1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Cavium, Inc.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8
9 #include "cptvf.h"
10
11 #define DRV_NAME "thunder-cptvf"
12 #define DRV_VERSION "1.0"
13
14 struct cptvf_wqe {
15 struct tasklet_struct twork;
16 void *cptvf;
17 u32 qno;
18 };
19
20 struct cptvf_wqe_info {
21 struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
22 };
23
vq_work_handler(unsigned long data)24 static void vq_work_handler(unsigned long data)
25 {
26 struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
27 struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
28
29 vq_post_process(cwqe->cptvf, cwqe->qno);
30 }
31
init_worker_threads(struct cpt_vf * cptvf)32 static int init_worker_threads(struct cpt_vf *cptvf)
33 {
34 struct pci_dev *pdev = cptvf->pdev;
35 struct cptvf_wqe_info *cwqe_info;
36 int i;
37
38 cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
39 if (!cwqe_info)
40 return -ENOMEM;
41
42 if (cptvf->nr_queues) {
43 dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
44 cptvf->nr_queues);
45 }
46
47 for (i = 0; i < cptvf->nr_queues; i++) {
48 tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
49 (u64)cwqe_info);
50 cwqe_info->vq_wqe[i].qno = i;
51 cwqe_info->vq_wqe[i].cptvf = cptvf;
52 }
53
54 cptvf->wqe_info = cwqe_info;
55
56 return 0;
57 }
58
cleanup_worker_threads(struct cpt_vf * cptvf)59 static void cleanup_worker_threads(struct cpt_vf *cptvf)
60 {
61 struct cptvf_wqe_info *cwqe_info;
62 struct pci_dev *pdev = cptvf->pdev;
63 int i;
64
65 cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
66 if (!cwqe_info)
67 return;
68
69 if (cptvf->nr_queues) {
70 dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
71 cptvf->nr_queues);
72 }
73
74 for (i = 0; i < cptvf->nr_queues; i++)
75 tasklet_kill(&cwqe_info->vq_wqe[i].twork);
76
77 kfree_sensitive(cwqe_info);
78 cptvf->wqe_info = NULL;
79 }
80
free_pending_queues(struct pending_qinfo * pqinfo)81 static void free_pending_queues(struct pending_qinfo *pqinfo)
82 {
83 int i;
84 struct pending_queue *queue;
85
86 for_each_pending_queue(pqinfo, queue, i) {
87 if (!queue->head)
88 continue;
89
90 /* free single queue */
91 kfree_sensitive((queue->head));
92
93 queue->front = 0;
94 queue->rear = 0;
95
96 return;
97 }
98
99 pqinfo->qlen = 0;
100 pqinfo->nr_queues = 0;
101 }
102
alloc_pending_queues(struct pending_qinfo * pqinfo,u32 qlen,u32 nr_queues)103 static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
104 u32 nr_queues)
105 {
106 u32 i;
107 int ret;
108 struct pending_queue *queue = NULL;
109
110 pqinfo->nr_queues = nr_queues;
111 pqinfo->qlen = qlen;
112
113 for_each_pending_queue(pqinfo, queue, i) {
114 queue->head = kcalloc(qlen, sizeof(*queue->head), GFP_KERNEL);
115 if (!queue->head) {
116 ret = -ENOMEM;
117 goto pending_qfail;
118 }
119
120 queue->front = 0;
121 queue->rear = 0;
122 atomic64_set((&queue->pending_count), (0));
123
124 /* init queue spin lock */
125 spin_lock_init(&queue->lock);
126 }
127
128 return 0;
129
130 pending_qfail:
131 free_pending_queues(pqinfo);
132
133 return ret;
134 }
135
init_pending_queues(struct cpt_vf * cptvf,u32 qlen,u32 nr_queues)136 static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
137 {
138 struct pci_dev *pdev = cptvf->pdev;
139 int ret;
140
141 if (!nr_queues)
142 return 0;
143
144 ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
145 if (ret) {
146 dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
147 nr_queues);
148 return ret;
149 }
150
151 return 0;
152 }
153
cleanup_pending_queues(struct cpt_vf * cptvf)154 static void cleanup_pending_queues(struct cpt_vf *cptvf)
155 {
156 struct pci_dev *pdev = cptvf->pdev;
157
158 if (!cptvf->nr_queues)
159 return;
160
161 dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
162 cptvf->nr_queues);
163 free_pending_queues(&cptvf->pqinfo);
164 }
165
free_command_queues(struct cpt_vf * cptvf,struct command_qinfo * cqinfo)166 static void free_command_queues(struct cpt_vf *cptvf,
167 struct command_qinfo *cqinfo)
168 {
169 int i;
170 struct command_queue *queue = NULL;
171 struct command_chunk *chunk = NULL;
172 struct pci_dev *pdev = cptvf->pdev;
173 struct hlist_node *node;
174
175 /* clean up for each queue */
176 for (i = 0; i < cptvf->nr_queues; i++) {
177 queue = &cqinfo->queue[i];
178 if (hlist_empty(&cqinfo->queue[i].chead))
179 continue;
180
181 hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
182 nextchunk) {
183 dma_free_coherent(&pdev->dev, chunk->size,
184 chunk->head,
185 chunk->dma_addr);
186 chunk->head = NULL;
187 chunk->dma_addr = 0;
188 hlist_del(&chunk->nextchunk);
189 kfree_sensitive(chunk);
190 }
191
192 queue->nchunks = 0;
193 queue->idx = 0;
194 }
195
196 /* common cleanup */
197 cqinfo->cmd_size = 0;
198 }
199
alloc_command_queues(struct cpt_vf * cptvf,struct command_qinfo * cqinfo,size_t cmd_size,u32 qlen)200 static int alloc_command_queues(struct cpt_vf *cptvf,
201 struct command_qinfo *cqinfo, size_t cmd_size,
202 u32 qlen)
203 {
204 int i;
205 size_t q_size;
206 struct command_queue *queue = NULL;
207 struct pci_dev *pdev = cptvf->pdev;
208
209 /* common init */
210 cqinfo->cmd_size = cmd_size;
211 /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
212 cptvf->qsize = min(qlen, cqinfo->qchunksize) *
213 CPT_NEXT_CHUNK_PTR_SIZE + 1;
214 /* Qsize in bytes to create space for alignment */
215 q_size = qlen * cqinfo->cmd_size;
216
217 /* per queue initialization */
218 for (i = 0; i < cptvf->nr_queues; i++) {
219 size_t c_size = 0;
220 size_t rem_q_size = q_size;
221 struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
222 u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
223
224 queue = &cqinfo->queue[i];
225 INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
226 do {
227 curr = kzalloc(sizeof(*curr), GFP_KERNEL);
228 if (!curr)
229 goto cmd_qfail;
230
231 c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
232 rem_q_size;
233 curr->head = dma_alloc_coherent(&pdev->dev,
234 c_size + CPT_NEXT_CHUNK_PTR_SIZE,
235 &curr->dma_addr,
236 GFP_KERNEL);
237 if (!curr->head) {
238 dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
239 i, queue->nchunks);
240 kfree(curr);
241 goto cmd_qfail;
242 }
243
244 curr->size = c_size;
245 if (queue->nchunks == 0) {
246 hlist_add_head(&curr->nextchunk,
247 &cqinfo->queue[i].chead);
248 first = curr;
249 } else {
250 hlist_add_behind(&curr->nextchunk,
251 &last->nextchunk);
252 }
253
254 queue->nchunks++;
255 rem_q_size -= c_size;
256 if (last)
257 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
258
259 last = curr;
260 } while (rem_q_size);
261
262 /* Make the queue circular */
263 /* Tie back last chunk entry to head */
264 curr = first;
265 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
266 queue->qhead = curr;
267 spin_lock_init(&queue->lock);
268 }
269 return 0;
270
271 cmd_qfail:
272 free_command_queues(cptvf, cqinfo);
273 return -ENOMEM;
274 }
275
init_command_queues(struct cpt_vf * cptvf,u32 qlen)276 static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
277 {
278 struct pci_dev *pdev = cptvf->pdev;
279 int ret;
280
281 /* setup AE command queues */
282 ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
283 qlen);
284 if (ret) {
285 dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
286 cptvf->nr_queues);
287 return ret;
288 }
289
290 return ret;
291 }
292
cleanup_command_queues(struct cpt_vf * cptvf)293 static void cleanup_command_queues(struct cpt_vf *cptvf)
294 {
295 struct pci_dev *pdev = cptvf->pdev;
296
297 if (!cptvf->nr_queues)
298 return;
299
300 dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
301 cptvf->nr_queues);
302 free_command_queues(cptvf, &cptvf->cqinfo);
303 }
304
cptvf_sw_cleanup(struct cpt_vf * cptvf)305 static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
306 {
307 cleanup_worker_threads(cptvf);
308 cleanup_pending_queues(cptvf);
309 cleanup_command_queues(cptvf);
310 }
311
cptvf_sw_init(struct cpt_vf * cptvf,u32 qlen,u32 nr_queues)312 static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
313 {
314 struct pci_dev *pdev = cptvf->pdev;
315 int ret = 0;
316 u32 max_dev_queues = 0;
317
318 max_dev_queues = CPT_NUM_QS_PER_VF;
319 /* possible cpus */
320 nr_queues = min_t(u32, nr_queues, max_dev_queues);
321 cptvf->nr_queues = nr_queues;
322
323 ret = init_command_queues(cptvf, qlen);
324 if (ret) {
325 dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
326 nr_queues);
327 return ret;
328 }
329
330 ret = init_pending_queues(cptvf, qlen, nr_queues);
331 if (ret) {
332 dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
333 nr_queues);
334 goto setup_pqfail;
335 }
336
337 /* Create worker threads for BH processing */
338 ret = init_worker_threads(cptvf);
339 if (ret) {
340 dev_err(&pdev->dev, "Failed to setup worker threads\n");
341 goto init_work_fail;
342 }
343
344 return 0;
345
346 init_work_fail:
347 cleanup_worker_threads(cptvf);
348 cleanup_pending_queues(cptvf);
349
350 setup_pqfail:
351 cleanup_command_queues(cptvf);
352
353 return ret;
354 }
355
cptvf_free_irq_affinity(struct cpt_vf * cptvf,int vec)356 static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec)
357 {
358 irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL);
359 free_cpumask_var(cptvf->affinity_mask[vec]);
360 }
361
cptvf_write_vq_ctl(struct cpt_vf * cptvf,bool val)362 static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
363 {
364 union cptx_vqx_ctl vqx_ctl;
365
366 vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
367 vqx_ctl.s.ena = val;
368 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
369 }
370
cptvf_write_vq_doorbell(struct cpt_vf * cptvf,u32 val)371 void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
372 {
373 union cptx_vqx_doorbell vqx_dbell;
374
375 vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
376 CPTX_VQX_DOORBELL(0, 0));
377 vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
378 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
379 vqx_dbell.u);
380 }
381
cptvf_write_vq_inprog(struct cpt_vf * cptvf,u8 val)382 static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
383 {
384 union cptx_vqx_inprog vqx_inprg;
385
386 vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
387 vqx_inprg.s.inflight = val;
388 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
389 }
390
cptvf_write_vq_done_numwait(struct cpt_vf * cptvf,u32 val)391 static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
392 {
393 union cptx_vqx_done_wait vqx_dwait;
394
395 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
396 CPTX_VQX_DONE_WAIT(0, 0));
397 vqx_dwait.s.num_wait = val;
398 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
399 vqx_dwait.u);
400 }
401
cptvf_write_vq_done_timewait(struct cpt_vf * cptvf,u16 time)402 static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
403 {
404 union cptx_vqx_done_wait vqx_dwait;
405
406 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
407 CPTX_VQX_DONE_WAIT(0, 0));
408 vqx_dwait.s.time_wait = time;
409 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
410 vqx_dwait.u);
411 }
412
cptvf_enable_swerr_interrupts(struct cpt_vf * cptvf)413 static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
414 {
415 union cptx_vqx_misc_ena_w1s vqx_misc_ena;
416
417 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
418 CPTX_VQX_MISC_ENA_W1S(0, 0));
419 /* Set mbox(0) interupts for the requested vf */
420 vqx_misc_ena.s.swerr = 1;
421 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
422 vqx_misc_ena.u);
423 }
424
cptvf_enable_mbox_interrupts(struct cpt_vf * cptvf)425 static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
426 {
427 union cptx_vqx_misc_ena_w1s vqx_misc_ena;
428
429 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
430 CPTX_VQX_MISC_ENA_W1S(0, 0));
431 /* Set mbox(0) interupts for the requested vf */
432 vqx_misc_ena.s.mbox = 1;
433 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
434 vqx_misc_ena.u);
435 }
436
cptvf_enable_done_interrupts(struct cpt_vf * cptvf)437 static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
438 {
439 union cptx_vqx_done_ena_w1s vqx_done_ena;
440
441 vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
442 CPTX_VQX_DONE_ENA_W1S(0, 0));
443 /* Set DONE interrupt for the requested vf */
444 vqx_done_ena.s.done = 1;
445 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
446 vqx_done_ena.u);
447 }
448
cptvf_clear_dovf_intr(struct cpt_vf * cptvf)449 static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
450 {
451 union cptx_vqx_misc_int vqx_misc_int;
452
453 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
454 CPTX_VQX_MISC_INT(0, 0));
455 /* W1C for the VF */
456 vqx_misc_int.s.dovf = 1;
457 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
458 vqx_misc_int.u);
459 }
460
cptvf_clear_irde_intr(struct cpt_vf * cptvf)461 static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
462 {
463 union cptx_vqx_misc_int vqx_misc_int;
464
465 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
466 CPTX_VQX_MISC_INT(0, 0));
467 /* W1C for the VF */
468 vqx_misc_int.s.irde = 1;
469 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
470 vqx_misc_int.u);
471 }
472
cptvf_clear_nwrp_intr(struct cpt_vf * cptvf)473 static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
474 {
475 union cptx_vqx_misc_int vqx_misc_int;
476
477 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
478 CPTX_VQX_MISC_INT(0, 0));
479 /* W1C for the VF */
480 vqx_misc_int.s.nwrp = 1;
481 cpt_write_csr64(cptvf->reg_base,
482 CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
483 }
484
cptvf_clear_mbox_intr(struct cpt_vf * cptvf)485 static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
486 {
487 union cptx_vqx_misc_int vqx_misc_int;
488
489 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
490 CPTX_VQX_MISC_INT(0, 0));
491 /* W1C for the VF */
492 vqx_misc_int.s.mbox = 1;
493 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
494 vqx_misc_int.u);
495 }
496
cptvf_clear_swerr_intr(struct cpt_vf * cptvf)497 static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
498 {
499 union cptx_vqx_misc_int vqx_misc_int;
500
501 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
502 CPTX_VQX_MISC_INT(0, 0));
503 /* W1C for the VF */
504 vqx_misc_int.s.swerr = 1;
505 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
506 vqx_misc_int.u);
507 }
508
cptvf_read_vf_misc_intr_status(struct cpt_vf * cptvf)509 static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
510 {
511 return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
512 }
513
cptvf_misc_intr_handler(int irq,void * cptvf_irq)514 static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
515 {
516 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
517 struct pci_dev *pdev = cptvf->pdev;
518 u64 intr;
519
520 intr = cptvf_read_vf_misc_intr_status(cptvf);
521 /*Check for MISC interrupt types*/
522 if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
523 dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
524 intr, cptvf->vfid);
525 cptvf_handle_mbox_intr(cptvf);
526 cptvf_clear_mbox_intr(cptvf);
527 } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
528 cptvf_clear_dovf_intr(cptvf);
529 /*Clear doorbell count*/
530 cptvf_write_vq_doorbell(cptvf, 0);
531 dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
532 intr, cptvf->vfid);
533 } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
534 cptvf_clear_irde_intr(cptvf);
535 dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
536 intr, cptvf->vfid);
537 } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
538 cptvf_clear_nwrp_intr(cptvf);
539 dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
540 intr, cptvf->vfid);
541 } else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
542 cptvf_clear_swerr_intr(cptvf);
543 dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
544 intr, cptvf->vfid);
545 } else {
546 dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
547 cptvf->vfid);
548 }
549
550 return IRQ_HANDLED;
551 }
552
get_cptvf_vq_wqe(struct cpt_vf * cptvf,int qno)553 static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
554 int qno)
555 {
556 struct cptvf_wqe_info *nwqe_info;
557
558 if (unlikely(qno >= cptvf->nr_queues))
559 return NULL;
560 nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
561
562 return &nwqe_info->vq_wqe[qno];
563 }
564
cptvf_read_vq_done_count(struct cpt_vf * cptvf)565 static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
566 {
567 union cptx_vqx_done vqx_done;
568
569 vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
570 return vqx_done.s.done;
571 }
572
cptvf_write_vq_done_ack(struct cpt_vf * cptvf,u32 ackcnt)573 static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
574 u32 ackcnt)
575 {
576 union cptx_vqx_done_ack vqx_dack_cnt;
577
578 vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
579 CPTX_VQX_DONE_ACK(0, 0));
580 vqx_dack_cnt.s.done_ack = ackcnt;
581 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
582 vqx_dack_cnt.u);
583 }
584
cptvf_done_intr_handler(int irq,void * cptvf_irq)585 static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
586 {
587 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
588 struct pci_dev *pdev = cptvf->pdev;
589 /* Read the number of completions */
590 u32 intr = cptvf_read_vq_done_count(cptvf);
591
592 if (intr) {
593 struct cptvf_wqe *wqe;
594
595 /* Acknowledge the number of
596 * scheduled completions for processing
597 */
598 cptvf_write_vq_done_ack(cptvf, intr);
599 wqe = get_cptvf_vq_wqe(cptvf, 0);
600 if (unlikely(!wqe)) {
601 dev_err(&pdev->dev, "No work to schedule for VF (%d)",
602 cptvf->vfid);
603 return IRQ_NONE;
604 }
605 tasklet_hi_schedule(&wqe->twork);
606 }
607
608 return IRQ_HANDLED;
609 }
610
cptvf_set_irq_affinity(struct cpt_vf * cptvf,int vec)611 static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec)
612 {
613 struct pci_dev *pdev = cptvf->pdev;
614 int cpu;
615
616 if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
617 GFP_KERNEL)) {
618 dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
619 cptvf->vfid);
620 return;
621 }
622
623 cpu = cptvf->vfid % num_online_cpus();
624 cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
625 cptvf->affinity_mask[vec]);
626 irq_set_affinity_hint(pci_irq_vector(pdev, vec),
627 cptvf->affinity_mask[vec]);
628 }
629
cptvf_write_vq_saddr(struct cpt_vf * cptvf,u64 val)630 static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
631 {
632 union cptx_vqx_saddr vqx_saddr;
633
634 vqx_saddr.u = val;
635 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
636 }
637
cptvf_device_init(struct cpt_vf * cptvf)638 static void cptvf_device_init(struct cpt_vf *cptvf)
639 {
640 u64 base_addr = 0;
641
642 /* Disable the VQ */
643 cptvf_write_vq_ctl(cptvf, 0);
644 /* Reset the doorbell */
645 cptvf_write_vq_doorbell(cptvf, 0);
646 /* Clear inflight */
647 cptvf_write_vq_inprog(cptvf, 0);
648 /* Write VQ SADDR */
649 /* TODO: for now only one queue, so hard coded */
650 base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
651 cptvf_write_vq_saddr(cptvf, base_addr);
652 /* Configure timerhold / coalescence */
653 cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
654 cptvf_write_vq_done_numwait(cptvf, 1);
655 /* Enable the VQ */
656 cptvf_write_vq_ctl(cptvf, 1);
657 /* Flag the VF ready */
658 cptvf->flags |= CPT_FLAG_DEVICE_READY;
659 }
660
cptvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)661 static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
662 {
663 struct device *dev = &pdev->dev;
664 struct cpt_vf *cptvf;
665 int err;
666
667 cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
668 if (!cptvf)
669 return -ENOMEM;
670
671 pci_set_drvdata(pdev, cptvf);
672 cptvf->pdev = pdev;
673 err = pci_enable_device(pdev);
674 if (err) {
675 dev_err(dev, "Failed to enable PCI device\n");
676 pci_set_drvdata(pdev, NULL);
677 return err;
678 }
679
680 err = pci_request_regions(pdev, DRV_NAME);
681 if (err) {
682 dev_err(dev, "PCI request regions failed 0x%x\n", err);
683 goto cptvf_err_disable_device;
684 }
685 /* Mark as VF driver */
686 cptvf->flags |= CPT_FLAG_VF_DRIVER;
687 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
688 if (err) {
689 dev_err(dev, "Unable to get usable 48-bit DMA configuration\n");
690 goto cptvf_err_release_regions;
691 }
692
693 /* MAP PF's configuration registers */
694 cptvf->reg_base = pcim_iomap(pdev, 0, 0);
695 if (!cptvf->reg_base) {
696 dev_err(dev, "Cannot map config register space, aborting\n");
697 err = -ENOMEM;
698 goto cptvf_err_release_regions;
699 }
700
701 cptvf->node = dev_to_node(&pdev->dev);
702 err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS,
703 CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX);
704 if (err < 0) {
705 dev_err(dev, "Request for #%d msix vectors failed\n",
706 CPT_VF_MSIX_VECTORS);
707 goto cptvf_err_release_regions;
708 }
709
710 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC),
711 cptvf_misc_intr_handler, 0, "CPT VF misc intr",
712 cptvf);
713 if (err) {
714 dev_err(dev, "Request misc irq failed");
715 goto cptvf_free_vectors;
716 }
717
718 /* Enable mailbox interrupt */
719 cptvf_enable_mbox_interrupts(cptvf);
720 cptvf_enable_swerr_interrupts(cptvf);
721
722 /* Check ready with PF */
723 /* Gets chip ID / device Id from PF if ready */
724 err = cptvf_check_pf_ready(cptvf);
725 if (err) {
726 dev_err(dev, "PF not responding to READY msg");
727 goto cptvf_free_misc_irq;
728 }
729
730 /* CPT VF software resources initialization */
731 cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
732 err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
733 if (err) {
734 dev_err(dev, "cptvf_sw_init() failed");
735 goto cptvf_free_misc_irq;
736 }
737 /* Convey VQ LEN to PF */
738 err = cptvf_send_vq_size_msg(cptvf);
739 if (err) {
740 dev_err(dev, "PF not responding to QLEN msg");
741 goto cptvf_free_misc_irq;
742 }
743
744 /* CPT VF device initialization */
745 cptvf_device_init(cptvf);
746 /* Send msg to PF to assign currnet Q to required group */
747 cptvf->vfgrp = 1;
748 err = cptvf_send_vf_to_grp_msg(cptvf);
749 if (err) {
750 dev_err(dev, "PF not responding to VF_GRP msg");
751 goto cptvf_free_misc_irq;
752 }
753
754 cptvf->priority = 1;
755 err = cptvf_send_vf_priority_msg(cptvf);
756 if (err) {
757 dev_err(dev, "PF not responding to VF_PRIO msg");
758 goto cptvf_free_misc_irq;
759 }
760
761 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE),
762 cptvf_done_intr_handler, 0, "CPT VF done intr",
763 cptvf);
764 if (err) {
765 dev_err(dev, "Request done irq failed\n");
766 goto cptvf_free_misc_irq;
767 }
768
769 /* Enable mailbox interrupt */
770 cptvf_enable_done_interrupts(cptvf);
771
772 /* Set irq affinity masks */
773 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
774 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
775
776 err = cptvf_send_vf_up(cptvf);
777 if (err) {
778 dev_err(dev, "PF not responding to UP msg");
779 goto cptvf_free_irq_affinity;
780 }
781 err = cvm_crypto_init(cptvf);
782 if (err) {
783 dev_err(dev, "Algorithm register failed\n");
784 goto cptvf_free_irq_affinity;
785 }
786 return 0;
787
788 cptvf_free_irq_affinity:
789 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
790 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
791 cptvf_free_misc_irq:
792 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
793 cptvf_free_vectors:
794 pci_free_irq_vectors(cptvf->pdev);
795 cptvf_err_release_regions:
796 pci_release_regions(pdev);
797 cptvf_err_disable_device:
798 pci_disable_device(pdev);
799 pci_set_drvdata(pdev, NULL);
800
801 return err;
802 }
803
cptvf_remove(struct pci_dev * pdev)804 static void cptvf_remove(struct pci_dev *pdev)
805 {
806 struct cpt_vf *cptvf = pci_get_drvdata(pdev);
807
808 if (!cptvf) {
809 dev_err(&pdev->dev, "Invalid CPT-VF device\n");
810 return;
811 }
812
813 /* Convey DOWN to PF */
814 if (cptvf_send_vf_down(cptvf)) {
815 dev_err(&pdev->dev, "PF not responding to DOWN msg");
816 } else {
817 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
818 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
819 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf);
820 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
821 pci_free_irq_vectors(cptvf->pdev);
822 cptvf_sw_cleanup(cptvf);
823 pci_set_drvdata(pdev, NULL);
824 pci_release_regions(pdev);
825 pci_disable_device(pdev);
826 cvm_crypto_exit();
827 }
828 }
829
cptvf_shutdown(struct pci_dev * pdev)830 static void cptvf_shutdown(struct pci_dev *pdev)
831 {
832 cptvf_remove(pdev);
833 }
834
835 /* Supported devices */
836 static const struct pci_device_id cptvf_id_table[] = {
837 {PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
838 { 0, } /* end of table */
839 };
840
841 static struct pci_driver cptvf_pci_driver = {
842 .name = DRV_NAME,
843 .id_table = cptvf_id_table,
844 .probe = cptvf_probe,
845 .remove = cptvf_remove,
846 .shutdown = cptvf_shutdown,
847 };
848
849 module_pci_driver(cptvf_pci_driver);
850
851 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
852 MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
853 MODULE_LICENSE("GPL v2");
854 MODULE_VERSION(DRV_VERSION);
855 MODULE_DEVICE_TABLE(pci, cptvf_id_table);
856