1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/domain_governor.c - Governors for device PM domains. 4 * 5 * Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/pm_domain.h> 9 #include <linux/pm_qos.h> 10 #include <linux/hrtimer.h> 11 #include <linux/cpu.h> 12 #include <linux/cpuidle.h> 13 #include <linux/cpumask.h> 14 #include <linux/ktime.h> 15 16 static int dev_update_qos_constraint(struct device *dev, void *data) 17 { 18 s64 *constraint_ns_p = data; 19 s64 constraint_ns; 20 21 if (dev->power.subsys_data && dev->power.subsys_data->domain_data) { 22 struct gpd_timing_data *td = dev_gpd_data(dev)->td; 23 24 /* 25 * Only take suspend-time QoS constraints of devices into 26 * account, because constraints updated after the device has 27 * been suspended are not guaranteed to be taken into account 28 * anyway. In order for them to take effect, the device has to 29 * be resumed and suspended again. 30 */ 31 constraint_ns = td ? td->effective_constraint_ns : 32 PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; 33 } else { 34 /* 35 * The child is not in a domain and there's no info on its 36 * suspend/resume latencies, so assume them to be negligible and 37 * take its current PM QoS constraint (that's the only thing 38 * known at this point anyway). 39 */ 40 constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY); 41 constraint_ns *= NSEC_PER_USEC; 42 } 43 44 if (constraint_ns < *constraint_ns_p) 45 *constraint_ns_p = constraint_ns; 46 47 return 0; 48 } 49 50 /** 51 * default_suspend_ok - Default PM domain governor routine to suspend devices. 52 * @dev: Device to check. 53 * 54 * Returns: true if OK to suspend, false if not OK to suspend 55 */ 56 static bool default_suspend_ok(struct device *dev) 57 { 58 struct gpd_timing_data *td = dev_gpd_data(dev)->td; 59 unsigned long flags; 60 s64 constraint_ns; 61 62 dev_dbg(dev, "%s()\n", __func__); 63 64 spin_lock_irqsave(&dev->power.lock, flags); 65 66 if (!td->constraint_changed) { 67 bool ret = td->cached_suspend_ok; 68 69 spin_unlock_irqrestore(&dev->power.lock, flags); 70 return ret; 71 } 72 td->constraint_changed = false; 73 td->cached_suspend_ok = false; 74 td->effective_constraint_ns = 0; 75 constraint_ns = __dev_pm_qos_resume_latency(dev); 76 77 spin_unlock_irqrestore(&dev->power.lock, flags); 78 79 if (constraint_ns == 0) 80 return false; 81 82 constraint_ns *= NSEC_PER_USEC; 83 /* 84 * We can walk the children without any additional locking, because 85 * they all have been suspended at this point and their 86 * effective_constraint_ns fields won't be modified in parallel with us. 87 */ 88 if (!dev->power.ignore_children) 89 device_for_each_child(dev, &constraint_ns, 90 dev_update_qos_constraint); 91 92 if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) { 93 /* "No restriction", so the device is allowed to suspend. */ 94 td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; 95 td->cached_suspend_ok = true; 96 } else if (constraint_ns == 0) { 97 /* 98 * This triggers if one of the children that don't belong to a 99 * domain has a zero PM QoS constraint and it's better not to 100 * suspend then. effective_constraint_ns is zero already and 101 * cached_suspend_ok is false, so bail out. 102 */ 103 return false; 104 } else { 105 constraint_ns -= td->suspend_latency_ns + 106 td->resume_latency_ns; 107 /* 108 * effective_constraint_ns is zero already and cached_suspend_ok 109 * is false, so if the computed value is not positive, return 110 * right away. 111 */ 112 if (constraint_ns <= 0) 113 return false; 114 115 td->effective_constraint_ns = constraint_ns; 116 td->cached_suspend_ok = true; 117 } 118 119 /* 120 * The children have been suspended already, so we don't need to take 121 * their suspend latencies into account here. 122 */ 123 return td->cached_suspend_ok; 124 } 125 126 static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now) 127 { 128 ktime_t domain_wakeup = KTIME_MAX; 129 ktime_t next_wakeup; 130 struct pm_domain_data *pdd; 131 struct gpd_link *link; 132 133 if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY)) 134 return; 135 136 /* 137 * Devices that have a predictable wakeup pattern, may specify 138 * their next wakeup. Let's find the next wakeup from all the 139 * devices attached to this domain and from all the sub-domains. 140 * It is possible that component's a next wakeup may have become 141 * stale when we read that here. We will ignore to ensure the domain 142 * is able to enter its optimal idle state. 143 */ 144 list_for_each_entry(pdd, &genpd->dev_list, list_node) { 145 next_wakeup = to_gpd_data(pdd)->td->next_wakeup; 146 if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) 147 if (ktime_before(next_wakeup, domain_wakeup)) 148 domain_wakeup = next_wakeup; 149 } 150 151 list_for_each_entry(link, &genpd->parent_links, parent_node) { 152 struct genpd_governor_data *cgd = link->child->gd; 153 154 next_wakeup = cgd ? cgd->next_wakeup : KTIME_MAX; 155 if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) 156 if (ktime_before(next_wakeup, domain_wakeup)) 157 domain_wakeup = next_wakeup; 158 } 159 160 genpd->gd->next_wakeup = domain_wakeup; 161 } 162 163 static bool next_wakeup_allows_state(struct generic_pm_domain *genpd, 164 unsigned int state, ktime_t now) 165 { 166 ktime_t domain_wakeup = genpd->gd->next_wakeup; 167 s64 idle_time_ns, min_sleep_ns; 168 169 min_sleep_ns = genpd->states[state].power_off_latency_ns + 170 genpd->states[state].residency_ns; 171 172 idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); 173 174 return idle_time_ns >= min_sleep_ns; 175 } 176 177 static bool __default_power_down_ok(struct dev_pm_domain *pd, 178 unsigned int state) 179 { 180 struct generic_pm_domain *genpd = pd_to_genpd(pd); 181 struct gpd_link *link; 182 struct pm_domain_data *pdd; 183 s64 min_off_time_ns; 184 s64 off_on_time_ns; 185 186 off_on_time_ns = genpd->states[state].power_off_latency_ns + 187 genpd->states[state].power_on_latency_ns; 188 189 min_off_time_ns = -1; 190 /* 191 * Check if subdomains can be off for enough time. 192 * 193 * All subdomains have been powered off already at this point. 194 */ 195 list_for_each_entry(link, &genpd->parent_links, parent_node) { 196 struct genpd_governor_data *cgd = link->child->gd; 197 198 s64 sd_max_off_ns = cgd ? cgd->max_off_time_ns : -1; 199 200 if (sd_max_off_ns < 0) 201 continue; 202 203 /* 204 * Check if the subdomain is allowed to be off long enough for 205 * the current domain to turn off and on (that's how much time 206 * it will have to wait worst case). 207 */ 208 if (sd_max_off_ns <= off_on_time_ns) 209 return false; 210 211 if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0) 212 min_off_time_ns = sd_max_off_ns; 213 } 214 215 /* 216 * Check if the devices in the domain can be off enough time. 217 */ 218 list_for_each_entry(pdd, &genpd->dev_list, list_node) { 219 struct gpd_timing_data *td; 220 s64 constraint_ns; 221 222 /* 223 * Check if the device is allowed to be off long enough for the 224 * domain to turn off and on (that's how much time it will 225 * have to wait worst case). 226 */ 227 td = to_gpd_data(pdd)->td; 228 constraint_ns = td->effective_constraint_ns; 229 /* 230 * Zero means "no suspend at all" and this runs only when all 231 * devices in the domain are suspended, so it must be positive. 232 */ 233 if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) 234 continue; 235 236 if (constraint_ns <= off_on_time_ns) 237 return false; 238 239 if (min_off_time_ns > constraint_ns || min_off_time_ns < 0) 240 min_off_time_ns = constraint_ns; 241 } 242 243 /* 244 * If the computed minimum device off time is negative, there are no 245 * latency constraints, so the domain can spend arbitrary time in the 246 * "off" state. 247 */ 248 if (min_off_time_ns < 0) 249 return true; 250 251 /* 252 * The difference between the computed minimum subdomain or device off 253 * time and the time needed to turn the domain on is the maximum 254 * theoretical time this domain can spend in the "off" state. 255 */ 256 genpd->gd->max_off_time_ns = min_off_time_ns - 257 genpd->states[state].power_on_latency_ns; 258 return true; 259 } 260 261 /** 262 * _default_power_down_ok - Default generic PM domain power off governor routine. 263 * @pd: PM domain to check. 264 * @now: current ktime. 265 * 266 * This routine must be executed under the PM domain's lock. 267 * 268 * Returns: true if OK to power down, false if not OK to power down 269 */ 270 static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now) 271 { 272 struct generic_pm_domain *genpd = pd_to_genpd(pd); 273 struct genpd_governor_data *gd = genpd->gd; 274 int state_idx = genpd->state_count - 1; 275 struct gpd_link *link; 276 277 /* 278 * Find the next wakeup from devices that can determine their own wakeup 279 * to find when the domain would wakeup and do it for every device down 280 * the hierarchy. It is not worth while to sleep if the state's residency 281 * cannot be met. 282 */ 283 update_domain_next_wakeup(genpd, now); 284 if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (gd->next_wakeup != KTIME_MAX)) { 285 /* Let's find out the deepest domain idle state, the devices prefer */ 286 while (state_idx >= 0) { 287 if (next_wakeup_allows_state(genpd, state_idx, now)) { 288 gd->max_off_time_changed = true; 289 break; 290 } 291 state_idx--; 292 } 293 294 if (state_idx < 0) { 295 state_idx = 0; 296 gd->cached_power_down_ok = false; 297 goto done; 298 } 299 } 300 301 if (!gd->max_off_time_changed) { 302 genpd->state_idx = gd->cached_power_down_state_idx; 303 return gd->cached_power_down_ok; 304 } 305 306 /* 307 * We have to invalidate the cached results for the parents, so 308 * use the observation that default_power_down_ok() is not 309 * going to be called for any parent until this instance 310 * returns. 311 */ 312 list_for_each_entry(link, &genpd->child_links, child_node) { 313 struct genpd_governor_data *pgd = link->parent->gd; 314 315 if (pgd) 316 pgd->max_off_time_changed = true; 317 } 318 319 gd->max_off_time_ns = -1; 320 gd->max_off_time_changed = false; 321 gd->cached_power_down_ok = true; 322 323 /* 324 * Find a state to power down to, starting from the state 325 * determined by the next wakeup. 326 */ 327 while (!__default_power_down_ok(pd, state_idx)) { 328 if (state_idx == 0) { 329 gd->cached_power_down_ok = false; 330 break; 331 } 332 state_idx--; 333 } 334 335 done: 336 genpd->state_idx = state_idx; 337 gd->cached_power_down_state_idx = genpd->state_idx; 338 return gd->cached_power_down_ok; 339 } 340 341 static bool default_power_down_ok(struct dev_pm_domain *pd) 342 { 343 return _default_power_down_ok(pd, ktime_get()); 344 } 345 346 #ifdef CONFIG_CPU_IDLE 347 static bool cpu_power_down_ok(struct dev_pm_domain *pd) 348 { 349 struct generic_pm_domain *genpd = pd_to_genpd(pd); 350 struct cpuidle_device *dev; 351 ktime_t domain_wakeup, next_hrtimer; 352 ktime_t now = ktime_get(); 353 struct device *cpu_dev; 354 s64 cpu_constraint, global_constraint; 355 s64 idle_duration_ns; 356 int cpu, i; 357 358 /* Validate dev PM QoS constraints. */ 359 if (!_default_power_down_ok(pd, now)) 360 return false; 361 362 if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN)) 363 return true; 364 365 global_constraint = cpu_latency_qos_limit(); 366 /* 367 * Find the next wakeup for any of the online CPUs within the PM domain 368 * and its subdomains. Note, we only need the genpd->cpus, as it already 369 * contains a mask of all CPUs from subdomains. 370 */ 371 domain_wakeup = ktime_set(KTIME_SEC_MAX, 0); 372 for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) { 373 dev = per_cpu(cpuidle_devices, cpu); 374 if (dev) { 375 next_hrtimer = READ_ONCE(dev->next_hrtimer); 376 if (ktime_before(next_hrtimer, domain_wakeup)) 377 domain_wakeup = next_hrtimer; 378 } 379 380 cpu_dev = get_cpu_device(cpu); 381 if (cpu_dev) { 382 cpu_constraint = dev_pm_qos_raw_resume_latency(cpu_dev); 383 if (cpu_constraint < global_constraint) 384 global_constraint = cpu_constraint; 385 } 386 } 387 388 global_constraint *= NSEC_PER_USEC; 389 /* The minimum idle duration is from now - until the next wakeup. */ 390 idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); 391 if (idle_duration_ns <= 0) 392 return false; 393 394 /* Store the next domain_wakeup to allow consumers to use it. */ 395 genpd->gd->next_hrtimer = domain_wakeup; 396 397 /* 398 * Find the deepest idle state that has its residency value satisfied 399 * and by also taking into account the power off latency for the state. 400 * Start at the state picked by the dev PM QoS constraint validation. 401 */ 402 i = genpd->state_idx; 403 do { 404 if ((idle_duration_ns >= (genpd->states[i].residency_ns + 405 genpd->states[i].power_off_latency_ns)) && 406 (global_constraint >= (genpd->states[i].power_on_latency_ns + 407 genpd->states[i].power_off_latency_ns))) { 408 genpd->state_idx = i; 409 genpd->gd->last_enter = now; 410 genpd->gd->reflect_residency = true; 411 return true; 412 } 413 } while (--i >= 0); 414 415 return false; 416 } 417 418 struct dev_power_governor pm_domain_cpu_gov = { 419 .suspend_ok = default_suspend_ok, 420 .power_down_ok = cpu_power_down_ok, 421 }; 422 #endif 423 424 struct dev_power_governor simple_qos_governor = { 425 .suspend_ok = default_suspend_ok, 426 .power_down_ok = default_power_down_ok, 427 }; 428 429 /* 430 * pm_domain_always_on_gov - A governor implementing an always-on policy 431 */ 432 struct dev_power_governor pm_domain_always_on_gov = { 433 .suspend_ok = default_suspend_ok, 434 }; 435