1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32
33 #include <crypto/sha2.h>
34
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42
43 #include "internal.h"
44
45 struct ucode_patch {
46 struct list_head plist;
47 void *data;
48 unsigned int size;
49 u32 patch_id;
50 u16 equiv_cpu;
51 };
52
53 static LIST_HEAD(microcode_cache);
54
55 #define UCODE_MAGIC 0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000
57 #define UCODE_UCODE_TYPE 0x00000001
58
59 #define SECTION_HDR_SIZE 8
60 #define CONTAINER_HDR_SZ 12
61
62 struct equiv_cpu_entry {
63 u32 installed_cpu;
64 u32 fixed_errata_mask;
65 u32 fixed_errata_compare;
66 u16 equiv_cpu;
67 u16 res;
68 } __packed;
69
70 struct microcode_header_amd {
71 u32 data_code;
72 u32 patch_id;
73 u16 mc_patch_data_id;
74 u8 mc_patch_data_len;
75 u8 init_flag;
76 u32 mc_patch_data_checksum;
77 u32 nb_dev_id;
78 u32 sb_dev_id;
79 u16 processor_rev_id;
80 u8 nb_rev_id;
81 u8 sb_rev_id;
82 u8 bios_api_rev;
83 u8 reserved1[3];
84 u32 match_reg[8];
85 } __packed;
86
87 struct microcode_amd {
88 struct microcode_header_amd hdr;
89 unsigned int mpb[];
90 };
91
92 static struct equiv_cpu_table {
93 unsigned int num_entries;
94 struct equiv_cpu_entry *entry;
95 } equiv_table;
96
97 union zen_patch_rev {
98 struct {
99 __u32 rev : 8,
100 stepping : 4,
101 model : 4,
102 __reserved : 4,
103 ext_model : 4,
104 ext_fam : 8;
105 };
106 __u32 ucode_rev;
107 };
108
109 union cpuid_1_eax {
110 struct {
111 __u32 stepping : 4,
112 model : 4,
113 family : 4,
114 __reserved0 : 4,
115 ext_model : 4,
116 ext_fam : 8,
117 __reserved1 : 4;
118 };
119 __u32 full;
120 };
121
122 /*
123 * This points to the current valid container of microcode patches which we will
124 * save from the initrd/builtin before jettisoning its contents. @mc is the
125 * microcode patch we found to match.
126 */
127 struct cont_desc {
128 struct microcode_amd *mc;
129 u32 psize;
130 u8 *data;
131 size_t size;
132 };
133
134 /*
135 * Microcode patch container file is prepended to the initrd in cpio
136 * format. See Documentation/arch/x86/microcode.rst
137 */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140
141 /*
142 * This is CPUID(1).EAX on the BSP. It is used in two ways:
143 *
144 * 1. To ignore the equivalence table on Zen1 and newer.
145 *
146 * 2. To match which patches to load because the patch revision ID
147 * already contains the f/m/s for which the microcode is destined
148 * for.
149 */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151
152 static bool sha_check = true;
153
154 struct patch_digest {
155 u32 patch_id;
156 u8 sha256[SHA256_DIGEST_SIZE];
157 };
158
159 #include "amd_shas.c"
160
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 struct patch_digest *pd = (struct patch_digest *)elem;
164 u32 patch_id = *(u32 *)key;
165
166 if (patch_id == pd->patch_id)
167 return 0;
168 else if (patch_id < pd->patch_id)
169 return -1;
170 else
171 return 1;
172 }
173
cpuid_to_ucode_rev(unsigned int val)174 static u32 cpuid_to_ucode_rev(unsigned int val)
175 {
176 union zen_patch_rev p = {};
177 union cpuid_1_eax c;
178
179 c.full = val;
180
181 p.stepping = c.stepping;
182 p.model = c.model;
183 p.ext_model = c.ext_model;
184 p.ext_fam = c.ext_fam;
185
186 return p.ucode_rev;
187 }
188
need_sha_check(u32 cur_rev)189 static bool need_sha_check(u32 cur_rev)
190 {
191 if (!cur_rev) {
192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
194 }
195
196 switch (cur_rev >> 8) {
197 case 0x80012: return cur_rev <= 0x8001277; break;
198 case 0x80082: return cur_rev <= 0x800820f; break;
199 case 0x83010: return cur_rev <= 0x830107c; break;
200 case 0x86001: return cur_rev <= 0x860010e; break;
201 case 0x86081: return cur_rev <= 0x8608108; break;
202 case 0x87010: return cur_rev <= 0x8701034; break;
203 case 0x8a000: return cur_rev <= 0x8a0000a; break;
204 case 0xa0010: return cur_rev <= 0xa00107a; break;
205 case 0xa0011: return cur_rev <= 0xa0011da; break;
206 case 0xa0012: return cur_rev <= 0xa001243; break;
207 case 0xa0082: return cur_rev <= 0xa00820e; break;
208 case 0xa1011: return cur_rev <= 0xa101153; break;
209 case 0xa1012: return cur_rev <= 0xa10124e; break;
210 case 0xa1081: return cur_rev <= 0xa108109; break;
211 case 0xa2010: return cur_rev <= 0xa20102f; break;
212 case 0xa2012: return cur_rev <= 0xa201212; break;
213 case 0xa4041: return cur_rev <= 0xa404109; break;
214 case 0xa5000: return cur_rev <= 0xa500013; break;
215 case 0xa6012: return cur_rev <= 0xa60120a; break;
216 case 0xa7041: return cur_rev <= 0xa704109; break;
217 case 0xa7052: return cur_rev <= 0xa705208; break;
218 case 0xa7080: return cur_rev <= 0xa708009; break;
219 case 0xa70c0: return cur_rev <= 0xa70C009; break;
220 case 0xaa001: return cur_rev <= 0xaa00116; break;
221 case 0xaa002: return cur_rev <= 0xaa00218; break;
222 case 0xb0021: return cur_rev <= 0xb002146; break;
223 case 0xb0081: return cur_rev <= 0xb008111; break;
224 case 0xb1010: return cur_rev <= 0xb101046; break;
225 case 0xb2040: return cur_rev <= 0xb204031; break;
226 case 0xb4040: return cur_rev <= 0xb404031; break;
227 case 0xb6000: return cur_rev <= 0xb600031; break;
228 case 0xb6080: return cur_rev <= 0xb608031; break;
229 case 0xb7000: return cur_rev <= 0xb700031; break;
230 default: break;
231 }
232
233 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
234 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
235 return true;
236 }
237
cpu_has_entrysign(void)238 static bool cpu_has_entrysign(void)
239 {
240 unsigned int fam = x86_family(bsp_cpuid_1_eax);
241 unsigned int model = x86_model(bsp_cpuid_1_eax);
242
243 if (fam == 0x17 || fam == 0x19)
244 return true;
245
246 if (fam == 0x1a) {
247 if (model <= 0x2f ||
248 (0x40 <= model && model <= 0x4f) ||
249 (0x60 <= model && model <= 0x6f))
250 return true;
251 }
252
253 return false;
254 }
255
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)256 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
257 {
258 struct patch_digest *pd = NULL;
259 u8 digest[SHA256_DIGEST_SIZE];
260 int i;
261
262 if (!cpu_has_entrysign())
263 return true;
264
265 if (!need_sha_check(cur_rev))
266 return true;
267
268 if (!sha_check)
269 return true;
270
271 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
272 if (!pd) {
273 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
274 return false;
275 }
276
277 sha256(data, len, digest);
278
279 if (memcmp(digest, pd->sha256, sizeof(digest))) {
280 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
281
282 for (i = 0; i < SHA256_DIGEST_SIZE; i++)
283 pr_cont("0x%x ", digest[i]);
284 pr_info("\n");
285
286 return false;
287 }
288
289 return true;
290 }
291
ucode_rev_to_cpuid(unsigned int val)292 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
293 {
294 union zen_patch_rev p;
295 union cpuid_1_eax c;
296
297 p.ucode_rev = val;
298 c.full = 0;
299
300 c.stepping = p.stepping;
301 c.model = p.model;
302 c.ext_model = p.ext_model;
303 c.family = 0xf;
304 c.ext_fam = p.ext_fam;
305
306 return c;
307 }
308
get_patch_level(void)309 static u32 get_patch_level(void)
310 {
311 u32 rev, dummy __always_unused;
312
313 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) {
314 int cpu = smp_processor_id();
315
316 if (!microcode_rev[cpu]) {
317 if (!base_rev)
318 base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
319
320 microcode_rev[cpu] = base_rev;
321
322 ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev);
323 }
324
325 return microcode_rev[cpu];
326 }
327
328 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
329
330 return rev;
331 }
332
find_equiv_id(struct equiv_cpu_table * et,u32 sig)333 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
334 {
335 unsigned int i;
336
337 /* Zen and newer do not need an equivalence table. */
338 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
339 return 0;
340
341 if (!et || !et->num_entries)
342 return 0;
343
344 for (i = 0; i < et->num_entries; i++) {
345 struct equiv_cpu_entry *e = &et->entry[i];
346
347 if (sig == e->installed_cpu)
348 return e->equiv_cpu;
349 }
350 return 0;
351 }
352
353 /*
354 * Check whether there is a valid microcode container file at the beginning
355 * of @buf of size @buf_size.
356 */
verify_container(const u8 * buf,size_t buf_size)357 static bool verify_container(const u8 *buf, size_t buf_size)
358 {
359 u32 cont_magic;
360
361 if (buf_size <= CONTAINER_HDR_SZ) {
362 ucode_dbg("Truncated microcode container header.\n");
363 return false;
364 }
365
366 cont_magic = *(const u32 *)buf;
367 if (cont_magic != UCODE_MAGIC) {
368 ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic);
369 return false;
370 }
371
372 return true;
373 }
374
375 /*
376 * Check whether there is a valid, non-truncated CPU equivalence table at the
377 * beginning of @buf of size @buf_size.
378 */
verify_equivalence_table(const u8 * buf,size_t buf_size)379 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
380 {
381 const u32 *hdr = (const u32 *)buf;
382 u32 cont_type, equiv_tbl_len;
383
384 if (!verify_container(buf, buf_size))
385 return false;
386
387 /* Zen and newer do not need an equivalence table. */
388 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
389 return true;
390
391 cont_type = hdr[1];
392 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
393 ucode_dbg("Wrong microcode container equivalence table type: %u.\n",
394 cont_type);
395 return false;
396 }
397
398 buf_size -= CONTAINER_HDR_SZ;
399
400 equiv_tbl_len = hdr[2];
401 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
402 buf_size < equiv_tbl_len) {
403 ucode_dbg("Truncated equivalence table.\n");
404 return false;
405 }
406
407 return true;
408 }
409
410 /*
411 * Check whether there is a valid, non-truncated microcode patch section at the
412 * beginning of @buf of size @buf_size.
413 *
414 * On success, @sh_psize returns the patch size according to the section header,
415 * to the caller.
416 */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)417 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
418 {
419 u32 p_type, p_size;
420 const u32 *hdr;
421
422 if (buf_size < SECTION_HDR_SIZE) {
423 ucode_dbg("Truncated patch section.\n");
424 return false;
425 }
426
427 hdr = (const u32 *)buf;
428 p_type = hdr[0];
429 p_size = hdr[1];
430
431 if (p_type != UCODE_UCODE_TYPE) {
432 ucode_dbg("Invalid type field (0x%x) in container file section header.\n",
433 p_type);
434 return false;
435 }
436
437 if (p_size < sizeof(struct microcode_header_amd)) {
438 ucode_dbg("Patch of size %u too short.\n", p_size);
439 return false;
440 }
441
442 *sh_psize = p_size;
443
444 return true;
445 }
446
447 /*
448 * Check whether the passed remaining file @buf_size is large enough to contain
449 * a patch of the indicated @sh_psize (and also whether this size does not
450 * exceed the per-family maximum). @sh_psize is the size read from the section
451 * header.
452 */
__verify_patch_size(u32 sh_psize,size_t buf_size)453 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
454 {
455 u8 family = x86_family(bsp_cpuid_1_eax);
456 u32 max_size;
457
458 if (family >= 0x15)
459 goto ret;
460
461 #define F1XH_MPB_MAX_SIZE 2048
462 #define F14H_MPB_MAX_SIZE 1824
463
464 switch (family) {
465 case 0x10 ... 0x12:
466 max_size = F1XH_MPB_MAX_SIZE;
467 break;
468 case 0x14:
469 max_size = F14H_MPB_MAX_SIZE;
470 break;
471 default:
472 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
473 return false;
474 }
475
476 if (sh_psize > max_size)
477 return false;
478
479 ret:
480 /* Working with the whole buffer so < is ok. */
481 return sh_psize <= buf_size;
482 }
483
484 /*
485 * Verify the patch in @buf.
486 *
487 * Returns:
488 * negative: on error
489 * positive: patch is not for this family, skip it
490 * 0: success
491 */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)492 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
493 {
494 u8 family = x86_family(bsp_cpuid_1_eax);
495 struct microcode_header_amd *mc_hdr;
496 u32 sh_psize;
497 u16 proc_id;
498 u8 patch_fam;
499
500 if (!__verify_patch_section(buf, buf_size, &sh_psize))
501 return -1;
502
503 /*
504 * The section header length is not included in this indicated size
505 * but is present in the leftover file length so we need to subtract
506 * it before passing this value to the function below.
507 */
508 buf_size -= SECTION_HDR_SIZE;
509
510 /*
511 * Check if the remaining buffer is big enough to contain a patch of
512 * size sh_psize, as the section claims.
513 */
514 if (buf_size < sh_psize) {
515 ucode_dbg("Patch of size %u truncated.\n", sh_psize);
516 return -1;
517 }
518
519 if (!__verify_patch_size(sh_psize, buf_size)) {
520 ucode_dbg("Per-family patch size mismatch.\n");
521 return -1;
522 }
523
524 *patch_size = sh_psize;
525
526 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
527 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
528 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
529 return -1;
530 }
531
532 proc_id = mc_hdr->processor_rev_id;
533 patch_fam = 0xf + (proc_id >> 12);
534
535 ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam);
536
537 if (patch_fam != family)
538 return 1;
539
540 return 0;
541 }
542
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)543 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
544 {
545 /* Zen and newer do not need an equivalence table. */
546 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
547 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
548 else
549 return eq_id == mc->hdr.processor_rev_id;
550 }
551
552 /*
553 * This scans the ucode blob for the proper container as we can have multiple
554 * containers glued together.
555 *
556 * Returns the amount of bytes consumed while scanning. @desc contains all the
557 * data we're going to use in later stages of the application.
558 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)559 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
560 {
561 struct equiv_cpu_table table;
562 size_t orig_size = size;
563 u32 *hdr = (u32 *)ucode;
564 u16 eq_id;
565 u8 *buf;
566
567 if (!verify_equivalence_table(ucode, size))
568 return 0;
569
570 buf = ucode;
571
572 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
573 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
574
575 /*
576 * Find the equivalence ID of our CPU in this table. Even if this table
577 * doesn't contain a patch for the CPU, scan through the whole container
578 * so that it can be skipped in case there are other containers appended.
579 */
580 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
581
582 buf += hdr[2] + CONTAINER_HDR_SZ;
583 size -= hdr[2] + CONTAINER_HDR_SZ;
584
585 /*
586 * Scan through the rest of the container to find where it ends. We do
587 * some basic sanity-checking too.
588 */
589 while (size > 0) {
590 struct microcode_amd *mc;
591 u32 patch_size;
592 int ret;
593
594 ret = verify_patch(buf, size, &patch_size);
595 if (ret < 0) {
596 /*
597 * Patch verification failed, skip to the next container, if
598 * there is one. Before exit, check whether that container has
599 * found a patch already. If so, use it.
600 */
601 goto out;
602 } else if (ret > 0) {
603 goto skip;
604 }
605
606 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
607
608 ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id);
609
610 if (mc_patch_matches(mc, eq_id)) {
611 desc->psize = patch_size;
612 desc->mc = mc;
613
614 ucode_dbg(" match: size: %d\n", patch_size);
615 }
616
617 skip:
618 /* Skip patch section header too: */
619 buf += patch_size + SECTION_HDR_SIZE;
620 size -= patch_size + SECTION_HDR_SIZE;
621 }
622
623 out:
624 /*
625 * If we have found a patch (desc->mc), it means we're looking at the
626 * container which has a patch for this CPU so return 0 to mean, @ucode
627 * already points to the proper container. Otherwise, we return the size
628 * we scanned so that we can advance to the next container in the
629 * buffer.
630 */
631 if (desc->mc) {
632 desc->data = ucode;
633 desc->size = orig_size - size;
634
635 return 0;
636 }
637
638 return orig_size - size;
639 }
640
641 /*
642 * Scan the ucode blob for the proper container as we can have multiple
643 * containers glued together.
644 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)645 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
646 {
647 while (size) {
648 size_t s = parse_container(ucode, size, desc);
649 if (!s)
650 return;
651
652 /* catch wraparound */
653 if (size >= s) {
654 ucode += s;
655 size -= s;
656 } else {
657 return;
658 }
659 }
660 }
661
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)662 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
663 unsigned int psize)
664 {
665 unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
666
667 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
668 return false;
669
670 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
671
672 if (x86_family(bsp_cpuid_1_eax) == 0x17) {
673 unsigned long p_addr_end = p_addr + psize - 1;
674
675 invlpg(p_addr);
676
677 /*
678 * Flush next page too if patch image is crossing a page
679 * boundary.
680 */
681 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
682 invlpg(p_addr_end);
683 }
684
685 if (IS_ENABLED(CONFIG_MICROCODE_DBG))
686 microcode_rev[smp_processor_id()] = mc->hdr.patch_id;
687
688 /* verify patch application was successful */
689 *cur_rev = get_patch_level();
690
691 ucode_dbg("updated rev: 0x%x\n", *cur_rev);
692
693 if (*cur_rev != mc->hdr.patch_id)
694 return false;
695
696 return true;
697 }
698
get_builtin_microcode(struct cpio_data * cp)699 static bool get_builtin_microcode(struct cpio_data *cp)
700 {
701 char fw_name[36] = "amd-ucode/microcode_amd.bin";
702 u8 family = x86_family(bsp_cpuid_1_eax);
703 struct firmware fw;
704
705 if (IS_ENABLED(CONFIG_X86_32))
706 return false;
707
708 if (family >= 0x15)
709 snprintf(fw_name, sizeof(fw_name),
710 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
711
712 if (firmware_request_builtin(&fw, fw_name)) {
713 cp->size = fw.size;
714 cp->data = (void *)fw.data;
715 return true;
716 }
717
718 return false;
719 }
720
find_blobs_in_containers(struct cpio_data * ret)721 static bool __init find_blobs_in_containers(struct cpio_data *ret)
722 {
723 struct cpio_data cp;
724 bool found;
725
726 if (!get_builtin_microcode(&cp))
727 cp = find_microcode_in_initrd(ucode_path);
728
729 found = cp.data && cp.size;
730 if (found)
731 *ret = cp;
732
733 return found;
734 }
735
736 /*
737 * Early load occurs before we can vmalloc(). So we look for the microcode
738 * patch container file in initrd, traverse equivalent cpu table, look for a
739 * matching microcode patch, and update, all in initrd memory in place.
740 * When vmalloc() is available for use later -- on 64-bit during first AP load,
741 * and on 32-bit during save_microcode_in_initrd() -- we can call
742 * load_microcode_amd() to save equivalent cpu table and microcode patches in
743 * kernel heap memory.
744 */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)745 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
746 {
747 struct cont_desc desc = { };
748 struct microcode_amd *mc;
749 struct cpio_data cp = { };
750 char buf[4];
751 u32 rev;
752
753 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
754 if (!strncmp(buf, "off", 3)) {
755 sha_check = false;
756 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
757 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
758 }
759 }
760
761 bsp_cpuid_1_eax = cpuid_1_eax;
762
763 rev = get_patch_level();
764 ed->old_rev = rev;
765
766 /* Needed in load_microcode_amd() */
767 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
768
769 if (!find_blobs_in_containers(&cp))
770 return;
771
772 scan_containers(cp.data, cp.size, &desc);
773
774 mc = desc.mc;
775 if (!mc)
776 return;
777
778 /*
779 * Allow application of the same revision to pick up SMT-specific
780 * changes even if the revision of the other SMT thread is already
781 * up-to-date.
782 */
783 if (ed->old_rev > mc->hdr.patch_id)
784 return;
785
786 if (__apply_microcode_amd(mc, &rev, desc.psize))
787 ed->new_rev = rev;
788 }
789
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)790 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
791 struct ucode_patch *n,
792 bool ignore_stepping)
793 {
794 /* Zen and newer hardcode the f/m/s in the patch ID */
795 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
796 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
797 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
798
799 if (ignore_stepping) {
800 p_cid.stepping = 0;
801 n_cid.stepping = 0;
802 }
803
804 return p_cid.full == n_cid.full;
805 } else {
806 return p->equiv_cpu == n->equiv_cpu;
807 }
808 }
809
810 /*
811 * a small, trivial cache of per-family ucode patches
812 */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)813 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
814 {
815 struct ucode_patch *p;
816 struct ucode_patch n;
817
818 n.equiv_cpu = equiv_cpu;
819 n.patch_id = uci->cpu_sig.rev;
820
821 list_for_each_entry(p, µcode_cache, plist)
822 if (patch_cpus_equivalent(p, &n, false))
823 return p;
824
825 return NULL;
826 }
827
patch_newer(struct ucode_patch * p,struct ucode_patch * n)828 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
829 {
830 /* Zen and newer hardcode the f/m/s in the patch ID */
831 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
832 union zen_patch_rev zp, zn;
833
834 zp.ucode_rev = p->patch_id;
835 zn.ucode_rev = n->patch_id;
836
837 if (zn.stepping != zp.stepping)
838 return -1;
839
840 return zn.rev > zp.rev;
841 } else {
842 return n->patch_id > p->patch_id;
843 }
844 }
845
update_cache(struct ucode_patch * new_patch)846 static void update_cache(struct ucode_patch *new_patch)
847 {
848 struct ucode_patch *p;
849 int ret;
850
851 list_for_each_entry(p, µcode_cache, plist) {
852 if (patch_cpus_equivalent(p, new_patch, true)) {
853 ret = patch_newer(p, new_patch);
854 if (ret < 0)
855 continue;
856 else if (!ret) {
857 /* we already have the latest patch */
858 kfree(new_patch->data);
859 kfree(new_patch);
860 return;
861 }
862
863 list_replace(&p->plist, &new_patch->plist);
864 kfree(p->data);
865 kfree(p);
866 return;
867 }
868 }
869 /* no patch found, add it */
870 list_add_tail(&new_patch->plist, µcode_cache);
871 }
872
free_cache(void)873 static void free_cache(void)
874 {
875 struct ucode_patch *p, *tmp;
876
877 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
878 __list_del(p->plist.prev, p->plist.next);
879 kfree(p->data);
880 kfree(p);
881 }
882 }
883
find_patch(unsigned int cpu)884 static struct ucode_patch *find_patch(unsigned int cpu)
885 {
886 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
887 u16 equiv_id = 0;
888
889 uci->cpu_sig.rev = get_patch_level();
890
891 if (x86_family(bsp_cpuid_1_eax) < 0x17) {
892 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
893 if (!equiv_id)
894 return NULL;
895 }
896
897 return cache_find_patch(uci, equiv_id);
898 }
899
reload_ucode_amd(unsigned int cpu)900 void reload_ucode_amd(unsigned int cpu)
901 {
902 u32 rev, dummy __always_unused;
903 struct microcode_amd *mc;
904 struct ucode_patch *p;
905
906 p = find_patch(cpu);
907 if (!p)
908 return;
909
910 mc = p->data;
911
912 rev = get_patch_level();
913 if (rev < mc->hdr.patch_id) {
914 if (__apply_microcode_amd(mc, &rev, p->size))
915 pr_info_once("reload revision: 0x%08x\n", rev);
916 }
917 }
918
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)919 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
920 {
921 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
922 struct ucode_patch *p;
923
924 csig->sig = cpuid_eax(0x00000001);
925 csig->rev = get_patch_level();
926
927 /*
928 * a patch could have been loaded early, set uci->mc so that
929 * mc_bp_resume() can call apply_microcode()
930 */
931 p = find_patch(cpu);
932 if (p && (p->patch_id == csig->rev))
933 uci->mc = p->data;
934
935 return 0;
936 }
937
apply_microcode_amd(int cpu)938 static enum ucode_state apply_microcode_amd(int cpu)
939 {
940 struct cpuinfo_x86 *c = &cpu_data(cpu);
941 struct microcode_amd *mc_amd;
942 struct ucode_cpu_info *uci;
943 struct ucode_patch *p;
944 enum ucode_state ret;
945 u32 rev;
946
947 BUG_ON(raw_smp_processor_id() != cpu);
948
949 uci = ucode_cpu_info + cpu;
950
951 p = find_patch(cpu);
952 if (!p)
953 return UCODE_NFOUND;
954
955 rev = uci->cpu_sig.rev;
956
957 mc_amd = p->data;
958 uci->mc = p->data;
959
960 /* need to apply patch? */
961 if (rev > mc_amd->hdr.patch_id) {
962 ret = UCODE_OK;
963 goto out;
964 }
965
966 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
967 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
968 cpu, mc_amd->hdr.patch_id);
969 return UCODE_ERROR;
970 }
971
972 rev = mc_amd->hdr.patch_id;
973 ret = UCODE_UPDATED;
974
975 out:
976 uci->cpu_sig.rev = rev;
977 c->microcode = rev;
978
979 /* Update boot_cpu_data's revision too, if we're on the BSP: */
980 if (c->cpu_index == boot_cpu_data.cpu_index)
981 boot_cpu_data.microcode = rev;
982
983 return ret;
984 }
985
load_ucode_amd_ap(unsigned int cpuid_1_eax)986 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
987 {
988 unsigned int cpu = smp_processor_id();
989
990 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
991 apply_microcode_amd(cpu);
992 }
993
install_equiv_cpu_table(const u8 * buf,size_t buf_size)994 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
995 {
996 u32 equiv_tbl_len;
997 const u32 *hdr;
998
999 if (!verify_equivalence_table(buf, buf_size))
1000 return 0;
1001
1002 hdr = (const u32 *)buf;
1003 equiv_tbl_len = hdr[2];
1004
1005 /* Zen and newer do not need an equivalence table. */
1006 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1007 goto out;
1008
1009 equiv_table.entry = vmalloc(equiv_tbl_len);
1010 if (!equiv_table.entry) {
1011 pr_err("failed to allocate equivalent CPU table\n");
1012 return 0;
1013 }
1014
1015 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
1016 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
1017
1018 out:
1019 /* add header length */
1020 return equiv_tbl_len + CONTAINER_HDR_SZ;
1021 }
1022
free_equiv_cpu_table(void)1023 static void free_equiv_cpu_table(void)
1024 {
1025 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1026 return;
1027
1028 vfree(equiv_table.entry);
1029 memset(&equiv_table, 0, sizeof(equiv_table));
1030 }
1031
cleanup(void)1032 static void cleanup(void)
1033 {
1034 free_equiv_cpu_table();
1035 free_cache();
1036 }
1037
1038 /*
1039 * Return a non-negative value even if some of the checks failed so that
1040 * we can skip over the next patch. If we return a negative value, we
1041 * signal a grave error like a memory allocation has failed and the
1042 * driver cannot continue functioning normally. In such cases, we tear
1043 * down everything we've used up so far and exit.
1044 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)1045 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
1046 unsigned int *patch_size)
1047 {
1048 struct microcode_header_amd *mc_hdr;
1049 struct ucode_patch *patch;
1050 u16 proc_id;
1051 int ret;
1052
1053 ret = verify_patch(fw, leftover, patch_size);
1054 if (ret)
1055 return ret;
1056
1057 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1058 if (!patch) {
1059 pr_err("Patch allocation failure.\n");
1060 return -EINVAL;
1061 }
1062
1063 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1064 if (!patch->data) {
1065 pr_err("Patch data allocation failure.\n");
1066 kfree(patch);
1067 return -EINVAL;
1068 }
1069 patch->size = *patch_size;
1070
1071 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1072 proc_id = mc_hdr->processor_rev_id;
1073
1074 INIT_LIST_HEAD(&patch->plist);
1075 patch->patch_id = mc_hdr->patch_id;
1076 patch->equiv_cpu = proc_id;
1077
1078 ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1079 __func__, patch->patch_id, proc_id);
1080
1081 /* ... and add to cache. */
1082 update_cache(patch);
1083
1084 return 0;
1085 }
1086
1087 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1088 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1089 {
1090 u8 *fw = (u8 *)data;
1091 size_t offset;
1092
1093 offset = install_equiv_cpu_table(data, size);
1094 if (!offset)
1095 return UCODE_ERROR;
1096
1097 fw += offset;
1098 size -= offset;
1099
1100 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1101 pr_err("invalid type field in container file section header\n");
1102 free_equiv_cpu_table();
1103 return UCODE_ERROR;
1104 }
1105
1106 while (size > 0) {
1107 unsigned int crnt_size = 0;
1108 int ret;
1109
1110 ret = verify_and_add_patch(family, fw, size, &crnt_size);
1111 if (ret < 0)
1112 return UCODE_ERROR;
1113
1114 fw += crnt_size + SECTION_HDR_SIZE;
1115 size -= (crnt_size + SECTION_HDR_SIZE);
1116 }
1117
1118 return UCODE_OK;
1119 }
1120
_load_microcode_amd(u8 family,const u8 * data,size_t size)1121 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1122 {
1123 enum ucode_state ret;
1124
1125 /* free old equiv table */
1126 free_equiv_cpu_table();
1127
1128 ret = __load_microcode_amd(family, data, size);
1129 if (ret != UCODE_OK)
1130 cleanup();
1131
1132 return ret;
1133 }
1134
load_microcode_amd(u8 family,const u8 * data,size_t size)1135 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1136 {
1137 struct cpuinfo_x86 *c;
1138 unsigned int nid, cpu;
1139 struct ucode_patch *p;
1140 enum ucode_state ret;
1141
1142 ret = _load_microcode_amd(family, data, size);
1143 if (ret != UCODE_OK)
1144 return ret;
1145
1146 for_each_node_with_cpus(nid) {
1147 cpu = cpumask_first(cpumask_of_node(nid));
1148 c = &cpu_data(cpu);
1149
1150 p = find_patch(cpu);
1151 if (!p)
1152 continue;
1153
1154 if (c->microcode >= p->patch_id)
1155 continue;
1156
1157 ret = UCODE_NEW;
1158 }
1159
1160 return ret;
1161 }
1162
save_microcode_in_initrd(void)1163 static int __init save_microcode_in_initrd(void)
1164 {
1165 struct cpuinfo_x86 *c = &boot_cpu_data;
1166 struct cont_desc desc = { 0 };
1167 unsigned int cpuid_1_eax;
1168 enum ucode_state ret;
1169 struct cpio_data cp;
1170
1171 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1172 return 0;
1173
1174 cpuid_1_eax = native_cpuid_eax(1);
1175
1176 if (!find_blobs_in_containers(&cp))
1177 return -EINVAL;
1178
1179 scan_containers(cp.data, cp.size, &desc);
1180 if (!desc.mc)
1181 return -EINVAL;
1182
1183 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1184 if (ret > UCODE_UPDATED)
1185 return -EINVAL;
1186
1187 return 0;
1188 }
1189 early_initcall(save_microcode_in_initrd);
1190
1191 /*
1192 * AMD microcode firmware naming convention, up to family 15h they are in
1193 * the legacy file:
1194 *
1195 * amd-ucode/microcode_amd.bin
1196 *
1197 * This legacy file is always smaller than 2K in size.
1198 *
1199 * Beginning with family 15h, they are in family-specific firmware files:
1200 *
1201 * amd-ucode/microcode_amd_fam15h.bin
1202 * amd-ucode/microcode_amd_fam16h.bin
1203 * ...
1204 *
1205 * These might be larger than 2K.
1206 */
request_microcode_amd(int cpu,struct device * device)1207 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1208 {
1209 char fw_name[36] = "amd-ucode/microcode_amd.bin";
1210 struct cpuinfo_x86 *c = &cpu_data(cpu);
1211 enum ucode_state ret = UCODE_NFOUND;
1212 const struct firmware *fw;
1213
1214 if (force_minrev)
1215 return UCODE_NFOUND;
1216
1217 if (c->x86 >= 0x15)
1218 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1219
1220 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1221 ucode_dbg("failed to load file %s\n", fw_name);
1222 goto out;
1223 }
1224
1225 ret = UCODE_ERROR;
1226 if (!verify_container(fw->data, fw->size))
1227 goto fw_release;
1228
1229 ret = load_microcode_amd(c->x86, fw->data, fw->size);
1230
1231 fw_release:
1232 release_firmware(fw);
1233
1234 out:
1235 return ret;
1236 }
1237
microcode_fini_cpu_amd(int cpu)1238 static void microcode_fini_cpu_amd(int cpu)
1239 {
1240 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1241
1242 uci->mc = NULL;
1243 }
1244
finalize_late_load_amd(int result)1245 static void finalize_late_load_amd(int result)
1246 {
1247 if (result)
1248 cleanup();
1249 }
1250
1251 static struct microcode_ops microcode_amd_ops = {
1252 .request_microcode_fw = request_microcode_amd,
1253 .collect_cpu_info = collect_cpu_info_amd,
1254 .apply_microcode = apply_microcode_amd,
1255 .microcode_fini_cpu = microcode_fini_cpu_amd,
1256 .finalize_late_load = finalize_late_load_amd,
1257 .nmi_safe = true,
1258 };
1259
init_amd_microcode(void)1260 struct microcode_ops * __init init_amd_microcode(void)
1261 {
1262 struct cpuinfo_x86 *c = &boot_cpu_data;
1263
1264 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1265 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1266 return NULL;
1267 }
1268 return µcode_amd_ops;
1269 }
1270
exit_amd_microcode(void)1271 void __exit exit_amd_microcode(void)
1272 {
1273 cleanup();
1274 }
1275