
3855 			n = n2;
3856 			spin_lock_irqsave(&n->list_lock, flags);
3857 		}
3858 
3859 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3860 			slab->next = slab_to_discard;
3861 			slab_to_discard = slab;
3862 		} else {
3863 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3864 			stat(s, FREE_ADD_PARTIAL);
3865 		}
3866 	}
3867 
3868 	if (n)
3869 		spin_unlock_irqrestore(&n->list_lock, flags);
3870 
3871 	while (slab_to_discard) {
3872 		slab = slab_to_discard;
3873 		slab_to_discard = slab_to_discard->next;
3874 
3875 		stat(s, DEACTIVATE_EMPTY);
3876 		discard_slab(s, slab);
3877 		stat(s, FREE_SLAB);
3878 	}
3879 }
3880 
3881 /*
3882  * Put all the cpu partial slabs to the node partial list.
3883  */
put_partials(struct kmem_cache * s)3884 static void put_partials(struct kmem_cache *s)
3885 {
3886 	struct slab *partial_slab;
3887 	unsigned long flags;
3888 
3889 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3890 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3891 	this_cpu_write(s->cpu_slab->partial, NULL);
3892 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3893 
3894 	if (partial_slab)
3895 		__put_partials(s, partial_slab);
3896 }
3897 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3898 static void put_partials_cpu(struct kmem_cache *s,
3899 			     struct kmem_cache_cpu *c)
3900 {
3901 	struct slab *partial_slab;
3902 
3903 	partial_slab = slub_percpu_partial(c);
3904 	c->partial = NULL;
3905 
3906 	if (partial_slab)
3907 		__put_partials(s, partial_slab);
3908 }
3909 
3910 /*
3911  * Put a slab into a partial slab slot if available.
3912  *
3913  * If we did not find a slot then simply move all the partials to the
3914  * per node partial list.
3915  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3916 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3917 {
3918 	struct slab *oldslab;
3919 	struct slab *slab_to_put = NULL;
3920 	unsigned long flags;
3921 	int slabs = 0;
3922 
3923 	local_lock_cpu_slab(s, flags);
3924 
3925 	oldslab = this_cpu_read(s->cpu_slab->partial);
3926 
3927 	if (oldslab) {
3928 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3929 			/*
3930 			 * Partial array is full. Move the existing set to the
3931 			 * per node partial list. Postpone the actual unfreezing
3932 			 * outside of the critical section.
3933 			 */
3934 			slab_to_put = oldslab;
3935 			oldslab = NULL;
3936 		} else {
3937 			slabs = oldslab->slabs;
3938 		}
3939 	}
3940 
3941 	slabs++;
3942 
3943 	slab->slabs = slabs;
3944 	slab->next = oldslab;
3945 
3946 	this_cpu_write(s->cpu_slab->partial, slab);
3947 
3948 	local_unlock_cpu_slab(s, flags);
3949 
3950 	if (slab_to_put) {
3951 		__put_partials(s, slab_to_put);
3952 		stat(s, CPU_PARTIAL_DRAIN);
3953 	}
3954 }
3955 
3956 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3957 
put_partials(struct kmem_cache * s)3958 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3959 static inline void put_partials_cpu(struct kmem_cache *s,
3960 				    struct kmem_cache_cpu *c) { }
3961 
3962 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3963 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3964 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3965 {
3966 	unsigned long flags;
3967 	struct slab *slab;
3968 	void *freelist;
3969 
3970 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3971 
3972 	slab = c->slab;
3973 	freelist = c->freelist;
3974 
3975 	c->slab = NULL;
3976 	c->freelist = NULL;
3977 	c->tid = next_tid(c->tid);
3978 
3979 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3980 
3981 	if (slab) {
3982 		deactivate_slab(s, slab, freelist);
3983 		stat(s, CPUSLAB_FLUSH);
3984 	}
3985 }
3986 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3987 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3988 {
3989 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3990 	void *freelist = c->freelist;
3991 	struct slab *slab = c->slab;
3992 
3993 	c->slab = NULL;
3994 	c->freelist = NULL;
3995 	c->tid = next_tid(c->tid);
3996 
3997 	if (slab) {
3998 		deactivate_slab(s, slab, freelist);
3999 		stat(s, CPUSLAB_FLUSH);
4000 	}
4001 
4002 	put_partials_cpu(s, c);
4003 }
4004 
flush_this_cpu_slab(struct kmem_cache * s)4005 static inline void flush_this_cpu_slab(struct kmem_cache *s)
4006 {
4007 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4008 
4009 	if (c->slab)
4010 		flush_slab(s, c);
4011 
4012 	put_partials(s);
4013 }
4014 
has_cpu_slab(int cpu,struct kmem_cache * s)4015 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4016 {
4017 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4018 
4019 	return c->slab || slub_percpu_partial(c);
4020 }
4021 
4022 #else /* CONFIG_SLUB_TINY */
__flush_cpu_slab(struct kmem_cache * s,int cpu)4023 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
has_cpu_slab(int cpu,struct kmem_cache * s)4024 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; }
flush_this_cpu_slab(struct kmem_cache * s)4025 static inline void flush_this_cpu_slab(struct kmem_cache *s) { }
4026 #endif /* CONFIG_SLUB_TINY */
4027 
has_pcs_used(int cpu,struct kmem_cache * s)4028 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4029 {
4030 	struct slub_percpu_sheaves *pcs;
4031 
4032 	if (!s->cpu_sheaves)
4033 		return false;
4034 
4035 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4036 
4037 	return (pcs->spare || pcs->rcu_free || pcs->main->size);
4038 }
4039 
4040 /*
4041  * Flush cpu slab.
4042  *
4043  * Called from CPU work handler with migration disabled.
4044  */
flush_cpu_slab(struct work_struct * w)4045 static void flush_cpu_slab(struct work_struct *w)
4046 {
4047 	struct kmem_cache *s;
4048 	struct slub_flush_work *sfw;
4049 
4050 	sfw = container_of(w, struct slub_flush_work, work);
4051 
4052 	s = sfw->s;
4053 
4054 	if (s->cpu_sheaves)
4055 		pcs_flush_all(s);
4056 
4057 	flush_this_cpu_slab(s);
4058 }
4059 
flush_all_cpus_locked(struct kmem_cache * s)4060 static void flush_all_cpus_locked(struct kmem_cache *s)
4061 {
4062 	struct slub_flush_work *sfw;
4063 	unsigned int cpu;
4064 
4065 	lockdep_assert_cpus_held();
4066 	mutex_lock(&flush_lock);
4067 
4068 	for_each_online_cpu(cpu) {
4069 		sfw = &per_cpu(slub_flush, cpu);
4070 		if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4071 			sfw->skip = true;
4072 			continue;
4073 		}
4074 		INIT_WORK(&sfw->work, flush_cpu_slab);
4075 		sfw->skip = false;
4076 		sfw->s = s;
4077 		queue_work_on(cpu, flushwq, &sfw->work);
4078 	}
4079 
4080 	for_each_online_cpu(cpu) {
4081 		sfw = &per_cpu(slub_flush, cpu);
4082 		if (sfw->skip)
4083 			continue;
4084 		flush_work(&sfw->work);
4085 	}
4086 
4087 	mutex_unlock(&flush_lock);
4088 }
4089 
flush_all(struct kmem_cache * s)4090 static void flush_all(struct kmem_cache *s)
4091 {
4092 	cpus_read_lock();
4093 	flush_all_cpus_locked(s);
4094 	cpus_read_unlock();
4095 }
4096 
flush_rcu_sheaf(struct work_struct * w)4097 static void flush_rcu_sheaf(struct work_struct *w)
4098 {
4099 	struct slub_percpu_sheaves *pcs;
4100 	struct slab_sheaf *rcu_free;
4101 	struct slub_flush_work *sfw;
4102 	struct kmem_cache *s;
4103 
4104 	sfw = container_of(w, struct slub_flush_work, work);
4105 	s = sfw->s;
4106 
4107 	local_lock(&s->cpu_sheaves->lock);
4108 	pcs = this_cpu_ptr(s->cpu_sheaves);
4109 
4110 	rcu_free = pcs->rcu_free;
4111 	pcs->rcu_free = NULL;
4112 
4113 	local_unlock(&s->cpu_sheaves->lock);
4114 
4115 	if (rcu_free)
4116 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4117 }
4118 
4119 
4120 /* needed for kvfree_rcu_barrier() */
flush_all_rcu_sheaves(void)4121 void flush_all_rcu_sheaves(void)
4122 {
4123 	struct slub_flush_work *sfw;
4124 	struct kmem_cache *s;
4125 	unsigned int cpu;
4126 
4127 	cpus_read_lock();
4128 	mutex_lock(&slab_mutex);
4129 
4130 	list_for_each_entry(s, &slab_caches, list) {
4131 		if (!s->cpu_sheaves)
4132 			continue;
4133 
4134 		mutex_lock(&flush_lock);
4135 
4136 		for_each_online_cpu(cpu) {
4137 			sfw = &per_cpu(slub_flush, cpu);
4138 
4139 			/*
4140 			 * we don't check if rcu_free sheaf exists - racing
4141 			 * __kfree_rcu_sheaf() might have just removed it.
4142 			 * by executing flush_rcu_sheaf() on the cpu we make
4143 			 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4144 			 */
4145 
4146 			INIT_WORK(&sfw->work, flush_rcu_sheaf);
4147 			sfw->s = s;
4148 			queue_work_on(cpu, flushwq, &sfw->work);
4149 		}
4150 
4151 		for_each_online_cpu(cpu) {
4152 			sfw = &per_cpu(slub_flush, cpu);
4153 			flush_work(&sfw->work);
4154 		}
4155 
4156 		mutex_unlock(&flush_lock);
4157 	}
4158 
4159 	mutex_unlock(&slab_mutex);
4160 	cpus_read_unlock();
4161 
4162 	rcu_barrier();
4163 }
4164 
4165 /*
4166  * Use the cpu notifier to insure that the cpu slabs are flushed when
4167  * necessary.
4168  */
slub_cpu_dead(unsigned int cpu)4169 static int slub_cpu_dead(unsigned int cpu)
4170 {
4171 	struct kmem_cache *s;
4172 
4173 	mutex_lock(&slab_mutex);
4174 	list_for_each_entry(s, &slab_caches, list) {
4175 		__flush_cpu_slab(s, cpu);
4176 		if (s->cpu_sheaves)
4177 			__pcs_flush_all_cpu(s, cpu);
4178 	}
4179 	mutex_unlock(&slab_mutex);
4180 	return 0;
4181 }
4182 
4183 /*
4184  * Check if the objects in a per cpu structure fit numa
4185  * locality expectations.
4186  */
node_match(struct slab * slab,int node)4187 static inline int node_match(struct slab *slab, int node)
4188 {
4189 #ifdef CONFIG_NUMA
4190 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4191 		return 0;
4192 #endif
4193 	return 1;
4194 }
4195 
4196 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)4197 static int count_free(struct slab *slab)
4198 {
4199 	return slab->objects - slab->inuse;
4200 }
4201 
node_nr_objs(struct kmem_cache_node * n)4202 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4203 {
4204 	return atomic_long_read(&n->total_objects);
4205 }
4206 
4207 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)4208 static inline bool free_debug_processing(struct kmem_cache *s,
4209 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
4210 	unsigned long addr, depot_stack_handle_t handle)
4211 {
4212 	bool checks_ok = false;
4213 	void *object = head;
4214 	int cnt = 0;
4215 
4216 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4217 		if (!check_slab(s, slab))
4218 			goto out;
4219 	}
4220 
4221 	if (slab->inuse < *bulk_cnt) {
4222 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4223 			 slab->inuse, *bulk_cnt);
4224 		goto out;
4225 	}
4226 
4227 next_object:
4228 
4229 	if (++cnt > *bulk_cnt)
4230 		goto out_cnt;
4231 
4232 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4233 		if (!free_consistency_checks(s, slab, object, addr))
4234 			goto out;
4235 	}
4236 
4237 	if (s->flags & SLAB_STORE_USER)
4238 		set_track_update(s, object, TRACK_FREE, addr, handle);
4239 	trace(s, slab, object, 0);
4240 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4241 	init_object(s, object, SLUB_RED_INACTIVE);
4242 
4243 	/* Reached end of constructed freelist yet? */
4244 	if (object != tail) {
4245 		object = get_freepointer(s, object);
4246 		goto next_object;
4247 	}
4248 	checks_ok = true;
4249 
4250 out_cnt:
4251 	if (cnt != *bulk_cnt) {
4252 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4253 			 *bulk_cnt, cnt);
4254 		*bulk_cnt = cnt;
4255 	}
4256 
4257 out:
4258 
4259 	if (!checks_ok)
4260 		slab_fix(s, "Object at 0x%p not freed", object);
4261 
4262 	return checks_ok;
4263 }
4264 #endif /* CONFIG_SLUB_DEBUG */
4265 
4266 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))4267 static unsigned long count_partial(struct kmem_cache_node *n,
4268 					int (*get_count)(struct slab *))
4269 {
4270 	unsigned long flags;
4271 	unsigned long x = 0;
4272 	struct slab *slab;
4273 
4274 	spin_lock_irqsave(&n->list_lock, flags);
4275 	list_for_each_entry(slab, &n->partial, slab_list)
4276 		x += get_count(slab);
4277 	spin_unlock_irqrestore(&n->list_lock, flags);
4278 	return x;
4279 }
4280 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4281 
4282 #ifdef CONFIG_SLUB_DEBUG
4283 #define MAX_PARTIAL_TO_SCAN 10000
4284 
count_partial_free_approx(struct kmem_cache_node * n)4285 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4286 {
4287 	unsigned long flags;
4288 	unsigned long x = 0;
4289 	struct slab *slab;
4290 
4291 	spin_lock_irqsave(&n->list_lock, flags);
4292 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4293 		list_for_each_entry(slab, &n->partial, slab_list)
4294 			x += slab->objects - slab->inuse;
4295 	} else {
4296 		/*
4297 		 * For a long list, approximate the total count of objects in
4298 		 * it to meet the limit on the number of slabs to scan.
4299 		 * Scan from both the list's head and tail for better accuracy.
4300 		 */
4301 		unsigned long scanned = 0;
4302 
4303 		list_for_each_entry(slab, &n->partial, slab_list) {
4304 			x += slab->objects - slab->inuse;
4305 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4306 				break;
4307 		}
4308 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4309 			x += slab->objects - slab->inuse;
4310 			if (++scanned == MAX_PARTIAL_TO_SCAN)
4311 				break;
4312 		}
4313 		x = mult_frac(x, n->nr_partial, scanned);
4314 		x = min(x, node_nr_objs(n));
4315 	}
4316 	spin_unlock_irqrestore(&n->list_lock, flags);
4317 	return x;
4318 }
4319 
4320 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4321 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4322 {
4323 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4324 				      DEFAULT_RATELIMIT_BURST);
4325 	int cpu = raw_smp_processor_id();
4326 	int node;
4327 	struct kmem_cache_node *n;
4328 
4329 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4330 		return;
4331 
4332 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4333 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4334 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4335 		s->name, s->object_size, s->size, oo_order(s->oo),
4336 		oo_order(s->min));
4337 
4338 	if (oo_order(s->min) > get_order(s->object_size))
4339 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
4340 			s->name);
4341 
4342 	for_each_kmem_cache_node(s, node, n) {
4343 		unsigned long nr_slabs;
4344 		unsigned long nr_objs;
4345 		unsigned long nr_free;
4346 
4347 		nr_free  = count_partial_free_approx(n);
4348 		nr_slabs = node_nr_slabs(n);
4349 		nr_objs  = node_nr_objs(n);
4350 
4351 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
4352 			node, nr_slabs, nr_objs, nr_free);
4353 	}
4354 }
4355 #else /* CONFIG_SLUB_DEBUG */
4356 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4357 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4358 #endif
4359 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)4360 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4361 {
4362 	if (unlikely(slab_test_pfmemalloc(slab)))
4363 		return gfp_pfmemalloc_allowed(gfpflags);
4364 
4365 	return true;
4366 }
4367 
4368 #ifndef CONFIG_SLUB_TINY
4369 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)4370 __update_cpu_freelist_fast(struct kmem_cache *s,
4371 			   void *freelist_old, void *freelist_new,
4372 			   unsigned long tid)
4373 {
4374 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
4375 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
4376 
4377 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
4378 					     &old.full, new.full);
4379 }
4380 
4381 /*
4382  * Check the slab->freelist and either transfer the freelist to the
4383  * per cpu freelist or deactivate the slab.
4384  *
4385  * The slab is still frozen if the return value is not NULL.
4386  *
4387  * If this function returns NULL then the slab has been unfrozen.
4388  */
get_freelist(struct kmem_cache * s,struct slab * slab)4389 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4390 {
4391 	struct slab new;
4392 	unsigned long counters;
4393 	void *freelist;
4394 
4395 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4396 
4397 	do {
4398 		freelist = slab->freelist;
4399 		counters = slab->counters;
4400 
4401 		new.counters = counters;
4402 
4403 		new.inuse = slab->objects;
4404 		new.frozen = freelist != NULL;
4405 
4406 	} while (!__slab_update_freelist(s, slab,
4407 		freelist, counters,
4408 		NULL, new.counters,
4409 		"get_freelist"));
4410 
4411 	return freelist;
4412 }
4413 
4414 /*
4415  * Freeze the partial slab and return the pointer to the freelist.
4416  */
freeze_slab(struct kmem_cache * s,struct slab * slab)4417 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4418 {
4419 	struct slab new;
4420 	unsigned long counters;
4421 	void *freelist;
4422 
4423 	do {
4424 		freelist = slab->freelist;
4425 		counters = slab->counters;
4426 
4427 		new.counters = counters;
4428 		VM_BUG_ON(new.frozen);
4429 
4430 		new.inuse = slab->objects;
4431 		new.frozen = 1;
4432 
4433 	} while (!slab_update_freelist(s, slab,
4434 		freelist, counters,
4435 		NULL, new.counters,
4436 		"freeze_slab"));
4437 
4438 	return freelist;
4439 }
4440 
4441 /*
4442  * Slow path. The lockless freelist is empty or we need to perform
4443  * debugging duties.
4444  *
4445  * Processing is still very fast if new objects have been freed to the
4446  * regular freelist. In that case we simply take over the regular freelist
4447  * as the lockless freelist and zap the regular freelist.
4448  *
4449  * If that is not working then we fall back to the partial lists. We take the
4450  * first element of the freelist as the object to allocate now and move the
4451  * rest of the freelist to the lockless freelist.
4452  *
4453  * And if we were unable to get a new slab from the partial slab lists then
4454  * we need to allocate a new slab. This is the slowest path since it involves
4455  * a call to the page allocator and the setup of a new slab.
4456  *
4457  * Version of __slab_alloc to use when we know that preemption is
4458  * already disabled (which is the case for bulk allocation).
4459  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4460 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4461 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4462 {
4463 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
4464 	void *freelist;
4465 	struct slab *slab;
4466 	unsigned long flags;
4467 	struct partial_context pc;
4468 	bool try_thisnode = true;
4469 
4470 	stat(s, ALLOC_SLOWPATH);
4471 
4472 reread_slab:
4473 
4474 	slab = READ_ONCE(c->slab);
4475 	if (!slab) {
4476 		/*
4477 		 * if the node is not online or has no normal memory, just
4478 		 * ignore the node constraint
4479 		 */
4480 		if (unlikely(node != NUMA_NO_NODE &&
4481 			     !node_isset(node, slab_nodes)))
4482 			node = NUMA_NO_NODE;
4483 		goto new_slab;
4484 	}
4485 
4486 	if (unlikely(!node_match(slab, node))) {
4487 		/*
4488 		 * same as above but node_match() being false already
4489 		 * implies node != NUMA_NO_NODE.
4490 		 *
4491 		 * We don't strictly honor pfmemalloc and NUMA preferences
4492 		 * when !allow_spin because:
4493 		 *
4494 		 * 1. Most kmalloc() users allocate objects on the local node,
4495 		 *    so kmalloc_nolock() tries not to interfere with them by
4496 		 *    deactivating the cpu slab.
4497 		 *
4498 		 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4499 		 *    unnecessary slab allocations even when n->partial list
4500 		 *    is not empty.
4501 		 */
4502 		if (!node_isset(node, slab_nodes) ||
4503 		    !allow_spin) {
4504 			node = NUMA_NO_NODE;
4505 		} else {
4506 			stat(s, ALLOC_NODE_MISMATCH);
4507 			goto deactivate_slab;
4508 		}
4509 	}
4510 
4511 	/*
4512 	 * By rights, we should be searching for a slab page that was
4513 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
4514 	 * information when the page leaves the per-cpu allocator
4515 	 */
4516 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4517 		goto deactivate_slab;
4518 
4519 	/* must check again c->slab in case we got preempted and it changed */
4520 	local_lock_cpu_slab(s, flags);
4521 
4522 	if (unlikely(slab != c->slab)) {
4523 		local_unlock_cpu_slab(s, flags);
4524 		goto reread_slab;
4525 	}
4526 	freelist = c->freelist;
4527 	if (freelist)
4528 		goto load_freelist;
4529 
4530 	freelist = get_freelist(s, slab);
4531 
4532 	if (!freelist) {
4533 		c->slab = NULL;
4534 		c->tid = next_tid(c->tid);
4535 		local_unlock_cpu_slab(s, flags);
4536 		stat(s, DEACTIVATE_BYPASS);
4537 		goto new_slab;
4538 	}
4539 
4540 	stat(s, ALLOC_REFILL);
4541 
4542 load_freelist:
4543 
4544 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4545 
4546 	/*
4547 	 * freelist is pointing to the list of objects to be used.
4548 	 * slab is pointing to the slab from which the objects are obtained.
4549 	 * That slab must be frozen for per cpu allocations to work.
4550 	 */
4551 	VM_BUG_ON(!c->slab->frozen);
4552 	c->freelist = get_freepointer(s, freelist);
4553 	c->tid = next_tid(c->tid);
4554 	local_unlock_cpu_slab(s, flags);
4555 	return freelist;
4556 
4557 deactivate_slab:
4558 
4559 	local_lock_cpu_slab(s, flags);
4560 	if (slab != c->slab) {
4561 		local_unlock_cpu_slab(s, flags);
4562 		goto reread_slab;
4563 	}
4564 	freelist = c->freelist;
4565 	c->slab = NULL;
4566 	c->freelist = NULL;
4567 	c->tid = next_tid(c->tid);
4568 	local_unlock_cpu_slab(s, flags);
4569 	deactivate_slab(s, slab, freelist);
4570 
4571 new_slab:
4572 
4573 #ifdef CONFIG_SLUB_CPU_PARTIAL
4574 	while (slub_percpu_partial(c)) {
4575 		local_lock_cpu_slab(s, flags);
4576 		if (unlikely(c->slab)) {
4577 			local_unlock_cpu_slab(s, flags);
4578 			goto reread_slab;
4579 		}
4580 		if (unlikely(!slub_percpu_partial(c))) {
4581 			local_unlock_cpu_slab(s, flags);
4582 			/* we were preempted and partial list got empty */
4583 			goto new_objects;
4584 		}
4585 
4586 		slab = slub_percpu_partial(c);
4587 		slub_set_percpu_partial(c, slab);
4588 
4589 		if (likely(node_match(slab, node) &&
4590 			   pfmemalloc_match(slab, gfpflags)) ||
4591 		    !allow_spin) {
4592 			c->slab = slab;
4593 			freelist = get_freelist(s, slab);
4594 			VM_BUG_ON(!freelist);
4595 			stat(s, CPU_PARTIAL_ALLOC);
4596 			goto load_freelist;
4597 		}
4598 
4599 		local_unlock_cpu_slab(s, flags);
4600 
4601 		slab->next = NULL;
4602 		__put_partials(s, slab);
4603 	}
4604 #endif
4605 
4606 new_objects:
4607 
4608 	pc.flags = gfpflags;
4609 	/*
4610 	 * When a preferred node is indicated but no __GFP_THISNODE
4611 	 *
4612 	 * 1) try to get a partial slab from target node only by having
4613 	 *    __GFP_THISNODE in pc.flags for get_partial()
4614 	 * 2) if 1) failed, try to allocate a new slab from target node with
4615 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
4616 	 * 3) if 2) failed, retry with original gfpflags which will allow
4617 	 *    get_partial() try partial lists of other nodes before potentially
4618 	 *    allocating new page from other nodes
4619 	 */
4620 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4621 		     && try_thisnode)) {
4622 		if (unlikely(!allow_spin))
4623 			/* Do not upgrade gfp to NOWAIT from more restrictive mode */
4624 			pc.flags = gfpflags | __GFP_THISNODE;
4625 		else
4626 			pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4627 	}
4628 
4629 	pc.orig_size = orig_size;
4630 	slab = get_partial(s, node, &pc);
4631 	if (slab) {
4632 		if (kmem_cache_debug(s)) {
4633 			freelist = pc.object;
4634 			/*
4635 			 * For debug caches here we had to go through
4636 			 * alloc_single_from_partial() so just store the
4637 			 * tracking info and return the object.
4638 			 *
4639 			 * Due to disabled preemption we need to disallow
4640 			 * blocking. The flags are further adjusted by
4641 			 * gfp_nested_mask() in stack_depot itself.
4642 			 */
4643 			if (s->flags & SLAB_STORE_USER)
4644 				set_track(s, freelist, TRACK_ALLOC, addr,
4645 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4646 
4647 			return freelist;
4648 		}
4649 
4650 		freelist = freeze_slab(s, slab);
4651 		goto retry_load_slab;
4652 	}
4653 
4654 	slub_put_cpu_ptr(s->cpu_slab);
4655 	slab = new_slab(s, pc.flags, node);
4656 	c = slub_get_cpu_ptr(s->cpu_slab);
4657 
4658 	if (unlikely(!slab)) {
4659 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4660 		    && try_thisnode) {
4661 			try_thisnode = false;
4662 			goto new_objects;
4663 		}
4664 		slab_out_of_memory(s, gfpflags, node);
4665 		return NULL;
4666 	}
4667 
4668 	stat(s, ALLOC_SLAB);
4669 
4670 	if (kmem_cache_debug(s)) {
4671 		freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4672 
4673 		if (unlikely(!freelist)) {
4674 			/* This could cause an endless loop. Fail instead. */
4675 			if (!allow_spin)
4676 				return NULL;
4677 			goto new_objects;
4678 		}
4679 
4680 		if (s->flags & SLAB_STORE_USER)
4681 			set_track(s, freelist, TRACK_ALLOC, addr,
4682 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4683 
4684 		return freelist;
4685 	}
4686 
4687 	/*
4688 	 * No other reference to the slab yet so we can
4689 	 * muck around with it freely without cmpxchg
4690 	 */
4691 	freelist = slab->freelist;
4692 	slab->freelist = NULL;
4693 	slab->inuse = slab->objects;
4694 	slab->frozen = 1;
4695 
4696 	inc_slabs_node(s, slab_nid(slab), slab->objects);
4697 
4698 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4699 		/*
4700 		 * For !pfmemalloc_match() case we don't load freelist so that
4701 		 * we don't make further mismatched allocations easier.
4702 		 */
4703 		deactivate_slab(s, slab, get_freepointer(s, freelist));
4704 		return freelist;
4705 	}
4706 
4707 retry_load_slab:
4708 
4709 	local_lock_cpu_slab(s, flags);
4710 	if (unlikely(c->slab)) {
4711 		void *flush_freelist = c->freelist;
4712 		struct slab *flush_slab = c->slab;
4713 
4714 		c->slab = NULL;
4715 		c->freelist = NULL;
4716 		c->tid = next_tid(c->tid);
4717 
4718 		local_unlock_cpu_slab(s, flags);
4719 
4720 		if (unlikely(!allow_spin)) {
4721 			/* Reentrant slub cannot take locks, defer */
4722 			defer_deactivate_slab(flush_slab, flush_freelist);
4723 		} else {
4724 			deactivate_slab(s, flush_slab, flush_freelist);
4725 		}
4726 
4727 		stat(s, CPUSLAB_FLUSH);
4728 
4729 		goto retry_load_slab;
4730 	}
4731 	c->slab = slab;
4732 
4733 	goto load_freelist;
4734 }
4735 /*
4736  * We disallow kprobes in ___slab_alloc() to prevent reentrance
4737  *
4738  * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4739  * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4740  * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4741  * manipulating c->freelist without lock.
4742  *
4743  * This does not prevent kprobe in functions called from ___slab_alloc() such as
4744  * local_lock_irqsave() itself, and that is fine, we only need to protect the
4745  * c->freelist manipulation in ___slab_alloc() itself.
4746  */
4747 NOKPROBE_SYMBOL(___slab_alloc);
4748 
4749 /*
4750  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4751  * disabled. Compensates for possible cpu changes by refetching the per cpu area
4752  * pointer.
4753  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4754 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4755 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4756 {
4757 	void *p;
4758 
4759 #ifdef CONFIG_PREEMPT_COUNT
4760 	/*
4761 	 * We may have been preempted and rescheduled on a different
4762 	 * cpu before disabling preemption. Need to reload cpu area
4763 	 * pointer.
4764 	 */
4765 	c = slub_get_cpu_ptr(s->cpu_slab);
4766 #endif
4767 	if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4768 		if (local_lock_is_locked(&s->cpu_slab->lock)) {
4769 			/*
4770 			 * EBUSY is an internal signal to kmalloc_nolock() to
4771 			 * retry a different bucket. It's not propagated
4772 			 * to the caller.
4773 			 */
4774 			p = ERR_PTR(-EBUSY);
4775 			goto out;
4776 		}
4777 	}
4778 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4779 out:
4780 #ifdef CONFIG_PREEMPT_COUNT
4781 	slub_put_cpu_ptr(s->cpu_slab);
4782 #endif
4783 	return p;
4784 }
4785 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4786 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4787 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4788 {
4789 	struct kmem_cache_cpu *c;
4790 	struct slab *slab;
4791 	unsigned long tid;
4792 	void *object;
4793 
4794 redo:
4795 	/*
4796 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4797 	 * enabled. We may switch back and forth between cpus while
4798 	 * reading from one cpu area. That does not matter as long
4799 	 * as we end up on the original cpu again when doing the cmpxchg.
4800 	 *
4801 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4802 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4803 	 * the tid. If we are preempted and switched to another cpu between the
4804 	 * two reads, it's OK as the two are still associated with the same cpu
4805 	 * and cmpxchg later will validate the cpu.
4806 	 */
4807 	c = raw_cpu_ptr(s->cpu_slab);
4808 	tid = READ_ONCE(c->tid);
4809 
4810 	/*
4811 	 * Irqless object alloc/free algorithm used here depends on sequence
4812 	 * of fetching cpu_slab's data. tid should be fetched before anything
4813 	 * on c to guarantee that object and slab associated with previous tid
4814 	 * won't be used with current tid. If we fetch tid first, object and
4815 	 * slab could be one associated with next tid and our alloc/free
4816 	 * request will be failed. In this case, we will retry. So, no problem.
4817 	 */
4818 	barrier();
4819 
4820 	/*
4821 	 * The transaction ids are globally unique per cpu and per operation on
4822 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4823 	 * occurs on the right processor and that there was no operation on the
4824 	 * linked list in between.
4825 	 */
4826 
4827 	object = c->freelist;
4828 	slab = c->slab;
4829 
4830 #ifdef CONFIG_NUMA
4831 	if (static_branch_unlikely(&strict_numa) &&
4832 			node == NUMA_NO_NODE) {
4833 
4834 		struct mempolicy *mpol = current->mempolicy;
4835 
4836 		if (mpol) {
4837 			/*
4838 			 * Special BIND rule support. If existing slab
4839 			 * is in permitted set then do not redirect
4840 			 * to a particular node.
4841 			 * Otherwise we apply the memory policy to get
4842 			 * the node we need to allocate on.
4843 			 */
4844 			if (mpol->mode != MPOL_BIND || !slab ||
4845 					!node_isset(slab_nid(slab), mpol->nodes))
4846 
4847 				node = mempolicy_slab_node();
4848 		}
4849 	}
4850 #endif
4851 
4852 	if (!USE_LOCKLESS_FAST_PATH() ||
4853 	    unlikely(!object || !slab || !node_match(slab, node))) {
4854 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4855 	} else {
4856 		void *next_object = get_freepointer_safe(s, object);
4857 
4858 		/*
4859 		 * The cmpxchg will only match if there was no additional
4860 		 * operation and if we are on the right processor.
4861 		 *
4862 		 * The cmpxchg does the following atomically (without lock
4863 		 * semantics!)
4864 		 * 1. Relocate first pointer to the current per cpu area.
4865 		 * 2. Verify that tid and freelist have not been changed
4866 		 * 3. If they were not changed replace tid and freelist
4867 		 *
4868 		 * Since this is without lock semantics the protection is only
4869 		 * against code executing on this cpu *not* from access by
4870 		 * other cpus.
4871 		 */
4872 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4873 			note_cmpxchg_failure("slab_alloc", s, tid);
4874 			goto redo;
4875 		}
4876 		prefetch_freepointer(s, next_object);
4877 		stat(s, ALLOC_FASTPATH);
4878 	}
4879 
4880 	return object;
4881 }
4882 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4883 static void *__slab_alloc_node(struct kmem_cache *s,
4884 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4885 {
4886 	struct partial_context pc;
4887 	struct slab *slab;
4888 	void *object;
4889 
4890 	pc.flags = gfpflags;
4891 	pc.orig_size = orig_size;
4892 	slab = get_partial(s, node, &pc);
4893 
4894 	if (slab)
4895 		return pc.object;
4896 
4897 	slab = new_slab(s, gfpflags, node);
4898 	if (unlikely(!slab)) {
4899 		slab_out_of_memory(s, gfpflags, node);
4900 		return NULL;
4901 	}
4902 
4903 	object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4904 
4905 	return object;
4906 }
4907 #endif /* CONFIG_SLUB_TINY */
4908 
4909 /*
4910  * If the object has been wiped upon free, make sure it's fully initialized by
4911  * zeroing out freelist pointer.
4912  *
4913  * Note that we also wipe custom freelist pointers.
4914  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4915 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4916 						   void *obj)
4917 {
4918 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4919 	    !freeptr_outside_object(s))
4920 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4921 			0, sizeof(void *));
4922 }
4923 
4924 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4925 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4926 {
4927 	flags &= gfp_allowed_mask;
4928 
4929 	might_alloc(flags);
4930 
4931 	if (unlikely(should_failslab(s, flags)))
4932 		return NULL;
4933 
4934 	return s;
4935 }
4936 
4937 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4938 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4939 			  gfp_t flags, size_t size, void **p, bool init,
4940 			  unsigned int orig_size)
4941 {
4942 	unsigned int zero_size = s->object_size;
4943 	bool kasan_init = init;
4944 	size_t i;
4945 	gfp_t init_flags = flags & gfp_allowed_mask;
4946 
4947 	/*
4948 	 * For kmalloc object, the allocated memory size(object_size) is likely
4949 	 * larger than the requested size(orig_size). If redzone check is
4950 	 * enabled for the extra space, don't zero it, as it will be redzoned
4951 	 * soon. The redzone operation for this extra space could be seen as a
4952 	 * replacement of current poisoning under certain debug option, and
4953 	 * won't break other sanity checks.
4954 	 */
4955 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4956 	    (s->flags & SLAB_KMALLOC))
4957 		zero_size = orig_size;
4958 
4959 	/*
4960 	 * When slab_debug is enabled, avoid memory initialization integrated
4961 	 * into KASAN and instead zero out the memory via the memset below with
4962 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4963 	 * cause false-positive reports. This does not lead to a performance
4964 	 * penalty on production builds, as slab_debug is not intended to be
4965 	 * enabled there.
4966 	 */
4967 	if (__slub_debug_enabled())
4968 		kasan_init = false;
4969 
4970 	/*
4971 	 * As memory initialization might be integrated into KASAN,
4972 	 * kasan_slab_alloc and initialization memset must be
4973 	 * kept together to avoid discrepancies in behavior.
4974 	 *
4975 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4976 	 */
4977 	for (i = 0; i < size; i++) {
4978 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4979 		if (p[i] && init && (!kasan_init ||
4980 				     !kasan_has_integrated_init()))
4981 			memset(p[i], 0, zero_size);
4982 		if (gfpflags_allow_spinning(flags))
4983 			kmemleak_alloc_recursive(p[i], s->object_size, 1,
4984 						 s->flags, init_flags);
4985 		kmsan_slab_alloc(s, p[i], init_flags);
4986 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4987 	}
4988 
4989 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4990 }
4991 
4992 /*
4993  * Replace the empty main sheaf with a (at least partially) full sheaf.
4994  *
4995  * Must be called with the cpu_sheaves local lock locked. If successful, returns
4996  * the pcs pointer and the local lock locked (possibly on a different cpu than
4997  * initially called). If not successful, returns NULL and the local lock
4998  * unlocked.
4999  */
5000 static struct slub_percpu_sheaves *
__pcs_replace_empty_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,gfp_t gfp)5001 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
5002 {
5003 	struct slab_sheaf *empty = NULL;
5004 	struct slab_sheaf *full;
5005 	struct node_barn *barn;
5006 	bool can_alloc;
5007 
5008 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5009 
5010 	if (pcs->spare && pcs->spare->size > 0) {
5011 		swap(pcs->main, pcs->spare);
5012 		return pcs;
5013 	}
5014 
5015 	barn = get_barn(s);
5016 	if (!barn) {
5017 		local_unlock(&s->cpu_sheaves->lock);
5018 		return NULL;
5019 	}
5020 
5021 	full = barn_replace_empty_sheaf(barn, pcs->main);
5022 
5023 	if (full) {
5024 		stat(s, BARN_GET);
5025 		pcs->main = full;
5026 		return pcs;
5027 	}
5028 
5029 	stat(s, BARN_GET_FAIL);
5030 
5031 	can_alloc = gfpflags_allow_blocking(gfp);
5032 
5033 	if (can_alloc) {
5034 		if (pcs->spare) {
5035 			empty = pcs->spare;
5036 			pcs->spare = NULL;
5037 		} else {
5038 			empty = barn_get_empty_sheaf(barn);
5039 		}
5040 	}
5041 
5042 	local_unlock(&s->cpu_sheaves->lock);
5043 
5044 	if (!can_alloc)
5045 		return NULL;
5046 
5047 	if (empty) {
5048 		if (!refill_sheaf(s, empty, gfp)) {
5049 			full = empty;
5050 		} else {
5051 			/*
5052 			 * we must be very low on memory so don't bother
5053 			 * with the barn
5054 			 */
5055 			free_empty_sheaf(s, empty);
5056 		}
5057 	} else {
5058 		full = alloc_full_sheaf(s, gfp);
5059 	}
5060 
5061 	if (!full)
5062 		return NULL;
5063 
5064 	/*
5065 	 * we can reach here only when gfpflags_allow_blocking
5066 	 * so this must not be an irq
5067 	 */
5068 	local_lock(&s->cpu_sheaves->lock);
5069 	pcs = this_cpu_ptr(s->cpu_sheaves);
5070 
5071 	/*
5072 	 * If we are returning empty sheaf, we either got it from the
5073 	 * barn or had to allocate one. If we are returning a full
5074 	 * sheaf, it's due to racing or being migrated to a different
5075 	 * cpu. Breaching the barn's sheaf limits should be thus rare
5076 	 * enough so just ignore them to simplify the recovery.
5077 	 */
5078 
5079 	if (pcs->main->size == 0) {
5080 		barn_put_empty_sheaf(barn, pcs->main);
5081 		pcs->main = full;
5082 		return pcs;
5083 	}
5084 
5085 	if (!pcs->spare) {
5086 		pcs->spare = full;
5087 		return pcs;
5088 	}
5089 
5090 	if (pcs->spare->size == 0) {
5091 		barn_put_empty_sheaf(barn, pcs->spare);
5092 		pcs->spare = full;
5093 		return pcs;
5094 	}
5095 
5096 	barn_put_full_sheaf(barn, full);
5097 	stat(s, BARN_PUT);
5098 
5099 	return pcs;
5100 }
5101 
5102 static __fastpath_inline
alloc_from_pcs(struct kmem_cache * s,gfp_t gfp,int node)5103 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5104 {
5105 	struct slub_percpu_sheaves *pcs;
5106 	bool node_requested;
5107 	void *object;
5108 
5109 #ifdef CONFIG_NUMA
5110 	if (static_branch_unlikely(&strict_numa) &&
5111 			 node == NUMA_NO_NODE) {
5112 
5113 		struct mempolicy *mpol = current->mempolicy;
5114 
5115 		if (mpol) {
5116 			/*
5117 			 * Special BIND rule support. If the local node
5118 			 * is in permitted set then do not redirect
5119 			 * to a particular node.
5120 			 * Otherwise we apply the memory policy to get
5121 			 * the node we need to allocate on.
5122 			 */
5123 			if (mpol->mode != MPOL_BIND ||
5124 					!node_isset(numa_mem_id(), mpol->nodes))
5125 
5126 				node = mempolicy_slab_node();
5127 		}
5128 	}
5129 #endif
5130 
5131 	node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5132 
5133 	/*
5134 	 * We assume the percpu sheaves contain only local objects although it's
5135 	 * not completely guaranteed, so we verify later.
5136 	 */
5137 	if (unlikely(node_requested && node != numa_mem_id()))
5138 		return NULL;
5139 
5140 	if (!local_trylock(&s->cpu_sheaves->lock))
5141 		return NULL;
5142 
5143 	pcs = this_cpu_ptr(s->cpu_sheaves);
5144 
5145 	if (unlikely(pcs->main->size == 0)) {
5146 		pcs = __pcs_replace_empty_main(s, pcs, gfp);
5147 		if (unlikely(!pcs))
5148 			return NULL;
5149 	}
5150 
5151 	object = pcs->main->objects[pcs->main->size - 1];
5152 
5153 	if (unlikely(node_requested)) {
5154 		/*
5155 		 * Verify that the object was from the node we want. This could
5156 		 * be false because of cpu migration during an unlocked part of
5157 		 * the current allocation or previous freeing process.
5158 		 */
5159 		if (folio_nid(virt_to_folio(object)) != node) {
5160 			local_unlock(&s->cpu_sheaves->lock);
5161 			return NULL;
5162 		}
5163 	}
5164 
5165 	pcs->main->size--;
5166 
5167 	local_unlock(&s->cpu_sheaves->lock);
5168 
5169 	stat(s, ALLOC_PCS);
5170 
5171 	return object;
5172 }
5173 
5174 static __fastpath_inline
alloc_from_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)5175 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5176 {
5177 	struct slub_percpu_sheaves *pcs;
5178 	struct slab_sheaf *main;
5179 	unsigned int allocated = 0;
5180 	unsigned int batch;
5181 
5182 next_batch:
5183 	if (!local_trylock(&s->cpu_sheaves->lock))
5184 		return allocated;
5185 
5186 	pcs = this_cpu_ptr(s->cpu_sheaves);
5187 
5188 	if (unlikely(pcs->main->size == 0)) {
5189 
5190 		struct slab_sheaf *full;
5191 		struct node_barn *barn;
5192 
5193 		if (pcs->spare && pcs->spare->size > 0) {
5194 			swap(pcs->main, pcs->spare);
5195 			goto do_alloc;
5196 		}
5197 
5198 		barn = get_barn(s);
5199 		if (!barn) {
5200 			local_unlock(&s->cpu_sheaves->lock);
5201 			return allocated;
5202 		}
5203 
5204 		full = barn_replace_empty_sheaf(barn, pcs->main);
5205 
5206 		if (full) {
5207 			stat(s, BARN_GET);
5208 			pcs->main = full;
5209 			goto do_alloc;
5210 		}
5211 
5212 		stat(s, BARN_GET_FAIL);
5213 
5214 		local_unlock(&s->cpu_sheaves->lock);
5215 
5216 		/*
5217 		 * Once full sheaves in barn are depleted, let the bulk
5218 		 * allocation continue from slab pages, otherwise we would just
5219 		 * be copying arrays of pointers twice.
5220 		 */
5221 		return allocated;
5222 	}
5223 
5224 do_alloc:
5225 
5226 	main = pcs->main;
5227 	batch = min(size, main->size);
5228 
5229 	main->size -= batch;
5230 	memcpy(p, main->objects + main->size, batch * sizeof(void *));
5231 
5232 	local_unlock(&s->cpu_sheaves->lock);
5233 
5234 	stat_add(s, ALLOC_PCS, batch);
5235 
5236 	allocated += batch;
5237 
5238 	if (batch < size) {
5239 		p += batch;
5240 		size -= batch;
5241 		goto next_batch;
5242 	}
5243 
5244 	return allocated;
5245 }
5246 
5247 
5248 /*
5249  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5250  * have the fastpath folded into their functions. So no function call
5251  * overhead for requests that can be satisfied on the fastpath.
5252  *
5253  * The fastpath works by first checking if the lockless freelist can be used.
5254  * If not then __slab_alloc is called for slow processing.
5255  *
5256  * Otherwise we can simply pick the next object from the lockless free list.
5257  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)5258 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5259 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5260 {
5261 	void *object;
5262 	bool init = false;
5263 
5264 	s = slab_pre_alloc_hook(s, gfpflags);
5265 	if (unlikely(!s))
5266 		return NULL;
5267 
5268 	object = kfence_alloc(s, orig_size, gfpflags);
5269 	if (unlikely(object))
5270 		goto out;
5271 
5272 	if (s->cpu_sheaves)
5273 		object = alloc_from_pcs(s, gfpflags, node);
5274 
5275 	if (!object)
5276 		object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5277 
5278 	maybe_wipe_obj_freeptr(s, object);
5279 	init = slab_want_init_on_alloc(gfpflags, s);
5280 
5281 out:
5282 	/*
5283 	 * When init equals 'true', like for kzalloc() family, only
5284 	 * @orig_size bytes might be zeroed instead of s->object_size
5285 	 * In case this fails due to memcg_slab_post_alloc_hook(),
5286 	 * object is set to NULL
5287 	 */
5288 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5289 
5290 	return object;
5291 }
5292 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)5293 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5294 {
5295 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5296 				    s->object_size);
5297 
5298 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5299 
5300 	return ret;
5301 }
5302 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5303 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)5304 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5305 			   gfp_t gfpflags)
5306 {
5307 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5308 				    s->object_size);
5309 
5310 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5311 
5312 	return ret;
5313 }
5314 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5315 
kmem_cache_charge(void * objp,gfp_t gfpflags)5316 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5317 {
5318 	if (!memcg_kmem_online())
5319 		return true;
5320 
5321 	return memcg_slab_post_charge(objp, gfpflags);
5322 }
5323 EXPORT_SYMBOL(kmem_cache_charge);
5324 
5325 /**
5326  * kmem_cache_alloc_node - Allocate an object on the specified node
5327  * @s: The cache to allocate from.
5328  * @gfpflags: See kmalloc().
5329  * @node: node number of the target node.
5330  *
5331  * Identical to kmem_cache_alloc but it will allocate memory on the given
5332  * node, which can improve the performance for cpu bound structures.
5333  *
5334  * Fallback to other node is possible if __GFP_THISNODE is not set.
5335  *
5336  * Return: pointer to the new object or %NULL in case of error
5337  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)5338 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5339 {
5340 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5341 
5342 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5343 
5344 	return ret;
5345 }
5346 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5347 
5348 /*
5349  * returns a sheaf that has at least the requested size
5350  * when prefilling is needed, do so with given gfp flags
5351  *
5352  * return NULL if sheaf allocation or prefilling failed
5353  */
5354 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)5355 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5356 {
5357 	struct slub_percpu_sheaves *pcs;
5358 	struct slab_sheaf *sheaf = NULL;
5359 	struct node_barn *barn;
5360 
5361 	if (unlikely(size > s->sheaf_capacity)) {
5362 
5363 		/*
5364 		 * slab_debug disables cpu sheaves intentionally so all
5365 		 * prefilled sheaves become "oversize" and we give up on
5366 		 * performance for the debugging. Same with SLUB_TINY.
5367 		 * Creating a cache without sheaves and then requesting a
5368 		 * prefilled sheaf is however not expected, so warn.
5369 		 */
5370 		WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5371 			     !IS_ENABLED(CONFIG_SLUB_TINY) &&
5372 			     !(s->flags & SLAB_DEBUG_FLAGS));
5373 
5374 		sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5375 		if (!sheaf)
5376 			return NULL;
5377 
5378 		stat(s, SHEAF_PREFILL_OVERSIZE);
5379 		sheaf->cache = s;
5380 		sheaf->capacity = size;
5381 
5382 		if (!__kmem_cache_alloc_bulk(s, gfp, size,
5383 					     &sheaf->objects[0])) {
5384 			kfree(sheaf);
5385 			return NULL;
5386 		}
5387 
5388 		sheaf->size = size;
5389 
5390 		return sheaf;
5391 	}
5392 
5393 	local_lock(&s->cpu_sheaves->lock);
5394 	pcs = this_cpu_ptr(s->cpu_sheaves);
5395 
5396 	if (pcs->spare) {
5397 		sheaf = pcs->spare;
5398 		pcs->spare = NULL;
5399 		stat(s, SHEAF_PREFILL_FAST);
5400 	} else {
5401 		barn = get_barn(s);
5402 
5403 		stat(s, SHEAF_PREFILL_SLOW);
5404 		if (barn)
5405 			sheaf = barn_get_full_or_empty_sheaf(barn);
5406 		if (sheaf && sheaf->size)
5407 			stat(s, BARN_GET);
5408 		else
5409 			stat(s, BARN_GET_FAIL);
5410 	}
5411 
5412 	local_unlock(&s->cpu_sheaves->lock);
5413 
5414 
5415 	if (!sheaf)
5416 		sheaf = alloc_empty_sheaf(s, gfp);
5417 
5418 	if (sheaf && sheaf->size < size) {
5419 		if (refill_sheaf(s, sheaf, gfp)) {
5420 			sheaf_flush_unused(s, sheaf);
5421 			free_empty_sheaf(s, sheaf);
5422 			sheaf = NULL;
5423 		}
5424 	}
5425 
5426 	if (sheaf)
5427 		sheaf->capacity = s->sheaf_capacity;
5428 
5429 	return sheaf;
5430 }
5431 
5432 /*
5433  * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5434  *
5435  * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5436  * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5437  * sheaf_capacity to avoid handling partially full sheaves.
5438  *
5439  * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5440  * sheaf is instead flushed and freed.
5441  */
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5442 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5443 			     struct slab_sheaf *sheaf)
5444 {
5445 	struct slub_percpu_sheaves *pcs;
5446 	struct node_barn *barn;
5447 
5448 	if (unlikely(sheaf->capacity != s->sheaf_capacity)) {
5449 		sheaf_flush_unused(s, sheaf);
5450 		kfree(sheaf);
5451 		return;
5452 	}
5453 
5454 	local_lock(&s->cpu_sheaves->lock);
5455 	pcs = this_cpu_ptr(s->cpu_sheaves);
5456 	barn = get_barn(s);
5457 
5458 	if (!pcs->spare) {
5459 		pcs->spare = sheaf;
5460 		sheaf = NULL;
5461 		stat(s, SHEAF_RETURN_FAST);
5462 	}
5463 
5464 	local_unlock(&s->cpu_sheaves->lock);
5465 
5466 	if (!sheaf)
5467 		return;
5468 
5469 	stat(s, SHEAF_RETURN_SLOW);
5470 
5471 	/*
5472 	 * If the barn has too many full sheaves or we fail to refill the sheaf,
5473 	 * simply flush and free it.
5474 	 */
5475 	if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5476 	    refill_sheaf(s, sheaf, gfp)) {
5477 		sheaf_flush_unused(s, sheaf);
5478 		free_empty_sheaf(s, sheaf);
5479 		return;
5480 	}
5481 
5482 	barn_put_full_sheaf(barn, sheaf);
5483 	stat(s, BARN_PUT);
5484 }
5485 
5486 /*
5487  * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5488  * the given size
5489  *
5490  * the sheaf might be replaced by a new one when requesting more than
5491  * s->sheaf_capacity objects if such replacement is necessary, but the refill
5492  * fails (returning -ENOMEM), the existing sheaf is left intact
5493  *
5494  * In practice we always refill to full sheaf's capacity.
5495  */
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)5496 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5497 			    struct slab_sheaf **sheafp, unsigned int size)
5498 {
5499 	struct slab_sheaf *sheaf;
5500 
5501 	/*
5502 	 * TODO: do we want to support *sheaf == NULL to be equivalent of
5503 	 * kmem_cache_prefill_sheaf() ?
5504 	 */
5505 	if (!sheafp || !(*sheafp))
5506 		return -EINVAL;
5507 
5508 	sheaf = *sheafp;
5509 	if (sheaf->size >= size)
5510 		return 0;
5511 
5512 	if (likely(sheaf->capacity >= size)) {
5513 		if (likely(sheaf->capacity == s->sheaf_capacity))
5514 			return refill_sheaf(s, sheaf, gfp);
5515 
5516 		if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5517 					     &sheaf->objects[sheaf->size])) {
5518 			return -ENOMEM;
5519 		}
5520 		sheaf->size = sheaf->capacity;
5521 
5522 		return 0;
5523 	}
5524 
5525 	/*
5526 	 * We had a regular sized sheaf and need an oversize one, or we had an
5527 	 * oversize one already but need a larger one now.
5528 	 * This should be a very rare path so let's not complicate it.
5529 	 */
5530 	sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5531 	if (!sheaf)
5532 		return -ENOMEM;
5533 
5534 	kmem_cache_return_sheaf(s, gfp, *sheafp);
5535 	*sheafp = sheaf;
5536 	return 0;
5537 }
5538 
5539 /*
5540  * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5541  *
5542  * Guaranteed not to fail as many allocations as was the requested size.
5543  * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5544  *
5545  * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5546  * memcg charging is forced over limit if necessary, to avoid failure.
5547  */
5548 void *
kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5549 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5550 				   struct slab_sheaf *sheaf)
5551 {
5552 	void *ret = NULL;
5553 	bool init;
5554 
5555 	if (sheaf->size == 0)
5556 		goto out;
5557 
5558 	ret = sheaf->objects[--sheaf->size];
5559 
5560 	init = slab_want_init_on_alloc(gfp, s);
5561 
5562 	/* add __GFP_NOFAIL to force successful memcg charging */
5563 	slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5564 out:
5565 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5566 
5567 	return ret;
5568 }
5569 
kmem_cache_sheaf_size(struct slab_sheaf * sheaf)5570 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5571 {
5572 	return sheaf->size;
5573 }
5574 /*
5575  * To avoid unnecessary overhead, we pass through large allocation requests
5576  * directly to the page allocator. We use __GFP_COMP, because we will need to
5577  * know the allocation order to free the pages properly in kfree.
5578  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)5579 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5580 {
5581 	struct folio *folio;
5582 	void *ptr = NULL;
5583 	unsigned int order = get_order(size);
5584 
5585 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
5586 		flags = kmalloc_fix_flags(flags);
5587 
5588 	flags |= __GFP_COMP;
5589 
5590 	if (node == NUMA_NO_NODE)
5591 		folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
5592 	else
5593 		folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
5594 
5595 	if (folio) {
5596 		ptr = folio_address(folio);
5597 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
5598 				      PAGE_SIZE << order);
5599 		__folio_set_large_kmalloc(folio);
5600 	}
5601 
5602 	ptr = kasan_kmalloc_large(ptr, size, flags);
5603 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
5604 	kmemleak_alloc(ptr, size, 1, flags);
5605 	kmsan_kmalloc_large(ptr, size, flags);
5606 
5607 	return ptr;
5608 }
5609 
__kmalloc_large_noprof(size_t size,gfp_t flags)5610 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5611 {
5612 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5613 
5614 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5615 		      flags, NUMA_NO_NODE);
5616 	return ret;
5617 }
5618 EXPORT_SYMBOL(__kmalloc_large_noprof);
5619 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)5620 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5621 {
5622 	void *ret = ___kmalloc_large_node(size, flags, node);
5623 
5624 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5625 		      flags, node);
5626 	return ret;
5627 }
5628 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5629 
5630 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)5631 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5632 			unsigned long caller)
5633 {
5634 	struct kmem_cache *s;
5635 	void *ret;
5636 
5637 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5638 		ret = __kmalloc_large_node_noprof(size, flags, node);
5639 		trace_kmalloc(caller, ret, size,
5640 			      PAGE_SIZE << get_order(size), flags, node);
5641 		return ret;
5642 	}
5643 
5644 	if (unlikely(!size))
5645 		return ZERO_SIZE_PTR;
5646 
5647 	s = kmalloc_slab(size, b, flags, caller);
5648 
5649 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5650 	ret = kasan_kmalloc(s, ret, size, flags);
5651 	trace_kmalloc(caller, ret, size, s->size, flags, node);
5652 	return ret;
5653 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5654 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5655 {
5656 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5657 }
5658 EXPORT_SYMBOL(__kmalloc_node_noprof);
5659 
__kmalloc_noprof(size_t size,gfp_t flags)5660 void *__kmalloc_noprof(size_t size, gfp_t flags)
5661 {
5662 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5663 }
5664 EXPORT_SYMBOL(__kmalloc_noprof);
5665 
5666 /**
5667  * kmalloc_nolock - Allocate an object of given size from any context.
5668  * @size: size to allocate
5669  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5670  * allowed.
5671  * @node: node number of the target node.
5672  *
5673  * Return: pointer to the new object or NULL in case of error.
5674  * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5675  * There is no reason to call it again and expect !NULL.
5676  */
kmalloc_nolock_noprof(size_t size,gfp_t gfp_flags,int node)5677 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5678 {
5679 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5680 	struct kmem_cache *s;
5681 	bool can_retry = true;
5682 	void *ret = ERR_PTR(-EBUSY);
5683 
5684 	VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5685 				      __GFP_NO_OBJ_EXT));
5686 
5687 	if (unlikely(!size))
5688 		return ZERO_SIZE_PTR;
5689 
5690 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5691 		/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5692 		return NULL;
5693 retry:
5694 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5695 		return NULL;
5696 	s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5697 
5698 	if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5699 		/*
5700 		 * kmalloc_nolock() is not supported on architectures that
5701 		 * don't implement cmpxchg16b, but debug caches don't use
5702 		 * per-cpu slab and per-cpu partial slabs. They rely on
5703 		 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5704 		 * attempt to allocate from debug caches by
5705 		 * spin_trylock_irqsave(&n->list_lock, ...)
5706 		 */
5707 		return NULL;
5708 
5709 	/*
5710 	 * Do not call slab_alloc_node(), since trylock mode isn't
5711 	 * compatible with slab_pre_alloc_hook/should_failslab and
5712 	 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5713 	 * and slab_post_alloc_hook() directly.
5714 	 *
5715 	 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5716 	 * in irq saved region. It assumes that the same cpu will not
5717 	 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5718 	 * Therefore use in_nmi() to check whether particular bucket is in
5719 	 * irq protected section.
5720 	 *
5721 	 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5722 	 * this cpu was interrupted somewhere inside ___slab_alloc() after
5723 	 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5724 	 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5725 	 */
5726 #ifndef CONFIG_SLUB_TINY
5727 	if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5728 #endif
5729 		ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5730 
5731 	if (PTR_ERR(ret) == -EBUSY) {
5732 		if (can_retry) {
5733 			/* pick the next kmalloc bucket */
5734 			size = s->object_size + 1;
5735 			/*
5736 			 * Another alternative is to
5737 			 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5738 			 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5739 			 * to retry from bucket of the same size.
5740 			 */
5741 			can_retry = false;
5742 			goto retry;
5743 		}
5744 		ret = NULL;
5745 	}
5746 
5747 	maybe_wipe_obj_freeptr(s, ret);
5748 	slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5749 			     slab_want_init_on_alloc(alloc_gfp, s), size);
5750 
5751 	ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5752 	return ret;
5753 }
5754 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5755 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)5756 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5757 					 int node, unsigned long caller)
5758 {
5759 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5760 
5761 }
5762 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5763 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)5764 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5765 {
5766 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5767 					    _RET_IP_, size);
5768 
5769 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5770 
5771 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5772 	return ret;
5773 }
5774 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5775 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)5776 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5777 				  int node, size_t size)
5778 {
5779 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5780 
5781 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5782 
5783 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5784 	return ret;
5785 }
5786 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5787 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)5788 static noinline void free_to_partial_list(
5789 	struct kmem_cache *s, struct slab *slab,
5790 	void *head, void *tail, int bulk_cnt,
5791 	unsigned long addr)
5792 {
5793 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5794 	struct slab *slab_free = NULL;
5795 	int cnt = bulk_cnt;
5796 	unsigned long flags;
5797 	depot_stack_handle_t handle = 0;
5798 
5799 	/*
5800 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
5801 	 * kswapd could deadlock
5802 	 */
5803 	if (s->flags & SLAB_STORE_USER)
5804 		handle = set_track_prepare(__GFP_NOWARN);
5805 
5806 	spin_lock_irqsave(&n->list_lock, flags);
5807 
5808 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5809 		void *prior = slab->freelist;
5810 
5811 		/* Perform the actual freeing while we still hold the locks */
5812 		slab->inuse -= cnt;
5813 		set_freepointer(s, tail, prior);
5814 		slab->freelist = head;
5815 
5816 		/*
5817 		 * If the slab is empty, and node's partial list is full,
5818 		 * it should be discarded anyway no matter it's on full or
5819 		 * partial list.
5820 		 */
5821 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5822 			slab_free = slab;
5823 
5824 		if (!prior) {
5825 			/* was on full list */
5826 			remove_full(s, n, slab);
5827 			if (!slab_free) {
5828 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
5829 				stat(s, FREE_ADD_PARTIAL);
5830 			}
5831 		} else if (slab_free) {
5832 			remove_partial(n, slab);
5833 			stat(s, FREE_REMOVE_PARTIAL);
5834 		}
5835 	}
5836 
5837 	if (slab_free) {
5838 		/*
5839 		 * Update the counters while still holding n->list_lock to
5840 		 * prevent spurious validation warnings
5841 		 */
5842 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5843 	}
5844 
5845 	spin_unlock_irqrestore(&n->list_lock, flags);
5846 
5847 	if (slab_free) {
5848 		stat(s, FREE_SLAB);
5849 		free_slab(s, slab_free);
5850 	}
5851 }
5852 
5853 /*
5854  * Slow path handling. This may still be called frequently since objects
5855  * have a longer lifetime than the cpu slabs in most processing loads.
5856  *
5857  * So we still attempt to reduce cache line usage. Just take the slab
5858  * lock and free the item. If there is no additional partial slab
5859  * handling required then we can return immediately.
5860  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)5861 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5862 			void *head, void *tail, int cnt,
5863 			unsigned long addr)
5864 
5865 {
5866 	void *prior;
5867 	int was_frozen;
5868 	struct slab new;
5869 	unsigned long counters;
5870 	struct kmem_cache_node *n = NULL;
5871 	unsigned long flags;
5872 	bool on_node_partial;
5873 
5874 	stat(s, FREE_SLOWPATH);
5875 
5876 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5877 		free_to_partial_list(s, slab, head, tail, cnt, addr);
5878 		return;
5879 	}
5880 
5881 	do {
5882 		if (unlikely(n)) {
5883 			spin_unlock_irqrestore(&n->list_lock, flags);
5884 			n = NULL;
5885 		}
5886 		prior = slab->freelist;
5887 		counters = slab->counters;
5888 		set_freepointer(s, tail, prior);
5889 		new.counters = counters;
5890 		was_frozen = new.frozen;
5891 		new.inuse -= cnt;
5892 		if ((!new.inuse || !prior) && !was_frozen) {
5893 			/* Needs to be taken off a list */
5894 			if (!kmem_cache_has_cpu_partial(s) || prior) {
5895 
5896 				n = get_node(s, slab_nid(slab));
5897 				/*
5898 				 * Speculatively acquire the list_lock.
5899 				 * If the cmpxchg does not succeed then we may
5900 				 * drop the list_lock without any processing.
5901 				 *
5902 				 * Otherwise the list_lock will synchronize with
5903 				 * other processors updating the list of slabs.
5904 				 */
5905 				spin_lock_irqsave(&n->list_lock, flags);
5906 
5907 				on_node_partial = slab_test_node_partial(slab);
5908 			}
5909 		}
5910 
5911 	} while (!slab_update_freelist(s, slab,
5912 		prior, counters,
5913 		head, new.counters,
5914 		"__slab_free"));
5915 
5916 	if (likely(!n)) {
5917 
5918 		if (likely(was_frozen)) {
5919 			/*
5920 			 * The list lock was not taken therefore no list
5921 			 * activity can be necessary.
5922 			 */
5923 			stat(s, FREE_FROZEN);
5924 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
5925 			/*
5926 			 * If we started with a full slab then put it onto the
5927 			 * per cpu partial list.
5928 			 */
5929 			put_cpu_partial(s, slab, 1);
5930 			stat(s, CPU_PARTIAL_FREE);
5931 		}
5932 
5933 		return;
5934 	}
5935 
5936 	/*
5937 	 * This slab was partially empty but not on the per-node partial list,
5938 	 * in which case we shouldn't manipulate its list, just return.
5939 	 */
5940 	if (prior && !on_node_partial) {
5941 		spin_unlock_irqrestore(&n->list_lock, flags);
5942 		return;
5943 	}
5944 
5945 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5946 		goto slab_empty;
5947 
5948 	/*
5949 	 * Objects left in the slab. If it was not on the partial list before
5950 	 * then add it.
5951 	 */
5952 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
5953 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
5954 		stat(s, FREE_ADD_PARTIAL);
5955 	}
5956 	spin_unlock_irqrestore(&n->list_lock, flags);
5957 	return;
5958 
5959 slab_empty:
5960 	if (prior) {
5961 		/*
5962 		 * Slab on the partial list.
5963 		 */
5964 		remove_partial(n, slab);
5965 		stat(s, FREE_REMOVE_PARTIAL);
5966 	}
5967 
5968 	spin_unlock_irqrestore(&n->list_lock, flags);
5969 	stat(s, FREE_SLAB);
5970 	discard_slab(s, slab);
5971 }
5972 
5973 /*
5974  * pcs is locked. We should have get rid of the spare sheaf and obtained an
5975  * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
5976  * as a main sheaf, and make the current main sheaf a spare sheaf.
5977  *
5978  * However due to having relinquished the cpu_sheaves lock when obtaining
5979  * the empty sheaf, we need to handle some unlikely but possible cases.
5980  *
5981  * If we put any sheaf to barn here, it's because we were interrupted or have
5982  * been migrated to a different cpu, which should be rare enough so just ignore
5983  * the barn's limits to simplify the handling.
5984  *
5985  * An alternative scenario that gets us here is when we fail
5986  * barn_replace_full_sheaf(), because there's no empty sheaf available in the
5987  * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
5988  * limit on full sheaves was not exceeded, we assume it didn't change and just
5989  * put the full sheaf there.
5990  */
__pcs_install_empty_sheaf(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,struct slab_sheaf * empty,struct node_barn * barn)5991 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
5992 		struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
5993 		struct node_barn *barn)
5994 {
5995 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5996 
5997 	/* This is what we expect to find if nobody interrupted us. */
5998 	if (likely(!pcs->spare)) {
5999 		pcs->spare = pcs->main;
6000 		pcs->main = empty;
6001 		return;
6002 	}
6003 
6004 	/*
6005 	 * Unlikely because if the main sheaf had space, we would have just
6006 	 * freed to it. Get rid of our empty sheaf.
6007 	 */
6008 	if (pcs->main->size < s->sheaf_capacity) {
6009 		barn_put_empty_sheaf(barn, empty);
6010 		return;
6011 	}
6012 
6013 	/* Also unlikely for the same reason */
6014 	if (pcs->spare->size < s->sheaf_capacity) {
6015 		swap(pcs->main, pcs->spare);
6016 		barn_put_empty_sheaf(barn, empty);
6017 		return;
6018 	}
6019 
6020 	/*
6021 	 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6022 	 * available there, but we allocated one, so finish the job.
6023 	 */
6024 	barn_put_full_sheaf(barn, pcs->main);
6025 	stat(s, BARN_PUT);
6026 	pcs->main = empty;
6027 }
6028 
6029 /*
6030  * Replace the full main sheaf with a (at least partially) empty sheaf.
6031  *
6032  * Must be called with the cpu_sheaves local lock locked. If successful, returns
6033  * the pcs pointer and the local lock locked (possibly on a different cpu than
6034  * initially called). If not successful, returns NULL and the local lock
6035  * unlocked.
6036  */
6037 static struct slub_percpu_sheaves *
__pcs_replace_full_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs)6038 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6039 {
6040 	struct slab_sheaf *empty;
6041 	struct node_barn *barn;
6042 	bool put_fail;
6043 
6044 restart:
6045 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6046 
6047 	barn = get_barn(s);
6048 	if (!barn) {
6049 		local_unlock(&s->cpu_sheaves->lock);
6050 		return NULL;
6051 	}
6052 
6053 	put_fail = false;
6054 
6055 	if (!pcs->spare) {
6056 		empty = barn_get_empty_sheaf(barn);
6057 		if (empty) {
6058 			pcs->spare = pcs->main;
6059 			pcs->main = empty;
6060 			return pcs;
6061 		}
6062 		goto alloc_empty;
6063 	}
6064 
6065 	if (pcs->spare->size < s->sheaf_capacity) {
6066 		swap(pcs->main, pcs->spare);
6067 		return pcs;
6068 	}
6069 
6070 	empty = barn_replace_full_sheaf(barn, pcs->main);
6071 
6072 	if (!IS_ERR(empty)) {
6073 		stat(s, BARN_PUT);
6074 		pcs->main = empty;
6075 		return pcs;
6076 	}
6077 
6078 	if (PTR_ERR(empty) == -E2BIG) {
6079 		/* Since we got here, spare exists and is full */
6080 		struct slab_sheaf *to_flush = pcs->spare;
6081 
6082 		stat(s, BARN_PUT_FAIL);
6083 
6084 		pcs->spare = NULL;
6085 		local_unlock(&s->cpu_sheaves->lock);
6086 
6087 		sheaf_flush_unused(s, to_flush);
6088 		empty = to_flush;
6089 		goto got_empty;
6090 	}
6091 
6092 	/*
6093 	 * We could not replace full sheaf because barn had no empty
6094 	 * sheaves. We can still allocate it and put the full sheaf in
6095 	 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6096 	 * make sure to count the fail.
6097 	 */
6098 	put_fail = true;
6099 
6100 alloc_empty:
6101 	local_unlock(&s->cpu_sheaves->lock);
6102 
6103 	empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6104 	if (empty)
6105 		goto got_empty;
6106 
6107 	if (put_fail)
6108 		 stat(s, BARN_PUT_FAIL);
6109 
6110 	if (!sheaf_flush_main(s))
6111 		return NULL;
6112 
6113 	if (!local_trylock(&s->cpu_sheaves->lock))
6114 		return NULL;
6115 
6116 	pcs = this_cpu_ptr(s->cpu_sheaves);
6117 
6118 	/*
6119 	 * we flushed the main sheaf so it should be empty now,
6120 	 * but in case we got preempted or migrated, we need to
6121 	 * check again
6122 	 */
6123 	if (pcs->main->size == s->sheaf_capacity)
6124 		goto restart;
6125 
6126 	return pcs;
6127 
6128 got_empty:
6129 	if (!local_trylock(&s->cpu_sheaves->lock)) {
6130 		barn_put_empty_sheaf(barn, empty);
6131 		return NULL;
6132 	}
6133 
6134 	pcs = this_cpu_ptr(s->cpu_sheaves);
6135 	__pcs_install_empty_sheaf(s, pcs, empty, barn);
6136 
6137 	return pcs;
6138 }
6139 
6140 /*
6141  * Free an object to the percpu sheaves.
6142  * The object is expected to have passed slab_free_hook() already.
6143  */
6144 static __fastpath_inline
free_to_pcs(struct kmem_cache * s,void * object)6145 bool free_to_pcs(struct kmem_cache *s, void *object)
6146 {
6147 	struct slub_percpu_sheaves *pcs;
6148 
6149 	if (!local_trylock(&s->cpu_sheaves->lock))
6150 		return false;
6151 
6152 	pcs = this_cpu_ptr(s->cpu_sheaves);
6153 
6154 	if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6155 
6156 		pcs = __pcs_replace_full_main(s, pcs);
6157 		if (unlikely(!pcs))
6158 			return false;
6159 	}
6160 
6161 	pcs->main->objects[pcs->main->size++] = object;
6162 
6163 	local_unlock(&s->cpu_sheaves->lock);
6164 
6165 	stat(s, FREE_PCS);
6166 
6167 	return true;
6168 }
6169 
rcu_free_sheaf(struct rcu_head * head)6170 static void rcu_free_sheaf(struct rcu_head *head)
6171 {
6172 	struct kmem_cache_node *n;
6173 	struct slab_sheaf *sheaf;
6174 	struct node_barn *barn = NULL;
6175 	struct kmem_cache *s;
6176 
6177 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
6178 
6179 	s = sheaf->cache;
6180 
6181 	/*
6182 	 * This may remove some objects due to slab_free_hook() returning false,
6183 	 * so that the sheaf might no longer be completely full. But it's easier
6184 	 * to handle it as full (unless it became completely empty), as the code
6185 	 * handles it fine. The only downside is that sheaf will serve fewer
6186 	 * allocations when reused. It only happens due to debugging, which is a
6187 	 * performance hit anyway.
6188 	 */
6189 	__rcu_free_sheaf_prepare(s, sheaf);
6190 
6191 	n = get_node(s, sheaf->node);
6192 	if (!n)
6193 		goto flush;
6194 
6195 	barn = n->barn;
6196 
6197 	/* due to slab_free_hook() */
6198 	if (unlikely(sheaf->size == 0))
6199 		goto empty;
6200 
6201 	/*
6202 	 * Checking nr_full/nr_empty outside lock avoids contention in case the
6203 	 * barn is at the respective limit. Due to the race we might go over the
6204 	 * limit but that should be rare and harmless.
6205 	 */
6206 
6207 	if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6208 		stat(s, BARN_PUT);
6209 		barn_put_full_sheaf(barn, sheaf);
6210 		return;
6211 	}
6212 
6213 flush:
6214 	stat(s, BARN_PUT_FAIL);
6215 	sheaf_flush_unused(s, sheaf);
6216 
6217 empty:
6218 	if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6219 		barn_put_empty_sheaf(barn, sheaf);
6220 		return;
6221 	}
6222 
6223 	free_empty_sheaf(s, sheaf);
6224 }
6225 
__kfree_rcu_sheaf(struct kmem_cache * s,void * obj)6226 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6227 {
6228 	struct slub_percpu_sheaves *pcs;
6229 	struct slab_sheaf *rcu_sheaf;
6230 
6231 	if (!local_trylock(&s->cpu_sheaves->lock))
6232 		goto fail;
6233 
6234 	pcs = this_cpu_ptr(s->cpu_sheaves);
6235 
6236 	if (unlikely(!pcs->rcu_free)) {
6237 
6238 		struct slab_sheaf *empty;
6239 		struct node_barn *barn;
6240 
6241 		if (pcs->spare && pcs->spare->size == 0) {
6242 			pcs->rcu_free = pcs->spare;
6243 			pcs->spare = NULL;
6244 			goto do_free;
6245 		}
6246 
6247 		barn = get_barn(s);
6248 		if (!barn) {
6249 			local_unlock(&s->cpu_sheaves->lock);
6250 			goto fail;
6251 		}
6252 
6253 		empty = barn_get_empty_sheaf(barn);
6254 
6255 		if (empty) {
6256 			pcs->rcu_free = empty;
6257 			goto do_free;
6258 		}
6259 
6260 		local_unlock(&s->cpu_sheaves->lock);
6261 
6262 		empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6263 
6264 		if (!empty)
6265 			goto fail;
6266 
6267 		if (!local_trylock(&s->cpu_sheaves->lock)) {
6268 			barn_put_empty_sheaf(barn, empty);
6269 			goto fail;
6270 		}
6271 
6272 		pcs = this_cpu_ptr(s->cpu_sheaves);
6273 
6274 		if (unlikely(pcs->rcu_free))
6275 			barn_put_empty_sheaf(barn, empty);
6276 		else
6277 			pcs->rcu_free = empty;
6278 	}
6279 
6280 do_free:
6281 
6282 	rcu_sheaf = pcs->rcu_free;
6283 
6284 	/*
6285 	 * Since we flush immediately when size reaches capacity, we never reach
6286 	 * this with size already at capacity, so no OOB write is possible.
6287 	 */
6288 	rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6289 
6290 	if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6291 		rcu_sheaf = NULL;
6292 	} else {
6293 		pcs->rcu_free = NULL;
6294 		rcu_sheaf->node = numa_mem_id();
6295 	}
6296 
6297 	/*
6298 	 * we flush before local_unlock to make sure a racing
6299 	 * flush_all_rcu_sheaves() doesn't miss this sheaf
6300 	 */
6301 	if (rcu_sheaf)
6302 		call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6303 
6304 	local_unlock(&s->cpu_sheaves->lock);
6305 
6306 	stat(s, FREE_RCU_SHEAF);
6307 	return true;
6308 
6309 fail:
6310 	stat(s, FREE_RCU_SHEAF_FAIL);
6311 	return false;
6312 }
6313 
6314 /*
6315  * Bulk free objects to the percpu sheaves.
6316  * Unlike free_to_pcs() this includes the calls to all necessary hooks
6317  * and the fallback to freeing to slab pages.
6318  */
free_to_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)6319 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6320 {
6321 	struct slub_percpu_sheaves *pcs;
6322 	struct slab_sheaf *main, *empty;
6323 	bool init = slab_want_init_on_free(s);
6324 	unsigned int batch, i = 0;
6325 	struct node_barn *barn;
6326 	void *remote_objects[PCS_BATCH_MAX];
6327 	unsigned int remote_nr = 0;
6328 	int node = numa_mem_id();
6329 
6330 next_remote_batch:
6331 	while (i < size) {
6332 		struct slab *slab = virt_to_slab(p[i]);
6333 
6334 		memcg_slab_free_hook(s, slab, p + i, 1);
6335 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6336 
6337 		if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6338 			p[i] = p[--size];
6339 			if (!size)
6340 				goto flush_remote;
6341 			continue;
6342 		}
6343 
6344 		if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) {
6345 			remote_objects[remote_nr] = p[i];
6346 			p[i] = p[--size];
6347 			if (++remote_nr >= PCS_BATCH_MAX)
6348 				goto flush_remote;
6349 			continue;
6350 		}
6351 
6352 		i++;
6353 	}
6354 
6355 next_batch:
6356 	if (!local_trylock(&s->cpu_sheaves->lock))
6357 		goto fallback;
6358 
6359 	pcs = this_cpu_ptr(s->cpu_sheaves);
6360 
6361 	if (likely(pcs->main->size < s->sheaf_capacity))
6362 		goto do_free;
6363 
6364 	barn = get_barn(s);
6365 	if (!barn)
6366 		goto no_empty;
6367 
6368 	if (!pcs->spare) {
6369 		empty = barn_get_empty_sheaf(barn);
6370 		if (!empty)
6371 			goto no_empty;
6372 
6373 		pcs->spare = pcs->main;
6374 		pcs->main = empty;
6375 		goto do_free;
6376 	}
6377 
6378 	if (pcs->spare->size < s->sheaf_capacity) {
6379 		swap(pcs->main, pcs->spare);
6380 		goto do_free;
6381 	}
6382 
6383 	empty = barn_replace_full_sheaf(barn, pcs->main);
6384 	if (IS_ERR(empty)) {
6385 		stat(s, BARN_PUT_FAIL);
6386 		goto no_empty;
6387 	}
6388 
6389 	stat(s, BARN_PUT);
6390 	pcs->main = empty;
6391 
6392 do_free:
6393 	main = pcs->main;
6394 	batch = min(size, s->sheaf_capacity - main->size);
6395 
6396 	memcpy(main->objects + main->size, p, batch * sizeof(void *));
6397 	main->size += batch;
6398 
6399 	local_unlock(&s->cpu_sheaves->lock);
6400 
6401 	stat_add(s, FREE_PCS, batch);
6402 
6403 	if (batch < size) {
6404 		p += batch;
6405 		size -= batch;
6406 		goto next_batch;
6407 	}
6408 
6409 	return;
6410 
6411 no_empty:
6412 	local_unlock(&s->cpu_sheaves->lock);
6413 
6414 	/*
6415 	 * if we depleted all empty sheaves in the barn or there are too
6416 	 * many full sheaves, free the rest to slab pages
6417 	 */
6418 fallback:
6419 	__kmem_cache_free_bulk(s, size, p);
6420 
6421 flush_remote:
6422 	if (remote_nr) {
6423 		__kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6424 		if (i < size) {
6425 			remote_nr = 0;
6426 			goto next_remote_batch;
6427 		}
6428 	}
6429 }
6430 
6431 struct defer_free {
6432 	struct llist_head objects;
6433 	struct llist_head slabs;
6434 	struct irq_work work;
6435 };
6436 
6437 static void free_deferred_objects(struct irq_work *work);
6438 
6439 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6440 	.objects = LLIST_HEAD_INIT(objects),
6441 	.slabs = LLIST_HEAD_INIT(slabs),
6442 	.work = IRQ_WORK_INIT(free_deferred_objects),
6443 };
6444 
6445 /*
6446  * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6447  * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6448  * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6449  */
free_deferred_objects(struct irq_work * work)6450 static void free_deferred_objects(struct irq_work *work)
6451 {
6452 	struct defer_free *df = container_of(work, struct defer_free, work);
6453 	struct llist_head *objs = &df->objects;
6454 	struct llist_head *slabs = &df->slabs;
6455 	struct llist_node *llnode, *pos, *t;
6456 
6457 	if (llist_empty(objs) && llist_empty(slabs))
6458 		return;
6459 
6460 	llnode = llist_del_all(objs);
6461 	llist_for_each_safe(pos, t, llnode) {
6462 		struct kmem_cache *s;
6463 		struct slab *slab;
6464 		void *x = pos;
6465 
6466 		slab = virt_to_slab(x);
6467 		s = slab->slab_cache;
6468 
6469 		/* Point 'x' back to the beginning of allocated object */
6470 		x -= s->offset;
6471 
6472 		/*
6473 		 * We used freepointer in 'x' to link 'x' into df->objects.
6474 		 * Clear it to NULL to avoid false positive detection
6475 		 * of "Freepointer corruption".
6476 		 */
6477 		set_freepointer(s, x, NULL);
6478 
6479 		__slab_free(s, slab, x, x, 1, _THIS_IP_);
6480 	}
6481 
6482 	llnode = llist_del_all(slabs);
6483 	llist_for_each_safe(pos, t, llnode) {
6484 		struct slab *slab = container_of(pos, struct slab, llnode);
6485 
6486 #ifdef CONFIG_SLUB_TINY
6487 		free_slab(slab->slab_cache, slab);
6488 #else
6489 		if (slab->frozen)
6490 			deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6491 		else
6492 			free_slab(slab->slab_cache, slab);
6493 #endif
6494 	}
6495 }
6496 
defer_free(struct kmem_cache * s,void * head)6497 static void defer_free(struct kmem_cache *s, void *head)
6498 {
6499 	struct defer_free *df;
6500 
6501 	guard(preempt)();
6502 
6503 	df = this_cpu_ptr(&defer_free_objects);
6504 	if (llist_add(head + s->offset, &df->objects))
6505 		irq_work_queue(&df->work);
6506 }
6507 
defer_deactivate_slab(struct slab * slab,void * flush_freelist)6508 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6509 {
6510 	struct defer_free *df;
6511 
6512 	slab->flush_freelist = flush_freelist;
6513 
6514 	guard(preempt)();
6515 
6516 	df = this_cpu_ptr(&defer_free_objects);
6517 	if (llist_add(&slab->llnode, &df->slabs))
6518 		irq_work_queue(&df->work);
6519 }
6520 
defer_free_barrier(void)6521 void defer_free_barrier(void)
6522 {
6523 	int cpu;
6524 
6525 	for_each_possible_cpu(cpu)
6526 		irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6527 }
6528 
6529 #ifndef CONFIG_SLUB_TINY
6530 /*
6531  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6532  * can perform fastpath freeing without additional function calls.
6533  *
6534  * The fastpath is only possible if we are freeing to the current cpu slab
6535  * of this processor. This typically the case if we have just allocated
6536  * the item before.
6537  *
6538  * If fastpath is not possible then fall back to __slab_free where we deal
6539  * with all sorts of special processing.
6540  *
6541  * Bulk free of a freelist with several objects (all pointing to the
6542  * same slab) possible by specifying head and tail ptr, plus objects
6543  * count (cnt). Bulk free indicated by tail pointer being set.
6544  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6545 static __always_inline void do_slab_free(struct kmem_cache *s,
6546 				struct slab *slab, void *head, void *tail,
6547 				int cnt, unsigned long addr)
6548 {
6549 	/* cnt == 0 signals that it's called from kfree_nolock() */
6550 	bool allow_spin = cnt;
6551 	struct kmem_cache_cpu *c;
6552 	unsigned long tid;
6553 	void **freelist;
6554 
6555 redo:
6556 	/*
6557 	 * Determine the currently cpus per cpu slab.
6558 	 * The cpu may change afterward. However that does not matter since
6559 	 * data is retrieved via this pointer. If we are on the same cpu
6560 	 * during the cmpxchg then the free will succeed.
6561 	 */
6562 	c = raw_cpu_ptr(s->cpu_slab);
6563 	tid = READ_ONCE(c->tid);
6564 
6565 	/* Same with comment on barrier() in __slab_alloc_node() */
6566 	barrier();
6567 
6568 	if (unlikely(slab != c->slab)) {
6569 		if (unlikely(!allow_spin)) {
6570 			/*
6571 			 * __slab_free() can locklessly cmpxchg16 into a slab,
6572 			 * but then it might need to take spin_lock or local_lock
6573 			 * in put_cpu_partial() for further processing.
6574 			 * Avoid the complexity and simply add to a deferred list.
6575 			 */
6576 			defer_free(s, head);
6577 		} else {
6578 			__slab_free(s, slab, head, tail, cnt, addr);
6579 		}
6580 		return;
6581 	}
6582 
6583 	if (unlikely(!allow_spin)) {
6584 		if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6585 		    local_lock_is_locked(&s->cpu_slab->lock)) {
6586 			defer_free(s, head);
6587 			return;
6588 		}
6589 		cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6590 	}
6591 
6592 	if (USE_LOCKLESS_FAST_PATH()) {
6593 		freelist = READ_ONCE(c->freelist);
6594 
6595 		set_freepointer(s, tail, freelist);
6596 
6597 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6598 			note_cmpxchg_failure("slab_free", s, tid);
6599 			goto redo;
6600 		}
6601 	} else {
6602 		__maybe_unused unsigned long flags = 0;
6603 
6604 		/* Update the free list under the local lock */
6605 		local_lock_cpu_slab(s, flags);
6606 		c = this_cpu_ptr(s->cpu_slab);
6607 		if (unlikely(slab != c->slab)) {
6608 			local_unlock_cpu_slab(s, flags);
6609 			goto redo;
6610 		}
6611 		tid = c->tid;
6612 		freelist = c->freelist;
6613 
6614 		set_freepointer(s, tail, freelist);
6615 		c->freelist = head;
6616 		c->tid = next_tid(tid);
6617 
6618 		local_unlock_cpu_slab(s, flags);
6619 	}
6620 	stat_add(s, FREE_FASTPATH, cnt);
6621 }
6622 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6623 static void do_slab_free(struct kmem_cache *s,
6624 				struct slab *slab, void *head, void *tail,
6625 				int cnt, unsigned long addr)
6626 {
6627 	__slab_free(s, slab, head, tail, cnt, addr);
6628 }
6629 #endif /* CONFIG_SLUB_TINY */
6630 
6631 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)6632 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6633 	       unsigned long addr)
6634 {
6635 	memcg_slab_free_hook(s, slab, &object, 1);
6636 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
6637 
6638 	if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6639 		return;
6640 
6641 	if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6642 				     slab_nid(slab) == numa_mem_id())) {
6643 		if (likely(free_to_pcs(s, object)))
6644 			return;
6645 	}
6646 
6647 	do_slab_free(s, slab, object, object, 1, addr);
6648 }
6649 
6650 #ifdef CONFIG_MEMCG
6651 /* Do not inline the rare memcg charging failed path into the allocation path */
6652 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)6653 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6654 {
6655 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6656 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6657 }
6658 #endif
6659 
6660 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)6661 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6662 		    void *tail, void **p, int cnt, unsigned long addr)
6663 {
6664 	memcg_slab_free_hook(s, slab, p, cnt);
6665 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
6666 	/*
6667 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6668 	 * to remove objects, whose reuse must be delayed.
6669 	 */
6670 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6671 		do_slab_free(s, slab, head, tail, cnt, addr);
6672 }
6673 
6674 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)6675 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6676 {
6677 	struct rcu_delayed_free *delayed_free =
6678 			container_of(rcu_head, struct rcu_delayed_free, head);
6679 	void *object = delayed_free->object;
6680 	struct slab *slab = virt_to_slab(object);
6681 	struct kmem_cache *s;
6682 
6683 	kfree(delayed_free);
6684 
6685 	if (WARN_ON(is_kfence_address(object)))
6686 		return;
6687 
6688 	/* find the object and the cache again */
6689 	if (WARN_ON(!slab))
6690 		return;
6691 	s = slab->slab_cache;
6692 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6693 		return;
6694 
6695 	/* resume freeing */
6696 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6697 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6698 }
6699 #endif /* CONFIG_SLUB_RCU_DEBUG */
6700 
6701 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)6702 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6703 {
6704 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6705 }
6706 #endif
6707 
virt_to_cache(const void * obj)6708 static inline struct kmem_cache *virt_to_cache(const void *obj)
6709 {
6710 	struct slab *slab;
6711 
6712 	slab = virt_to_slab(obj);
6713 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6714 		return NULL;
6715 	return slab->slab_cache;
6716 }
6717 
cache_from_obj(struct kmem_cache * s,void * x)6718 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6719 {
6720 	struct kmem_cache *cachep;
6721 
6722 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6723 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6724 		return s;
6725 
6726 	cachep = virt_to_cache(x);
6727 	if (WARN(cachep && cachep != s,
6728 		 "%s: Wrong slab cache. %s but object is from %s\n",
6729 		 __func__, s->name, cachep->name))
6730 		print_tracking(cachep, x);
6731 	return cachep;
6732 }
6733 
6734 /**
6735  * kmem_cache_free - Deallocate an object
6736  * @s: The cache the allocation was from.
6737  * @x: The previously allocated object.
6738  *
6739  * Free an object which was previously allocated from this
6740  * cache.
6741  */
kmem_cache_free(struct kmem_cache * s,void * x)6742 void kmem_cache_free(struct kmem_cache *s, void *x)
6743 {
6744 	s = cache_from_obj(s, x);
6745 	if (!s)
6746 		return;
6747 	trace_kmem_cache_free(_RET_IP_, x, s);
6748 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
6749 }
6750 EXPORT_SYMBOL(kmem_cache_free);
6751 
free_large_kmalloc(struct folio * folio,void * object)6752 static void free_large_kmalloc(struct folio *folio, void *object)
6753 {
6754 	unsigned int order = folio_order(folio);
6755 
6756 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
6757 		dump_page(&folio->page, "Not a kmalloc allocation");
6758 		return;
6759 	}
6760 
6761 	if (WARN_ON_ONCE(order == 0))
6762 		pr_warn_once("object pointer: 0x%p\n", object);
6763 
6764 	kmemleak_free(object);
6765 	kasan_kfree_large(object);
6766 	kmsan_kfree_large(object);
6767 
6768 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
6769 			      -(PAGE_SIZE << order));
6770 	__folio_clear_large_kmalloc(folio);
6771 	free_frozen_pages(&folio->page, order);
6772 }
6773 
6774 /*
6775  * Given an rcu_head embedded within an object obtained from kvmalloc at an
6776  * offset < 4k, free the object in question.
6777  */
kvfree_rcu_cb(struct rcu_head * head)6778 void kvfree_rcu_cb(struct rcu_head *head)
6779 {
6780 	void *obj = head;
6781 	struct folio *folio;
6782 	struct slab *slab;
6783 	struct kmem_cache *s;
6784 	void *slab_addr;
6785 
6786 	if (is_vmalloc_addr(obj)) {
6787 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6788 		vfree(obj);
6789 		return;
6790 	}
6791 
6792 	folio = virt_to_folio(obj);
6793 	if (!folio_test_slab(folio)) {
6794 		/*
6795 		 * rcu_head offset can be only less than page size so no need to
6796 		 * consider folio order
6797 		 */
6798 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6799 		free_large_kmalloc(folio, obj);
6800 		return;
6801 	}
6802 
6803 	slab = folio_slab(folio);
6804 	s = slab->slab_cache;
6805 	slab_addr = folio_address(folio);
6806 
6807 	if (is_kfence_address(obj)) {
6808 		obj = kfence_object_start(obj);
6809 	} else {
6810 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
6811 
6812 		obj = slab_addr + s->size * idx;
6813 		obj = fixup_red_left(s, obj);
6814 	}
6815 
6816 	slab_free(s, slab, obj, _RET_IP_);
6817 }
6818 
6819 /**
6820  * kfree - free previously allocated memory
6821  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6822  *
6823  * If @object is NULL, no operation is performed.
6824  */
kfree(const void * object)6825 void kfree(const void *object)
6826 {
6827 	struct folio *folio;
6828 	struct slab *slab;
6829 	struct kmem_cache *s;
6830 	void *x = (void *)object;
6831 
6832 	trace_kfree(_RET_IP_, object);
6833 
6834 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6835 		return;
6836 
6837 	folio = virt_to_folio(object);
6838 	if (unlikely(!folio_test_slab(folio))) {
6839 		free_large_kmalloc(folio, (void *)object);
6840 		return;
6841 	}
6842 
6843 	slab = folio_slab(folio);
6844 	s = slab->slab_cache;
6845 	slab_free(s, slab, x, _RET_IP_);
6846 }
6847 EXPORT_SYMBOL(kfree);
6848 
6849 /*
6850  * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6851  * but ONLY for objects allocated by kmalloc_nolock().
6852  * Debug checks (like kmemleak and kfence) were skipped on allocation,
6853  * hence
6854  * obj = kmalloc(); kfree_nolock(obj);
6855  * will miss kmemleak/kfence book keeping and will cause false positives.
6856  * large_kmalloc is not supported either.
6857  */
kfree_nolock(const void * object)6858 void kfree_nolock(const void *object)
6859 {
6860 	struct folio *folio;
6861 	struct slab *slab;
6862 	struct kmem_cache *s;
6863 	void *x = (void *)object;
6864 
6865 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6866 		return;
6867 
6868 	folio = virt_to_folio(object);
6869 	if (unlikely(!folio_test_slab(folio))) {
6870 		WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6871 		return;
6872 	}
6873 
6874 	slab = folio_slab(folio);
6875 	s = slab->slab_cache;
6876 
6877 	memcg_slab_free_hook(s, slab, &x, 1);
6878 	alloc_tagging_slab_free_hook(s, slab, &x, 1);
6879 	/*
6880 	 * Unlike slab_free() do NOT call the following:
6881 	 * kmemleak_free_recursive(x, s->flags);
6882 	 * debug_check_no_locks_freed(x, s->object_size);
6883 	 * debug_check_no_obj_freed(x, s->object_size);
6884 	 * __kcsan_check_access(x, s->object_size, ..);
6885 	 * kfence_free(x);
6886 	 * since they take spinlocks or not safe from any context.
6887 	 */
6888 	kmsan_slab_free(s, x);
6889 	/*
6890 	 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6891 	 * which will call raw_spin_lock_irqsave() which is technically
6892 	 * unsafe from NMI, but take chance and report kernel bug.
6893 	 * The sequence of
6894 	 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6895 	 *  -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6896 	 * is double buggy and deserves to deadlock.
6897 	 */
6898 	if (kasan_slab_pre_free(s, x))
6899 		return;
6900 	/*
6901 	 * memcg, kasan_slab_pre_free are done for 'x'.
6902 	 * The only thing left is kasan_poison without quarantine,
6903 	 * since kasan quarantine takes locks and not supported from NMI.
6904 	 */
6905 	kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6906 #ifndef CONFIG_SLUB_TINY
6907 	do_slab_free(s, slab, x, x, 0, _RET_IP_);
6908 #else
6909 	defer_free(s, x);
6910 #endif
6911 }
6912 EXPORT_SYMBOL_GPL(kfree_nolock);
6913 
6914 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6915 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6916 {
6917 	void *ret;
6918 	size_t ks = 0;
6919 	int orig_size = 0;
6920 	struct kmem_cache *s = NULL;
6921 
6922 	if (unlikely(ZERO_OR_NULL_PTR(p)))
6923 		goto alloc_new;
6924 
6925 	/* Check for double-free. */
6926 	if (!kasan_check_byte(p))
6927 		return NULL;
6928 
6929 	/*
6930 	 * If reallocation is not necessary (e. g. the new size is less
6931 	 * than the current allocated size), the current allocation will be
6932 	 * preserved unless __GFP_THISNODE is set. In the latter case a new
6933 	 * allocation on the requested node will be attempted.
6934 	 */
6935 	if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6936 		     nid != page_to_nid(virt_to_page(p)))
6937 		goto alloc_new;
6938 
6939 	if (is_kfence_address(p)) {
6940 		ks = orig_size = kfence_ksize(p);
6941 	} else {
6942 		struct folio *folio;
6943 
6944 		folio = virt_to_folio(p);
6945 		if (unlikely(!folio_test_slab(folio))) {
6946 			/* Big kmalloc object */
6947 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
6948 			WARN_ON(p != folio_address(folio));
6949 			ks = folio_size(folio);
6950 		} else {
6951 			s = folio_slab(folio)->slab_cache;
6952 			orig_size = get_orig_size(s, (void *)p);
6953 			ks = s->object_size;
6954 		}
6955 	}
6956 
6957 	/* If the old object doesn't fit, allocate a bigger one */
6958 	if (new_size > ks)
6959 		goto alloc_new;
6960 
6961 	/* If the old object doesn't satisfy the new alignment, allocate a new one */
6962 	if (!IS_ALIGNED((unsigned long)p, align))
6963 		goto alloc_new;
6964 
6965 	/* Zero out spare memory. */
6966 	if (want_init_on_alloc(flags)) {
6967 		kasan_disable_current();
6968 		if (orig_size && orig_size < new_size)
6969 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6970 		else
6971 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6972 		kasan_enable_current();
6973 	}
6974 
6975 	/* Setup kmalloc redzone when needed */
6976 	if (s && slub_debug_orig_size(s)) {
6977 		set_orig_size(s, (void *)p, new_size);
6978 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
6979 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
6980 						SLUB_RED_ACTIVE, ks - new_size);
6981 	}
6982 
6983 	p = kasan_krealloc(p, new_size, flags);
6984 	return (void *)p;
6985 
6986 alloc_new:
6987 	ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
6988 	if (ret && p) {
6989 		/* Disable KASAN checks as the object's redzone is accessed. */
6990 		kasan_disable_current();
6991 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
6992 		kasan_enable_current();
6993 	}
6994 
6995 	return ret;
6996 }
6997 
6998 /**
6999  * krealloc_node_align - reallocate memory. The contents will remain unchanged.
7000  * @p: object to reallocate memory for.
7001  * @new_size: how many bytes of memory are required.
7002  * @align: desired alignment.
7003  * @flags: the type of memory to allocate.
7004  * @nid: NUMA node or NUMA_NO_NODE
7005  *
7006  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
7007  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7008  *
7009  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7010  * Documentation/core-api/memory-allocation.rst for more details.
7011  *
7012  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7013  * initial memory allocation, every subsequent call to this API for the same
7014  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7015  * __GFP_ZERO is not fully honored by this API.
7016  *
7017  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7018  * size of an allocation (but not the exact size it was allocated with) and
7019  * hence implements the following semantics for shrinking and growing buffers
7020  * with __GFP_ZERO::
7021  *
7022  *           new             bucket
7023  *   0       size             size
7024  *   |--------|----------------|
7025  *   |  keep  |      zero      |
7026  *
7027  * Otherwise, the original allocation size 'orig_size' could be used to
7028  * precisely clear the requested size, and the new size will also be stored
7029  * as the new 'orig_size'.
7030  *
7031  * In any case, the contents of the object pointed to are preserved up to the
7032  * lesser of the new and old sizes.
7033  *
7034  * Return: pointer to the allocated memory or %NULL in case of error
7035  */
krealloc_node_align_noprof(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)7036 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7037 				 gfp_t flags, int nid)
7038 {
7039 	void *ret;
7040 
7041 	if (unlikely(!new_size)) {
7042 		kfree(p);
7043 		return ZERO_SIZE_PTR;
7044 	}
7045 
7046 	ret = __do_krealloc(p, new_size, align, flags, nid);
7047 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7048 		kfree(p);
7049 
7050 	return ret;
7051 }
7052 EXPORT_SYMBOL(krealloc_node_align_noprof);
7053 
kmalloc_gfp_adjust(gfp_t flags,size_t size)7054 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7055 {
7056 	/*
7057 	 * We want to attempt a large physically contiguous block first because
7058 	 * it is less likely to fragment multiple larger blocks and therefore
7059 	 * contribute to a long term fragmentation less than vmalloc fallback.
7060 	 * However make sure that larger requests are not too disruptive - i.e.
7061 	 * do not direct reclaim unless physically continuous memory is preferred
7062 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7063 	 * start working in the background
7064 	 */
7065 	if (size > PAGE_SIZE) {
7066 		flags |= __GFP_NOWARN;
7067 
7068 		if (!(flags & __GFP_RETRY_MAYFAIL))
7069 			flags &= ~__GFP_DIRECT_RECLAIM;
7070 
7071 		/* nofail semantic is implemented by the vmalloc fallback */
7072 		flags &= ~__GFP_NOFAIL;
7073 	}
7074 
7075 	return flags;
7076 }
7077 
7078 /**
7079  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7080  * failure, fall back to non-contiguous (vmalloc) allocation.
7081  * @size: size of the request.
7082  * @b: which set of kmalloc buckets to allocate from.
7083  * @align: desired alignment.
7084  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7085  * @node: numa node to allocate from
7086  *
7087  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7088  * Documentation/core-api/memory-allocation.rst for more details.
7089  *
7090  * Uses kmalloc to get the memory but if the allocation fails then falls back
7091  * to the vmalloc allocator. Use kvfree for freeing the memory.
7092  *
7093  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7094  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7095  * preferable to the vmalloc fallback, due to visible performance drawbacks.
7096  *
7097  * Return: pointer to the allocated memory of %NULL in case of failure
7098  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),unsigned long align,gfp_t flags,int node)7099 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7100 			     gfp_t flags, int node)
7101 {
7102 	void *ret;
7103 
7104 	/*
7105 	 * It doesn't really make sense to fallback to vmalloc for sub page
7106 	 * requests
7107 	 */
7108 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7109 				kmalloc_gfp_adjust(flags, size),
7110 				node, _RET_IP_);
7111 	if (ret || size <= PAGE_SIZE)
7112 		return ret;
7113 
7114 	/* non-sleeping allocations are not supported by vmalloc */
7115 	if (!gfpflags_allow_blocking(flags))
7116 		return NULL;
7117 
7118 	/* Don't even allow crazy sizes */
7119 	if (unlikely(size > INT_MAX)) {
7120 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7121 		return NULL;
7122 	}
7123 
7124 	/*
7125 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7126 	 * since the callers already cannot assume anything
7127 	 * about the resulting pointer, and cannot play
7128 	 * protection games.
7129 	 */
7130 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7131 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7132 			node, __builtin_return_address(0));
7133 }
7134 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7135 
7136 /**
7137  * kvfree() - Free memory.
7138  * @addr: Pointer to allocated memory.
7139  *
7140  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7141  * It is slightly more efficient to use kfree() or vfree() if you are certain
7142  * that you know which one to use.
7143  *
7144  * Context: Either preemptible task context or not-NMI interrupt.
7145  */
kvfree(const void * addr)7146 void kvfree(const void *addr)
7147 {
7148 	if (is_vmalloc_addr(addr))
7149 		vfree(addr);
7150 	else
7151 		kfree(addr);
7152 }
7153 EXPORT_SYMBOL(kvfree);
7154 
7155 /**
7156  * kvfree_sensitive - Free a data object containing sensitive information.
7157  * @addr: address of the data object to be freed.
7158  * @len: length of the data object.
7159  *
7160  * Use the special memzero_explicit() function to clear the content of a
7161  * kvmalloc'ed object containing sensitive data to make sure that the
7162  * compiler won't optimize out the data clearing.
7163  */
kvfree_sensitive(const void * addr,size_t len)7164 void kvfree_sensitive(const void *addr, size_t len)
7165 {
7166 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
7167 		memzero_explicit((void *)addr, len);
7168 		kvfree(addr);
7169 	}
7170 }
7171 EXPORT_SYMBOL(kvfree_sensitive);
7172 
7173 /**
7174  * kvrealloc_node_align - reallocate memory; contents remain unchanged
7175  * @p: object to reallocate memory for
7176  * @size: the size to reallocate
7177  * @align: desired alignment
7178  * @flags: the flags for the page level allocator
7179  * @nid: NUMA node id
7180  *
7181  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7182  * and @p is not a %NULL pointer, the object pointed to is freed.
7183  *
7184  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7185  * Documentation/core-api/memory-allocation.rst for more details.
7186  *
7187  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7188  * initial memory allocation, every subsequent call to this API for the same
7189  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7190  * __GFP_ZERO is not fully honored by this API.
7191  *
7192  * In any case, the contents of the object pointed to are preserved up to the
7193  * lesser of the new and old sizes.
7194  *
7195  * This function must not be called concurrently with itself or kvfree() for the
7196  * same memory allocation.
7197  *
7198  * Return: pointer to the allocated memory or %NULL in case of error
7199  */
kvrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)7200 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7201 				  gfp_t flags, int nid)
7202 {
7203 	void *n;
7204 
7205 	if (is_vmalloc_addr(p))
7206 		return vrealloc_node_align_noprof(p, size, align, flags, nid);
7207 
7208 	n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7209 	if (!n) {
7210 		/* We failed to krealloc(), fall back to kvmalloc(). */
7211 		n = kvmalloc_node_align_noprof(size, align, flags, nid);
7212 		if (!n)
7213 			return NULL;
7214 
7215 		if (p) {
7216 			/* We already know that `p` is not a vmalloc address. */
7217 			kasan_disable_current();
7218 			memcpy(n, kasan_reset_tag(p), ksize(p));
7219 			kasan_enable_current();
7220 
7221 			kfree(p);
7222 		}
7223 	}
7224 
7225 	return n;
7226 }
7227 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7228 
7229 struct detached_freelist {
7230 	struct slab *slab;
7231 	void *tail;
7232 	void *freelist;
7233 	int cnt;
7234 	struct kmem_cache *s;
7235 };
7236 
7237 /*
7238  * This function progressively scans the array with free objects (with
7239  * a limited look ahead) and extract objects belonging to the same
7240  * slab.  It builds a detached freelist directly within the given
7241  * slab/objects.  This can happen without any need for
7242  * synchronization, because the objects are owned by running process.
7243  * The freelist is build up as a single linked list in the objects.
7244  * The idea is, that this detached freelist can then be bulk
7245  * transferred to the real freelist(s), but only requiring a single
7246  * synchronization primitive.  Look ahead in the array is limited due
7247  * to performance reasons.
7248  */
7249 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)7250 int build_detached_freelist(struct kmem_cache *s, size_t size,
7251 			    void **p, struct detached_freelist *df)
7252 {
7253 	int lookahead = 3;
7254 	void *object;
7255 	struct folio *folio;
7256 	size_t same;
7257 
7258 	object = p[--size];
7259 	folio = virt_to_folio(object);
7260 	if (!s) {
7261 		/* Handle kalloc'ed objects */
7262 		if (unlikely(!folio_test_slab(folio))) {
7263 			free_large_kmalloc(folio, object);
7264 			df->slab = NULL;
7265 			return size;
7266 		}
7267 		/* Derive kmem_cache from object */
7268 		df->slab = folio_slab(folio);
7269 		df->s = df->slab->slab_cache;
7270 	} else {
7271 		df->slab = folio_slab(folio);
7272 		df->s = cache_from_obj(s, object); /* Support for memcg */
7273 	}
7274 
7275 	/* Start new detached freelist */
7276 	df->tail = object;
7277 	df->freelist = object;
7278 	df->cnt = 1;
7279 
7280 	if (is_kfence_address(object))
7281 		return size;
7282 
7283 	set_freepointer(df->s, object, NULL);
7284 
7285 	same = size;
7286 	while (size) {
7287 		object = p[--size];
7288 		/* df->slab is always set at this point */
7289 		if (df->slab == virt_to_slab(object)) {
7290 			/* Opportunity build freelist */
7291 			set_freepointer(df->s, object, df->freelist);
7292 			df->freelist = object;
7293 			df->cnt++;
7294 			same--;
7295 			if (size != same)
7296 				swap(p[size], p[same]);
7297 			continue;
7298 		}
7299 
7300 		/* Limit look ahead search */
7301 		if (!--lookahead)
7302 			break;
7303 	}
7304 
7305 	return same;
7306 }
7307 
7308 /*
7309  * Internal bulk free of objects that were not initialised by the post alloc
7310  * hooks and thus should not be processed by the free hooks
7311  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7312 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7313 {
7314 	if (!size)
7315 		return;
7316 
7317 	do {
7318 		struct detached_freelist df;
7319 
7320 		size = build_detached_freelist(s, size, p, &df);
7321 		if (!df.slab)
7322 			continue;
7323 
7324 		if (kfence_free(df.freelist))
7325 			continue;
7326 
7327 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7328 			     _RET_IP_);
7329 	} while (likely(size));
7330 }
7331 
7332 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7333 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7334 {
7335 	if (!size)
7336 		return;
7337 
7338 	/*
7339 	 * freeing to sheaves is so incompatible with the detached freelist so
7340 	 * once we go that way, we have to do everything differently
7341 	 */
7342 	if (s && s->cpu_sheaves) {
7343 		free_to_pcs_bulk(s, size, p);
7344 		return;
7345 	}
7346 
7347 	do {
7348 		struct detached_freelist df;
7349 
7350 		size = build_detached_freelist(s, size, p, &df);
7351 		if (!df.slab)
7352 			continue;
7353 
7354 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7355 			       df.cnt, _RET_IP_);
7356 	} while (likely(size));
7357 }
7358 EXPORT_SYMBOL(kmem_cache_free_bulk);
7359 
7360 #ifndef CONFIG_SLUB_TINY
7361 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7362 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7363 			    void **p)
7364 {
7365 	struct kmem_cache_cpu *c;
7366 	unsigned long irqflags;
7367 	int i;
7368 
7369 	/*
7370 	 * Drain objects in the per cpu slab, while disabling local
7371 	 * IRQs, which protects against PREEMPT and interrupts
7372 	 * handlers invoking normal fastpath.
7373 	 */
7374 	c = slub_get_cpu_ptr(s->cpu_slab);
7375 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7376 
7377 	for (i = 0; i < size; i++) {
7378 		void *object = kfence_alloc(s, s->object_size, flags);
7379 
7380 		if (unlikely(object)) {
7381 			p[i] = object;
7382 			continue;
7383 		}
7384 
7385 		object = c->freelist;
7386 		if (unlikely(!object)) {
7387 			/*
7388 			 * We may have removed an object from c->freelist using
7389 			 * the fastpath in the previous iteration; in that case,
7390 			 * c->tid has not been bumped yet.
7391 			 * Since ___slab_alloc() may reenable interrupts while
7392 			 * allocating memory, we should bump c->tid now.
7393 			 */
7394 			c->tid = next_tid(c->tid);
7395 
7396 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7397 
7398 			/*
7399 			 * Invoking slow path likely have side-effect
7400 			 * of re-populating per CPU c->freelist
7401 			 */
7402 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7403 					    _RET_IP_, c, s->object_size);
7404 			if (unlikely(!p[i]))
7405 				goto error;
7406 
7407 			c = this_cpu_ptr(s->cpu_slab);
7408 			maybe_wipe_obj_freeptr(s, p[i]);
7409 
7410 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7411 
7412 			continue; /* goto for-loop */
7413 		}
7414 		c->freelist = get_freepointer(s, object);
7415 		p[i] = object;
7416 		maybe_wipe_obj_freeptr(s, p[i]);
7417 		stat(s, ALLOC_FASTPATH);
7418 	}
7419 	c->tid = next_tid(c->tid);
7420 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7421 	slub_put_cpu_ptr(s->cpu_slab);
7422 
7423 	return i;
7424 
7425 error:
7426 	slub_put_cpu_ptr(s->cpu_slab);
7427 	__kmem_cache_free_bulk(s, i, p);
7428 	return 0;
7429 
7430 }
7431 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7432 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
7433 				   size_t size, void **p)
7434 {
7435 	int i;
7436 
7437 	for (i = 0; i < size; i++) {
7438 		void *object = kfence_alloc(s, s->object_size, flags);
7439 
7440 		if (unlikely(object)) {
7441 			p[i] = object;
7442 			continue;
7443 		}
7444 
7445 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
7446 					 _RET_IP_, s->object_size);
7447 		if (unlikely(!p[i]))
7448 			goto error;
7449 
7450 		maybe_wipe_obj_freeptr(s, p[i]);
7451 	}
7452 
7453 	return i;
7454 
7455 error:
7456 	__kmem_cache_free_bulk(s, i, p);
7457 	return 0;
7458 }
7459 #endif /* CONFIG_SLUB_TINY */
7460 
7461 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7462 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7463 				 void **p)
7464 {
7465 	unsigned int i = 0;
7466 
7467 	if (!size)
7468 		return 0;
7469 
7470 	s = slab_pre_alloc_hook(s, flags);
7471 	if (unlikely(!s))
7472 		return 0;
7473 
7474 	if (s->cpu_sheaves)
7475 		i = alloc_from_pcs_bulk(s, size, p);
7476 
7477 	if (i < size) {
7478 		/*
7479 		 * If we ran out of memory, don't bother with freeing back to
7480 		 * the percpu sheaves, we have bigger problems.
7481 		 */
7482 		if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7483 			if (i > 0)
7484 				__kmem_cache_free_bulk(s, i, p);
7485 			return 0;
7486 		}
7487 	}
7488 
7489 	/*
7490 	 * memcg and kmem_cache debug support and memory initialization.
7491 	 * Done outside of the IRQ disabled fastpath loop.
7492 	 */
7493 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7494 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
7495 		return 0;
7496 	}
7497 
7498 	return size;
7499 }
7500 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7501 
7502 /*
7503  * Object placement in a slab is made very easy because we always start at
7504  * offset 0. If we tune the size of the object to the alignment then we can
7505  * get the required alignment by putting one properly sized object after
7506  * another.
7507  *
7508  * Notice that the allocation order determines the sizes of the per cpu
7509  * caches. Each processor has always one slab available for allocations.
7510  * Increasing the allocation order reduces the number of times that slabs
7511  * must be moved on and off the partial lists and is therefore a factor in
7512  * locking overhead.
7513  */
7514 
7515 /*
7516  * Minimum / Maximum order of slab pages. This influences locking overhead
7517  * and slab fragmentation. A higher order reduces the number of partial slabs
7518  * and increases the number of allocations possible without having to
7519  * take the list_lock.
7520  */
7521 static unsigned int slub_min_order;
7522 static unsigned int slub_max_order =
7523 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7524 static unsigned int slub_min_objects;
7525 
7526 /*
7527  * Calculate the order of allocation given an slab object size.
7528  *
7529  * The order of allocation has significant impact on performance and other
7530  * system components. Generally order 0 allocations should be preferred since
7531  * order 0 does not cause fragmentation in the page allocator. Larger objects
7532  * be problematic to put into order 0 slabs because there may be too much
7533  * unused space left. We go to a higher order if more than 1/16th of the slab
7534  * would be wasted.
7535  *
7536  * In order to reach satisfactory performance we must ensure that a minimum
7537  * number of objects is in one slab. Otherwise we may generate too much
7538  * activity on the partial lists which requires taking the list_lock. This is
7539  * less a concern for large slabs though which are rarely used.
7540  *
7541  * slab_max_order specifies the order where we begin to stop considering the
7542  * number of objects in a slab as critical. If we reach slab_max_order then
7543  * we try to keep the page order as low as possible. So we accept more waste
7544  * of space in favor of a small page order.
7545  *
7546  * Higher order allocations also allow the placement of more objects in a
7547  * slab and thereby reduce object handling overhead. If the user has
7548  * requested a higher minimum order then we start with that one instead of
7549  * the smallest order which will fit the object.
7550  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)7551 static inline unsigned int calc_slab_order(unsigned int size,
7552 		unsigned int min_order, unsigned int max_order,
7553 		unsigned int fract_leftover)
7554 {
7555 	unsigned int order;
7556 
7557 	for (order = min_order; order <= max_order; order++) {
7558 
7559 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7560 		unsigned int rem;
7561 
7562 		rem = slab_size % size;
7563 
7564 		if (rem <= slab_size / fract_leftover)
7565 			break;
7566 	}
7567 
7568 	return order;
7569 }
7570 
calculate_order(unsigned int size)7571 static inline int calculate_order(unsigned int size)
7572 {
7573 	unsigned int order;
7574 	unsigned int min_objects;
7575 	unsigned int max_objects;
7576 	unsigned int min_order;
7577 
7578 	min_objects = slub_min_objects;
7579 	if (!min_objects) {
7580 		/*
7581 		 * Some architectures will only update present cpus when
7582 		 * onlining them, so don't trust the number if it's just 1. But
7583 		 * we also don't want to use nr_cpu_ids always, as on some other
7584 		 * architectures, there can be many possible cpus, but never
7585 		 * onlined. Here we compromise between trying to avoid too high
7586 		 * order on systems that appear larger than they are, and too
7587 		 * low order on systems that appear smaller than they are.
7588 		 */
7589 		unsigned int nr_cpus = num_present_cpus();
7590 		if (nr_cpus <= 1)
7591 			nr_cpus = nr_cpu_ids;
7592 		min_objects = 4 * (fls(nr_cpus) + 1);
7593 	}
7594 	/* min_objects can't be 0 because get_order(0) is undefined */
7595 	max_objects = max(order_objects(slub_max_order, size), 1U);
7596 	min_objects = min(min_objects, max_objects);
7597 
7598 	min_order = max_t(unsigned int, slub_min_order,
7599 			  get_order(min_objects * size));
7600 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7601 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7602 
7603 	/*
7604 	 * Attempt to find best configuration for a slab. This works by first
7605 	 * attempting to generate a layout with the best possible configuration
7606 	 * and backing off gradually.
7607 	 *
7608 	 * We start with accepting at most 1/16 waste and try to find the
7609 	 * smallest order from min_objects-derived/slab_min_order up to
7610 	 * slab_max_order that will satisfy the constraint. Note that increasing
7611 	 * the order can only result in same or less fractional waste, not more.
7612 	 *
7613 	 * If that fails, we increase the acceptable fraction of waste and try
7614 	 * again. The last iteration with fraction of 1/2 would effectively
7615 	 * accept any waste and give us the order determined by min_objects, as
7616 	 * long as at least single object fits within slab_max_order.
7617 	 */
7618 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7619 		order = calc_slab_order(size, min_order, slub_max_order,
7620 					fraction);
7621 		if (order <= slub_max_order)
7622 			return order;
7623 	}
7624 
7625 	/*
7626 	 * Doh this slab cannot be placed using slab_max_order.
7627 	 */
7628 	order = get_order(size);
7629 	if (order <= MAX_PAGE_ORDER)
7630 		return order;
7631 	return -ENOSYS;
7632 }
7633 
7634 static void
init_kmem_cache_node(struct kmem_cache_node * n,struct node_barn * barn)7635 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7636 {
7637 	n->nr_partial = 0;
7638 	spin_lock_init(&n->list_lock);
7639 	INIT_LIST_HEAD(&n->partial);
7640 #ifdef CONFIG_SLUB_DEBUG
7641 	atomic_long_set(&n->nr_slabs, 0);
7642 	atomic_long_set(&n->total_objects, 0);
7643 	INIT_LIST_HEAD(&n->full);
7644 #endif
7645 	n->barn = barn;
7646 	if (barn)
7647 		barn_init(barn);
7648 }
7649 
7650 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)7651 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7652 {
7653 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7654 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7655 			sizeof(struct kmem_cache_cpu));
7656 
7657 	/*
7658 	 * Must align to double word boundary for the double cmpxchg
7659 	 * instructions to work; see __pcpu_double_call_return_bool().
7660 	 */
7661 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7662 				     2 * sizeof(void *));
7663 
7664 	if (!s->cpu_slab)
7665 		return 0;
7666 
7667 	init_kmem_cache_cpus(s);
7668 
7669 	return 1;
7670 }
7671 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)7672 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7673 {
7674 	return 1;
7675 }
7676 #endif /* CONFIG_SLUB_TINY */
7677 
init_percpu_sheaves(struct kmem_cache * s)7678 static int init_percpu_sheaves(struct kmem_cache *s)
7679 {
7680 	int cpu;
7681 
7682 	for_each_possible_cpu(cpu) {
7683 		struct slub_percpu_sheaves *pcs;
7684 
7685 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7686 
7687 		local_trylock_init(&pcs->lock);
7688 
7689 		pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7690 
7691 		if (!pcs->main)
7692 			return -ENOMEM;
7693 	}
7694 
7695 	return 0;
7696 }
7697 
7698 static struct kmem_cache *kmem_cache_node;
7699 
7700 /*
7701  * No kmalloc_node yet so do it by hand. We know that this is the first
7702  * slab on the node for this slabcache. There are no concurrent accesses
7703  * possible.
7704  *
7705  * Note that this function only works on the kmem_cache_node
7706  * when allocating for the kmem_cache_node. This is used for bootstrapping
7707  * memory on a fresh node that has no slab structures yet.
7708  */
early_kmem_cache_node_alloc(int node)7709 static void early_kmem_cache_node_alloc(int node)
7710 {
7711 	struct slab *slab;
7712 	struct kmem_cache_node *n;
7713 
7714 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7715 
7716 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7717 
7718 	BUG_ON(!slab);
7719 	if (slab_nid(slab) != node) {
7720 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7721 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7722 	}
7723 
7724 	n = slab->freelist;
7725 	BUG_ON(!n);
7726 #ifdef CONFIG_SLUB_DEBUG
7727 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7728 #endif
7729 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7730 	slab->freelist = get_freepointer(kmem_cache_node, n);
7731 	slab->inuse = 1;
7732 	kmem_cache_node->node[node] = n;
7733 	init_kmem_cache_node(n, NULL);
7734 	inc_slabs_node(kmem_cache_node, node, slab->objects);
7735 
7736 	/*
7737 	 * No locks need to be taken here as it has just been
7738 	 * initialized and there is no concurrent access.
7739 	 */
7740 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
7741 }
7742 
free_kmem_cache_nodes(struct kmem_cache * s)7743 static void free_kmem_cache_nodes(struct kmem_cache *s)
7744 {
7745 	int node;
7746 	struct kmem_cache_node *n;
7747 
7748 	for_each_kmem_cache_node(s, node, n) {
7749 		if (n->barn) {
7750 			WARN_ON(n->barn->nr_full);
7751 			WARN_ON(n->barn->nr_empty);
7752 			kfree(n->barn);
7753 			n->barn = NULL;
7754 		}
7755 
7756 		s->node[node] = NULL;
7757 		kmem_cache_free(kmem_cache_node, n);
7758 	}
7759 }
7760 
__kmem_cache_release(struct kmem_cache * s)7761 void __kmem_cache_release(struct kmem_cache *s)
7762 {
7763 	cache_random_seq_destroy(s);
7764 	if (s->cpu_sheaves)
7765 		pcs_destroy(s);
7766 #ifndef CONFIG_SLUB_TINY
7767 #ifdef CONFIG_PREEMPT_RT
7768 	if (s->cpu_slab)
7769 		lockdep_unregister_key(&s->lock_key);
7770 #endif
7771 	free_percpu(s->cpu_slab);
7772 #endif
7773 	free_kmem_cache_nodes(s);
7774 }
7775 
init_kmem_cache_nodes(struct kmem_cache * s)7776 static int init_kmem_cache_nodes(struct kmem_cache *s)
7777 {
7778 	int node;
7779 
7780 	for_each_node_mask(node, slab_nodes) {
7781 		struct kmem_cache_node *n;
7782 		struct node_barn *barn = NULL;
7783 
7784 		if (slab_state == DOWN) {
7785 			early_kmem_cache_node_alloc(node);
7786 			continue;
7787 		}
7788 
7789 		if (s->cpu_sheaves) {
7790 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7791 
7792 			if (!barn)
7793 				return 0;
7794 		}
7795 
7796 		n = kmem_cache_alloc_node(kmem_cache_node,
7797 						GFP_KERNEL, node);
7798 		if (!n) {
7799 			kfree(barn);
7800 			return 0;
7801 		}
7802 
7803 		init_kmem_cache_node(n, barn);
7804 
7805 		s->node[node] = n;
7806 	}
7807 	return 1;
7808 }
7809 
set_cpu_partial(struct kmem_cache * s)7810 static void set_cpu_partial(struct kmem_cache *s)
7811 {
7812 #ifdef CONFIG_SLUB_CPU_PARTIAL
7813 	unsigned int nr_objects;
7814 
7815 	/*
7816 	 * cpu_partial determined the maximum number of objects kept in the
7817 	 * per cpu partial lists of a processor.
7818 	 *
7819 	 * Per cpu partial lists mainly contain slabs that just have one
7820 	 * object freed. If they are used for allocation then they can be
7821 	 * filled up again with minimal effort. The slab will never hit the
7822 	 * per node partial lists and therefore no locking will be required.
7823 	 *
7824 	 * For backwards compatibility reasons, this is determined as number
7825 	 * of objects, even though we now limit maximum number of pages, see
7826 	 * slub_set_cpu_partial()
7827 	 */
7828 	if (!kmem_cache_has_cpu_partial(s))
7829 		nr_objects = 0;
7830 	else if (s->size >= PAGE_SIZE)
7831 		nr_objects = 6;
7832 	else if (s->size >= 1024)
7833 		nr_objects = 24;
7834 	else if (s->size >= 256)
7835 		nr_objects = 52;
7836 	else
7837 		nr_objects = 120;
7838 
7839 	slub_set_cpu_partial(s, nr_objects);
7840 #endif
7841 }
7842 
7843 /*
7844  * calculate_sizes() determines the order and the distribution of data within
7845  * a slab object.
7846  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)7847 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7848 {
7849 	slab_flags_t flags = s->flags;
7850 	unsigned int size = s->object_size;
7851 	unsigned int order;
7852 
7853 	/*
7854 	 * Round up object size to the next word boundary. We can only
7855 	 * place the free pointer at word boundaries and this determines
7856 	 * the possible location of the free pointer.
7857 	 */
7858 	size = ALIGN(size, sizeof(void *));
7859 
7860 #ifdef CONFIG_SLUB_DEBUG
7861 	/*
7862 	 * Determine if we can poison the object itself. If the user of
7863 	 * the slab may touch the object after free or before allocation
7864 	 * then we should never poison the object itself.
7865 	 */
7866 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7867 			!s->ctor)
7868 		s->flags |= __OBJECT_POISON;
7869 	else
7870 		s->flags &= ~__OBJECT_POISON;
7871 
7872 
7873 	/*
7874 	 * If we are Redzoning then check if there is some space between the
7875 	 * end of the object and the free pointer. If not then add an
7876 	 * additional word to have some bytes to store Redzone information.
7877 	 */
7878 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7879 		size += sizeof(void *);
7880 #endif
7881 
7882 	/*
7883 	 * With that we have determined the number of bytes in actual use
7884 	 * by the object and redzoning.
7885 	 */
7886 	s->inuse = size;
7887 
7888 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7889 	    (flags & SLAB_POISON) || s->ctor ||
7890 	    ((flags & SLAB_RED_ZONE) &&
7891 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7892 		/*
7893 		 * Relocate free pointer after the object if it is not
7894 		 * permitted to overwrite the first word of the object on
7895 		 * kmem_cache_free.
7896 		 *
7897 		 * This is the case if we do RCU, have a constructor or
7898 		 * destructor, are poisoning the objects, or are
7899 		 * redzoning an object smaller than sizeof(void *) or are
7900 		 * redzoning an object with slub_debug_orig_size() enabled,
7901 		 * in which case the right redzone may be extended.
7902 		 *
7903 		 * The assumption that s->offset >= s->inuse means free
7904 		 * pointer is outside of the object is used in the
7905 		 * freeptr_outside_object() function. If that is no
7906 		 * longer true, the function needs to be modified.
7907 		 */
7908 		s->offset = size;
7909 		size += sizeof(void *);
7910 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7911 		s->offset = args->freeptr_offset;
7912 	} else {
7913 		/*
7914 		 * Store freelist pointer near middle of object to keep
7915 		 * it away from the edges of the object to avoid small
7916 		 * sized over/underflows from neighboring allocations.
7917 		 */
7918 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7919 	}
7920 
7921 #ifdef CONFIG_SLUB_DEBUG
7922 	if (flags & SLAB_STORE_USER) {
7923 		/*
7924 		 * Need to store information about allocs and frees after
7925 		 * the object.
7926 		 */
7927 		size += 2 * sizeof(struct track);
7928 
7929 		/* Save the original kmalloc request size */
7930 		if (flags & SLAB_KMALLOC)
7931 			size += sizeof(unsigned int);
7932 	}
7933 #endif
7934 
7935 	kasan_cache_create(s, &size, &s->flags);
7936 #ifdef CONFIG_SLUB_DEBUG
7937 	if (flags & SLAB_RED_ZONE) {
7938 		/*
7939 		 * Add some empty padding so that we can catch
7940 		 * overwrites from earlier objects rather than let
7941 		 * tracking information or the free pointer be
7942 		 * corrupted if a user writes before the start
7943 		 * of the object.
7944 		 */
7945 		size += sizeof(void *);
7946 
7947 		s->red_left_pad = sizeof(void *);
7948 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7949 		size += s->red_left_pad;
7950 	}
7951 #endif
7952 
7953 	/*
7954 	 * SLUB stores one object immediately after another beginning from
7955 	 * offset 0. In order to align the objects we have to simply size
7956 	 * each object to conform to the alignment.
7957 	 */
7958 	size = ALIGN(size, s->align);
7959 	s->size = size;
7960 	s->reciprocal_size = reciprocal_value(size);
7961 	order = calculate_order(size);
7962 
7963 	if ((int)order < 0)
7964 		return 0;
7965 
7966 	s->allocflags = __GFP_COMP;
7967 
7968 	if (s->flags & SLAB_CACHE_DMA)
7969 		s->allocflags |= GFP_DMA;
7970 
7971 	if (s->flags & SLAB_CACHE_DMA32)
7972 		s->allocflags |= GFP_DMA32;
7973 
7974 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7975 		s->allocflags |= __GFP_RECLAIMABLE;
7976 
7977 	/*
7978 	 * Determine the number of objects per slab
7979 	 */
7980 	s->oo = oo_make(order, size);
7981 	s->min = oo_make(get_order(size), size);
7982 
7983 	return !!oo_objects(s->oo);
7984 }
7985 
list_slab_objects(struct kmem_cache * s,struct slab * slab)7986 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7987 {
7988 #ifdef CONFIG_SLUB_DEBUG
7989 	void *addr = slab_address(slab);
7990 	void *p;
7991 
7992 	if (!slab_add_kunit_errors())
7993 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7994 
7995 	spin_lock(&object_map_lock);
7996 	__fill_map(object_map, s, slab);
7997 
7998 	for_each_object(p, s, addr, slab->objects) {
7999 
8000 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
8001 			if (slab_add_kunit_errors())
8002 				continue;
8003 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
8004 			print_tracking(s, p);
8005 		}
8006 	}
8007 	spin_unlock(&object_map_lock);
8008 
8009 	__slab_err(slab);
8010 #endif
8011 }
8012 
8013 /*
8014  * Attempt to free all partial slabs on a node.
8015  * This is called from __kmem_cache_shutdown(). We must take list_lock
8016  * because sysfs file might still access partial list after the shutdowning.
8017  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)8018 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8019 {
8020 	LIST_HEAD(discard);
8021 	struct slab *slab, *h;
8022 
8023 	BUG_ON(irqs_disabled());
8024 	spin_lock_irq(&n->list_lock);
8025 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8026 		if (!slab->inuse) {
8027 			remove_partial(n, slab);
8028 			list_add(&slab->slab_list, &discard);
8029 		} else {
8030 			list_slab_objects(s, slab);
8031 		}
8032 	}
8033 	spin_unlock_irq(&n->list_lock);
8034 
8035 	list_for_each_entry_safe(slab, h, &discard, slab_list)
8036 		discard_slab(s, slab);
8037 }
8038 
__kmem_cache_empty(struct kmem_cache * s)8039 bool __kmem_cache_empty(struct kmem_cache *s)
8040 {
8041 	int node;
8042 	struct kmem_cache_node *n;
8043 
8044 	for_each_kmem_cache_node(s, node, n)
8045 		if (n->nr_partial || node_nr_slabs(n))
8046 			return false;
8047 	return true;
8048 }
8049 
8050 /*
8051  * Release all resources used by a slab cache.
8052  */
__kmem_cache_shutdown(struct kmem_cache * s)8053 int __kmem_cache_shutdown(struct kmem_cache *s)
8054 {
8055 	int node;
8056 	struct kmem_cache_node *n;
8057 
8058 	flush_all_cpus_locked(s);
8059 
8060 	/* we might have rcu sheaves in flight */
8061 	if (s->cpu_sheaves)
8062 		rcu_barrier();
8063 
8064 	/* Attempt to free all objects */
8065 	for_each_kmem_cache_node(s, node, n) {
8066 		if (n->barn)
8067 			barn_shrink(s, n->barn);
8068 		free_partial(s, n);
8069 		if (n->nr_partial || node_nr_slabs(n))
8070 			return 1;
8071 	}
8072 	return 0;
8073 }
8074 
8075 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)8076 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8077 {
8078 	void *base;
8079 	int __maybe_unused i;
8080 	unsigned int objnr;
8081 	void *objp;
8082 	void *objp0;
8083 	struct kmem_cache *s = slab->slab_cache;
8084 	struct track __maybe_unused *trackp;
8085 
8086 	kpp->kp_ptr = object;
8087 	kpp->kp_slab = slab;
8088 	kpp->kp_slab_cache = s;
8089 	base = slab_address(slab);
8090 	objp0 = kasan_reset_tag(object);
8091 #ifdef CONFIG_SLUB_DEBUG
8092 	objp = restore_red_left(s, objp0);
8093 #else
8094 	objp = objp0;
8095 #endif
8096 	objnr = obj_to_index(s, slab, objp);
8097 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8098 	objp = base + s->size * objnr;
8099 	kpp->kp_objp = objp;
8100 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8101 			 || (objp - base) % s->size) ||
8102 	    !(s->flags & SLAB_STORE_USER))
8103 		return;
8104 #ifdef CONFIG_SLUB_DEBUG
8105 	objp = fixup_red_left(s, objp);
8106 	trackp = get_track(s, objp, TRACK_ALLOC);
8107 	kpp->kp_ret = (void *)trackp->addr;
8108 #ifdef CONFIG_STACKDEPOT
8109 	{
8110 		depot_stack_handle_t handle;
8111 		unsigned long *entries;
8112 		unsigned int nr_entries;
8113 
8114 		handle = READ_ONCE(trackp->handle);
8115 		if (handle) {
8116 			nr_entries = stack_depot_fetch(handle, &entries);
8117 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8118 				kpp->kp_stack[i] = (void *)entries[i];
8119 		}
8120 
8121 		trackp = get_track(s, objp, TRACK_FREE);
8122 		handle = READ_ONCE(trackp->handle);
8123 		if (handle) {
8124 			nr_entries = stack_depot_fetch(handle, &entries);
8125 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8126 				kpp->kp_free_stack[i] = (void *)entries[i];
8127 		}
8128 	}
8129 #endif
8130 #endif
8131 }
8132 #endif
8133 
8134 /********************************************************************
8135  *		Kmalloc subsystem
8136  *******************************************************************/
8137 
setup_slub_min_order(char * str)8138 static int __init setup_slub_min_order(char *str)
8139 {
8140 	get_option(&str, (int *)&slub_min_order);
8141 
8142 	if (slub_min_order > slub_max_order)
8143 		slub_max_order = slub_min_order;
8144 
8145 	return 1;
8146 }
8147 
8148 __setup("slab_min_order=", setup_slub_min_order);
8149 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
8150 
8151 
setup_slub_max_order(char * str)8152 static int __init setup_slub_max_order(char *str)
8153 {
8154 	get_option(&str, (int *)&slub_max_order);
8155 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8156 
8157 	if (slub_min_order > slub_max_order)
8158 		slub_min_order = slub_max_order;
8159 
8160 	return 1;
8161 }
8162 
8163 __setup("slab_max_order=", setup_slub_max_order);
8164 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
8165 
setup_slub_min_objects(char * str)8166 static int __init setup_slub_min_objects(char *str)
8167 {
8168 	get_option(&str, (int *)&slub_min_objects);
8169 
8170 	return 1;
8171 }
8172 
8173 __setup("slab_min_objects=", setup_slub_min_objects);
8174 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
8175 
8176 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)8177 static int __init setup_slab_strict_numa(char *str)
8178 {
8179 	if (nr_node_ids > 1) {
8180 		static_branch_enable(&strict_numa);
8181 		pr_info("SLUB: Strict NUMA enabled.\n");
8182 	} else {
8183 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8184 	}
8185 
8186 	return 1;
8187 }
8188 
8189 __setup("slab_strict_numa", setup_slab_strict_numa);
8190 #endif
8191 
8192 
8193 #ifdef CONFIG_HARDENED_USERCOPY
8194 /*
8195  * Rejects incorrectly sized objects and objects that are to be copied
8196  * to/from userspace but do not fall entirely within the containing slab
8197  * cache's usercopy region.
8198  *
8199  * Returns NULL if check passes, otherwise const char * to name of cache
8200  * to indicate an error.
8201  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)8202 void __check_heap_object(const void *ptr, unsigned long n,
8203 			 const struct slab *slab, bool to_user)
8204 {
8205 	struct kmem_cache *s;
8206 	unsigned int offset;
8207 	bool is_kfence = is_kfence_address(ptr);
8208 
8209 	ptr = kasan_reset_tag(ptr);
8210 
8211 	/* Find object and usable object size. */
8212 	s = slab->slab_cache;
8213 
8214 	/* Reject impossible pointers. */
8215 	if (ptr < slab_address(slab))
8216 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
8217 			       to_user, 0, n);
8218 
8219 	/* Find offset within object. */
8220 	if (is_kfence)
8221 		offset = ptr - kfence_object_start(ptr);
8222 	else
8223 		offset = (ptr - slab_address(slab)) % s->size;
8224 
8225 	/* Adjust for redzone and reject if within the redzone. */
8226 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8227 		if (offset < s->red_left_pad)
8228 			usercopy_abort("SLUB object in left red zone",
8229 				       s->name, to_user, offset, n);
8230 		offset -= s->red_left_pad;
8231 	}
8232 
8233 	/* Allow address range falling entirely within usercopy region. */
8234 	if (offset >= s->useroffset &&
8235 	    offset - s->useroffset <= s->usersize &&
8236 	    n <= s->useroffset - offset + s->usersize)
8237 		return;
8238 
8239 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
8240 }
8241 #endif /* CONFIG_HARDENED_USERCOPY */
8242 
8243 #define SHRINK_PROMOTE_MAX 32
8244 
8245 /*
8246  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8247  * up most to the head of the partial lists. New allocations will then
8248  * fill those up and thus they can be removed from the partial lists.
8249  *
8250  * The slabs with the least items are placed last. This results in them
8251  * being allocated from last increasing the chance that the last objects
8252  * are freed in them.
8253  */
__kmem_cache_do_shrink(struct kmem_cache * s)8254 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8255 {
8256 	int node;
8257 	int i;
8258 	struct kmem_cache_node *n;
8259 	struct slab *slab;
8260 	struct slab *t;
8261 	struct list_head discard;
8262 	struct list_head promote[SHRINK_PROMOTE_MAX];
8263 	unsigned long flags;
8264 	int ret = 0;
8265 
8266 	for_each_kmem_cache_node(s, node, n) {
8267 		INIT_LIST_HEAD(&discard);
8268 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8269 			INIT_LIST_HEAD(promote + i);
8270 
8271 		if (n->barn)
8272 			barn_shrink(s, n->barn);
8273 
8274 		spin_lock_irqsave(&n->list_lock, flags);
8275 
8276 		/*
8277 		 * Build lists of slabs to discard or promote.
8278 		 *
8279 		 * Note that concurrent frees may occur while we hold the
8280 		 * list_lock. slab->inuse here is the upper limit.
8281 		 */
8282 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8283 			int free = slab->objects - slab->inuse;
8284 
8285 			/* Do not reread slab->inuse */
8286 			barrier();
8287 
8288 			/* We do not keep full slabs on the list */
8289 			BUG_ON(free <= 0);
8290 
8291 			if (free == slab->objects) {
8292 				list_move(&slab->slab_list, &discard);
8293 				slab_clear_node_partial(slab);
8294 				n->nr_partial--;
8295 				dec_slabs_node(s, node, slab->objects);
8296 			} else if (free <= SHRINK_PROMOTE_MAX)
8297 				list_move(&slab->slab_list, promote + free - 1);
8298 		}
8299 
8300 		/*
8301 		 * Promote the slabs filled up most to the head of the
8302 		 * partial list.
8303 		 */
8304 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8305 			list_splice(promote + i, &n->partial);
8306 
8307 		spin_unlock_irqrestore(&n->list_lock, flags);
8308 
8309 		/* Release empty slabs */
8310 		list_for_each_entry_safe(slab, t, &discard, slab_list)
8311 			free_slab(s, slab);
8312 
8313 		if (node_nr_slabs(n))
8314 			ret = 1;
8315 	}
8316 
8317 	return ret;
8318 }
8319 
__kmem_cache_shrink(struct kmem_cache * s)8320 int __kmem_cache_shrink(struct kmem_cache *s)
8321 {
8322 	flush_all(s);
8323 	return __kmem_cache_do_shrink(s);
8324 }
8325 
slab_mem_going_offline_callback(void)8326 static int slab_mem_going_offline_callback(void)
8327 {
8328 	struct kmem_cache *s;
8329 
8330 	mutex_lock(&slab_mutex);
8331 	list_for_each_entry(s, &slab_caches, list) {
8332 		flush_all_cpus_locked(s);
8333 		__kmem_cache_do_shrink(s);
8334 	}
8335 	mutex_unlock(&slab_mutex);
8336 
8337 	return 0;
8338 }
8339 
slab_mem_going_online_callback(int nid)8340 static int slab_mem_going_online_callback(int nid)
8341 {
8342 	struct kmem_cache_node *n;
8343 	struct kmem_cache *s;
8344 	int ret = 0;
8345 
8346 	/*
8347 	 * We are bringing a node online. No memory is available yet. We must
8348 	 * allocate a kmem_cache_node structure in order to bring the node
8349 	 * online.
8350 	 */
8351 	mutex_lock(&slab_mutex);
8352 	list_for_each_entry(s, &slab_caches, list) {
8353 		struct node_barn *barn = NULL;
8354 
8355 		/*
8356 		 * The structure may already exist if the node was previously
8357 		 * onlined and offlined.
8358 		 */
8359 		if (get_node(s, nid))
8360 			continue;
8361 
8362 		if (s->cpu_sheaves) {
8363 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8364 
8365 			if (!barn) {
8366 				ret = -ENOMEM;
8367 				goto out;
8368 			}
8369 		}
8370 
8371 		/*
8372 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
8373 		 *      since memory is not yet available from the node that
8374 		 *      is brought up.
8375 		 */
8376 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8377 		if (!n) {
8378 			kfree(barn);
8379 			ret = -ENOMEM;
8380 			goto out;
8381 		}
8382 
8383 		init_kmem_cache_node(n, barn);
8384 
8385 		s->node[nid] = n;
8386 	}
8387 	/*
8388 	 * Any cache created after this point will also have kmem_cache_node
8389 	 * initialized for the new node.
8390 	 */
8391 	node_set(nid, slab_nodes);
8392 out:
8393 	mutex_unlock(&slab_mutex);
8394 	return ret;
8395 }
8396 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)8397 static int slab_memory_callback(struct notifier_block *self,
8398 				unsigned long action, void *arg)
8399 {
8400 	struct node_notify *nn = arg;
8401 	int nid = nn->nid;
8402 	int ret = 0;
8403 
8404 	switch (action) {
8405 	case NODE_ADDING_FIRST_MEMORY:
8406 		ret = slab_mem_going_online_callback(nid);
8407 		break;
8408 	case NODE_REMOVING_LAST_MEMORY:
8409 		ret = slab_mem_going_offline_callback();
8410 		break;
8411 	}
8412 	if (ret)
8413 		ret = notifier_from_errno(ret);
8414 	else
8415 		ret = NOTIFY_OK;
8416 	return ret;
8417 }
8418 
8419 /********************************************************************
8420  *			Basic setup of slabs
8421  *******************************************************************/
8422 
8423 /*
8424  * Used for early kmem_cache structures that were allocated using
8425  * the page allocator. Allocate them properly then fix up the pointers
8426  * that may be pointing to the wrong kmem_cache structure.
8427  */
8428 
bootstrap(struct kmem_cache * static_cache)8429 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8430 {
8431 	int node;
8432 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8433 	struct kmem_cache_node *n;
8434 
8435 	memcpy(s, static_cache, kmem_cache->object_size);
8436 
8437 	/*
8438 	 * This runs very early, and only the boot processor is supposed to be
8439 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
8440 	 * IPIs around.
8441 	 */
8442 	__flush_cpu_slab(s, smp_processor_id());
8443 	for_each_kmem_cache_node(s, node, n) {
8444 		struct slab *p;
8445 
8446 		list_for_each_entry(p, &n->partial, slab_list)
8447 			p->slab_cache = s;
8448 
8449 #ifdef CONFIG_SLUB_DEBUG
8450 		list_for_each_entry(p, &n->full, slab_list)
8451 			p->slab_cache = s;
8452 #endif
8453 	}
8454 	list_add(&s->list, &slab_caches);
8455 	return s;
8456 }
8457 
kmem_cache_init(void)8458 void __init kmem_cache_init(void)
8459 {
8460 	static __initdata struct kmem_cache boot_kmem_cache,
8461 		boot_kmem_cache_node;
8462 	int node;
8463 
8464 	if (debug_guardpage_minorder())
8465 		slub_max_order = 0;
8466 
8467 	/* Inform pointer hashing choice about slub debugging state. */
8468 	hash_pointers_finalize(__slub_debug_enabled());
8469 
8470 	kmem_cache_node = &boot_kmem_cache_node;
8471 	kmem_cache = &boot_kmem_cache;
8472 
8473 	/*
8474 	 * Initialize the nodemask for which we will allocate per node
8475 	 * structures. Here we don't need taking slab_mutex yet.
8476 	 */
8477 	for_each_node_state(node, N_MEMORY)
8478 		node_set(node, slab_nodes);
8479 
8480 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
8481 			sizeof(struct kmem_cache_node),
8482 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8483 
8484 	hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8485 
8486 	/* Able to allocate the per node structures */
8487 	slab_state = PARTIAL;
8488 
8489 	create_boot_cache(kmem_cache, "kmem_cache",
8490 			offsetof(struct kmem_cache, node) +
8491 				nr_node_ids * sizeof(struct kmem_cache_node *),
8492 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8493 
8494 	kmem_cache = bootstrap(&boot_kmem_cache);
8495 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8496 
8497 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
8498 	setup_kmalloc_cache_index_table();
8499 	create_kmalloc_caches();
8500 
8501 	/* Setup random freelists for each cache */
8502 	init_freelist_randomization();
8503 
8504 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8505 				  slub_cpu_dead);
8506 
8507 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8508 		cache_line_size(),
8509 		slub_min_order, slub_max_order, slub_min_objects,
8510 		nr_cpu_ids, nr_node_ids);
8511 }
8512 
kmem_cache_init_late(void)8513 void __init kmem_cache_init_late(void)
8514 {
8515 #ifndef CONFIG_SLUB_TINY
8516 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8517 	WARN_ON(!flushwq);
8518 #endif
8519 }
8520 
8521 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))8522 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8523 		   slab_flags_t flags, void (*ctor)(void *))
8524 {
8525 	struct kmem_cache *s;
8526 
8527 	s = find_mergeable(size, align, flags, name, ctor);
8528 	if (s) {
8529 		if (sysfs_slab_alias(s, name))
8530 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8531 			       name);
8532 
8533 		s->refcount++;
8534 
8535 		/*
8536 		 * Adjust the object sizes so that we clear
8537 		 * the complete object on kzalloc.
8538 		 */
8539 		s->object_size = max(s->object_size, size);
8540 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8541 	}
8542 
8543 	return s;
8544 }
8545 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)8546 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8547 			 unsigned int size, struct kmem_cache_args *args,
8548 			 slab_flags_t flags)
8549 {
8550 	int err = -EINVAL;
8551 
8552 	s->name = name;
8553 	s->size = s->object_size = size;
8554 
8555 	s->flags = kmem_cache_flags(flags, s->name);
8556 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8557 	s->random = get_random_long();
8558 #endif
8559 	s->align = args->align;
8560 	s->ctor = args->ctor;
8561 #ifdef CONFIG_HARDENED_USERCOPY
8562 	s->useroffset = args->useroffset;
8563 	s->usersize = args->usersize;
8564 #endif
8565 
8566 	if (!calculate_sizes(args, s))
8567 		goto out;
8568 	if (disable_higher_order_debug) {
8569 		/*
8570 		 * Disable debugging flags that store metadata if the min slab
8571 		 * order increased.
8572 		 */
8573 		if (get_order(s->size) > get_order(s->object_size)) {
8574 			s->flags &= ~DEBUG_METADATA_FLAGS;
8575 			s->offset = 0;
8576 			if (!calculate_sizes(args, s))
8577 				goto out;
8578 		}
8579 	}
8580 
8581 #ifdef system_has_freelist_aba
8582 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8583 		/* Enable fast mode */
8584 		s->flags |= __CMPXCHG_DOUBLE;
8585 	}
8586 #endif
8587 
8588 	/*
8589 	 * The larger the object size is, the more slabs we want on the partial
8590 	 * list to avoid pounding the page allocator excessively.
8591 	 */
8592 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8593 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8594 
8595 	set_cpu_partial(s);
8596 
8597 	if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8598 					&& !(s->flags & SLAB_DEBUG_FLAGS)) {
8599 		s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8600 		if (!s->cpu_sheaves) {
8601 			err = -ENOMEM;
8602 			goto out;
8603 		}
8604 		// TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8605 		s->sheaf_capacity = args->sheaf_capacity;
8606 	}
8607 
8608 #ifdef CONFIG_NUMA
8609 	s->remote_node_defrag_ratio = 1000;
8610 #endif
8611 
8612 	/* Initialize the pre-computed randomized freelist if slab is up */
8613 	if (slab_state >= UP) {
8614 		if (init_cache_random_seq(s))
8615 			goto out;
8616 	}
8617 
8618 	if (!init_kmem_cache_nodes(s))
8619 		goto out;
8620 
8621 	if (!alloc_kmem_cache_cpus(s))
8622 		goto out;
8623 
8624 	if (s->cpu_sheaves) {
8625 		err = init_percpu_sheaves(s);
8626 		if (err)
8627 			goto out;
8628 	}
8629 
8630 	err = 0;
8631 
8632 	/* Mutex is not taken during early boot */
8633 	if (slab_state <= UP)
8634 		goto out;
8635 
8636 	/*
8637 	 * Failing to create sysfs files is not critical to SLUB functionality.
8638 	 * If it fails, proceed with cache creation without these files.
8639 	 */
8640 	if (sysfs_slab_add(s))
8641 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8642 
8643 	if (s->flags & SLAB_STORE_USER)
8644 		debugfs_slab_add(s);
8645 
8646 out:
8647 	if (err)
8648 		__kmem_cache_release(s);
8649 	return err;
8650 }
8651 
8652 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)8653 static int count_inuse(struct slab *slab)
8654 {
8655 	return slab->inuse;
8656 }
8657 
count_total(struct slab * slab)8658 static int count_total(struct slab *slab)
8659 {
8660 	return slab->objects;
8661 }
8662 #endif
8663 
8664 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)8665 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8666 			  unsigned long *obj_map)
8667 {
8668 	void *p;
8669 	void *addr = slab_address(slab);
8670 
8671 	if (!validate_slab_ptr(slab)) {
8672 		slab_err(s, slab, "Not a valid slab page");
8673 		return;
8674 	}
8675 
8676 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8677 		return;
8678 
8679 	/* Now we know that a valid freelist exists */
8680 	__fill_map(obj_map, s, slab);
8681 	for_each_object(p, s, addr, slab->objects) {
8682 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8683 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8684 
8685 		if (!check_object(s, slab, p, val))
8686 			break;
8687 	}
8688 }
8689 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)8690 static int validate_slab_node(struct kmem_cache *s,
8691 		struct kmem_cache_node *n, unsigned long *obj_map)
8692 {
8693 	unsigned long count = 0;
8694 	struct slab *slab;
8695 	unsigned long flags;
8696 
8697 	spin_lock_irqsave(&n->list_lock, flags);
8698 
8699 	list_for_each_entry(slab, &n->partial, slab_list) {
8700 		validate_slab(s, slab, obj_map);
8701 		count++;
8702 	}
8703 	if (count != n->nr_partial) {
8704 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8705 		       s->name, count, n->nr_partial);
8706 		slab_add_kunit_errors();
8707 	}
8708 
8709 	if (!(s->flags & SLAB_STORE_USER))
8710 		goto out;
8711 
8712 	list_for_each_entry(slab, &n->full, slab_list) {
8713 		validate_slab(s, slab, obj_map);
8714 		count++;
8715 	}
8716 	if (count != node_nr_slabs(n)) {
8717 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8718 		       s->name, count, node_nr_slabs(n));
8719 		slab_add_kunit_errors();
8720 	}
8721 
8722 out:
8723 	spin_unlock_irqrestore(&n->list_lock, flags);
8724 	return count;
8725 }
8726 
validate_slab_cache(struct kmem_cache * s)8727 long validate_slab_cache(struct kmem_cache *s)
8728 {
8729 	int node;
8730 	unsigned long count = 0;
8731 	struct kmem_cache_node *n;
8732 	unsigned long *obj_map;
8733 
8734 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8735 	if (!obj_map)
8736 		return -ENOMEM;
8737 
8738 	flush_all(s);
8739 	for_each_kmem_cache_node(s, node, n)
8740 		count += validate_slab_node(s, n, obj_map);
8741 
8742 	bitmap_free(obj_map);
8743 
8744 	return count;
8745 }
8746 EXPORT_SYMBOL(validate_slab_cache);
8747 
8748 #ifdef CONFIG_DEBUG_FS
8749 /*
8750  * Generate lists of code addresses where slabcache objects are allocated
8751  * and freed.
8752  */
8753 
8754 struct location {
8755 	depot_stack_handle_t handle;
8756 	unsigned long count;
8757 	unsigned long addr;
8758 	unsigned long waste;
8759 	long long sum_time;
8760 	long min_time;
8761 	long max_time;
8762 	long min_pid;
8763 	long max_pid;
8764 	DECLARE_BITMAP(cpus, NR_CPUS);
8765 	nodemask_t nodes;
8766 };
8767 
8768 struct loc_track {
8769 	unsigned long max;
8770 	unsigned long count;
8771 	struct location *loc;
8772 	loff_t idx;
8773 };
8774 
8775 static struct dentry *slab_debugfs_root;
8776 
free_loc_track(struct loc_track * t)8777 static void free_loc_track(struct loc_track *t)
8778 {
8779 	if (t->max)
8780 		free_pages((unsigned long)t->loc,
8781 			get_order(sizeof(struct location) * t->max));
8782 }
8783 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)8784 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8785 {
8786 	struct location *l;
8787 	int order;
8788 
8789 	order = get_order(sizeof(struct location) * max);
8790 
8791 	l = (void *)__get_free_pages(flags, order);
8792 	if (!l)
8793 		return 0;
8794 
8795 	if (t->count) {
8796 		memcpy(l, t->loc, sizeof(struct location) * t->count);
8797 		free_loc_track(t);
8798 	}
8799 	t->max = max;
8800 	t->loc = l;
8801 	return 1;
8802 }
8803 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)8804 static int add_location(struct loc_track *t, struct kmem_cache *s,
8805 				const struct track *track,
8806 				unsigned int orig_size)
8807 {
8808 	long start, end, pos;
8809 	struct location *l;
8810 	unsigned long caddr, chandle, cwaste;
8811 	unsigned long age = jiffies - track->when;
8812 	depot_stack_handle_t handle = 0;
8813 	unsigned int waste = s->object_size - orig_size;
8814 
8815 #ifdef CONFIG_STACKDEPOT
8816 	handle = READ_ONCE(track->handle);
8817 #endif
8818 	start = -1;
8819 	end = t->count;
8820 
8821 	for ( ; ; ) {
8822 		pos = start + (end - start + 1) / 2;
8823 
8824 		/*
8825 		 * There is nothing at "end". If we end up there
8826 		 * we need to add something to before end.
8827 		 */
8828 		if (pos == end)
8829 			break;
8830 
8831 		l = &t->loc[pos];
8832 		caddr = l->addr;
8833 		chandle = l->handle;
8834 		cwaste = l->waste;
8835 		if ((track->addr == caddr) && (handle == chandle) &&
8836 			(waste == cwaste)) {
8837 
8838 			l->count++;
8839 			if (track->when) {
8840 				l->sum_time += age;
8841 				if (age < l->min_time)
8842 					l->min_time = age;
8843 				if (age > l->max_time)
8844 					l->max_time = age;
8845 
8846 				if (track->pid < l->min_pid)
8847 					l->min_pid = track->pid;
8848 				if (track->pid > l->max_pid)
8849 					l->max_pid = track->pid;
8850 
8851 				cpumask_set_cpu(track->cpu,
8852 						to_cpumask(l->cpus));
8853 			}
8854 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
8855 			return 1;
8856 		}
8857 
8858 		if (track->addr < caddr)
8859 			end = pos;
8860 		else if (track->addr == caddr && handle < chandle)
8861 			end = pos;
8862 		else if (track->addr == caddr && handle == chandle &&
8863 				waste < cwaste)
8864 			end = pos;
8865 		else
8866 			start = pos;
8867 	}
8868 
8869 	/*
8870 	 * Not found. Insert new tracking element.
8871 	 */
8872 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8873 		return 0;
8874 
8875 	l = t->loc + pos;
8876 	if (pos < t->count)
8877 		memmove(l + 1, l,
8878 			(t->count - pos) * sizeof(struct location));
8879 	t->count++;
8880 	l->count = 1;
8881 	l->addr = track->addr;
8882 	l->sum_time = age;
8883 	l->min_time = age;
8884 	l->max_time = age;
8885 	l->min_pid = track->pid;
8886 	l->max_pid = track->pid;
8887 	l->handle = handle;
8888 	l->waste = waste;
8889 	cpumask_clear(to_cpumask(l->cpus));
8890 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8891 	nodes_clear(l->nodes);
8892 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
8893 	return 1;
8894 }
8895 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)8896 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8897 		struct slab *slab, enum track_item alloc,
8898 		unsigned long *obj_map)
8899 {
8900 	void *addr = slab_address(slab);
8901 	bool is_alloc = (alloc == TRACK_ALLOC);
8902 	void *p;
8903 
8904 	__fill_map(obj_map, s, slab);
8905 
8906 	for_each_object(p, s, addr, slab->objects)
8907 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8908 			add_location(t, s, get_track(s, p, alloc),
8909 				     is_alloc ? get_orig_size(s, p) :
8910 						s->object_size);
8911 }
8912 #endif  /* CONFIG_DEBUG_FS   */
8913 #endif	/* CONFIG_SLUB_DEBUG */
8914 
8915 #ifdef SLAB_SUPPORTS_SYSFS
8916 enum slab_stat_type {
8917 	SL_ALL,			/* All slabs */
8918 	SL_PARTIAL,		/* Only partially allocated slabs */
8919 	SL_CPU,			/* Only slabs used for cpu caches */
8920 	SL_OBJECTS,		/* Determine allocated objects not slabs */
8921 	SL_TOTAL		/* Determine object capacity not slabs */
8922 };
8923 
8924 #define SO_ALL		(1 << SL_ALL)
8925 #define SO_PARTIAL	(1 << SL_PARTIAL)
8926 #define SO_CPU		(1 << SL_CPU)
8927 #define SO_OBJECTS	(1 << SL_OBJECTS)
8928 #define SO_TOTAL	(1 << SL_TOTAL)
8929 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)8930 static ssize_t show_slab_objects(struct kmem_cache *s,
8931 				 char *buf, unsigned long flags)
8932 {
8933 	unsigned long total = 0;
8934 	int node;
8935 	int x;
8936 	unsigned long *nodes;
8937 	int len = 0;
8938 
8939 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8940 	if (!nodes)
8941 		return -ENOMEM;
8942 
8943 	if (flags & SO_CPU) {
8944 		int cpu;
8945 
8946 		for_each_possible_cpu(cpu) {
8947 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8948 							       cpu);
8949 			int node;
8950 			struct slab *slab;
8951 
8952 			slab = READ_ONCE(c->slab);
8953 			if (!slab)
8954 				continue;
8955 
8956 			node = slab_nid(slab);
8957 			if (flags & SO_TOTAL)
8958 				x = slab->objects;
8959 			else if (flags & SO_OBJECTS)
8960 				x = slab->inuse;
8961 			else
8962 				x = 1;
8963 
8964 			total += x;
8965 			nodes[node] += x;
8966 
8967 #ifdef CONFIG_SLUB_CPU_PARTIAL
8968 			slab = slub_percpu_partial_read_once(c);
8969 			if (slab) {
8970 				node = slab_nid(slab);
8971 				if (flags & SO_TOTAL)
8972 					WARN_ON_ONCE(1);
8973 				else if (flags & SO_OBJECTS)
8974 					WARN_ON_ONCE(1);
8975 				else
8976 					x = data_race(slab->slabs);
8977 				total += x;
8978 				nodes[node] += x;
8979 			}
8980 #endif
8981 		}
8982 	}
8983 
8984 	/*
8985 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
8986 	 * already held which will conflict with an existing lock order:
8987 	 *
8988 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
8989 	 *
8990 	 * We don't really need mem_hotplug_lock (to hold off
8991 	 * slab_mem_going_offline_callback) here because slab's memory hot
8992 	 * unplug code doesn't destroy the kmem_cache->node[] data.
8993 	 */
8994 
8995 #ifdef CONFIG_SLUB_DEBUG
8996 	if (flags & SO_ALL) {
8997 		struct kmem_cache_node *n;
8998 
8999 		for_each_kmem_cache_node(s, node, n) {
9000 
9001 			if (flags & SO_TOTAL)
9002 				x = node_nr_objs(n);
9003 			else if (flags & SO_OBJECTS)
9004 				x = node_nr_objs(n) - count_partial(n, count_free);
9005 			else
9006 				x = node_nr_slabs(n);
9007 			total += x;
9008 			nodes[node] += x;
9009 		}
9010 
9011 	} else
9012 #endif
9013 	if (flags & SO_PARTIAL) {
9014 		struct kmem_cache_node *n;
9015 
9016 		for_each_kmem_cache_node(s, node, n) {
9017 			if (flags & SO_TOTAL)
9018 				x = count_partial(n, count_total);
9019 			else if (flags & SO_OBJECTS)
9020 				x = count_partial(n, count_inuse);
9021 			else
9022 				x = n->nr_partial;
9023 			total += x;
9024 			nodes[node] += x;
9025 		}
9026 	}
9027 
9028 	len += sysfs_emit_at(buf, len, "%lu", total);
9029 #ifdef CONFIG_NUMA
9030 	for (node = 0; node < nr_node_ids; node++) {
9031 		if (nodes[node])
9032 			len += sysfs_emit_at(buf, len, " N%d=%lu",
9033 					     node, nodes[node]);
9034 	}
9035 #endif
9036 	len += sysfs_emit_at(buf, len, "\n");
9037 	kfree(nodes);
9038 
9039 	return len;
9040 }
9041 
9042 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9043 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9044 
9045 struct slab_attribute {
9046 	struct attribute attr;
9047 	ssize_t (*show)(struct kmem_cache *s, char *buf);
9048 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9049 };
9050 
9051 #define SLAB_ATTR_RO(_name) \
9052 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9053 
9054 #define SLAB_ATTR(_name) \
9055 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9056 
slab_size_show(struct kmem_cache * s,char * buf)9057 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9058 {
9059 	return sysfs_emit(buf, "%u\n", s->size);
9060 }
9061 SLAB_ATTR_RO(slab_size);
9062 
align_show(struct kmem_cache * s,char * buf)9063 static ssize_t align_show(struct kmem_cache *s, char *buf)
9064 {
9065 	return sysfs_emit(buf, "%u\n", s->align);
9066 }
9067 SLAB_ATTR_RO(align);
9068 
object_size_show(struct kmem_cache * s,char * buf)9069 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9070 {
9071 	return sysfs_emit(buf, "%u\n", s->object_size);
9072 }
9073 SLAB_ATTR_RO(object_size);
9074 
objs_per_slab_show(struct kmem_cache * s,char * buf)9075 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9076 {
9077 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9078 }
9079 SLAB_ATTR_RO(objs_per_slab);
9080 
order_show(struct kmem_cache * s,char * buf)9081 static ssize_t order_show(struct kmem_cache *s, char *buf)
9082 {
9083 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9084 }
9085 SLAB_ATTR_RO(order);
9086 
sheaf_capacity_show(struct kmem_cache * s,char * buf)9087 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9088 {
9089 	return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9090 }
9091 SLAB_ATTR_RO(sheaf_capacity);
9092 
min_partial_show(struct kmem_cache * s,char * buf)9093 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9094 {
9095 	return sysfs_emit(buf, "%lu\n", s->min_partial);
9096 }
9097 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)9098 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9099 				 size_t length)
9100 {
9101 	unsigned long min;
9102 	int err;
9103 
9104 	err = kstrtoul(buf, 10, &min);
9105 	if (err)
9106 		return err;
9107 
9108 	s->min_partial = min;
9109 	return length;
9110 }
9111 SLAB_ATTR(min_partial);
9112 
cpu_partial_show(struct kmem_cache * s,char * buf)9113 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9114 {
9115 	unsigned int nr_partial = 0;
9116 #ifdef CONFIG_SLUB_CPU_PARTIAL
9117 	nr_partial = s->cpu_partial;
9118 #endif
9119 
9120 	return sysfs_emit(buf, "%u\n", nr_partial);
9121 }
9122 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)9123 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9124 				 size_t length)
9125 {
9126 	unsigned int objects;
9127 	int err;
9128 
9129 	err = kstrtouint(buf, 10, &objects);
9130 	if (err)
9131 		return err;
9132 	if (objects && !kmem_cache_has_cpu_partial(s))
9133 		return -EINVAL;
9134 
9135 	slub_set_cpu_partial(s, objects);
9136 	flush_all(s);
9137 	return length;
9138 }
9139 SLAB_ATTR(cpu_partial);
9140 
ctor_show(struct kmem_cache * s,char * buf)9141 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9142 {
9143 	if (!s->ctor)
9144 		return 0;
9145 	return sysfs_emit(buf, "%pS\n", s->ctor);
9146 }
9147 SLAB_ATTR_RO(ctor);
9148 
aliases_show(struct kmem_cache * s,char * buf)9149 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9150 {
9151 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9152 }
9153 SLAB_ATTR_RO(aliases);
9154 
partial_show(struct kmem_cache * s,char * buf)9155 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9156 {
9157 	return show_slab_objects(s, buf, SO_PARTIAL);
9158 }
9159 SLAB_ATTR_RO(partial);
9160 
cpu_slabs_show(struct kmem_cache * s,char * buf)9161 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9162 {
9163 	return show_slab_objects(s, buf, SO_CPU);
9164 }
9165 SLAB_ATTR_RO(cpu_slabs);
9166 
objects_partial_show(struct kmem_cache * s,char * buf)9167 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9168 {
9169 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9170 }
9171 SLAB_ATTR_RO(objects_partial);
9172 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)9173 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9174 {
9175 	int objects = 0;
9176 	int slabs = 0;
9177 	int cpu __maybe_unused;
9178 	int len = 0;
9179 
9180 #ifdef CONFIG_SLUB_CPU_PARTIAL
9181 	for_each_online_cpu(cpu) {
9182 		struct slab *slab;
9183 
9184 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9185 
9186 		if (slab)
9187 			slabs += data_race(slab->slabs);
9188 	}
9189 #endif
9190 
9191 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
9192 	objects = (slabs * oo_objects(s->oo)) / 2;
9193 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9194 
9195 #ifdef CONFIG_SLUB_CPU_PARTIAL
9196 	for_each_online_cpu(cpu) {
9197 		struct slab *slab;
9198 
9199 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9200 		if (slab) {
9201 			slabs = data_race(slab->slabs);
9202 			objects = (slabs * oo_objects(s->oo)) / 2;
9203 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9204 					     cpu, objects, slabs);
9205 		}
9206 	}
9207 #endif
9208 	len += sysfs_emit_at(buf, len, "\n");
9209 
9210 	return len;
9211 }
9212 SLAB_ATTR_RO(slabs_cpu_partial);
9213 
reclaim_account_show(struct kmem_cache * s,char * buf)9214 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9215 {
9216 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9217 }
9218 SLAB_ATTR_RO(reclaim_account);
9219 
hwcache_align_show(struct kmem_cache * s,char * buf)9220 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9221 {
9222 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9223 }
9224 SLAB_ATTR_RO(hwcache_align);
9225 
9226 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)9227 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9228 {
9229 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9230 }
9231 SLAB_ATTR_RO(cache_dma);
9232 #endif
9233 
9234 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)9235 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9236 {
9237 	return sysfs_emit(buf, "%u\n", s->usersize);
9238 }
9239 SLAB_ATTR_RO(usersize);
9240 #endif
9241 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)9242 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9243 {
9244 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9245 }
9246 SLAB_ATTR_RO(destroy_by_rcu);
9247 
9248 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)9249 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9250 {
9251 	return show_slab_objects(s, buf, SO_ALL);
9252 }
9253 SLAB_ATTR_RO(slabs);
9254 
total_objects_show(struct kmem_cache * s,char * buf)9255 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9256 {
9257 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9258 }
9259 SLAB_ATTR_RO(total_objects);
9260 
objects_show(struct kmem_cache * s,char * buf)9261 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9262 {
9263 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9264 }
9265 SLAB_ATTR_RO(objects);
9266 
sanity_checks_show(struct kmem_cache * s,char * buf)9267 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9268 {
9269 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9270 }
9271 SLAB_ATTR_RO(sanity_checks);
9272 
trace_show(struct kmem_cache * s,char * buf)9273 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9274 {
9275 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9276 }
9277 SLAB_ATTR_RO(trace);
9278 
red_zone_show(struct kmem_cache * s,char * buf)9279 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9280 {
9281 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9282 }
9283 
9284 SLAB_ATTR_RO(red_zone);
9285 
poison_show(struct kmem_cache * s,char * buf)9286 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9287 {
9288 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9289 }
9290 
9291 SLAB_ATTR_RO(poison);
9292 
store_user_show(struct kmem_cache * s,char * buf)9293 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9294 {
9295 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9296 }
9297 
9298 SLAB_ATTR_RO(store_user);
9299 
validate_show(struct kmem_cache * s,char * buf)9300 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9301 {
9302 	return 0;
9303 }
9304 
validate_store(struct kmem_cache * s,const char * buf,size_t length)9305 static ssize_t validate_store(struct kmem_cache *s,
9306 			const char *buf, size_t length)
9307 {
9308 	int ret = -EINVAL;
9309 
9310 	if (buf[0] == '1' && kmem_cache_debug(s)) {
9311 		ret = validate_slab_cache(s);
9312 		if (ret >= 0)
9313 			ret = length;
9314 	}
9315 	return ret;
9316 }
9317 SLAB_ATTR(validate);
9318 
9319 #endif /* CONFIG_SLUB_DEBUG */
9320 
9321 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)9322 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9323 {
9324 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9325 }
9326 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)9327 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9328 				size_t length)
9329 {
9330 	if (s->refcount > 1)
9331 		return -EINVAL;
9332 
9333 	if (buf[0] == '1')
9334 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9335 	else
9336 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9337 
9338 	return length;
9339 }
9340 SLAB_ATTR(failslab);
9341 #endif
9342 
shrink_show(struct kmem_cache * s,char * buf)9343 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9344 {
9345 	return 0;
9346 }
9347 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)9348 static ssize_t shrink_store(struct kmem_cache *s,
9349 			const char *buf, size_t length)
9350 {
9351 	if (buf[0] == '1')
9352 		kmem_cache_shrink(s);
9353 	else
9354 		return -EINVAL;
9355 	return length;
9356 }
9357 SLAB_ATTR(shrink);
9358 
9359 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)9360 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9361 {
9362 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9363 }
9364 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)9365 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9366 				const char *buf, size_t length)
9367 {
9368 	unsigned int ratio;
9369 	int err;
9370 
9371 	err = kstrtouint(buf, 10, &ratio);
9372 	if (err)
9373 		return err;
9374 	if (ratio > 100)
9375 		return -ERANGE;
9376 
9377 	s->remote_node_defrag_ratio = ratio * 10;
9378 
9379 	return length;
9380 }
9381 SLAB_ATTR(remote_node_defrag_ratio);
9382 #endif
9383 
9384 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)9385 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9386 {
9387 	unsigned long sum  = 0;
9388 	int cpu;
9389 	int len = 0;
9390 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9391 
9392 	if (!data)
9393 		return -ENOMEM;
9394 
9395 	for_each_online_cpu(cpu) {
9396 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9397 
9398 		data[cpu] = x;
9399 		sum += x;
9400 	}
9401 
9402 	len += sysfs_emit_at(buf, len, "%lu", sum);
9403 
9404 #ifdef CONFIG_SMP
9405 	for_each_online_cpu(cpu) {
9406 		if (data[cpu])
9407 			len += sysfs_emit_at(buf, len, " C%d=%u",
9408 					     cpu, data[cpu]);
9409 	}
9410 #endif
9411 	kfree(data);
9412 	len += sysfs_emit_at(buf, len, "\n");
9413 
9414 	return len;
9415 }
9416 
clear_stat(struct kmem_cache * s,enum stat_item si)9417 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9418 {
9419 	int cpu;
9420 
9421 	for_each_online_cpu(cpu)
9422 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9423 }
9424 
9425 #define STAT_ATTR(si, text) 					\
9426 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
9427 {								\
9428 	return show_stat(s, buf, si);				\
9429 }								\
9430 static ssize_t text##_store(struct kmem_cache *s,		\
9431 				const char *buf, size_t length)	\
9432 {								\
9433 	if (buf[0] != '0')					\
9434 		return -EINVAL;					\
9435 	clear_stat(s, si);					\
9436 	return length;						\
9437 }								\
9438 SLAB_ATTR(text);						\
9439 
9440 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9441 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9442 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9443 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9444 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9445 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9446 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9447 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9448 STAT_ATTR(FREE_FROZEN, free_frozen);
9449 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9450 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9451 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9452 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9453 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9454 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9455 STAT_ATTR(FREE_SLAB, free_slab);
9456 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9457 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9458 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9459 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9460 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9461 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9462 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9463 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9464 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9465 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9466 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9467 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9468 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9469 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9470 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9471 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9472 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9473 STAT_ATTR(SHEAF_FREE, sheaf_free);
9474 STAT_ATTR(BARN_GET, barn_get);
9475 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9476 STAT_ATTR(BARN_PUT, barn_put);
9477 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9478 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9479 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9480 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9481 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9482 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9483 #endif	/* CONFIG_SLUB_STATS */
9484 
9485 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)9486 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9487 {
9488 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9489 }
9490 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)9491 static ssize_t skip_kfence_store(struct kmem_cache *s,
9492 			const char *buf, size_t length)
9493 {
9494 	int ret = length;
9495 
9496 	if (buf[0] == '0')
9497 		s->flags &= ~SLAB_SKIP_KFENCE;
9498 	else if (buf[0] == '1')
9499 		s->flags |= SLAB_SKIP_KFENCE;
9500 	else
9501 		ret = -EINVAL;
9502 
9503 	return ret;
9504 }
9505 SLAB_ATTR(skip_kfence);
9506 #endif
9507 
9508 static struct attribute *slab_attrs[] = {
9509 	&slab_size_attr.attr,
9510 	&object_size_attr.attr,
9511 	&objs_per_slab_attr.attr,
9512 	&order_attr.attr,
9513 	&sheaf_capacity_attr.attr,
9514 	&min_partial_attr.attr,
9515 	&cpu_partial_attr.attr,
9516 	&objects_partial_attr.attr,
9517 	&partial_attr.attr,
9518 	&cpu_slabs_attr.attr,
9519 	&ctor_attr.attr,
9520 	&aliases_attr.attr,
9521 	&align_attr.attr,
9522 	&hwcache_align_attr.attr,
9523 	&reclaim_account_attr.attr,
9524 	&destroy_by_rcu_attr.attr,
9525 	&shrink_attr.attr,
9526 	&slabs_cpu_partial_attr.attr,
9527 #ifdef CONFIG_SLUB_DEBUG
9528 	&total_objects_attr.attr,
9529 	&objects_attr.attr,
9530 	&slabs_attr.attr,
9531 	&sanity_checks_attr.attr,
9532 	&trace_attr.attr,
9533 	&red_zone_attr.attr,
9534 	&poison_attr.attr,
9535 	&store_user_attr.attr,
9536 	&validate_attr.attr,
9537 #endif
9538 #ifdef CONFIG_ZONE_DMA
9539 	&cache_dma_attr.attr,
9540 #endif
9541 #ifdef CONFIG_NUMA
9542 	&remote_node_defrag_ratio_attr.attr,
9543 #endif
9544 #ifdef CONFIG_SLUB_STATS
9545 	&alloc_cpu_sheaf_attr.attr,
9546 	&alloc_fastpath_attr.attr,
9547 	&alloc_slowpath_attr.attr,
9548 	&free_cpu_sheaf_attr.attr,
9549 	&free_rcu_sheaf_attr.attr,
9550 	&free_rcu_sheaf_fail_attr.attr,
9551 	&free_fastpath_attr.attr,
9552 	&free_slowpath_attr.attr,
9553 	&free_frozen_attr.attr,
9554 	&free_add_partial_attr.attr,
9555 	&free_remove_partial_attr.attr,
9556 	&alloc_from_partial_attr.attr,
9557 	&alloc_slab_attr.attr,
9558 	&alloc_refill_attr.attr,
9559 	&alloc_node_mismatch_attr.attr,
9560 	&free_slab_attr.attr,
9561 	&cpuslab_flush_attr.attr,
9562 	&deactivate_full_attr.attr,
9563 	&deactivate_empty_attr.attr,
9564 	&deactivate_to_head_attr.attr,
9565 	&deactivate_to_tail_attr.attr,
9566 	&deactivate_remote_frees_attr.attr,
9567 	&deactivate_bypass_attr.attr,
9568 	&order_fallback_attr.attr,
9569 	&cmpxchg_double_fail_attr.attr,
9570 	&cmpxchg_double_cpu_fail_attr.attr,
9571 	&cpu_partial_alloc_attr.attr,
9572 	&cpu_partial_free_attr.attr,
9573 	&cpu_partial_node_attr.attr,
9574 	&cpu_partial_drain_attr.attr,
9575 	&sheaf_flush_attr.attr,
9576 	&sheaf_refill_attr.attr,
9577 	&sheaf_alloc_attr.attr,
9578 	&sheaf_free_attr.attr,
9579 	&barn_get_attr.attr,
9580 	&barn_get_fail_attr.attr,
9581 	&barn_put_attr.attr,
9582 	&barn_put_fail_attr.attr,
9583 	&sheaf_prefill_fast_attr.attr,
9584 	&sheaf_prefill_slow_attr.attr,
9585 	&sheaf_prefill_oversize_attr.attr,
9586 	&sheaf_return_fast_attr.attr,
9587 	&sheaf_return_slow_attr.attr,
9588 #endif
9589 #ifdef CONFIG_FAILSLAB
9590 	&failslab_attr.attr,
9591 #endif
9592 #ifdef CONFIG_HARDENED_USERCOPY
9593 	&usersize_attr.attr,
9594 #endif
9595 #ifdef CONFIG_KFENCE
9596 	&skip_kfence_attr.attr,
9597 #endif
9598 
9599 	NULL
9600 };
9601 
9602 static const struct attribute_group slab_attr_group = {
9603 	.attrs = slab_attrs,
9604 };
9605 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)9606 static ssize_t slab_attr_show(struct kobject *kobj,
9607 				struct attribute *attr,
9608 				char *buf)
9609 {
9610 	struct slab_attribute *attribute;
9611 	struct kmem_cache *s;
9612 
9613 	attribute = to_slab_attr(attr);
9614 	s = to_slab(kobj);
9615 
9616 	if (!attribute->show)
9617 		return -EIO;
9618 
9619 	return attribute->show(s, buf);
9620 }
9621 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)9622 static ssize_t slab_attr_store(struct kobject *kobj,
9623 				struct attribute *attr,
9624 				const char *buf, size_t len)
9625 {
9626 	struct slab_attribute *attribute;
9627 	struct kmem_cache *s;
9628 
9629 	attribute = to_slab_attr(attr);
9630 	s = to_slab(kobj);
9631 
9632 	if (!attribute->store)
9633 		return -EIO;
9634 
9635 	return attribute->store(s, buf, len);
9636 }
9637 
kmem_cache_release(struct kobject * k)9638 static void kmem_cache_release(struct kobject *k)
9639 {
9640 	slab_kmem_cache_release(to_slab(k));
9641 }
9642 
9643 static const struct sysfs_ops slab_sysfs_ops = {
9644 	.show = slab_attr_show,
9645 	.store = slab_attr_store,
9646 };
9647 
9648 static const struct kobj_type slab_ktype = {
9649 	.sysfs_ops = &slab_sysfs_ops,
9650 	.release = kmem_cache_release,
9651 };
9652 
9653 static struct kset *slab_kset;
9654 
cache_kset(struct kmem_cache * s)9655 static inline struct kset *cache_kset(struct kmem_cache *s)
9656 {
9657 	return slab_kset;
9658 }
9659 
9660 #define ID_STR_LENGTH 32
9661 
9662 /* Create a unique string id for a slab cache:
9663  *
9664  * Format	:[flags-]size
9665  */
create_unique_id(struct kmem_cache * s)9666 static char *create_unique_id(struct kmem_cache *s)
9667 {
9668 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9669 	char *p = name;
9670 
9671 	if (!name)
9672 		return ERR_PTR(-ENOMEM);
9673 
9674 	*p++ = ':';
9675 	/*
9676 	 * First flags affecting slabcache operations. We will only
9677 	 * get here for aliasable slabs so we do not need to support
9678 	 * too many flags. The flags here must cover all flags that
9679 	 * are matched during merging to guarantee that the id is
9680 	 * unique.
9681 	 */
9682 	if (s->flags & SLAB_CACHE_DMA)
9683 		*p++ = 'd';
9684 	if (s->flags & SLAB_CACHE_DMA32)
9685 		*p++ = 'D';
9686 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
9687 		*p++ = 'a';
9688 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
9689 		*p++ = 'F';
9690 	if (s->flags & SLAB_ACCOUNT)
9691 		*p++ = 'A';
9692 	if (p != name + 1)
9693 		*p++ = '-';
9694 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9695 
9696 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9697 		kfree(name);
9698 		return ERR_PTR(-EINVAL);
9699 	}
9700 	kmsan_unpoison_memory(name, p - name);
9701 	return name;
9702 }
9703 
sysfs_slab_add(struct kmem_cache * s)9704 static int sysfs_slab_add(struct kmem_cache *s)
9705 {
9706 	int err;
9707 	const char *name;
9708 	struct kset *kset = cache_kset(s);
9709 	int unmergeable = slab_unmergeable(s);
9710 
9711 	if (!unmergeable && disable_higher_order_debug &&
9712 			(slub_debug & DEBUG_METADATA_FLAGS))
9713 		unmergeable = 1;
9714 
9715 	if (unmergeable) {
9716 		/*
9717 		 * Slabcache can never be merged so we can use the name proper.
9718 		 * This is typically the case for debug situations. In that
9719 		 * case we can catch duplicate names easily.
9720 		 */
9721 		sysfs_remove_link(&slab_kset->kobj, s->name);
9722 		name = s->name;
9723 	} else {
9724 		/*
9725 		 * Create a unique name for the slab as a target
9726 		 * for the symlinks.
9727 		 */
9728 		name = create_unique_id(s);
9729 		if (IS_ERR(name))
9730 			return PTR_ERR(name);
9731 	}
9732 
9733 	s->kobj.kset = kset;
9734 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9735 	if (err)
9736 		goto out;
9737 
9738 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
9739 	if (err)
9740 		goto out_del_kobj;
9741 
9742 	if (!unmergeable) {
9743 		/* Setup first alias */
9744 		sysfs_slab_alias(s, s->name);
9745 	}
9746 out:
9747 	if (!unmergeable)
9748 		kfree(name);
9749 	return err;
9750 out_del_kobj:
9751 	kobject_del(&s->kobj);
9752 	goto out;
9753 }
9754 
sysfs_slab_unlink(struct kmem_cache * s)9755 void sysfs_slab_unlink(struct kmem_cache *s)
9756 {
9757 	if (s->kobj.state_in_sysfs)
9758 		kobject_del(&s->kobj);
9759 }
9760 
sysfs_slab_release(struct kmem_cache * s)9761 void sysfs_slab_release(struct kmem_cache *s)
9762 {
9763 	kobject_put(&s->kobj);
9764 }
9765 
9766 /*
9767  * Need to buffer aliases during bootup until sysfs becomes
9768  * available lest we lose that information.
9769  */
9770 struct saved_alias {
9771 	struct kmem_cache *s;
9772 	const char *name;
9773 	struct saved_alias *next;
9774 };
9775 
9776 static struct saved_alias *alias_list;
9777 
sysfs_slab_alias(struct kmem_cache * s,const char * name)9778 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9779 {
9780 	struct saved_alias *al;
9781 
9782 	if (slab_state == FULL) {
9783 		/*
9784 		 * If we have a leftover link then remove it.
9785 		 */
9786 		sysfs_remove_link(&slab_kset->kobj, name);
9787 		/*
9788 		 * The original cache may have failed to generate sysfs file.
9789 		 * In that case, sysfs_create_link() returns -ENOENT and
9790 		 * symbolic link creation is skipped.
9791 		 */
9792 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9793 	}
9794 
9795 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9796 	if (!al)
9797 		return -ENOMEM;
9798 
9799 	al->s = s;
9800 	al->name = name;
9801 	al->next = alias_list;
9802 	alias_list = al;
9803 	kmsan_unpoison_memory(al, sizeof(*al));
9804 	return 0;
9805 }
9806 
slab_sysfs_init(void)9807 static int __init slab_sysfs_init(void)
9808 {
9809 	struct kmem_cache *s;
9810 	int err;
9811 
9812 	mutex_lock(&slab_mutex);
9813 
9814 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9815 	if (!slab_kset) {
9816 		mutex_unlock(&slab_mutex);
9817 		pr_err("Cannot register slab subsystem.\n");
9818 		return -ENOMEM;
9819 	}
9820 
9821 	slab_state = FULL;
9822 
9823 	list_for_each_entry(s, &slab_caches, list) {
9824 		err = sysfs_slab_add(s);
9825 		if (err)
9826 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9827 			       s->name);
9828 	}
9829 
9830 	while (alias_list) {
9831 		struct saved_alias *al = alias_list;
9832 
9833 		alias_list = alias_list->next;
9834 		err = sysfs_slab_alias(al->s, al->name);
9835 		if (err)
9836 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9837 			       al->name);
9838 		kfree(al);
9839 	}
9840 
9841 	mutex_unlock(&slab_mutex);
9842 	return 0;
9843 }
9844 late_initcall(slab_sysfs_init);
9845 #endif /* SLAB_SUPPORTS_SYSFS */
9846 
9847 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)9848 static int slab_debugfs_show(struct seq_file *seq, void *v)
9849 {
9850 	struct loc_track *t = seq->private;
9851 	struct location *l;
9852 	unsigned long idx;
9853 
9854 	idx = (unsigned long) t->idx;
9855 	if (idx < t->count) {
9856 		l = &t->loc[idx];
9857 
9858 		seq_printf(seq, "%7ld ", l->count);
9859 
9860 		if (l->addr)
9861 			seq_printf(seq, "%pS", (void *)l->addr);
9862 		else
9863 			seq_puts(seq, "<not-available>");
9864 
9865 		if (l->waste)
9866 			seq_printf(seq, " waste=%lu/%lu",
9867 				l->count * l->waste, l->waste);
9868 
9869 		if (l->sum_time != l->min_time) {
9870 			seq_printf(seq, " age=%ld/%llu/%ld",
9871 				l->min_time, div_u64(l->sum_time, l->count),
9872 				l->max_time);
9873 		} else
9874 			seq_printf(seq, " age=%ld", l->min_time);
9875 
9876 		if (l->min_pid != l->max_pid)
9877 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9878 		else
9879 			seq_printf(seq, " pid=%ld",
9880 				l->min_pid);
9881 
9882 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9883 			seq_printf(seq, " cpus=%*pbl",
9884 				 cpumask_pr_args(to_cpumask(l->cpus)));
9885 
9886 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9887 			seq_printf(seq, " nodes=%*pbl",
9888 				 nodemask_pr_args(&l->nodes));
9889 
9890 #ifdef CONFIG_STACKDEPOT
9891 		{
9892 			depot_stack_handle_t handle;
9893 			unsigned long *entries;
9894 			unsigned int nr_entries, j;
9895 
9896 			handle = READ_ONCE(l->handle);
9897 			if (handle) {
9898 				nr_entries = stack_depot_fetch(handle, &entries);
9899 				seq_puts(seq, "\n");
9900 				for (j = 0; j < nr_entries; j++)
9901 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
9902 			}
9903 		}
9904 #endif
9905 		seq_puts(seq, "\n");
9906 	}
9907 
9908 	if (!idx && !t->count)
9909 		seq_puts(seq, "No data\n");
9910 
9911 	return 0;
9912 }
9913 
slab_debugfs_stop(struct seq_file * seq,void * v)9914 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9915 {
9916 }
9917 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)9918 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9919 {
9920 	struct loc_track *t = seq->private;
9921 
9922 	t->idx = ++(*ppos);
9923 	if (*ppos <= t->count)
9924 		return ppos;
9925 
9926 	return NULL;
9927 }
9928 
cmp_loc_by_count(const void * a,const void * b)9929 static int cmp_loc_by_count(const void *a, const void *b)
9930 {
9931 	struct location *loc1 = (struct location *)a;
9932 	struct location *loc2 = (struct location *)b;
9933 
9934 	return cmp_int(loc2->count, loc1->count);
9935 }
9936 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)9937 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9938 {
9939 	struct loc_track *t = seq->private;
9940 
9941 	t->idx = *ppos;
9942 	return ppos;
9943 }
9944 
9945 static const struct seq_operations slab_debugfs_sops = {
9946 	.start  = slab_debugfs_start,
9947 	.next   = slab_debugfs_next,
9948 	.stop   = slab_debugfs_stop,
9949 	.show   = slab_debugfs_show,
9950 };
9951 
slab_debug_trace_open(struct inode * inode,struct file * filep)9952 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9953 {
9954 
9955 	struct kmem_cache_node *n;
9956 	enum track_item alloc;
9957 	int node;
9958 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9959 						sizeof(struct loc_track));
9960 	struct kmem_cache *s = file_inode(filep)->i_private;
9961 	unsigned long *obj_map;
9962 
9963 	if (!t)
9964 		return -ENOMEM;
9965 
9966 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9967 	if (!obj_map) {
9968 		seq_release_private(inode, filep);
9969 		return -ENOMEM;
9970 	}
9971 
9972 	alloc = debugfs_get_aux_num(filep);
9973 
9974 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9975 		bitmap_free(obj_map);
9976 		seq_release_private(inode, filep);
9977 		return -ENOMEM;
9978 	}
9979 
9980 	for_each_kmem_cache_node(s, node, n) {
9981 		unsigned long flags;
9982 		struct slab *slab;
9983 
9984 		if (!node_nr_slabs(n))
9985 			continue;
9986 
9987 		spin_lock_irqsave(&n->list_lock, flags);
9988 		list_for_each_entry(slab, &n->partial, slab_list)
9989 			process_slab(t, s, slab, alloc, obj_map);
9990 		list_for_each_entry(slab, &n->full, slab_list)
9991 			process_slab(t, s, slab, alloc, obj_map);
9992 		spin_unlock_irqrestore(&n->list_lock, flags);
9993 	}
9994 
9995 	/* Sort locations by count */
9996 	sort(t->loc, t->count, sizeof(struct location),
9997 	     cmp_loc_by_count, NULL);
9998 
9999 	bitmap_free(obj_map);
10000 	return 0;
10001 }
10002 
slab_debug_trace_release(struct inode * inode,struct file * file)10003 static int slab_debug_trace_release(struct inode *inode, struct file *file)
10004 {
10005 	struct seq_file *seq = file->private_data;
10006 	struct loc_track *t = seq->private;
10007 
10008 	free_loc_track(t);
10009 	return seq_release_private(inode, file);
10010 }
10011 
10012 static const struct file_operations slab_debugfs_fops = {
10013 	.open    = slab_debug_trace_open,
10014 	.read    = seq_read,
10015 	.llseek  = seq_lseek,
10016 	.release = slab_debug_trace_release,
10017 };
10018 
debugfs_slab_add(struct kmem_cache * s)10019 static void debugfs_slab_add(struct kmem_cache *s)
10020 {
10021 	struct dentry *slab_cache_dir;
10022 
10023 	if (unlikely(!slab_debugfs_root))
10024 		return;
10025 
10026 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10027 
10028 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10029 					TRACK_ALLOC, &slab_debugfs_fops);
10030 
10031 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10032 					TRACK_FREE, &slab_debugfs_fops);
10033 }
10034 
debugfs_slab_release(struct kmem_cache * s)10035 void debugfs_slab_release(struct kmem_cache *s)
10036 {
10037 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10038 }
10039 
slab_debugfs_init(void)10040 static int __init slab_debugfs_init(void)
10041 {
10042 	struct kmem_cache *s;
10043 
10044 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
10045 
10046 	list_for_each_entry(s, &slab_caches, list)
10047 		if (s->flags & SLAB_STORE_USER)
10048 			debugfs_slab_add(s);
10049 
10050 	return 0;
10051 
10052 }
10053 __initcall(slab_debugfs_init);
10054 #endif
10055 /*
10056  * The /proc/slabinfo ABI
10057  */
10058 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)10059 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10060 {
10061 	unsigned long nr_slabs = 0;
10062 	unsigned long nr_objs = 0;
10063 	unsigned long nr_free = 0;
10064 	int node;
10065 	struct kmem_cache_node *n;
10066 
10067 	for_each_kmem_cache_node(s, node, n) {
10068 		nr_slabs += node_nr_slabs(n);
10069 		nr_objs += node_nr_objs(n);
10070 		nr_free += count_partial_free_approx(n);
10071 	}
10072 
10073 	sinfo->active_objs = nr_objs - nr_free;
10074 	sinfo->num_objs = nr_objs;
10075 	sinfo->active_slabs = nr_slabs;
10076 	sinfo->num_slabs = nr_slabs;
10077 	sinfo->objects_per_slab = oo_objects(s->oo);
10078 	sinfo->cache_order = oo_order(s->oo);
10079 }
10080 #endif /* CONFIG_SLUB_DEBUG */
10081