1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu.h>
88 #include <asm/mmu_context.h>
89 #include <asm/mte.h>
90 #include <asm/hypervisor.h>
91 #include <asm/processor.h>
92 #include <asm/smp.h>
93 #include <asm/sysreg.h>
94 #include <asm/traps.h>
95 #include <asm/vectors.h>
96 #include <asm/virt.h>
97
98 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
99 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
100
101 #ifdef CONFIG_COMPAT
102 #define COMPAT_ELF_HWCAP_DEFAULT \
103 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
104 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
105 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
106 COMPAT_HWCAP_LPAE)
107 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
108 unsigned int compat_elf_hwcap2 __read_mostly;
109 unsigned int compat_elf_hwcap3 __read_mostly;
110 #endif
111
112 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
113 EXPORT_SYMBOL(system_cpucaps);
114 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
115
116 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
117
118 /*
119 * arm64_use_ng_mappings must be placed in the .data section, otherwise it
120 * ends up in the .bss section where it is initialized in early_map_kernel()
121 * after the MMU (with the idmap) was enabled. create_init_idmap() - which
122 * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
123 * may end up generating an incorrect idmap page table attributes.
124 */
125 bool arm64_use_ng_mappings __read_mostly = false;
126 EXPORT_SYMBOL(arm64_use_ng_mappings);
127
128 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
129
130 /*
131 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
132 * support it?
133 */
134 static bool __read_mostly allow_mismatched_32bit_el0;
135
136 /*
137 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
138 * seen at least one CPU capable of 32-bit EL0.
139 */
140 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
141
142 /*
143 * Mask of CPUs supporting 32-bit EL0.
144 * Only valid if arm64_mismatched_32bit_el0 is enabled.
145 */
146 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
147
dump_cpu_features(void)148 void dump_cpu_features(void)
149 {
150 /* file-wide pr_fmt adds "CPU features: " prefix */
151 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
152 }
153
154 #define __ARM64_MAX_POSITIVE(reg, field) \
155 ((reg##_##field##_SIGNED ? \
156 BIT(reg##_##field##_WIDTH - 1) : \
157 BIT(reg##_##field##_WIDTH)) - 1)
158
159 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
160
161 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
162 .sys_reg = SYS_##reg, \
163 .field_pos = reg##_##field##_SHIFT, \
164 .field_width = reg##_##field##_WIDTH, \
165 .sign = reg##_##field##_SIGNED, \
166 .min_field_value = min_value, \
167 .max_field_value = max_value,
168
169 /*
170 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
171 * an implicit maximum that depends on the sign-ess of the field.
172 *
173 * An unsigned field will be capped at all ones, while a signed field
174 * will be limited to the positive half only.
175 */
176 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
177 __ARM64_CPUID_FIELDS(reg, field, \
178 SYS_FIELD_VALUE(reg, field, min_value), \
179 __ARM64_MAX_POSITIVE(reg, field))
180
181 /*
182 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
183 * implicit minimal value to max_value. This should be used when
184 * matching a non-implemented property.
185 */
186 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
187 __ARM64_CPUID_FIELDS(reg, field, \
188 __ARM64_MIN_NEGATIVE(reg, field), \
189 SYS_FIELD_VALUE(reg, field, max_value))
190
191 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
192 { \
193 .sign = SIGNED, \
194 .visible = VISIBLE, \
195 .strict = STRICT, \
196 .type = TYPE, \
197 .shift = SHIFT, \
198 .width = WIDTH, \
199 .safe_val = SAFE_VAL, \
200 }
201
202 /* Define a feature with unsigned values */
203 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
204 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
205
206 /* Define a feature with a signed value */
207 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
208 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
209
210 #define ARM64_FTR_END \
211 { \
212 .width = 0, \
213 }
214
215 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
216
217 static bool __system_matches_cap(unsigned int n);
218
219 /*
220 * NOTE: Any changes to the visibility of features should be kept in
221 * sync with the documentation of the CPU feature register ABI.
222 */
223 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
238 ARM64_FTR_END,
239 };
240
241 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
250 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
257 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
261 ARM64_FTR_END,
262 };
263
264 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
265 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
267 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
272 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
277 ARM64_FTR_END,
278 };
279
280 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
281 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
282 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
284 ARM64_FTR_END,
285 };
286
287 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
290 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
295 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
298 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
299 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
304 ARM64_FTR_END,
305 };
306
307 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
310 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
311 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
312 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
313 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
317 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
318 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
319 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
320 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
321 ARM64_FTR_END,
322 };
323
324 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
325 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
327 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
328 ARM64_FTR_END,
329 };
330
331 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
332 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
333 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
334 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
336 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
337 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
338 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
339 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
340 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
341 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
343 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
344 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
345 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
346 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
347 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
348 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
349 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
350 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
351 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
352 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
353 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
354 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
355 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
356 ARM64_FTR_END,
357 };
358
359 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
360 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
362 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
364 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
368 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
370 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
372 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
374 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
376 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
377 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
378 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
379 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
380 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
381 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
382 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
383 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
384 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
385 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
386 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
387 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
388 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
389 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
390 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
391 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
392 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
393 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
394 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
395 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
396 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
397 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
398 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
399 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
400 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
401 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
402 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
403 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
404 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
405 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
406 ARM64_FTR_END,
407 };
408
409 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
414 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
415 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
416 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
417 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
418 ARM64_FTR_END,
419 };
420
421 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
422 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
423 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
425 /*
426 * Page size not being supported at Stage-2 is not fatal. You
427 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
428 * your favourite nesting hypervisor.
429 *
430 * There is a small corner case where the hypervisor explicitly
431 * advertises a given granule size at Stage-2 (value 2) on some
432 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
433 * vCPUs. Although this is not forbidden by the architecture, it
434 * indicates that the hypervisor is being silly (or buggy).
435 *
436 * We make no effort to cope with this and pretend that if these
437 * fields are inconsistent across vCPUs, then it isn't worth
438 * trying to bring KVM up.
439 */
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
443 /*
444 * We already refuse to boot CPUs that don't support our configured
445 * page size, so we can only detect mismatches for a page size other
446 * than the one we're currently using. Unfortunately, SoCs like this
447 * exist in the wild so, even though we don't like it, we'll have to go
448 * along with it and treat them as non-strict.
449 */
450 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
451 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
453
454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
455 /* Linux shouldn't care about secure memory */
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
459 /*
460 * Differing PARange is fine as long as all peripherals and memory are mapped
461 * within the minimum PARange of all CPUs
462 */
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
464 ARM64_FTR_END,
465 };
466
467 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
482 ARM64_FTR_END,
483 };
484
485 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
496 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
500 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
501 ARM64_FTR_END,
502 };
503
504 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
505 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
506 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
510 ARM64_FTR_END,
511 };
512
513 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
514 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
516 ARM64_FTR_END,
517 };
518
519 static const struct arm64_ftr_bits ftr_ctr[] = {
520 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
521 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
522 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
523 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
524 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
525 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
526 /*
527 * Linux can handle differing I-cache policies. Userspace JITs will
528 * make use of *minLine.
529 * If we have differing I-cache policies, report it as the weakest - VIPT.
530 */
531 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
532 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
533 ARM64_FTR_END,
534 };
535
536 static struct arm64_ftr_override __ro_after_init no_override = { };
537
538 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
539 .name = "SYS_CTR_EL0",
540 .ftr_bits = ftr_ctr,
541 .override = &no_override,
542 };
543
544 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
545 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
550 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
551 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
553 ARM64_FTR_END,
554 };
555
556 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
557 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
560 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
562 /*
563 * We can instantiate multiple PMU instances with different levels
564 * of support.
565 */
566 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
567 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
568 ARM64_FTR_END,
569 };
570
571 static const struct arm64_ftr_bits ftr_mvfr0[] = {
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
576 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
577 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
578 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
580 ARM64_FTR_END,
581 };
582
583 static const struct arm64_ftr_bits ftr_mvfr1[] = {
584 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
586 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
587 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
588 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
589 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
590 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
592 ARM64_FTR_END,
593 };
594
595 static const struct arm64_ftr_bits ftr_mvfr2[] = {
596 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
597 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
598 ARM64_FTR_END,
599 };
600
601 static const struct arm64_ftr_bits ftr_dczid[] = {
602 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
603 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
604 ARM64_FTR_END,
605 };
606
607 static const struct arm64_ftr_bits ftr_gmid[] = {
608 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
609 ARM64_FTR_END,
610 };
611
612 static const struct arm64_ftr_bits ftr_id_isar0[] = {
613 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
616 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
617 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
619 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
620 ARM64_FTR_END,
621 };
622
623 static const struct arm64_ftr_bits ftr_id_isar5[] = {
624 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
625 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
626 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
627 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
628 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
629 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
630 ARM64_FTR_END,
631 };
632
633 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
640 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
641
642 /*
643 * SpecSEI = 1 indicates that the PE might generate an SError on an
644 * external abort on speculative read. It is safe to assume that an
645 * SError might be generated than it will not be. Hence it has been
646 * classified as FTR_HIGHER_SAFE.
647 */
648 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
649 ARM64_FTR_END,
650 };
651
652 static const struct arm64_ftr_bits ftr_id_isar4[] = {
653 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
655 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
656 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
660 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
661 ARM64_FTR_END,
662 };
663
664 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
665 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
666 ARM64_FTR_END,
667 };
668
669 static const struct arm64_ftr_bits ftr_id_isar6[] = {
670 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
671 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
672 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
673 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
674 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
675 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
676 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
677 ARM64_FTR_END,
678 };
679
680 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
681 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
682 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
683 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
684 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
685 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
686 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
687 ARM64_FTR_END,
688 };
689
690 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
691 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
693 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
696 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
697 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
698 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
699 ARM64_FTR_END,
700 };
701
702 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
703 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
704 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
705 ARM64_FTR_END,
706 };
707
708 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
709 /* [31:28] TraceFilt */
710 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
711 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
712 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
713 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
714 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
715 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
716 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
717 ARM64_FTR_END,
718 };
719
720 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
721 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
722 ARM64_FTR_END,
723 };
724
725 static const struct arm64_ftr_bits ftr_mpamidr[] = {
726 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
727 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
728 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
729 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
730 ARM64_FTR_END,
731 };
732
733 /*
734 * Common ftr bits for a 32bit register with all hidden, strict
735 * attributes, with 4bit feature fields and a default safe value of
736 * 0. Covers the following 32bit registers:
737 * id_isar[1-3], id_mmfr[1-3]
738 */
739 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
740 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
741 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
742 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
743 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
744 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
745 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
746 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
747 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
748 ARM64_FTR_END,
749 };
750
751 /* Table for a single 32bit feature value */
752 static const struct arm64_ftr_bits ftr_single32[] = {
753 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
754 ARM64_FTR_END,
755 };
756
757 static const struct arm64_ftr_bits ftr_raz[] = {
758 ARM64_FTR_END,
759 };
760
761 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
762 .sys_id = id, \
763 .reg = &(struct arm64_ftr_reg){ \
764 .name = id_str, \
765 .override = (ovr), \
766 .ftr_bits = &((table)[0]), \
767 }}
768
769 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
770 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
771
772 #define ARM64_FTR_REG(id, table) \
773 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
774
775 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
776 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
777 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
778 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
779 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
780 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
781 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
782 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
783 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
784
785 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
786
787 static const struct __ftr_reg_entry {
788 u32 sys_id;
789 struct arm64_ftr_reg *reg;
790 } arm64_ftr_regs[] = {
791
792 /* Op1 = 0, CRn = 0, CRm = 1 */
793 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
794 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
795 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
796 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
797 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
798 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
799 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
800
801 /* Op1 = 0, CRn = 0, CRm = 2 */
802 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
803 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
804 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
805 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
806 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
807 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
808 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
809 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
810
811 /* Op1 = 0, CRn = 0, CRm = 3 */
812 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
813 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
814 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
815 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
816 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
817 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
818
819 /* Op1 = 0, CRn = 0, CRm = 4 */
820 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
821 &id_aa64pfr0_override),
822 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
823 &id_aa64pfr1_override),
824 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
825 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
826 &id_aa64zfr0_override),
827 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
828 &id_aa64smfr0_override),
829 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
830
831 /* Op1 = 0, CRn = 0, CRm = 5 */
832 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
833 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
834
835 /* Op1 = 0, CRn = 0, CRm = 6 */
836 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
837 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
838 &id_aa64isar1_override),
839 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
840 &id_aa64isar2_override),
841 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
842
843 /* Op1 = 0, CRn = 0, CRm = 7 */
844 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
845 &id_aa64mmfr0_override),
846 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
847 &id_aa64mmfr1_override),
848 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
849 &id_aa64mmfr2_override),
850 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
851 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
852
853 /* Op1 = 0, CRn = 10, CRm = 4 */
854 ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
855
856 /* Op1 = 1, CRn = 0, CRm = 0 */
857 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
858
859 /* Op1 = 3, CRn = 0, CRm = 0 */
860 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
861 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
862
863 /* Op1 = 3, CRn = 14, CRm = 0 */
864 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
865 };
866
search_cmp_ftr_reg(const void * id,const void * regp)867 static int search_cmp_ftr_reg(const void *id, const void *regp)
868 {
869 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
870 }
871
872 /*
873 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
874 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
875 * ascending order of sys_id, we use binary search to find a matching
876 * entry.
877 *
878 * returns - Upon success, matching ftr_reg entry for id.
879 * - NULL on failure. It is upto the caller to decide
880 * the impact of a failure.
881 */
get_arm64_ftr_reg_nowarn(u32 sys_id)882 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
883 {
884 const struct __ftr_reg_entry *ret;
885
886 ret = bsearch((const void *)(unsigned long)sys_id,
887 arm64_ftr_regs,
888 ARRAY_SIZE(arm64_ftr_regs),
889 sizeof(arm64_ftr_regs[0]),
890 search_cmp_ftr_reg);
891 if (ret)
892 return ret->reg;
893 return NULL;
894 }
895
896 /*
897 * get_arm64_ftr_reg - Looks up a feature register entry using
898 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
899 *
900 * returns - Upon success, matching ftr_reg entry for id.
901 * - NULL on failure but with an WARN_ON().
902 */
get_arm64_ftr_reg(u32 sys_id)903 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
904 {
905 struct arm64_ftr_reg *reg;
906
907 reg = get_arm64_ftr_reg_nowarn(sys_id);
908
909 /*
910 * Requesting a non-existent register search is an error. Warn
911 * and let the caller handle it.
912 */
913 WARN_ON(!reg);
914 return reg;
915 }
916
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)917 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
918 s64 ftr_val)
919 {
920 u64 mask = arm64_ftr_mask(ftrp);
921
922 reg &= ~mask;
923 reg |= (ftr_val << ftrp->shift) & mask;
924 return reg;
925 }
926
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)927 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
928 s64 cur)
929 {
930 s64 ret = 0;
931
932 switch (ftrp->type) {
933 case FTR_EXACT:
934 ret = ftrp->safe_val;
935 break;
936 case FTR_LOWER_SAFE:
937 ret = min(new, cur);
938 break;
939 case FTR_HIGHER_OR_ZERO_SAFE:
940 if (!cur || !new)
941 break;
942 fallthrough;
943 case FTR_HIGHER_SAFE:
944 ret = max(new, cur);
945 break;
946 default:
947 BUG();
948 }
949
950 return ret;
951 }
952
sort_ftr_regs(void)953 static void __init sort_ftr_regs(void)
954 {
955 unsigned int i;
956
957 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
958 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
959 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
960 unsigned int j = 0;
961
962 /*
963 * Features here must be sorted in descending order with respect
964 * to their shift values and should not overlap with each other.
965 */
966 for (; ftr_bits->width != 0; ftr_bits++, j++) {
967 unsigned int width = ftr_reg->ftr_bits[j].width;
968 unsigned int shift = ftr_reg->ftr_bits[j].shift;
969 unsigned int prev_shift;
970
971 WARN((shift + width) > 64,
972 "%s has invalid feature at shift %d\n",
973 ftr_reg->name, shift);
974
975 /*
976 * Skip the first feature. There is nothing to
977 * compare against for now.
978 */
979 if (j == 0)
980 continue;
981
982 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
983 WARN((shift + width) > prev_shift,
984 "%s has feature overlap at shift %d\n",
985 ftr_reg->name, shift);
986 }
987
988 /*
989 * Skip the first register. There is nothing to
990 * compare against for now.
991 */
992 if (i == 0)
993 continue;
994 /*
995 * Registers here must be sorted in ascending order with respect
996 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
997 * to work correctly.
998 */
999 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1000 }
1001 }
1002
1003 /*
1004 * Initialise the CPU feature register from Boot CPU values.
1005 * Also initiliases the strict_mask for the register.
1006 * Any bits that are not covered by an arm64_ftr_bits entry are considered
1007 * RES0 for the system-wide value, and must strictly match.
1008 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)1009 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1010 {
1011 u64 val = 0;
1012 u64 strict_mask = ~0x0ULL;
1013 u64 user_mask = 0;
1014 u64 valid_mask = 0;
1015
1016 const struct arm64_ftr_bits *ftrp;
1017 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1018
1019 if (!reg)
1020 return;
1021
1022 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1023 u64 ftr_mask = arm64_ftr_mask(ftrp);
1024 s64 ftr_new = arm64_ftr_value(ftrp, new);
1025 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1026
1027 if ((ftr_mask & reg->override->mask) == ftr_mask) {
1028 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1029 char *str = NULL;
1030
1031 if (ftr_ovr != tmp) {
1032 /* Unsafe, remove the override */
1033 reg->override->mask &= ~ftr_mask;
1034 reg->override->val &= ~ftr_mask;
1035 tmp = ftr_ovr;
1036 str = "ignoring override";
1037 } else if (ftr_new != tmp) {
1038 /* Override was valid */
1039 ftr_new = tmp;
1040 str = "forced";
1041 } else {
1042 /* Override was the safe value */
1043 str = "already set";
1044 }
1045
1046 pr_warn("%s[%d:%d]: %s to %llx\n",
1047 reg->name,
1048 ftrp->shift + ftrp->width - 1,
1049 ftrp->shift, str,
1050 tmp & (BIT(ftrp->width) - 1));
1051 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1052 reg->override->val &= ~ftr_mask;
1053 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1054 reg->name,
1055 ftrp->shift + ftrp->width - 1,
1056 ftrp->shift);
1057 }
1058
1059 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1060
1061 valid_mask |= ftr_mask;
1062 if (!ftrp->strict)
1063 strict_mask &= ~ftr_mask;
1064 if (ftrp->visible)
1065 user_mask |= ftr_mask;
1066 else
1067 reg->user_val = arm64_ftr_set_value(ftrp,
1068 reg->user_val,
1069 ftrp->safe_val);
1070 }
1071
1072 val &= valid_mask;
1073
1074 reg->sys_val = val;
1075 reg->strict_mask = strict_mask;
1076 reg->user_mask = user_mask;
1077 }
1078
1079 extern const struct arm64_cpu_capabilities arm64_errata[];
1080 static const struct arm64_cpu_capabilities arm64_features[];
1081
1082 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1083 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1084 {
1085 for (; caps->matches; caps++) {
1086 if (WARN(caps->capability >= ARM64_NCAPS,
1087 "Invalid capability %d\n", caps->capability))
1088 continue;
1089 if (WARN(cpucap_ptrs[caps->capability],
1090 "Duplicate entry for capability %d\n",
1091 caps->capability))
1092 continue;
1093 cpucap_ptrs[caps->capability] = caps;
1094 }
1095 }
1096
init_cpucap_indirect_list(void)1097 static void __init init_cpucap_indirect_list(void)
1098 {
1099 init_cpucap_indirect_list_from_array(arm64_features);
1100 init_cpucap_indirect_list_from_array(arm64_errata);
1101 }
1102
1103 static void __init setup_boot_cpu_capabilities(void);
1104
init_32bit_cpu_features(struct cpuinfo_32bit * info)1105 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1106 {
1107 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1108 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1109 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1110 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1111 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1112 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1113 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1114 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1115 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1116 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1117 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1118 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1119 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1120 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1121 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1122 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1123 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1124 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1125 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1126 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1127 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1128 }
1129
1130 #ifdef CONFIG_ARM64_PSEUDO_NMI
1131 static bool enable_pseudo_nmi;
1132
early_enable_pseudo_nmi(char * p)1133 static int __init early_enable_pseudo_nmi(char *p)
1134 {
1135 return kstrtobool(p, &enable_pseudo_nmi);
1136 }
1137 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1138
detect_system_supports_pseudo_nmi(void)1139 static __init void detect_system_supports_pseudo_nmi(void)
1140 {
1141 struct device_node *np;
1142
1143 if (!enable_pseudo_nmi)
1144 return;
1145
1146 /*
1147 * Detect broken MediaTek firmware that doesn't properly save and
1148 * restore GIC priorities.
1149 */
1150 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1151 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1152 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1153 enable_pseudo_nmi = false;
1154 }
1155 of_node_put(np);
1156 }
1157 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1158 static inline void detect_system_supports_pseudo_nmi(void) { }
1159 #endif
1160
init_cpu_features(struct cpuinfo_arm64 * info)1161 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1162 {
1163 /* Before we start using the tables, make sure it is sorted */
1164 sort_ftr_regs();
1165
1166 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1167 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1168 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1169 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1170 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1171 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1172 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1173 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1174 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1175 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1176 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1177 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1178 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1179 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1180 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1181 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1182 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1183 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1184 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1185 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1186
1187 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1188 init_32bit_cpu_features(&info->aarch32);
1189
1190 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1191 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1192 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1193
1194 vec_init_vq_map(ARM64_VEC_SVE);
1195
1196 cpacr_restore(cpacr);
1197 }
1198
1199 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1200 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1201 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1202
1203 vec_init_vq_map(ARM64_VEC_SME);
1204
1205 cpacr_restore(cpacr);
1206 }
1207
1208 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1209 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1210 init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1211 }
1212
1213 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1214 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1215 }
1216
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1217 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1218 {
1219 const struct arm64_ftr_bits *ftrp;
1220
1221 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1222 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1223 s64 ftr_new = arm64_ftr_value(ftrp, new);
1224
1225 if (ftr_cur == ftr_new)
1226 continue;
1227 /* Find a safe value */
1228 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1229 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1230 }
1231
1232 }
1233
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1234 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1235 {
1236 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1237
1238 if (!regp)
1239 return 0;
1240
1241 update_cpu_ftr_reg(regp, val);
1242 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1243 return 0;
1244 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1245 regp->name, boot, cpu, val);
1246 return 1;
1247 }
1248
relax_cpu_ftr_reg(u32 sys_id,int field)1249 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1250 {
1251 const struct arm64_ftr_bits *ftrp;
1252 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1253
1254 if (!regp)
1255 return;
1256
1257 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1258 if (ftrp->shift == field) {
1259 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1260 break;
1261 }
1262 }
1263
1264 /* Bogus field? */
1265 WARN_ON(!ftrp->width);
1266 }
1267
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1268 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1269 struct cpuinfo_arm64 *boot)
1270 {
1271 static bool boot_cpu_32bit_regs_overridden = false;
1272
1273 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1274 return;
1275
1276 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1277 return;
1278
1279 boot->aarch32 = info->aarch32;
1280 init_32bit_cpu_features(&boot->aarch32);
1281 boot_cpu_32bit_regs_overridden = true;
1282 }
1283
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1284 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1285 struct cpuinfo_32bit *boot)
1286 {
1287 int taint = 0;
1288 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1289
1290 /*
1291 * If we don't have AArch32 at EL1, then relax the strictness of
1292 * EL1-dependent register fields to avoid spurious sanity check fails.
1293 */
1294 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1295 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1296 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1297 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1298 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1299 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1300 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1301 }
1302
1303 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1304 info->reg_id_dfr0, boot->reg_id_dfr0);
1305 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1306 info->reg_id_dfr1, boot->reg_id_dfr1);
1307 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1308 info->reg_id_isar0, boot->reg_id_isar0);
1309 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1310 info->reg_id_isar1, boot->reg_id_isar1);
1311 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1312 info->reg_id_isar2, boot->reg_id_isar2);
1313 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1314 info->reg_id_isar3, boot->reg_id_isar3);
1315 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1316 info->reg_id_isar4, boot->reg_id_isar4);
1317 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1318 info->reg_id_isar5, boot->reg_id_isar5);
1319 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1320 info->reg_id_isar6, boot->reg_id_isar6);
1321
1322 /*
1323 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1324 * ACTLR formats could differ across CPUs and therefore would have to
1325 * be trapped for virtualization anyway.
1326 */
1327 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1328 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1329 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1330 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1331 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1332 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1333 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1334 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1335 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1336 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1337 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1338 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1339 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1340 info->reg_id_pfr0, boot->reg_id_pfr0);
1341 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1342 info->reg_id_pfr1, boot->reg_id_pfr1);
1343 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1344 info->reg_id_pfr2, boot->reg_id_pfr2);
1345 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1346 info->reg_mvfr0, boot->reg_mvfr0);
1347 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1348 info->reg_mvfr1, boot->reg_mvfr1);
1349 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1350 info->reg_mvfr2, boot->reg_mvfr2);
1351
1352 return taint;
1353 }
1354
1355 /*
1356 * Update system wide CPU feature registers with the values from a
1357 * non-boot CPU. Also performs SANITY checks to make sure that there
1358 * aren't any insane variations from that of the boot CPU.
1359 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1360 void update_cpu_features(int cpu,
1361 struct cpuinfo_arm64 *info,
1362 struct cpuinfo_arm64 *boot)
1363 {
1364 int taint = 0;
1365
1366 /*
1367 * The kernel can handle differing I-cache policies, but otherwise
1368 * caches should look identical. Userspace JITs will make use of
1369 * *minLine.
1370 */
1371 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1372 info->reg_ctr, boot->reg_ctr);
1373
1374 /*
1375 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1376 * could result in too much or too little memory being zeroed if a
1377 * process is preempted and migrated between CPUs.
1378 */
1379 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1380 info->reg_dczid, boot->reg_dczid);
1381
1382 /* If different, timekeeping will be broken (especially with KVM) */
1383 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1384 info->reg_cntfrq, boot->reg_cntfrq);
1385
1386 /*
1387 * The kernel uses self-hosted debug features and expects CPUs to
1388 * support identical debug features. We presently need CTX_CMPs, WRPs,
1389 * and BRPs to be identical.
1390 * ID_AA64DFR1 is currently RES0.
1391 */
1392 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1393 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1394 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1395 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1396 /*
1397 * Even in big.LITTLE, processors should be identical instruction-set
1398 * wise.
1399 */
1400 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1401 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1402 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1403 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1404 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1405 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1406 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1407 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1408
1409 /*
1410 * Differing PARange support is fine as long as all peripherals and
1411 * memory are mapped within the minimum PARange of all CPUs.
1412 * Linux should not care about secure memory.
1413 */
1414 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1415 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1416 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1417 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1418 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1419 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1420 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1421 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1422 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1423 info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1424
1425 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1426 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1427 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1428 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1429 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1430 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1431
1432 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1433 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1434
1435 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1436 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1437
1438 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1439 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1440
1441 /* Probe vector lengths */
1442 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1443 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1444 if (!system_capabilities_finalized()) {
1445 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1446
1447 vec_update_vq_map(ARM64_VEC_SVE);
1448
1449 cpacr_restore(cpacr);
1450 }
1451 }
1452
1453 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1454 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1455 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1456
1457 /* Probe vector lengths */
1458 if (!system_capabilities_finalized())
1459 vec_update_vq_map(ARM64_VEC_SME);
1460
1461 cpacr_restore(cpacr);
1462 }
1463
1464 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1465 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1466 taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1467 info->reg_mpamidr, boot->reg_mpamidr);
1468 }
1469
1470 /*
1471 * The kernel uses the LDGM/STGM instructions and the number of tags
1472 * they read/write depends on the GMID_EL1.BS field. Check that the
1473 * value is the same on all CPUs.
1474 */
1475 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1476 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1477 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1478 info->reg_gmid, boot->reg_gmid);
1479 }
1480
1481 /*
1482 * If we don't have AArch32 at all then skip the checks entirely
1483 * as the register values may be UNKNOWN and we're not going to be
1484 * using them for anything.
1485 *
1486 * This relies on a sanitised view of the AArch64 ID registers
1487 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1488 */
1489 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1490 lazy_init_32bit_cpu_features(info, boot);
1491 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1492 &boot->aarch32);
1493 }
1494
1495 /*
1496 * Mismatched CPU features are a recipe for disaster. Don't even
1497 * pretend to support them.
1498 */
1499 if (taint) {
1500 pr_warn_once("Unsupported CPU feature variation detected.\n");
1501 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1502 }
1503 }
1504
read_sanitised_ftr_reg(u32 id)1505 u64 read_sanitised_ftr_reg(u32 id)
1506 {
1507 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1508
1509 if (!regp)
1510 return 0;
1511 return regp->sys_val;
1512 }
1513 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1514
1515 #define read_sysreg_case(r) \
1516 case r: val = read_sysreg_s(r); break;
1517
1518 /*
1519 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1520 * Read the system register on the current CPU
1521 */
__read_sysreg_by_encoding(u32 sys_id)1522 u64 __read_sysreg_by_encoding(u32 sys_id)
1523 {
1524 struct arm64_ftr_reg *regp;
1525 u64 val;
1526
1527 switch (sys_id) {
1528 read_sysreg_case(SYS_ID_PFR0_EL1);
1529 read_sysreg_case(SYS_ID_PFR1_EL1);
1530 read_sysreg_case(SYS_ID_PFR2_EL1);
1531 read_sysreg_case(SYS_ID_DFR0_EL1);
1532 read_sysreg_case(SYS_ID_DFR1_EL1);
1533 read_sysreg_case(SYS_ID_MMFR0_EL1);
1534 read_sysreg_case(SYS_ID_MMFR1_EL1);
1535 read_sysreg_case(SYS_ID_MMFR2_EL1);
1536 read_sysreg_case(SYS_ID_MMFR3_EL1);
1537 read_sysreg_case(SYS_ID_MMFR4_EL1);
1538 read_sysreg_case(SYS_ID_MMFR5_EL1);
1539 read_sysreg_case(SYS_ID_ISAR0_EL1);
1540 read_sysreg_case(SYS_ID_ISAR1_EL1);
1541 read_sysreg_case(SYS_ID_ISAR2_EL1);
1542 read_sysreg_case(SYS_ID_ISAR3_EL1);
1543 read_sysreg_case(SYS_ID_ISAR4_EL1);
1544 read_sysreg_case(SYS_ID_ISAR5_EL1);
1545 read_sysreg_case(SYS_ID_ISAR6_EL1);
1546 read_sysreg_case(SYS_MVFR0_EL1);
1547 read_sysreg_case(SYS_MVFR1_EL1);
1548 read_sysreg_case(SYS_MVFR2_EL1);
1549
1550 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1551 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1552 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1553 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1554 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1555 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1556 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1557 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1558 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1559 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1560 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1561 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1562 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1563 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1564 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1565 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1566 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1567
1568 read_sysreg_case(SYS_CNTFRQ_EL0);
1569 read_sysreg_case(SYS_CTR_EL0);
1570 read_sysreg_case(SYS_DCZID_EL0);
1571
1572 default:
1573 BUG();
1574 return 0;
1575 }
1576
1577 regp = get_arm64_ftr_reg(sys_id);
1578 if (regp) {
1579 val &= ~regp->override->mask;
1580 val |= (regp->override->val & regp->override->mask);
1581 }
1582
1583 return val;
1584 }
1585
1586 #include <linux/irqchip/arm-gic-v3.h>
1587
1588 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1589 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1590 {
1591 return true;
1592 }
1593
1594 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1595 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1596 {
1597 int val, min, max;
1598 u64 tmp;
1599
1600 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1601 entry->field_width,
1602 entry->sign);
1603
1604 tmp = entry->min_field_value;
1605 tmp <<= entry->field_pos;
1606
1607 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1608 entry->field_width,
1609 entry->sign);
1610
1611 tmp = entry->max_field_value;
1612 tmp <<= entry->field_pos;
1613
1614 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1615 entry->field_width,
1616 entry->sign);
1617
1618 return val >= min && val <= max;
1619 }
1620
1621 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1622 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1623 {
1624 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1625 if (scope == SCOPE_SYSTEM)
1626 return read_sanitised_ftr_reg(entry->sys_reg);
1627 else
1628 return __read_sysreg_by_encoding(entry->sys_reg);
1629 }
1630
1631 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1632 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1633 {
1634 int mask;
1635 struct arm64_ftr_reg *regp;
1636 u64 val = read_scoped_sysreg(entry, scope);
1637
1638 regp = get_arm64_ftr_reg(entry->sys_reg);
1639 if (!regp)
1640 return false;
1641
1642 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1643 entry->field_pos,
1644 entry->field_width);
1645 if (!mask)
1646 return false;
1647
1648 return feature_matches(val, entry);
1649 }
1650
1651 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1652 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1653 {
1654 u64 val = read_scoped_sysreg(entry, scope);
1655 return feature_matches(val, entry);
1656 }
1657
system_32bit_el0_cpumask(void)1658 const struct cpumask *system_32bit_el0_cpumask(void)
1659 {
1660 if (!system_supports_32bit_el0())
1661 return cpu_none_mask;
1662
1663 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1664 return cpu_32bit_el0_mask;
1665
1666 return cpu_possible_mask;
1667 }
1668
task_cpu_fallback_mask(struct task_struct * p)1669 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1670 {
1671 return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1672 }
1673
parse_32bit_el0_param(char * str)1674 static int __init parse_32bit_el0_param(char *str)
1675 {
1676 allow_mismatched_32bit_el0 = true;
1677 return 0;
1678 }
1679 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1680
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1681 static ssize_t aarch32_el0_show(struct device *dev,
1682 struct device_attribute *attr, char *buf)
1683 {
1684 const struct cpumask *mask = system_32bit_el0_cpumask();
1685
1686 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1687 }
1688 static const DEVICE_ATTR_RO(aarch32_el0);
1689
aarch32_el0_sysfs_init(void)1690 static int __init aarch32_el0_sysfs_init(void)
1691 {
1692 struct device *dev_root;
1693 int ret = 0;
1694
1695 if (!allow_mismatched_32bit_el0)
1696 return 0;
1697
1698 dev_root = bus_get_dev_root(&cpu_subsys);
1699 if (dev_root) {
1700 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1701 put_device(dev_root);
1702 }
1703 return ret;
1704 }
1705 device_initcall(aarch32_el0_sysfs_init);
1706
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1707 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1708 {
1709 if (!has_cpuid_feature(entry, scope))
1710 return allow_mismatched_32bit_el0;
1711
1712 if (scope == SCOPE_SYSTEM)
1713 pr_info("detected: 32-bit EL0 Support\n");
1714
1715 return true;
1716 }
1717
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1718 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1719 {
1720 bool has_sre;
1721
1722 if (!has_cpuid_feature(entry, scope))
1723 return false;
1724
1725 has_sre = gic_enable_sre();
1726 if (!has_sre)
1727 pr_warn_once("%s present but disabled by higher exception level\n",
1728 entry->desc);
1729
1730 return has_sre;
1731 }
1732
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1733 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1734 int scope)
1735 {
1736 u64 ctr;
1737
1738 if (scope == SCOPE_SYSTEM)
1739 ctr = arm64_ftr_reg_ctrel0.sys_val;
1740 else
1741 ctr = read_cpuid_effective_cachetype();
1742
1743 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1744 }
1745
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1746 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1747 {
1748 /*
1749 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1750 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1751 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1752 * value.
1753 */
1754 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1755 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1756 }
1757
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1758 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1759 int scope)
1760 {
1761 u64 ctr;
1762
1763 if (scope == SCOPE_SYSTEM)
1764 ctr = arm64_ftr_reg_ctrel0.sys_val;
1765 else
1766 ctr = read_cpuid_cachetype();
1767
1768 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1769 }
1770
1771 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1772 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1773 {
1774 /*
1775 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1776 * may share TLB entries with a CPU stuck in the crashed
1777 * kernel.
1778 */
1779 if (is_kdump_kernel())
1780 return false;
1781
1782 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1783 return false;
1784
1785 return has_cpuid_feature(entry, scope);
1786 }
1787
1788 static bool __meltdown_safe = true;
1789 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1790
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1791 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1792 int scope)
1793 {
1794 /* List of CPUs that are not vulnerable and don't need KPTI */
1795 static const struct midr_range kpti_safe_list[] = {
1796 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1797 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1798 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1799 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1800 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1801 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1802 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1803 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1804 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1805 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1806 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1807 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1808 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1809 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1810 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1811 { /* sentinel */ }
1812 };
1813 char const *str = "kpti command line option";
1814 bool meltdown_safe;
1815
1816 meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1817
1818 /* Defer to CPU feature registers */
1819 if (has_cpuid_feature(entry, scope))
1820 meltdown_safe = true;
1821
1822 if (!meltdown_safe)
1823 __meltdown_safe = false;
1824
1825 /*
1826 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1827 * ThunderX leads to apparent I-cache corruption of kernel text, which
1828 * ends as well as you might imagine. Don't even try. We cannot rely
1829 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1830 * because cpucap detection order may change. However, since we know
1831 * affected CPUs are always in a homogeneous configuration, it is
1832 * safe to rely on this_cpu_has_cap() here.
1833 */
1834 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1835 str = "ARM64_WORKAROUND_CAVIUM_27456";
1836 __kpti_forced = -1;
1837 }
1838
1839 /* Useful for KASLR robustness */
1840 if (kaslr_enabled() && kaslr_requires_kpti()) {
1841 if (!__kpti_forced) {
1842 str = "KASLR";
1843 __kpti_forced = 1;
1844 }
1845 }
1846
1847 if (cpu_mitigations_off() && !__kpti_forced) {
1848 str = "mitigations=off";
1849 __kpti_forced = -1;
1850 }
1851
1852 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1853 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1854 return false;
1855 }
1856
1857 /* Forced? */
1858 if (__kpti_forced) {
1859 pr_info_once("kernel page table isolation forced %s by %s\n",
1860 __kpti_forced > 0 ? "ON" : "OFF", str);
1861 return __kpti_forced > 0;
1862 }
1863
1864 return !meltdown_safe;
1865 }
1866
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1867 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1868 {
1869 /*
1870 * Although the Apple M2 family appears to support NV1, the
1871 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1872 * that it doesn't support NV1 at all.
1873 */
1874 static const struct midr_range nv1_ni_list[] = {
1875 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1876 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1877 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1878 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1879 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1880 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1881 {}
1882 };
1883
1884 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1885 !(has_cpuid_feature(entry, scope) ||
1886 is_midr_in_range_list(nv1_ni_list)));
1887 }
1888
1889 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1890 static bool has_lpa2_at_stage1(u64 mmfr0)
1891 {
1892 unsigned int tgran;
1893
1894 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1895 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1896 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1897 }
1898
has_lpa2_at_stage2(u64 mmfr0)1899 static bool has_lpa2_at_stage2(u64 mmfr0)
1900 {
1901 unsigned int tgran;
1902
1903 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1904 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1905 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1906 }
1907
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1908 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1909 {
1910 u64 mmfr0;
1911
1912 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1913 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1914 }
1915 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1916 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1917 {
1918 return false;
1919 }
1920 #endif
1921
1922 #ifdef CONFIG_HW_PERF_EVENTS
has_pmuv3(const struct arm64_cpu_capabilities * entry,int scope)1923 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1924 {
1925 u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1926 unsigned int pmuver;
1927
1928 /*
1929 * PMUVer follows the standard ID scheme for an unsigned field with the
1930 * exception of 0xF (IMP_DEF) which is treated specially and implies
1931 * FEAT_PMUv3 is not implemented.
1932 *
1933 * See DDI0487L.a D24.1.3.2 for more details.
1934 */
1935 pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1936 ID_AA64DFR0_EL1_PMUVer_SHIFT);
1937 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1938 return false;
1939
1940 return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1941 }
1942 #endif
1943
1944 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1945 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1946
1947 extern
1948 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1949 phys_addr_t size, pgprot_t prot,
1950 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags);
1951
1952 static phys_addr_t __initdata kpti_ng_temp_alloc;
1953
kpti_ng_pgd_alloc(enum pgtable_type type)1954 static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1955 {
1956 kpti_ng_temp_alloc -= PAGE_SIZE;
1957 return kpti_ng_temp_alloc;
1958 }
1959
__kpti_install_ng_mappings(void * __unused)1960 static int __init __kpti_install_ng_mappings(void *__unused)
1961 {
1962 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1963 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1964 kpti_remap_fn *remap_fn;
1965
1966 int cpu = smp_processor_id();
1967 int levels = CONFIG_PGTABLE_LEVELS;
1968 int order = order_base_2(levels);
1969 u64 kpti_ng_temp_pgd_pa = 0;
1970 pgd_t *kpti_ng_temp_pgd;
1971 u64 alloc = 0;
1972
1973 if (levels == 5 && !pgtable_l5_enabled())
1974 levels = 4;
1975 else if (levels == 4 && !pgtable_l4_enabled())
1976 levels = 3;
1977
1978 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1979
1980 if (!cpu) {
1981 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1982 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1983 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1984
1985 //
1986 // Create a minimal page table hierarchy that permits us to map
1987 // the swapper page tables temporarily as we traverse them.
1988 //
1989 // The physical pages are laid out as follows:
1990 //
1991 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1992 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1993 // +--------+-\-------+-\------ +-\------ +-///--------+
1994 // ^
1995 // The first page is mapped into this hierarchy at a PMD_SHIFT
1996 // aligned virtual address, so that we can manipulate the PTE
1997 // level entries while the mapping is active. The first entry
1998 // covers the PTE[] page itself, the remaining entries are free
1999 // to be used as a ad-hoc fixmap.
2000 //
2001 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
2002 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
2003 kpti_ng_pgd_alloc, 0);
2004 }
2005
2006 cpu_install_idmap();
2007 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
2008 cpu_uninstall_idmap();
2009
2010 if (!cpu) {
2011 free_pages(alloc, order);
2012 arm64_use_ng_mappings = true;
2013 }
2014
2015 return 0;
2016 }
2017
kpti_install_ng_mappings(void)2018 static void __init kpti_install_ng_mappings(void)
2019 {
2020 /* Check whether KPTI is going to be used */
2021 if (!arm64_kernel_unmapped_at_el0())
2022 return;
2023
2024 /*
2025 * We don't need to rewrite the page-tables if either we've done
2026 * it already or we have KASLR enabled and therefore have not
2027 * created any global mappings at all.
2028 */
2029 if (arm64_use_ng_mappings)
2030 return;
2031
2032 init_idmap_kpti_bbml2_flag();
2033 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2034 }
2035
2036 #else
kpti_install_ng_mappings(void)2037 static inline void kpti_install_ng_mappings(void)
2038 {
2039 }
2040 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
2041
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)2042 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2043 {
2044 if (__this_cpu_read(this_cpu_vector) == vectors) {
2045 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2046
2047 __this_cpu_write(this_cpu_vector, v);
2048 }
2049
2050 }
2051
parse_kpti(char * str)2052 static int __init parse_kpti(char *str)
2053 {
2054 bool enabled;
2055 int ret = kstrtobool(str, &enabled);
2056
2057 if (ret)
2058 return ret;
2059
2060 __kpti_forced = enabled ? 1 : -1;
2061 return 0;
2062 }
2063 early_param("kpti", parse_kpti);
2064
2065 #ifdef CONFIG_ARM64_HW_AFDBM
2066 static struct cpumask dbm_cpus __read_mostly;
2067
__cpu_enable_hw_dbm(void)2068 static inline void __cpu_enable_hw_dbm(void)
2069 {
2070 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2071
2072 write_sysreg(tcr, tcr_el1);
2073 isb();
2074 local_flush_tlb_all();
2075 }
2076
cpu_has_broken_dbm(void)2077 static bool cpu_has_broken_dbm(void)
2078 {
2079 /* List of CPUs which have broken DBM support. */
2080 static const struct midr_range cpus[] = {
2081 #ifdef CONFIG_ARM64_ERRATUM_1024718
2082 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2083 /* Kryo4xx Silver (rdpe => r1p0) */
2084 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2085 #endif
2086 #ifdef CONFIG_ARM64_ERRATUM_2051678
2087 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2088 #endif
2089 {},
2090 };
2091
2092 return is_midr_in_range_list(cpus);
2093 }
2094
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)2095 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2096 {
2097 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2098 !cpu_has_broken_dbm();
2099 }
2100
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2101 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2102 {
2103 if (cpu_can_use_dbm(cap)) {
2104 __cpu_enable_hw_dbm();
2105 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2106 }
2107 }
2108
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2109 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2110 int __unused)
2111 {
2112 /*
2113 * DBM is a non-conflicting feature. i.e, the kernel can safely
2114 * run a mix of CPUs with and without the feature. So, we
2115 * unconditionally enable the capability to allow any late CPU
2116 * to use the feature. We only enable the control bits on the
2117 * CPU, if it is supported.
2118 */
2119
2120 return true;
2121 }
2122
2123 #endif
2124
2125 #ifdef CONFIG_ARM64_AMU_EXTN
2126
2127 /*
2128 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2129 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2130 * information regarding all the events that it supports. When a CPU bit is
2131 * set in the cpumask, the user of this feature can only rely on the presence
2132 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2133 * counters are enabled or access to these counters is enabled by code
2134 * executed at higher exception levels (firmware).
2135 */
2136 static struct cpumask amu_cpus __read_mostly;
2137
cpu_has_amu_feat(int cpu)2138 bool cpu_has_amu_feat(int cpu)
2139 {
2140 return cpumask_test_cpu(cpu, &amu_cpus);
2141 }
2142
get_cpu_with_amu_feat(void)2143 int get_cpu_with_amu_feat(void)
2144 {
2145 return cpumask_any(&amu_cpus);
2146 }
2147
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2148 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2149 {
2150 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2151 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2152
2153 /* 0 reference values signal broken/disabled counters */
2154 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2155 update_freq_counters_refs();
2156 }
2157 }
2158
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2159 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2160 int __unused)
2161 {
2162 /*
2163 * The AMU extension is a non-conflicting feature: the kernel can
2164 * safely run a mix of CPUs with and without support for the
2165 * activity monitors extension. Therefore, unconditionally enable
2166 * the capability to allow any late CPU to use the feature.
2167 *
2168 * With this feature unconditionally enabled, the cpu_enable
2169 * function will be called for all CPUs that match the criteria,
2170 * including secondary and hotplugged, marking this feature as
2171 * present on that respective CPU. The enable function will also
2172 * print a detection message.
2173 */
2174
2175 return true;
2176 }
2177 #else
get_cpu_with_amu_feat(void)2178 int get_cpu_with_amu_feat(void)
2179 {
2180 return nr_cpu_ids;
2181 }
2182 #endif
2183
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2184 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2185 {
2186 return is_kernel_in_hyp_mode();
2187 }
2188
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2189 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2190 {
2191 /*
2192 * Copy register values that aren't redirected by hardware.
2193 *
2194 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2195 * this value to tpidr_el2 before we patch the code. Once we've done
2196 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2197 * do anything here.
2198 */
2199 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2200 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2201 }
2202
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2203 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2204 int scope)
2205 {
2206 if (kvm_get_mode() != KVM_MODE_NV)
2207 return false;
2208
2209 if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2210 pr_warn("unavailable: %s\n", cap->desc);
2211 return false;
2212 }
2213
2214 return true;
2215 }
2216
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2217 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2218 int __unused)
2219 {
2220 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2221 }
2222
cpu_supports_bbml2_noabort(void)2223 bool cpu_supports_bbml2_noabort(void)
2224 {
2225 /*
2226 * We want to allow usage of BBML2 in as wide a range of kernel contexts
2227 * as possible. This list is therefore an allow-list of known-good
2228 * implementations that both support BBML2 and additionally, fulfill the
2229 * extra constraint of never generating TLB conflict aborts when using
2230 * the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2231 * kernel contexts difficult to prove safe against recursive aborts).
2232 *
2233 * Note that implementations can only be considered "known-good" if their
2234 * implementors attest to the fact that the implementation never raises
2235 * TLB conflict aborts for BBML2 mapping granularity changes.
2236 */
2237 static const struct midr_range supports_bbml2_noabort_list[] = {
2238 MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2239 MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2240 MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2241 MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2242 MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2243 MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2244 {}
2245 };
2246
2247 /* Does our cpu guarantee to never raise TLB conflict aborts? */
2248 if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2249 return false;
2250
2251 /*
2252 * We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2253 * about whether the MIDR check passes.
2254 */
2255
2256 return true;
2257 }
2258
has_bbml2_noabort(const struct arm64_cpu_capabilities * caps,int scope)2259 static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2260 {
2261 return cpu_supports_bbml2_noabort();
2262 }
2263
2264 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2265 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2266 {
2267 /*
2268 * We modify PSTATE. This won't work from irq context as the PSTATE
2269 * is discarded once we return from the exception.
2270 */
2271 WARN_ON_ONCE(in_interrupt());
2272
2273 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2274 set_pstate_pan(1);
2275 }
2276 #endif /* CONFIG_ARM64_PAN */
2277
2278 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2279 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2280 {
2281 /* Firmware may have left a deferred SError in this register. */
2282 write_sysreg_s(0, SYS_DISR_EL1);
2283 }
has_rasv1p1(const struct arm64_cpu_capabilities * __unused,int scope)2284 static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2285 {
2286 const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2287 {
2288 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2289 },
2290 {
2291 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2292 },
2293 {
2294 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2295 },
2296 };
2297
2298 return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2299 (has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2300 has_cpuid_feature(&rasv1p1_caps[2], scope)));
2301 }
2302 #endif /* CONFIG_ARM64_RAS_EXTN */
2303
2304 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2305 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2306 {
2307 int boot_val, sec_val;
2308
2309 /* We don't expect to be called with SCOPE_SYSTEM */
2310 WARN_ON(scope == SCOPE_SYSTEM);
2311 /*
2312 * The ptr-auth feature levels are not intercompatible with lower
2313 * levels. Hence we must match ptr-auth feature level of the secondary
2314 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2315 * from the sanitised register whereas direct register read is done for
2316 * the secondary CPUs.
2317 * The sanitised feature state is guaranteed to match that of the
2318 * boot CPU as a mismatched secondary CPU is parked before it gets
2319 * a chance to update the state, with the capability.
2320 */
2321 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2322 entry->field_pos, entry->sign);
2323 if (scope & SCOPE_BOOT_CPU)
2324 return boot_val >= entry->min_field_value;
2325 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2326 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2327 entry->field_pos, entry->sign);
2328 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2329 }
2330
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2331 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2332 int scope)
2333 {
2334 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2335 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2336 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2337
2338 return apa || apa3 || api;
2339 }
2340
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2341 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2342 int __unused)
2343 {
2344 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2345 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2346 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2347
2348 return gpa || gpa3 || gpi;
2349 }
2350 #endif /* CONFIG_ARM64_PTR_AUTH */
2351
2352 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2353 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2354 {
2355 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2356 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2357 }
2358 #endif /* CONFIG_ARM64_E0PD */
2359
2360 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2361 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2362 int scope)
2363 {
2364 /*
2365 * ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2366 * feature, so will be detected earlier.
2367 */
2368 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2369 if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2370 return false;
2371
2372 return enable_pseudo_nmi;
2373 }
2374
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2375 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2376 int scope)
2377 {
2378 /*
2379 * If we're not using priority masking then we won't be poking PMR_EL1,
2380 * and there's no need to relax synchronization of writes to it, and
2381 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2382 * that.
2383 *
2384 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2385 * feature, so will be detected earlier.
2386 */
2387 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2388 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2389 return false;
2390
2391 /*
2392 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2393 * hint for interrupt distribution, a DSB is not necessary when
2394 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2395 *
2396 * Linux itself doesn't use 1:N distribution, so has no need to
2397 * set PMHE. The only reason to have it set is if EL3 requires it
2398 * (and we can't change it).
2399 */
2400 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2401 }
2402 #endif
2403
2404 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2405 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2406 {
2407 /*
2408 * Use of X16/X17 for tail-calls and trampolines that jump to
2409 * function entry points using BR is a requirement for
2410 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2411 * So, be strict and forbid other BRs using other registers to
2412 * jump onto a PACIxSP instruction:
2413 */
2414 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2415 isb();
2416 }
2417 #endif /* CONFIG_ARM64_BTI */
2418
2419 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2420 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2421 {
2422 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2423
2424 mte_cpu_setup();
2425
2426 /*
2427 * Clear the tags in the zero page. This needs to be done via the
2428 * linear map which has the Tagged attribute.
2429 */
2430 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2431 mte_clear_page_tags(lm_alias(empty_zero_page));
2432 set_page_mte_tagged(ZERO_PAGE(0));
2433 }
2434
2435 kasan_init_hw_tags_cpu();
2436 }
2437 #endif /* CONFIG_ARM64_MTE */
2438
user_feature_fixup(void)2439 static void user_feature_fixup(void)
2440 {
2441 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2442 struct arm64_ftr_reg *regp;
2443
2444 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2445 if (regp)
2446 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2447 }
2448
2449 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2450 struct arm64_ftr_reg *regp;
2451
2452 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2453 if (regp)
2454 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2455 }
2456 }
2457
elf_hwcap_fixup(void)2458 static void elf_hwcap_fixup(void)
2459 {
2460 #ifdef CONFIG_COMPAT
2461 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2462 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2463 #endif /* CONFIG_COMPAT */
2464 }
2465
2466 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2467 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2468 {
2469 return kvm_get_mode() == KVM_MODE_PROTECTED;
2470 }
2471 #endif /* CONFIG_KVM */
2472
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2473 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2474 {
2475 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2476 }
2477
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2478 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2479 {
2480 set_pstate_dit(1);
2481 }
2482
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2483 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2484 {
2485 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2486 }
2487
2488 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2489 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2490 {
2491 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2492 sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2493 }
2494 #endif
2495
2496 #ifdef CONFIG_ARM64_GCS
cpu_enable_gcs(const struct arm64_cpu_capabilities * __unused)2497 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2498 {
2499 /* GCSPR_EL0 is always readable */
2500 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2501 }
2502 #endif
2503
2504 /* Internal helper functions to match cpu capability type */
2505 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2506 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2507 {
2508 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2509 }
2510
2511 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2512 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2513 {
2514 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2515 }
2516
2517 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2518 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2519 {
2520 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2521 }
2522
2523 static bool
test_has_mpam(const struct arm64_cpu_capabilities * entry,int scope)2524 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2525 {
2526 if (!has_cpuid_feature(entry, scope))
2527 return false;
2528
2529 /* Check firmware actually enabled MPAM on this cpu. */
2530 return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2531 }
2532
2533 static void
cpu_enable_mpam(const struct arm64_cpu_capabilities * entry)2534 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2535 {
2536 /*
2537 * Access by the kernel (at EL1) should use the reserved PARTID
2538 * which is configured unrestricted. This avoids priority-inversion
2539 * where latency sensitive tasks have to wait for a task that has
2540 * been throttled to release the lock.
2541 */
2542 write_sysreg_s(0, SYS_MPAM1_EL1);
2543 }
2544
2545 static bool
test_has_mpam_hcr(const struct arm64_cpu_capabilities * entry,int scope)2546 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2547 {
2548 u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2549
2550 return idr & MPAMIDR_EL1_HAS_HCR;
2551 }
2552
2553 static const struct arm64_cpu_capabilities arm64_features[] = {
2554 {
2555 .capability = ARM64_ALWAYS_BOOT,
2556 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2557 .matches = has_always,
2558 },
2559 {
2560 .capability = ARM64_ALWAYS_SYSTEM,
2561 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2562 .matches = has_always,
2563 },
2564 {
2565 .desc = "GICv3 CPU interface",
2566 .capability = ARM64_HAS_GICV3_CPUIF,
2567 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2568 .matches = has_useable_gicv3_cpuif,
2569 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2570 },
2571 {
2572 .desc = "Enhanced Counter Virtualization",
2573 .capability = ARM64_HAS_ECV,
2574 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2575 .matches = has_cpuid_feature,
2576 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2577 },
2578 {
2579 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2580 .capability = ARM64_HAS_ECV_CNTPOFF,
2581 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2582 .matches = has_cpuid_feature,
2583 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2584 },
2585 #ifdef CONFIG_ARM64_PAN
2586 {
2587 .desc = "Privileged Access Never",
2588 .capability = ARM64_HAS_PAN,
2589 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590 .matches = has_cpuid_feature,
2591 .cpu_enable = cpu_enable_pan,
2592 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2593 },
2594 #endif /* CONFIG_ARM64_PAN */
2595 #ifdef CONFIG_ARM64_EPAN
2596 {
2597 .desc = "Enhanced Privileged Access Never",
2598 .capability = ARM64_HAS_EPAN,
2599 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2600 .matches = has_cpuid_feature,
2601 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2602 },
2603 #endif /* CONFIG_ARM64_EPAN */
2604 #ifdef CONFIG_ARM64_LSE_ATOMICS
2605 {
2606 .desc = "LSE atomic instructions",
2607 .capability = ARM64_HAS_LSE_ATOMICS,
2608 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2609 .matches = has_cpuid_feature,
2610 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2611 },
2612 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2613 {
2614 .desc = "Virtualization Host Extensions",
2615 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2616 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2617 .matches = runs_at_el2,
2618 .cpu_enable = cpu_copy_el2regs,
2619 },
2620 {
2621 .desc = "Nested Virtualization Support",
2622 .capability = ARM64_HAS_NESTED_VIRT,
2623 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2624 .matches = has_nested_virt_support,
2625 .match_list = (const struct arm64_cpu_capabilities []){
2626 {
2627 .matches = has_cpuid_feature,
2628 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2629 },
2630 {
2631 .matches = has_cpuid_feature,
2632 ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2633 },
2634 { /* Sentinel */ }
2635 },
2636 },
2637 {
2638 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2639 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2640 .matches = has_32bit_el0,
2641 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2642 },
2643 #ifdef CONFIG_KVM
2644 {
2645 .desc = "32-bit EL1 Support",
2646 .capability = ARM64_HAS_32BIT_EL1,
2647 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2648 .matches = has_cpuid_feature,
2649 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2650 },
2651 {
2652 .desc = "Protected KVM",
2653 .capability = ARM64_KVM_PROTECTED_MODE,
2654 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2655 .matches = is_kvm_protected_mode,
2656 },
2657 {
2658 .desc = "HCRX_EL2 register",
2659 .capability = ARM64_HAS_HCX,
2660 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2661 .matches = has_cpuid_feature,
2662 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2663 },
2664 #endif
2665 {
2666 .desc = "Kernel page table isolation (KPTI)",
2667 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2668 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2669 .cpu_enable = cpu_enable_kpti,
2670 .matches = unmap_kernel_at_el0,
2671 /*
2672 * The ID feature fields below are used to indicate that
2673 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2674 * more details.
2675 */
2676 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2677 },
2678 {
2679 .capability = ARM64_HAS_FPSIMD,
2680 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2681 .matches = has_cpuid_feature,
2682 .cpu_enable = cpu_enable_fpsimd,
2683 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2684 },
2685 #ifdef CONFIG_ARM64_PMEM
2686 {
2687 .desc = "Data cache clean to Point of Persistence",
2688 .capability = ARM64_HAS_DCPOP,
2689 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2690 .matches = has_cpuid_feature,
2691 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2692 },
2693 {
2694 .desc = "Data cache clean to Point of Deep Persistence",
2695 .capability = ARM64_HAS_DCPODP,
2696 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2697 .matches = has_cpuid_feature,
2698 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2699 },
2700 #endif
2701 #ifdef CONFIG_ARM64_SVE
2702 {
2703 .desc = "Scalable Vector Extension",
2704 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2705 .capability = ARM64_SVE,
2706 .cpu_enable = cpu_enable_sve,
2707 .matches = has_cpuid_feature,
2708 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2709 },
2710 #endif /* CONFIG_ARM64_SVE */
2711 #ifdef CONFIG_ARM64_RAS_EXTN
2712 {
2713 .desc = "RAS Extension Support",
2714 .capability = ARM64_HAS_RAS_EXTN,
2715 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2716 .matches = has_cpuid_feature,
2717 .cpu_enable = cpu_clear_disr,
2718 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2719 },
2720 {
2721 .desc = "RASv1p1 Extension Support",
2722 .capability = ARM64_HAS_RASV1P1_EXTN,
2723 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2724 .matches = has_rasv1p1,
2725 },
2726 #endif /* CONFIG_ARM64_RAS_EXTN */
2727 #ifdef CONFIG_ARM64_AMU_EXTN
2728 {
2729 .desc = "Activity Monitors Unit (AMU)",
2730 .capability = ARM64_HAS_AMU_EXTN,
2731 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2732 .matches = has_amu,
2733 .cpu_enable = cpu_amu_enable,
2734 .cpus = &amu_cpus,
2735 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2736 },
2737 #endif /* CONFIG_ARM64_AMU_EXTN */
2738 {
2739 .desc = "Data cache clean to the PoU not required for I/D coherence",
2740 .capability = ARM64_HAS_CACHE_IDC,
2741 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2742 .matches = has_cache_idc,
2743 .cpu_enable = cpu_emulate_effective_ctr,
2744 },
2745 {
2746 .desc = "Instruction cache invalidation not required for I/D coherence",
2747 .capability = ARM64_HAS_CACHE_DIC,
2748 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2749 .matches = has_cache_dic,
2750 },
2751 {
2752 .desc = "Stage-2 Force Write-Back",
2753 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754 .capability = ARM64_HAS_STAGE2_FWB,
2755 .matches = has_cpuid_feature,
2756 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2757 },
2758 {
2759 .desc = "ARMv8.4 Translation Table Level",
2760 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2761 .capability = ARM64_HAS_ARMv8_4_TTL,
2762 .matches = has_cpuid_feature,
2763 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2764 },
2765 {
2766 .desc = "TLB range maintenance instructions",
2767 .capability = ARM64_HAS_TLB_RANGE,
2768 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2769 .matches = has_cpuid_feature,
2770 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2771 },
2772 #ifdef CONFIG_ARM64_HW_AFDBM
2773 {
2774 .desc = "Hardware dirty bit management",
2775 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2776 .capability = ARM64_HW_DBM,
2777 .matches = has_hw_dbm,
2778 .cpu_enable = cpu_enable_hw_dbm,
2779 .cpus = &dbm_cpus,
2780 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2781 },
2782 #endif
2783 #ifdef CONFIG_ARM64_HAFT
2784 {
2785 .desc = "Hardware managed Access Flag for Table Descriptors",
2786 /*
2787 * Contrary to the page/block access flag, the table access flag
2788 * cannot be emulated in software (no access fault will occur).
2789 * Therefore this should be used only if it's supported system
2790 * wide.
2791 */
2792 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2793 .capability = ARM64_HAFT,
2794 .matches = has_cpuid_feature,
2795 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2796 },
2797 #endif
2798 {
2799 .desc = "CRC32 instructions",
2800 .capability = ARM64_HAS_CRC32,
2801 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2802 .matches = has_cpuid_feature,
2803 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2804 },
2805 {
2806 .desc = "Speculative Store Bypassing Safe (SSBS)",
2807 .capability = ARM64_SSBS,
2808 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2809 .matches = has_cpuid_feature,
2810 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2811 },
2812 #ifdef CONFIG_ARM64_CNP
2813 {
2814 .desc = "Common not Private translations",
2815 .capability = ARM64_HAS_CNP,
2816 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2817 .matches = has_useable_cnp,
2818 .cpu_enable = cpu_enable_cnp,
2819 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2820 },
2821 #endif
2822 {
2823 .desc = "Speculation barrier (SB)",
2824 .capability = ARM64_HAS_SB,
2825 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2826 .matches = has_cpuid_feature,
2827 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2828 },
2829 #ifdef CONFIG_ARM64_PTR_AUTH
2830 {
2831 .desc = "Address authentication (architected QARMA5 algorithm)",
2832 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2833 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2834 .matches = has_address_auth_cpucap,
2835 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2836 },
2837 {
2838 .desc = "Address authentication (architected QARMA3 algorithm)",
2839 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2840 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2841 .matches = has_address_auth_cpucap,
2842 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2843 },
2844 {
2845 .desc = "Address authentication (IMP DEF algorithm)",
2846 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2847 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2848 .matches = has_address_auth_cpucap,
2849 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2850 },
2851 {
2852 .capability = ARM64_HAS_ADDRESS_AUTH,
2853 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2854 .matches = has_address_auth_metacap,
2855 },
2856 {
2857 .desc = "Generic authentication (architected QARMA5 algorithm)",
2858 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2859 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2860 .matches = has_cpuid_feature,
2861 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2862 },
2863 {
2864 .desc = "Generic authentication (architected QARMA3 algorithm)",
2865 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2866 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2867 .matches = has_cpuid_feature,
2868 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2869 },
2870 {
2871 .desc = "Generic authentication (IMP DEF algorithm)",
2872 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2873 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2874 .matches = has_cpuid_feature,
2875 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2876 },
2877 {
2878 .capability = ARM64_HAS_GENERIC_AUTH,
2879 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880 .matches = has_generic_auth,
2881 },
2882 #endif /* CONFIG_ARM64_PTR_AUTH */
2883 #ifdef CONFIG_ARM64_PSEUDO_NMI
2884 {
2885 /*
2886 * Depends on having GICv3
2887 */
2888 .desc = "IRQ priority masking",
2889 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2890 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2891 .matches = can_use_gic_priorities,
2892 },
2893 {
2894 /*
2895 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2896 */
2897 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2898 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2899 .matches = has_gic_prio_relaxed_sync,
2900 },
2901 #endif
2902 #ifdef CONFIG_ARM64_E0PD
2903 {
2904 .desc = "E0PD",
2905 .capability = ARM64_HAS_E0PD,
2906 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2907 .cpu_enable = cpu_enable_e0pd,
2908 .matches = has_cpuid_feature,
2909 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2910 },
2911 #endif
2912 {
2913 .desc = "Random Number Generator",
2914 .capability = ARM64_HAS_RNG,
2915 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2916 .matches = has_cpuid_feature,
2917 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2918 },
2919 #ifdef CONFIG_ARM64_BTI
2920 {
2921 .desc = "Branch Target Identification",
2922 .capability = ARM64_BTI,
2923 #ifdef CONFIG_ARM64_BTI_KERNEL
2924 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2925 #else
2926 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2927 #endif
2928 .matches = has_cpuid_feature,
2929 .cpu_enable = bti_enable,
2930 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2931 },
2932 #endif
2933 #ifdef CONFIG_ARM64_MTE
2934 {
2935 .desc = "Memory Tagging Extension",
2936 .capability = ARM64_MTE,
2937 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2938 .matches = has_cpuid_feature,
2939 .cpu_enable = cpu_enable_mte,
2940 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2941 },
2942 {
2943 .desc = "Asymmetric MTE Tag Check Fault",
2944 .capability = ARM64_MTE_ASYMM,
2945 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2946 .matches = has_cpuid_feature,
2947 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2948 },
2949 {
2950 .desc = "FAR on MTE Tag Check Fault",
2951 .capability = ARM64_MTE_FAR,
2952 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2953 .matches = has_cpuid_feature,
2954 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2955 },
2956 {
2957 .desc = "Store Only MTE Tag Check",
2958 .capability = ARM64_MTE_STORE_ONLY,
2959 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2960 .matches = has_cpuid_feature,
2961 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2962 },
2963 #endif /* CONFIG_ARM64_MTE */
2964 {
2965 .desc = "RCpc load-acquire (LDAPR)",
2966 .capability = ARM64_HAS_LDAPR,
2967 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2968 .matches = has_cpuid_feature,
2969 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2970 },
2971 {
2972 .desc = "Fine Grained Traps",
2973 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2974 .capability = ARM64_HAS_FGT,
2975 .matches = has_cpuid_feature,
2976 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2977 },
2978 {
2979 .desc = "Fine Grained Traps 2",
2980 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2981 .capability = ARM64_HAS_FGT2,
2982 .matches = has_cpuid_feature,
2983 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2984 },
2985 #ifdef CONFIG_ARM64_SME
2986 {
2987 .desc = "Scalable Matrix Extension",
2988 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2989 .capability = ARM64_SME,
2990 .matches = has_cpuid_feature,
2991 .cpu_enable = cpu_enable_sme,
2992 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2993 },
2994 /* FA64 should be sorted after the base SME capability */
2995 {
2996 .desc = "FA64",
2997 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2998 .capability = ARM64_SME_FA64,
2999 .matches = has_cpuid_feature,
3000 .cpu_enable = cpu_enable_fa64,
3001 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
3002 },
3003 {
3004 .desc = "SME2",
3005 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3006 .capability = ARM64_SME2,
3007 .matches = has_cpuid_feature,
3008 .cpu_enable = cpu_enable_sme2,
3009 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
3010 },
3011 #endif /* CONFIG_ARM64_SME */
3012 {
3013 .desc = "WFx with timeout",
3014 .capability = ARM64_HAS_WFXT,
3015 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3016 .matches = has_cpuid_feature,
3017 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
3018 },
3019 {
3020 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
3021 .capability = ARM64_HAS_TIDCP1,
3022 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3023 .matches = has_cpuid_feature,
3024 .cpu_enable = cpu_trap_el0_impdef,
3025 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
3026 },
3027 {
3028 .desc = "Data independent timing control (DIT)",
3029 .capability = ARM64_HAS_DIT,
3030 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3031 .matches = has_cpuid_feature,
3032 .cpu_enable = cpu_enable_dit,
3033 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3034 },
3035 {
3036 .desc = "Memory Copy and Memory Set instructions",
3037 .capability = ARM64_HAS_MOPS,
3038 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3039 .matches = has_cpuid_feature,
3040 .cpu_enable = cpu_enable_mops,
3041 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3042 },
3043 {
3044 .capability = ARM64_HAS_TCR2,
3045 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3046 .matches = has_cpuid_feature,
3047 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3048 },
3049 {
3050 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3051 .capability = ARM64_HAS_S1PIE,
3052 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3053 .matches = has_cpuid_feature,
3054 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3055 },
3056 {
3057 .desc = "VHE for hypervisor only",
3058 .capability = ARM64_KVM_HVHE,
3059 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3060 .matches = hvhe_possible,
3061 },
3062 {
3063 .desc = "Enhanced Virtualization Traps",
3064 .capability = ARM64_HAS_EVT,
3065 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3066 .matches = has_cpuid_feature,
3067 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3068 },
3069 {
3070 .desc = "BBM Level 2 without TLB conflict abort",
3071 .capability = ARM64_HAS_BBML2_NOABORT,
3072 .type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3073 .matches = has_bbml2_noabort,
3074 },
3075 {
3076 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
3077 .capability = ARM64_HAS_LPA2,
3078 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3079 .matches = has_lpa2,
3080 },
3081 {
3082 .desc = "FPMR",
3083 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3084 .capability = ARM64_HAS_FPMR,
3085 .matches = has_cpuid_feature,
3086 .cpu_enable = cpu_enable_fpmr,
3087 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3088 },
3089 #ifdef CONFIG_ARM64_VA_BITS_52
3090 {
3091 .capability = ARM64_HAS_VA52,
3092 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3093 .matches = has_cpuid_feature,
3094 #ifdef CONFIG_ARM64_64K_PAGES
3095 .desc = "52-bit Virtual Addressing (LVA)",
3096 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3097 #else
3098 .desc = "52-bit Virtual Addressing (LPA2)",
3099 #ifdef CONFIG_ARM64_4K_PAGES
3100 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3101 #else
3102 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3103 #endif
3104 #endif
3105 },
3106 #endif
3107 {
3108 .desc = "Memory Partitioning And Monitoring",
3109 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3110 .capability = ARM64_MPAM,
3111 .matches = test_has_mpam,
3112 .cpu_enable = cpu_enable_mpam,
3113 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3114 },
3115 {
3116 .desc = "Memory Partitioning And Monitoring Virtualisation",
3117 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3118 .capability = ARM64_MPAM_HCR,
3119 .matches = test_has_mpam_hcr,
3120 },
3121 {
3122 .desc = "NV1",
3123 .capability = ARM64_HAS_HCR_NV1,
3124 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3125 .matches = has_nv1,
3126 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3127 },
3128 #ifdef CONFIG_ARM64_POE
3129 {
3130 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
3131 .capability = ARM64_HAS_S1POE,
3132 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3133 .matches = has_cpuid_feature,
3134 .cpu_enable = cpu_enable_poe,
3135 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3136 },
3137 #endif
3138 #ifdef CONFIG_ARM64_GCS
3139 {
3140 .desc = "Guarded Control Stack (GCS)",
3141 .capability = ARM64_HAS_GCS,
3142 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3143 .cpu_enable = cpu_enable_gcs,
3144 .matches = has_cpuid_feature,
3145 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3146 },
3147 #endif
3148 #ifdef CONFIG_HW_PERF_EVENTS
3149 {
3150 .desc = "PMUv3",
3151 .capability = ARM64_HAS_PMUV3,
3152 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3153 .matches = has_pmuv3,
3154 },
3155 #endif
3156 {
3157 .desc = "SCTLR2",
3158 .capability = ARM64_HAS_SCTLR2,
3159 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3160 .matches = has_cpuid_feature,
3161 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3162 },
3163 {
3164 .desc = "GICv5 CPU interface",
3165 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3166 .capability = ARM64_HAS_GICV5_CPUIF,
3167 .matches = has_cpuid_feature,
3168 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3169 },
3170 {},
3171 };
3172
3173 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
3174 .matches = has_user_cpuid_feature, \
3175 ARM64_CPUID_FIELDS(reg, field, min_value)
3176
3177 #define __HWCAP_CAP(name, cap_type, cap) \
3178 .desc = name, \
3179 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3180 .hwcap_type = cap_type, \
3181 .hwcap = cap, \
3182
3183 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3184 { \
3185 __HWCAP_CAP(#cap, cap_type, cap) \
3186 HWCAP_CPUID_MATCH(reg, field, min_value) \
3187 }
3188
3189 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3190 { \
3191 __HWCAP_CAP(#cap, cap_type, cap) \
3192 .matches = cpucap_multi_entry_cap_matches, \
3193 .match_list = list, \
3194 }
3195
3196 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3197 { \
3198 __HWCAP_CAP(#cap, cap_type, cap) \
3199 .matches = match, \
3200 }
3201
3202 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3203 { \
3204 __HWCAP_CAP(#cap, cap_type, cap) \
3205 HWCAP_CPUID_MATCH(reg, field, min_value) \
3206 .matches = match, \
3207 }
3208
3209 #ifdef CONFIG_ARM64_PTR_AUTH
3210 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3211 {
3212 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3213 },
3214 {
3215 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3216 },
3217 {
3218 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3219 },
3220 {},
3221 };
3222
3223 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3224 {
3225 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3226 },
3227 {
3228 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3229 },
3230 {
3231 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3232 },
3233 {},
3234 };
3235 #endif
3236
3237 #ifdef CONFIG_ARM64_SVE
has_sve_feature(const struct arm64_cpu_capabilities * cap,int scope)3238 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3239 {
3240 return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3241 }
3242 #endif
3243
3244 #ifdef CONFIG_ARM64_SME
has_sme_feature(const struct arm64_cpu_capabilities * cap,int scope)3245 static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3246 {
3247 return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3248 }
3249 #endif
3250
3251 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3252 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3253 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3254 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3255 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3256 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3257 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3258 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3259 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3260 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3261 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3262 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3263 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3264 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3265 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3266 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3267 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3268 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3269 HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3270 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3271 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3272 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3273 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3274 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3275 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3276 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3277 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3278 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3279 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3280 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3281 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3282 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3283 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3284 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3285 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3286 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3287 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3288 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3289 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3290 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3291 HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3292 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3293 #ifdef CONFIG_ARM64_SVE
3294 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3295 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3296 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3297 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3298 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3299 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3300 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3301 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3302 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3303 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3304 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3305 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3306 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3307 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3308 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3309 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3310 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3311 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3312 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3313 #endif
3314 #ifdef CONFIG_ARM64_GCS
3315 HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3316 #endif
3317 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3318 #ifdef CONFIG_ARM64_BTI
3319 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3320 #endif
3321 #ifdef CONFIG_ARM64_PTR_AUTH
3322 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3323 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3324 #endif
3325 #ifdef CONFIG_ARM64_MTE
3326 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3327 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3328 HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3329 HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3330 #endif /* CONFIG_ARM64_MTE */
3331 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3332 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3333 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3334 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3335 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3336 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3337 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3338 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3339 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3340 #ifdef CONFIG_ARM64_SME
3341 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3342 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3343 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3344 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3345 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3346 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3347 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3348 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3349 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3350 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3351 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3352 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3353 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3354 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3355 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3356 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3357 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3358 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3359 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3360 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3361 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3362 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3363 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3364 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3365 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3366 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3367 #endif /* CONFIG_ARM64_SME */
3368 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3369 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3370 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3371 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3372 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3373 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3374 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3375 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3376 #ifdef CONFIG_ARM64_POE
3377 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3378 #endif
3379 {},
3380 };
3381
3382 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3383 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3384 {
3385 /*
3386 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3387 * in line with that of arm32 as in vfp_init(). We make sure that the
3388 * check is future proof, by making sure value is non-zero.
3389 */
3390 u32 mvfr1;
3391
3392 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3393 if (scope == SCOPE_SYSTEM)
3394 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3395 else
3396 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3397
3398 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3399 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3400 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3401 }
3402 #endif
3403
3404 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3405 #ifdef CONFIG_COMPAT
3406 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3407 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3408 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3409 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3410 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3411 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3412 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3413 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3414 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3415 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3416 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3417 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3418 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3419 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3420 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3421 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3422 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3423 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3424 #endif
3425 {},
3426 };
3427
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3428 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3429 {
3430 switch (cap->hwcap_type) {
3431 case CAP_HWCAP:
3432 cpu_set_feature(cap->hwcap);
3433 break;
3434 #ifdef CONFIG_COMPAT
3435 case CAP_COMPAT_HWCAP:
3436 compat_elf_hwcap |= (u32)cap->hwcap;
3437 break;
3438 case CAP_COMPAT_HWCAP2:
3439 compat_elf_hwcap2 |= (u32)cap->hwcap;
3440 break;
3441 #endif
3442 default:
3443 WARN_ON(1);
3444 break;
3445 }
3446 }
3447
3448 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3449 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3450 {
3451 bool rc;
3452
3453 switch (cap->hwcap_type) {
3454 case CAP_HWCAP:
3455 rc = cpu_have_feature(cap->hwcap);
3456 break;
3457 #ifdef CONFIG_COMPAT
3458 case CAP_COMPAT_HWCAP:
3459 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3460 break;
3461 case CAP_COMPAT_HWCAP2:
3462 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3463 break;
3464 #endif
3465 default:
3466 WARN_ON(1);
3467 rc = false;
3468 }
3469
3470 return rc;
3471 }
3472
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3473 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3474 {
3475 /* We support emulation of accesses to CPU ID feature registers */
3476 cpu_set_named_feature(CPUID);
3477 for (; hwcaps->matches; hwcaps++)
3478 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3479 cap_set_elf_hwcap(hwcaps);
3480 }
3481
update_cpu_capabilities(u16 scope_mask)3482 static void update_cpu_capabilities(u16 scope_mask)
3483 {
3484 int i;
3485 const struct arm64_cpu_capabilities *caps;
3486
3487 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3488 for (i = 0; i < ARM64_NCAPS; i++) {
3489 bool match_all = false;
3490 bool caps_set = false;
3491 bool boot_cpu = false;
3492
3493 caps = cpucap_ptrs[i];
3494 if (!caps || !(caps->type & scope_mask))
3495 continue;
3496
3497 match_all = cpucap_match_all_early_cpus(caps);
3498 caps_set = cpus_have_cap(caps->capability);
3499 boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3500
3501 /*
3502 * Unless it's a match-all CPUs feature, avoid probing if
3503 * already detected.
3504 */
3505 if (!match_all && caps_set)
3506 continue;
3507
3508 /*
3509 * A match-all CPUs capability is only set when probing the
3510 * boot CPU. It may be cleared subsequently if not detected on
3511 * secondary ones.
3512 */
3513 if (match_all && !caps_set && !boot_cpu)
3514 continue;
3515
3516 if (!caps->matches(caps, cpucap_default_scope(caps))) {
3517 if (match_all)
3518 __clear_bit(caps->capability, system_cpucaps);
3519 continue;
3520 }
3521
3522 /*
3523 * Match-all CPUs capabilities are logged later when the
3524 * system capabilities are finalised.
3525 */
3526 if (!match_all && caps->desc && !caps->cpus)
3527 pr_info("detected: %s\n", caps->desc);
3528
3529 __set_bit(caps->capability, system_cpucaps);
3530
3531 if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3532 set_bit(caps->capability, boot_cpucaps);
3533 }
3534 }
3535
3536 /*
3537 * Enable all the available capabilities on this CPU. The capabilities
3538 * with BOOT_CPU scope are handled separately and hence skipped here.
3539 */
cpu_enable_non_boot_scope_capabilities(void * __unused)3540 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3541 {
3542 int i;
3543 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3544
3545 for_each_available_cap(i) {
3546 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3547
3548 if (WARN_ON(!cap))
3549 continue;
3550
3551 if (!(cap->type & non_boot_scope))
3552 continue;
3553
3554 if (cap->cpu_enable)
3555 cap->cpu_enable(cap);
3556 }
3557 return 0;
3558 }
3559
3560 /*
3561 * Run through the enabled capabilities and enable() it on all active
3562 * CPUs
3563 */
enable_cpu_capabilities(u16 scope_mask)3564 static void __init enable_cpu_capabilities(u16 scope_mask)
3565 {
3566 int i;
3567 const struct arm64_cpu_capabilities *caps;
3568 bool boot_scope;
3569
3570 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3571 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3572
3573 for (i = 0; i < ARM64_NCAPS; i++) {
3574 caps = cpucap_ptrs[i];
3575 if (!caps || !(caps->type & scope_mask) ||
3576 !cpus_have_cap(caps->capability))
3577 continue;
3578
3579 if (boot_scope && caps->cpu_enable)
3580 /*
3581 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3582 * before any secondary CPU boots. Thus, each secondary
3583 * will enable the capability as appropriate via
3584 * check_local_cpu_capabilities(). The only exception is
3585 * the boot CPU, for which the capability must be
3586 * enabled here. This approach avoids costly
3587 * stop_machine() calls for this case.
3588 */
3589 caps->cpu_enable(caps);
3590 }
3591
3592 /*
3593 * For all non-boot scope capabilities, use stop_machine()
3594 * as it schedules the work allowing us to modify PSTATE,
3595 * instead of on_each_cpu() which uses an IPI, giving us a
3596 * PSTATE that disappears when we return.
3597 */
3598 if (!boot_scope)
3599 stop_machine(cpu_enable_non_boot_scope_capabilities,
3600 NULL, cpu_online_mask);
3601 }
3602
3603 /*
3604 * Run through the list of capabilities to check for conflicts.
3605 * If the system has already detected a capability, take necessary
3606 * action on this CPU.
3607 */
verify_local_cpu_caps(u16 scope_mask)3608 static void verify_local_cpu_caps(u16 scope_mask)
3609 {
3610 int i;
3611 bool cpu_has_cap, system_has_cap;
3612 const struct arm64_cpu_capabilities *caps;
3613
3614 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3615
3616 for (i = 0; i < ARM64_NCAPS; i++) {
3617 caps = cpucap_ptrs[i];
3618 if (!caps || !(caps->type & scope_mask))
3619 continue;
3620
3621 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3622 system_has_cap = cpus_have_cap(caps->capability);
3623
3624 if (system_has_cap) {
3625 /*
3626 * Check if the new CPU misses an advertised feature,
3627 * which is not safe to miss.
3628 */
3629 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3630 break;
3631 /*
3632 * We have to issue cpu_enable() irrespective of
3633 * whether the CPU has it or not, as it is enabeld
3634 * system wide. It is upto the call back to take
3635 * appropriate action on this CPU.
3636 */
3637 if (caps->cpu_enable)
3638 caps->cpu_enable(caps);
3639 } else {
3640 /*
3641 * Check if the CPU has this capability if it isn't
3642 * safe to have when the system doesn't.
3643 */
3644 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3645 break;
3646 }
3647 }
3648
3649 if (i < ARM64_NCAPS) {
3650 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3651 smp_processor_id(), caps->capability,
3652 caps->desc, system_has_cap, cpu_has_cap);
3653
3654 if (cpucap_panic_on_conflict(caps))
3655 cpu_panic_kernel();
3656 else
3657 cpu_die_early();
3658 }
3659 }
3660
3661 /*
3662 * Check for CPU features that are used in early boot
3663 * based on the Boot CPU value.
3664 */
check_early_cpu_features(void)3665 static void check_early_cpu_features(void)
3666 {
3667 verify_cpu_asid_bits();
3668
3669 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3670 }
3671
3672 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3673 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3674 {
3675
3676 for (; caps->matches; caps++)
3677 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3678 pr_crit("CPU%d: missing HWCAP: %s\n",
3679 smp_processor_id(), caps->desc);
3680 cpu_die_early();
3681 }
3682 }
3683
verify_local_elf_hwcaps(void)3684 static void verify_local_elf_hwcaps(void)
3685 {
3686 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3687
3688 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3689 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3690 }
3691
verify_sve_features(void)3692 static void verify_sve_features(void)
3693 {
3694 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3695
3696 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3697 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3698 smp_processor_id());
3699 cpu_die_early();
3700 }
3701
3702 cpacr_restore(cpacr);
3703 }
3704
verify_sme_features(void)3705 static void verify_sme_features(void)
3706 {
3707 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3708
3709 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3710 pr_crit("CPU%d: SME: vector length support mismatch\n",
3711 smp_processor_id());
3712 cpu_die_early();
3713 }
3714
3715 cpacr_restore(cpacr);
3716 }
3717
verify_hyp_capabilities(void)3718 static void verify_hyp_capabilities(void)
3719 {
3720 u64 safe_mmfr1, mmfr0, mmfr1;
3721 int parange, ipa_max;
3722 unsigned int safe_vmid_bits, vmid_bits;
3723
3724 if (!IS_ENABLED(CONFIG_KVM))
3725 return;
3726
3727 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3728 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3729 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3730
3731 /* Verify VMID bits */
3732 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3733 vmid_bits = get_vmid_bits(mmfr1);
3734 if (vmid_bits < safe_vmid_bits) {
3735 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3736 cpu_die_early();
3737 }
3738
3739 /* Verify IPA range */
3740 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3741 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3742 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3743 if (ipa_max < get_kvm_ipa_limit()) {
3744 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3745 cpu_die_early();
3746 }
3747 }
3748
verify_mpam_capabilities(void)3749 static void verify_mpam_capabilities(void)
3750 {
3751 u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3752 u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3753 u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3754
3755 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3756 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3757 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3758 cpu_die_early();
3759 }
3760
3761 cpu_idr = read_cpuid(MPAMIDR_EL1);
3762 sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3763 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3764 FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3765 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3766 cpu_die_early();
3767 }
3768
3769 cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3770 cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3771 sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3772 sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3773 if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3774 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3775 cpu_die_early();
3776 }
3777 }
3778
3779 /*
3780 * Run through the enabled system capabilities and enable() it on this CPU.
3781 * The capabilities were decided based on the available CPUs at the boot time.
3782 * Any new CPU should match the system wide status of the capability. If the
3783 * new CPU doesn't have a capability which the system now has enabled, we
3784 * cannot do anything to fix it up and could cause unexpected failures. So
3785 * we park the CPU.
3786 */
verify_local_cpu_capabilities(void)3787 static void verify_local_cpu_capabilities(void)
3788 {
3789 /*
3790 * The capabilities with SCOPE_BOOT_CPU are checked from
3791 * check_early_cpu_features(), as they need to be verified
3792 * on all secondary CPUs.
3793 */
3794 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3795 verify_local_elf_hwcaps();
3796
3797 if (system_supports_sve())
3798 verify_sve_features();
3799
3800 if (system_supports_sme())
3801 verify_sme_features();
3802
3803 if (is_hyp_mode_available())
3804 verify_hyp_capabilities();
3805
3806 if (system_supports_mpam())
3807 verify_mpam_capabilities();
3808 }
3809
check_local_cpu_capabilities(void)3810 void check_local_cpu_capabilities(void)
3811 {
3812 /*
3813 * All secondary CPUs should conform to the early CPU features
3814 * in use by the kernel based on boot CPU.
3815 */
3816 check_early_cpu_features();
3817
3818 /*
3819 * If we haven't finalised the system capabilities, this CPU gets
3820 * a chance to update the errata work arounds and local features.
3821 * Otherwise, this CPU should verify that it has all the system
3822 * advertised capabilities.
3823 */
3824 if (!system_capabilities_finalized())
3825 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3826 else
3827 verify_local_cpu_capabilities();
3828 }
3829
this_cpu_has_cap(unsigned int n)3830 bool this_cpu_has_cap(unsigned int n)
3831 {
3832 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3833 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3834
3835 if (cap)
3836 return cap->matches(cap, SCOPE_LOCAL_CPU);
3837 }
3838
3839 return false;
3840 }
3841 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3842
3843 /*
3844 * This helper function is used in a narrow window when,
3845 * - The system wide safe registers are set with all the SMP CPUs and,
3846 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3847 */
__system_matches_cap(unsigned int n)3848 static bool __maybe_unused __system_matches_cap(unsigned int n)
3849 {
3850 if (n < ARM64_NCAPS) {
3851 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3852
3853 if (cap)
3854 return cap->matches(cap, SCOPE_SYSTEM);
3855 }
3856 return false;
3857 }
3858
cpu_set_feature(unsigned int num)3859 void cpu_set_feature(unsigned int num)
3860 {
3861 set_bit(num, elf_hwcap);
3862 }
3863
cpu_have_feature(unsigned int num)3864 bool cpu_have_feature(unsigned int num)
3865 {
3866 return test_bit(num, elf_hwcap);
3867 }
3868 EXPORT_SYMBOL_GPL(cpu_have_feature);
3869
cpu_get_elf_hwcap(void)3870 unsigned long cpu_get_elf_hwcap(void)
3871 {
3872 /*
3873 * We currently only populate the first 32 bits of AT_HWCAP. Please
3874 * note that for userspace compatibility we guarantee that bits 62
3875 * and 63 will always be returned as 0.
3876 */
3877 return elf_hwcap[0];
3878 }
3879
cpu_get_elf_hwcap2(void)3880 unsigned long cpu_get_elf_hwcap2(void)
3881 {
3882 return elf_hwcap[1];
3883 }
3884
cpu_get_elf_hwcap3(void)3885 unsigned long cpu_get_elf_hwcap3(void)
3886 {
3887 return elf_hwcap[2];
3888 }
3889
setup_boot_cpu_capabilities(void)3890 static void __init setup_boot_cpu_capabilities(void)
3891 {
3892 kvm_arm_target_impl_cpu_init();
3893 /*
3894 * The boot CPU's feature register values have been recorded. Detect
3895 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3896 * patch alternatives for the available boot cpucaps.
3897 */
3898 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3899 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3900 apply_boot_alternatives();
3901 }
3902
setup_boot_cpu_features(void)3903 void __init setup_boot_cpu_features(void)
3904 {
3905 /*
3906 * Initialize the indirect array of CPU capabilities pointers before we
3907 * handle the boot CPU.
3908 */
3909 init_cpucap_indirect_list();
3910
3911 /*
3912 * Detect broken pseudo-NMI. Must be called _before_ the call to
3913 * setup_boot_cpu_capabilities() since it interacts with
3914 * can_use_gic_priorities().
3915 */
3916 detect_system_supports_pseudo_nmi();
3917
3918 setup_boot_cpu_capabilities();
3919 }
3920
setup_system_capabilities(void)3921 static void __init setup_system_capabilities(void)
3922 {
3923 /*
3924 * The system-wide safe feature register values have been finalized.
3925 * Detect, enable, and patch alternatives for the available system
3926 * cpucaps.
3927 */
3928 update_cpu_capabilities(SCOPE_SYSTEM);
3929 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3930 apply_alternatives_all();
3931
3932 for (int i = 0; i < ARM64_NCAPS; i++) {
3933 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3934
3935 if (!caps || !caps->desc)
3936 continue;
3937
3938 /*
3939 * Log any cpucaps with a cpumask as these aren't logged by
3940 * update_cpu_capabilities().
3941 */
3942 if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3943 pr_info("detected: %s on CPU%*pbl\n",
3944 caps->desc, cpumask_pr_args(caps->cpus));
3945
3946 /* Log match-all CPUs capabilities */
3947 if (cpucap_match_all_early_cpus(caps) &&
3948 cpus_have_cap(caps->capability))
3949 pr_info("detected: %s\n", caps->desc);
3950 }
3951
3952 /*
3953 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3954 */
3955 if (system_uses_ttbr0_pan())
3956 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3957 }
3958
setup_system_features(void)3959 void __init setup_system_features(void)
3960 {
3961 setup_system_capabilities();
3962
3963 linear_map_maybe_split_to_ptes();
3964 kpti_install_ng_mappings();
3965
3966 sve_setup();
3967 sme_setup();
3968
3969 /*
3970 * Check for sane CTR_EL0.CWG value.
3971 */
3972 if (!cache_type_cwg())
3973 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3974 ARCH_DMA_MINALIGN);
3975 }
3976
setup_user_features(void)3977 void __init setup_user_features(void)
3978 {
3979 user_feature_fixup();
3980
3981 setup_elf_hwcaps(arm64_elf_hwcaps);
3982
3983 if (system_supports_32bit_el0()) {
3984 setup_elf_hwcaps(compat_elf_hwcaps);
3985 elf_hwcap_fixup();
3986 }
3987
3988 minsigstksz_setup();
3989 }
3990
enable_mismatched_32bit_el0(unsigned int cpu)3991 static int enable_mismatched_32bit_el0(unsigned int cpu)
3992 {
3993 /*
3994 * The first 32-bit-capable CPU we detected and so can no longer
3995 * be offlined by userspace. -1 indicates we haven't yet onlined
3996 * a 32-bit-capable CPU.
3997 */
3998 static int lucky_winner = -1;
3999
4000 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
4001 bool cpu_32bit = false;
4002
4003 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
4004 if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
4005 pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
4006 else
4007 cpu_32bit = true;
4008 }
4009
4010 if (cpu_32bit) {
4011 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
4012 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4013 }
4014
4015 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4016 return 0;
4017
4018 if (lucky_winner >= 0)
4019 return 0;
4020
4021 /*
4022 * We've detected a mismatch. We need to keep one of our CPUs with
4023 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4024 * every CPU in the system for a 32-bit task.
4025 */
4026 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4027 cpu_active_mask);
4028 get_cpu_device(lucky_winner)->offline_disabled = true;
4029 setup_elf_hwcaps(compat_elf_hwcaps);
4030 elf_hwcap_fixup();
4031 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4032 cpu, lucky_winner);
4033 return 0;
4034 }
4035
init_32bit_el0_mask(void)4036 static int __init init_32bit_el0_mask(void)
4037 {
4038 if (!allow_mismatched_32bit_el0)
4039 return 0;
4040
4041 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4042 return -ENOMEM;
4043
4044 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4045 "arm64/mismatched_32bit_el0:online",
4046 enable_mismatched_32bit_el0, NULL);
4047 }
4048 subsys_initcall_sync(init_32bit_el0_mask);
4049
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)4050 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4051 {
4052 cpu_enable_swapper_cnp();
4053 }
4054
4055 /*
4056 * We emulate only the following system register space.
4057 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4058 * See Table C5-6 System instruction encodings for System register accesses,
4059 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
4060 */
is_emulated(u32 id)4061 static inline bool __attribute_const__ is_emulated(u32 id)
4062 {
4063 return (sys_reg_Op0(id) == 0x3 &&
4064 sys_reg_CRn(id) == 0x0 &&
4065 sys_reg_Op1(id) == 0x0 &&
4066 (sys_reg_CRm(id) == 0 ||
4067 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4068 }
4069
4070 /*
4071 * With CRm == 0, reg should be one of :
4072 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4073 */
emulate_id_reg(u32 id,u64 * valp)4074 static inline int emulate_id_reg(u32 id, u64 *valp)
4075 {
4076 switch (id) {
4077 case SYS_MIDR_EL1:
4078 *valp = read_cpuid_id();
4079 break;
4080 case SYS_MPIDR_EL1:
4081 *valp = SYS_MPIDR_SAFE_VAL;
4082 break;
4083 case SYS_REVIDR_EL1:
4084 /* IMPLEMENTATION DEFINED values are emulated with 0 */
4085 *valp = 0;
4086 break;
4087 default:
4088 return -EINVAL;
4089 }
4090
4091 return 0;
4092 }
4093
emulate_sys_reg(u32 id,u64 * valp)4094 static int emulate_sys_reg(u32 id, u64 *valp)
4095 {
4096 struct arm64_ftr_reg *regp;
4097
4098 if (!is_emulated(id))
4099 return -EINVAL;
4100
4101 if (sys_reg_CRm(id) == 0)
4102 return emulate_id_reg(id, valp);
4103
4104 regp = get_arm64_ftr_reg_nowarn(id);
4105 if (regp)
4106 *valp = arm64_ftr_reg_user_value(regp);
4107 else
4108 /*
4109 * The untracked registers are either IMPLEMENTATION DEFINED
4110 * (e.g, ID_AFR0_EL1) or reserved RAZ.
4111 */
4112 *valp = 0;
4113 return 0;
4114 }
4115
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)4116 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4117 {
4118 int rc;
4119 u64 val;
4120
4121 rc = emulate_sys_reg(sys_reg, &val);
4122 if (!rc) {
4123 pt_regs_write_reg(regs, rt, val);
4124 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4125 }
4126 return rc;
4127 }
4128
try_emulate_mrs(struct pt_regs * regs,u32 insn)4129 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4130 {
4131 u32 sys_reg, rt;
4132
4133 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4134 return false;
4135
4136 /*
4137 * sys_reg values are defined as used in mrs/msr instruction.
4138 * shift the imm value to get the encoding.
4139 */
4140 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4141 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4142 return do_emulate_mrs(regs, sys_reg, rt) == 0;
4143 }
4144
arm64_get_meltdown_state(void)4145 enum mitigation_state arm64_get_meltdown_state(void)
4146 {
4147 if (__meltdown_safe)
4148 return SPECTRE_UNAFFECTED;
4149
4150 if (arm64_kernel_unmapped_at_el0())
4151 return SPECTRE_MITIGATED;
4152
4153 return SPECTRE_VULNERABLE;
4154 }
4155
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)4156 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4157 char *buf)
4158 {
4159 switch (arm64_get_meltdown_state()) {
4160 case SPECTRE_UNAFFECTED:
4161 return sprintf(buf, "Not affected\n");
4162
4163 case SPECTRE_MITIGATED:
4164 return sprintf(buf, "Mitigation: PTI\n");
4165
4166 default:
4167 return sprintf(buf, "Vulnerable\n");
4168 }
4169 }
4170