1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /**
8 * DOC: cpu map
9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11 *
12 * Unlike devmap which redirects XDP frames out to another NIC device,
13 * this map type redirects raw XDP frames to another CPU. The remote
14 * CPU will do SKB-allocation and call the normal network stack.
15 */
16 /*
17 * This is a scalability and isolation mechanism, that allow
18 * separating the early driver network XDP layer, from the rest of the
19 * netstack, and assigning dedicated CPUs for this stage. This
20 * basically allows for 10G wirespeed pre-filtering via bpf.
21 */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 #include <net/hotdata.h>
28
29 #include <linux/sched.h>
30 #include <linux/workqueue.h>
31 #include <linux/kthread.h>
32 #include <linux/completion.h>
33 #include <trace/events/xdp.h>
34 #include <linux/btf_ids.h>
35
36 #include <linux/netdevice.h>
37 #include <net/gro.h>
38
39 /* General idea: XDP packets getting XDP redirected to another CPU,
40 * will maximum be stored/queued for one driver ->poll() call. It is
41 * guaranteed that queueing the frame and the flush operation happen on
42 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
43 * which queue in bpf_cpu_map_entry contains packets.
44 */
45
46 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
47 struct bpf_cpu_map_entry;
48 struct bpf_cpu_map;
49
50 struct xdp_bulk_queue {
51 void *q[CPU_MAP_BULK_SIZE];
52 struct list_head flush_node;
53 struct bpf_cpu_map_entry *obj;
54 unsigned int count;
55 };
56
57 /* Struct for every remote "destination" CPU in map */
58 struct bpf_cpu_map_entry {
59 u32 cpu; /* kthread CPU and map index */
60 int map_id; /* Back reference to map */
61
62 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
63 struct xdp_bulk_queue __percpu *bulkq;
64
65 /* Queue with potential multi-producers, and single-consumer kthread */
66 struct ptr_ring *queue;
67 struct task_struct *kthread;
68
69 struct bpf_cpumap_val value;
70 struct bpf_prog *prog;
71 struct gro_node gro;
72
73 struct completion kthread_running;
74 struct rcu_work free_work;
75 };
76
77 struct bpf_cpu_map {
78 struct bpf_map map;
79 /* Below members specific for map type */
80 struct bpf_cpu_map_entry __rcu **cpu_map;
81 };
82
cpu_map_alloc(union bpf_attr * attr)83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85 u32 value_size = attr->value_size;
86 struct bpf_cpu_map *cmap;
87
88 /* check sanity of attributes */
89 if (attr->max_entries == 0 || attr->key_size != 4 ||
90 (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
91 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
92 attr->map_flags & ~BPF_F_NUMA_NODE)
93 return ERR_PTR(-EINVAL);
94
95 /* Pre-limit array size based on NR_CPUS, not final CPU check */
96 if (attr->max_entries > NR_CPUS)
97 return ERR_PTR(-E2BIG);
98
99 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
100 if (!cmap)
101 return ERR_PTR(-ENOMEM);
102
103 bpf_map_init_from_attr(&cmap->map, attr);
104
105 /* Alloc array for possible remote "destination" CPUs */
106 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
107 sizeof(struct bpf_cpu_map_entry *),
108 cmap->map.numa_node);
109 if (!cmap->cpu_map) {
110 bpf_map_area_free(cmap);
111 return ERR_PTR(-ENOMEM);
112 }
113
114 return &cmap->map;
115 }
116
__cpu_map_ring_cleanup(struct ptr_ring * ring)117 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
118 {
119 /* The tear-down procedure should have made sure that queue is
120 * empty. See __cpu_map_entry_replace() and work-queue
121 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
122 * gracefully and warn once.
123 */
124 void *ptr;
125
126 while ((ptr = ptr_ring_consume(ring))) {
127 WARN_ON_ONCE(1);
128 if (unlikely(__ptr_test_bit(0, &ptr))) {
129 __ptr_clear_bit(0, &ptr);
130 kfree_skb(ptr);
131 continue;
132 }
133 xdp_return_frame(ptr);
134 }
135 }
136
cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry * rcpu,void ** skbs,u32 skb_n,struct xdp_cpumap_stats * stats)137 static u32 cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
138 void **skbs, u32 skb_n,
139 struct xdp_cpumap_stats *stats)
140 {
141 struct xdp_buff xdp;
142 u32 act, pass = 0;
143 int err;
144
145 for (u32 i = 0; i < skb_n; i++) {
146 struct sk_buff *skb = skbs[i];
147
148 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
149 switch (act) {
150 case XDP_PASS:
151 skbs[pass++] = skb;
152 break;
153 case XDP_REDIRECT:
154 err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
155 rcpu->prog);
156 if (unlikely(err)) {
157 kfree_skb(skb);
158 stats->drop++;
159 } else {
160 stats->redirect++;
161 }
162 break;
163 default:
164 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
165 fallthrough;
166 case XDP_ABORTED:
167 trace_xdp_exception(skb->dev, rcpu->prog, act);
168 fallthrough;
169 case XDP_DROP:
170 napi_consume_skb(skb, true);
171 stats->drop++;
172 break;
173 }
174 }
175
176 stats->pass += pass;
177
178 return pass;
179 }
180
cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry * rcpu,void ** frames,int n,struct xdp_cpumap_stats * stats)181 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
182 void **frames, int n,
183 struct xdp_cpumap_stats *stats)
184 {
185 struct xdp_rxq_info rxq = {};
186 struct xdp_buff xdp;
187 int i, nframes = 0;
188
189 xdp_set_return_frame_no_direct();
190 xdp.rxq = &rxq;
191
192 for (i = 0; i < n; i++) {
193 struct xdp_frame *xdpf = frames[i];
194 u32 act;
195 int err;
196
197 rxq.dev = xdpf->dev_rx;
198 rxq.mem.type = xdpf->mem_type;
199 /* TODO: report queue_index to xdp_rxq_info */
200
201 xdp_convert_frame_to_buff(xdpf, &xdp);
202
203 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
204 switch (act) {
205 case XDP_PASS:
206 err = xdp_update_frame_from_buff(&xdp, xdpf);
207 if (err < 0) {
208 xdp_return_frame(xdpf);
209 stats->drop++;
210 } else {
211 frames[nframes++] = xdpf;
212 }
213 break;
214 case XDP_REDIRECT:
215 err = xdp_do_redirect(xdpf->dev_rx, &xdp,
216 rcpu->prog);
217 if (unlikely(err)) {
218 xdp_return_frame(xdpf);
219 stats->drop++;
220 } else {
221 stats->redirect++;
222 }
223 break;
224 default:
225 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
226 fallthrough;
227 case XDP_DROP:
228 xdp_return_frame(xdpf);
229 stats->drop++;
230 break;
231 }
232 }
233
234 xdp_clear_return_frame_no_direct();
235 stats->pass += nframes;
236
237 return nframes;
238 }
239
240 #define CPUMAP_BATCH 8
241
242 struct cpu_map_ret {
243 u32 xdp_n;
244 u32 skb_n;
245 };
246
cpu_map_bpf_prog_run(struct bpf_cpu_map_entry * rcpu,void ** frames,void ** skbs,struct cpu_map_ret * ret,struct xdp_cpumap_stats * stats)247 static void cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
248 void **skbs, struct cpu_map_ret *ret,
249 struct xdp_cpumap_stats *stats)
250 {
251 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
252
253 if (!rcpu->prog)
254 goto out;
255
256 rcu_read_lock();
257 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
258
259 ret->xdp_n = cpu_map_bpf_prog_run_xdp(rcpu, frames, ret->xdp_n, stats);
260 if (unlikely(ret->skb_n))
261 ret->skb_n = cpu_map_bpf_prog_run_skb(rcpu, skbs, ret->skb_n,
262 stats);
263
264 if (stats->redirect)
265 xdp_do_flush();
266
267 bpf_net_ctx_clear(bpf_net_ctx);
268 rcu_read_unlock();
269
270 out:
271 if (unlikely(ret->skb_n) && ret->xdp_n)
272 memmove(&skbs[ret->xdp_n], skbs, ret->skb_n * sizeof(*skbs));
273 }
274
cpu_map_gro_flush(struct bpf_cpu_map_entry * rcpu,bool empty)275 static void cpu_map_gro_flush(struct bpf_cpu_map_entry *rcpu, bool empty)
276 {
277 /*
278 * If the ring is not empty, there'll be a new iteration soon, and we
279 * only need to do a full flush if a tick is long (> 1 ms).
280 * If the ring is empty, to not hold GRO packets in the stack for too
281 * long, do a full flush.
282 * This is equivalent to how NAPI decides whether to perform a full
283 * flush.
284 */
285 gro_flush(&rcpu->gro, !empty && HZ >= 1000);
286 gro_normal_list(&rcpu->gro);
287 }
288
cpu_map_kthread_run(void * data)289 static int cpu_map_kthread_run(void *data)
290 {
291 struct bpf_cpu_map_entry *rcpu = data;
292 unsigned long last_qs = jiffies;
293 u32 packets = 0;
294
295 complete(&rcpu->kthread_running);
296 set_current_state(TASK_INTERRUPTIBLE);
297
298 /* When kthread gives stop order, then rcpu have been disconnected
299 * from map, thus no new packets can enter. Remaining in-flight
300 * per CPU stored packets are flushed to this queue. Wait honoring
301 * kthread_stop signal until queue is empty.
302 */
303 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
304 struct xdp_cpumap_stats stats = {}; /* zero stats */
305 unsigned int kmem_alloc_drops = 0, sched = 0;
306 struct cpu_map_ret ret = { };
307 void *frames[CPUMAP_BATCH];
308 void *skbs[CPUMAP_BATCH];
309 u32 i, n, m;
310 bool empty;
311
312 /* Release CPU reschedule checks */
313 if (__ptr_ring_empty(rcpu->queue)) {
314 set_current_state(TASK_INTERRUPTIBLE);
315 /* Recheck to avoid lost wake-up */
316 if (__ptr_ring_empty(rcpu->queue)) {
317 schedule();
318 sched = 1;
319 last_qs = jiffies;
320 } else {
321 __set_current_state(TASK_RUNNING);
322 }
323 } else {
324 rcu_softirq_qs_periodic(last_qs);
325 sched = cond_resched();
326 }
327
328 /*
329 * The bpf_cpu_map_entry is single consumer, with this
330 * kthread CPU pinned. Lockless access to ptr_ring
331 * consume side valid as no-resize allowed of queue.
332 */
333 n = __ptr_ring_consume_batched(rcpu->queue, frames,
334 CPUMAP_BATCH);
335 for (i = 0; i < n; i++) {
336 void *f = frames[i];
337 struct page *page;
338
339 if (unlikely(__ptr_test_bit(0, &f))) {
340 struct sk_buff *skb = f;
341
342 __ptr_clear_bit(0, &skb);
343 skbs[ret.skb_n++] = skb;
344 continue;
345 }
346
347 frames[ret.xdp_n++] = f;
348 page = virt_to_page(f);
349
350 /* Bring struct page memory area to curr CPU. Read by
351 * build_skb_around via page_is_pfmemalloc(), and when
352 * freed written by page_frag_free call.
353 */
354 prefetchw(page);
355 }
356
357 local_bh_disable();
358
359 /* Support running another XDP prog on this CPU */
360 cpu_map_bpf_prog_run(rcpu, frames, skbs, &ret, &stats);
361 if (!ret.xdp_n)
362 goto stats;
363
364 m = napi_skb_cache_get_bulk(skbs, ret.xdp_n);
365 if (unlikely(m < ret.xdp_n)) {
366 for (i = m; i < ret.xdp_n; i++)
367 xdp_return_frame(frames[i]);
368
369 if (ret.skb_n)
370 memmove(&skbs[m], &skbs[ret.xdp_n],
371 ret.skb_n * sizeof(*skbs));
372
373 kmem_alloc_drops += ret.xdp_n - m;
374 ret.xdp_n = m;
375 }
376
377 for (i = 0; i < ret.xdp_n; i++) {
378 struct xdp_frame *xdpf = frames[i];
379
380 /* Can fail only when !skb -- already handled above */
381 __xdp_build_skb_from_frame(xdpf, skbs[i], xdpf->dev_rx);
382 }
383
384 stats:
385 /* Feedback loop via tracepoint.
386 * NB: keep before recv to allow measuring enqueue/dequeue latency.
387 */
388 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
389 sched, &stats);
390
391 for (i = 0; i < ret.xdp_n + ret.skb_n; i++)
392 gro_receive_skb(&rcpu->gro, skbs[i]);
393
394 /* Flush either every 64 packets or in case of empty ring */
395 packets += n;
396 empty = __ptr_ring_empty(rcpu->queue);
397 if (packets >= NAPI_POLL_WEIGHT || empty) {
398 cpu_map_gro_flush(rcpu, empty);
399 packets = 0;
400 }
401
402 local_bh_enable(); /* resched point, may call do_softirq() */
403 }
404 __set_current_state(TASK_RUNNING);
405
406 return 0;
407 }
408
__cpu_map_load_bpf_program(struct bpf_cpu_map_entry * rcpu,struct bpf_map * map,int fd)409 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
410 struct bpf_map *map, int fd)
411 {
412 struct bpf_prog *prog;
413
414 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
415 if (IS_ERR(prog))
416 return PTR_ERR(prog);
417
418 if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
419 !bpf_prog_map_compatible(map, prog)) {
420 bpf_prog_put(prog);
421 return -EINVAL;
422 }
423
424 rcpu->value.bpf_prog.id = prog->aux->id;
425 rcpu->prog = prog;
426
427 return 0;
428 }
429
430 static struct bpf_cpu_map_entry *
__cpu_map_entry_alloc(struct bpf_map * map,struct bpf_cpumap_val * value,u32 cpu)431 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
432 u32 cpu)
433 {
434 int numa, err, i, fd = value->bpf_prog.fd;
435 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
436 struct bpf_cpu_map_entry *rcpu;
437 struct xdp_bulk_queue *bq;
438
439 /* Have map->numa_node, but choose node of redirect target CPU */
440 numa = cpu_to_node(cpu);
441
442 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
443 if (!rcpu)
444 return NULL;
445
446 /* Alloc percpu bulkq */
447 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
448 sizeof(void *), gfp);
449 if (!rcpu->bulkq)
450 goto free_rcu;
451
452 for_each_possible_cpu(i) {
453 bq = per_cpu_ptr(rcpu->bulkq, i);
454 bq->obj = rcpu;
455 }
456
457 /* Alloc queue */
458 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
459 numa);
460 if (!rcpu->queue)
461 goto free_bulkq;
462
463 err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
464 if (err)
465 goto free_queue;
466
467 rcpu->cpu = cpu;
468 rcpu->map_id = map->id;
469 rcpu->value.qsize = value->qsize;
470 gro_init(&rcpu->gro);
471
472 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
473 goto free_ptr_ring;
474
475 /* Setup kthread */
476 init_completion(&rcpu->kthread_running);
477 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
478 "cpumap/%d/map:%d", cpu,
479 map->id);
480 if (IS_ERR(rcpu->kthread))
481 goto free_prog;
482
483 /* Make sure kthread runs on a single CPU */
484 kthread_bind(rcpu->kthread, cpu);
485 wake_up_process(rcpu->kthread);
486
487 /* Make sure kthread has been running, so kthread_stop() will not
488 * stop the kthread prematurely and all pending frames or skbs
489 * will be handled by the kthread before kthread_stop() returns.
490 */
491 wait_for_completion(&rcpu->kthread_running);
492
493 return rcpu;
494
495 free_prog:
496 if (rcpu->prog)
497 bpf_prog_put(rcpu->prog);
498 free_ptr_ring:
499 gro_cleanup(&rcpu->gro);
500 ptr_ring_cleanup(rcpu->queue, NULL);
501 free_queue:
502 kfree(rcpu->queue);
503 free_bulkq:
504 free_percpu(rcpu->bulkq);
505 free_rcu:
506 kfree(rcpu);
507 return NULL;
508 }
509
__cpu_map_entry_free(struct work_struct * work)510 static void __cpu_map_entry_free(struct work_struct *work)
511 {
512 struct bpf_cpu_map_entry *rcpu;
513
514 /* This cpu_map_entry have been disconnected from map and one
515 * RCU grace-period have elapsed. Thus, XDP cannot queue any
516 * new packets and cannot change/set flush_needed that can
517 * find this entry.
518 */
519 rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
520
521 /* kthread_stop will wake_up_process and wait for it to complete.
522 * cpu_map_kthread_run() makes sure the pointer ring is empty
523 * before exiting.
524 */
525 kthread_stop(rcpu->kthread);
526
527 if (rcpu->prog)
528 bpf_prog_put(rcpu->prog);
529 gro_cleanup(&rcpu->gro);
530 /* The queue should be empty at this point */
531 __cpu_map_ring_cleanup(rcpu->queue);
532 ptr_ring_cleanup(rcpu->queue, NULL);
533 kfree(rcpu->queue);
534 free_percpu(rcpu->bulkq);
535 kfree(rcpu);
536 }
537
538 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
539 * entry is no longer in use before freeing. We use queue_rcu_work() to call
540 * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
541 * period. This means that (a) all pending enqueue and flush operations have
542 * completed (because of the RCU callback), and (b) we are in a workqueue
543 * context where we can stop the kthread and wait for it to exit before freeing
544 * everything.
545 */
__cpu_map_entry_replace(struct bpf_cpu_map * cmap,u32 key_cpu,struct bpf_cpu_map_entry * rcpu)546 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
547 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
548 {
549 struct bpf_cpu_map_entry *old_rcpu;
550
551 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
552 if (old_rcpu) {
553 INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
554 queue_rcu_work(system_wq, &old_rcpu->free_work);
555 }
556 }
557
cpu_map_delete_elem(struct bpf_map * map,void * key)558 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
559 {
560 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
561 u32 key_cpu = *(u32 *)key;
562
563 if (key_cpu >= map->max_entries)
564 return -EINVAL;
565
566 /* notice caller map_delete_elem() uses rcu_read_lock() */
567 __cpu_map_entry_replace(cmap, key_cpu, NULL);
568 return 0;
569 }
570
cpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)571 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
572 u64 map_flags)
573 {
574 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
575 struct bpf_cpumap_val cpumap_value = {};
576 struct bpf_cpu_map_entry *rcpu;
577 /* Array index key correspond to CPU number */
578 u32 key_cpu = *(u32 *)key;
579
580 memcpy(&cpumap_value, value, map->value_size);
581
582 if (unlikely(map_flags > BPF_EXIST))
583 return -EINVAL;
584 if (unlikely(key_cpu >= cmap->map.max_entries))
585 return -E2BIG;
586 if (unlikely(map_flags == BPF_NOEXIST))
587 return -EEXIST;
588 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
589 return -EOVERFLOW;
590
591 /* Make sure CPU is a valid possible cpu */
592 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
593 return -ENODEV;
594
595 if (cpumap_value.qsize == 0) {
596 rcpu = NULL; /* Same as deleting */
597 } else {
598 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
599 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
600 if (!rcpu)
601 return -ENOMEM;
602 }
603 rcu_read_lock();
604 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
605 rcu_read_unlock();
606 return 0;
607 }
608
cpu_map_free(struct bpf_map * map)609 static void cpu_map_free(struct bpf_map *map)
610 {
611 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
612 u32 i;
613
614 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
615 * so the bpf programs (can be more than one that used this map) were
616 * disconnected from events. Wait for outstanding critical sections in
617 * these programs to complete. synchronize_rcu() below not only
618 * guarantees no further "XDP/bpf-side" reads against
619 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
620 * (if any) are completed.
621 */
622 synchronize_rcu();
623
624 /* The only possible user of bpf_cpu_map_entry is
625 * cpu_map_kthread_run().
626 */
627 for (i = 0; i < cmap->map.max_entries; i++) {
628 struct bpf_cpu_map_entry *rcpu;
629
630 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
631 if (!rcpu)
632 continue;
633
634 /* Stop kthread and cleanup entry directly */
635 __cpu_map_entry_free(&rcpu->free_work.work);
636 }
637 bpf_map_area_free(cmap->cpu_map);
638 bpf_map_area_free(cmap);
639 }
640
641 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
642 * by local_bh_disable() (from XDP calls inside NAPI). The
643 * rcu_read_lock_bh_held() below makes lockdep accept both.
644 */
__cpu_map_lookup_elem(struct bpf_map * map,u32 key)645 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
646 {
647 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
648 struct bpf_cpu_map_entry *rcpu;
649
650 if (key >= map->max_entries)
651 return NULL;
652
653 rcpu = rcu_dereference_check(cmap->cpu_map[key],
654 rcu_read_lock_bh_held());
655 return rcpu;
656 }
657
cpu_map_lookup_elem(struct bpf_map * map,void * key)658 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
659 {
660 struct bpf_cpu_map_entry *rcpu =
661 __cpu_map_lookup_elem(map, *(u32 *)key);
662
663 return rcpu ? &rcpu->value : NULL;
664 }
665
cpu_map_get_next_key(struct bpf_map * map,void * key,void * next_key)666 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
667 {
668 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
669 u32 index = key ? *(u32 *)key : U32_MAX;
670 u32 *next = next_key;
671
672 if (index >= cmap->map.max_entries) {
673 *next = 0;
674 return 0;
675 }
676
677 if (index == cmap->map.max_entries - 1)
678 return -ENOENT;
679 *next = index + 1;
680 return 0;
681 }
682
cpu_map_redirect(struct bpf_map * map,u64 index,u64 flags)683 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
684 {
685 return __bpf_xdp_redirect_map(map, index, flags, 0,
686 __cpu_map_lookup_elem);
687 }
688
cpu_map_mem_usage(const struct bpf_map * map)689 static u64 cpu_map_mem_usage(const struct bpf_map *map)
690 {
691 u64 usage = sizeof(struct bpf_cpu_map);
692
693 /* Currently the dynamically allocated elements are not counted */
694 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
695 return usage;
696 }
697
698 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
699 const struct bpf_map_ops cpu_map_ops = {
700 .map_meta_equal = bpf_map_meta_equal,
701 .map_alloc = cpu_map_alloc,
702 .map_free = cpu_map_free,
703 .map_delete_elem = cpu_map_delete_elem,
704 .map_update_elem = cpu_map_update_elem,
705 .map_lookup_elem = cpu_map_lookup_elem,
706 .map_get_next_key = cpu_map_get_next_key,
707 .map_check_btf = map_check_no_btf,
708 .map_mem_usage = cpu_map_mem_usage,
709 .map_btf_id = &cpu_map_btf_ids[0],
710 .map_redirect = cpu_map_redirect,
711 };
712
bq_flush_to_queue(struct xdp_bulk_queue * bq)713 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
714 {
715 struct bpf_cpu_map_entry *rcpu = bq->obj;
716 unsigned int processed = 0, drops = 0;
717 const int to_cpu = rcpu->cpu;
718 struct ptr_ring *q;
719 int i;
720
721 if (unlikely(!bq->count))
722 return;
723
724 q = rcpu->queue;
725 spin_lock(&q->producer_lock);
726
727 for (i = 0; i < bq->count; i++) {
728 struct xdp_frame *xdpf = bq->q[i];
729 int err;
730
731 err = __ptr_ring_produce(q, xdpf);
732 if (err) {
733 drops++;
734 xdp_return_frame_rx_napi(xdpf);
735 }
736 processed++;
737 }
738 bq->count = 0;
739 spin_unlock(&q->producer_lock);
740
741 __list_del_clearprev(&bq->flush_node);
742
743 /* Feedback loop via tracepoints */
744 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
745 }
746
747 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
748 * Thus, safe percpu variable access.
749 */
bq_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf)750 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
751 {
752 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
753
754 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
755 bq_flush_to_queue(bq);
756
757 /* Notice, xdp_buff/page MUST be queued here, long enough for
758 * driver to code invoking us to finished, due to driver
759 * (e.g. ixgbe) recycle tricks based on page-refcnt.
760 *
761 * Thus, incoming xdp_frame is always queued here (else we race
762 * with another CPU on page-refcnt and remaining driver code).
763 * Queue time is very short, as driver will invoke flush
764 * operation, when completing napi->poll call.
765 */
766 bq->q[bq->count++] = xdpf;
767
768 if (!bq->flush_node.prev) {
769 struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list();
770
771 list_add(&bq->flush_node, flush_list);
772 }
773 }
774
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)775 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
776 struct net_device *dev_rx)
777 {
778 /* Info needed when constructing SKB on remote CPU */
779 xdpf->dev_rx = dev_rx;
780
781 bq_enqueue(rcpu, xdpf);
782 return 0;
783 }
784
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)785 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
786 struct sk_buff *skb)
787 {
788 int ret;
789
790 __skb_pull(skb, skb->mac_len);
791 skb_set_redirected(skb, false);
792 __ptr_set_bit(0, &skb);
793
794 ret = ptr_ring_produce(rcpu->queue, skb);
795 if (ret < 0)
796 goto trace;
797
798 wake_up_process(rcpu->kthread);
799 trace:
800 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
801 return ret;
802 }
803
__cpu_map_flush(struct list_head * flush_list)804 void __cpu_map_flush(struct list_head *flush_list)
805 {
806 struct xdp_bulk_queue *bq, *tmp;
807
808 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
809 bq_flush_to_queue(bq);
810
811 /* If already running, costs spin_lock_irqsave + smb_mb */
812 wake_up_process(bq->obj->kthread);
813 }
814 }
815