xref: /linux/arch/arm64/kernel/cpufeature.c (revision 45bf4bc87c46856c5cf4ac39a0c25c83ccbf3209)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79 
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu.h>
88 #include <asm/mmu_context.h>
89 #include <asm/mte.h>
90 #include <asm/hypervisor.h>
91 #include <asm/processor.h>
92 #include <asm/smp.h>
93 #include <asm/sysreg.h>
94 #include <asm/traps.h>
95 #include <asm/vectors.h>
96 #include <asm/virt.h>
97 
98 #include <asm/spectre.h>
99 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
100 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
101 
102 #ifdef CONFIG_COMPAT
103 #define COMPAT_ELF_HWCAP_DEFAULT	\
104 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
105 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
106 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
107 				 COMPAT_HWCAP_LPAE)
108 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
109 unsigned int compat_elf_hwcap2 __read_mostly;
110 unsigned int compat_elf_hwcap3 __read_mostly;
111 #endif
112 
113 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
114 EXPORT_SYMBOL(system_cpucaps);
115 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
116 
117 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
118 
119 /*
120  * arm64_use_ng_mappings must be placed in the .data section, otherwise it
121  * ends up in the .bss section where it is initialized in early_map_kernel()
122  * after the MMU (with the idmap) was enabled. create_init_idmap() - which
123  * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
124  * may end up generating an incorrect idmap page table attributes.
125  */
126 bool arm64_use_ng_mappings __read_mostly = false;
127 EXPORT_SYMBOL(arm64_use_ng_mappings);
128 
129 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
130 
131 /*
132  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
133  * support it?
134  */
135 static bool __read_mostly allow_mismatched_32bit_el0;
136 
137 /*
138  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
139  * seen at least one CPU capable of 32-bit EL0.
140  */
141 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
142 
143 /*
144  * Mask of CPUs supporting 32-bit EL0.
145  * Only valid if arm64_mismatched_32bit_el0 is enabled.
146  */
147 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
148 
149 void dump_cpu_features(void)
150 {
151 	/* file-wide pr_fmt adds "CPU features: " prefix */
152 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
153 }
154 
155 #define __ARM64_MAX_POSITIVE(reg, field)				\
156 		((reg##_##field##_SIGNED ?				\
157 		  BIT(reg##_##field##_WIDTH - 1) :			\
158 		  BIT(reg##_##field##_WIDTH)) - 1)
159 
160 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
161 
162 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
163 		.sys_reg = SYS_##reg,					\
164 		.field_pos = reg##_##field##_SHIFT,			\
165 		.field_width = reg##_##field##_WIDTH,			\
166 		.sign = reg##_##field##_SIGNED,				\
167 		.min_field_value = min_value,				\
168 		.max_field_value = max_value,
169 
170 /*
171  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
172  * an implicit maximum that depends on the sign-ess of the field.
173  *
174  * An unsigned field will be capped at all ones, while a signed field
175  * will be limited to the positive half only.
176  */
177 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
178 	__ARM64_CPUID_FIELDS(reg, field,				\
179 			     SYS_FIELD_VALUE(reg, field, min_value),	\
180 			     __ARM64_MAX_POSITIVE(reg, field))
181 
182 /*
183  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
184  * implicit minimal value to max_value. This should be used when
185  * matching a non-implemented property.
186  */
187 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
188 	__ARM64_CPUID_FIELDS(reg, field,				\
189 			     __ARM64_MIN_NEGATIVE(reg, field),		\
190 			     SYS_FIELD_VALUE(reg, field, max_value))
191 
192 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 	{						\
194 		.sign = SIGNED,				\
195 		.visible = VISIBLE,			\
196 		.strict = STRICT,			\
197 		.type = TYPE,				\
198 		.shift = SHIFT,				\
199 		.width = WIDTH,				\
200 		.safe_val = SAFE_VAL,			\
201 	}
202 
203 /* Define a feature with unsigned values */
204 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
205 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
206 
207 /* Define a feature with a signed value */
208 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
209 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
210 
211 #define ARM64_FTR_END					\
212 	{						\
213 		.width = 0,				\
214 	}
215 
216 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
217 
218 static bool __system_matches_cap(unsigned int n);
219 
220 /*
221  * NOTE: Any changes to the visibility of features should be kept in
222  * sync with the documentation of the CPU feature register ABI.
223  */
224 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
239 	ARM64_FTR_END,
240 };
241 
242 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LS64_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
253 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
254 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
261 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
262 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
263 	ARM64_FTR_END,
264 };
265 
266 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
267 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
276 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
279 	ARM64_FTR_END,
280 };
281 
282 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
283 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
284 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
286 	ARM64_FTR_END,
287 };
288 
289 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
292 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
297 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
300 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
301 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
304 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
305 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
306 	ARM64_FTR_END,
307 };
308 
309 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
310 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
311 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
312 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
313 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
315 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
318 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
319 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
320 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
321 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
322 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
323 	ARM64_FTR_END,
324 };
325 
326 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
327 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
329 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
330 	ARM64_FTR_END,
331 };
332 
333 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
334 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
336 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
337 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
338 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
339 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
341 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
343 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
345 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
347 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
349 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
351 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
353 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
355 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
356 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
357 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
358 	ARM64_FTR_END,
359 };
360 
361 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
372 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
376 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
377 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
378 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
379 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
380 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
381 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
382 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
383 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
384 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
385 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
386 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
387 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
388 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
389 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
390 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
391 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
392 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
393 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
394 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
395 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
396 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
397 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
398 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
399 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
400 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
401 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
402 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
403 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
404 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
405 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
406 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
407 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
408 	ARM64_FTR_END,
409 };
410 
411 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
412 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
413 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
414 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
415 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
416 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
417 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
418 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
419 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
420 	ARM64_FTR_END,
421 };
422 
423 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
424 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
425 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
426 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
427 	/*
428 	 * Page size not being supported at Stage-2 is not fatal. You
429 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
430 	 * your favourite nesting hypervisor.
431 	 *
432 	 * There is a small corner case where the hypervisor explicitly
433 	 * advertises a given granule size at Stage-2 (value 2) on some
434 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
435 	 * vCPUs. Although this is not forbidden by the architecture, it
436 	 * indicates that the hypervisor is being silly (or buggy).
437 	 *
438 	 * We make no effort to cope with this and pretend that if these
439 	 * fields are inconsistent across vCPUs, then it isn't worth
440 	 * trying to bring KVM up.
441 	 */
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
445 	/*
446 	 * We already refuse to boot CPUs that don't support our configured
447 	 * page size, so we can only detect mismatches for a page size other
448 	 * than the one we're currently using. Unfortunately, SoCs like this
449 	 * exist in the wild so, even though we don't like it, we'll have to go
450 	 * along with it and treat them as non-strict.
451 	 */
452 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
453 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
455 
456 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
457 	/* Linux shouldn't care about secure memory */
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
461 	/*
462 	 * Differing PARange is fine as long as all peripherals and memory are mapped
463 	 * within the minimum PARange of all CPUs
464 	 */
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
466 	ARM64_FTR_END,
467 };
468 
469 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
477 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
478 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
479 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
480 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
482 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
483 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
484 	ARM64_FTR_END,
485 };
486 
487 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
497 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
498 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
499 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
500 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
501 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
502 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
503 	ARM64_FTR_END,
504 };
505 
506 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
507 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
508 		       FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
512 	ARM64_FTR_END,
513 };
514 
515 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
516 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
518 	ARM64_FTR_END,
519 };
520 
521 static const struct arm64_ftr_bits ftr_ctr[] = {
522 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
523 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
524 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
525 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
526 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
528 	/*
529 	 * Linux can handle differing I-cache policies. Userspace JITs will
530 	 * make use of *minLine.
531 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
532 	 */
533 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
534 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
535 	ARM64_FTR_END,
536 };
537 
538 static struct arm64_ftr_override __ro_after_init no_override = { };
539 
540 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
541 	.name		= "SYS_CTR_EL0",
542 	.ftr_bits	= ftr_ctr,
543 	.override	= &no_override,
544 };
545 
546 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
547 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
552 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
555 	ARM64_FTR_END,
556 };
557 
558 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
559 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
560 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
561 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
562 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
563 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
564 	/*
565 	 * We can instantiate multiple PMU instances with different levels
566 	 * of support.
567 	 */
568 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
569 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
570 	ARM64_FTR_END,
571 };
572 
573 static const struct arm64_ftr_bits ftr_mvfr0[] = {
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
579 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
580 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
581 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
582 	ARM64_FTR_END,
583 };
584 
585 static const struct arm64_ftr_bits ftr_mvfr1[] = {
586 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
589 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
590 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
592 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
593 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
594 	ARM64_FTR_END,
595 };
596 
597 static const struct arm64_ftr_bits ftr_mvfr2[] = {
598 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
599 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
600 	ARM64_FTR_END,
601 };
602 
603 static const struct arm64_ftr_bits ftr_dczid[] = {
604 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
605 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
606 	ARM64_FTR_END,
607 };
608 
609 static const struct arm64_ftr_bits ftr_gmid[] = {
610 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
611 	ARM64_FTR_END,
612 };
613 
614 static const struct arm64_ftr_bits ftr_id_isar0[] = {
615 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
616 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
617 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
620 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
621 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
622 	ARM64_FTR_END,
623 };
624 
625 static const struct arm64_ftr_bits ftr_id_isar5[] = {
626 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
627 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
628 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
629 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
630 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
631 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
632 	ARM64_FTR_END,
633 };
634 
635 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
636 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
637 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
638 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
639 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
640 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
641 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
642 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
643 
644 	/*
645 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
646 	 * external abort on speculative read. It is safe to assume that an
647 	 * SError might be generated than it will not be. Hence it has been
648 	 * classified as FTR_HIGHER_SAFE.
649 	 */
650 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
651 	ARM64_FTR_END,
652 };
653 
654 static const struct arm64_ftr_bits ftr_id_isar4[] = {
655 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
656 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
658 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
659 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
660 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
661 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
662 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
663 	ARM64_FTR_END,
664 };
665 
666 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
667 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
668 	ARM64_FTR_END,
669 };
670 
671 static const struct arm64_ftr_bits ftr_id_isar6[] = {
672 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
673 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
674 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
675 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
676 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
677 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
678 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
679 	ARM64_FTR_END,
680 };
681 
682 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
683 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
684 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
685 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
686 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
687 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
688 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
689 	ARM64_FTR_END,
690 };
691 
692 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
693 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
696 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
697 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
699 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
700 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
701 	ARM64_FTR_END,
702 };
703 
704 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
705 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
706 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
707 	ARM64_FTR_END,
708 };
709 
710 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
711 	/* [31:28] TraceFilt */
712 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
713 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
714 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
715 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
716 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
717 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
718 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
719 	ARM64_FTR_END,
720 };
721 
722 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
723 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
724 	ARM64_FTR_END,
725 };
726 
727 static const struct arm64_ftr_bits ftr_mpamidr[] = {
728 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
729 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
730 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
731 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
732 	ARM64_FTR_END,
733 };
734 
735 /*
736  * Common ftr bits for a 32bit register with all hidden, strict
737  * attributes, with 4bit feature fields and a default safe value of
738  * 0. Covers the following 32bit registers:
739  * id_isar[1-3], id_mmfr[1-3]
740  */
741 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
742 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
743 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
744 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
745 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
746 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
747 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
748 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
749 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
750 	ARM64_FTR_END,
751 };
752 
753 /* Table for a single 32bit feature value */
754 static const struct arm64_ftr_bits ftr_single32[] = {
755 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
756 	ARM64_FTR_END,
757 };
758 
759 static const struct arm64_ftr_bits ftr_raz[] = {
760 	ARM64_FTR_END,
761 };
762 
763 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
764 		.sys_id = id,					\
765 		.reg = 	&(struct arm64_ftr_reg){		\
766 			.name = id_str,				\
767 			.override = (ovr),			\
768 			.ftr_bits = &((table)[0]),		\
769 	}}
770 
771 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
772 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
773 
774 #define ARM64_FTR_REG(id, table)		\
775 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
776 
777 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
778 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
779 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
780 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
781 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
782 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
783 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
784 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
785 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
786 
787 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
788 
789 static const struct __ftr_reg_entry {
790 	u32			sys_id;
791 	struct arm64_ftr_reg 	*reg;
792 } arm64_ftr_regs[] = {
793 
794 	/* Op1 = 0, CRn = 0, CRm = 1 */
795 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
796 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
797 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
798 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
799 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
800 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
801 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
802 
803 	/* Op1 = 0, CRn = 0, CRm = 2 */
804 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
805 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
806 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
807 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
808 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
809 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
810 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
811 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
812 
813 	/* Op1 = 0, CRn = 0, CRm = 3 */
814 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
815 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
816 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
817 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
818 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
819 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
820 
821 	/* Op1 = 0, CRn = 0, CRm = 4 */
822 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
823 			       &id_aa64pfr0_override),
824 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
825 			       &id_aa64pfr1_override),
826 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
827 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
828 			       &id_aa64zfr0_override),
829 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
830 			       &id_aa64smfr0_override),
831 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
832 
833 	/* Op1 = 0, CRn = 0, CRm = 5 */
834 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
835 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
836 
837 	/* Op1 = 0, CRn = 0, CRm = 6 */
838 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
839 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
840 			       &id_aa64isar1_override),
841 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
842 			       &id_aa64isar2_override),
843 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
844 
845 	/* Op1 = 0, CRn = 0, CRm = 7 */
846 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
847 			       &id_aa64mmfr0_override),
848 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
849 			       &id_aa64mmfr1_override),
850 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
851 			       &id_aa64mmfr2_override),
852 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
853 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
854 
855 	/* Op1 = 0, CRn = 10, CRm = 4 */
856 	ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
857 
858 	/* Op1 = 1, CRn = 0, CRm = 0 */
859 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
860 
861 	/* Op1 = 3, CRn = 0, CRm = 0 */
862 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
863 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
864 
865 	/* Op1 = 3, CRn = 14, CRm = 0 */
866 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
867 };
868 
869 static int search_cmp_ftr_reg(const void *id, const void *regp)
870 {
871 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
872 }
873 
874 /*
875  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
876  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
877  * ascending order of sys_id, we use binary search to find a matching
878  * entry.
879  *
880  * returns - Upon success,  matching ftr_reg entry for id.
881  *         - NULL on failure. It is upto the caller to decide
882  *	     the impact of a failure.
883  */
884 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
885 {
886 	const struct __ftr_reg_entry *ret;
887 
888 	ret = bsearch((const void *)(unsigned long)sys_id,
889 			arm64_ftr_regs,
890 			ARRAY_SIZE(arm64_ftr_regs),
891 			sizeof(arm64_ftr_regs[0]),
892 			search_cmp_ftr_reg);
893 	if (ret)
894 		return ret->reg;
895 	return NULL;
896 }
897 
898 /*
899  * get_arm64_ftr_reg - Looks up a feature register entry using
900  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
901  *
902  * returns - Upon success,  matching ftr_reg entry for id.
903  *         - NULL on failure but with an WARN_ON().
904  */
905 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
906 {
907 	struct arm64_ftr_reg *reg;
908 
909 	reg = get_arm64_ftr_reg_nowarn(sys_id);
910 
911 	/*
912 	 * Requesting a non-existent register search is an error. Warn
913 	 * and let the caller handle it.
914 	 */
915 	WARN_ON(!reg);
916 	return reg;
917 }
918 
919 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
920 			       s64 ftr_val)
921 {
922 	u64 mask = arm64_ftr_mask(ftrp);
923 
924 	reg &= ~mask;
925 	reg |= (ftr_val << ftrp->shift) & mask;
926 	return reg;
927 }
928 
929 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
930 				s64 cur)
931 {
932 	s64 ret = 0;
933 
934 	switch (ftrp->type) {
935 	case FTR_EXACT:
936 		ret = ftrp->safe_val;
937 		break;
938 	case FTR_LOWER_SAFE:
939 		ret = min(new, cur);
940 		break;
941 	case FTR_HIGHER_OR_ZERO_SAFE:
942 		if (!cur || !new)
943 			break;
944 		fallthrough;
945 	case FTR_HIGHER_SAFE:
946 		ret = max(new, cur);
947 		break;
948 	default:
949 		BUG();
950 	}
951 
952 	return ret;
953 }
954 
955 static void __init sort_ftr_regs(void)
956 {
957 	unsigned int i;
958 
959 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
960 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
961 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
962 		unsigned int j = 0;
963 
964 		/*
965 		 * Features here must be sorted in descending order with respect
966 		 * to their shift values and should not overlap with each other.
967 		 */
968 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
969 			unsigned int width = ftr_reg->ftr_bits[j].width;
970 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
971 			unsigned int prev_shift;
972 
973 			WARN((shift  + width) > 64,
974 				"%s has invalid feature at shift %d\n",
975 				ftr_reg->name, shift);
976 
977 			/*
978 			 * Skip the first feature. There is nothing to
979 			 * compare against for now.
980 			 */
981 			if (j == 0)
982 				continue;
983 
984 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
985 			WARN((shift + width) > prev_shift,
986 				"%s has feature overlap at shift %d\n",
987 				ftr_reg->name, shift);
988 		}
989 
990 		/*
991 		 * Skip the first register. There is nothing to
992 		 * compare against for now.
993 		 */
994 		if (i == 0)
995 			continue;
996 		/*
997 		 * Registers here must be sorted in ascending order with respect
998 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
999 		 * to work correctly.
1000 		 */
1001 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1002 	}
1003 }
1004 
1005 /*
1006  * Initialise the CPU feature register from Boot CPU values.
1007  * Also initialises the strict_mask for the register.
1008  * Any bits that are not covered by an arm64_ftr_bits entry are considered
1009  * RES0 for the system-wide value, and must strictly match.
1010  */
1011 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1012 {
1013 	u64 val = 0;
1014 	u64 strict_mask = ~0x0ULL;
1015 	u64 user_mask = 0;
1016 	u64 valid_mask = 0;
1017 
1018 	const struct arm64_ftr_bits *ftrp;
1019 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1020 
1021 	if (!reg)
1022 		return;
1023 
1024 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1025 		u64 ftr_mask = arm64_ftr_mask(ftrp);
1026 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1027 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1028 
1029 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
1030 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1031 			char *str = NULL;
1032 
1033 			if (ftr_ovr != tmp) {
1034 				/* Unsafe, remove the override */
1035 				reg->override->mask &= ~ftr_mask;
1036 				reg->override->val &= ~ftr_mask;
1037 				tmp = ftr_ovr;
1038 				str = "ignoring override";
1039 			} else if (ftr_new != tmp) {
1040 				/* Override was valid */
1041 				ftr_new = tmp;
1042 				str = "forced";
1043 			} else {
1044 				/* Override was the safe value */
1045 				str = "already set";
1046 			}
1047 
1048 			pr_warn("%s[%d:%d]: %s to %llx\n",
1049 				reg->name,
1050 				ftrp->shift + ftrp->width - 1,
1051 				ftrp->shift, str,
1052 				tmp & (BIT(ftrp->width) - 1));
1053 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1054 			reg->override->val &= ~ftr_mask;
1055 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1056 				reg->name,
1057 				ftrp->shift + ftrp->width - 1,
1058 				ftrp->shift);
1059 		}
1060 
1061 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1062 
1063 		valid_mask |= ftr_mask;
1064 		if (!ftrp->strict)
1065 			strict_mask &= ~ftr_mask;
1066 		if (ftrp->visible)
1067 			user_mask |= ftr_mask;
1068 		else
1069 			reg->user_val = arm64_ftr_set_value(ftrp,
1070 							    reg->user_val,
1071 							    ftrp->safe_val);
1072 	}
1073 
1074 	val &= valid_mask;
1075 
1076 	reg->sys_val = val;
1077 	reg->strict_mask = strict_mask;
1078 	reg->user_mask = user_mask;
1079 }
1080 
1081 extern const struct arm64_cpu_capabilities arm64_errata[];
1082 static const struct arm64_cpu_capabilities arm64_features[];
1083 
1084 static void __init
1085 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1086 {
1087 	for (; caps->matches; caps++) {
1088 		if (WARN(caps->capability >= ARM64_NCAPS,
1089 			"Invalid capability %d\n", caps->capability))
1090 			continue;
1091 		if (WARN(cpucap_ptrs[caps->capability],
1092 			"Duplicate entry for capability %d\n",
1093 			caps->capability))
1094 			continue;
1095 		cpucap_ptrs[caps->capability] = caps;
1096 	}
1097 }
1098 
1099 static void __init init_cpucap_indirect_list(void)
1100 {
1101 	init_cpucap_indirect_list_from_array(arm64_features);
1102 	init_cpucap_indirect_list_from_array(arm64_errata);
1103 }
1104 
1105 static void __init setup_boot_cpu_capabilities(void);
1106 
1107 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1108 {
1109 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1110 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1111 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1112 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1113 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1114 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1115 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1116 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1117 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1118 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1119 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1120 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1121 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1122 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1123 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1124 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1125 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1126 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1127 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1128 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1129 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1130 }
1131 
1132 #ifdef CONFIG_ARM64_PSEUDO_NMI
1133 static bool enable_pseudo_nmi;
1134 
1135 static int __init early_enable_pseudo_nmi(char *p)
1136 {
1137 	return kstrtobool(p, &enable_pseudo_nmi);
1138 }
1139 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1140 
1141 static __init void detect_system_supports_pseudo_nmi(void)
1142 {
1143 	struct device_node *np;
1144 
1145 	if (!enable_pseudo_nmi)
1146 		return;
1147 
1148 	/*
1149 	 * Detect broken MediaTek firmware that doesn't properly save and
1150 	 * restore GIC priorities.
1151 	 */
1152 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1153 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1154 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1155 		enable_pseudo_nmi = false;
1156 	}
1157 	of_node_put(np);
1158 }
1159 #else /* CONFIG_ARM64_PSEUDO_NMI */
1160 static inline void detect_system_supports_pseudo_nmi(void) { }
1161 #endif
1162 
1163 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1164 {
1165 	/* Before we start using the tables, make sure it is sorted */
1166 	sort_ftr_regs();
1167 
1168 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1169 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1170 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1171 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1172 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1173 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1174 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1175 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1176 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1177 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1178 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1179 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1180 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1181 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1182 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1183 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1184 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1185 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1186 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1187 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1188 
1189 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1190 		init_32bit_cpu_features(&info->aarch32);
1191 
1192 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1193 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1194 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1195 
1196 		vec_init_vq_map(ARM64_VEC_SVE);
1197 
1198 		cpacr_restore(cpacr);
1199 	}
1200 
1201 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1202 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1203 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1204 
1205 		vec_init_vq_map(ARM64_VEC_SME);
1206 
1207 		cpacr_restore(cpacr);
1208 	}
1209 
1210 	if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1211 		info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1212 		init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1213 	}
1214 
1215 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1216 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1217 }
1218 
1219 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1220 {
1221 	const struct arm64_ftr_bits *ftrp;
1222 
1223 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1224 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1225 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1226 
1227 		if (ftr_cur == ftr_new)
1228 			continue;
1229 		/* Find a safe value */
1230 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1231 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1232 	}
1233 
1234 }
1235 
1236 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1237 {
1238 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1239 
1240 	if (!regp)
1241 		return 0;
1242 
1243 	update_cpu_ftr_reg(regp, val);
1244 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1245 		return 0;
1246 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1247 			regp->name, boot, cpu, val);
1248 	return 1;
1249 }
1250 
1251 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1252 {
1253 	const struct arm64_ftr_bits *ftrp;
1254 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1255 
1256 	if (!regp)
1257 		return;
1258 
1259 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1260 		if (ftrp->shift == field) {
1261 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1262 			break;
1263 		}
1264 	}
1265 
1266 	/* Bogus field? */
1267 	WARN_ON(!ftrp->width);
1268 }
1269 
1270 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1271 					 struct cpuinfo_arm64 *boot)
1272 {
1273 	static bool boot_cpu_32bit_regs_overridden = false;
1274 
1275 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1276 		return;
1277 
1278 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1279 		return;
1280 
1281 	boot->aarch32 = info->aarch32;
1282 	init_32bit_cpu_features(&boot->aarch32);
1283 	boot_cpu_32bit_regs_overridden = true;
1284 }
1285 
1286 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1287 				     struct cpuinfo_32bit *boot)
1288 {
1289 	int taint = 0;
1290 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1291 
1292 	/*
1293 	 * If we don't have AArch32 at EL1, then relax the strictness of
1294 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1295 	 */
1296 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1297 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1298 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1299 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1300 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1301 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1302 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1303 	}
1304 
1305 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1306 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1307 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1308 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1309 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1310 				      info->reg_id_isar0, boot->reg_id_isar0);
1311 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1312 				      info->reg_id_isar1, boot->reg_id_isar1);
1313 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1314 				      info->reg_id_isar2, boot->reg_id_isar2);
1315 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1316 				      info->reg_id_isar3, boot->reg_id_isar3);
1317 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1318 				      info->reg_id_isar4, boot->reg_id_isar4);
1319 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1320 				      info->reg_id_isar5, boot->reg_id_isar5);
1321 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1322 				      info->reg_id_isar6, boot->reg_id_isar6);
1323 
1324 	/*
1325 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1326 	 * ACTLR formats could differ across CPUs and therefore would have to
1327 	 * be trapped for virtualization anyway.
1328 	 */
1329 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1330 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1331 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1332 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1333 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1334 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1335 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1336 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1337 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1338 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1339 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1340 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1341 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1342 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1343 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1344 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1345 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1346 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1347 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1348 				      info->reg_mvfr0, boot->reg_mvfr0);
1349 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1350 				      info->reg_mvfr1, boot->reg_mvfr1);
1351 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1352 				      info->reg_mvfr2, boot->reg_mvfr2);
1353 
1354 	return taint;
1355 }
1356 
1357 /*
1358  * Update system wide CPU feature registers with the values from a
1359  * non-boot CPU. Also performs SANITY checks to make sure that there
1360  * aren't any insane variations from that of the boot CPU.
1361  */
1362 void update_cpu_features(int cpu,
1363 			 struct cpuinfo_arm64 *info,
1364 			 struct cpuinfo_arm64 *boot)
1365 {
1366 	int taint = 0;
1367 
1368 	/*
1369 	 * The kernel can handle differing I-cache policies, but otherwise
1370 	 * caches should look identical. Userspace JITs will make use of
1371 	 * *minLine.
1372 	 */
1373 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1374 				      info->reg_ctr, boot->reg_ctr);
1375 
1376 	/*
1377 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1378 	 * could result in too much or too little memory being zeroed if a
1379 	 * process is preempted and migrated between CPUs.
1380 	 */
1381 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1382 				      info->reg_dczid, boot->reg_dczid);
1383 
1384 	/* If different, timekeeping will be broken (especially with KVM) */
1385 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1386 				      info->reg_cntfrq, boot->reg_cntfrq);
1387 
1388 	/*
1389 	 * The kernel uses self-hosted debug features and expects CPUs to
1390 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1391 	 * and BRPs to be identical.
1392 	 * ID_AA64DFR1 is currently RES0.
1393 	 */
1394 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1395 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1396 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1397 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1398 	/*
1399 	 * Even in big.LITTLE, processors should be identical instruction-set
1400 	 * wise.
1401 	 */
1402 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1403 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1404 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1405 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1406 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1407 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1408 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1409 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1410 
1411 	/*
1412 	 * Differing PARange support is fine as long as all peripherals and
1413 	 * memory are mapped within the minimum PARange of all CPUs.
1414 	 * Linux should not care about secure memory.
1415 	 */
1416 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1417 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1418 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1419 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1420 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1421 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1422 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1423 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1424 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1425 				      info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1426 
1427 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1428 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1429 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1430 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1431 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1432 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1433 
1434 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1435 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1436 
1437 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1438 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1439 
1440 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1441 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1442 
1443 	/* Probe vector lengths */
1444 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1445 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1446 		if (!system_capabilities_finalized()) {
1447 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1448 
1449 			vec_update_vq_map(ARM64_VEC_SVE);
1450 
1451 			cpacr_restore(cpacr);
1452 		}
1453 	}
1454 
1455 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1456 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1457 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1458 
1459 		/* Probe vector lengths */
1460 		if (!system_capabilities_finalized())
1461 			vec_update_vq_map(ARM64_VEC_SME);
1462 
1463 		cpacr_restore(cpacr);
1464 	}
1465 
1466 	if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1467 		info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1468 		taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1469 					info->reg_mpamidr, boot->reg_mpamidr);
1470 	}
1471 
1472 	/*
1473 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1474 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1475 	 * value is the same on all CPUs.
1476 	 */
1477 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1478 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1479 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1480 					      info->reg_gmid, boot->reg_gmid);
1481 	}
1482 
1483 	/*
1484 	 * If we don't have AArch32 at all then skip the checks entirely
1485 	 * as the register values may be UNKNOWN and we're not going to be
1486 	 * using them for anything.
1487 	 *
1488 	 * This relies on a sanitised view of the AArch64 ID registers
1489 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1490 	 */
1491 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1492 		lazy_init_32bit_cpu_features(info, boot);
1493 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1494 						   &boot->aarch32);
1495 	}
1496 
1497 	/*
1498 	 * Mismatched CPU features are a recipe for disaster. Don't even
1499 	 * pretend to support them.
1500 	 */
1501 	if (taint) {
1502 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1503 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1504 	}
1505 }
1506 
1507 u64 read_sanitised_ftr_reg(u32 id)
1508 {
1509 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1510 
1511 	if (!regp)
1512 		return 0;
1513 	return regp->sys_val;
1514 }
1515 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1516 
1517 #define read_sysreg_case(r)	\
1518 	case r:		val = read_sysreg_s(r); break;
1519 
1520 /*
1521  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1522  * Read the system register on the current CPU
1523  */
1524 u64 __read_sysreg_by_encoding(u32 sys_id)
1525 {
1526 	struct arm64_ftr_reg *regp;
1527 	u64 val;
1528 
1529 	switch (sys_id) {
1530 	read_sysreg_case(SYS_ID_PFR0_EL1);
1531 	read_sysreg_case(SYS_ID_PFR1_EL1);
1532 	read_sysreg_case(SYS_ID_PFR2_EL1);
1533 	read_sysreg_case(SYS_ID_DFR0_EL1);
1534 	read_sysreg_case(SYS_ID_DFR1_EL1);
1535 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1536 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1537 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1538 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1539 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1540 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1541 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1542 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1543 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1544 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1545 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1546 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1547 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1548 	read_sysreg_case(SYS_MVFR0_EL1);
1549 	read_sysreg_case(SYS_MVFR1_EL1);
1550 	read_sysreg_case(SYS_MVFR2_EL1);
1551 
1552 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1553 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1554 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1555 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1556 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1557 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1558 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1559 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1560 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1561 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1562 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1563 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1564 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1565 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1566 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1567 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1568 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1569 
1570 	read_sysreg_case(SYS_CNTFRQ_EL0);
1571 	read_sysreg_case(SYS_CTR_EL0);
1572 	read_sysreg_case(SYS_DCZID_EL0);
1573 
1574 	default:
1575 		BUG();
1576 		return 0;
1577 	}
1578 
1579 	regp  = get_arm64_ftr_reg(sys_id);
1580 	if (regp) {
1581 		val &= ~regp->override->mask;
1582 		val |= (regp->override->val & regp->override->mask);
1583 	}
1584 
1585 	return val;
1586 }
1587 
1588 #include <linux/irqchip/arm-gic-v3.h>
1589 
1590 static bool
1591 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1592 {
1593 	return true;
1594 }
1595 
1596 static bool
1597 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1598 {
1599 	int val, min, max;
1600 	u64 tmp;
1601 
1602 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1603 						entry->field_width,
1604 						entry->sign);
1605 
1606 	tmp = entry->min_field_value;
1607 	tmp <<= entry->field_pos;
1608 
1609 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1610 						entry->field_width,
1611 						entry->sign);
1612 
1613 	tmp = entry->max_field_value;
1614 	tmp <<= entry->field_pos;
1615 
1616 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1617 						entry->field_width,
1618 						entry->sign);
1619 
1620 	return val >= min && val <= max;
1621 }
1622 
1623 static u64
1624 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1625 {
1626 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1627 	if (scope == SCOPE_SYSTEM)
1628 		return read_sanitised_ftr_reg(entry->sys_reg);
1629 	else
1630 		return __read_sysreg_by_encoding(entry->sys_reg);
1631 }
1632 
1633 static bool
1634 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1635 {
1636 	int mask;
1637 	struct arm64_ftr_reg *regp;
1638 	u64 val = read_scoped_sysreg(entry, scope);
1639 
1640 	regp = get_arm64_ftr_reg(entry->sys_reg);
1641 	if (!regp)
1642 		return false;
1643 
1644 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1645 							  entry->field_pos,
1646 							  entry->field_width);
1647 	if (!mask)
1648 		return false;
1649 
1650 	return feature_matches(val, entry);
1651 }
1652 
1653 static bool
1654 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1655 {
1656 	u64 val = read_scoped_sysreg(entry, scope);
1657 	return feature_matches(val, entry);
1658 }
1659 
1660 const struct cpumask *system_32bit_el0_cpumask(void)
1661 {
1662 	if (!system_supports_32bit_el0())
1663 		return cpu_none_mask;
1664 
1665 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1666 		return cpu_32bit_el0_mask;
1667 
1668 	return cpu_possible_mask;
1669 }
1670 
1671 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1672 {
1673 	return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_DOMAIN));
1674 }
1675 
1676 static int __init parse_32bit_el0_param(char *str)
1677 {
1678 	allow_mismatched_32bit_el0 = true;
1679 	return 0;
1680 }
1681 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1682 
1683 static ssize_t aarch32_el0_show(struct device *dev,
1684 				struct device_attribute *attr, char *buf)
1685 {
1686 	const struct cpumask *mask = system_32bit_el0_cpumask();
1687 
1688 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1689 }
1690 static const DEVICE_ATTR_RO(aarch32_el0);
1691 
1692 static int __init aarch32_el0_sysfs_init(void)
1693 {
1694 	struct device *dev_root;
1695 	int ret = 0;
1696 
1697 	if (!allow_mismatched_32bit_el0)
1698 		return 0;
1699 
1700 	dev_root = bus_get_dev_root(&cpu_subsys);
1701 	if (dev_root) {
1702 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1703 		put_device(dev_root);
1704 	}
1705 	return ret;
1706 }
1707 device_initcall(aarch32_el0_sysfs_init);
1708 
1709 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1710 {
1711 	if (!has_cpuid_feature(entry, scope))
1712 		return allow_mismatched_32bit_el0;
1713 
1714 	if (scope == SCOPE_SYSTEM)
1715 		pr_info("detected: 32-bit EL0 Support\n");
1716 
1717 	return true;
1718 }
1719 
1720 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1721 {
1722 	bool has_sre;
1723 
1724 	if (!has_cpuid_feature(entry, scope))
1725 		return false;
1726 
1727 	has_sre = gic_enable_sre();
1728 	if (!has_sre)
1729 		pr_warn_once("%s present but disabled by higher exception level\n",
1730 			     entry->desc);
1731 
1732 	return has_sre;
1733 }
1734 
1735 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1736 			  int scope)
1737 {
1738 	u64 ctr;
1739 
1740 	if (scope == SCOPE_SYSTEM)
1741 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1742 	else
1743 		ctr = read_cpuid_effective_cachetype();
1744 
1745 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1746 }
1747 
1748 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1749 {
1750 	/*
1751 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1752 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1753 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1754 	 * value.
1755 	 */
1756 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1757 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1758 }
1759 
1760 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1761 			  int scope)
1762 {
1763 	u64 ctr;
1764 
1765 	if (scope == SCOPE_SYSTEM)
1766 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1767 	else
1768 		ctr = read_cpuid_cachetype();
1769 
1770 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1771 }
1772 
1773 static bool __maybe_unused
1774 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1775 {
1776 	/*
1777 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1778 	 * may share TLB entries with a CPU stuck in the crashed
1779 	 * kernel.
1780 	 */
1781 	if (is_kdump_kernel())
1782 		return false;
1783 
1784 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1785 		return false;
1786 
1787 	return has_cpuid_feature(entry, scope);
1788 }
1789 
1790 static bool __meltdown_safe = true;
1791 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1792 
1793 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1794 				int scope)
1795 {
1796 	/* List of CPUs that are not vulnerable and don't need KPTI */
1797 	static const struct midr_range kpti_safe_list[] = {
1798 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1799 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1800 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1801 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1802 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1803 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1804 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1805 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1806 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1807 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1808 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1809 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1810 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1811 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1812 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1813 		{ /* sentinel */ }
1814 	};
1815 	char const *str = "kpti command line option";
1816 	bool meltdown_safe;
1817 
1818 	meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1819 
1820 	/* Defer to CPU feature registers */
1821 	if (has_cpuid_feature(entry, scope))
1822 		meltdown_safe = true;
1823 
1824 	if (!meltdown_safe)
1825 		__meltdown_safe = false;
1826 
1827 	/*
1828 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1829 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1830 	 * ends as well as you might imagine. Don't even try. We cannot rely
1831 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1832 	 * because cpucap detection order may change. However, since we know
1833 	 * affected CPUs are always in a homogeneous configuration, it is
1834 	 * safe to rely on this_cpu_has_cap() here.
1835 	 */
1836 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1837 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1838 		__kpti_forced = -1;
1839 	}
1840 
1841 	/* Useful for KASLR robustness */
1842 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1843 		if (!__kpti_forced) {
1844 			str = "KASLR";
1845 			__kpti_forced = 1;
1846 		}
1847 	}
1848 
1849 	if (cpu_mitigations_off() && !__kpti_forced) {
1850 		str = "mitigations=off";
1851 		__kpti_forced = -1;
1852 	}
1853 
1854 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1855 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1856 		return false;
1857 	}
1858 
1859 	/* Forced? */
1860 	if (__kpti_forced) {
1861 		pr_info_once("kernel page table isolation forced %s by %s\n",
1862 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1863 		return __kpti_forced > 0;
1864 	}
1865 
1866 	return !meltdown_safe;
1867 }
1868 
1869 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1870 {
1871 	/*
1872 	 * Although the Apple M2 family appears to support NV1, the
1873 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1874 	 * that it doesn't support NV1 at all.
1875 	 */
1876 	static const struct midr_range nv1_ni_list[] = {
1877 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1878 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1879 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1880 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1881 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1882 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1883 		{}
1884 	};
1885 
1886 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1887 		!(has_cpuid_feature(entry, scope) ||
1888 		  is_midr_in_range_list(nv1_ni_list)));
1889 }
1890 
1891 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1892 static bool has_lpa2_at_stage1(u64 mmfr0)
1893 {
1894 	unsigned int tgran;
1895 
1896 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1897 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1898 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1899 }
1900 
1901 static bool has_lpa2_at_stage2(u64 mmfr0)
1902 {
1903 	unsigned int tgran;
1904 
1905 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1906 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1907 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1908 }
1909 
1910 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1911 {
1912 	u64 mmfr0;
1913 
1914 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1915 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1916 }
1917 #else
1918 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1919 {
1920 	return false;
1921 }
1922 #endif
1923 
1924 #ifdef CONFIG_HW_PERF_EVENTS
1925 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1926 {
1927 	u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1928 	unsigned int pmuver;
1929 
1930 	/*
1931 	 * PMUVer follows the standard ID scheme for an unsigned field with the
1932 	 * exception of 0xF (IMP_DEF) which is treated specially and implies
1933 	 * FEAT_PMUv3 is not implemented.
1934 	 *
1935 	 * See DDI0487L.a D24.1.3.2 for more details.
1936 	 */
1937 	pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1938 						      ID_AA64DFR0_EL1_PMUVer_SHIFT);
1939 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1940 		return false;
1941 
1942 	return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1943 }
1944 #endif
1945 
1946 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1947 {
1948 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1949 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1950 
1951 		__this_cpu_write(this_cpu_vector, v);
1952 	}
1953 
1954 }
1955 
1956 static int __init parse_kpti(char *str)
1957 {
1958 	bool enabled;
1959 	int ret = kstrtobool(str, &enabled);
1960 
1961 	if (ret)
1962 		return ret;
1963 
1964 	__kpti_forced = enabled ? 1 : -1;
1965 	return 0;
1966 }
1967 early_param("kpti", parse_kpti);
1968 
1969 #ifdef CONFIG_ARM64_HW_AFDBM
1970 static struct cpumask dbm_cpus __read_mostly;
1971 
1972 static inline void __cpu_enable_hw_dbm(void)
1973 {
1974 	u64 tcr = read_sysreg(tcr_el1) | TCR_EL1_HD;
1975 
1976 	write_sysreg(tcr, tcr_el1);
1977 	isb();
1978 	local_flush_tlb_all();
1979 }
1980 
1981 static bool cpu_has_broken_dbm(void)
1982 {
1983 	/* List of CPUs which have broken DBM support. */
1984 	static const struct midr_range cpus[] = {
1985 #ifdef CONFIG_ARM64_ERRATUM_1024718
1986 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1987 		/* Kryo4xx Silver (rdpe => r1p0) */
1988 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1989 #endif
1990 #ifdef CONFIG_ARM64_ERRATUM_2051678
1991 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1992 #endif
1993 		{},
1994 	};
1995 
1996 	return is_midr_in_range_list(cpus);
1997 }
1998 
1999 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2000 {
2001 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2002 	       !cpu_has_broken_dbm();
2003 }
2004 
2005 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2006 {
2007 	if (cpu_can_use_dbm(cap)) {
2008 		__cpu_enable_hw_dbm();
2009 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2010 	}
2011 }
2012 
2013 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2014 		       int __unused)
2015 {
2016 	/*
2017 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2018 	 * run a mix of CPUs with and without the feature. So, we
2019 	 * unconditionally enable the capability to allow any late CPU
2020 	 * to use the feature. We only enable the control bits on the
2021 	 * CPU, if it is supported.
2022 	 */
2023 
2024 	return true;
2025 }
2026 
2027 #endif
2028 
2029 #ifdef CONFIG_ARM64_AMU_EXTN
2030 
2031 /*
2032  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2033  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2034  * information regarding all the events that it supports. When a CPU bit is
2035  * set in the cpumask, the user of this feature can only rely on the presence
2036  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2037  * counters are enabled or access to these counters is enabled by code
2038  * executed at higher exception levels (firmware).
2039  */
2040 static struct cpumask amu_cpus __read_mostly;
2041 
2042 bool cpu_has_amu_feat(int cpu)
2043 {
2044 	return cpumask_test_cpu(cpu, &amu_cpus);
2045 }
2046 
2047 int get_cpu_with_amu_feat(void)
2048 {
2049 	return cpumask_any(&amu_cpus);
2050 }
2051 
2052 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2053 {
2054 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2055 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2056 
2057 		/* 0 reference values signal broken/disabled counters */
2058 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2059 			update_freq_counters_refs();
2060 	}
2061 }
2062 
2063 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2064 		    int __unused)
2065 {
2066 	/*
2067 	 * The AMU extension is a non-conflicting feature: the kernel can
2068 	 * safely run a mix of CPUs with and without support for the
2069 	 * activity monitors extension. Therefore, unconditionally enable
2070 	 * the capability to allow any late CPU to use the feature.
2071 	 *
2072 	 * With this feature unconditionally enabled, the cpu_enable
2073 	 * function will be called for all CPUs that match the criteria,
2074 	 * including secondary and hotplugged, marking this feature as
2075 	 * present on that respective CPU. The enable function will also
2076 	 * print a detection message.
2077 	 */
2078 
2079 	return true;
2080 }
2081 #else
2082 int get_cpu_with_amu_feat(void)
2083 {
2084 	return nr_cpu_ids;
2085 }
2086 #endif
2087 
2088 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2089 {
2090 	return is_kernel_in_hyp_mode();
2091 }
2092 
2093 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2094 {
2095 	/*
2096 	 * Copy register values that aren't redirected by hardware.
2097 	 *
2098 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2099 	 * this value to tpidr_el2 before we patch the code. Once we've done
2100 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2101 	 * do anything here.
2102 	 */
2103 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2104 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2105 }
2106 
2107 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2108 				    int scope)
2109 {
2110 	if (kvm_get_mode() != KVM_MODE_NV)
2111 		return false;
2112 
2113 	if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2114 		pr_warn("unavailable: %s\n", cap->desc);
2115 		return false;
2116 	}
2117 
2118 	return true;
2119 }
2120 
2121 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2122 			  int __unused)
2123 {
2124 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2125 }
2126 
2127 bool cpu_supports_bbml2_noabort(void)
2128 {
2129 	/*
2130 	 * We want to allow usage of BBML2 in as wide a range of kernel contexts
2131 	 * as possible. This list is therefore an allow-list of known-good
2132 	 * implementations that both support BBML2 and additionally, fulfill the
2133 	 * extra constraint of never generating TLB conflict aborts when using
2134 	 * the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2135 	 * kernel contexts difficult to prove safe against recursive aborts).
2136 	 *
2137 	 * Note that implementations can only be considered "known-good" if their
2138 	 * implementors attest to the fact that the implementation never raises
2139 	 * TLB conflict aborts for BBML2 mapping granularity changes.
2140 	 */
2141 	static const struct midr_range supports_bbml2_noabort_list[] = {
2142 		MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2143 		MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2144 		MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2145 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2146 		MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2147 		MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2148 		{}
2149 	};
2150 
2151 	/* Does our cpu guarantee to never raise TLB conflict aborts? */
2152 	if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2153 		return false;
2154 
2155 	/*
2156 	 * We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2157 	 * about whether the MIDR check passes.
2158 	 */
2159 
2160 	return true;
2161 }
2162 
2163 static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2164 {
2165 	return cpu_supports_bbml2_noabort();
2166 }
2167 
2168 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2169 {
2170 	/*
2171 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2172 	 * is discarded once we return from the exception.
2173 	 */
2174 	WARN_ON_ONCE(in_interrupt());
2175 
2176 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2177 	set_pstate_pan(1);
2178 }
2179 
2180 #ifdef CONFIG_ARM64_RAS_EXTN
2181 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2182 {
2183 	/* Firmware may have left a deferred SError in this register. */
2184 	write_sysreg_s(0, SYS_DISR_EL1);
2185 }
2186 static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2187 {
2188 	const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2189 		{
2190 			ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2191 		},
2192 		{
2193 			ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2194 		},
2195 		{
2196 			ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2197 		},
2198 	};
2199 
2200 	return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2201 		(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2202 		 has_cpuid_feature(&rasv1p1_caps[2], scope)));
2203 }
2204 #endif /* CONFIG_ARM64_RAS_EXTN */
2205 
2206 #ifdef CONFIG_ARM64_PTR_AUTH
2207 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2208 {
2209 	int boot_val, sec_val;
2210 
2211 	/* We don't expect to be called with SCOPE_SYSTEM */
2212 	WARN_ON(scope == SCOPE_SYSTEM);
2213 	/*
2214 	 * The ptr-auth feature levels are not intercompatible with lower
2215 	 * levels. Hence we must match ptr-auth feature level of the secondary
2216 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2217 	 * from the sanitised register whereas direct register read is done for
2218 	 * the secondary CPUs.
2219 	 * The sanitised feature state is guaranteed to match that of the
2220 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2221 	 * a chance to update the state, with the capability.
2222 	 */
2223 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2224 					       entry->field_pos, entry->sign);
2225 	if (scope & SCOPE_BOOT_CPU)
2226 		return boot_val >= entry->min_field_value;
2227 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2228 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2229 					      entry->field_pos, entry->sign);
2230 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2231 }
2232 
2233 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2234 				     int scope)
2235 {
2236 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2237 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2238 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2239 
2240 	return apa || apa3 || api;
2241 }
2242 
2243 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2244 			     int __unused)
2245 {
2246 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2247 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2248 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2249 
2250 	return gpa || gpa3 || gpi;
2251 }
2252 #endif /* CONFIG_ARM64_PTR_AUTH */
2253 
2254 #ifdef CONFIG_ARM64_E0PD
2255 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2256 {
2257 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2258 		sysreg_clear_set(tcr_el1, 0, TCR_EL1_E0PD1);
2259 }
2260 #endif /* CONFIG_ARM64_E0PD */
2261 
2262 static void cpu_enable_ls64(struct arm64_cpu_capabilities const *cap)
2263 {
2264 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_EnALS, SCTLR_EL1_EnALS);
2265 }
2266 
2267 static void cpu_enable_ls64_v(struct arm64_cpu_capabilities const *cap)
2268 {
2269 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_EnASR, 0);
2270 }
2271 
2272 #ifdef CONFIG_ARM64_PSEUDO_NMI
2273 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2274 				   int scope)
2275 {
2276 	/*
2277 	 * ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2278 	 * feature, so will be detected earlier.
2279 	 */
2280 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2281 	if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2282 		return false;
2283 
2284 	return enable_pseudo_nmi;
2285 }
2286 
2287 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2288 				      int scope)
2289 {
2290 	/*
2291 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2292 	 * and there's no need to relax synchronization of writes to it, and
2293 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2294 	 * that.
2295 	 *
2296 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2297 	 * feature, so will be detected earlier.
2298 	 */
2299 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2300 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2301 		return false;
2302 
2303 	/*
2304 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2305 	 * hint for interrupt distribution, a DSB is not necessary when
2306 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2307 	 *
2308 	 * Linux itself doesn't use 1:N distribution, so has no need to
2309 	 * set PMHE. The only reason to have it set is if EL3 requires it
2310 	 * (and we can't change it).
2311 	 */
2312 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2313 }
2314 #endif
2315 
2316 static bool can_trap_icv_dir_el1(const struct arm64_cpu_capabilities *entry,
2317 				 int scope)
2318 {
2319 	static const struct midr_range has_vgic_v3[] = {
2320 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
2321 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
2322 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
2323 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
2324 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
2325 		MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
2326 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
2327 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
2328 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
2329 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
2330 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
2331 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
2332 		{},
2333 	};
2334 	struct arm_smccc_res res = {};
2335 
2336 	BUILD_BUG_ON(ARM64_HAS_ICH_HCR_EL2_TDIR <= ARM64_HAS_GICV3_CPUIF);
2337 	BUILD_BUG_ON(ARM64_HAS_ICH_HCR_EL2_TDIR <= ARM64_HAS_GICV5_LEGACY);
2338 	if (!this_cpu_has_cap(ARM64_HAS_GICV3_CPUIF) &&
2339 	    !is_midr_in_range_list(has_vgic_v3))
2340 		return false;
2341 
2342 	if (!is_hyp_mode_available())
2343 		return false;
2344 
2345 	if (this_cpu_has_cap(ARM64_HAS_GICV5_LEGACY))
2346 		return true;
2347 
2348 	if (is_kernel_in_hyp_mode())
2349 		res.a1 = read_sysreg_s(SYS_ICH_VTR_EL2);
2350 	else
2351 		arm_smccc_1_1_hvc(HVC_GET_ICH_VTR_EL2, &res);
2352 
2353 	if (res.a0 == HVC_STUB_ERR)
2354 		return false;
2355 
2356 	return res.a1 & ICH_VTR_EL2_TDS;
2357 }
2358 
2359 #ifdef CONFIG_ARM64_BTI
2360 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2361 {
2362 	/*
2363 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2364 	 * function entry points using BR is a requirement for
2365 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2366 	 * So, be strict and forbid other BRs using other registers to
2367 	 * jump onto a PACIxSP instruction:
2368 	 */
2369 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2370 	isb();
2371 }
2372 #endif /* CONFIG_ARM64_BTI */
2373 
2374 #ifdef CONFIG_ARM64_MTE
2375 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2376 {
2377 	static bool cleared_zero_page = false;
2378 
2379 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2380 
2381 	mte_cpu_setup();
2382 
2383 	/*
2384 	 * Clear the tags in the zero page. This needs to be done via the
2385 	 * linear map which has the Tagged attribute. Since this page is
2386 	 * always mapped as pte_special(), set_pte_at() will not attempt to
2387 	 * clear the tags or set PG_mte_tagged.
2388 	 */
2389 	if (!cleared_zero_page) {
2390 		cleared_zero_page = true;
2391 		mte_clear_page_tags(lm_alias(empty_zero_page));
2392 	}
2393 
2394 	kasan_init_hw_tags_cpu();
2395 }
2396 #endif /* CONFIG_ARM64_MTE */
2397 
2398 static void user_feature_fixup(void)
2399 {
2400 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2401 		struct arm64_ftr_reg *regp;
2402 
2403 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2404 		if (regp)
2405 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2406 	}
2407 
2408 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2409 		struct arm64_ftr_reg *regp;
2410 
2411 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2412 		if (regp)
2413 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2414 	}
2415 }
2416 
2417 static void elf_hwcap_fixup(void)
2418 {
2419 #ifdef CONFIG_COMPAT
2420 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2421 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2422 #endif /* CONFIG_COMPAT */
2423 }
2424 
2425 #ifdef CONFIG_KVM
2426 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2427 {
2428 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2429 }
2430 #endif /* CONFIG_KVM */
2431 
2432 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2433 {
2434 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2435 }
2436 
2437 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2438 {
2439 	set_pstate_dit(1);
2440 }
2441 
2442 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2443 {
2444 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2445 }
2446 
2447 #ifdef CONFIG_ARM64_POE
2448 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2449 {
2450 	sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2451 	sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2452 }
2453 #endif
2454 
2455 #ifdef CONFIG_ARM64_GCS
2456 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2457 {
2458 	/* GCSPR_EL0 is always readable */
2459 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2460 }
2461 #endif
2462 
2463 /* Internal helper functions to match cpu capability type */
2464 static bool
2465 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2466 {
2467 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2468 }
2469 
2470 static bool
2471 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2472 {
2473 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2474 }
2475 
2476 static bool
2477 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2478 {
2479 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2480 }
2481 
2482 static bool
2483 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2484 {
2485 	if (!has_cpuid_feature(entry, scope))
2486 		return false;
2487 
2488 	/* Check firmware actually enabled MPAM on this cpu. */
2489 	return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2490 }
2491 
2492 static void
2493 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2494 {
2495 	/*
2496 	 * Access by the kernel (at EL1) should use the reserved PARTID
2497 	 * which is configured unrestricted. This avoids priority-inversion
2498 	 * where latency sensitive tasks have to wait for a task that has
2499 	 * been throttled to release the lock.
2500 	 */
2501 	write_sysreg_s(0, SYS_MPAM1_EL1);
2502 }
2503 
2504 static bool
2505 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2506 {
2507 	u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2508 
2509 	return idr & MPAMIDR_EL1_HAS_HCR;
2510 }
2511 
2512 static bool
2513 test_has_gicv5_legacy(const struct arm64_cpu_capabilities *entry, int scope)
2514 {
2515 	if (!this_cpu_has_cap(ARM64_HAS_GICV5_CPUIF))
2516 		return false;
2517 
2518 	return !!(read_sysreg_s(SYS_ICC_IDR0_EL1) & ICC_IDR0_EL1_GCIE_LEGACY);
2519 }
2520 
2521 static const struct arm64_cpu_capabilities arm64_features[] = {
2522 	{
2523 		.capability = ARM64_ALWAYS_BOOT,
2524 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2525 		.matches = has_always,
2526 	},
2527 	{
2528 		.capability = ARM64_ALWAYS_SYSTEM,
2529 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2530 		.matches = has_always,
2531 	},
2532 	{
2533 		.desc = "GICv3 CPU interface",
2534 		.capability = ARM64_HAS_GICV3_CPUIF,
2535 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2536 		.matches = has_useable_gicv3_cpuif,
2537 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2538 	},
2539 	{
2540 		.desc = "Enhanced Counter Virtualization",
2541 		.capability = ARM64_HAS_ECV,
2542 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2543 		.matches = has_cpuid_feature,
2544 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2545 	},
2546 	{
2547 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2548 		.capability = ARM64_HAS_ECV_CNTPOFF,
2549 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2550 		.matches = has_cpuid_feature,
2551 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2552 	},
2553 	{
2554 		.desc = "Privileged Access Never",
2555 		.capability = ARM64_HAS_PAN,
2556 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2557 		.matches = has_cpuid_feature,
2558 		.cpu_enable = cpu_enable_pan,
2559 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2560 	},
2561 #ifdef CONFIG_ARM64_EPAN
2562 	{
2563 		.desc = "Enhanced Privileged Access Never",
2564 		.capability = ARM64_HAS_EPAN,
2565 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2566 		.matches = has_cpuid_feature,
2567 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2568 	},
2569 #endif /* CONFIG_ARM64_EPAN */
2570 	{
2571 		.desc = "LSE atomic instructions",
2572 		.capability = ARM64_HAS_LSE_ATOMICS,
2573 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2574 		.matches = has_cpuid_feature,
2575 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2576 	},
2577 	{
2578 		.desc = "Virtualization Host Extensions",
2579 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2580 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2581 		.matches = runs_at_el2,
2582 		.cpu_enable = cpu_copy_el2regs,
2583 	},
2584 	{
2585 		.desc = "Nested Virtualization Support",
2586 		.capability = ARM64_HAS_NESTED_VIRT,
2587 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2588 		.matches = has_nested_virt_support,
2589 		.match_list = (const struct arm64_cpu_capabilities []){
2590 			{
2591 				.matches = has_cpuid_feature,
2592 				ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2593 			},
2594 			{
2595 				.matches = has_cpuid_feature,
2596 				ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2597 			},
2598 			{ /* Sentinel */ }
2599 		},
2600 	},
2601 	{
2602 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2603 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604 		.matches = has_32bit_el0,
2605 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2606 	},
2607 #ifdef CONFIG_KVM
2608 	{
2609 		.desc = "32-bit EL1 Support",
2610 		.capability = ARM64_HAS_32BIT_EL1,
2611 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2612 		.matches = has_cpuid_feature,
2613 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2614 	},
2615 	{
2616 		.desc = "Protected KVM",
2617 		.capability = ARM64_KVM_PROTECTED_MODE,
2618 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2619 		.matches = is_kvm_protected_mode,
2620 	},
2621 	{
2622 		.desc = "HCRX_EL2 register",
2623 		.capability = ARM64_HAS_HCX,
2624 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2625 		.matches = has_cpuid_feature,
2626 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2627 	},
2628 #endif
2629 	{
2630 		.desc = "Kernel page table isolation (KPTI)",
2631 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2632 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2633 		.cpu_enable = cpu_enable_kpti,
2634 		.matches = unmap_kernel_at_el0,
2635 		/*
2636 		 * The ID feature fields below are used to indicate that
2637 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2638 		 * more details.
2639 		 */
2640 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2641 	},
2642 	{
2643 		.capability = ARM64_HAS_FPSIMD,
2644 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2645 		.matches = has_cpuid_feature,
2646 		.cpu_enable = cpu_enable_fpsimd,
2647 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2648 	},
2649 #ifdef CONFIG_ARM64_PMEM
2650 	{
2651 		.desc = "Data cache clean to Point of Persistence",
2652 		.capability = ARM64_HAS_DCPOP,
2653 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2654 		.matches = has_cpuid_feature,
2655 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2656 	},
2657 	{
2658 		.desc = "Data cache clean to Point of Deep Persistence",
2659 		.capability = ARM64_HAS_DCPODP,
2660 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2661 		.matches = has_cpuid_feature,
2662 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2663 	},
2664 #endif
2665 #ifdef CONFIG_ARM64_SVE
2666 	{
2667 		.desc = "Scalable Vector Extension",
2668 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2669 		.capability = ARM64_SVE,
2670 		.cpu_enable = cpu_enable_sve,
2671 		.matches = has_cpuid_feature,
2672 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2673 	},
2674 #endif /* CONFIG_ARM64_SVE */
2675 #ifdef CONFIG_ARM64_RAS_EXTN
2676 	{
2677 		.desc = "RAS Extension Support",
2678 		.capability = ARM64_HAS_RAS_EXTN,
2679 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2680 		.matches = has_cpuid_feature,
2681 		.cpu_enable = cpu_clear_disr,
2682 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2683 	},
2684 	{
2685 		.desc = "RASv1p1 Extension Support",
2686 		.capability = ARM64_HAS_RASV1P1_EXTN,
2687 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2688 		.matches = has_rasv1p1,
2689 	},
2690 #endif /* CONFIG_ARM64_RAS_EXTN */
2691 #ifdef CONFIG_ARM64_AMU_EXTN
2692 	{
2693 		.desc = "Activity Monitors Unit (AMU)",
2694 		.capability = ARM64_HAS_AMU_EXTN,
2695 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2696 		.matches = has_amu,
2697 		.cpu_enable = cpu_amu_enable,
2698 		.cpus = &amu_cpus,
2699 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2700 	},
2701 #endif /* CONFIG_ARM64_AMU_EXTN */
2702 	{
2703 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2704 		.capability = ARM64_HAS_CACHE_IDC,
2705 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2706 		.matches = has_cache_idc,
2707 		.cpu_enable = cpu_emulate_effective_ctr,
2708 	},
2709 	{
2710 		.desc = "Instruction cache invalidation not required for I/D coherence",
2711 		.capability = ARM64_HAS_CACHE_DIC,
2712 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713 		.matches = has_cache_dic,
2714 	},
2715 	{
2716 		.desc = "Stage-2 Force Write-Back",
2717 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2718 		.capability = ARM64_HAS_STAGE2_FWB,
2719 		.matches = has_cpuid_feature,
2720 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2721 	},
2722 	{
2723 		.desc = "ARMv8.4 Translation Table Level",
2724 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2725 		.capability = ARM64_HAS_ARMv8_4_TTL,
2726 		.matches = has_cpuid_feature,
2727 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2728 	},
2729 	{
2730 		.desc = "TLB range maintenance instructions",
2731 		.capability = ARM64_HAS_TLB_RANGE,
2732 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2733 		.matches = has_cpuid_feature,
2734 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2735 	},
2736 #ifdef CONFIG_ARM64_HW_AFDBM
2737 	{
2738 		.desc = "Hardware dirty bit management",
2739 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2740 		.capability = ARM64_HW_DBM,
2741 		.matches = has_hw_dbm,
2742 		.cpu_enable = cpu_enable_hw_dbm,
2743 		.cpus = &dbm_cpus,
2744 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2745 	},
2746 #endif
2747 #ifdef CONFIG_ARM64_HAFT
2748 	{
2749 		.desc = "Hardware managed Access Flag for Table Descriptors",
2750 		/*
2751 		 * Contrary to the page/block access flag, the table access flag
2752 		 * cannot be emulated in software (no access fault will occur).
2753 		 * Therefore this should be used only if it's supported system
2754 		 * wide.
2755 		 */
2756 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2757 		.capability = ARM64_HAFT,
2758 		.matches = has_cpuid_feature,
2759 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2760 	},
2761 #endif
2762 	{
2763 		.desc = "CRC32 instructions",
2764 		.capability = ARM64_HAS_CRC32,
2765 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2766 		.matches = has_cpuid_feature,
2767 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2768 	},
2769 	{
2770 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2771 		.capability = ARM64_SSBS,
2772 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2773 		.matches = has_cpuid_feature,
2774 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2775 	},
2776 #ifdef CONFIG_ARM64_CNP
2777 	{
2778 		.desc = "Common not Private translations",
2779 		.capability = ARM64_HAS_CNP,
2780 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2781 		.matches = has_useable_cnp,
2782 		.cpu_enable = cpu_enable_cnp,
2783 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2784 	},
2785 #endif
2786 	{
2787 		.desc = "Speculation barrier (SB)",
2788 		.capability = ARM64_HAS_SB,
2789 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2790 		.matches = has_cpuid_feature,
2791 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2792 	},
2793 #ifdef CONFIG_ARM64_PTR_AUTH
2794 	{
2795 		.desc = "Address authentication (architected QARMA5 algorithm)",
2796 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2797 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2798 		.matches = has_address_auth_cpucap,
2799 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2800 	},
2801 	{
2802 		.desc = "Address authentication (architected QARMA3 algorithm)",
2803 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2804 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2805 		.matches = has_address_auth_cpucap,
2806 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2807 	},
2808 	{
2809 		.desc = "Address authentication (IMP DEF algorithm)",
2810 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2811 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2812 		.matches = has_address_auth_cpucap,
2813 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2814 	},
2815 	{
2816 		.capability = ARM64_HAS_ADDRESS_AUTH,
2817 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2818 		.matches = has_address_auth_metacap,
2819 	},
2820 	{
2821 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2822 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2823 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2824 		.matches = has_cpuid_feature,
2825 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2826 	},
2827 	{
2828 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2829 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2830 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2831 		.matches = has_cpuid_feature,
2832 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2833 	},
2834 	{
2835 		.desc = "Generic authentication (IMP DEF algorithm)",
2836 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2837 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2838 		.matches = has_cpuid_feature,
2839 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2840 	},
2841 	{
2842 		.capability = ARM64_HAS_GENERIC_AUTH,
2843 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2844 		.matches = has_generic_auth,
2845 	},
2846 #endif /* CONFIG_ARM64_PTR_AUTH */
2847 #ifdef CONFIG_ARM64_PSEUDO_NMI
2848 	{
2849 		/*
2850 		 * Depends on having GICv3
2851 		 */
2852 		.desc = "IRQ priority masking",
2853 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2854 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2855 		.matches = can_use_gic_priorities,
2856 	},
2857 	{
2858 		/*
2859 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2860 		 */
2861 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2862 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2863 		.matches = has_gic_prio_relaxed_sync,
2864 	},
2865 #endif
2866 	{
2867 		/*
2868 		 * Depends on having GICv3
2869 		 */
2870 		.desc = "ICV_DIR_EL1 trapping",
2871 		.capability = ARM64_HAS_ICH_HCR_EL2_TDIR,
2872 		.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
2873 		.matches = can_trap_icv_dir_el1,
2874 	},
2875 #ifdef CONFIG_ARM64_E0PD
2876 	{
2877 		.desc = "E0PD",
2878 		.capability = ARM64_HAS_E0PD,
2879 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880 		.cpu_enable = cpu_enable_e0pd,
2881 		.matches = has_cpuid_feature,
2882 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2883 	},
2884 #endif
2885 	{
2886 		.desc = "Random Number Generator",
2887 		.capability = ARM64_HAS_RNG,
2888 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2889 		.matches = has_cpuid_feature,
2890 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2891 	},
2892 #ifdef CONFIG_ARM64_BTI
2893 	{
2894 		.desc = "Branch Target Identification",
2895 		.capability = ARM64_BTI,
2896 #ifdef CONFIG_ARM64_BTI_KERNEL
2897 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2898 #else
2899 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2900 #endif
2901 		.matches = has_cpuid_feature,
2902 		.cpu_enable = bti_enable,
2903 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2904 	},
2905 #endif
2906 #ifdef CONFIG_ARM64_MTE
2907 	{
2908 		.desc = "Memory Tagging Extension",
2909 		.capability = ARM64_MTE,
2910 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2911 		.matches = has_cpuid_feature,
2912 		.cpu_enable = cpu_enable_mte,
2913 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2914 	},
2915 	{
2916 		.desc = "Asymmetric MTE Tag Check Fault",
2917 		.capability = ARM64_MTE_ASYMM,
2918 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2919 		.matches = has_cpuid_feature,
2920 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2921 	},
2922 	{
2923 		.desc = "FAR on MTE Tag Check Fault",
2924 		.capability = ARM64_MTE_FAR,
2925 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2926 		.matches = has_cpuid_feature,
2927 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2928 	},
2929 	{
2930 		.desc = "Store Only MTE Tag Check",
2931 		.capability = ARM64_MTE_STORE_ONLY,
2932 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2933 		.matches = has_cpuid_feature,
2934 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2935 	},
2936 #endif /* CONFIG_ARM64_MTE */
2937 	{
2938 		.desc = "RCpc load-acquire (LDAPR)",
2939 		.capability = ARM64_HAS_LDAPR,
2940 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2941 		.matches = has_cpuid_feature,
2942 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2943 	},
2944 	{
2945 		.desc = "Fine Grained Traps",
2946 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2947 		.capability = ARM64_HAS_FGT,
2948 		.matches = has_cpuid_feature,
2949 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2950 	},
2951 	{
2952 		.desc = "Fine Grained Traps 2",
2953 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2954 		.capability = ARM64_HAS_FGT2,
2955 		.matches = has_cpuid_feature,
2956 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2957 	},
2958 #ifdef CONFIG_ARM64_SME
2959 	{
2960 		.desc = "Scalable Matrix Extension",
2961 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2962 		.capability = ARM64_SME,
2963 		.matches = has_cpuid_feature,
2964 		.cpu_enable = cpu_enable_sme,
2965 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2966 	},
2967 	/* FA64 should be sorted after the base SME capability */
2968 	{
2969 		.desc = "FA64",
2970 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2971 		.capability = ARM64_SME_FA64,
2972 		.matches = has_cpuid_feature,
2973 		.cpu_enable = cpu_enable_fa64,
2974 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2975 	},
2976 	{
2977 		.desc = "SME2",
2978 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2979 		.capability = ARM64_SME2,
2980 		.matches = has_cpuid_feature,
2981 		.cpu_enable = cpu_enable_sme2,
2982 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2983 	},
2984 #endif /* CONFIG_ARM64_SME */
2985 	{
2986 		.desc = "WFx with timeout",
2987 		.capability = ARM64_HAS_WFXT,
2988 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2989 		.matches = has_cpuid_feature,
2990 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2991 	},
2992 	{
2993 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2994 		.capability = ARM64_HAS_TIDCP1,
2995 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2996 		.matches = has_cpuid_feature,
2997 		.cpu_enable = cpu_trap_el0_impdef,
2998 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2999 	},
3000 	{
3001 		.desc = "Data independent timing control (DIT)",
3002 		.capability = ARM64_HAS_DIT,
3003 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3004 		.matches = has_cpuid_feature,
3005 		.cpu_enable = cpu_enable_dit,
3006 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3007 	},
3008 	{
3009 		.desc = "Memory Copy and Memory Set instructions",
3010 		.capability = ARM64_HAS_MOPS,
3011 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3012 		.matches = has_cpuid_feature,
3013 		.cpu_enable = cpu_enable_mops,
3014 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3015 	},
3016 	{
3017 		.capability = ARM64_HAS_TCR2,
3018 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3019 		.matches = has_cpuid_feature,
3020 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3021 	},
3022 	{
3023 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3024 		.capability = ARM64_HAS_S1PIE,
3025 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3026 		.matches = has_cpuid_feature,
3027 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3028 	},
3029 	{
3030 		.desc = "VHE for hypervisor only",
3031 		.capability = ARM64_KVM_HVHE,
3032 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3033 		.matches = hvhe_possible,
3034 	},
3035 	{
3036 		.desc = "Enhanced Virtualization Traps",
3037 		.capability = ARM64_HAS_EVT,
3038 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3039 		.matches = has_cpuid_feature,
3040 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3041 	},
3042 	{
3043 		.desc = "BBM Level 2 without TLB conflict abort",
3044 		.capability = ARM64_HAS_BBML2_NOABORT,
3045 		.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3046 		.matches = has_bbml2_noabort,
3047 	},
3048 	{
3049 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
3050 		.capability = ARM64_HAS_LPA2,
3051 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3052 		.matches = has_lpa2,
3053 	},
3054 	{
3055 		.desc = "FPMR",
3056 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3057 		.capability = ARM64_HAS_FPMR,
3058 		.matches = has_cpuid_feature,
3059 		.cpu_enable = cpu_enable_fpmr,
3060 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3061 	},
3062 #ifdef CONFIG_ARM64_VA_BITS_52
3063 	{
3064 		.capability = ARM64_HAS_VA52,
3065 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3066 		.matches = has_cpuid_feature,
3067 #ifdef CONFIG_ARM64_64K_PAGES
3068 		.desc = "52-bit Virtual Addressing (LVA)",
3069 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3070 #else
3071 		.desc = "52-bit Virtual Addressing (LPA2)",
3072 #ifdef CONFIG_ARM64_4K_PAGES
3073 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3074 #else
3075 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3076 #endif
3077 #endif
3078 	},
3079 #endif
3080 	{
3081 		.desc = "Memory Partitioning And Monitoring",
3082 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3083 		.capability = ARM64_MPAM,
3084 		.matches = test_has_mpam,
3085 		.cpu_enable = cpu_enable_mpam,
3086 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3087 	},
3088 	{
3089 		.desc = "Memory Partitioning And Monitoring Virtualisation",
3090 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3091 		.capability = ARM64_MPAM_HCR,
3092 		.matches = test_has_mpam_hcr,
3093 	},
3094 	{
3095 		.desc = "NV1",
3096 		.capability = ARM64_HAS_HCR_NV1,
3097 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3098 		.matches = has_nv1,
3099 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3100 	},
3101 #ifdef CONFIG_ARM64_POE
3102 	{
3103 		.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3104 		.capability = ARM64_HAS_S1POE,
3105 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3106 		.matches = has_cpuid_feature,
3107 		.cpu_enable = cpu_enable_poe,
3108 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3109 	},
3110 #endif
3111 #ifdef CONFIG_ARM64_GCS
3112 	{
3113 		.desc = "Guarded Control Stack (GCS)",
3114 		.capability = ARM64_HAS_GCS,
3115 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3116 		.cpu_enable = cpu_enable_gcs,
3117 		.matches = has_cpuid_feature,
3118 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3119 	},
3120 #endif
3121 #ifdef CONFIG_HW_PERF_EVENTS
3122 	{
3123 		.desc = "PMUv3",
3124 		.capability = ARM64_HAS_PMUV3,
3125 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3126 		.matches = has_pmuv3,
3127 	},
3128 #endif
3129 	{
3130 		.desc = "SCTLR2",
3131 		.capability = ARM64_HAS_SCTLR2,
3132 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3133 		.matches = has_cpuid_feature,
3134 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3135 	},
3136 	{
3137 		.desc = "GICv5 CPU interface",
3138 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3139 		.capability = ARM64_HAS_GICV5_CPUIF,
3140 		.matches = has_cpuid_feature,
3141 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3142 	},
3143 	{
3144 		.desc = "GICv5 Legacy vCPU interface",
3145 		.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3146 		.capability = ARM64_HAS_GICV5_LEGACY,
3147 		.matches = test_has_gicv5_legacy,
3148 	},
3149 	{
3150 		.desc = "XNX",
3151 		.capability = ARM64_HAS_XNX,
3152 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3153 		.matches = has_cpuid_feature,
3154 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, XNX, IMP)
3155 	},
3156 	{
3157 		.desc = "LS64",
3158 		.capability = ARM64_HAS_LS64,
3159 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3160 		.matches = has_cpuid_feature,
3161 		.cpu_enable = cpu_enable_ls64,
3162 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LS64, LS64)
3163 	},
3164 	{
3165 		.desc = "LS64_V",
3166 		.capability = ARM64_HAS_LS64_V,
3167 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3168 		.matches = has_cpuid_feature,
3169 		.cpu_enable = cpu_enable_ls64_v,
3170 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LS64, LS64_V)
3171 	},
3172 	{},
3173 };
3174 
3175 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
3176 		.matches = has_user_cpuid_feature,			\
3177 		ARM64_CPUID_FIELDS(reg, field, min_value)
3178 
3179 #define __HWCAP_CAP(name, cap_type, cap)					\
3180 		.desc = name,							\
3181 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
3182 		.hwcap_type = cap_type,						\
3183 		.hwcap = cap,							\
3184 
3185 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
3186 	{									\
3187 		__HWCAP_CAP(#cap, cap_type, cap)				\
3188 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
3189 	}
3190 
3191 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
3192 	{									\
3193 		__HWCAP_CAP(#cap, cap_type, cap)				\
3194 		.matches = cpucap_multi_entry_cap_matches,			\
3195 		.match_list = list,						\
3196 	}
3197 
3198 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
3199 	{									\
3200 		__HWCAP_CAP(#cap, cap_type, cap)				\
3201 		.matches = match,						\
3202 	}
3203 
3204 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap)		\
3205 	{									\
3206 		__HWCAP_CAP(#cap, cap_type, cap)				\
3207 		HWCAP_CPUID_MATCH(reg, field, min_value) 			\
3208 		.matches = match,						\
3209 	}
3210 
3211 #ifdef CONFIG_ARM64_PTR_AUTH
3212 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3213 	{
3214 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3215 	},
3216 	{
3217 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3218 	},
3219 	{
3220 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3221 	},
3222 	{},
3223 };
3224 
3225 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3226 	{
3227 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3228 	},
3229 	{
3230 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3231 	},
3232 	{
3233 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3234 	},
3235 	{},
3236 };
3237 #endif
3238 
3239 #ifdef CONFIG_ARM64_SVE
3240 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3241 {
3242 	return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3243 }
3244 #endif
3245 
3246 #ifdef CONFIG_ARM64_SME
3247 static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3248 {
3249 	return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3250 }
3251 #endif
3252 
3253 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3254 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3255 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3256 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3257 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3258 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3259 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3260 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3261 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3262 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3263 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3264 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3265 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3266 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3267 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3268 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3269 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3270 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3271 	HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3272 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3273 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3274 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3275 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3276 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3277 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3278 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3279 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3280 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3281 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3282 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3283 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3284 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3285 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3286 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3287 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3288 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3289 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3290 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3291 	HWCAP_CAP(ID_AA64ISAR1_EL1, LS64, LS64, CAP_HWCAP, KERNEL_HWCAP_LS64),
3292 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3293 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3294 	HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3295 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3296 #ifdef CONFIG_ARM64_SVE
3297 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3298 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3299 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3300 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3301 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3302 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3303 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3304 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3305 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3306 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3307 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3308 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3309 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3310 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3311 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3312 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3313 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3314 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3315 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3316 #endif
3317 #ifdef CONFIG_ARM64_GCS
3318 	HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3319 #endif
3320 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3321 #ifdef CONFIG_ARM64_BTI
3322 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3323 #endif
3324 #ifdef CONFIG_ARM64_PTR_AUTH
3325 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3326 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3327 #endif
3328 #ifdef CONFIG_ARM64_MTE
3329 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3330 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3331 	HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3332 	HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3333 #endif /* CONFIG_ARM64_MTE */
3334 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3335 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3336 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3337 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3338 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3339 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3340 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3341 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3342 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3343 #ifdef CONFIG_ARM64_SME
3344 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3345 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3346 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3347 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3348 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3349 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3350 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3351 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3352 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3353 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3354 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3355 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3356 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3357 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3358 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3359 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3360 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3361 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3362 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3363 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3364 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3365 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3366 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3367 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3368 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3369 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3370 #endif /* CONFIG_ARM64_SME */
3371 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3372 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3373 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3374 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3375 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3376 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3377 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3378 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3379 #ifdef CONFIG_ARM64_POE
3380 	HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3381 #endif
3382 	{},
3383 };
3384 
3385 #ifdef CONFIG_COMPAT
3386 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3387 {
3388 	/*
3389 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3390 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3391 	 * check is future proof, by making sure value is non-zero.
3392 	 */
3393 	u32 mvfr1;
3394 
3395 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3396 	if (scope == SCOPE_SYSTEM)
3397 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3398 	else
3399 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3400 
3401 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3402 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3403 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3404 }
3405 #endif
3406 
3407 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3408 #ifdef CONFIG_COMPAT
3409 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3410 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3411 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3412 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3413 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3414 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3415 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3416 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3417 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3418 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3419 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3420 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3421 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3422 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3423 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3424 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3425 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3426 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3427 #endif
3428 	{},
3429 };
3430 
3431 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3432 {
3433 	switch (cap->hwcap_type) {
3434 	case CAP_HWCAP:
3435 		cpu_set_feature(cap->hwcap);
3436 		break;
3437 #ifdef CONFIG_COMPAT
3438 	case CAP_COMPAT_HWCAP:
3439 		compat_elf_hwcap |= (u32)cap->hwcap;
3440 		break;
3441 	case CAP_COMPAT_HWCAP2:
3442 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3443 		break;
3444 #endif
3445 	default:
3446 		WARN_ON(1);
3447 		break;
3448 	}
3449 }
3450 
3451 /* Check if we have a particular HWCAP enabled */
3452 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3453 {
3454 	bool rc;
3455 
3456 	switch (cap->hwcap_type) {
3457 	case CAP_HWCAP:
3458 		rc = cpu_have_feature(cap->hwcap);
3459 		break;
3460 #ifdef CONFIG_COMPAT
3461 	case CAP_COMPAT_HWCAP:
3462 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3463 		break;
3464 	case CAP_COMPAT_HWCAP2:
3465 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3466 		break;
3467 #endif
3468 	default:
3469 		WARN_ON(1);
3470 		rc = false;
3471 	}
3472 
3473 	return rc;
3474 }
3475 
3476 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3477 {
3478 	/* We support emulation of accesses to CPU ID feature registers */
3479 	cpu_set_named_feature(CPUID);
3480 	for (; hwcaps->matches; hwcaps++)
3481 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3482 			cap_set_elf_hwcap(hwcaps);
3483 }
3484 
3485 static void update_cpu_capabilities(u16 scope_mask)
3486 {
3487 	int i;
3488 	const struct arm64_cpu_capabilities *caps;
3489 
3490 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3491 	for (i = 0; i < ARM64_NCAPS; i++) {
3492 		bool match_all = false;
3493 		bool caps_set = false;
3494 		bool boot_cpu = false;
3495 
3496 		caps = cpucap_ptrs[i];
3497 		if (!caps || !(caps->type & scope_mask))
3498 			continue;
3499 
3500 		match_all = cpucap_match_all_early_cpus(caps);
3501 		caps_set = cpus_have_cap(caps->capability);
3502 		boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3503 
3504 		/*
3505 		 * Unless it's a match-all CPUs feature, avoid probing if
3506 		 * already detected.
3507 		 */
3508 		if (!match_all && caps_set)
3509 			continue;
3510 
3511 		/*
3512 		 * A match-all CPUs capability is only set when probing the
3513 		 * boot CPU. It may be cleared subsequently if not detected on
3514 		 * secondary ones.
3515 		 */
3516 		if (match_all && !caps_set && !boot_cpu)
3517 			continue;
3518 
3519 		if (!caps->matches(caps, cpucap_default_scope(caps))) {
3520 			if (match_all)
3521 				__clear_bit(caps->capability, system_cpucaps);
3522 			continue;
3523 		}
3524 
3525 		/*
3526 		 * Match-all CPUs capabilities are logged later when the
3527 		 * system capabilities are finalised.
3528 		 */
3529 		if (!match_all && caps->desc && !caps->cpus)
3530 			pr_info("detected: %s\n", caps->desc);
3531 
3532 		__set_bit(caps->capability, system_cpucaps);
3533 
3534 		if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3535 			set_bit(caps->capability, boot_cpucaps);
3536 	}
3537 }
3538 
3539 /*
3540  * Enable all the available capabilities on this CPU. The capabilities
3541  * with BOOT_CPU scope are handled separately and hence skipped here.
3542  */
3543 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3544 {
3545 	int i;
3546 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3547 
3548 	for_each_available_cap(i) {
3549 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3550 
3551 		if (WARN_ON(!cap))
3552 			continue;
3553 
3554 		if (!(cap->type & non_boot_scope))
3555 			continue;
3556 
3557 		if (cap->cpu_enable)
3558 			cap->cpu_enable(cap);
3559 	}
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Run through the enabled capabilities and enable() it on all active
3565  * CPUs
3566  */
3567 static void __init enable_cpu_capabilities(u16 scope_mask)
3568 {
3569 	int i;
3570 	const struct arm64_cpu_capabilities *caps;
3571 	bool boot_scope;
3572 
3573 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3574 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3575 
3576 	for (i = 0; i < ARM64_NCAPS; i++) {
3577 		caps = cpucap_ptrs[i];
3578 		if (!caps || !(caps->type & scope_mask) ||
3579 		    !cpus_have_cap(caps->capability))
3580 			continue;
3581 
3582 		if (boot_scope && caps->cpu_enable)
3583 			/*
3584 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3585 			 * before any secondary CPU boots. Thus, each secondary
3586 			 * will enable the capability as appropriate via
3587 			 * check_local_cpu_capabilities(). The only exception is
3588 			 * the boot CPU, for which the capability must be
3589 			 * enabled here. This approach avoids costly
3590 			 * stop_machine() calls for this case.
3591 			 */
3592 			caps->cpu_enable(caps);
3593 	}
3594 
3595 	/*
3596 	 * For all non-boot scope capabilities, use stop_machine()
3597 	 * as it schedules the work allowing us to modify PSTATE,
3598 	 * instead of on_each_cpu() which uses an IPI, giving us a
3599 	 * PSTATE that disappears when we return.
3600 	 */
3601 	if (!boot_scope)
3602 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3603 			     NULL, cpu_online_mask);
3604 }
3605 
3606 /*
3607  * Run through the list of capabilities to check for conflicts.
3608  * If the system has already detected a capability, take necessary
3609  * action on this CPU.
3610  */
3611 static void verify_local_cpu_caps(u16 scope_mask)
3612 {
3613 	int i;
3614 	bool cpu_has_cap, system_has_cap;
3615 	const struct arm64_cpu_capabilities *caps;
3616 
3617 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3618 
3619 	for (i = 0; i < ARM64_NCAPS; i++) {
3620 		caps = cpucap_ptrs[i];
3621 		if (!caps || !(caps->type & scope_mask))
3622 			continue;
3623 
3624 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3625 		system_has_cap = cpus_have_cap(caps->capability);
3626 
3627 		if (system_has_cap) {
3628 			/*
3629 			 * Check if the new CPU misses an advertised feature,
3630 			 * which is not safe to miss.
3631 			 */
3632 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3633 				break;
3634 			/*
3635 			 * We have to issue cpu_enable() irrespective of
3636 			 * whether the CPU has it or not, as it is enabeld
3637 			 * system wide. It is upto the call back to take
3638 			 * appropriate action on this CPU.
3639 			 */
3640 			if (caps->cpu_enable)
3641 				caps->cpu_enable(caps);
3642 		} else {
3643 			/*
3644 			 * Check if the CPU has this capability if it isn't
3645 			 * safe to have when the system doesn't.
3646 			 */
3647 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3648 				break;
3649 		}
3650 	}
3651 
3652 	if (i < ARM64_NCAPS) {
3653 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3654 			smp_processor_id(), caps->capability,
3655 			caps->desc, system_has_cap, cpu_has_cap);
3656 
3657 		if (cpucap_panic_on_conflict(caps))
3658 			cpu_panic_kernel();
3659 		else
3660 			cpu_die_early();
3661 	}
3662 }
3663 
3664 /*
3665  * Check for CPU features that are used in early boot
3666  * based on the Boot CPU value.
3667  */
3668 static void check_early_cpu_features(void)
3669 {
3670 	verify_cpu_asid_bits();
3671 
3672 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3673 }
3674 
3675 static void
3676 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3677 {
3678 
3679 	for (; caps->matches; caps++)
3680 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3681 			pr_crit("CPU%d: missing HWCAP: %s\n",
3682 					smp_processor_id(), caps->desc);
3683 			cpu_die_early();
3684 		}
3685 }
3686 
3687 static void verify_local_elf_hwcaps(void)
3688 {
3689 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3690 
3691 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3692 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3693 }
3694 
3695 static void verify_sve_features(void)
3696 {
3697 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3698 
3699 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3700 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3701 			smp_processor_id());
3702 		cpu_die_early();
3703 	}
3704 
3705 	cpacr_restore(cpacr);
3706 }
3707 
3708 static void verify_sme_features(void)
3709 {
3710 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3711 
3712 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3713 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3714 			smp_processor_id());
3715 		cpu_die_early();
3716 	}
3717 
3718 	cpacr_restore(cpacr);
3719 }
3720 
3721 static void verify_hyp_capabilities(void)
3722 {
3723 	u64 safe_mmfr1, mmfr0, mmfr1;
3724 	int parange, ipa_max;
3725 	unsigned int safe_vmid_bits, vmid_bits;
3726 
3727 	if (!IS_ENABLED(CONFIG_KVM))
3728 		return;
3729 
3730 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3731 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3732 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3733 
3734 	/* Verify VMID bits */
3735 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3736 	vmid_bits = get_vmid_bits(mmfr1);
3737 	if (vmid_bits < safe_vmid_bits) {
3738 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3739 		cpu_die_early();
3740 	}
3741 
3742 	/* Verify IPA range */
3743 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3744 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3745 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3746 	if (ipa_max < get_kvm_ipa_limit()) {
3747 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3748 		cpu_die_early();
3749 	}
3750 }
3751 
3752 static void verify_mpam_capabilities(void)
3753 {
3754 	u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3755 	u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3756 	u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3757 
3758 	if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3759 	    FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3760 		pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3761 		cpu_die_early();
3762 	}
3763 
3764 	cpu_idr = read_cpuid(MPAMIDR_EL1);
3765 	sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3766 	if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3767 	    FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3768 		pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3769 		cpu_die_early();
3770 	}
3771 
3772 	cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3773 	cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3774 	sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3775 	sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3776 	if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3777 		pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3778 		cpu_die_early();
3779 	}
3780 }
3781 
3782 /*
3783  * Run through the enabled system capabilities and enable() it on this CPU.
3784  * The capabilities were decided based on the available CPUs at the boot time.
3785  * Any new CPU should match the system wide status of the capability. If the
3786  * new CPU doesn't have a capability which the system now has enabled, we
3787  * cannot do anything to fix it up and could cause unexpected failures. So
3788  * we park the CPU.
3789  */
3790 static void verify_local_cpu_capabilities(void)
3791 {
3792 	/*
3793 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3794 	 * check_early_cpu_features(), as they need to be verified
3795 	 * on all secondary CPUs.
3796 	 */
3797 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3798 	verify_local_elf_hwcaps();
3799 
3800 	if (system_supports_sve())
3801 		verify_sve_features();
3802 
3803 	if (system_supports_sme())
3804 		verify_sme_features();
3805 
3806 	if (is_hyp_mode_available())
3807 		verify_hyp_capabilities();
3808 
3809 	if (system_supports_mpam())
3810 		verify_mpam_capabilities();
3811 }
3812 
3813 void check_local_cpu_capabilities(void)
3814 {
3815 	/*
3816 	 * All secondary CPUs should conform to the early CPU features
3817 	 * in use by the kernel based on boot CPU.
3818 	 */
3819 	check_early_cpu_features();
3820 
3821 	/*
3822 	 * If we haven't finalised the system capabilities, this CPU gets
3823 	 * a chance to update the errata work arounds and local features.
3824 	 * Otherwise, this CPU should verify that it has all the system
3825 	 * advertised capabilities.
3826 	 */
3827 	if (!system_capabilities_finalized())
3828 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3829 	else
3830 		verify_local_cpu_capabilities();
3831 }
3832 
3833 bool this_cpu_has_cap(unsigned int n)
3834 {
3835 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3836 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3837 
3838 		if (cap)
3839 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3840 	}
3841 
3842 	return false;
3843 }
3844 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3845 
3846 /*
3847  * This helper function is used in a narrow window when,
3848  * - The system wide safe registers are set with all the SMP CPUs and,
3849  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3850  */
3851 static bool __maybe_unused __system_matches_cap(unsigned int n)
3852 {
3853 	if (n < ARM64_NCAPS) {
3854 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3855 
3856 		if (cap)
3857 			return cap->matches(cap, SCOPE_SYSTEM);
3858 	}
3859 	return false;
3860 }
3861 
3862 void cpu_set_feature(unsigned int num)
3863 {
3864 	set_bit(num, elf_hwcap);
3865 }
3866 
3867 bool cpu_have_feature(unsigned int num)
3868 {
3869 	return test_bit(num, elf_hwcap);
3870 }
3871 EXPORT_SYMBOL_GPL(cpu_have_feature);
3872 
3873 unsigned long cpu_get_elf_hwcap(void)
3874 {
3875 	/*
3876 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3877 	 * note that for userspace compatibility we guarantee that bits 62
3878 	 * and 63 will always be returned as 0.
3879 	 */
3880 	return elf_hwcap[0];
3881 }
3882 
3883 unsigned long cpu_get_elf_hwcap2(void)
3884 {
3885 	return elf_hwcap[1];
3886 }
3887 
3888 unsigned long cpu_get_elf_hwcap3(void)
3889 {
3890 	return elf_hwcap[2];
3891 }
3892 
3893 static void __init setup_boot_cpu_capabilities(void)
3894 {
3895 	kvm_arm_target_impl_cpu_init();
3896 	/*
3897 	 * The boot CPU's feature register values have been recorded. Detect
3898 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3899 	 * patch alternatives for the available boot cpucaps.
3900 	 */
3901 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3902 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3903 	apply_boot_alternatives();
3904 }
3905 
3906 void __init setup_boot_cpu_features(void)
3907 {
3908 	/*
3909 	 * Initialize the indirect array of CPU capabilities pointers before we
3910 	 * handle the boot CPU.
3911 	 */
3912 	init_cpucap_indirect_list();
3913 
3914 	/*
3915 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3916 	 * setup_boot_cpu_capabilities() since it interacts with
3917 	 * can_use_gic_priorities().
3918 	 */
3919 	detect_system_supports_pseudo_nmi();
3920 
3921 	setup_boot_cpu_capabilities();
3922 }
3923 
3924 static void __init setup_system_capabilities(void)
3925 {
3926 	/*
3927 	 * The system-wide safe feature register values have been finalized.
3928 	 * Detect, enable, and patch alternatives for the available system
3929 	 * cpucaps.
3930 	 */
3931 	update_cpu_capabilities(SCOPE_SYSTEM);
3932 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3933 	apply_alternatives_all();
3934 
3935 	for (int i = 0; i < ARM64_NCAPS; i++) {
3936 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3937 
3938 		if (!caps || !caps->desc)
3939 			continue;
3940 
3941 		/*
3942 		 * Log any cpucaps with a cpumask as these aren't logged by
3943 		 * update_cpu_capabilities().
3944 		 */
3945 		if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3946 			pr_info("detected: %s on CPU%*pbl\n",
3947 				caps->desc, cpumask_pr_args(caps->cpus));
3948 
3949 		/* Log match-all CPUs capabilities */
3950 		if (cpucap_match_all_early_cpus(caps) &&
3951 		    cpus_have_cap(caps->capability))
3952 			pr_info("detected: %s\n", caps->desc);
3953 	}
3954 
3955 	/*
3956 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3957 	 */
3958 	if (system_uses_ttbr0_pan())
3959 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3960 
3961 	/*
3962 	 * Report Spectre mitigations status.
3963 	 */
3964 	spectre_print_disabled_mitigations();
3965 }
3966 
3967 void __init setup_system_features(void)
3968 {
3969 	setup_system_capabilities();
3970 
3971 	linear_map_maybe_split_to_ptes();
3972 	kpti_install_ng_mappings();
3973 
3974 	sve_setup();
3975 	sme_setup();
3976 
3977 	/*
3978 	 * Check for sane CTR_EL0.CWG value.
3979 	 */
3980 	if (!cache_type_cwg())
3981 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3982 			ARCH_DMA_MINALIGN);
3983 }
3984 
3985 void __init setup_user_features(void)
3986 {
3987 	user_feature_fixup();
3988 
3989 	setup_elf_hwcaps(arm64_elf_hwcaps);
3990 
3991 	if (system_supports_32bit_el0()) {
3992 		setup_elf_hwcaps(compat_elf_hwcaps);
3993 		elf_hwcap_fixup();
3994 	}
3995 
3996 	minsigstksz_setup();
3997 }
3998 
3999 static int enable_mismatched_32bit_el0(unsigned int cpu)
4000 {
4001 	/*
4002 	 * The first 32-bit-capable CPU we detected and so can no longer
4003 	 * be offlined by userspace. -1 indicates we haven't yet onlined
4004 	 * a 32-bit-capable CPU.
4005 	 */
4006 	static int lucky_winner = -1;
4007 
4008 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
4009 	bool cpu_32bit = false;
4010 
4011 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
4012 		if (!housekeeping_cpu(cpu, HK_TYPE_DOMAIN))
4013 			pr_info("Treating domain isolated CPU %u as 64-bit only\n", cpu);
4014 		else
4015 			cpu_32bit = true;
4016 	}
4017 
4018 	if (cpu_32bit) {
4019 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
4020 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4021 	}
4022 
4023 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4024 		return 0;
4025 
4026 	if (lucky_winner >= 0)
4027 		return 0;
4028 
4029 	/*
4030 	 * We've detected a mismatch. We need to keep one of our CPUs with
4031 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4032 	 * every CPU in the system for a 32-bit task.
4033 	 */
4034 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4035 							 cpu_active_mask);
4036 	get_cpu_device(lucky_winner)->offline_disabled = true;
4037 	setup_elf_hwcaps(compat_elf_hwcaps);
4038 	elf_hwcap_fixup();
4039 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4040 		cpu, lucky_winner);
4041 	return 0;
4042 }
4043 
4044 static int __init init_32bit_el0_mask(void)
4045 {
4046 	if (!allow_mismatched_32bit_el0)
4047 		return 0;
4048 
4049 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4050 		return -ENOMEM;
4051 
4052 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4053 				 "arm64/mismatched_32bit_el0:online",
4054 				 enable_mismatched_32bit_el0, NULL);
4055 }
4056 subsys_initcall_sync(init_32bit_el0_mask);
4057 
4058 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4059 {
4060 	cpu_enable_swapper_cnp();
4061 }
4062 
4063 /*
4064  * We emulate only the following system register space.
4065  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4066  * See Table C5-6 System instruction encodings for System register accesses,
4067  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
4068  */
4069 static inline bool __attribute_const__ is_emulated(u32 id)
4070 {
4071 	return (sys_reg_Op0(id) == 0x3 &&
4072 		sys_reg_CRn(id) == 0x0 &&
4073 		sys_reg_Op1(id) == 0x0 &&
4074 		(sys_reg_CRm(id) == 0 ||
4075 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4076 }
4077 
4078 /*
4079  * With CRm == 0, reg should be one of :
4080  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4081  */
4082 static inline int emulate_id_reg(u32 id, u64 *valp)
4083 {
4084 	switch (id) {
4085 	case SYS_MIDR_EL1:
4086 		*valp = read_cpuid_id();
4087 		break;
4088 	case SYS_MPIDR_EL1:
4089 		*valp = SYS_MPIDR_SAFE_VAL;
4090 		break;
4091 	case SYS_REVIDR_EL1:
4092 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
4093 		*valp = 0;
4094 		break;
4095 	default:
4096 		return -EINVAL;
4097 	}
4098 
4099 	return 0;
4100 }
4101 
4102 static int emulate_sys_reg(u32 id, u64 *valp)
4103 {
4104 	struct arm64_ftr_reg *regp;
4105 
4106 	if (!is_emulated(id))
4107 		return -EINVAL;
4108 
4109 	if (sys_reg_CRm(id) == 0)
4110 		return emulate_id_reg(id, valp);
4111 
4112 	regp = get_arm64_ftr_reg_nowarn(id);
4113 	if (regp)
4114 		*valp = arm64_ftr_reg_user_value(regp);
4115 	else
4116 		/*
4117 		 * The untracked registers are either IMPLEMENTATION DEFINED
4118 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
4119 		 */
4120 		*valp = 0;
4121 	return 0;
4122 }
4123 
4124 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4125 {
4126 	int rc;
4127 	u64 val;
4128 
4129 	rc = emulate_sys_reg(sys_reg, &val);
4130 	if (!rc) {
4131 		pt_regs_write_reg(regs, rt, val);
4132 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4133 	}
4134 	return rc;
4135 }
4136 
4137 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4138 {
4139 	u32 sys_reg, rt;
4140 
4141 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4142 		return false;
4143 
4144 	/*
4145 	 * sys_reg values are defined as used in mrs/msr instruction.
4146 	 * shift the imm value to get the encoding.
4147 	 */
4148 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4149 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4150 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
4151 }
4152 
4153 enum mitigation_state arm64_get_meltdown_state(void)
4154 {
4155 	if (__meltdown_safe)
4156 		return SPECTRE_UNAFFECTED;
4157 
4158 	if (arm64_kernel_unmapped_at_el0())
4159 		return SPECTRE_MITIGATED;
4160 
4161 	return SPECTRE_VULNERABLE;
4162 }
4163 
4164 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4165 			  char *buf)
4166 {
4167 	switch (arm64_get_meltdown_state()) {
4168 	case SPECTRE_UNAFFECTED:
4169 		return sprintf(buf, "Not affected\n");
4170 
4171 	case SPECTRE_MITIGATED:
4172 		return sprintf(buf, "Mitigation: PTI\n");
4173 
4174 	default:
4175 		return sprintf(buf, "Vulnerable\n");
4176 	}
4177 }
4178