1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89 * called from softirq context, which will save the task's FPSIMD context back
90 * to task_struct. To prevent this from racing with the manipulation of the
91 * task's FPSIMD state from task context and thereby corrupting the state, it
92 * is necessary to protect any manipulation of a task's fpsimd_state or
93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94 * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static u8 *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern u8 *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 static void fpsimd_bind_task_to_cpu(void);
213
214 /*
215 * Claim ownership of the CPU FPSIMD context for use by the calling context.
216 *
217 * The caller may freely manipulate the FPSIMD context metadata until
218 * put_cpu_fpsimd_context() is called.
219 *
220 * On RT kernels local_bh_disable() is not sufficient because it only
221 * serializes soft interrupt related sections via a local lock, but stays
222 * preemptible. Disabling preemption is the right choice here as bottom
223 * half processing is always in thread context on RT kernels so it
224 * implicitly prevents bottom half processing as well.
225 */
get_cpu_fpsimd_context(void)226 static void get_cpu_fpsimd_context(void)
227 {
228 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
229 /*
230 * The softirq subsystem lacks a true unmask/mask API, and
231 * re-enabling softirq processing using local_bh_enable() will
232 * not only unmask softirqs, it will also result in immediate
233 * delivery of any pending softirqs.
234 * This is undesirable when running with IRQs disabled, but in
235 * that case, there is no need to mask softirqs in the first
236 * place, so only bother doing so when IRQs are enabled.
237 */
238 if (!irqs_disabled())
239 local_bh_disable();
240 } else {
241 preempt_disable();
242 }
243 }
244
245 /*
246 * Release the CPU FPSIMD context.
247 *
248 * Must be called from a context in which get_cpu_fpsimd_context() was
249 * previously called, with no call to put_cpu_fpsimd_context() in the
250 * meantime.
251 */
put_cpu_fpsimd_context(void)252 static void put_cpu_fpsimd_context(void)
253 {
254 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
255 if (!irqs_disabled())
256 local_bh_enable();
257 } else {
258 preempt_enable();
259 }
260 }
261
task_get_vl(const struct task_struct * task,enum vec_type type)262 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
263 {
264 return task->thread.vl[type];
265 }
266
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)267 void task_set_vl(struct task_struct *task, enum vec_type type,
268 unsigned long vl)
269 {
270 task->thread.vl[type] = vl;
271 }
272
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)273 unsigned int task_get_vl_onexec(const struct task_struct *task,
274 enum vec_type type)
275 {
276 return task->thread.vl_onexec[type];
277 }
278
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)279 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
280 unsigned long vl)
281 {
282 task->thread.vl_onexec[type] = vl;
283 }
284
285 /*
286 * TIF_SME controls whether a task can use SME without trapping while
287 * in userspace, when TIF_SME is set then we must have storage
288 * allocated in sve_state and sme_state to store the contents of both ZA
289 * and the SVE registers for both streaming and non-streaming modes.
290 *
291 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
292 * may disable TIF_SME and reenable traps.
293 */
294
295
296 /*
297 * TIF_SVE controls whether a task can use SVE without trapping while
298 * in userspace, and also (together with TIF_SME) the way a task's
299 * FPSIMD/SVE state is stored in thread_struct.
300 *
301 * The kernel uses this flag to track whether a user task is actively
302 * using SVE, and therefore whether full SVE register state needs to
303 * be tracked. If not, the cheaper FPSIMD context handling code can
304 * be used instead of the more costly SVE equivalents.
305 *
306 * * TIF_SVE or SVCR.SM set:
307 *
308 * The task can execute SVE instructions while in userspace without
309 * trapping to the kernel.
310 *
311 * During any syscall, the kernel may optionally clear TIF_SVE and
312 * discard the vector state except for the FPSIMD subset.
313 *
314 * * TIF_SVE clear:
315 *
316 * An attempt by the user task to execute an SVE instruction causes
317 * do_sve_acc() to be called, which does some preparation and then
318 * sets TIF_SVE.
319 *
320 * During any syscall, the kernel may optionally clear TIF_SVE and
321 * discard the vector state except for the FPSIMD subset.
322 *
323 * The data will be stored in one of two formats:
324 *
325 * * FPSIMD only - FP_STATE_FPSIMD:
326 *
327 * When the FPSIMD only state stored task->thread.fp_type is set to
328 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
329 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
330 * logically zero but not stored anywhere; P0-P15 and FFR are not
331 * stored and have unspecified values from userspace's point of
332 * view. For hygiene purposes, the kernel zeroes them on next use,
333 * but userspace is discouraged from relying on this.
334 *
335 * task->thread.sve_state does not need to be non-NULL, valid or any
336 * particular size: it must not be dereferenced and any data stored
337 * there should be considered stale and not referenced.
338 *
339 * * SVE state - FP_STATE_SVE:
340 *
341 * When the full SVE state is stored task->thread.fp_type is set to
342 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
343 * corresponding Zn), P0-P15 and FFR are encoded in in
344 * task->thread.sve_state, formatted appropriately for vector
345 * length task->thread.sve_vl or, if SVCR.SM is set,
346 * task->thread.sme_vl. The storage for the vector registers in
347 * task->thread.uw.fpsimd_state should be ignored.
348 *
349 * task->thread.sve_state must point to a valid buffer at least
350 * sve_state_size(task) bytes in size. The data stored in
351 * task->thread.uw.fpsimd_state.vregs should be considered stale
352 * and not referenced.
353 *
354 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
355 * irrespective of whether TIF_SVE is clear or set, since these are
356 * not vector length dependent.
357 */
358
359 /*
360 * Update current's FPSIMD/SVE registers from thread_struct.
361 *
362 * This function should be called only when the FPSIMD/SVE state in
363 * thread_struct is known to be up to date, when preparing to enter
364 * userspace.
365 */
task_fpsimd_load(void)366 static void task_fpsimd_load(void)
367 {
368 bool restore_sve_regs = false;
369 bool restore_ffr;
370
371 WARN_ON(!system_supports_fpsimd());
372 WARN_ON(preemptible());
373 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
374
375 if (system_supports_sve() || system_supports_sme()) {
376 switch (current->thread.fp_type) {
377 case FP_STATE_FPSIMD:
378 /* Stop tracking SVE for this task until next use. */
379 clear_thread_flag(TIF_SVE);
380 break;
381 case FP_STATE_SVE:
382 if (!thread_sm_enabled(¤t->thread))
383 WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
384
385 if (test_thread_flag(TIF_SVE))
386 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
387
388 restore_sve_regs = true;
389 restore_ffr = true;
390 break;
391 default:
392 /*
393 * This indicates either a bug in
394 * fpsimd_save_user_state() or memory corruption, we
395 * should always record an explicit format
396 * when we save. We always at least have the
397 * memory allocated for FPSIMD registers so
398 * try that and hope for the best.
399 */
400 WARN_ON_ONCE(1);
401 clear_thread_flag(TIF_SVE);
402 break;
403 }
404 }
405
406 /* Restore SME, override SVE register configuration if needed */
407 if (system_supports_sme()) {
408 unsigned long sme_vl = task_get_sme_vl(current);
409
410 /* Ensure VL is set up for restoring data */
411 if (test_thread_flag(TIF_SME))
412 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
413
414 write_sysreg_s(current->thread.svcr, SYS_SVCR);
415
416 if (thread_za_enabled(¤t->thread))
417 sme_load_state(current->thread.sme_state,
418 system_supports_sme2());
419
420 if (thread_sm_enabled(¤t->thread))
421 restore_ffr = system_supports_fa64();
422 }
423
424 if (system_supports_fpmr())
425 write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
426
427 if (restore_sve_regs) {
428 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
429 sve_load_state(sve_pffr(¤t->thread),
430 ¤t->thread.uw.fpsimd_state.fpsr,
431 restore_ffr);
432 } else {
433 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
434 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
435 }
436 }
437
438 /*
439 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
440 * date with respect to the CPU registers. Note carefully that the
441 * current context is the context last bound to the CPU stored in
442 * last, if KVM is involved this may be the guest VM context rather
443 * than the host thread for the VM pointed to by current. This means
444 * that we must always reference the state storage via last rather
445 * than via current, if we are saving KVM state then it will have
446 * ensured that the type of registers to save is set in last->to_save.
447 */
fpsimd_save_user_state(void)448 static void fpsimd_save_user_state(void)
449 {
450 struct cpu_fp_state const *last =
451 this_cpu_ptr(&fpsimd_last_state);
452 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
453 bool save_sve_regs = false;
454 bool save_ffr;
455 unsigned int vl;
456
457 WARN_ON(!system_supports_fpsimd());
458 WARN_ON(preemptible());
459
460 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
461 return;
462
463 if (system_supports_fpmr())
464 *(last->fpmr) = read_sysreg_s(SYS_FPMR);
465
466 /*
467 * Save SVE state if it is live.
468 *
469 * The syscall ABI discards live SVE state at syscall entry. When
470 * entering a syscall, fpsimd_syscall_enter() sets to_save to
471 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
472 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
473 * called prior to a return to userspace.
474 */
475 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
476 last->to_save == FP_STATE_SVE) {
477 save_sve_regs = true;
478 save_ffr = true;
479 vl = last->sve_vl;
480 }
481
482 if (system_supports_sme()) {
483 u64 *svcr = last->svcr;
484
485 *svcr = read_sysreg_s(SYS_SVCR);
486
487 if (*svcr & SVCR_ZA_MASK)
488 sme_save_state(last->sme_state,
489 system_supports_sme2());
490
491 /* If we are in streaming mode override regular SVE. */
492 if (*svcr & SVCR_SM_MASK) {
493 save_sve_regs = true;
494 save_ffr = system_supports_fa64();
495 vl = last->sme_vl;
496 }
497 }
498
499 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
500 /* Get the configured VL from RDVL, will account for SM */
501 if (WARN_ON(sve_get_vl() != vl)) {
502 /*
503 * Can't save the user regs, so current would
504 * re-enter user with corrupt state.
505 * There's no way to recover, so kill it:
506 */
507 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
508 return;
509 }
510
511 sve_save_state((char *)last->sve_state +
512 sve_ffr_offset(vl),
513 &last->st->fpsr, save_ffr);
514 *last->fp_type = FP_STATE_SVE;
515 } else {
516 fpsimd_save_state(last->st);
517 *last->fp_type = FP_STATE_FPSIMD;
518 }
519 }
520
521 /*
522 * All vector length selection from userspace comes through here.
523 * We're on a slow path, so some sanity-checks are included.
524 * If things go wrong there's a bug somewhere, but try to fall back to a
525 * safe choice.
526 */
find_supported_vector_length(enum vec_type type,unsigned int vl)527 static unsigned int find_supported_vector_length(enum vec_type type,
528 unsigned int vl)
529 {
530 struct vl_info *info = &vl_info[type];
531 int bit;
532 int max_vl = info->max_vl;
533
534 if (WARN_ON(!sve_vl_valid(vl)))
535 vl = info->min_vl;
536
537 if (WARN_ON(!sve_vl_valid(max_vl)))
538 max_vl = info->min_vl;
539
540 if (vl > max_vl)
541 vl = max_vl;
542 if (vl < info->min_vl)
543 vl = info->min_vl;
544
545 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
546 __vq_to_bit(sve_vq_from_vl(vl)));
547 return sve_vl_from_vq(__bit_to_vq(bit));
548 }
549
550 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
551
vec_proc_do_default_vl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)552 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
553 void *buffer, size_t *lenp, loff_t *ppos)
554 {
555 struct vl_info *info = table->extra1;
556 enum vec_type type = info->type;
557 int ret;
558 int vl = get_default_vl(type);
559 struct ctl_table tmp_table = {
560 .data = &vl,
561 .maxlen = sizeof(vl),
562 };
563
564 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
565 if (ret || !write)
566 return ret;
567
568 /* Writing -1 has the special meaning "set to max": */
569 if (vl == -1)
570 vl = info->max_vl;
571
572 if (!sve_vl_valid(vl))
573 return -EINVAL;
574
575 set_default_vl(type, find_supported_vector_length(type, vl));
576 return 0;
577 }
578
579 static const struct ctl_table sve_default_vl_table[] = {
580 {
581 .procname = "sve_default_vector_length",
582 .mode = 0644,
583 .proc_handler = vec_proc_do_default_vl,
584 .extra1 = &vl_info[ARM64_VEC_SVE],
585 },
586 };
587
sve_sysctl_init(void)588 static int __init sve_sysctl_init(void)
589 {
590 if (system_supports_sve())
591 if (!register_sysctl("abi", sve_default_vl_table))
592 return -EINVAL;
593
594 return 0;
595 }
596
597 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)598 static int __init sve_sysctl_init(void) { return 0; }
599 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
600
601 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
602 static const struct ctl_table sme_default_vl_table[] = {
603 {
604 .procname = "sme_default_vector_length",
605 .mode = 0644,
606 .proc_handler = vec_proc_do_default_vl,
607 .extra1 = &vl_info[ARM64_VEC_SME],
608 },
609 };
610
sme_sysctl_init(void)611 static int __init sme_sysctl_init(void)
612 {
613 if (system_supports_sme())
614 if (!register_sysctl("abi", sme_default_vl_table))
615 return -EINVAL;
616
617 return 0;
618 }
619
620 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)621 static int __init sme_sysctl_init(void) { return 0; }
622 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
623
624 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
625 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
626
627 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)628 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
629 {
630 u64 a = swab64(x);
631 u64 b = swab64(x >> 64);
632
633 return ((__uint128_t)a << 64) | b;
634 }
635 #else
arm64_cpu_to_le128(__uint128_t x)636 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
637 {
638 return x;
639 }
640 #endif
641
642 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
643
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)644 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
645 unsigned int vq)
646 {
647 unsigned int i;
648 __uint128_t *p;
649
650 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
651 p = (__uint128_t *)ZREG(sst, vq, i);
652 *p = arm64_cpu_to_le128(fst->vregs[i]);
653 }
654 }
655
656 /*
657 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
658 * task->thread.sve_state.
659 *
660 * Task can be a non-runnable task, or current. In the latter case,
661 * the caller must have ownership of the cpu FPSIMD context before calling
662 * this function.
663 * task->thread.sve_state must point to at least sve_state_size(task)
664 * bytes of allocated kernel memory.
665 * task->thread.uw.fpsimd_state must be up to date before calling this
666 * function.
667 */
fpsimd_to_sve(struct task_struct * task)668 static inline void fpsimd_to_sve(struct task_struct *task)
669 {
670 unsigned int vq;
671 void *sst = task->thread.sve_state;
672 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
673
674 if (!system_supports_sve() && !system_supports_sme())
675 return;
676
677 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
678 __fpsimd_to_sve(sst, fst, vq);
679 }
680
681 /*
682 * Transfer the SVE state in task->thread.sve_state to
683 * task->thread.uw.fpsimd_state.
684 *
685 * Task can be a non-runnable task, or current. In the latter case,
686 * the caller must have ownership of the cpu FPSIMD context before calling
687 * this function.
688 * task->thread.sve_state must point to at least sve_state_size(task)
689 * bytes of allocated kernel memory.
690 * task->thread.sve_state must be up to date before calling this function.
691 */
sve_to_fpsimd(struct task_struct * task)692 static inline void sve_to_fpsimd(struct task_struct *task)
693 {
694 unsigned int vq, vl;
695 void const *sst = task->thread.sve_state;
696 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
697 unsigned int i;
698 __uint128_t const *p;
699
700 if (!system_supports_sve() && !system_supports_sme())
701 return;
702
703 vl = thread_get_cur_vl(&task->thread);
704 vq = sve_vq_from_vl(vl);
705 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
706 p = (__uint128_t const *)ZREG(sst, vq, i);
707 fst->vregs[i] = arm64_le128_to_cpu(*p);
708 }
709 }
710
__fpsimd_zero_vregs(struct user_fpsimd_state * fpsimd)711 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
712 {
713 memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
714 }
715
716 /*
717 * Simulate the effects of an SMSTOP SM instruction.
718 */
task_smstop_sm(struct task_struct * task)719 void task_smstop_sm(struct task_struct *task)
720 {
721 if (!thread_sm_enabled(&task->thread))
722 return;
723
724 __fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
725 task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
726 if (system_supports_fpmr())
727 task->thread.uw.fpmr = 0;
728
729 task->thread.svcr &= ~SVCR_SM_MASK;
730 task->thread.fp_type = FP_STATE_FPSIMD;
731 }
732
cpu_enable_fpmr(const struct arm64_cpu_capabilities * __always_unused p)733 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
734 {
735 write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
736 SYS_SCTLR_EL1);
737 }
738
739 #ifdef CONFIG_ARM64_SVE
sve_free(struct task_struct * task)740 static void sve_free(struct task_struct *task)
741 {
742 kfree(task->thread.sve_state);
743 task->thread.sve_state = NULL;
744 }
745
746 /*
747 * Ensure that task->thread.sve_state is allocated and sufficiently large.
748 *
749 * This function should be used only in preparation for replacing
750 * task->thread.sve_state with new data. The memory is always zeroed
751 * here to prevent stale data from showing through: this is done in
752 * the interest of testability and predictability: except in the
753 * do_sve_acc() case, there is no ABI requirement to hide stale data
754 * written previously be task.
755 */
sve_alloc(struct task_struct * task,bool flush)756 void sve_alloc(struct task_struct *task, bool flush)
757 {
758 if (task->thread.sve_state) {
759 if (flush)
760 memset(task->thread.sve_state, 0,
761 sve_state_size(task));
762 return;
763 }
764
765 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
766 task->thread.sve_state =
767 kzalloc(sve_state_size(task), GFP_KERNEL);
768 }
769
770 /*
771 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
772 * task's currently effective FPSIMD/SVE state.
773 *
774 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
775 * manipulation.
776 */
fpsimd_sync_from_effective_state(struct task_struct * task)777 void fpsimd_sync_from_effective_state(struct task_struct *task)
778 {
779 if (task->thread.fp_type == FP_STATE_SVE)
780 sve_to_fpsimd(task);
781 }
782
783 /*
784 * Ensure that the task's currently effective FPSIMD/SVE state is up to date
785 * with respect to task->thread.uw.fpsimd_state, zeroing any effective
786 * non-FPSIMD (S)SVE state.
787 *
788 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
789 * manipulation.
790 */
fpsimd_sync_to_effective_state_zeropad(struct task_struct * task)791 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
792 {
793 unsigned int vq;
794 void *sst = task->thread.sve_state;
795 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
796
797 if (task->thread.fp_type != FP_STATE_SVE)
798 return;
799
800 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
801
802 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
803 __fpsimd_to_sve(sst, fst, vq);
804 }
805
change_live_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl)806 static int change_live_vector_length(struct task_struct *task,
807 enum vec_type type,
808 unsigned long vl)
809 {
810 unsigned int sve_vl = task_get_sve_vl(task);
811 unsigned int sme_vl = task_get_sme_vl(task);
812 void *sve_state = NULL, *sme_state = NULL;
813
814 if (type == ARM64_VEC_SME)
815 sme_vl = vl;
816 else
817 sve_vl = vl;
818
819 /*
820 * Allocate the new sve_state and sme_state before freeing the old
821 * copies so that allocation failure can be handled without needing to
822 * mutate the task's state in any way.
823 *
824 * Changes to the SVE vector length must not discard live ZA state or
825 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
826 * ZA lazy saving scheme may attempt to change the SVE vector length
827 * while unsaved/dormant ZA state exists.
828 */
829 sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
830 if (!sve_state)
831 goto out_mem;
832
833 if (type == ARM64_VEC_SME) {
834 sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
835 if (!sme_state)
836 goto out_mem;
837 }
838
839 if (task == current)
840 fpsimd_save_and_flush_current_state();
841 else
842 fpsimd_flush_task_state(task);
843
844 /*
845 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
846 * other SVE state.
847 */
848 fpsimd_sync_from_effective_state(task);
849 task_set_vl(task, type, vl);
850 kfree(task->thread.sve_state);
851 task->thread.sve_state = sve_state;
852 fpsimd_sync_to_effective_state_zeropad(task);
853
854 if (type == ARM64_VEC_SME) {
855 task->thread.svcr &= ~SVCR_ZA_MASK;
856 kfree(task->thread.sme_state);
857 task->thread.sme_state = sme_state;
858 }
859
860 return 0;
861
862 out_mem:
863 kfree(sve_state);
864 kfree(sme_state);
865 return -ENOMEM;
866 }
867
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)868 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
869 unsigned long vl, unsigned long flags)
870 {
871 bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
872 bool inherit = flags & PR_SVE_VL_INHERIT;
873
874 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
875 PR_SVE_SET_VL_ONEXEC))
876 return -EINVAL;
877
878 if (!sve_vl_valid(vl))
879 return -EINVAL;
880
881 /*
882 * Clamp to the maximum vector length that VL-agnostic code
883 * can work with. A flag may be assigned in the future to
884 * allow setting of larger vector lengths without confusing
885 * older software.
886 */
887 if (vl > VL_ARCH_MAX)
888 vl = VL_ARCH_MAX;
889
890 vl = find_supported_vector_length(type, vl);
891
892 if (!onexec && vl != task_get_vl(task, type)) {
893 if (change_live_vector_length(task, type, vl))
894 return -ENOMEM;
895 }
896
897 if (onexec || inherit)
898 task_set_vl_onexec(task, type, vl);
899 else
900 /* Reset VL to system default on next exec: */
901 task_set_vl_onexec(task, type, 0);
902
903 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
904 flags & PR_SVE_VL_INHERIT);
905
906 return 0;
907 }
908
909 /*
910 * Encode the current vector length and flags for return.
911 * This is only required for prctl(): ptrace has separate fields.
912 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
913 *
914 * flags are as for vec_set_vector_length().
915 */
vec_prctl_status(enum vec_type type,unsigned long flags)916 static int vec_prctl_status(enum vec_type type, unsigned long flags)
917 {
918 int ret;
919
920 if (flags & PR_SVE_SET_VL_ONEXEC)
921 ret = task_get_vl_onexec(current, type);
922 else
923 ret = task_get_vl(current, type);
924
925 if (test_thread_flag(vec_vl_inherit_flag(type)))
926 ret |= PR_SVE_VL_INHERIT;
927
928 return ret;
929 }
930
931 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)932 int sve_set_current_vl(unsigned long arg)
933 {
934 unsigned long vl, flags;
935 int ret;
936
937 vl = arg & PR_SVE_VL_LEN_MASK;
938 flags = arg & ~vl;
939
940 if (!system_supports_sve() || is_compat_task())
941 return -EINVAL;
942
943 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
944 if (ret)
945 return ret;
946
947 return vec_prctl_status(ARM64_VEC_SVE, flags);
948 }
949
950 /* PR_SVE_GET_VL */
sve_get_current_vl(void)951 int sve_get_current_vl(void)
952 {
953 if (!system_supports_sve() || is_compat_task())
954 return -EINVAL;
955
956 return vec_prctl_status(ARM64_VEC_SVE, 0);
957 }
958
959 #ifdef CONFIG_ARM64_SME
960 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)961 int sme_set_current_vl(unsigned long arg)
962 {
963 unsigned long vl, flags;
964 int ret;
965
966 vl = arg & PR_SME_VL_LEN_MASK;
967 flags = arg & ~vl;
968
969 if (!system_supports_sme() || is_compat_task())
970 return -EINVAL;
971
972 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
973 if (ret)
974 return ret;
975
976 return vec_prctl_status(ARM64_VEC_SME, flags);
977 }
978
979 /* PR_SME_GET_VL */
sme_get_current_vl(void)980 int sme_get_current_vl(void)
981 {
982 if (!system_supports_sme() || is_compat_task())
983 return -EINVAL;
984
985 return vec_prctl_status(ARM64_VEC_SME, 0);
986 }
987 #endif /* CONFIG_ARM64_SME */
988
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))989 static void vec_probe_vqs(struct vl_info *info,
990 DECLARE_BITMAP(map, SVE_VQ_MAX))
991 {
992 unsigned int vq, vl;
993
994 bitmap_zero(map, SVE_VQ_MAX);
995
996 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
997 write_vl(info->type, vq - 1); /* self-syncing */
998
999 switch (info->type) {
1000 case ARM64_VEC_SVE:
1001 vl = sve_get_vl();
1002 break;
1003 case ARM64_VEC_SME:
1004 vl = sme_get_vl();
1005 break;
1006 default:
1007 vl = 0;
1008 break;
1009 }
1010
1011 /* Minimum VL identified? */
1012 if (sve_vq_from_vl(vl) > vq)
1013 break;
1014
1015 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1016 set_bit(__vq_to_bit(vq), map);
1017 }
1018 }
1019
1020 /*
1021 * Initialise the set of known supported VQs for the boot CPU.
1022 * This is called during kernel boot, before secondary CPUs are brought up.
1023 */
vec_init_vq_map(enum vec_type type)1024 void __init vec_init_vq_map(enum vec_type type)
1025 {
1026 struct vl_info *info = &vl_info[type];
1027 vec_probe_vqs(info, info->vq_map);
1028 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1029 }
1030
1031 /*
1032 * If we haven't committed to the set of supported VQs yet, filter out
1033 * those not supported by the current CPU.
1034 * This function is called during the bring-up of early secondary CPUs only.
1035 */
vec_update_vq_map(enum vec_type type)1036 void vec_update_vq_map(enum vec_type type)
1037 {
1038 struct vl_info *info = &vl_info[type];
1039 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1040
1041 vec_probe_vqs(info, tmp_map);
1042 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1043 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1044 SVE_VQ_MAX);
1045 }
1046
1047 /*
1048 * Check whether the current CPU supports all VQs in the committed set.
1049 * This function is called during the bring-up of late secondary CPUs only.
1050 */
vec_verify_vq_map(enum vec_type type)1051 int vec_verify_vq_map(enum vec_type type)
1052 {
1053 struct vl_info *info = &vl_info[type];
1054 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1055 unsigned long b;
1056
1057 vec_probe_vqs(info, tmp_map);
1058
1059 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1060 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1061 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1062 info->name, smp_processor_id());
1063 return -EINVAL;
1064 }
1065
1066 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1067 return 0;
1068
1069 /*
1070 * For KVM, it is necessary to ensure that this CPU doesn't
1071 * support any vector length that guests may have probed as
1072 * unsupported.
1073 */
1074
1075 /* Recover the set of supported VQs: */
1076 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1077 /* Find VQs supported that are not globally supported: */
1078 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1079
1080 /* Find the lowest such VQ, if any: */
1081 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1082 if (b >= SVE_VQ_MAX)
1083 return 0; /* no mismatches */
1084
1085 /*
1086 * Mismatches above sve_max_virtualisable_vl are fine, since
1087 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1088 */
1089 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1090 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1091 info->name, smp_processor_id());
1092 return -EINVAL;
1093 }
1094
1095 return 0;
1096 }
1097
sve_efi_setup(void)1098 static void __init sve_efi_setup(void)
1099 {
1100 int max_vl = 0;
1101 int i;
1102
1103 if (!IS_ENABLED(CONFIG_EFI))
1104 return;
1105
1106 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1107 max_vl = max(vl_info[i].max_vl, max_vl);
1108
1109 /*
1110 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1111 * This is evidence of a crippled system and we are returning void,
1112 * so no attempt is made to handle this situation here.
1113 */
1114 if (!sve_vl_valid(max_vl))
1115 goto fail;
1116
1117 efi_sve_state = kmalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)),
1118 GFP_KERNEL);
1119 if (!efi_sve_state)
1120 goto fail;
1121
1122 return;
1123
1124 fail:
1125 panic("Cannot allocate memory for EFI SVE save/restore");
1126 }
1127
cpu_enable_sve(const struct arm64_cpu_capabilities * __always_unused p)1128 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1129 {
1130 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1131 isb();
1132
1133 write_sysreg_s(0, SYS_ZCR_EL1);
1134 }
1135
sve_setup(void)1136 void __init sve_setup(void)
1137 {
1138 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1139 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1140 unsigned long b;
1141 int max_bit;
1142
1143 if (!system_supports_sve())
1144 return;
1145
1146 /*
1147 * The SVE architecture mandates support for 128-bit vectors,
1148 * so sve_vq_map must have at least SVE_VQ_MIN set.
1149 * If something went wrong, at least try to patch it up:
1150 */
1151 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1152 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1153
1154 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1155 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1156
1157 /*
1158 * For the default VL, pick the maximum supported value <= 64.
1159 * VL == 64 is guaranteed not to grow the signal frame.
1160 */
1161 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1162
1163 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1164 SVE_VQ_MAX);
1165
1166 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1167 if (b >= SVE_VQ_MAX)
1168 /* No non-virtualisable VLs found */
1169 info->max_virtualisable_vl = SVE_VQ_MAX;
1170 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1171 /* No virtualisable VLs? This is architecturally forbidden. */
1172 info->max_virtualisable_vl = SVE_VQ_MIN;
1173 else /* b + 1 < SVE_VQ_MAX */
1174 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1175
1176 if (info->max_virtualisable_vl > info->max_vl)
1177 info->max_virtualisable_vl = info->max_vl;
1178
1179 pr_info("%s: maximum available vector length %u bytes per vector\n",
1180 info->name, info->max_vl);
1181 pr_info("%s: default vector length %u bytes per vector\n",
1182 info->name, get_sve_default_vl());
1183
1184 /* KVM decides whether to support mismatched systems. Just warn here: */
1185 if (sve_max_virtualisable_vl() < sve_max_vl())
1186 pr_warn("%s: unvirtualisable vector lengths present\n",
1187 info->name);
1188
1189 sve_efi_setup();
1190 }
1191
1192 /*
1193 * Called from the put_task_struct() path, which cannot get here
1194 * unless dead_task is really dead and not schedulable.
1195 */
fpsimd_release_task(struct task_struct * dead_task)1196 void fpsimd_release_task(struct task_struct *dead_task)
1197 {
1198 sve_free(dead_task);
1199 sme_free(dead_task);
1200 }
1201
1202 #endif /* CONFIG_ARM64_SVE */
1203
1204 #ifdef CONFIG_ARM64_SME
1205
1206 /*
1207 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1208 *
1209 * This function should be used only in preparation for replacing
1210 * task->thread.sme_state with new data. The memory is always zeroed
1211 * here to prevent stale data from showing through: this is done in
1212 * the interest of testability and predictability, the architecture
1213 * guarantees that when ZA is enabled it will be zeroed.
1214 */
sme_alloc(struct task_struct * task,bool flush)1215 void sme_alloc(struct task_struct *task, bool flush)
1216 {
1217 if (task->thread.sme_state) {
1218 if (flush)
1219 memset(task->thread.sme_state, 0,
1220 sme_state_size(task));
1221 return;
1222 }
1223
1224 /* This could potentially be up to 64K. */
1225 task->thread.sme_state =
1226 kzalloc(sme_state_size(task), GFP_KERNEL);
1227 }
1228
sme_free(struct task_struct * task)1229 static void sme_free(struct task_struct *task)
1230 {
1231 kfree(task->thread.sme_state);
1232 task->thread.sme_state = NULL;
1233 }
1234
cpu_enable_sme(const struct arm64_cpu_capabilities * __always_unused p)1235 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1236 {
1237 /* Set priority for all PEs to architecturally defined minimum */
1238 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1239 SYS_SMPRI_EL1);
1240
1241 /* Allow SME in kernel */
1242 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1243 isb();
1244
1245 /* Ensure all bits in SMCR are set to known values */
1246 write_sysreg_s(0, SYS_SMCR_EL1);
1247
1248 /* Allow EL0 to access TPIDR2 */
1249 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1250 isb();
1251 }
1252
cpu_enable_sme2(const struct arm64_cpu_capabilities * __always_unused p)1253 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1254 {
1255 /* This must be enabled after SME */
1256 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1257
1258 /* Allow use of ZT0 */
1259 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1260 SYS_SMCR_EL1);
1261 }
1262
cpu_enable_fa64(const struct arm64_cpu_capabilities * __always_unused p)1263 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1264 {
1265 /* This must be enabled after SME */
1266 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1267
1268 /* Allow use of FA64 */
1269 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1270 SYS_SMCR_EL1);
1271 }
1272
sme_setup(void)1273 void __init sme_setup(void)
1274 {
1275 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1276 int min_bit, max_bit;
1277
1278 if (!system_supports_sme())
1279 return;
1280
1281 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1282
1283 /*
1284 * SME doesn't require any particular vector length be
1285 * supported but it does require at least one. We should have
1286 * disabled the feature entirely while bringing up CPUs but
1287 * let's double check here. The bitmap is SVE_VQ_MAP sized for
1288 * sharing with SVE.
1289 */
1290 WARN_ON(min_bit >= SVE_VQ_MAX);
1291
1292 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1293
1294 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1295 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1296
1297 WARN_ON(info->min_vl > info->max_vl);
1298
1299 /*
1300 * For the default VL, pick the maximum supported value <= 32
1301 * (256 bits) if there is one since this is guaranteed not to
1302 * grow the signal frame when in streaming mode, otherwise the
1303 * minimum available VL will be used.
1304 */
1305 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1306
1307 pr_info("SME: minimum available vector length %u bytes per vector\n",
1308 info->min_vl);
1309 pr_info("SME: maximum available vector length %u bytes per vector\n",
1310 info->max_vl);
1311 pr_info("SME: default vector length %u bytes per vector\n",
1312 get_sme_default_vl());
1313 }
1314
sme_suspend_exit(void)1315 void sme_suspend_exit(void)
1316 {
1317 u64 smcr = 0;
1318
1319 if (!system_supports_sme())
1320 return;
1321
1322 if (system_supports_fa64())
1323 smcr |= SMCR_ELx_FA64;
1324 if (system_supports_sme2())
1325 smcr |= SMCR_ELx_EZT0;
1326
1327 write_sysreg_s(smcr, SYS_SMCR_EL1);
1328 write_sysreg_s(0, SYS_SMPRI_EL1);
1329 }
1330
1331 #endif /* CONFIG_ARM64_SME */
1332
sve_init_regs(void)1333 static void sve_init_regs(void)
1334 {
1335 /*
1336 * Convert the FPSIMD state to SVE, zeroing all the state that
1337 * is not shared with FPSIMD. If (as is likely) the current
1338 * state is live in the registers then do this there and
1339 * update our metadata for the current task including
1340 * disabling the trap, otherwise update our in-memory copy.
1341 * We are guaranteed to not be in streaming mode, we can only
1342 * take a SVE trap when not in streaming mode and we can't be
1343 * in streaming mode when taking a SME trap.
1344 */
1345 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1346 unsigned long vq_minus_one =
1347 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1348 sve_set_vq(vq_minus_one);
1349 sve_flush_live(true, vq_minus_one);
1350 fpsimd_bind_task_to_cpu();
1351 } else {
1352 fpsimd_to_sve(current);
1353 current->thread.fp_type = FP_STATE_SVE;
1354 fpsimd_flush_task_state(current);
1355 }
1356 }
1357
1358 /*
1359 * Trapped SVE access
1360 *
1361 * Storage is allocated for the full SVE state, the current FPSIMD
1362 * register contents are migrated across, and the access trap is
1363 * disabled.
1364 *
1365 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1366 * would have disabled the SVE access trap for userspace during
1367 * ret_to_user, making an SVE access trap impossible in that case.
1368 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1369 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1370 {
1371 /* Even if we chose not to use SVE, the hardware could still trap: */
1372 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1373 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1374 return;
1375 }
1376
1377 sve_alloc(current, true);
1378 if (!current->thread.sve_state) {
1379 force_sig(SIGKILL);
1380 return;
1381 }
1382
1383 get_cpu_fpsimd_context();
1384
1385 if (test_and_set_thread_flag(TIF_SVE))
1386 WARN_ON(1); /* SVE access shouldn't have trapped */
1387
1388 /*
1389 * Even if the task can have used streaming mode we can only
1390 * generate SVE access traps in normal SVE mode and
1391 * transitioning out of streaming mode may discard any
1392 * streaming mode state. Always clear the high bits to avoid
1393 * any potential errors tracking what is properly initialised.
1394 */
1395 sve_init_regs();
1396
1397 put_cpu_fpsimd_context();
1398 }
1399
1400 /*
1401 * Trapped SME access
1402 *
1403 * Storage is allocated for the full SVE and SME state, the current
1404 * FPSIMD register contents are migrated to SVE if SVE is not already
1405 * active, and the access trap is disabled.
1406 *
1407 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1408 * would have disabled the SME access trap for userspace during
1409 * ret_to_user, making an SME access trap impossible in that case.
1410 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1411 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1412 {
1413 /* Even if we chose not to use SME, the hardware could still trap: */
1414 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1415 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1416 return;
1417 }
1418
1419 /*
1420 * If this not a trap due to SME being disabled then something
1421 * is being used in the wrong mode, report as SIGILL.
1422 */
1423 if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1424 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1425 return;
1426 }
1427
1428 sve_alloc(current, false);
1429 sme_alloc(current, true);
1430 if (!current->thread.sve_state || !current->thread.sme_state) {
1431 force_sig(SIGKILL);
1432 return;
1433 }
1434
1435 get_cpu_fpsimd_context();
1436
1437 /* With TIF_SME userspace shouldn't generate any traps */
1438 if (test_and_set_thread_flag(TIF_SME))
1439 WARN_ON(1);
1440
1441 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1442 unsigned long vq_minus_one =
1443 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1444 sme_set_vq(vq_minus_one);
1445
1446 fpsimd_bind_task_to_cpu();
1447 } else {
1448 fpsimd_flush_task_state(current);
1449 }
1450
1451 put_cpu_fpsimd_context();
1452 }
1453
1454 /*
1455 * Trapped FP/ASIMD access.
1456 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1457 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1458 {
1459 /* Even if we chose not to use FPSIMD, the hardware could still trap: */
1460 if (!system_supports_fpsimd()) {
1461 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1462 return;
1463 }
1464
1465 /*
1466 * When FPSIMD is enabled, we should never take a trap unless something
1467 * has gone very wrong.
1468 */
1469 BUG();
1470 }
1471
1472 /*
1473 * Raise a SIGFPE for the current process.
1474 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1475 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1476 {
1477 unsigned int si_code = FPE_FLTUNK;
1478
1479 if (esr & ESR_ELx_FP_EXC_TFV) {
1480 if (esr & FPEXC_IOF)
1481 si_code = FPE_FLTINV;
1482 else if (esr & FPEXC_DZF)
1483 si_code = FPE_FLTDIV;
1484 else if (esr & FPEXC_OFF)
1485 si_code = FPE_FLTOVF;
1486 else if (esr & FPEXC_UFF)
1487 si_code = FPE_FLTUND;
1488 else if (esr & FPEXC_IXF)
1489 si_code = FPE_FLTRES;
1490 }
1491
1492 send_sig_fault(SIGFPE, si_code,
1493 (void __user *)instruction_pointer(regs),
1494 current);
1495 }
1496
fpsimd_load_kernel_state(struct task_struct * task)1497 static void fpsimd_load_kernel_state(struct task_struct *task)
1498 {
1499 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1500
1501 /*
1502 * Elide the load if this CPU holds the most recent kernel mode
1503 * FPSIMD context of the current task.
1504 */
1505 if (last->st == task->thread.kernel_fpsimd_state &&
1506 task->thread.kernel_fpsimd_cpu == smp_processor_id())
1507 return;
1508
1509 fpsimd_load_state(task->thread.kernel_fpsimd_state);
1510 }
1511
fpsimd_save_kernel_state(struct task_struct * task)1512 static void fpsimd_save_kernel_state(struct task_struct *task)
1513 {
1514 struct cpu_fp_state cpu_fp_state = {
1515 .st = task->thread.kernel_fpsimd_state,
1516 .to_save = FP_STATE_FPSIMD,
1517 };
1518
1519 BUG_ON(!cpu_fp_state.st);
1520
1521 fpsimd_save_state(task->thread.kernel_fpsimd_state);
1522 fpsimd_bind_state_to_cpu(&cpu_fp_state);
1523
1524 task->thread.kernel_fpsimd_cpu = smp_processor_id();
1525 }
1526
1527 /*
1528 * Invalidate any task's FPSIMD state that is present on this cpu.
1529 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1530 * before calling this function.
1531 */
fpsimd_flush_cpu_state(void)1532 static void fpsimd_flush_cpu_state(void)
1533 {
1534 WARN_ON(!system_supports_fpsimd());
1535 __this_cpu_write(fpsimd_last_state.st, NULL);
1536
1537 /*
1538 * Leaving streaming mode enabled will cause issues for any kernel
1539 * NEON and leaving streaming mode or ZA enabled may increase power
1540 * consumption.
1541 */
1542 if (system_supports_sme())
1543 sme_smstop();
1544
1545 set_thread_flag(TIF_FOREIGN_FPSTATE);
1546 }
1547
fpsimd_thread_switch(struct task_struct * next)1548 void fpsimd_thread_switch(struct task_struct *next)
1549 {
1550 bool wrong_task, wrong_cpu;
1551
1552 if (!system_supports_fpsimd())
1553 return;
1554
1555 WARN_ON_ONCE(!irqs_disabled());
1556
1557 /* Save unsaved fpsimd state, if any: */
1558 if (test_thread_flag(TIF_KERNEL_FPSTATE))
1559 fpsimd_save_kernel_state(current);
1560 else
1561 fpsimd_save_user_state();
1562
1563 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1564 fpsimd_flush_cpu_state();
1565 fpsimd_load_kernel_state(next);
1566 } else {
1567 /*
1568 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1569 * state. For kernel threads, FPSIMD registers are never
1570 * loaded with user mode FPSIMD state and so wrong_task and
1571 * wrong_cpu will always be true.
1572 */
1573 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1574 &next->thread.uw.fpsimd_state;
1575 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1576
1577 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1578 wrong_task || wrong_cpu);
1579 }
1580 }
1581
fpsimd_flush_thread_vl(enum vec_type type)1582 static void fpsimd_flush_thread_vl(enum vec_type type)
1583 {
1584 int vl, supported_vl;
1585
1586 /*
1587 * Reset the task vector length as required. This is where we
1588 * ensure that all user tasks have a valid vector length
1589 * configured: no kernel task can become a user task without
1590 * an exec and hence a call to this function. By the time the
1591 * first call to this function is made, all early hardware
1592 * probing is complete, so __sve_default_vl should be valid.
1593 * If a bug causes this to go wrong, we make some noise and
1594 * try to fudge thread.sve_vl to a safe value here.
1595 */
1596 vl = task_get_vl_onexec(current, type);
1597 if (!vl)
1598 vl = get_default_vl(type);
1599
1600 if (WARN_ON(!sve_vl_valid(vl)))
1601 vl = vl_info[type].min_vl;
1602
1603 supported_vl = find_supported_vector_length(type, vl);
1604 if (WARN_ON(supported_vl != vl))
1605 vl = supported_vl;
1606
1607 task_set_vl(current, type, vl);
1608
1609 /*
1610 * If the task is not set to inherit, ensure that the vector
1611 * length will be reset by a subsequent exec:
1612 */
1613 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1614 task_set_vl_onexec(current, type, 0);
1615 }
1616
fpsimd_flush_thread(void)1617 void fpsimd_flush_thread(void)
1618 {
1619 void *sve_state = NULL;
1620 void *sme_state = NULL;
1621
1622 if (!system_supports_fpsimd())
1623 return;
1624
1625 get_cpu_fpsimd_context();
1626
1627 fpsimd_flush_task_state(current);
1628 memset(¤t->thread.uw.fpsimd_state, 0,
1629 sizeof(current->thread.uw.fpsimd_state));
1630
1631 if (system_supports_sve()) {
1632 clear_thread_flag(TIF_SVE);
1633
1634 /* Defer kfree() while in atomic context */
1635 sve_state = current->thread.sve_state;
1636 current->thread.sve_state = NULL;
1637
1638 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1639 }
1640
1641 if (system_supports_sme()) {
1642 clear_thread_flag(TIF_SME);
1643
1644 /* Defer kfree() while in atomic context */
1645 sme_state = current->thread.sme_state;
1646 current->thread.sme_state = NULL;
1647
1648 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1649 current->thread.svcr = 0;
1650 }
1651
1652 if (system_supports_fpmr())
1653 current->thread.uw.fpmr = 0;
1654
1655 current->thread.fp_type = FP_STATE_FPSIMD;
1656
1657 put_cpu_fpsimd_context();
1658 kfree(sve_state);
1659 kfree(sme_state);
1660 }
1661
1662 /*
1663 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1664 * currently held in the registers does in fact belong to 'current'
1665 */
fpsimd_preserve_current_state(void)1666 void fpsimd_preserve_current_state(void)
1667 {
1668 if (!system_supports_fpsimd())
1669 return;
1670
1671 get_cpu_fpsimd_context();
1672 fpsimd_save_user_state();
1673 put_cpu_fpsimd_context();
1674 }
1675
1676 /*
1677 * Associate current's FPSIMD context with this cpu
1678 * The caller must have ownership of the cpu FPSIMD context before calling
1679 * this function.
1680 */
fpsimd_bind_task_to_cpu(void)1681 static void fpsimd_bind_task_to_cpu(void)
1682 {
1683 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1684
1685 WARN_ON(!system_supports_fpsimd());
1686 last->st = ¤t->thread.uw.fpsimd_state;
1687 last->sve_state = current->thread.sve_state;
1688 last->sme_state = current->thread.sme_state;
1689 last->sve_vl = task_get_sve_vl(current);
1690 last->sme_vl = task_get_sme_vl(current);
1691 last->svcr = ¤t->thread.svcr;
1692 last->fpmr = ¤t->thread.uw.fpmr;
1693 last->fp_type = ¤t->thread.fp_type;
1694 last->to_save = FP_STATE_CURRENT;
1695 current->thread.fpsimd_cpu = smp_processor_id();
1696
1697 /*
1698 * Toggle SVE and SME trapping for userspace if needed, these
1699 * are serialsied by ret_to_user().
1700 */
1701 if (system_supports_sme()) {
1702 if (test_thread_flag(TIF_SME))
1703 sme_user_enable();
1704 else
1705 sme_user_disable();
1706 }
1707
1708 if (system_supports_sve()) {
1709 if (test_thread_flag(TIF_SVE))
1710 sve_user_enable();
1711 else
1712 sve_user_disable();
1713 }
1714 }
1715
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1716 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1717 {
1718 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1719
1720 WARN_ON(!system_supports_fpsimd());
1721 WARN_ON(!in_softirq() && !irqs_disabled());
1722
1723 *last = *state;
1724 }
1725
1726 /*
1727 * Load the userland FPSIMD state of 'current' from memory, but only if the
1728 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1729 * state of 'current'. This is called when we are preparing to return to
1730 * userspace to ensure that userspace sees a good register state.
1731 */
fpsimd_restore_current_state(void)1732 void fpsimd_restore_current_state(void)
1733 {
1734 /*
1735 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1736 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1737 * Thus user threads can have this set even when FP/SIMD hasn't been
1738 * detected.
1739 *
1740 * When FP/SIMD is detected, begin_new_exec() will set
1741 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1742 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1743 * switching tasks. We detect FP/SIMD before we exec the first user
1744 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1745 * do_notify_resume() will call fpsimd_restore_current_state() to
1746 * install the user FP/SIMD context.
1747 *
1748 * When FP/SIMD is not detected, nothing else will clear or set
1749 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1750 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1751 * looping forever calling fpsimd_restore_current_state().
1752 */
1753 if (!system_supports_fpsimd()) {
1754 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1755 return;
1756 }
1757
1758 get_cpu_fpsimd_context();
1759
1760 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1761 task_fpsimd_load();
1762 fpsimd_bind_task_to_cpu();
1763 }
1764
1765 put_cpu_fpsimd_context();
1766 }
1767
fpsimd_update_current_state(struct user_fpsimd_state const * state)1768 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1769 {
1770 if (WARN_ON(!system_supports_fpsimd()))
1771 return;
1772
1773 current->thread.uw.fpsimd_state = *state;
1774 if (current->thread.fp_type == FP_STATE_SVE)
1775 fpsimd_to_sve(current);
1776 }
1777
1778 /*
1779 * Invalidate live CPU copies of task t's FPSIMD state
1780 *
1781 * This function may be called with preemption enabled. The barrier()
1782 * ensures that the assignment to fpsimd_cpu is visible to any
1783 * preemption/softirq that could race with set_tsk_thread_flag(), so
1784 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1785 *
1786 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1787 * subsequent code.
1788 */
fpsimd_flush_task_state(struct task_struct * t)1789 void fpsimd_flush_task_state(struct task_struct *t)
1790 {
1791 t->thread.fpsimd_cpu = NR_CPUS;
1792 t->thread.kernel_fpsimd_state = NULL;
1793 /*
1794 * If we don't support fpsimd, bail out after we have
1795 * reset the fpsimd_cpu for this task and clear the
1796 * FPSTATE.
1797 */
1798 if (!system_supports_fpsimd())
1799 return;
1800 barrier();
1801 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1802
1803 barrier();
1804 }
1805
fpsimd_save_and_flush_current_state(void)1806 void fpsimd_save_and_flush_current_state(void)
1807 {
1808 if (!system_supports_fpsimd())
1809 return;
1810
1811 get_cpu_fpsimd_context();
1812 fpsimd_save_user_state();
1813 fpsimd_flush_task_state(current);
1814 put_cpu_fpsimd_context();
1815 }
1816
1817 /*
1818 * Save the FPSIMD state to memory and invalidate cpu view.
1819 * This function must be called with preemption disabled.
1820 */
fpsimd_save_and_flush_cpu_state(void)1821 void fpsimd_save_and_flush_cpu_state(void)
1822 {
1823 unsigned long flags;
1824
1825 if (!system_supports_fpsimd())
1826 return;
1827 WARN_ON(preemptible());
1828 local_irq_save(flags);
1829 fpsimd_save_user_state();
1830 fpsimd_flush_cpu_state();
1831 local_irq_restore(flags);
1832 }
1833
1834 #ifdef CONFIG_KERNEL_MODE_NEON
1835
1836 /*
1837 * Kernel-side NEON support functions
1838 */
1839
1840 /*
1841 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1842 * context
1843 *
1844 * Must not be called unless may_use_simd() returns true.
1845 * Task context in the FPSIMD registers is saved back to memory as necessary.
1846 *
1847 * A matching call to kernel_neon_end() must be made before returning from the
1848 * calling context.
1849 *
1850 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1851 * called.
1852 *
1853 * Unless called from non-preemptible task context, @state must point to a
1854 * caller provided buffer that will be used to preserve the task's kernel mode
1855 * FPSIMD context when it is scheduled out, or if it is interrupted by kernel
1856 * mode FPSIMD occurring in softirq context. May be %NULL otherwise.
1857 */
kernel_neon_begin(struct user_fpsimd_state * state)1858 void kernel_neon_begin(struct user_fpsimd_state *state)
1859 {
1860 if (WARN_ON(!system_supports_fpsimd()))
1861 return;
1862
1863 WARN_ON((preemptible() || in_serving_softirq()) && !state);
1864
1865 BUG_ON(!may_use_simd());
1866
1867 get_cpu_fpsimd_context();
1868
1869 /* Save unsaved fpsimd state, if any: */
1870 if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1871 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1872 fpsimd_save_state(state);
1873 } else {
1874 fpsimd_save_user_state();
1875
1876 /*
1877 * Set the thread flag so that the kernel mode FPSIMD state
1878 * will be context switched along with the rest of the task
1879 * state.
1880 *
1881 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1882 * mode FPSIMD, but the task will not be preemptible so setting
1883 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1884 * would mark the task context FPSIMD state as requiring a
1885 * context switch) and unnecessary.
1886 *
1887 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1888 * which is scheduled as usual, and this guarantees that these
1889 * softirqs are not interrupting use of the FPSIMD in kernel
1890 * mode in task context. So in this case, setting the flag here
1891 * is always appropriate.
1892 */
1893 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) {
1894 /*
1895 * Record the caller provided buffer as the kernel mode
1896 * FP/SIMD buffer for this task, so that the state can
1897 * be preserved and restored on a context switch.
1898 */
1899 WARN_ON(current->thread.kernel_fpsimd_state != NULL);
1900 current->thread.kernel_fpsimd_state = state;
1901 set_thread_flag(TIF_KERNEL_FPSTATE);
1902 }
1903 }
1904
1905 /* Invalidate any task state remaining in the fpsimd regs: */
1906 fpsimd_flush_cpu_state();
1907
1908 put_cpu_fpsimd_context();
1909 }
1910 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1911
1912 /*
1913 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1914 *
1915 * Must be called from a context in which kernel_neon_begin() was previously
1916 * called, with no call to kernel_neon_end() in the meantime.
1917 *
1918 * The caller must not use the FPSIMD registers after this function is called,
1919 * unless kernel_neon_begin() is called again in the meantime.
1920 *
1921 * The value of @state must match the value passed to the preceding call to
1922 * kernel_neon_begin().
1923 */
kernel_neon_end(struct user_fpsimd_state * state)1924 void kernel_neon_end(struct user_fpsimd_state *state)
1925 {
1926 if (!system_supports_fpsimd())
1927 return;
1928
1929 if (!test_thread_flag(TIF_KERNEL_FPSTATE))
1930 return;
1931
1932 /*
1933 * If we are returning from a nested use of kernel mode FPSIMD, restore
1934 * the task context kernel mode FPSIMD state. This can only happen when
1935 * running in softirq context on non-PREEMPT_RT.
1936 */
1937 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) {
1938 fpsimd_load_state(state);
1939 } else {
1940 clear_thread_flag(TIF_KERNEL_FPSTATE);
1941 WARN_ON(current->thread.kernel_fpsimd_state != state);
1942 current->thread.kernel_fpsimd_state = NULL;
1943 }
1944 }
1945 EXPORT_SYMBOL_GPL(kernel_neon_end);
1946
1947 #ifdef CONFIG_EFI
1948
1949 static struct user_fpsimd_state efi_fpsimd_state;
1950 static bool efi_fpsimd_state_used;
1951 static bool efi_sve_state_used;
1952 static bool efi_sm_state;
1953
1954 /*
1955 * EFI runtime services support functions
1956 *
1957 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1958 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1959 * is always used rather than being an optional accelerator.
1960 *
1961 * These functions provide the necessary support for ensuring FPSIMD
1962 * save/restore in the contexts from which EFI is used.
1963 *
1964 * Do not use them for any other purpose -- if tempted to do so, you are
1965 * either doing something wrong or you need to propose some refactoring.
1966 */
1967
1968 /*
1969 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1970 */
__efi_fpsimd_begin(void)1971 void __efi_fpsimd_begin(void)
1972 {
1973 if (!system_supports_fpsimd())
1974 return;
1975
1976 if (may_use_simd()) {
1977 kernel_neon_begin(&efi_fpsimd_state);
1978 } else {
1979 WARN_ON(preemptible());
1980
1981 /*
1982 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1983 * preserving:
1984 */
1985 if (system_supports_sve() && efi_sve_state != NULL) {
1986 bool ffr = true;
1987 u64 svcr;
1988
1989 efi_sve_state_used = true;
1990
1991 if (system_supports_sme()) {
1992 svcr = read_sysreg_s(SYS_SVCR);
1993
1994 efi_sm_state = svcr & SVCR_SM_MASK;
1995
1996 /*
1997 * Unless we have FA64 FFR does not
1998 * exist in streaming mode.
1999 */
2000 if (!system_supports_fa64())
2001 ffr = !(svcr & SVCR_SM_MASK);
2002 }
2003
2004 sve_save_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
2005 &efi_fpsimd_state.fpsr, ffr);
2006
2007 if (system_supports_sme())
2008 sysreg_clear_set_s(SYS_SVCR,
2009 SVCR_SM_MASK, 0);
2010
2011 } else {
2012 fpsimd_save_state(&efi_fpsimd_state);
2013 }
2014
2015 efi_fpsimd_state_used = true;
2016 }
2017 }
2018
2019 /*
2020 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2021 */
__efi_fpsimd_end(void)2022 void __efi_fpsimd_end(void)
2023 {
2024 if (!system_supports_fpsimd())
2025 return;
2026
2027 if (!efi_fpsimd_state_used) {
2028 kernel_neon_end(&efi_fpsimd_state);
2029 } else {
2030 if (system_supports_sve() && efi_sve_state_used) {
2031 bool ffr = true;
2032
2033 /*
2034 * Restore streaming mode; EFI calls are
2035 * normal function calls so should not return in
2036 * streaming mode.
2037 */
2038 if (system_supports_sme()) {
2039 if (efi_sm_state) {
2040 sysreg_clear_set_s(SYS_SVCR,
2041 0,
2042 SVCR_SM_MASK);
2043
2044 /*
2045 * Unless we have FA64 FFR does not
2046 * exist in streaming mode.
2047 */
2048 if (!system_supports_fa64())
2049 ffr = false;
2050 }
2051 }
2052
2053 sve_load_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
2054 &efi_fpsimd_state.fpsr, ffr);
2055
2056 efi_sve_state_used = false;
2057 } else {
2058 fpsimd_load_state(&efi_fpsimd_state);
2059 }
2060
2061 efi_fpsimd_state_used = false;
2062 }
2063 }
2064
2065 #endif /* CONFIG_EFI */
2066
2067 #endif /* CONFIG_KERNEL_MODE_NEON */
2068
2069 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2070 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2071 unsigned long cmd, void *v)
2072 {
2073 switch (cmd) {
2074 case CPU_PM_ENTER:
2075 fpsimd_save_and_flush_cpu_state();
2076 break;
2077 case CPU_PM_EXIT:
2078 break;
2079 case CPU_PM_ENTER_FAILED:
2080 default:
2081 return NOTIFY_DONE;
2082 }
2083 return NOTIFY_OK;
2084 }
2085
2086 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2087 .notifier_call = fpsimd_cpu_pm_notifier,
2088 };
2089
fpsimd_pm_init(void)2090 static void __init fpsimd_pm_init(void)
2091 {
2092 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2093 }
2094
2095 #else
fpsimd_pm_init(void)2096 static inline void fpsimd_pm_init(void) { }
2097 #endif /* CONFIG_CPU_PM */
2098
2099 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2100 static int fpsimd_cpu_dead(unsigned int cpu)
2101 {
2102 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2103 return 0;
2104 }
2105
fpsimd_hotplug_init(void)2106 static inline void fpsimd_hotplug_init(void)
2107 {
2108 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2109 NULL, fpsimd_cpu_dead);
2110 }
2111
2112 #else
fpsimd_hotplug_init(void)2113 static inline void fpsimd_hotplug_init(void) { }
2114 #endif
2115
cpu_enable_fpsimd(const struct arm64_cpu_capabilities * __always_unused p)2116 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2117 {
2118 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2119 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2120 isb();
2121 }
2122
2123 /*
2124 * FP/SIMD support code initialisation.
2125 */
fpsimd_init(void)2126 static int __init fpsimd_init(void)
2127 {
2128 if (cpu_have_named_feature(FP)) {
2129 fpsimd_pm_init();
2130 fpsimd_hotplug_init();
2131 } else {
2132 pr_notice("Floating-point is not implemented\n");
2133 }
2134
2135 if (!cpu_have_named_feature(ASIMD))
2136 pr_notice("Advanced SIMD is not implemented\n");
2137
2138
2139 sve_sysctl_init();
2140 sme_sysctl_init();
2141
2142 return 0;
2143 }
2144 core_initcall(fpsimd_init);
2145