xref: /linux/arch/riscv/kernel/traps_misaligned.c (revision 119b1e61a769aa98e68599f44721661a4d8c55f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Western Digital Corporation or its affiliates.
4  */
5 #include <linux/kernel.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/module.h>
9 #include <linux/perf_event.h>
10 #include <linux/irq.h>
11 #include <linux/stringify.h>
12 
13 #include <asm/processor.h>
14 #include <asm/ptrace.h>
15 #include <asm/csr.h>
16 #include <asm/entry-common.h>
17 #include <asm/hwprobe.h>
18 #include <asm/cpufeature.h>
19 #include <asm/sbi.h>
20 #include <asm/vector.h>
21 
22 #define INSN_MATCH_LB			0x3
23 #define INSN_MASK_LB			0x707f
24 #define INSN_MATCH_LH			0x1003
25 #define INSN_MASK_LH			0x707f
26 #define INSN_MATCH_LW			0x2003
27 #define INSN_MASK_LW			0x707f
28 #define INSN_MATCH_LD			0x3003
29 #define INSN_MASK_LD			0x707f
30 #define INSN_MATCH_LBU			0x4003
31 #define INSN_MASK_LBU			0x707f
32 #define INSN_MATCH_LHU			0x5003
33 #define INSN_MASK_LHU			0x707f
34 #define INSN_MATCH_LWU			0x6003
35 #define INSN_MASK_LWU			0x707f
36 #define INSN_MATCH_SB			0x23
37 #define INSN_MASK_SB			0x707f
38 #define INSN_MATCH_SH			0x1023
39 #define INSN_MASK_SH			0x707f
40 #define INSN_MATCH_SW			0x2023
41 #define INSN_MASK_SW			0x707f
42 #define INSN_MATCH_SD			0x3023
43 #define INSN_MASK_SD			0x707f
44 
45 #define INSN_MATCH_FLW			0x2007
46 #define INSN_MASK_FLW			0x707f
47 #define INSN_MATCH_FLD			0x3007
48 #define INSN_MASK_FLD			0x707f
49 #define INSN_MATCH_FLQ			0x4007
50 #define INSN_MASK_FLQ			0x707f
51 #define INSN_MATCH_FSW			0x2027
52 #define INSN_MASK_FSW			0x707f
53 #define INSN_MATCH_FSD			0x3027
54 #define INSN_MASK_FSD			0x707f
55 #define INSN_MATCH_FSQ			0x4027
56 #define INSN_MASK_FSQ			0x707f
57 
58 #define INSN_MATCH_C_LD			0x6000
59 #define INSN_MASK_C_LD			0xe003
60 #define INSN_MATCH_C_SD			0xe000
61 #define INSN_MASK_C_SD			0xe003
62 #define INSN_MATCH_C_LW			0x4000
63 #define INSN_MASK_C_LW			0xe003
64 #define INSN_MATCH_C_SW			0xc000
65 #define INSN_MASK_C_SW			0xe003
66 #define INSN_MATCH_C_LDSP		0x6002
67 #define INSN_MASK_C_LDSP		0xe003
68 #define INSN_MATCH_C_SDSP		0xe002
69 #define INSN_MASK_C_SDSP		0xe003
70 #define INSN_MATCH_C_LWSP		0x4002
71 #define INSN_MASK_C_LWSP		0xe003
72 #define INSN_MATCH_C_SWSP		0xc002
73 #define INSN_MASK_C_SWSP		0xe003
74 
75 #define INSN_MATCH_C_FLD		0x2000
76 #define INSN_MASK_C_FLD			0xe003
77 #define INSN_MATCH_C_FLW		0x6000
78 #define INSN_MASK_C_FLW			0xe003
79 #define INSN_MATCH_C_FSD		0xa000
80 #define INSN_MASK_C_FSD			0xe003
81 #define INSN_MATCH_C_FSW		0xe000
82 #define INSN_MASK_C_FSW			0xe003
83 #define INSN_MATCH_C_FLDSP		0x2002
84 #define INSN_MASK_C_FLDSP		0xe003
85 #define INSN_MATCH_C_FSDSP		0xa002
86 #define INSN_MASK_C_FSDSP		0xe003
87 #define INSN_MATCH_C_FLWSP		0x6002
88 #define INSN_MASK_C_FLWSP		0xe003
89 #define INSN_MATCH_C_FSWSP		0xe002
90 #define INSN_MASK_C_FSWSP		0xe003
91 
92 #define INSN_MATCH_C_LHU		0x8400
93 #define INSN_MASK_C_LHU			0xfc43
94 #define INSN_MATCH_C_LH			0x8440
95 #define INSN_MASK_C_LH			0xfc43
96 #define INSN_MATCH_C_SH			0x8c00
97 #define INSN_MASK_C_SH			0xfc43
98 
99 #define INSN_LEN(insn)			((((insn) & 0x3) < 0x3) ? 2 : 4)
100 
101 #if defined(CONFIG_64BIT)
102 #define LOG_REGBYTES			3
103 #define XLEN				64
104 #else
105 #define LOG_REGBYTES			2
106 #define XLEN				32
107 #endif
108 #define REGBYTES			(1 << LOG_REGBYTES)
109 #define XLEN_MINUS_16			((XLEN) - 16)
110 
111 #define SH_RD				7
112 #define SH_RS1				15
113 #define SH_RS2				20
114 #define SH_RS2C				2
115 
116 #define RV_X(x, s, n)			(((x) >> (s)) & ((1 << (n)) - 1))
117 #define RVC_LW_IMM(x)			((RV_X(x, 6, 1) << 2) | \
118 					 (RV_X(x, 10, 3) << 3) | \
119 					 (RV_X(x, 5, 1) << 6))
120 #define RVC_LD_IMM(x)			((RV_X(x, 10, 3) << 3) | \
121 					 (RV_X(x, 5, 2) << 6))
122 #define RVC_LWSP_IMM(x)			((RV_X(x, 4, 3) << 2) | \
123 					 (RV_X(x, 12, 1) << 5) | \
124 					 (RV_X(x, 2, 2) << 6))
125 #define RVC_LDSP_IMM(x)			((RV_X(x, 5, 2) << 3) | \
126 					 (RV_X(x, 12, 1) << 5) | \
127 					 (RV_X(x, 2, 3) << 6))
128 #define RVC_SWSP_IMM(x)			((RV_X(x, 9, 4) << 2) | \
129 					 (RV_X(x, 7, 2) << 6))
130 #define RVC_SDSP_IMM(x)			((RV_X(x, 10, 3) << 3) | \
131 					 (RV_X(x, 7, 3) << 6))
132 #define RVC_RS1S(insn)			(8 + RV_X(insn, SH_RD, 3))
133 #define RVC_RS2S(insn)			(8 + RV_X(insn, SH_RS2C, 3))
134 #define RVC_RS2(insn)			RV_X(insn, SH_RS2C, 5)
135 
136 #define SHIFT_RIGHT(x, y)		\
137 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
138 
139 #define REG_MASK			\
140 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
141 
142 #define REG_OFFSET(insn, pos)		\
143 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
144 
145 #define REG_PTR(insn, pos, regs)	\
146 	(ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))
147 
148 #define GET_RS1(insn, regs)		(*REG_PTR(insn, SH_RS1, regs))
149 #define GET_RS2(insn, regs)		(*REG_PTR(insn, SH_RS2, regs))
150 #define GET_RS1S(insn, regs)		(*REG_PTR(RVC_RS1S(insn), 0, regs))
151 #define GET_RS2S(insn, regs)		(*REG_PTR(RVC_RS2S(insn), 0, regs))
152 #define GET_RS2C(insn, regs)		(*REG_PTR(insn, SH_RS2C, regs))
153 #define GET_SP(regs)			(*REG_PTR(2, 0, regs))
154 #define SET_RD(insn, regs, val)		(*REG_PTR(insn, SH_RD, regs) = (val))
155 #define IMM_I(insn)			((s32)(insn) >> 20)
156 #define IMM_S(insn)			(((s32)(insn) >> 25 << 5) | \
157 					 (s32)(((insn) >> 7) & 0x1f))
158 #define MASK_FUNCT3			0x7000
159 
160 #define GET_PRECISION(insn) (((insn) >> 25) & 3)
161 #define GET_RM(insn) (((insn) >> 12) & 7)
162 #define PRECISION_S 0
163 #define PRECISION_D 1
164 
165 #ifdef CONFIG_FPU
166 
167 #define FP_GET_RD(insn)		(insn >> 7 & 0x1F)
168 
169 extern void put_f32_reg(unsigned long fp_reg, unsigned long value);
170 
set_f32_rd(unsigned long insn,struct pt_regs * regs,unsigned long val)171 static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
172 		      unsigned long val)
173 {
174 	unsigned long fp_reg = FP_GET_RD(insn);
175 
176 	put_f32_reg(fp_reg, val);
177 	regs->status |= SR_FS_DIRTY;
178 
179 	return 0;
180 }
181 
182 extern void put_f64_reg(unsigned long fp_reg, unsigned long value);
183 
set_f64_rd(unsigned long insn,struct pt_regs * regs,u64 val)184 static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
185 {
186 	unsigned long fp_reg = FP_GET_RD(insn);
187 	unsigned long value;
188 
189 #if __riscv_xlen == 32
190 	value = (unsigned long) &val;
191 #else
192 	value = val;
193 #endif
194 	put_f64_reg(fp_reg, value);
195 	regs->status |= SR_FS_DIRTY;
196 
197 	return 0;
198 }
199 
200 #if __riscv_xlen == 32
201 extern void get_f64_reg(unsigned long fp_reg, u64 *value);
202 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)203 static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
204 		      struct pt_regs *regs)
205 {
206 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
207 	u64 val;
208 
209 	get_f64_reg(fp_reg, &val);
210 	regs->status |= SR_FS_DIRTY;
211 
212 	return val;
213 }
214 #else
215 
216 extern unsigned long get_f64_reg(unsigned long fp_reg);
217 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)218 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
219 				struct pt_regs *regs)
220 {
221 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
222 	unsigned long val;
223 
224 	val = get_f64_reg(fp_reg);
225 	regs->status |= SR_FS_DIRTY;
226 
227 	return val;
228 }
229 
230 #endif
231 
232 extern unsigned long get_f32_reg(unsigned long fp_reg);
233 
get_f32_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)234 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
235 				struct pt_regs *regs)
236 {
237 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
238 	unsigned long val;
239 
240 	val = get_f32_reg(fp_reg);
241 	regs->status |= SR_FS_DIRTY;
242 
243 	return val;
244 }
245 
246 #else /* CONFIG_FPU */
set_f32_rd(unsigned long insn,struct pt_regs * regs,unsigned long val)247 static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
248 		       unsigned long val) {}
249 
set_f64_rd(unsigned long insn,struct pt_regs * regs,u64 val)250 static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}
251 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)252 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
253 				struct pt_regs *regs)
254 {
255 	return 0;
256 }
257 
get_f32_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)258 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
259 				struct pt_regs *regs)
260 {
261 	return 0;
262 }
263 
264 #endif
265 
266 #define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
267 #define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
268 #define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))
269 
270 #define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
271 #define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
272 #define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))
273 
274 #define __read_insn(regs, insn, insn_addr, type)	\
275 ({							\
276 	int __ret;					\
277 							\
278 	if (user_mode(regs)) {				\
279 		__ret = get_user(insn, (type __user *) insn_addr); \
280 	} else {					\
281 		insn = *(type *)insn_addr;		\
282 		__ret = 0;				\
283 	}						\
284 							\
285 	__ret;						\
286 })
287 
get_insn(struct pt_regs * regs,ulong epc,ulong * r_insn)288 static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
289 {
290 	ulong insn = 0;
291 
292 	if (epc & 0x2) {
293 		ulong tmp = 0;
294 
295 		if (__read_insn(regs, insn, epc, u16))
296 			return -EFAULT;
297 		/* __get_user() uses regular "lw" which sign extend the loaded
298 		 * value make sure to clear higher order bits in case we "or" it
299 		 * below with the upper 16 bits half.
300 		 */
301 		insn &= GENMASK(15, 0);
302 		if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
303 			*r_insn = insn;
304 			return 0;
305 		}
306 		epc += sizeof(u16);
307 		if (__read_insn(regs, tmp, epc, u16))
308 			return -EFAULT;
309 		*r_insn = (tmp << 16) | insn;
310 
311 		return 0;
312 	} else {
313 		if (__read_insn(regs, insn, epc, u32))
314 			return -EFAULT;
315 		if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
316 			*r_insn = insn;
317 			return 0;
318 		}
319 		insn &= GENMASK(15, 0);
320 		*r_insn = insn;
321 
322 		return 0;
323 	}
324 }
325 
326 union reg_data {
327 	u8 data_bytes[8];
328 	ulong data_ulong;
329 	u64 data_u64;
330 };
331 
332 /* sysctl hooks */
333 int unaligned_enabled __read_mostly = 1;	/* Enabled by default */
334 
335 #ifdef CONFIG_RISCV_VECTOR_MISALIGNED
handle_vector_misaligned_load(struct pt_regs * regs)336 static int handle_vector_misaligned_load(struct pt_regs *regs)
337 {
338 	unsigned long epc = regs->epc;
339 	unsigned long insn;
340 
341 	if (get_insn(regs, epc, &insn))
342 		return -1;
343 
344 	/* Only return 0 when in check_vector_unaligned_access_emulated */
345 	if (*this_cpu_ptr(&vector_misaligned_access) == RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN) {
346 		*this_cpu_ptr(&vector_misaligned_access) = RISCV_HWPROBE_MISALIGNED_VECTOR_UNSUPPORTED;
347 		regs->epc = epc + INSN_LEN(insn);
348 		return 0;
349 	}
350 
351 	/* If vector instruction we don't emulate it yet */
352 	regs->epc = epc;
353 	return -1;
354 }
355 #else
handle_vector_misaligned_load(struct pt_regs * regs)356 static int handle_vector_misaligned_load(struct pt_regs *regs)
357 {
358 	return -1;
359 }
360 #endif
361 
handle_scalar_misaligned_load(struct pt_regs * regs)362 static int handle_scalar_misaligned_load(struct pt_regs *regs)
363 {
364 	union reg_data val;
365 	unsigned long epc = regs->epc;
366 	unsigned long insn;
367 	unsigned long addr = regs->badaddr;
368 	int fp = 0, shift = 0, len = 0;
369 
370 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
371 
372 	*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED;
373 
374 	if (!unaligned_enabled)
375 		return -1;
376 
377 	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
378 		return -1;
379 
380 	if (get_insn(regs, epc, &insn))
381 		return -1;
382 
383 	regs->epc = 0;
384 
385 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
386 		len = 4;
387 		shift = 8 * (sizeof(unsigned long) - len);
388 #if defined(CONFIG_64BIT)
389 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
390 		len = 8;
391 		shift = 8 * (sizeof(unsigned long) - len);
392 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
393 		len = 4;
394 #endif
395 	} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
396 		fp = 1;
397 		len = 8;
398 	} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
399 		fp = 1;
400 		len = 4;
401 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
402 		len = 2;
403 		shift = 8 * (sizeof(unsigned long) - len);
404 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
405 		len = 2;
406 #if defined(CONFIG_64BIT)
407 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
408 		len = 8;
409 		shift = 8 * (sizeof(unsigned long) - len);
410 		insn = RVC_RS2S(insn) << SH_RD;
411 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
412 		   ((insn >> SH_RD) & 0x1f)) {
413 		len = 8;
414 		shift = 8 * (sizeof(unsigned long) - len);
415 #endif
416 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
417 		len = 4;
418 		shift = 8 * (sizeof(unsigned long) - len);
419 		insn = RVC_RS2S(insn) << SH_RD;
420 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
421 		   ((insn >> SH_RD) & 0x1f)) {
422 		len = 4;
423 		shift = 8 * (sizeof(unsigned long) - len);
424 	} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
425 		fp = 1;
426 		len = 8;
427 		insn = RVC_RS2S(insn) << SH_RD;
428 	} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
429 		fp = 1;
430 		len = 8;
431 #if defined(CONFIG_32BIT)
432 	} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
433 		fp = 1;
434 		len = 4;
435 		insn = RVC_RS2S(insn) << SH_RD;
436 	} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
437 		fp = 1;
438 		len = 4;
439 #endif
440 	} else if ((insn & INSN_MASK_C_LHU) == INSN_MATCH_C_LHU) {
441 		len = 2;
442 		insn = RVC_RS2S(insn) << SH_RD;
443 	} else if ((insn & INSN_MASK_C_LH) == INSN_MATCH_C_LH) {
444 		len = 2;
445 		shift = 8 * (sizeof(ulong) - len);
446 		insn = RVC_RS2S(insn) << SH_RD;
447 	} else {
448 		regs->epc = epc;
449 		return -1;
450 	}
451 
452 	if (!IS_ENABLED(CONFIG_FPU) && fp)
453 		return -EOPNOTSUPP;
454 
455 	val.data_u64 = 0;
456 	if (user_mode(regs)) {
457 		if (copy_from_user_nofault(&val, (u8 __user *)addr, len))
458 			return -1;
459 	} else {
460 		memcpy(&val, (u8 *)addr, len);
461 	}
462 
463 	if (!fp)
464 		SET_RD(insn, regs, val.data_ulong << shift >> shift);
465 	else if (len == 8)
466 		set_f64_rd(insn, regs, val.data_u64);
467 	else
468 		set_f32_rd(insn, regs, val.data_ulong);
469 
470 	regs->epc = epc + INSN_LEN(insn);
471 
472 	return 0;
473 }
474 
handle_scalar_misaligned_store(struct pt_regs * regs)475 static int handle_scalar_misaligned_store(struct pt_regs *regs)
476 {
477 	union reg_data val;
478 	unsigned long epc = regs->epc;
479 	unsigned long insn;
480 	unsigned long addr = regs->badaddr;
481 	int len = 0, fp = 0;
482 
483 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
484 
485 	if (!unaligned_enabled)
486 		return -1;
487 
488 	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
489 		return -1;
490 
491 	if (get_insn(regs, epc, &insn))
492 		return -1;
493 
494 	regs->epc = 0;
495 
496 	val.data_ulong = GET_RS2(insn, regs);
497 
498 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
499 		len = 4;
500 #if defined(CONFIG_64BIT)
501 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
502 		len = 8;
503 #endif
504 	} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
505 		fp = 1;
506 		len = 8;
507 		val.data_u64 = GET_F64_RS2(insn, regs);
508 	} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
509 		fp = 1;
510 		len = 4;
511 		val.data_ulong = GET_F32_RS2(insn, regs);
512 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
513 		len = 2;
514 #if defined(CONFIG_64BIT)
515 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
516 		len = 8;
517 		val.data_ulong = GET_RS2S(insn, regs);
518 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
519 		len = 8;
520 		val.data_ulong = GET_RS2C(insn, regs);
521 #endif
522 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
523 		len = 4;
524 		val.data_ulong = GET_RS2S(insn, regs);
525 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
526 		len = 4;
527 		val.data_ulong = GET_RS2C(insn, regs);
528 	} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
529 		fp = 1;
530 		len = 8;
531 		val.data_u64 = GET_F64_RS2S(insn, regs);
532 	} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
533 		fp = 1;
534 		len = 8;
535 		val.data_u64 = GET_F64_RS2C(insn, regs);
536 #if !defined(CONFIG_64BIT)
537 	} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
538 		fp = 1;
539 		len = 4;
540 		val.data_ulong = GET_F32_RS2S(insn, regs);
541 	} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
542 		fp = 1;
543 		len = 4;
544 		val.data_ulong = GET_F32_RS2C(insn, regs);
545 #endif
546 	} else if ((insn & INSN_MASK_C_SH) == INSN_MATCH_C_SH) {
547 		len = 2;
548 		val.data_ulong = GET_RS2S(insn, regs);
549 	} else {
550 		regs->epc = epc;
551 		return -1;
552 	}
553 
554 	if (!IS_ENABLED(CONFIG_FPU) && fp)
555 		return -EOPNOTSUPP;
556 
557 	if (user_mode(regs)) {
558 		if (copy_to_user_nofault((u8 __user *)addr, &val, len))
559 			return -1;
560 	} else {
561 		memcpy((u8 *)addr, &val, len);
562 	}
563 
564 	regs->epc = epc + INSN_LEN(insn);
565 
566 	return 0;
567 }
568 
handle_misaligned_load(struct pt_regs * regs)569 int handle_misaligned_load(struct pt_regs *regs)
570 {
571 	unsigned long epc = regs->epc;
572 	unsigned long insn;
573 
574 	if (IS_ENABLED(CONFIG_RISCV_VECTOR_MISALIGNED)) {
575 		if (get_insn(regs, epc, &insn))
576 			return -1;
577 
578 		if (insn_is_vector(insn))
579 			return handle_vector_misaligned_load(regs);
580 	}
581 
582 	if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
583 		return handle_scalar_misaligned_load(regs);
584 
585 	return -1;
586 }
587 
handle_misaligned_store(struct pt_regs * regs)588 int handle_misaligned_store(struct pt_regs *regs)
589 {
590 	if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
591 		return handle_scalar_misaligned_store(regs);
592 
593 	return -1;
594 }
595 
596 #ifdef CONFIG_RISCV_VECTOR_MISALIGNED
check_vector_unaligned_access_emulated(struct work_struct * work __always_unused)597 void check_vector_unaligned_access_emulated(struct work_struct *work __always_unused)
598 {
599 	long *mas_ptr = this_cpu_ptr(&vector_misaligned_access);
600 	unsigned long tmp_var;
601 
602 	*mas_ptr = RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN;
603 
604 	kernel_vector_begin();
605 	/*
606 	 * In pre-13.0.0 versions of GCC, vector registers cannot appear in
607 	 * the clobber list. This inline asm clobbers v0, but since we do not
608 	 * currently build the kernel with V enabled, the v0 clobber arg is not
609 	 * needed (as the compiler will not emit vector code itself). If the kernel
610 	 * is changed to build with V enabled, the clobber arg will need to be
611 	 * added here.
612 	 */
613 	__asm__ __volatile__ (
614 		".balign 4\n\t"
615 		".option push\n\t"
616 		".option arch, +zve32x\n\t"
617 		"       vsetivli zero, 1, e16, m1, ta, ma\n\t"	// Vectors of 16b
618 		"       vle16.v v0, (%[ptr])\n\t"		// Load bytes
619 		".option pop\n\t"
620 		: : [ptr] "r" ((u8 *)&tmp_var + 1));
621 	kernel_vector_end();
622 }
623 
check_vector_unaligned_access_emulated_all_cpus(void)624 bool __init check_vector_unaligned_access_emulated_all_cpus(void)
625 {
626 	int cpu;
627 
628 	/*
629 	 * While being documented as very slow, schedule_on_each_cpu() is used since
630 	 * kernel_vector_begin() expects irqs to be enabled or it will panic()
631 	 */
632 	schedule_on_each_cpu(check_vector_unaligned_access_emulated);
633 
634 	for_each_online_cpu(cpu)
635 		if (per_cpu(vector_misaligned_access, cpu)
636 		    == RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN)
637 			return false;
638 
639 	return true;
640 }
641 #else
check_vector_unaligned_access_emulated_all_cpus(void)642 bool __init check_vector_unaligned_access_emulated_all_cpus(void)
643 {
644 	return false;
645 }
646 #endif
647 
all_cpus_unaligned_scalar_access_emulated(void)648 static bool all_cpus_unaligned_scalar_access_emulated(void)
649 {
650 	int cpu;
651 
652 	for_each_online_cpu(cpu)
653 		if (per_cpu(misaligned_access_speed, cpu) !=
654 		    RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED)
655 			return false;
656 
657 	return true;
658 }
659 
660 #ifdef CONFIG_RISCV_SCALAR_MISALIGNED
661 
662 static bool unaligned_ctl __read_mostly;
663 
check_unaligned_access_emulated(void * arg __always_unused)664 static void check_unaligned_access_emulated(void *arg __always_unused)
665 {
666 	int cpu = smp_processor_id();
667 	long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
668 	unsigned long tmp_var, tmp_val;
669 
670 	*mas_ptr = RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN;
671 
672 	__asm__ __volatile__ (
673 		"       "REG_L" %[tmp], 1(%[ptr])\n"
674 		: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");
675 }
676 
cpu_online_check_unaligned_access_emulated(unsigned int cpu)677 static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
678 {
679 	long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
680 
681 	check_unaligned_access_emulated(NULL);
682 
683 	/*
684 	 * If unaligned_ctl is already set, this means that we detected that all
685 	 * CPUS uses emulated misaligned access at boot time. If that changed
686 	 * when hotplugging the new cpu, this is something we don't handle.
687 	 */
688 	if (unlikely(unaligned_ctl && (*mas_ptr != RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED))) {
689 		pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
690 		return -EINVAL;
691 	}
692 
693 	return 0;
694 }
695 
check_unaligned_access_emulated_all_cpus(void)696 bool __init check_unaligned_access_emulated_all_cpus(void)
697 {
698 	/*
699 	 * We can only support PR_UNALIGN controls if all CPUs have misaligned
700 	 * accesses emulated since tasks requesting such control can run on any
701 	 * CPU.
702 	 */
703 	on_each_cpu(check_unaligned_access_emulated, NULL, 1);
704 
705 	if (!all_cpus_unaligned_scalar_access_emulated())
706 		return false;
707 
708 	unaligned_ctl = true;
709 	return true;
710 }
711 
unaligned_ctl_available(void)712 bool unaligned_ctl_available(void)
713 {
714 	return unaligned_ctl;
715 }
716 #else
check_unaligned_access_emulated_all_cpus(void)717 bool __init check_unaligned_access_emulated_all_cpus(void)
718 {
719 	return false;
720 }
cpu_online_check_unaligned_access_emulated(unsigned int cpu)721 static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
722 {
723 	return 0;
724 }
725 #endif
726 
727 static bool misaligned_traps_delegated;
728 
729 #ifdef CONFIG_RISCV_SBI
730 
cpu_online_sbi_unaligned_setup(unsigned int cpu)731 static int cpu_online_sbi_unaligned_setup(unsigned int cpu)
732 {
733 	if (sbi_fwft_set(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0) &&
734 	    misaligned_traps_delegated) {
735 		pr_crit("Misaligned trap delegation non homogeneous (expected delegated)");
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 
unaligned_access_init(void)742 void __init unaligned_access_init(void)
743 {
744 	int ret;
745 
746 	ret = sbi_fwft_set_online_cpus(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0);
747 	if (ret)
748 		return;
749 
750 	misaligned_traps_delegated = true;
751 	pr_info("SBI misaligned access exception delegation ok\n");
752 	/*
753 	 * Note that we don't have to take any specific action here, if
754 	 * the delegation is successful, then
755 	 * check_unaligned_access_emulated() will verify that indeed the
756 	 * platform traps on misaligned accesses.
757 	 */
758 }
759 #else
unaligned_access_init(void)760 void __init unaligned_access_init(void) {}
761 
cpu_online_sbi_unaligned_setup(unsigned int cpu __always_unused)762 static int cpu_online_sbi_unaligned_setup(unsigned int cpu __always_unused)
763 {
764 	return 0;
765 }
766 
767 #endif
768 
cpu_online_unaligned_access_init(unsigned int cpu)769 int cpu_online_unaligned_access_init(unsigned int cpu)
770 {
771 	int ret;
772 
773 	ret = cpu_online_sbi_unaligned_setup(cpu);
774 	if (ret)
775 		return ret;
776 
777 	return cpu_online_check_unaligned_access_emulated(cpu);
778 }
779 
misaligned_traps_can_delegate(void)780 bool misaligned_traps_can_delegate(void)
781 {
782 	/*
783 	 * Either we successfully requested misaligned traps delegation for all
784 	 * CPUs, or the SBI does not implement the FWFT extension but delegated
785 	 * the exception by default.
786 	 */
787 	return misaligned_traps_delegated ||
788 	       all_cpus_unaligned_scalar_access_emulated();
789 }
790 EXPORT_SYMBOL_GPL(misaligned_traps_can_delegate);
791