1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 #include <linux/dmi.h> 31 #include <linux/of.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 #include <scsi/scsi_transport_fc.h> 38 #include <scsi/fc/fc_fs.h> 39 #include <linux/crash_dump.h> 40 #ifdef CONFIG_X86 41 #include <asm/set_memory.h> 42 #endif 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_crtn.h" 54 #include "lpfc_logmsg.h" 55 #include "lpfc_compat.h" 56 #include "lpfc_debugfs.h" 57 #include "lpfc_vport.h" 58 #include "lpfc_version.h" 59 60 /* There are only four IOCB completion types. */ 61 typedef enum _lpfc_iocb_type { 62 LPFC_UNKNOWN_IOCB, 63 LPFC_UNSOL_IOCB, 64 LPFC_SOL_IOCB, 65 LPFC_ABORT_IOCB 66 } lpfc_iocb_type; 67 68 69 /* Provide function prototypes local to this module. */ 70 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint32_t); 72 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 73 uint8_t *, uint32_t *); 74 static struct lpfc_iocbq * 75 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 76 struct lpfc_iocbq *rspiocbq); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 82 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_queue *eq, 87 struct lpfc_eqe *eqe, 88 enum lpfc_poll_mode poll_mode); 89 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 90 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 91 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 92 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 93 struct lpfc_queue *cq, 94 struct lpfc_cqe *cqe); 95 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 96 struct lpfc_iocbq *pwqeq, 97 struct lpfc_sglq *sglq); 98 99 union lpfc_wqe128 lpfc_iread_cmd_template; 100 union lpfc_wqe128 lpfc_iwrite_cmd_template; 101 union lpfc_wqe128 lpfc_icmnd_cmd_template; 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 u8 rearm, enum lpfc_poll_mode poll_mode) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1030 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1031 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1185 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1186 goto outnl; 1187 } 1188 1189 spin_lock_irqsave(&phba->hbalock, iflags); 1190 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1214 rrq->nlp_DID = ndlp->nlp_DID; 1215 rrq->vport = ndlp->vport; 1216 rrq->rxid = rxid; 1217 1218 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1222 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1223 if (empty) 1224 lpfc_worker_wake_up(phba); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 outnl: 1229 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1230 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1231 " DID:0x%x Send:%d\n", 1232 xritag, rxid, ndlp->nlp_DID, send_rrq); 1233 return -EINVAL; 1234 } 1235 1236 /** 1237 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1238 * @phba: Pointer to HBA context object. 1239 * @piocbq: Pointer to the iocbq. 1240 * 1241 * The driver calls this function with either the nvme ls ring lock 1242 * or the fc els ring lock held depending on the iocb usage. This function 1243 * gets a new driver sglq object from the sglq list. If the list is not empty 1244 * then it is successful, it returns pointer to the newly allocated sglq 1245 * object else it returns NULL. 1246 **/ 1247 static struct lpfc_sglq * 1248 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1249 { 1250 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1251 struct lpfc_sglq *sglq = NULL; 1252 struct lpfc_sglq *start_sglq = NULL; 1253 struct lpfc_io_buf *lpfc_cmd; 1254 struct lpfc_nodelist *ndlp; 1255 int found = 0; 1256 u8 cmnd; 1257 1258 cmnd = get_job_cmnd(phba, piocbq); 1259 1260 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1261 lpfc_cmd = piocbq->io_buf; 1262 ndlp = lpfc_cmd->rdata->pnode; 1263 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1264 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1265 ndlp = piocbq->ndlp; 1266 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1267 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1268 ndlp = NULL; 1269 else 1270 ndlp = piocbq->ndlp; 1271 } else { 1272 ndlp = piocbq->ndlp; 1273 } 1274 1275 spin_lock(&phba->sli4_hba.sgl_list_lock); 1276 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1277 start_sglq = sglq; 1278 while (!found) { 1279 if (!sglq) 1280 break; 1281 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1282 test_bit(sglq->sli4_lxritag, 1283 ndlp->active_rrqs_xri_bitmap)) { 1284 /* This xri has an rrq outstanding for this DID. 1285 * put it back in the list and get another xri. 1286 */ 1287 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1288 sglq = NULL; 1289 list_remove_head(lpfc_els_sgl_list, sglq, 1290 struct lpfc_sglq, list); 1291 if (sglq == start_sglq) { 1292 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1293 sglq = NULL; 1294 break; 1295 } else 1296 continue; 1297 } 1298 sglq->ndlp = ndlp; 1299 found = 1; 1300 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1301 sglq->state = SGL_ALLOCATED; 1302 } 1303 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1304 return sglq; 1305 } 1306 1307 /** 1308 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1309 * @phba: Pointer to HBA context object. 1310 * @piocbq: Pointer to the iocbq. 1311 * 1312 * This function is called with the sgl_list lock held. This function 1313 * gets a new driver sglq object from the sglq list. If the 1314 * list is not empty then it is successful, it returns pointer to the newly 1315 * allocated sglq object else it returns NULL. 1316 **/ 1317 struct lpfc_sglq * 1318 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1319 { 1320 struct list_head *lpfc_nvmet_sgl_list; 1321 struct lpfc_sglq *sglq = NULL; 1322 1323 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1324 1325 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1326 1327 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1328 if (!sglq) 1329 return NULL; 1330 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1331 sglq->state = SGL_ALLOCATED; 1332 return sglq; 1333 } 1334 1335 /** 1336 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1337 * @phba: Pointer to HBA context object. 1338 * 1339 * This function is called with no lock held. This function 1340 * allocates a new driver iocb object from the iocb pool. If the 1341 * allocation is successful, it returns pointer to the newly 1342 * allocated iocb object else it returns NULL. 1343 **/ 1344 struct lpfc_iocbq * 1345 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1346 { 1347 struct lpfc_iocbq * iocbq = NULL; 1348 unsigned long iflags; 1349 1350 spin_lock_irqsave(&phba->hbalock, iflags); 1351 iocbq = __lpfc_sli_get_iocbq(phba); 1352 spin_unlock_irqrestore(&phba->hbalock, iflags); 1353 return iocbq; 1354 } 1355 1356 /** 1357 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1358 * @phba: Pointer to HBA context object. 1359 * @iocbq: Pointer to driver iocb object. 1360 * 1361 * This function is called to release the driver iocb object 1362 * to the iocb pool. The iotag in the iocb object 1363 * does not change for each use of the iocb object. This function 1364 * clears all other fields of the iocb object when it is freed. 1365 * The sqlq structure that holds the xritag and phys and virtual 1366 * mappings for the scatter gather list is retrieved from the 1367 * active array of sglq. The get of the sglq pointer also clears 1368 * the entry in the array. If the status of the IO indiactes that 1369 * this IO was aborted then the sglq entry it put on the 1370 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1371 * IO has good status or fails for any other reason then the sglq 1372 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1373 * asserted held in the code path calling this routine. 1374 **/ 1375 static void 1376 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1377 { 1378 struct lpfc_sglq *sglq; 1379 unsigned long iflag = 0; 1380 struct lpfc_sli_ring *pring; 1381 1382 if (iocbq->sli4_xritag == NO_XRI) 1383 sglq = NULL; 1384 else 1385 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1386 1387 1388 if (sglq) { 1389 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1390 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1391 iflag); 1392 sglq->state = SGL_FREED; 1393 sglq->ndlp = NULL; 1394 list_add_tail(&sglq->list, 1395 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1396 spin_unlock_irqrestore( 1397 &phba->sli4_hba.sgl_list_lock, iflag); 1398 goto out; 1399 } 1400 1401 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1402 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1403 sglq->state != SGL_XRI_ABORTED) { 1404 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1405 iflag); 1406 1407 /* Check if we can get a reference on ndlp */ 1408 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1409 sglq->ndlp = NULL; 1410 1411 list_add(&sglq->list, 1412 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1413 spin_unlock_irqrestore( 1414 &phba->sli4_hba.sgl_list_lock, iflag); 1415 } else { 1416 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1417 iflag); 1418 sglq->state = SGL_FREED; 1419 sglq->ndlp = NULL; 1420 list_add_tail(&sglq->list, 1421 &phba->sli4_hba.lpfc_els_sgl_list); 1422 spin_unlock_irqrestore( 1423 &phba->sli4_hba.sgl_list_lock, iflag); 1424 pring = lpfc_phba_elsring(phba); 1425 /* Check if TXQ queue needs to be serviced */ 1426 if (pring && (!list_empty(&pring->txq))) 1427 lpfc_worker_wake_up(phba); 1428 } 1429 } 1430 1431 out: 1432 /* 1433 * Clean all volatile data fields, preserve iotag and node struct. 1434 */ 1435 memset_startat(iocbq, 0, wqe); 1436 iocbq->sli4_lxritag = NO_XRI; 1437 iocbq->sli4_xritag = NO_XRI; 1438 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1439 LPFC_IO_NVME_LS); 1440 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1441 } 1442 1443 1444 /** 1445 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1446 * @phba: Pointer to HBA context object. 1447 * @iocbq: Pointer to driver iocb object. 1448 * 1449 * This function is called to release the driver iocb object to the 1450 * iocb pool. The iotag in the iocb object does not change for each 1451 * use of the iocb object. This function clears all other fields of 1452 * the iocb object when it is freed. The hbalock is asserted held in 1453 * the code path calling this routine. 1454 **/ 1455 static void 1456 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1457 { 1458 1459 /* 1460 * Clean all volatile data fields, preserve iotag and node struct. 1461 */ 1462 memset_startat(iocbq, 0, iocb); 1463 iocbq->sli4_xritag = NO_XRI; 1464 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1465 } 1466 1467 /** 1468 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1469 * @phba: Pointer to HBA context object. 1470 * @iocbq: Pointer to driver iocb object. 1471 * 1472 * This function is called with hbalock held to release driver 1473 * iocb object to the iocb pool. The iotag in the iocb object 1474 * does not change for each use of the iocb object. This function 1475 * clears all other fields of the iocb object when it is freed. 1476 **/ 1477 static void 1478 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1479 { 1480 lockdep_assert_held(&phba->hbalock); 1481 1482 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1483 phba->iocb_cnt--; 1484 } 1485 1486 /** 1487 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1488 * @phba: Pointer to HBA context object. 1489 * @iocbq: Pointer to driver iocb object. 1490 * 1491 * This function is called with no lock held to release the iocb to 1492 * iocb pool. 1493 **/ 1494 void 1495 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1496 { 1497 unsigned long iflags; 1498 1499 /* 1500 * Clean all volatile data fields, preserve iotag and node struct. 1501 */ 1502 spin_lock_irqsave(&phba->hbalock, iflags); 1503 __lpfc_sli_release_iocbq(phba, iocbq); 1504 spin_unlock_irqrestore(&phba->hbalock, iflags); 1505 } 1506 1507 /** 1508 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1509 * @phba: Pointer to HBA context object. 1510 * @iocblist: List of IOCBs. 1511 * @ulpstatus: ULP status in IOCB command field. 1512 * @ulpWord4: ULP word-4 in IOCB command field. 1513 * 1514 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1515 * on the list by invoking the complete callback function associated with the 1516 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1517 * fields. 1518 **/ 1519 void 1520 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1521 uint32_t ulpstatus, uint32_t ulpWord4) 1522 { 1523 struct lpfc_iocbq *piocb; 1524 1525 while (!list_empty(iocblist)) { 1526 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1527 if (piocb->cmd_cmpl) { 1528 if (piocb->cmd_flag & LPFC_IO_NVME) { 1529 lpfc_nvme_cancel_iocb(phba, piocb, 1530 ulpstatus, ulpWord4); 1531 } else { 1532 if (phba->sli_rev == LPFC_SLI_REV4) { 1533 bf_set(lpfc_wcqe_c_status, 1534 &piocb->wcqe_cmpl, ulpstatus); 1535 piocb->wcqe_cmpl.parameter = ulpWord4; 1536 } else { 1537 piocb->iocb.ulpStatus = ulpstatus; 1538 piocb->iocb.un.ulpWord[4] = ulpWord4; 1539 } 1540 (piocb->cmd_cmpl) (phba, piocb, piocb); 1541 } 1542 } else { 1543 lpfc_sli_release_iocbq(phba, piocb); 1544 } 1545 } 1546 return; 1547 } 1548 1549 /** 1550 * lpfc_sli_iocb_cmd_type - Get the iocb type 1551 * @iocb_cmnd: iocb command code. 1552 * 1553 * This function is called by ring event handler function to get the iocb type. 1554 * This function translates the iocb command to an iocb command type used to 1555 * decide the final disposition of each completed IOCB. 1556 * The function returns 1557 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1558 * LPFC_SOL_IOCB if it is a solicited iocb completion 1559 * LPFC_ABORT_IOCB if it is an abort iocb 1560 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1561 * 1562 * The caller is not required to hold any lock. 1563 **/ 1564 static lpfc_iocb_type 1565 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1566 { 1567 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1568 1569 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1570 return 0; 1571 1572 switch (iocb_cmnd) { 1573 case CMD_XMIT_SEQUENCE_CR: 1574 case CMD_XMIT_SEQUENCE_CX: 1575 case CMD_XMIT_BCAST_CN: 1576 case CMD_XMIT_BCAST_CX: 1577 case CMD_ELS_REQUEST_CR: 1578 case CMD_ELS_REQUEST_CX: 1579 case CMD_CREATE_XRI_CR: 1580 case CMD_CREATE_XRI_CX: 1581 case CMD_GET_RPI_CN: 1582 case CMD_XMIT_ELS_RSP_CX: 1583 case CMD_GET_RPI_CR: 1584 case CMD_FCP_IWRITE_CR: 1585 case CMD_FCP_IWRITE_CX: 1586 case CMD_FCP_IREAD_CR: 1587 case CMD_FCP_IREAD_CX: 1588 case CMD_FCP_ICMND_CR: 1589 case CMD_FCP_ICMND_CX: 1590 case CMD_FCP_TSEND_CX: 1591 case CMD_FCP_TRSP_CX: 1592 case CMD_FCP_TRECEIVE_CX: 1593 case CMD_FCP_AUTO_TRSP_CX: 1594 case CMD_ADAPTER_MSG: 1595 case CMD_ADAPTER_DUMP: 1596 case CMD_XMIT_SEQUENCE64_CR: 1597 case CMD_XMIT_SEQUENCE64_CX: 1598 case CMD_XMIT_BCAST64_CN: 1599 case CMD_XMIT_BCAST64_CX: 1600 case CMD_ELS_REQUEST64_CR: 1601 case CMD_ELS_REQUEST64_CX: 1602 case CMD_FCP_IWRITE64_CR: 1603 case CMD_FCP_IWRITE64_CX: 1604 case CMD_FCP_IREAD64_CR: 1605 case CMD_FCP_IREAD64_CX: 1606 case CMD_FCP_ICMND64_CR: 1607 case CMD_FCP_ICMND64_CX: 1608 case CMD_FCP_TSEND64_CX: 1609 case CMD_FCP_TRSP64_CX: 1610 case CMD_FCP_TRECEIVE64_CX: 1611 case CMD_GEN_REQUEST64_CR: 1612 case CMD_GEN_REQUEST64_CX: 1613 case CMD_XMIT_ELS_RSP64_CX: 1614 case DSSCMD_IWRITE64_CR: 1615 case DSSCMD_IWRITE64_CX: 1616 case DSSCMD_IREAD64_CR: 1617 case DSSCMD_IREAD64_CX: 1618 case CMD_SEND_FRAME: 1619 type = LPFC_SOL_IOCB; 1620 break; 1621 case CMD_ABORT_XRI_CN: 1622 case CMD_ABORT_XRI_CX: 1623 case CMD_CLOSE_XRI_CN: 1624 case CMD_CLOSE_XRI_CX: 1625 case CMD_XRI_ABORTED_CX: 1626 case CMD_ABORT_MXRI64_CN: 1627 case CMD_XMIT_BLS_RSP64_CX: 1628 type = LPFC_ABORT_IOCB; 1629 break; 1630 case CMD_RCV_SEQUENCE_CX: 1631 case CMD_RCV_ELS_REQ_CX: 1632 case CMD_RCV_SEQUENCE64_CX: 1633 case CMD_RCV_ELS_REQ64_CX: 1634 case CMD_ASYNC_STATUS: 1635 case CMD_IOCB_RCV_SEQ64_CX: 1636 case CMD_IOCB_RCV_ELS64_CX: 1637 case CMD_IOCB_RCV_CONT64_CX: 1638 case CMD_IOCB_RET_XRI64_CX: 1639 type = LPFC_UNSOL_IOCB; 1640 break; 1641 case CMD_IOCB_XMIT_MSEQ64_CR: 1642 case CMD_IOCB_XMIT_MSEQ64_CX: 1643 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1644 case CMD_IOCB_RCV_ELS_LIST64_CX: 1645 case CMD_IOCB_CLOSE_EXTENDED_CN: 1646 case CMD_IOCB_ABORT_EXTENDED_CN: 1647 case CMD_IOCB_RET_HBQE64_CN: 1648 case CMD_IOCB_FCP_IBIDIR64_CR: 1649 case CMD_IOCB_FCP_IBIDIR64_CX: 1650 case CMD_IOCB_FCP_ITASKMGT64_CX: 1651 case CMD_IOCB_LOGENTRY_CN: 1652 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1653 printk("%s - Unhandled SLI-3 Command x%x\n", 1654 __func__, iocb_cmnd); 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 default: 1658 type = LPFC_UNKNOWN_IOCB; 1659 break; 1660 } 1661 1662 return type; 1663 } 1664 1665 /** 1666 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1667 * @phba: Pointer to HBA context object. 1668 * 1669 * This function is called from SLI initialization code 1670 * to configure every ring of the HBA's SLI interface. The 1671 * caller is not required to hold any lock. This function issues 1672 * a config_ring mailbox command for each ring. 1673 * This function returns zero if successful else returns a negative 1674 * error code. 1675 **/ 1676 static int 1677 lpfc_sli_ring_map(struct lpfc_hba *phba) 1678 { 1679 struct lpfc_sli *psli = &phba->sli; 1680 LPFC_MBOXQ_t *pmb; 1681 MAILBOX_t *pmbox; 1682 int i, rc, ret = 0; 1683 1684 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1685 if (!pmb) 1686 return -ENOMEM; 1687 pmbox = &pmb->u.mb; 1688 phba->link_state = LPFC_INIT_MBX_CMDS; 1689 for (i = 0; i < psli->num_rings; i++) { 1690 lpfc_config_ring(phba, i, pmb); 1691 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1692 if (rc != MBX_SUCCESS) { 1693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1694 "0446 Adapter failed to init (%d), " 1695 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1696 "ring %d\n", 1697 rc, pmbox->mbxCommand, 1698 pmbox->mbxStatus, i); 1699 phba->link_state = LPFC_HBA_ERROR; 1700 ret = -ENXIO; 1701 break; 1702 } 1703 } 1704 mempool_free(pmb, phba->mbox_mem_pool); 1705 return ret; 1706 } 1707 1708 /** 1709 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1710 * @phba: Pointer to HBA context object. 1711 * @pring: Pointer to driver SLI ring object. 1712 * @piocb: Pointer to the driver iocb object. 1713 * 1714 * The driver calls this function with the hbalock held for SLI3 ports or 1715 * the ring lock held for SLI4 ports. The function adds the 1716 * new iocb to txcmplq of the given ring. This function always returns 1717 * 0. If this function is called for ELS ring, this function checks if 1718 * there is a vport associated with the ELS command. This function also 1719 * starts els_tmofunc timer if this is an ELS command. 1720 **/ 1721 static int 1722 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1723 struct lpfc_iocbq *piocb) 1724 { 1725 u32 ulp_command = 0; 1726 1727 BUG_ON(!piocb); 1728 ulp_command = get_job_cmnd(phba, piocb); 1729 1730 list_add_tail(&piocb->list, &pring->txcmplq); 1731 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1732 pring->txcmplq_cnt++; 1733 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1734 (ulp_command != CMD_ABORT_XRI_WQE) && 1735 (ulp_command != CMD_ABORT_XRI_CN) && 1736 (ulp_command != CMD_CLOSE_XRI_CN)) { 1737 BUG_ON(!piocb->vport); 1738 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1739 mod_timer(&piocb->vport->els_tmofunc, 1740 jiffies + secs_to_jiffies(phba->fc_ratov << 1)); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 /* Because of bytes adjustment due to shorter timer in 1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1853 * may seem like BW is above 100%. 1854 */ 1855 if (bwpcent > 100) 1856 bwpcent = 100; 1857 1858 if (phba->cmf_max_bytes_per_interval < bw && 1859 bwpcent > 95) 1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1861 "6208 Congestion bandwidth " 1862 "limits removed\n"); 1863 else if ((phba->cmf_max_bytes_per_interval > bw) && 1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1866 "6209 Congestion bandwidth " 1867 "limits in effect\n"); 1868 1869 if (asig) { 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6237 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Alarm: cg:%d " 1873 "Info:%u\n", 1874 bwpcent, bw, pcent, s, cg, 1875 phba->cmf_active_info); 1876 } else if (afpin) { 1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1878 "6238 BW Threshold %lld%% (%lld): " 1879 "%lld%% %s: FPIN Alarm: cg:%d " 1880 "Info:%u\n", 1881 bwpcent, bw, pcent, s, cg, 1882 phba->cmf_active_info); 1883 } else if (sigcnt) { 1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6239 BW Threshold %lld%% (%lld): " 1887 "%lld%% %s: Signal Warning: " 1888 "Cnt %d Max %d: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, sigcnt, 1890 wsigmax, cg, phba->cmf_active_info); 1891 } else if (fpincnt) { 1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6240 BW Threshold %lld%% (%lld): " 1895 "%lld%% %s: FPIN Warning: " 1896 "Cnt %d Max %d: cg:%d Info:%u\n", 1897 bwpcent, bw, pcent, s, fpincnt, 1898 wfpinmax, cg, phba->cmf_active_info); 1899 } else { 1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1901 "6241 BW Threshold %lld%% (%lld): " 1902 "CMF %lld%% %s: cg:%d Info:%u\n", 1903 bwpcent, bw, pcent, s, cg, 1904 phba->cmf_active_info); 1905 } 1906 } else if (info) { 1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1908 "6246 Info Threshold %u\n", info); 1909 } 1910 1911 /* Save BW change to be picked up during next timer interrupt */ 1912 phba->cmf_last_sync_bw = bw; 1913 out: 1914 lpfc_sli_release_iocbq(phba, cmdiocb); 1915 } 1916 1917 /** 1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1919 * @phba: Pointer to HBA context object. 1920 * @ms: ms to set in WQE interval, 0 means use init op 1921 * @total: Total rcv bytes for this interval 1922 * 1923 * This routine is called every CMF timer interrupt. Its purpose is 1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1925 * that may indicate we have congestion (FPINs or Signals). Upon 1926 * completion, the firmware will indicate any BW restrictions the 1927 * driver may need to take. 1928 **/ 1929 int 1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1931 { 1932 union lpfc_wqe128 *wqe; 1933 struct lpfc_iocbq *sync_buf; 1934 unsigned long iflags; 1935 u32 ret_val, cgn_sig_freq; 1936 u32 atot, wtot, max; 1937 u8 warn_sync_period = 0; 1938 1939 /* First address any alarm / warning activity */ 1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1942 1943 spin_lock_irqsave(&phba->hbalock, iflags); 1944 1945 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1946 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1947 phba->link_state < LPFC_LINK_UP) { 1948 ret_val = 0; 1949 goto out_unlock; 1950 } 1951 1952 sync_buf = __lpfc_sli_get_iocbq(phba); 1953 if (!sync_buf) { 1954 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1955 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1956 ret_val = ENOMEM; 1957 goto out_unlock; 1958 } 1959 1960 wqe = &sync_buf->wqe; 1961 1962 /* WQEs are reused. Clear stale data and set key fields to zero */ 1963 memset(wqe, 0, sizeof(*wqe)); 1964 1965 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1966 if (!ms) { 1967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1968 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1969 phba->fc_eventTag); 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1972 goto initpath; 1973 } 1974 1975 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1976 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1977 1978 /* Check for alarms / warnings */ 1979 if (atot) { 1980 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1981 /* We hit an Signal alarm condition */ 1982 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1983 } else { 1984 /* We hit a FPIN alarm condition */ 1985 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1986 } 1987 } else if (wtot) { 1988 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1989 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1990 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq : 1991 lpfc_fabric_cgn_frequency; 1992 /* We hit an Signal warning condition */ 1993 max = LPFC_SEC_TO_MSEC / cgn_sig_freq * 1994 lpfc_acqe_cgn_frequency; 1995 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1996 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1997 warn_sync_period = lpfc_acqe_cgn_frequency; 1998 } else { 1999 /* We hit a FPIN warning condition */ 2000 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 2001 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2002 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2003 warn_sync_period = 2004 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2005 } 2006 } 2007 2008 /* Update total read blocks during previous timer interval */ 2009 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2010 2011 initpath: 2012 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2013 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2014 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2015 2016 /* Setup reqtag to match the wqe completion. */ 2017 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2018 2019 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2020 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2021 2022 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2023 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2024 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2025 2026 sync_buf->vport = phba->pport; 2027 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2028 sync_buf->cmd_dmabuf = NULL; 2029 sync_buf->rsp_dmabuf = NULL; 2030 sync_buf->bpl_dmabuf = NULL; 2031 sync_buf->sli4_xritag = NO_XRI; 2032 2033 sync_buf->cmd_flag |= LPFC_IO_CMF; 2034 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2035 if (ret_val) { 2036 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2037 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2038 ret_val); 2039 __lpfc_sli_release_iocbq(phba, sync_buf); 2040 } 2041 out_unlock: 2042 spin_unlock_irqrestore(&phba->hbalock, iflags); 2043 return ret_val; 2044 } 2045 2046 /** 2047 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2048 * @phba: Pointer to HBA context object. 2049 * @pring: Pointer to driver SLI ring object. 2050 * 2051 * This function is called with hbalock held and the caller must post the 2052 * iocb without releasing the lock. If the caller releases the lock, 2053 * iocb slot returned by the function is not guaranteed to be available. 2054 * The function returns pointer to the next available iocb slot if there 2055 * is available slot in the ring, else it returns NULL. 2056 * If the get index of the ring is ahead of the put index, the function 2057 * will post an error attention event to the worker thread to take the 2058 * HBA to offline state. 2059 **/ 2060 static IOCB_t * 2061 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2062 { 2063 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2064 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2065 2066 lockdep_assert_held(&phba->hbalock); 2067 2068 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2069 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2070 pring->sli.sli3.next_cmdidx = 0; 2071 2072 if (unlikely(pring->sli.sli3.local_getidx == 2073 pring->sli.sli3.next_cmdidx)) { 2074 2075 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2076 2077 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2079 "0315 Ring %d issue: portCmdGet %d " 2080 "is bigger than cmd ring %d\n", 2081 pring->ringno, 2082 pring->sli.sli3.local_getidx, 2083 max_cmd_idx); 2084 2085 phba->link_state = LPFC_HBA_ERROR; 2086 /* 2087 * All error attention handlers are posted to 2088 * worker thread 2089 */ 2090 phba->work_ha |= HA_ERATT; 2091 phba->work_hs = HS_FFER3; 2092 2093 lpfc_worker_wake_up(phba); 2094 2095 return NULL; 2096 } 2097 2098 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2099 return NULL; 2100 } 2101 2102 return lpfc_cmd_iocb(phba, pring); 2103 } 2104 2105 /** 2106 * lpfc_sli_next_iotag - Get an iotag for the iocb 2107 * @phba: Pointer to HBA context object. 2108 * @iocbq: Pointer to driver iocb object. 2109 * 2110 * This function gets an iotag for the iocb. If there is no unused iotag and 2111 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2112 * array and assigns a new iotag. 2113 * The function returns the allocated iotag if successful, else returns zero. 2114 * Zero is not a valid iotag. 2115 * The caller is not required to hold any lock. 2116 **/ 2117 uint16_t 2118 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2119 { 2120 struct lpfc_iocbq **new_arr; 2121 struct lpfc_iocbq **old_arr; 2122 size_t new_len; 2123 struct lpfc_sli *psli = &phba->sli; 2124 uint16_t iotag; 2125 2126 spin_lock_irq(&phba->hbalock); 2127 iotag = psli->last_iotag; 2128 if(++iotag < psli->iocbq_lookup_len) { 2129 psli->last_iotag = iotag; 2130 psli->iocbq_lookup[iotag] = iocbq; 2131 spin_unlock_irq(&phba->hbalock); 2132 iocbq->iotag = iotag; 2133 return iotag; 2134 } else if (psli->iocbq_lookup_len < (0xffff 2135 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2136 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2137 spin_unlock_irq(&phba->hbalock); 2138 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2139 GFP_KERNEL); 2140 if (new_arr) { 2141 spin_lock_irq(&phba->hbalock); 2142 old_arr = psli->iocbq_lookup; 2143 if (new_len <= psli->iocbq_lookup_len) { 2144 /* highly unprobable case */ 2145 kfree(new_arr); 2146 iotag = psli->last_iotag; 2147 if(++iotag < psli->iocbq_lookup_len) { 2148 psli->last_iotag = iotag; 2149 psli->iocbq_lookup[iotag] = iocbq; 2150 spin_unlock_irq(&phba->hbalock); 2151 iocbq->iotag = iotag; 2152 return iotag; 2153 } 2154 spin_unlock_irq(&phba->hbalock); 2155 return 0; 2156 } 2157 if (psli->iocbq_lookup) 2158 memcpy(new_arr, old_arr, 2159 ((psli->last_iotag + 1) * 2160 sizeof (struct lpfc_iocbq *))); 2161 psli->iocbq_lookup = new_arr; 2162 psli->iocbq_lookup_len = new_len; 2163 psli->last_iotag = iotag; 2164 psli->iocbq_lookup[iotag] = iocbq; 2165 spin_unlock_irq(&phba->hbalock); 2166 iocbq->iotag = iotag; 2167 kfree(old_arr); 2168 return iotag; 2169 } 2170 } else 2171 spin_unlock_irq(&phba->hbalock); 2172 2173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2174 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2175 psli->last_iotag); 2176 2177 return 0; 2178 } 2179 2180 /** 2181 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2182 * @phba: Pointer to HBA context object. 2183 * @pring: Pointer to driver SLI ring object. 2184 * @iocb: Pointer to iocb slot in the ring. 2185 * @nextiocb: Pointer to driver iocb object which need to be 2186 * posted to firmware. 2187 * 2188 * This function is called to post a new iocb to the firmware. This 2189 * function copies the new iocb to ring iocb slot and updates the 2190 * ring pointers. It adds the new iocb to txcmplq if there is 2191 * a completion call back for this iocb else the function will free the 2192 * iocb object. The hbalock is asserted held in the code path calling 2193 * this routine. 2194 **/ 2195 static void 2196 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2197 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2198 { 2199 /* 2200 * Set up an iotag 2201 */ 2202 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2203 2204 2205 if (pring->ringno == LPFC_ELS_RING) { 2206 lpfc_debugfs_slow_ring_trc(phba, 2207 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2208 *(((uint32_t *) &nextiocb->iocb) + 4), 2209 *(((uint32_t *) &nextiocb->iocb) + 6), 2210 *(((uint32_t *) &nextiocb->iocb) + 7)); 2211 } 2212 2213 /* 2214 * Issue iocb command to adapter 2215 */ 2216 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2217 wmb(); 2218 pring->stats.iocb_cmd++; 2219 2220 /* 2221 * If there is no completion routine to call, we can release the 2222 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2223 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2224 */ 2225 if (nextiocb->cmd_cmpl) 2226 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2227 else 2228 __lpfc_sli_release_iocbq(phba, nextiocb); 2229 2230 /* 2231 * Let the HBA know what IOCB slot will be the next one the 2232 * driver will put a command into. 2233 */ 2234 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2235 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2236 } 2237 2238 /** 2239 * lpfc_sli_update_full_ring - Update the chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * The caller is not required to hold any lock for calling this function. 2244 * This function updates the chip attention bits for the ring to inform firmware 2245 * that there are pending work to be done for this ring and requests an 2246 * interrupt when there is space available in the ring. This function is 2247 * called when the driver is unable to post more iocbs to the ring due 2248 * to unavailability of space in the ring. 2249 **/ 2250 static void 2251 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2252 { 2253 int ringno = pring->ringno; 2254 2255 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2256 2257 wmb(); 2258 2259 /* 2260 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2261 * The HBA will tell us when an IOCB entry is available. 2262 */ 2263 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2264 readl(phba->CAregaddr); /* flush */ 2265 2266 pring->stats.iocb_cmd_full++; 2267 } 2268 2269 /** 2270 * lpfc_sli_update_ring - Update chip attention register 2271 * @phba: Pointer to HBA context object. 2272 * @pring: Pointer to driver SLI ring object. 2273 * 2274 * This function updates the chip attention register bit for the 2275 * given ring to inform HBA that there is more work to be done 2276 * in this ring. The caller is not required to hold any lock. 2277 **/ 2278 static void 2279 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2280 { 2281 int ringno = pring->ringno; 2282 2283 /* 2284 * Tell the HBA that there is work to do in this ring. 2285 */ 2286 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2287 wmb(); 2288 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2289 readl(phba->CAregaddr); /* flush */ 2290 } 2291 } 2292 2293 /** 2294 * lpfc_sli_resume_iocb - Process iocbs in the txq 2295 * @phba: Pointer to HBA context object. 2296 * @pring: Pointer to driver SLI ring object. 2297 * 2298 * This function is called with hbalock held to post pending iocbs 2299 * in the txq to the firmware. This function is called when driver 2300 * detects space available in the ring. 2301 **/ 2302 static void 2303 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2304 { 2305 IOCB_t *iocb; 2306 struct lpfc_iocbq *nextiocb; 2307 2308 lockdep_assert_held(&phba->hbalock); 2309 2310 /* 2311 * Check to see if: 2312 * (a) there is anything on the txq to send 2313 * (b) link is up 2314 * (c) link attention events can be processed (fcp ring only) 2315 * (d) IOCB processing is not blocked by the outstanding mbox command. 2316 */ 2317 2318 if (lpfc_is_link_up(phba) && 2319 (!list_empty(&pring->txq)) && 2320 (pring->ringno != LPFC_FCP_RING || 2321 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2322 2323 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2324 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2325 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2326 2327 if (iocb) 2328 lpfc_sli_update_ring(phba, pring); 2329 else 2330 lpfc_sli_update_full_ring(phba, pring); 2331 } 2332 2333 return; 2334 } 2335 2336 /** 2337 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2338 * @phba: Pointer to HBA context object. 2339 * @hbqno: HBQ number. 2340 * 2341 * This function is called with hbalock held to get the next 2342 * available slot for the given HBQ. If there is free slot 2343 * available for the HBQ it will return pointer to the next available 2344 * HBQ entry else it will return NULL. 2345 **/ 2346 static struct lpfc_hbq_entry * 2347 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2348 { 2349 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2350 2351 lockdep_assert_held(&phba->hbalock); 2352 2353 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2354 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2355 hbqp->next_hbqPutIdx = 0; 2356 2357 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2358 uint32_t raw_index = phba->hbq_get[hbqno]; 2359 uint32_t getidx = le32_to_cpu(raw_index); 2360 2361 hbqp->local_hbqGetIdx = getidx; 2362 2363 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2365 "1802 HBQ %d: local_hbqGetIdx " 2366 "%u is > than hbqp->entry_count %u\n", 2367 hbqno, hbqp->local_hbqGetIdx, 2368 hbqp->entry_count); 2369 2370 phba->link_state = LPFC_HBA_ERROR; 2371 return NULL; 2372 } 2373 2374 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2375 return NULL; 2376 } 2377 2378 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2379 hbqp->hbqPutIdx; 2380 } 2381 2382 /** 2383 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2384 * @phba: Pointer to HBA context object. 2385 * 2386 * This function is called with no lock held to free all the 2387 * hbq buffers while uninitializing the SLI interface. It also 2388 * frees the HBQ buffers returned by the firmware but not yet 2389 * processed by the upper layers. 2390 **/ 2391 void 2392 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2393 { 2394 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2395 struct hbq_dmabuf *hbq_buf; 2396 unsigned long flags; 2397 int i, hbq_count; 2398 2399 hbq_count = lpfc_sli_hbq_count(); 2400 /* Return all memory used by all HBQs */ 2401 spin_lock_irqsave(&phba->hbalock, flags); 2402 for (i = 0; i < hbq_count; ++i) { 2403 list_for_each_entry_safe(dmabuf, next_dmabuf, 2404 &phba->hbqs[i].hbq_buffer_list, list) { 2405 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2406 list_del(&hbq_buf->dbuf.list); 2407 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2408 } 2409 phba->hbqs[i].buffer_count = 0; 2410 } 2411 2412 /* Mark the HBQs not in use */ 2413 phba->hbq_in_use = 0; 2414 spin_unlock_irqrestore(&phba->hbalock, flags); 2415 } 2416 2417 /** 2418 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2419 * @phba: Pointer to HBA context object. 2420 * @hbqno: HBQ number. 2421 * @hbq_buf: Pointer to HBQ buffer. 2422 * 2423 * This function is called with the hbalock held to post a 2424 * hbq buffer to the firmware. If the function finds an empty 2425 * slot in the HBQ, it will post the buffer. The function will return 2426 * pointer to the hbq entry if it successfully post the buffer 2427 * else it will return NULL. 2428 **/ 2429 static int 2430 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2431 struct hbq_dmabuf *hbq_buf) 2432 { 2433 lockdep_assert_held(&phba->hbalock); 2434 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2435 } 2436 2437 /** 2438 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2439 * @phba: Pointer to HBA context object. 2440 * @hbqno: HBQ number. 2441 * @hbq_buf: Pointer to HBQ buffer. 2442 * 2443 * This function is called with the hbalock held to post a hbq buffer to the 2444 * firmware. If the function finds an empty slot in the HBQ, it will post the 2445 * buffer and place it on the hbq_buffer_list. The function will return zero if 2446 * it successfully post the buffer else it will return an error. 2447 **/ 2448 static int 2449 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2450 struct hbq_dmabuf *hbq_buf) 2451 { 2452 struct lpfc_hbq_entry *hbqe; 2453 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2454 2455 lockdep_assert_held(&phba->hbalock); 2456 /* Get next HBQ entry slot to use */ 2457 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2458 if (hbqe) { 2459 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2460 2461 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2462 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2463 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2464 hbqe->bde.tus.f.bdeFlags = 0; 2465 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2466 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2467 /* Sync SLIM */ 2468 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2469 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2470 /* flush */ 2471 readl(phba->hbq_put + hbqno); 2472 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2473 return 0; 2474 } else 2475 return -ENOMEM; 2476 } 2477 2478 /** 2479 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2480 * @phba: Pointer to HBA context object. 2481 * @hbqno: HBQ number. 2482 * @hbq_buf: Pointer to HBQ buffer. 2483 * 2484 * This function is called with the hbalock held to post an RQE to the SLI4 2485 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2486 * the hbq_buffer_list and return zero, otherwise it will return an error. 2487 **/ 2488 static int 2489 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2490 struct hbq_dmabuf *hbq_buf) 2491 { 2492 int rc; 2493 struct lpfc_rqe hrqe; 2494 struct lpfc_rqe drqe; 2495 struct lpfc_queue *hrq; 2496 struct lpfc_queue *drq; 2497 2498 if (hbqno != LPFC_ELS_HBQ) 2499 return 1; 2500 hrq = phba->sli4_hba.hdr_rq; 2501 drq = phba->sli4_hba.dat_rq; 2502 2503 lockdep_assert_held(&phba->hbalock); 2504 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2505 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2506 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2507 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2508 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2509 if (rc < 0) 2510 return rc; 2511 hbq_buf->tag = (rc | (hbqno << 16)); 2512 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2513 return 0; 2514 } 2515 2516 /* HBQ for ELS and CT traffic. */ 2517 static struct lpfc_hbq_init lpfc_els_hbq = { 2518 .rn = 1, 2519 .entry_count = 256, 2520 .mask_count = 0, 2521 .profile = 0, 2522 .ring_mask = (1 << LPFC_ELS_RING), 2523 .buffer_count = 0, 2524 .init_count = 40, 2525 .add_count = 40, 2526 }; 2527 2528 /* Array of HBQs */ 2529 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2530 &lpfc_els_hbq, 2531 }; 2532 2533 /** 2534 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2535 * @phba: Pointer to HBA context object. 2536 * @hbqno: HBQ number. 2537 * @count: Number of HBQ buffers to be posted. 2538 * 2539 * This function is called with no lock held to post more hbq buffers to the 2540 * given HBQ. The function returns the number of HBQ buffers successfully 2541 * posted. 2542 **/ 2543 static int 2544 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2545 { 2546 uint32_t i, posted = 0; 2547 unsigned long flags; 2548 struct hbq_dmabuf *hbq_buffer; 2549 LIST_HEAD(hbq_buf_list); 2550 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2551 return 0; 2552 2553 if ((phba->hbqs[hbqno].buffer_count + count) > 2554 lpfc_hbq_defs[hbqno]->entry_count) 2555 count = lpfc_hbq_defs[hbqno]->entry_count - 2556 phba->hbqs[hbqno].buffer_count; 2557 if (!count) 2558 return 0; 2559 /* Allocate HBQ entries */ 2560 for (i = 0; i < count; i++) { 2561 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2562 if (!hbq_buffer) 2563 break; 2564 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2565 } 2566 /* Check whether HBQ is still in use */ 2567 spin_lock_irqsave(&phba->hbalock, flags); 2568 if (!phba->hbq_in_use) 2569 goto err; 2570 while (!list_empty(&hbq_buf_list)) { 2571 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2572 dbuf.list); 2573 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2574 (hbqno << 16)); 2575 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2576 phba->hbqs[hbqno].buffer_count++; 2577 posted++; 2578 } else 2579 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2580 } 2581 spin_unlock_irqrestore(&phba->hbalock, flags); 2582 return posted; 2583 err: 2584 spin_unlock_irqrestore(&phba->hbalock, flags); 2585 while (!list_empty(&hbq_buf_list)) { 2586 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2587 dbuf.list); 2588 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2589 } 2590 return 0; 2591 } 2592 2593 /** 2594 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2595 * @phba: Pointer to HBA context object. 2596 * @qno: HBQ number. 2597 * 2598 * This function posts more buffers to the HBQ. This function 2599 * is called with no lock held. The function returns the number of HBQ entries 2600 * successfully allocated. 2601 **/ 2602 int 2603 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2604 { 2605 if (phba->sli_rev == LPFC_SLI_REV4) 2606 return 0; 2607 else 2608 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2609 lpfc_hbq_defs[qno]->add_count); 2610 } 2611 2612 /** 2613 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2614 * @phba: Pointer to HBA context object. 2615 * @qno: HBQ queue number. 2616 * 2617 * This function is called from SLI initialization code path with 2618 * no lock held to post initial HBQ buffers to firmware. The 2619 * function returns the number of HBQ entries successfully allocated. 2620 **/ 2621 static int 2622 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2623 { 2624 if (phba->sli_rev == LPFC_SLI_REV4) 2625 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2626 lpfc_hbq_defs[qno]->entry_count); 2627 else 2628 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2629 lpfc_hbq_defs[qno]->init_count); 2630 } 2631 2632 /* 2633 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2634 * 2635 * This function removes the first hbq buffer on an hbq list and returns a 2636 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2637 **/ 2638 static struct hbq_dmabuf * 2639 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2640 { 2641 struct lpfc_dmabuf *d_buf; 2642 2643 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2644 if (!d_buf) 2645 return NULL; 2646 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2647 } 2648 2649 /** 2650 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2651 * @phba: Pointer to HBA context object. 2652 * @hrq: HBQ number. 2653 * 2654 * This function removes the first RQ buffer on an RQ buffer list and returns a 2655 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2656 **/ 2657 static struct rqb_dmabuf * 2658 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2659 { 2660 struct lpfc_dmabuf *h_buf; 2661 struct lpfc_rqb *rqbp; 2662 2663 rqbp = hrq->rqbp; 2664 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2665 struct lpfc_dmabuf, list); 2666 if (!h_buf) 2667 return NULL; 2668 rqbp->buffer_count--; 2669 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2670 } 2671 2672 /** 2673 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2674 * @phba: Pointer to HBA context object. 2675 * @tag: Tag of the hbq buffer. 2676 * 2677 * This function searches for the hbq buffer associated with the given tag in 2678 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2679 * otherwise it returns NULL. 2680 **/ 2681 static struct hbq_dmabuf * 2682 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2683 { 2684 struct lpfc_dmabuf *d_buf; 2685 struct hbq_dmabuf *hbq_buf; 2686 uint32_t hbqno; 2687 2688 hbqno = tag >> 16; 2689 if (hbqno >= LPFC_MAX_HBQS) 2690 return NULL; 2691 2692 spin_lock_irq(&phba->hbalock); 2693 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2694 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2695 if (hbq_buf->tag == tag) { 2696 spin_unlock_irq(&phba->hbalock); 2697 return hbq_buf; 2698 } 2699 } 2700 spin_unlock_irq(&phba->hbalock); 2701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2702 "1803 Bad hbq tag. Data: x%x x%x\n", 2703 tag, phba->hbqs[tag >> 16].buffer_count); 2704 return NULL; 2705 } 2706 2707 /** 2708 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2709 * @phba: Pointer to HBA context object. 2710 * @hbq_buffer: Pointer to HBQ buffer. 2711 * 2712 * This function is called with hbalock. This function gives back 2713 * the hbq buffer to firmware. If the HBQ does not have space to 2714 * post the buffer, it will free the buffer. 2715 **/ 2716 void 2717 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2718 { 2719 uint32_t hbqno; 2720 2721 if (hbq_buffer) { 2722 hbqno = hbq_buffer->tag >> 16; 2723 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2724 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2725 } 2726 } 2727 2728 /** 2729 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2730 * @mbxCommand: mailbox command code. 2731 * 2732 * This function is called by the mailbox event handler function to verify 2733 * that the completed mailbox command is a legitimate mailbox command. If the 2734 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2735 * and the mailbox event handler will take the HBA offline. 2736 **/ 2737 static int 2738 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2739 { 2740 uint8_t ret; 2741 2742 switch (mbxCommand) { 2743 case MBX_LOAD_SM: 2744 case MBX_READ_NV: 2745 case MBX_WRITE_NV: 2746 case MBX_WRITE_VPARMS: 2747 case MBX_RUN_BIU_DIAG: 2748 case MBX_INIT_LINK: 2749 case MBX_DOWN_LINK: 2750 case MBX_CONFIG_LINK: 2751 case MBX_CONFIG_RING: 2752 case MBX_RESET_RING: 2753 case MBX_READ_CONFIG: 2754 case MBX_READ_RCONFIG: 2755 case MBX_READ_SPARM: 2756 case MBX_READ_STATUS: 2757 case MBX_READ_RPI: 2758 case MBX_READ_XRI: 2759 case MBX_READ_REV: 2760 case MBX_READ_LNK_STAT: 2761 case MBX_REG_LOGIN: 2762 case MBX_UNREG_LOGIN: 2763 case MBX_CLEAR_LA: 2764 case MBX_DUMP_MEMORY: 2765 case MBX_DUMP_CONTEXT: 2766 case MBX_RUN_DIAGS: 2767 case MBX_RESTART: 2768 case MBX_UPDATE_CFG: 2769 case MBX_DOWN_LOAD: 2770 case MBX_DEL_LD_ENTRY: 2771 case MBX_RUN_PROGRAM: 2772 case MBX_SET_MASK: 2773 case MBX_SET_VARIABLE: 2774 case MBX_UNREG_D_ID: 2775 case MBX_KILL_BOARD: 2776 case MBX_CONFIG_FARP: 2777 case MBX_BEACON: 2778 case MBX_LOAD_AREA: 2779 case MBX_RUN_BIU_DIAG64: 2780 case MBX_CONFIG_PORT: 2781 case MBX_READ_SPARM64: 2782 case MBX_READ_RPI64: 2783 case MBX_REG_LOGIN64: 2784 case MBX_READ_TOPOLOGY: 2785 case MBX_WRITE_WWN: 2786 case MBX_SET_DEBUG: 2787 case MBX_LOAD_EXP_ROM: 2788 case MBX_ASYNCEVT_ENABLE: 2789 case MBX_REG_VPI: 2790 case MBX_UNREG_VPI: 2791 case MBX_HEARTBEAT: 2792 case MBX_PORT_CAPABILITIES: 2793 case MBX_PORT_IOV_CONTROL: 2794 case MBX_SLI4_CONFIG: 2795 case MBX_SLI4_REQ_FTRS: 2796 case MBX_REG_FCFI: 2797 case MBX_UNREG_FCFI: 2798 case MBX_REG_VFI: 2799 case MBX_UNREG_VFI: 2800 case MBX_INIT_VPI: 2801 case MBX_INIT_VFI: 2802 case MBX_RESUME_RPI: 2803 case MBX_READ_EVENT_LOG_STATUS: 2804 case MBX_READ_EVENT_LOG: 2805 case MBX_SECURITY_MGMT: 2806 case MBX_AUTH_PORT: 2807 case MBX_ACCESS_VDATA: 2808 ret = mbxCommand; 2809 break; 2810 default: 2811 ret = MBX_SHUTDOWN; 2812 break; 2813 } 2814 return ret; 2815 } 2816 2817 /** 2818 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2819 * @phba: Pointer to HBA context object. 2820 * @pmboxq: Pointer to mailbox command. 2821 * 2822 * This is completion handler function for mailbox commands issued from 2823 * lpfc_sli_issue_mbox_wait function. This function is called by the 2824 * mailbox event handler function with no lock held. This function 2825 * will wake up thread waiting on the wait queue pointed by context1 2826 * of the mailbox. 2827 **/ 2828 void 2829 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2830 { 2831 unsigned long drvr_flag; 2832 struct completion *pmbox_done; 2833 2834 /* 2835 * If pmbox_done is empty, the driver thread gave up waiting and 2836 * continued running. 2837 */ 2838 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2839 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2840 pmbox_done = pmboxq->ctx_u.mbox_wait; 2841 if (pmbox_done) 2842 complete(pmbox_done); 2843 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2844 return; 2845 } 2846 2847 /** 2848 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2849 * @phba: Pointer to HBA context object. 2850 * @pmb: Pointer to mailbox object. 2851 * 2852 * This function is the default mailbox completion handler. It 2853 * frees the memory resources associated with the completed mailbox 2854 * command. If the completed command is a REG_LOGIN mailbox command, 2855 * this function will issue a UREG_LOGIN to re-claim the RPI. 2856 **/ 2857 void 2858 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2859 { 2860 struct lpfc_vport *vport = pmb->vport; 2861 struct lpfc_dmabuf *mp; 2862 struct lpfc_nodelist *ndlp; 2863 struct Scsi_Host *shost; 2864 uint16_t rpi, vpi; 2865 int rc; 2866 2867 /* 2868 * If a REG_LOGIN succeeded after node is destroyed or node 2869 * is in re-discovery driver need to cleanup the RPI. 2870 */ 2871 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2872 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2873 !pmb->u.mb.mbxStatus) { 2874 mp = pmb->ctx_buf; 2875 if (mp) { 2876 pmb->ctx_buf = NULL; 2877 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2878 kfree(mp); 2879 } 2880 rpi = pmb->u.mb.un.varWords[0]; 2881 vpi = pmb->u.mb.un.varRegLogin.vpi; 2882 if (phba->sli_rev == LPFC_SLI_REV4) 2883 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2884 lpfc_unreg_login(phba, vpi, rpi, pmb); 2885 pmb->vport = vport; 2886 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2887 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2888 if (rc != MBX_NOT_FINISHED) 2889 return; 2890 } 2891 2892 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2893 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2894 !pmb->u.mb.mbxStatus) { 2895 shost = lpfc_shost_from_vport(vport); 2896 spin_lock_irq(shost->host_lock); 2897 vport->vpi_state |= LPFC_VPI_REGISTERED; 2898 spin_unlock_irq(shost->host_lock); 2899 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2900 } 2901 2902 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2903 ndlp = pmb->ctx_ndlp; 2904 lpfc_nlp_put(ndlp); 2905 } 2906 2907 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2908 ndlp = pmb->ctx_ndlp; 2909 2910 /* Check to see if there are any deferred events to process */ 2911 if (ndlp) { 2912 lpfc_printf_vlog( 2913 vport, 2914 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2915 "1438 UNREG cmpl deferred mbox x%x " 2916 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n", 2917 ndlp->nlp_rpi, ndlp->nlp_DID, 2918 ndlp->nlp_flag, ndlp->nlp_defer_did, 2919 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2920 2921 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) && 2922 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) { 2923 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2924 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2925 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2926 } else { 2927 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2928 } 2929 2930 /* The unreg_login mailbox is complete and had a 2931 * reference that has to be released. The PLOGI 2932 * got its own ref. 2933 */ 2934 lpfc_nlp_put(ndlp); 2935 pmb->ctx_ndlp = NULL; 2936 } 2937 } 2938 2939 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2940 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2941 ndlp = pmb->ctx_ndlp; 2942 lpfc_nlp_put(ndlp); 2943 } 2944 2945 /* Check security permission status on INIT_LINK mailbox command */ 2946 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2947 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2949 "2860 SLI authentication is required " 2950 "for INIT_LINK but has not done yet\n"); 2951 2952 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2953 lpfc_sli4_mbox_cmd_free(phba, pmb); 2954 else 2955 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2956 } 2957 /** 2958 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2959 * @phba: Pointer to HBA context object. 2960 * @pmb: Pointer to mailbox object. 2961 * 2962 * This function is the unreg rpi mailbox completion handler. It 2963 * frees the memory resources associated with the completed mailbox 2964 * command. An additional reference is put on the ndlp to prevent 2965 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2966 * the unreg mailbox command completes, this routine puts the 2967 * reference back. 2968 * 2969 **/ 2970 void 2971 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2972 { 2973 struct lpfc_vport *vport = pmb->vport; 2974 struct lpfc_nodelist *ndlp; 2975 bool unreg_inp; 2976 2977 ndlp = pmb->ctx_ndlp; 2978 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2979 if (phba->sli_rev == LPFC_SLI_REV4 && 2980 (bf_get(lpfc_sli_intf_if_type, 2981 &phba->sli4_hba.sli_intf) >= 2982 LPFC_SLI_INTF_IF_TYPE_2)) { 2983 if (ndlp) { 2984 lpfc_printf_vlog( 2985 vport, KERN_INFO, 2986 LOG_MBOX | LOG_SLI | LOG_NODE, 2987 "0010 UNREG_LOGIN vpi:x%x " 2988 "rpi:%x DID:%x defer x%x flg x%lx " 2989 "x%px\n", 2990 vport->vpi, ndlp->nlp_rpi, 2991 ndlp->nlp_DID, ndlp->nlp_defer_did, 2992 ndlp->nlp_flag, 2993 ndlp); 2994 2995 /* Cleanup the nlp_flag now that the UNREG RPI 2996 * has completed. 2997 */ 2998 unreg_inp = test_and_clear_bit(NLP_UNREG_INP, 2999 &ndlp->nlp_flag); 3000 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag); 3001 3002 /* Check to see if there are any deferred 3003 * events to process 3004 */ 3005 if (unreg_inp && 3006 ndlp->nlp_defer_did != 3007 NLP_EVT_NOTHING_PENDING) { 3008 lpfc_printf_vlog( 3009 vport, KERN_INFO, 3010 LOG_MBOX | LOG_SLI | LOG_NODE, 3011 "4111 UNREG cmpl deferred " 3012 "clr x%x on " 3013 "NPort x%x Data: x%x x%px\n", 3014 ndlp->nlp_rpi, ndlp->nlp_DID, 3015 ndlp->nlp_defer_did, ndlp); 3016 ndlp->nlp_defer_did = 3017 NLP_EVT_NOTHING_PENDING; 3018 lpfc_issue_els_plogi( 3019 vport, ndlp->nlp_DID, 0); 3020 } 3021 3022 lpfc_nlp_put(ndlp); 3023 } 3024 } 3025 } 3026 3027 mempool_free(pmb, phba->mbox_mem_pool); 3028 } 3029 3030 /** 3031 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3032 * @phba: Pointer to HBA context object. 3033 * 3034 * This function is called with no lock held. This function processes all 3035 * the completed mailbox commands and gives it to upper layers. The interrupt 3036 * service routine processes mailbox completion interrupt and adds completed 3037 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3038 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3039 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3040 * function returns the mailbox commands to the upper layer by calling the 3041 * completion handler function of each mailbox. 3042 **/ 3043 int 3044 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3045 { 3046 MAILBOX_t *pmbox; 3047 LPFC_MBOXQ_t *pmb; 3048 int rc; 3049 LIST_HEAD(cmplq); 3050 3051 phba->sli.slistat.mbox_event++; 3052 3053 /* Get all completed mailboxe buffers into the cmplq */ 3054 spin_lock_irq(&phba->hbalock); 3055 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3056 spin_unlock_irq(&phba->hbalock); 3057 3058 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3059 do { 3060 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3061 if (pmb == NULL) 3062 break; 3063 3064 pmbox = &pmb->u.mb; 3065 3066 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3067 if (pmb->vport) { 3068 lpfc_debugfs_disc_trc(pmb->vport, 3069 LPFC_DISC_TRC_MBOX_VPORT, 3070 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3071 (uint32_t)pmbox->mbxCommand, 3072 pmbox->un.varWords[0], 3073 pmbox->un.varWords[1]); 3074 } 3075 else { 3076 lpfc_debugfs_disc_trc(phba->pport, 3077 LPFC_DISC_TRC_MBOX, 3078 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3079 (uint32_t)pmbox->mbxCommand, 3080 pmbox->un.varWords[0], 3081 pmbox->un.varWords[1]); 3082 } 3083 } 3084 3085 /* 3086 * It is a fatal error if unknown mbox command completion. 3087 */ 3088 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3089 MBX_SHUTDOWN) { 3090 /* Unknown mailbox command compl */ 3091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3092 "(%d):0323 Unknown Mailbox command " 3093 "x%x (x%x/x%x) Cmpl\n", 3094 pmb->vport ? pmb->vport->vpi : 3095 LPFC_VPORT_UNKNOWN, 3096 pmbox->mbxCommand, 3097 lpfc_sli_config_mbox_subsys_get(phba, 3098 pmb), 3099 lpfc_sli_config_mbox_opcode_get(phba, 3100 pmb)); 3101 phba->link_state = LPFC_HBA_ERROR; 3102 phba->work_hs = HS_FFER3; 3103 lpfc_handle_eratt(phba); 3104 continue; 3105 } 3106 3107 if (pmbox->mbxStatus) { 3108 phba->sli.slistat.mbox_stat_err++; 3109 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3110 /* Mbox cmd cmpl error - RETRYing */ 3111 lpfc_printf_log(phba, KERN_INFO, 3112 LOG_MBOX | LOG_SLI, 3113 "(%d):0305 Mbox cmd cmpl " 3114 "error - RETRYing Data: x%x " 3115 "(x%x/x%x) x%x x%x x%x\n", 3116 pmb->vport ? pmb->vport->vpi : 3117 LPFC_VPORT_UNKNOWN, 3118 pmbox->mbxCommand, 3119 lpfc_sli_config_mbox_subsys_get(phba, 3120 pmb), 3121 lpfc_sli_config_mbox_opcode_get(phba, 3122 pmb), 3123 pmbox->mbxStatus, 3124 pmbox->un.varWords[0], 3125 pmb->vport ? pmb->vport->port_state : 3126 LPFC_VPORT_UNKNOWN); 3127 pmbox->mbxStatus = 0; 3128 pmbox->mbxOwner = OWN_HOST; 3129 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3130 if (rc != MBX_NOT_FINISHED) 3131 continue; 3132 } 3133 } 3134 3135 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3136 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3137 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3138 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3139 "x%x x%x x%x\n", 3140 pmb->vport ? pmb->vport->vpi : 0, 3141 pmbox->mbxCommand, 3142 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3143 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3144 pmb->mbox_cmpl, 3145 *((uint32_t *) pmbox), 3146 pmbox->un.varWords[0], 3147 pmbox->un.varWords[1], 3148 pmbox->un.varWords[2], 3149 pmbox->un.varWords[3], 3150 pmbox->un.varWords[4], 3151 pmbox->un.varWords[5], 3152 pmbox->un.varWords[6], 3153 pmbox->un.varWords[7], 3154 pmbox->un.varWords[8], 3155 pmbox->un.varWords[9], 3156 pmbox->un.varWords[10]); 3157 3158 if (pmb->mbox_cmpl) 3159 pmb->mbox_cmpl(phba,pmb); 3160 } while (1); 3161 return 0; 3162 } 3163 3164 /** 3165 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3166 * @phba: Pointer to HBA context object. 3167 * @pring: Pointer to driver SLI ring object. 3168 * @tag: buffer tag. 3169 * 3170 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3171 * is set in the tag the buffer is posted for a particular exchange, 3172 * the function will return the buffer without replacing the buffer. 3173 * If the buffer is for unsolicited ELS or CT traffic, this function 3174 * returns the buffer and also posts another buffer to the firmware. 3175 **/ 3176 static struct lpfc_dmabuf * 3177 lpfc_sli_get_buff(struct lpfc_hba *phba, 3178 struct lpfc_sli_ring *pring, 3179 uint32_t tag) 3180 { 3181 struct hbq_dmabuf *hbq_entry; 3182 3183 if (tag & QUE_BUFTAG_BIT) 3184 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3185 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3186 if (!hbq_entry) 3187 return NULL; 3188 return &hbq_entry->dbuf; 3189 } 3190 3191 /** 3192 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3193 * containing a NVME LS request. 3194 * @phba: pointer to lpfc hba data structure. 3195 * @piocb: pointer to the iocbq struct representing the sequence starting 3196 * frame. 3197 * 3198 * This routine initially validates the NVME LS, validates there is a login 3199 * with the port that sent the LS, and then calls the appropriate nvme host 3200 * or target LS request handler. 3201 **/ 3202 static void 3203 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3204 { 3205 struct lpfc_nodelist *ndlp; 3206 struct lpfc_dmabuf *d_buf; 3207 struct hbq_dmabuf *nvmebuf; 3208 struct fc_frame_header *fc_hdr; 3209 struct lpfc_async_xchg_ctx *axchg = NULL; 3210 char *failwhy = NULL; 3211 uint32_t oxid, sid, did, fctl, size; 3212 int ret = 1; 3213 3214 d_buf = piocb->cmd_dmabuf; 3215 3216 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3217 fc_hdr = nvmebuf->hbuf.virt; 3218 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3219 sid = sli4_sid_from_fc_hdr(fc_hdr); 3220 did = sli4_did_from_fc_hdr(fc_hdr); 3221 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3222 fc_hdr->fh_f_ctl[1] << 8 | 3223 fc_hdr->fh_f_ctl[2]); 3224 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3225 3226 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3227 oxid, size, sid); 3228 3229 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3230 failwhy = "Driver Unloading"; 3231 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3232 failwhy = "NVME FC4 Disabled"; 3233 } else if (!phba->nvmet_support && !phba->pport->localport) { 3234 failwhy = "No Localport"; 3235 } else if (phba->nvmet_support && !phba->targetport) { 3236 failwhy = "No Targetport"; 3237 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3238 failwhy = "Bad NVME LS R_CTL"; 3239 } else if (unlikely((fctl & 0x00FF0000) != 3240 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3241 failwhy = "Bad NVME LS F_CTL"; 3242 } else { 3243 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3244 if (!axchg) 3245 failwhy = "No CTX memory"; 3246 } 3247 3248 if (unlikely(failwhy)) { 3249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3250 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3251 sid, oxid, failwhy); 3252 goto out_fail; 3253 } 3254 3255 /* validate the source of the LS is logged in */ 3256 ndlp = lpfc_findnode_did(phba->pport, sid); 3257 if (!ndlp || 3258 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3259 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3260 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3261 "6216 NVME Unsol rcv: No ndlp: " 3262 "NPort_ID x%x oxid x%x\n", 3263 sid, oxid); 3264 goto out_fail; 3265 } 3266 3267 axchg->phba = phba; 3268 axchg->ndlp = ndlp; 3269 axchg->size = size; 3270 axchg->oxid = oxid; 3271 axchg->sid = sid; 3272 axchg->wqeq = NULL; 3273 axchg->state = LPFC_NVME_STE_LS_RCV; 3274 axchg->entry_cnt = 1; 3275 axchg->rqb_buffer = (void *)nvmebuf; 3276 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3277 axchg->payload = nvmebuf->dbuf.virt; 3278 INIT_LIST_HEAD(&axchg->list); 3279 3280 if (phba->nvmet_support) { 3281 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3282 spin_lock_irq(&ndlp->lock); 3283 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3284 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3285 spin_unlock_irq(&ndlp->lock); 3286 3287 /* This reference is a single occurrence to hold the 3288 * node valid until the nvmet transport calls 3289 * host_release. 3290 */ 3291 if (!lpfc_nlp_get(ndlp)) 3292 goto out_fail; 3293 3294 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3295 "6206 NVMET unsol ls_req ndlp x%px " 3296 "DID x%x xflags x%x refcnt %d\n", 3297 ndlp, ndlp->nlp_DID, 3298 ndlp->fc4_xpt_flags, 3299 kref_read(&ndlp->kref)); 3300 } else { 3301 spin_unlock_irq(&ndlp->lock); 3302 } 3303 } else { 3304 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3305 } 3306 3307 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3308 if (!ret) 3309 return; 3310 3311 out_fail: 3312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3313 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3314 "NVMe%s handler failed %d\n", 3315 did, sid, oxid, 3316 (phba->nvmet_support) ? "T" : "I", ret); 3317 3318 /* recycle receive buffer */ 3319 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3320 3321 /* If start of new exchange, abort it */ 3322 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3323 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3324 3325 if (ret) 3326 kfree(axchg); 3327 } 3328 3329 /** 3330 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3331 * @phba: Pointer to HBA context object. 3332 * @pring: Pointer to driver SLI ring object. 3333 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3334 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3335 * @fch_type: the type for the first frame of the sequence. 3336 * 3337 * This function is called with no lock held. This function uses the r_ctl and 3338 * type of the received sequence to find the correct callback function to call 3339 * to process the sequence. 3340 **/ 3341 static int 3342 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3343 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3344 uint32_t fch_type) 3345 { 3346 int i; 3347 3348 switch (fch_type) { 3349 case FC_TYPE_NVME: 3350 lpfc_nvme_unsol_ls_handler(phba, saveq); 3351 return 1; 3352 default: 3353 break; 3354 } 3355 3356 /* unSolicited Responses */ 3357 if (pring->prt[0].profile) { 3358 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3359 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3360 saveq); 3361 return 1; 3362 } 3363 /* We must search, based on rctl / type 3364 for the right routine */ 3365 for (i = 0; i < pring->num_mask; i++) { 3366 if ((pring->prt[i].rctl == fch_r_ctl) && 3367 (pring->prt[i].type == fch_type)) { 3368 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3369 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3370 (phba, pring, saveq); 3371 return 1; 3372 } 3373 } 3374 return 0; 3375 } 3376 3377 static void 3378 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3379 struct lpfc_iocbq *saveq) 3380 { 3381 IOCB_t *irsp; 3382 union lpfc_wqe128 *wqe; 3383 u16 i = 0; 3384 3385 irsp = &saveq->iocb; 3386 wqe = &saveq->wqe; 3387 3388 /* Fill wcqe with the IOCB status fields */ 3389 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3390 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3391 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3392 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3393 3394 /* Source ID */ 3395 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3396 3397 /* rx-id of the response frame */ 3398 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3399 3400 /* ox-id of the frame */ 3401 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3402 irsp->unsli3.rcvsli3.ox_id); 3403 3404 /* DID */ 3405 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3406 irsp->un.rcvels.remoteID); 3407 3408 /* unsol data len */ 3409 for (i = 0; i < irsp->ulpBdeCount; i++) { 3410 struct lpfc_hbq_entry *hbqe = NULL; 3411 3412 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3413 if (i == 0) { 3414 hbqe = (struct lpfc_hbq_entry *) 3415 &irsp->un.ulpWord[0]; 3416 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3417 hbqe->bde.tus.f.bdeSize; 3418 } else if (i == 1) { 3419 hbqe = (struct lpfc_hbq_entry *) 3420 &irsp->unsli3.sli3Words[4]; 3421 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3422 } 3423 } 3424 } 3425 } 3426 3427 /** 3428 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3429 * @phba: Pointer to HBA context object. 3430 * @pring: Pointer to driver SLI ring object. 3431 * @saveq: Pointer to the unsolicited iocb. 3432 * 3433 * This function is called with no lock held by the ring event handler 3434 * when there is an unsolicited iocb posted to the response ring by the 3435 * firmware. This function gets the buffer associated with the iocbs 3436 * and calls the event handler for the ring. This function handles both 3437 * qring buffers and hbq buffers. 3438 * When the function returns 1 the caller can free the iocb object otherwise 3439 * upper layer functions will free the iocb objects. 3440 **/ 3441 static int 3442 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3443 struct lpfc_iocbq *saveq) 3444 { 3445 IOCB_t * irsp; 3446 WORD5 * w5p; 3447 dma_addr_t paddr; 3448 uint32_t Rctl, Type; 3449 struct lpfc_iocbq *iocbq; 3450 struct lpfc_dmabuf *dmzbuf; 3451 3452 irsp = &saveq->iocb; 3453 saveq->vport = phba->pport; 3454 3455 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3456 if (pring->lpfc_sli_rcv_async_status) 3457 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3458 else 3459 lpfc_printf_log(phba, 3460 KERN_WARNING, 3461 LOG_SLI, 3462 "0316 Ring %d handler: unexpected " 3463 "ASYNC_STATUS iocb received evt_code " 3464 "0x%x\n", 3465 pring->ringno, 3466 irsp->un.asyncstat.evt_code); 3467 return 1; 3468 } 3469 3470 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3471 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3472 if (irsp->ulpBdeCount > 0) { 3473 dmzbuf = lpfc_sli_get_buff(phba, pring, 3474 irsp->un.ulpWord[3]); 3475 lpfc_in_buf_free(phba, dmzbuf); 3476 } 3477 3478 if (irsp->ulpBdeCount > 1) { 3479 dmzbuf = lpfc_sli_get_buff(phba, pring, 3480 irsp->unsli3.sli3Words[3]); 3481 lpfc_in_buf_free(phba, dmzbuf); 3482 } 3483 3484 if (irsp->ulpBdeCount > 2) { 3485 dmzbuf = lpfc_sli_get_buff(phba, pring, 3486 irsp->unsli3.sli3Words[7]); 3487 lpfc_in_buf_free(phba, dmzbuf); 3488 } 3489 3490 return 1; 3491 } 3492 3493 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3494 if (irsp->ulpBdeCount != 0) { 3495 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3496 irsp->un.ulpWord[3]); 3497 if (!saveq->cmd_dmabuf) 3498 lpfc_printf_log(phba, 3499 KERN_ERR, 3500 LOG_SLI, 3501 "0341 Ring %d Cannot find buffer for " 3502 "an unsolicited iocb. tag 0x%x\n", 3503 pring->ringno, 3504 irsp->un.ulpWord[3]); 3505 } 3506 if (irsp->ulpBdeCount == 2) { 3507 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3508 irsp->unsli3.sli3Words[7]); 3509 if (!saveq->bpl_dmabuf) 3510 lpfc_printf_log(phba, 3511 KERN_ERR, 3512 LOG_SLI, 3513 "0342 Ring %d Cannot find buffer for an" 3514 " unsolicited iocb. tag 0x%x\n", 3515 pring->ringno, 3516 irsp->unsli3.sli3Words[7]); 3517 } 3518 list_for_each_entry(iocbq, &saveq->list, list) { 3519 irsp = &iocbq->iocb; 3520 if (irsp->ulpBdeCount != 0) { 3521 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3522 pring, 3523 irsp->un.ulpWord[3]); 3524 if (!iocbq->cmd_dmabuf) 3525 lpfc_printf_log(phba, 3526 KERN_ERR, 3527 LOG_SLI, 3528 "0343 Ring %d Cannot find " 3529 "buffer for an unsolicited iocb" 3530 ". tag 0x%x\n", pring->ringno, 3531 irsp->un.ulpWord[3]); 3532 } 3533 if (irsp->ulpBdeCount == 2) { 3534 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3535 pring, 3536 irsp->unsli3.sli3Words[7]); 3537 if (!iocbq->bpl_dmabuf) 3538 lpfc_printf_log(phba, 3539 KERN_ERR, 3540 LOG_SLI, 3541 "0344 Ring %d Cannot find " 3542 "buffer for an unsolicited " 3543 "iocb. tag 0x%x\n", 3544 pring->ringno, 3545 irsp->unsli3.sli3Words[7]); 3546 } 3547 } 3548 } else { 3549 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3550 irsp->un.cont64[0].addrLow); 3551 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3552 paddr); 3553 if (irsp->ulpBdeCount == 2) { 3554 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3555 irsp->un.cont64[1].addrLow); 3556 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3557 pring, 3558 paddr); 3559 } 3560 } 3561 3562 if (irsp->ulpBdeCount != 0 && 3563 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3564 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3565 int found = 0; 3566 3567 /* search continue save q for same XRI */ 3568 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3569 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3570 saveq->iocb.unsli3.rcvsli3.ox_id) { 3571 list_add_tail(&saveq->list, &iocbq->list); 3572 found = 1; 3573 break; 3574 } 3575 } 3576 if (!found) 3577 list_add_tail(&saveq->clist, 3578 &pring->iocb_continue_saveq); 3579 3580 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3581 list_del_init(&iocbq->clist); 3582 saveq = iocbq; 3583 irsp = &saveq->iocb; 3584 } else { 3585 return 0; 3586 } 3587 } 3588 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3589 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3590 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3591 Rctl = FC_RCTL_ELS_REQ; 3592 Type = FC_TYPE_ELS; 3593 } else { 3594 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3595 Rctl = w5p->hcsw.Rctl; 3596 Type = w5p->hcsw.Type; 3597 3598 /* Firmware Workaround */ 3599 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3600 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3601 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3602 Rctl = FC_RCTL_ELS_REQ; 3603 Type = FC_TYPE_ELS; 3604 w5p->hcsw.Rctl = Rctl; 3605 w5p->hcsw.Type = Type; 3606 } 3607 } 3608 3609 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3610 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3611 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3612 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3613 saveq->vport = phba->pport; 3614 else 3615 saveq->vport = lpfc_find_vport_by_vpid(phba, 3616 irsp->unsli3.rcvsli3.vpi); 3617 } 3618 3619 /* Prepare WQE with Unsol frame */ 3620 lpfc_sli_prep_unsol_wqe(phba, saveq); 3621 3622 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3624 "0313 Ring %d handler: unexpected Rctl x%x " 3625 "Type x%x received\n", 3626 pring->ringno, Rctl, Type); 3627 3628 return 1; 3629 } 3630 3631 /** 3632 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3633 * @phba: Pointer to HBA context object. 3634 * @pring: Pointer to driver SLI ring object. 3635 * @prspiocb: Pointer to response iocb object. 3636 * 3637 * This function looks up the iocb_lookup table to get the command iocb 3638 * corresponding to the given response iocb using the iotag of the 3639 * response iocb. The driver calls this function with the hbalock held 3640 * for SLI3 ports or the ring lock held for SLI4 ports. 3641 * This function returns the command iocb object if it finds the command 3642 * iocb else returns NULL. 3643 **/ 3644 static struct lpfc_iocbq * 3645 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3646 struct lpfc_sli_ring *pring, 3647 struct lpfc_iocbq *prspiocb) 3648 { 3649 struct lpfc_iocbq *cmd_iocb = NULL; 3650 u16 iotag; 3651 3652 if (phba->sli_rev == LPFC_SLI_REV4) 3653 iotag = get_wqe_reqtag(prspiocb); 3654 else 3655 iotag = prspiocb->iocb.ulpIoTag; 3656 3657 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3658 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3659 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3660 /* remove from txcmpl queue list */ 3661 list_del_init(&cmd_iocb->list); 3662 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3663 pring->txcmplq_cnt--; 3664 return cmd_iocb; 3665 } 3666 } 3667 3668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3669 "0317 iotag x%x is out of " 3670 "range: max iotag x%x\n", 3671 iotag, phba->sli.last_iotag); 3672 return NULL; 3673 } 3674 3675 /** 3676 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3677 * @phba: Pointer to HBA context object. 3678 * @pring: Pointer to driver SLI ring object. 3679 * @iotag: IOCB tag. 3680 * 3681 * This function looks up the iocb_lookup table to get the command iocb 3682 * corresponding to the given iotag. The driver calls this function with 3683 * the ring lock held because this function is an SLI4 port only helper. 3684 * This function returns the command iocb object if it finds the command 3685 * iocb else returns NULL. 3686 **/ 3687 static struct lpfc_iocbq * 3688 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3689 struct lpfc_sli_ring *pring, uint16_t iotag) 3690 { 3691 struct lpfc_iocbq *cmd_iocb = NULL; 3692 3693 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3694 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3695 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3696 /* remove from txcmpl queue list */ 3697 list_del_init(&cmd_iocb->list); 3698 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3699 pring->txcmplq_cnt--; 3700 return cmd_iocb; 3701 } 3702 } 3703 3704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3705 "0372 iotag x%x lookup error: max iotag (x%x) " 3706 "cmd_flag x%x\n", 3707 iotag, phba->sli.last_iotag, 3708 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3709 return NULL; 3710 } 3711 3712 /** 3713 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3714 * @phba: Pointer to HBA context object. 3715 * @pring: Pointer to driver SLI ring object. 3716 * @saveq: Pointer to the response iocb to be processed. 3717 * 3718 * This function is called by the ring event handler for non-fcp 3719 * rings when there is a new response iocb in the response ring. 3720 * The caller is not required to hold any locks. This function 3721 * gets the command iocb associated with the response iocb and 3722 * calls the completion handler for the command iocb. If there 3723 * is no completion handler, the function will free the resources 3724 * associated with command iocb. If the response iocb is for 3725 * an already aborted command iocb, the status of the completion 3726 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3727 * This function always returns 1. 3728 **/ 3729 static int 3730 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3731 struct lpfc_iocbq *saveq) 3732 { 3733 struct lpfc_iocbq *cmdiocbp; 3734 unsigned long iflag; 3735 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3736 3737 if (phba->sli_rev == LPFC_SLI_REV4) 3738 spin_lock_irqsave(&pring->ring_lock, iflag); 3739 else 3740 spin_lock_irqsave(&phba->hbalock, iflag); 3741 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3742 if (phba->sli_rev == LPFC_SLI_REV4) 3743 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3744 else 3745 spin_unlock_irqrestore(&phba->hbalock, iflag); 3746 3747 ulp_command = get_job_cmnd(phba, saveq); 3748 ulp_status = get_job_ulpstatus(phba, saveq); 3749 ulp_word4 = get_job_word4(phba, saveq); 3750 ulp_context = get_job_ulpcontext(phba, saveq); 3751 if (phba->sli_rev == LPFC_SLI_REV4) 3752 iotag = get_wqe_reqtag(saveq); 3753 else 3754 iotag = saveq->iocb.ulpIoTag; 3755 3756 if (cmdiocbp) { 3757 ulp_command = get_job_cmnd(phba, cmdiocbp); 3758 if (cmdiocbp->cmd_cmpl) { 3759 /* 3760 * If an ELS command failed send an event to mgmt 3761 * application. 3762 */ 3763 if (ulp_status && 3764 (pring->ringno == LPFC_ELS_RING) && 3765 (ulp_command == CMD_ELS_REQUEST64_CR)) 3766 lpfc_send_els_failure_event(phba, 3767 cmdiocbp, saveq); 3768 3769 /* 3770 * Post all ELS completions to the worker thread. 3771 * All other are passed to the completion callback. 3772 */ 3773 if (pring->ringno == LPFC_ELS_RING) { 3774 if ((phba->sli_rev < LPFC_SLI_REV4) && 3775 (cmdiocbp->cmd_flag & 3776 LPFC_DRIVER_ABORTED)) { 3777 spin_lock_irqsave(&phba->hbalock, 3778 iflag); 3779 cmdiocbp->cmd_flag &= 3780 ~LPFC_DRIVER_ABORTED; 3781 spin_unlock_irqrestore(&phba->hbalock, 3782 iflag); 3783 saveq->iocb.ulpStatus = 3784 IOSTAT_LOCAL_REJECT; 3785 saveq->iocb.un.ulpWord[4] = 3786 IOERR_SLI_ABORTED; 3787 3788 /* Firmware could still be in progress 3789 * of DMAing payload, so don't free data 3790 * buffer till after a hbeat. 3791 */ 3792 spin_lock_irqsave(&phba->hbalock, 3793 iflag); 3794 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3795 spin_unlock_irqrestore(&phba->hbalock, 3796 iflag); 3797 } 3798 if (phba->sli_rev == LPFC_SLI_REV4) { 3799 if (saveq->cmd_flag & 3800 LPFC_EXCHANGE_BUSY) { 3801 /* Set cmdiocb flag for the 3802 * exchange busy so sgl (xri) 3803 * will not be released until 3804 * the abort xri is received 3805 * from hba. 3806 */ 3807 spin_lock_irqsave( 3808 &phba->hbalock, iflag); 3809 cmdiocbp->cmd_flag |= 3810 LPFC_EXCHANGE_BUSY; 3811 spin_unlock_irqrestore( 3812 &phba->hbalock, iflag); 3813 } 3814 if (cmdiocbp->cmd_flag & 3815 LPFC_DRIVER_ABORTED) { 3816 /* 3817 * Clear LPFC_DRIVER_ABORTED 3818 * bit in case it was driver 3819 * initiated abort. 3820 */ 3821 spin_lock_irqsave( 3822 &phba->hbalock, iflag); 3823 cmdiocbp->cmd_flag &= 3824 ~LPFC_DRIVER_ABORTED; 3825 spin_unlock_irqrestore( 3826 &phba->hbalock, iflag); 3827 set_job_ulpstatus(cmdiocbp, 3828 IOSTAT_LOCAL_REJECT); 3829 set_job_ulpword4(cmdiocbp, 3830 IOERR_ABORT_REQUESTED); 3831 /* 3832 * For SLI4, irspiocb contains 3833 * NO_XRI in sli_xritag, it 3834 * shall not affect releasing 3835 * sgl (xri) process. 3836 */ 3837 set_job_ulpstatus(saveq, 3838 IOSTAT_LOCAL_REJECT); 3839 set_job_ulpword4(saveq, 3840 IOERR_SLI_ABORTED); 3841 spin_lock_irqsave( 3842 &phba->hbalock, iflag); 3843 saveq->cmd_flag |= 3844 LPFC_DELAY_MEM_FREE; 3845 spin_unlock_irqrestore( 3846 &phba->hbalock, iflag); 3847 } 3848 } 3849 } 3850 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3851 } else 3852 lpfc_sli_release_iocbq(phba, cmdiocbp); 3853 } else { 3854 /* 3855 * Unknown initiating command based on the response iotag. 3856 * This could be the case on the ELS ring because of 3857 * lpfc_els_abort(). 3858 */ 3859 if (pring->ringno != LPFC_ELS_RING) { 3860 /* 3861 * Ring <ringno> handler: unexpected completion IoTag 3862 * <IoTag> 3863 */ 3864 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3865 "0322 Ring %d handler: " 3866 "unexpected completion IoTag x%x " 3867 "Data: x%x x%x x%x x%x\n", 3868 pring->ringno, iotag, ulp_status, 3869 ulp_word4, ulp_command, ulp_context); 3870 } 3871 } 3872 3873 return 1; 3874 } 3875 3876 /** 3877 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3878 * @phba: Pointer to HBA context object. 3879 * @pring: Pointer to driver SLI ring object. 3880 * 3881 * This function is called from the iocb ring event handlers when 3882 * put pointer is ahead of the get pointer for a ring. This function signal 3883 * an error attention condition to the worker thread and the worker 3884 * thread will transition the HBA to offline state. 3885 **/ 3886 static void 3887 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3888 { 3889 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3890 /* 3891 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3892 * rsp ring <portRspMax> 3893 */ 3894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3895 "0312 Ring %d handler: portRspPut %d " 3896 "is bigger than rsp ring %d\n", 3897 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3898 pring->sli.sli3.numRiocb); 3899 3900 phba->link_state = LPFC_HBA_ERROR; 3901 3902 /* 3903 * All error attention handlers are posted to 3904 * worker thread 3905 */ 3906 phba->work_ha |= HA_ERATT; 3907 phba->work_hs = HS_FFER3; 3908 3909 lpfc_worker_wake_up(phba); 3910 3911 return; 3912 } 3913 3914 /** 3915 * lpfc_poll_eratt - Error attention polling timer timeout handler 3916 * @t: Context to fetch pointer to address of HBA context object from. 3917 * 3918 * This function is invoked by the Error Attention polling timer when the 3919 * timer times out. It will check the SLI Error Attention register for 3920 * possible attention events. If so, it will post an Error Attention event 3921 * and wake up worker thread to process it. Otherwise, it will set up the 3922 * Error Attention polling timer for the next poll. 3923 **/ 3924 void lpfc_poll_eratt(struct timer_list *t) 3925 { 3926 struct lpfc_hba *phba; 3927 uint32_t eratt = 0; 3928 uint64_t sli_intr, cnt; 3929 3930 phba = timer_container_of(phba, t, eratt_poll); 3931 3932 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3933 return; 3934 3935 if (phba->sli_rev == LPFC_SLI_REV4 && 3936 !test_bit(HBA_SETUP, &phba->hba_flag)) { 3937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3938 "0663 HBA still initializing 0x%lx, restart " 3939 "timer\n", 3940 phba->hba_flag); 3941 goto restart_timer; 3942 } 3943 3944 /* Here we will also keep track of interrupts per sec of the hba */ 3945 sli_intr = phba->sli.slistat.sli_intr; 3946 3947 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3948 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3949 sli_intr); 3950 else 3951 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3952 3953 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3954 do_div(cnt, phba->eratt_poll_interval); 3955 phba->sli.slistat.sli_ips = cnt; 3956 3957 phba->sli.slistat.sli_prev_intr = sli_intr; 3958 3959 /* Check chip HA register for error event */ 3960 eratt = lpfc_sli_check_eratt(phba); 3961 3962 if (eratt) { 3963 /* Tell the worker thread there is work to do */ 3964 lpfc_worker_wake_up(phba); 3965 return; 3966 } 3967 3968 restart_timer: 3969 /* Restart the timer for next eratt poll */ 3970 mod_timer(&phba->eratt_poll, 3971 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 3972 return; 3973 } 3974 3975 3976 /** 3977 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3978 * @phba: Pointer to HBA context object. 3979 * @pring: Pointer to driver SLI ring object. 3980 * @mask: Host attention register mask for this ring. 3981 * 3982 * This function is called from the interrupt context when there is a ring 3983 * event for the fcp ring. The caller does not hold any lock. 3984 * The function processes each response iocb in the response ring until it 3985 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3986 * LE bit set. The function will call the completion handler of the command iocb 3987 * if the response iocb indicates a completion for a command iocb or it is 3988 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3989 * function if this is an unsolicited iocb. 3990 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3991 * to check it explicitly. 3992 */ 3993 int 3994 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3995 struct lpfc_sli_ring *pring, uint32_t mask) 3996 { 3997 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3998 IOCB_t *irsp = NULL; 3999 IOCB_t *entry = NULL; 4000 struct lpfc_iocbq *cmdiocbq = NULL; 4001 struct lpfc_iocbq rspiocbq; 4002 uint32_t status; 4003 uint32_t portRspPut, portRspMax; 4004 int rc = 1; 4005 lpfc_iocb_type type; 4006 unsigned long iflag; 4007 uint32_t rsp_cmpl = 0; 4008 4009 spin_lock_irqsave(&phba->hbalock, iflag); 4010 pring->stats.iocb_event++; 4011 4012 /* 4013 * The next available response entry should never exceed the maximum 4014 * entries. If it does, treat it as an adapter hardware error. 4015 */ 4016 portRspMax = pring->sli.sli3.numRiocb; 4017 portRspPut = le32_to_cpu(pgp->rspPutInx); 4018 if (unlikely(portRspPut >= portRspMax)) { 4019 lpfc_sli_rsp_pointers_error(phba, pring); 4020 spin_unlock_irqrestore(&phba->hbalock, iflag); 4021 return 1; 4022 } 4023 if (phba->fcp_ring_in_use) { 4024 spin_unlock_irqrestore(&phba->hbalock, iflag); 4025 return 1; 4026 } else 4027 phba->fcp_ring_in_use = 1; 4028 4029 rmb(); 4030 while (pring->sli.sli3.rspidx != portRspPut) { 4031 /* 4032 * Fetch an entry off the ring and copy it into a local data 4033 * structure. The copy involves a byte-swap since the 4034 * network byte order and pci byte orders are different. 4035 */ 4036 entry = lpfc_resp_iocb(phba, pring); 4037 phba->last_completion_time = jiffies; 4038 4039 if (++pring->sli.sli3.rspidx >= portRspMax) 4040 pring->sli.sli3.rspidx = 0; 4041 4042 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4043 (uint32_t *) &rspiocbq.iocb, 4044 phba->iocb_rsp_size); 4045 INIT_LIST_HEAD(&(rspiocbq.list)); 4046 irsp = &rspiocbq.iocb; 4047 4048 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4049 pring->stats.iocb_rsp++; 4050 rsp_cmpl++; 4051 4052 if (unlikely(irsp->ulpStatus)) { 4053 /* 4054 * If resource errors reported from HBA, reduce 4055 * queuedepths of the SCSI device. 4056 */ 4057 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4058 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4059 IOERR_NO_RESOURCES)) { 4060 spin_unlock_irqrestore(&phba->hbalock, iflag); 4061 phba->lpfc_rampdown_queue_depth(phba); 4062 spin_lock_irqsave(&phba->hbalock, iflag); 4063 } 4064 4065 /* Rsp ring <ringno> error: IOCB */ 4066 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4067 "0336 Rsp Ring %d error: IOCB Data: " 4068 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4069 pring->ringno, 4070 irsp->un.ulpWord[0], 4071 irsp->un.ulpWord[1], 4072 irsp->un.ulpWord[2], 4073 irsp->un.ulpWord[3], 4074 irsp->un.ulpWord[4], 4075 irsp->un.ulpWord[5], 4076 *(uint32_t *)&irsp->un1, 4077 *((uint32_t *)&irsp->un1 + 1)); 4078 } 4079 4080 switch (type) { 4081 case LPFC_ABORT_IOCB: 4082 case LPFC_SOL_IOCB: 4083 /* 4084 * Idle exchange closed via ABTS from port. No iocb 4085 * resources need to be recovered. 4086 */ 4087 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4088 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4089 "0333 IOCB cmd 0x%x" 4090 " processed. Skipping" 4091 " completion\n", 4092 irsp->ulpCommand); 4093 break; 4094 } 4095 4096 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4097 &rspiocbq); 4098 if (unlikely(!cmdiocbq)) 4099 break; 4100 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4101 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4102 if (cmdiocbq->cmd_cmpl) { 4103 spin_unlock_irqrestore(&phba->hbalock, iflag); 4104 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4105 spin_lock_irqsave(&phba->hbalock, iflag); 4106 } 4107 break; 4108 case LPFC_UNSOL_IOCB: 4109 spin_unlock_irqrestore(&phba->hbalock, iflag); 4110 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4111 spin_lock_irqsave(&phba->hbalock, iflag); 4112 break; 4113 default: 4114 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4115 char adaptermsg[LPFC_MAX_ADPTMSG]; 4116 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4117 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4118 MAX_MSG_DATA); 4119 dev_warn(&((phba->pcidev)->dev), 4120 "lpfc%d: %s\n", 4121 phba->brd_no, adaptermsg); 4122 } else { 4123 /* Unknown IOCB command */ 4124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4125 "0334 Unknown IOCB command " 4126 "Data: x%x, x%x x%x x%x x%x\n", 4127 type, irsp->ulpCommand, 4128 irsp->ulpStatus, 4129 irsp->ulpIoTag, 4130 irsp->ulpContext); 4131 } 4132 break; 4133 } 4134 4135 /* 4136 * The response IOCB has been processed. Update the ring 4137 * pointer in SLIM. If the port response put pointer has not 4138 * been updated, sync the pgp->rspPutInx and fetch the new port 4139 * response put pointer. 4140 */ 4141 writel(pring->sli.sli3.rspidx, 4142 &phba->host_gp[pring->ringno].rspGetInx); 4143 4144 if (pring->sli.sli3.rspidx == portRspPut) 4145 portRspPut = le32_to_cpu(pgp->rspPutInx); 4146 } 4147 4148 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4149 pring->stats.iocb_rsp_full++; 4150 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4151 writel(status, phba->CAregaddr); 4152 readl(phba->CAregaddr); 4153 } 4154 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4155 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4156 pring->stats.iocb_cmd_empty++; 4157 4158 /* Force update of the local copy of cmdGetInx */ 4159 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4160 lpfc_sli_resume_iocb(phba, pring); 4161 4162 if ((pring->lpfc_sli_cmd_available)) 4163 (pring->lpfc_sli_cmd_available) (phba, pring); 4164 4165 } 4166 4167 phba->fcp_ring_in_use = 0; 4168 spin_unlock_irqrestore(&phba->hbalock, iflag); 4169 return rc; 4170 } 4171 4172 /** 4173 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4174 * @phba: Pointer to HBA context object. 4175 * @pring: Pointer to driver SLI ring object. 4176 * @rspiocbp: Pointer to driver response IOCB object. 4177 * 4178 * This function is called from the worker thread when there is a slow-path 4179 * response IOCB to process. This function chains all the response iocbs until 4180 * seeing the iocb with the LE bit set. The function will call 4181 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4182 * completion of a command iocb. The function will call the 4183 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4184 * The function frees the resources or calls the completion handler if this 4185 * iocb is an abort completion. The function returns NULL when the response 4186 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4187 * this function shall chain the iocb on to the iocb_continueq and return the 4188 * response iocb passed in. 4189 **/ 4190 static struct lpfc_iocbq * 4191 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4192 struct lpfc_iocbq *rspiocbp) 4193 { 4194 struct lpfc_iocbq *saveq; 4195 struct lpfc_iocbq *cmdiocb; 4196 struct lpfc_iocbq *next_iocb; 4197 IOCB_t *irsp; 4198 uint32_t free_saveq; 4199 u8 cmd_type; 4200 lpfc_iocb_type type; 4201 unsigned long iflag; 4202 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4203 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4204 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4205 int rc; 4206 4207 spin_lock_irqsave(&phba->hbalock, iflag); 4208 /* First add the response iocb to the countinueq list */ 4209 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4210 pring->iocb_continueq_cnt++; 4211 4212 /* 4213 * By default, the driver expects to free all resources 4214 * associated with this iocb completion. 4215 */ 4216 free_saveq = 1; 4217 saveq = list_get_first(&pring->iocb_continueq, 4218 struct lpfc_iocbq, list); 4219 list_del_init(&pring->iocb_continueq); 4220 pring->iocb_continueq_cnt = 0; 4221 4222 pring->stats.iocb_rsp++; 4223 4224 /* 4225 * If resource errors reported from HBA, reduce 4226 * queuedepths of the SCSI device. 4227 */ 4228 if (ulp_status == IOSTAT_LOCAL_REJECT && 4229 ((ulp_word4 & IOERR_PARAM_MASK) == 4230 IOERR_NO_RESOURCES)) { 4231 spin_unlock_irqrestore(&phba->hbalock, iflag); 4232 phba->lpfc_rampdown_queue_depth(phba); 4233 spin_lock_irqsave(&phba->hbalock, iflag); 4234 } 4235 4236 if (ulp_status) { 4237 /* Rsp ring <ringno> error: IOCB */ 4238 if (phba->sli_rev < LPFC_SLI_REV4) { 4239 irsp = &rspiocbp->iocb; 4240 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4241 "0328 Rsp Ring %d error: ulp_status x%x " 4242 "IOCB Data: " 4243 "x%08x x%08x x%08x x%08x " 4244 "x%08x x%08x x%08x x%08x " 4245 "x%08x x%08x x%08x x%08x " 4246 "x%08x x%08x x%08x x%08x\n", 4247 pring->ringno, ulp_status, 4248 get_job_ulpword(rspiocbp, 0), 4249 get_job_ulpword(rspiocbp, 1), 4250 get_job_ulpword(rspiocbp, 2), 4251 get_job_ulpword(rspiocbp, 3), 4252 get_job_ulpword(rspiocbp, 4), 4253 get_job_ulpword(rspiocbp, 5), 4254 *(((uint32_t *)irsp) + 6), 4255 *(((uint32_t *)irsp) + 7), 4256 *(((uint32_t *)irsp) + 8), 4257 *(((uint32_t *)irsp) + 9), 4258 *(((uint32_t *)irsp) + 10), 4259 *(((uint32_t *)irsp) + 11), 4260 *(((uint32_t *)irsp) + 12), 4261 *(((uint32_t *)irsp) + 13), 4262 *(((uint32_t *)irsp) + 14), 4263 *(((uint32_t *)irsp) + 15)); 4264 } else { 4265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4266 "0321 Rsp Ring %d error: " 4267 "IOCB Data: " 4268 "x%x x%x x%x x%x\n", 4269 pring->ringno, 4270 rspiocbp->wcqe_cmpl.word0, 4271 rspiocbp->wcqe_cmpl.total_data_placed, 4272 rspiocbp->wcqe_cmpl.parameter, 4273 rspiocbp->wcqe_cmpl.word3); 4274 } 4275 } 4276 4277 4278 /* 4279 * Fetch the iocb command type and call the correct completion 4280 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4281 * get freed back to the lpfc_iocb_list by the discovery 4282 * kernel thread. 4283 */ 4284 cmd_type = ulp_command & CMD_IOCB_MASK; 4285 type = lpfc_sli_iocb_cmd_type(cmd_type); 4286 switch (type) { 4287 case LPFC_SOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 break; 4292 case LPFC_UNSOL_IOCB: 4293 spin_unlock_irqrestore(&phba->hbalock, iflag); 4294 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4295 spin_lock_irqsave(&phba->hbalock, iflag); 4296 if (!rc) 4297 free_saveq = 0; 4298 break; 4299 case LPFC_ABORT_IOCB: 4300 cmdiocb = NULL; 4301 if (ulp_command != CMD_XRI_ABORTED_CX) 4302 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4303 saveq); 4304 if (cmdiocb) { 4305 /* Call the specified completion routine */ 4306 if (cmdiocb->cmd_cmpl) { 4307 spin_unlock_irqrestore(&phba->hbalock, iflag); 4308 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4309 spin_lock_irqsave(&phba->hbalock, iflag); 4310 } else { 4311 __lpfc_sli_release_iocbq(phba, cmdiocb); 4312 } 4313 } 4314 break; 4315 case LPFC_UNKNOWN_IOCB: 4316 if (ulp_command == CMD_ADAPTER_MSG) { 4317 char adaptermsg[LPFC_MAX_ADPTMSG]; 4318 4319 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4320 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4321 MAX_MSG_DATA); 4322 dev_warn(&((phba->pcidev)->dev), 4323 "lpfc%d: %s\n", 4324 phba->brd_no, adaptermsg); 4325 } else { 4326 /* Unknown command */ 4327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4328 "0335 Unknown IOCB " 4329 "command Data: x%x " 4330 "x%x x%x x%x\n", 4331 ulp_command, 4332 ulp_status, 4333 get_wqe_reqtag(rspiocbp), 4334 get_job_ulpcontext(phba, rspiocbp)); 4335 } 4336 break; 4337 } 4338 4339 if (free_saveq) { 4340 list_for_each_entry_safe(rspiocbp, next_iocb, 4341 &saveq->list, list) { 4342 list_del_init(&rspiocbp->list); 4343 __lpfc_sli_release_iocbq(phba, rspiocbp); 4344 } 4345 __lpfc_sli_release_iocbq(phba, saveq); 4346 } 4347 rspiocbp = NULL; 4348 spin_unlock_irqrestore(&phba->hbalock, iflag); 4349 return rspiocbp; 4350 } 4351 4352 /** 4353 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4354 * @phba: Pointer to HBA context object. 4355 * @pring: Pointer to driver SLI ring object. 4356 * @mask: Host attention register mask for this ring. 4357 * 4358 * This routine wraps the actual slow_ring event process routine from the 4359 * API jump table function pointer from the lpfc_hba struct. 4360 **/ 4361 void 4362 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4363 struct lpfc_sli_ring *pring, uint32_t mask) 4364 { 4365 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4366 } 4367 4368 /** 4369 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4370 * @phba: Pointer to HBA context object. 4371 * @pring: Pointer to driver SLI ring object. 4372 * @mask: Host attention register mask for this ring. 4373 * 4374 * This function is called from the worker thread when there is a ring event 4375 * for non-fcp rings. The caller does not hold any lock. The function will 4376 * remove each response iocb in the response ring and calls the handle 4377 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4378 **/ 4379 static void 4380 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4381 struct lpfc_sli_ring *pring, uint32_t mask) 4382 { 4383 struct lpfc_pgp *pgp; 4384 IOCB_t *entry; 4385 IOCB_t *irsp = NULL; 4386 struct lpfc_iocbq *rspiocbp = NULL; 4387 uint32_t portRspPut, portRspMax; 4388 unsigned long iflag; 4389 uint32_t status; 4390 4391 pgp = &phba->port_gp[pring->ringno]; 4392 spin_lock_irqsave(&phba->hbalock, iflag); 4393 pring->stats.iocb_event++; 4394 4395 /* 4396 * The next available response entry should never exceed the maximum 4397 * entries. If it does, treat it as an adapter hardware error. 4398 */ 4399 portRspMax = pring->sli.sli3.numRiocb; 4400 portRspPut = le32_to_cpu(pgp->rspPutInx); 4401 if (portRspPut >= portRspMax) { 4402 /* 4403 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4404 * rsp ring <portRspMax> 4405 */ 4406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4407 "0303 Ring %d handler: portRspPut %d " 4408 "is bigger than rsp ring %d\n", 4409 pring->ringno, portRspPut, portRspMax); 4410 4411 phba->link_state = LPFC_HBA_ERROR; 4412 spin_unlock_irqrestore(&phba->hbalock, iflag); 4413 4414 phba->work_hs = HS_FFER3; 4415 lpfc_handle_eratt(phba); 4416 4417 return; 4418 } 4419 4420 rmb(); 4421 while (pring->sli.sli3.rspidx != portRspPut) { 4422 /* 4423 * Build a completion list and call the appropriate handler. 4424 * The process is to get the next available response iocb, get 4425 * a free iocb from the list, copy the response data into the 4426 * free iocb, insert to the continuation list, and update the 4427 * next response index to slim. This process makes response 4428 * iocb's in the ring available to DMA as fast as possible but 4429 * pays a penalty for a copy operation. Since the iocb is 4430 * only 32 bytes, this penalty is considered small relative to 4431 * the PCI reads for register values and a slim write. When 4432 * the ulpLe field is set, the entire Command has been 4433 * received. 4434 */ 4435 entry = lpfc_resp_iocb(phba, pring); 4436 4437 phba->last_completion_time = jiffies; 4438 rspiocbp = __lpfc_sli_get_iocbq(phba); 4439 if (rspiocbp == NULL) { 4440 printk(KERN_ERR "%s: out of buffers! Failing " 4441 "completion.\n", __func__); 4442 break; 4443 } 4444 4445 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4446 phba->iocb_rsp_size); 4447 irsp = &rspiocbp->iocb; 4448 4449 if (++pring->sli.sli3.rspidx >= portRspMax) 4450 pring->sli.sli3.rspidx = 0; 4451 4452 if (pring->ringno == LPFC_ELS_RING) { 4453 lpfc_debugfs_slow_ring_trc(phba, 4454 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4455 *(((uint32_t *) irsp) + 4), 4456 *(((uint32_t *) irsp) + 6), 4457 *(((uint32_t *) irsp) + 7)); 4458 } 4459 4460 writel(pring->sli.sli3.rspidx, 4461 &phba->host_gp[pring->ringno].rspGetInx); 4462 4463 spin_unlock_irqrestore(&phba->hbalock, iflag); 4464 /* Handle the response IOCB */ 4465 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4466 spin_lock_irqsave(&phba->hbalock, iflag); 4467 4468 /* 4469 * If the port response put pointer has not been updated, sync 4470 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4471 * response put pointer. 4472 */ 4473 if (pring->sli.sli3.rspidx == portRspPut) { 4474 portRspPut = le32_to_cpu(pgp->rspPutInx); 4475 } 4476 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4477 4478 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4479 /* At least one response entry has been freed */ 4480 pring->stats.iocb_rsp_full++; 4481 /* SET RxRE_RSP in Chip Att register */ 4482 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4483 writel(status, phba->CAregaddr); 4484 readl(phba->CAregaddr); /* flush */ 4485 } 4486 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4487 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4488 pring->stats.iocb_cmd_empty++; 4489 4490 /* Force update of the local copy of cmdGetInx */ 4491 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4492 lpfc_sli_resume_iocb(phba, pring); 4493 4494 if ((pring->lpfc_sli_cmd_available)) 4495 (pring->lpfc_sli_cmd_available) (phba, pring); 4496 4497 } 4498 4499 spin_unlock_irqrestore(&phba->hbalock, iflag); 4500 return; 4501 } 4502 4503 /** 4504 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4505 * @phba: Pointer to HBA context object. 4506 * @pring: Pointer to driver SLI ring object. 4507 * @mask: Host attention register mask for this ring. 4508 * 4509 * This function is called from the worker thread when there is a pending 4510 * ELS response iocb on the driver internal slow-path response iocb worker 4511 * queue. The caller does not hold any lock. The function will remove each 4512 * response iocb from the response worker queue and calls the handle 4513 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4514 **/ 4515 static void 4516 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4517 struct lpfc_sli_ring *pring, uint32_t mask) 4518 { 4519 struct lpfc_iocbq *irspiocbq; 4520 struct hbq_dmabuf *dmabuf; 4521 struct lpfc_cq_event *cq_event; 4522 unsigned long iflag; 4523 int count = 0; 4524 4525 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4526 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4527 /* Get the response iocb from the head of work queue */ 4528 spin_lock_irqsave(&phba->hbalock, iflag); 4529 list_remove_head(&phba->sli4_hba.sp_queue_event, 4530 cq_event, struct lpfc_cq_event, list); 4531 spin_unlock_irqrestore(&phba->hbalock, iflag); 4532 4533 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4534 case CQE_CODE_COMPL_WQE: 4535 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4536 cq_event); 4537 /* Translate ELS WCQE to response IOCBQ */ 4538 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4539 irspiocbq); 4540 if (irspiocbq) 4541 lpfc_sli_sp_handle_rspiocb(phba, pring, 4542 irspiocbq); 4543 count++; 4544 break; 4545 case CQE_CODE_RECEIVE: 4546 case CQE_CODE_RECEIVE_V1: 4547 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4548 cq_event); 4549 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4550 count++; 4551 break; 4552 default: 4553 break; 4554 } 4555 4556 /* Limit the number of events to 64 to avoid soft lockups */ 4557 if (count == 64) 4558 break; 4559 } 4560 } 4561 4562 /** 4563 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4564 * @phba: Pointer to HBA context object. 4565 * @pring: Pointer to driver SLI ring object. 4566 * 4567 * This function aborts all iocbs in the given ring and frees all the iocb 4568 * objects in txq. This function issues an abort iocb for all the iocb commands 4569 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4570 * the return of this function. The caller is not required to hold any locks. 4571 **/ 4572 void 4573 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4574 { 4575 LIST_HEAD(tx_completions); 4576 LIST_HEAD(txcmplq_completions); 4577 struct lpfc_iocbq *iocb, *next_iocb; 4578 int offline; 4579 4580 if (pring->ringno == LPFC_ELS_RING) { 4581 lpfc_fabric_abort_hba(phba); 4582 } 4583 offline = pci_channel_offline(phba->pcidev); 4584 4585 /* Error everything on txq and txcmplq 4586 * First do the txq. 4587 */ 4588 if (phba->sli_rev >= LPFC_SLI_REV4) { 4589 spin_lock_irq(&pring->ring_lock); 4590 list_splice_init(&pring->txq, &tx_completions); 4591 pring->txq_cnt = 0; 4592 4593 if (offline) { 4594 list_splice_init(&pring->txcmplq, 4595 &txcmplq_completions); 4596 } else { 4597 /* Next issue ABTS for everything on the txcmplq */ 4598 list_for_each_entry_safe(iocb, next_iocb, 4599 &pring->txcmplq, list) 4600 lpfc_sli_issue_abort_iotag(phba, pring, 4601 iocb, NULL); 4602 } 4603 spin_unlock_irq(&pring->ring_lock); 4604 } else { 4605 spin_lock_irq(&phba->hbalock); 4606 list_splice_init(&pring->txq, &tx_completions); 4607 pring->txq_cnt = 0; 4608 4609 if (offline) { 4610 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4611 } else { 4612 /* Next issue ABTS for everything on the txcmplq */ 4613 list_for_each_entry_safe(iocb, next_iocb, 4614 &pring->txcmplq, list) 4615 lpfc_sli_issue_abort_iotag(phba, pring, 4616 iocb, NULL); 4617 } 4618 spin_unlock_irq(&phba->hbalock); 4619 } 4620 4621 if (offline) { 4622 /* Cancel all the IOCBs from the completions list */ 4623 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4624 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4625 } else { 4626 /* Make sure HBA is alive */ 4627 lpfc_issue_hb_tmo(phba); 4628 } 4629 /* Cancel all the IOCBs from the completions list */ 4630 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4631 IOERR_SLI_ABORTED); 4632 } 4633 4634 /** 4635 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4636 * @phba: Pointer to HBA context object. 4637 * 4638 * This function aborts all iocbs in FCP rings and frees all the iocb 4639 * objects in txq. This function issues an abort iocb for all the iocb commands 4640 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4641 * the return of this function. The caller is not required to hold any locks. 4642 **/ 4643 void 4644 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4645 { 4646 struct lpfc_sli *psli = &phba->sli; 4647 struct lpfc_sli_ring *pring; 4648 uint32_t i; 4649 4650 /* Look on all the FCP Rings for the iotag */ 4651 if (phba->sli_rev >= LPFC_SLI_REV4) { 4652 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4653 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4654 lpfc_sli_abort_iocb_ring(phba, pring); 4655 } 4656 } else { 4657 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4658 lpfc_sli_abort_iocb_ring(phba, pring); 4659 } 4660 } 4661 4662 /** 4663 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4664 * @phba: Pointer to HBA context object. 4665 * 4666 * This function flushes all iocbs in the IO ring and frees all the iocb 4667 * objects in txq and txcmplq. This function will not issue abort iocbs 4668 * for all the iocb commands in txcmplq, they will just be returned with 4669 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4670 * slot has been permanently disabled. 4671 **/ 4672 void 4673 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4674 { 4675 LIST_HEAD(txq); 4676 LIST_HEAD(txcmplq); 4677 struct lpfc_sli *psli = &phba->sli; 4678 struct lpfc_sli_ring *pring; 4679 uint32_t i; 4680 struct lpfc_iocbq *piocb, *next_iocb; 4681 4682 /* Indicate the I/O queues are flushed */ 4683 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4684 4685 /* Look on all the FCP Rings for the iotag */ 4686 if (phba->sli_rev >= LPFC_SLI_REV4) { 4687 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4688 if (!phba->sli4_hba.hdwq || 4689 !phba->sli4_hba.hdwq[i].io_wq) { 4690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4691 "7777 hdwq's deleted %lx " 4692 "%lx %x %x\n", 4693 phba->pport->load_flag, 4694 phba->hba_flag, 4695 phba->link_state, 4696 phba->sli.sli_flag); 4697 return; 4698 } 4699 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4700 4701 spin_lock_irq(&pring->ring_lock); 4702 /* Retrieve everything on txq */ 4703 list_splice_init(&pring->txq, &txq); 4704 list_for_each_entry_safe(piocb, next_iocb, 4705 &pring->txcmplq, list) 4706 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4707 /* Retrieve everything on the txcmplq */ 4708 list_splice_init(&pring->txcmplq, &txcmplq); 4709 pring->txq_cnt = 0; 4710 pring->txcmplq_cnt = 0; 4711 spin_unlock_irq(&pring->ring_lock); 4712 4713 /* Flush the txq */ 4714 lpfc_sli_cancel_iocbs(phba, &txq, 4715 IOSTAT_LOCAL_REJECT, 4716 IOERR_SLI_DOWN); 4717 /* Flush the txcmplq */ 4718 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4719 IOSTAT_LOCAL_REJECT, 4720 IOERR_SLI_DOWN); 4721 if (unlikely(pci_channel_offline(phba->pcidev))) 4722 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4723 } 4724 } else { 4725 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4726 4727 spin_lock_irq(&phba->hbalock); 4728 /* Retrieve everything on txq */ 4729 list_splice_init(&pring->txq, &txq); 4730 list_for_each_entry_safe(piocb, next_iocb, 4731 &pring->txcmplq, list) 4732 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4733 /* Retrieve everything on the txcmplq */ 4734 list_splice_init(&pring->txcmplq, &txcmplq); 4735 pring->txq_cnt = 0; 4736 pring->txcmplq_cnt = 0; 4737 spin_unlock_irq(&phba->hbalock); 4738 4739 /* Flush the txq */ 4740 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4741 IOERR_SLI_DOWN); 4742 /* Flush the txcmpq */ 4743 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4744 IOERR_SLI_DOWN); 4745 } 4746 } 4747 4748 /** 4749 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4750 * @phba: Pointer to HBA context object. 4751 * @mask: Bit mask to be checked. 4752 * 4753 * This function reads the host status register and compares 4754 * with the provided bit mask to check if HBA completed 4755 * the restart. This function will wait in a loop for the 4756 * HBA to complete restart. If the HBA does not restart within 4757 * 15 iterations, the function will reset the HBA again. The 4758 * function returns 1 when HBA fail to restart otherwise returns 4759 * zero. 4760 **/ 4761 static int 4762 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4763 { 4764 uint32_t status; 4765 int i = 0; 4766 int retval = 0; 4767 4768 /* Read the HBA Host Status Register */ 4769 if (lpfc_readl(phba->HSregaddr, &status)) 4770 return 1; 4771 4772 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4773 4774 /* 4775 * Check status register every 100ms for 5 retries, then every 4776 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4777 * every 2.5 sec for 4. 4778 * Break our of the loop if errors occurred during init. 4779 */ 4780 while (((status & mask) != mask) && 4781 !(status & HS_FFERM) && 4782 i++ < 20) { 4783 4784 if (i <= 5) 4785 msleep(10); 4786 else if (i <= 10) 4787 msleep(500); 4788 else 4789 msleep(2500); 4790 4791 if (i == 15) { 4792 /* Do post */ 4793 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4794 lpfc_sli_brdrestart(phba); 4795 } 4796 /* Read the HBA Host Status Register */ 4797 if (lpfc_readl(phba->HSregaddr, &status)) { 4798 retval = 1; 4799 break; 4800 } 4801 } 4802 4803 /* Check to see if any errors occurred during init */ 4804 if ((status & HS_FFERM) || (i >= 20)) { 4805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4806 "2751 Adapter failed to restart, " 4807 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4808 status, 4809 readl(phba->MBslimaddr + 0xa8), 4810 readl(phba->MBslimaddr + 0xac)); 4811 phba->link_state = LPFC_HBA_ERROR; 4812 retval = 1; 4813 } 4814 4815 return retval; 4816 } 4817 4818 /** 4819 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4820 * @phba: Pointer to HBA context object. 4821 * @mask: Bit mask to be checked. 4822 * 4823 * This function checks the host status register to check if HBA is 4824 * ready. This function will wait in a loop for the HBA to be ready 4825 * If the HBA is not ready , the function will will reset the HBA PCI 4826 * function again. The function returns 1 when HBA fail to be ready 4827 * otherwise returns zero. 4828 **/ 4829 static int 4830 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4831 { 4832 uint32_t status; 4833 int retval = 0; 4834 4835 /* Read the HBA Host Status Register */ 4836 status = lpfc_sli4_post_status_check(phba); 4837 4838 if (status) { 4839 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4840 lpfc_sli_brdrestart(phba); 4841 status = lpfc_sli4_post_status_check(phba); 4842 } 4843 4844 /* Check to see if any errors occurred during init */ 4845 if (status) { 4846 phba->link_state = LPFC_HBA_ERROR; 4847 retval = 1; 4848 } else 4849 phba->sli4_hba.intr_enable = 0; 4850 4851 clear_bit(HBA_SETUP, &phba->hba_flag); 4852 return retval; 4853 } 4854 4855 /** 4856 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4857 * @phba: Pointer to HBA context object. 4858 * @mask: Bit mask to be checked. 4859 * 4860 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4861 * from the API jump table function pointer from the lpfc_hba struct. 4862 **/ 4863 int 4864 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4865 { 4866 return phba->lpfc_sli_brdready(phba, mask); 4867 } 4868 4869 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4870 4871 /** 4872 * lpfc_reset_barrier - Make HBA ready for HBA reset 4873 * @phba: Pointer to HBA context object. 4874 * 4875 * This function is called before resetting an HBA. This function is called 4876 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4877 **/ 4878 void lpfc_reset_barrier(struct lpfc_hba *phba) 4879 { 4880 uint32_t __iomem *resp_buf; 4881 uint32_t __iomem *mbox_buf; 4882 volatile struct MAILBOX_word0 mbox; 4883 uint32_t hc_copy, ha_copy, resp_data; 4884 int i; 4885 uint8_t hdrtype; 4886 4887 lockdep_assert_held(&phba->hbalock); 4888 4889 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4890 if (hdrtype != PCI_HEADER_TYPE_MFD || 4891 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4892 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4893 return; 4894 4895 /* 4896 * Tell the other part of the chip to suspend temporarily all 4897 * its DMA activity. 4898 */ 4899 resp_buf = phba->MBslimaddr; 4900 4901 /* Disable the error attention */ 4902 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4903 return; 4904 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4905 readl(phba->HCregaddr); /* flush */ 4906 phba->link_flag |= LS_IGNORE_ERATT; 4907 4908 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4909 return; 4910 if (ha_copy & HA_ERATT) { 4911 /* Clear Chip error bit */ 4912 writel(HA_ERATT, phba->HAregaddr); 4913 phba->pport->stopped = 1; 4914 } 4915 4916 mbox.word0 = 0; 4917 mbox.mbxCommand = MBX_KILL_BOARD; 4918 mbox.mbxOwner = OWN_CHIP; 4919 4920 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4921 mbox_buf = phba->MBslimaddr; 4922 writel(mbox.word0, mbox_buf); 4923 4924 for (i = 0; i < 50; i++) { 4925 if (lpfc_readl((resp_buf + 1), &resp_data)) 4926 return; 4927 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4928 mdelay(1); 4929 else 4930 break; 4931 } 4932 resp_data = 0; 4933 if (lpfc_readl((resp_buf + 1), &resp_data)) 4934 return; 4935 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4936 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4937 phba->pport->stopped) 4938 goto restore_hc; 4939 else 4940 goto clear_errat; 4941 } 4942 4943 mbox.mbxOwner = OWN_HOST; 4944 resp_data = 0; 4945 for (i = 0; i < 500; i++) { 4946 if (lpfc_readl(resp_buf, &resp_data)) 4947 return; 4948 if (resp_data != mbox.word0) 4949 mdelay(1); 4950 else 4951 break; 4952 } 4953 4954 clear_errat: 4955 4956 while (++i < 500) { 4957 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4958 return; 4959 if (!(ha_copy & HA_ERATT)) 4960 mdelay(1); 4961 else 4962 break; 4963 } 4964 4965 if (readl(phba->HAregaddr) & HA_ERATT) { 4966 writel(HA_ERATT, phba->HAregaddr); 4967 phba->pport->stopped = 1; 4968 } 4969 4970 restore_hc: 4971 phba->link_flag &= ~LS_IGNORE_ERATT; 4972 writel(hc_copy, phba->HCregaddr); 4973 readl(phba->HCregaddr); /* flush */ 4974 } 4975 4976 /** 4977 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4978 * @phba: Pointer to HBA context object. 4979 * 4980 * This function issues a kill_board mailbox command and waits for 4981 * the error attention interrupt. This function is called for stopping 4982 * the firmware processing. The caller is not required to hold any 4983 * locks. This function calls lpfc_hba_down_post function to free 4984 * any pending commands after the kill. The function will return 1 when it 4985 * fails to kill the board else will return 0. 4986 **/ 4987 int 4988 lpfc_sli_brdkill(struct lpfc_hba *phba) 4989 { 4990 struct lpfc_sli *psli; 4991 LPFC_MBOXQ_t *pmb; 4992 uint32_t status; 4993 uint32_t ha_copy; 4994 int retval; 4995 int i = 0; 4996 4997 psli = &phba->sli; 4998 4999 /* Kill HBA */ 5000 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5001 "0329 Kill HBA Data: x%x x%x\n", 5002 phba->pport->port_state, psli->sli_flag); 5003 5004 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5005 if (!pmb) 5006 return 1; 5007 5008 /* Disable the error attention */ 5009 spin_lock_irq(&phba->hbalock); 5010 if (lpfc_readl(phba->HCregaddr, &status)) { 5011 spin_unlock_irq(&phba->hbalock); 5012 mempool_free(pmb, phba->mbox_mem_pool); 5013 return 1; 5014 } 5015 status &= ~HC_ERINT_ENA; 5016 writel(status, phba->HCregaddr); 5017 readl(phba->HCregaddr); /* flush */ 5018 phba->link_flag |= LS_IGNORE_ERATT; 5019 spin_unlock_irq(&phba->hbalock); 5020 5021 lpfc_kill_board(phba, pmb); 5022 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5023 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5024 5025 if (retval != MBX_SUCCESS) { 5026 if (retval != MBX_BUSY) 5027 mempool_free(pmb, phba->mbox_mem_pool); 5028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5029 "2752 KILL_BOARD command failed retval %d\n", 5030 retval); 5031 spin_lock_irq(&phba->hbalock); 5032 phba->link_flag &= ~LS_IGNORE_ERATT; 5033 spin_unlock_irq(&phba->hbalock); 5034 return 1; 5035 } 5036 5037 spin_lock_irq(&phba->hbalock); 5038 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5039 spin_unlock_irq(&phba->hbalock); 5040 5041 mempool_free(pmb, phba->mbox_mem_pool); 5042 5043 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5044 * attention every 100ms for 3 seconds. If we don't get ERATT after 5045 * 3 seconds we still set HBA_ERROR state because the status of the 5046 * board is now undefined. 5047 */ 5048 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5049 return 1; 5050 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5051 mdelay(100); 5052 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5053 return 1; 5054 } 5055 5056 timer_delete_sync(&psli->mbox_tmo); 5057 if (ha_copy & HA_ERATT) { 5058 writel(HA_ERATT, phba->HAregaddr); 5059 phba->pport->stopped = 1; 5060 } 5061 spin_lock_irq(&phba->hbalock); 5062 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5063 psli->mbox_active = NULL; 5064 phba->link_flag &= ~LS_IGNORE_ERATT; 5065 spin_unlock_irq(&phba->hbalock); 5066 5067 lpfc_hba_down_post(phba); 5068 phba->link_state = LPFC_HBA_ERROR; 5069 5070 return ha_copy & HA_ERATT ? 0 : 1; 5071 } 5072 5073 /** 5074 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5075 * @phba: Pointer to HBA context object. 5076 * 5077 * This function resets the HBA by writing HC_INITFF to the control 5078 * register. After the HBA resets, this function resets all the iocb ring 5079 * indices. This function disables PCI layer parity checking during 5080 * the reset. 5081 * This function returns 0 always. 5082 * The caller is not required to hold any locks. 5083 **/ 5084 int 5085 lpfc_sli_brdreset(struct lpfc_hba *phba) 5086 { 5087 struct lpfc_sli *psli; 5088 struct lpfc_sli_ring *pring; 5089 uint16_t cfg_value; 5090 int i; 5091 5092 psli = &phba->sli; 5093 5094 /* Reset HBA */ 5095 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5096 "0325 Reset HBA Data: x%x x%x\n", 5097 (phba->pport) ? phba->pport->port_state : 0, 5098 psli->sli_flag); 5099 5100 /* perform board reset */ 5101 phba->fc_eventTag = 0; 5102 phba->link_events = 0; 5103 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5104 if (phba->pport) { 5105 phba->pport->fc_myDID = 0; 5106 phba->pport->fc_prevDID = 0; 5107 } 5108 5109 /* Turn off parity checking and serr during the physical reset */ 5110 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5111 return -EIO; 5112 5113 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5114 (cfg_value & 5115 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5116 5117 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5118 5119 /* Now toggle INITFF bit in the Host Control Register */ 5120 writel(HC_INITFF, phba->HCregaddr); 5121 mdelay(1); 5122 readl(phba->HCregaddr); /* flush */ 5123 writel(0, phba->HCregaddr); 5124 readl(phba->HCregaddr); /* flush */ 5125 5126 /* Restore PCI cmd register */ 5127 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5128 5129 /* Initialize relevant SLI info */ 5130 for (i = 0; i < psli->num_rings; i++) { 5131 pring = &psli->sli3_ring[i]; 5132 pring->flag = 0; 5133 pring->sli.sli3.rspidx = 0; 5134 pring->sli.sli3.next_cmdidx = 0; 5135 pring->sli.sli3.local_getidx = 0; 5136 pring->sli.sli3.cmdidx = 0; 5137 pring->missbufcnt = 0; 5138 } 5139 5140 phba->link_state = LPFC_WARM_START; 5141 return 0; 5142 } 5143 5144 /** 5145 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5146 * @phba: Pointer to HBA context object. 5147 * 5148 * This function resets a SLI4 HBA. This function disables PCI layer parity 5149 * checking during resets the device. The caller is not required to hold 5150 * any locks. 5151 * 5152 * This function returns 0 on success else returns negative error code. 5153 **/ 5154 int 5155 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5156 { 5157 struct lpfc_sli *psli = &phba->sli; 5158 uint16_t cfg_value; 5159 int rc = 0; 5160 5161 /* Reset HBA */ 5162 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5163 "0295 Reset HBA Data: x%x x%x x%lx\n", 5164 phba->pport->port_state, psli->sli_flag, 5165 phba->hba_flag); 5166 5167 /* perform board reset */ 5168 phba->fc_eventTag = 0; 5169 phba->link_events = 0; 5170 phba->pport->fc_myDID = 0; 5171 phba->pport->fc_prevDID = 0; 5172 5173 spin_lock_irq(&phba->hbalock); 5174 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5175 phba->fcf.fcf_flag = 0; 5176 spin_unlock_irq(&phba->hbalock); 5177 5178 /* Now physically reset the device */ 5179 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5180 "0389 Performing PCI function reset!\n"); 5181 5182 /* Turn off parity checking and serr during the physical reset */ 5183 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5184 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5185 "3205 PCI read Config failed\n"); 5186 return -EIO; 5187 } 5188 5189 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5190 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5191 5192 /* Perform FCoE PCI function reset before freeing queue memory */ 5193 rc = lpfc_pci_function_reset(phba); 5194 5195 /* Restore PCI cmd register */ 5196 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5197 5198 return rc; 5199 } 5200 5201 /** 5202 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5203 * @phba: Pointer to HBA context object. 5204 * 5205 * This function is called in the SLI initialization code path to 5206 * restart the HBA. The caller is not required to hold any lock. 5207 * This function writes MBX_RESTART mailbox command to the SLIM and 5208 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5209 * function to free any pending commands. The function enables 5210 * POST only during the first initialization. The function returns zero. 5211 * The function does not guarantee completion of MBX_RESTART mailbox 5212 * command before the return of this function. 5213 **/ 5214 static int 5215 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5216 { 5217 volatile struct MAILBOX_word0 mb; 5218 struct lpfc_sli *psli; 5219 void __iomem *to_slim; 5220 5221 spin_lock_irq(&phba->hbalock); 5222 5223 psli = &phba->sli; 5224 5225 /* Restart HBA */ 5226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5227 "0337 Restart HBA Data: x%x x%x\n", 5228 (phba->pport) ? phba->pport->port_state : 0, 5229 psli->sli_flag); 5230 5231 mb.word0 = 0; 5232 mb.mbxCommand = MBX_RESTART; 5233 mb.mbxHc = 1; 5234 5235 lpfc_reset_barrier(phba); 5236 5237 to_slim = phba->MBslimaddr; 5238 writel(mb.word0, to_slim); 5239 readl(to_slim); /* flush */ 5240 5241 /* Only skip post after fc_ffinit is completed */ 5242 if (phba->pport && phba->pport->port_state) 5243 mb.word0 = 1; /* This is really setting up word1 */ 5244 else 5245 mb.word0 = 0; /* This is really setting up word1 */ 5246 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5247 writel(mb.word0, to_slim); 5248 readl(to_slim); /* flush */ 5249 5250 lpfc_sli_brdreset(phba); 5251 if (phba->pport) 5252 phba->pport->stopped = 0; 5253 phba->link_state = LPFC_INIT_START; 5254 phba->hba_flag = 0; 5255 spin_unlock_irq(&phba->hbalock); 5256 5257 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5258 psli->stats_start = ktime_get_seconds(); 5259 5260 /* Give the INITFF and Post time to settle. */ 5261 mdelay(100); 5262 5263 lpfc_hba_down_post(phba); 5264 5265 return 0; 5266 } 5267 5268 /** 5269 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5270 * @phba: Pointer to HBA context object. 5271 * 5272 * This function is called in the SLI initialization code path to restart 5273 * a SLI4 HBA. The caller is not required to hold any lock. 5274 * At the end of the function, it calls lpfc_hba_down_post function to 5275 * free any pending commands. 5276 **/ 5277 static int 5278 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5279 { 5280 struct lpfc_sli *psli = &phba->sli; 5281 int rc; 5282 5283 /* Restart HBA */ 5284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5285 "0296 Restart HBA Data: x%x x%x\n", 5286 phba->pport->port_state, psli->sli_flag); 5287 5288 clear_bit(HBA_SETUP, &phba->hba_flag); 5289 lpfc_sli4_queue_unset(phba); 5290 5291 rc = lpfc_sli4_brdreset(phba); 5292 if (rc) { 5293 phba->link_state = LPFC_HBA_ERROR; 5294 goto hba_down_queue; 5295 } 5296 5297 spin_lock_irq(&phba->hbalock); 5298 phba->pport->stopped = 0; 5299 phba->link_state = LPFC_INIT_START; 5300 phba->hba_flag = 0; 5301 /* Preserve FA-PWWN expectation */ 5302 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5303 spin_unlock_irq(&phba->hbalock); 5304 5305 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5306 psli->stats_start = ktime_get_seconds(); 5307 5308 hba_down_queue: 5309 lpfc_hba_down_post(phba); 5310 lpfc_sli4_queue_destroy(phba); 5311 5312 return rc; 5313 } 5314 5315 /** 5316 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5317 * @phba: Pointer to HBA context object. 5318 * 5319 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5320 * API jump table function pointer from the lpfc_hba struct. 5321 **/ 5322 int 5323 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5324 { 5325 return phba->lpfc_sli_brdrestart(phba); 5326 } 5327 5328 /** 5329 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5330 * @phba: Pointer to HBA context object. 5331 * 5332 * This function is called after a HBA restart to wait for successful 5333 * restart of the HBA. Successful restart of the HBA is indicated by 5334 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5335 * iteration, the function will restart the HBA again. The function returns 5336 * zero if HBA successfully restarted else returns negative error code. 5337 **/ 5338 int 5339 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5340 { 5341 uint32_t status, i = 0; 5342 5343 /* Read the HBA Host Status Register */ 5344 if (lpfc_readl(phba->HSregaddr, &status)) 5345 return -EIO; 5346 5347 /* Check status register to see what current state is */ 5348 i = 0; 5349 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5350 5351 /* Check every 10ms for 10 retries, then every 100ms for 90 5352 * retries, then every 1 sec for 50 retires for a total of 5353 * ~60 seconds before reset the board again and check every 5354 * 1 sec for 50 retries. The up to 60 seconds before the 5355 * board ready is required by the Falcon FIPS zeroization 5356 * complete, and any reset the board in between shall cause 5357 * restart of zeroization, further delay the board ready. 5358 */ 5359 if (i++ >= 200) { 5360 /* Adapter failed to init, timeout, status reg 5361 <status> */ 5362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5363 "0436 Adapter failed to init, " 5364 "timeout, status reg x%x, " 5365 "FW Data: A8 x%x AC x%x\n", status, 5366 readl(phba->MBslimaddr + 0xa8), 5367 readl(phba->MBslimaddr + 0xac)); 5368 phba->link_state = LPFC_HBA_ERROR; 5369 return -ETIMEDOUT; 5370 } 5371 5372 /* Check to see if any errors occurred during init */ 5373 if (status & HS_FFERM) { 5374 /* ERROR: During chipset initialization */ 5375 /* Adapter failed to init, chipset, status reg 5376 <status> */ 5377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5378 "0437 Adapter failed to init, " 5379 "chipset, status reg x%x, " 5380 "FW Data: A8 x%x AC x%x\n", status, 5381 readl(phba->MBslimaddr + 0xa8), 5382 readl(phba->MBslimaddr + 0xac)); 5383 phba->link_state = LPFC_HBA_ERROR; 5384 return -EIO; 5385 } 5386 5387 if (i <= 10) 5388 msleep(10); 5389 else if (i <= 100) 5390 msleep(100); 5391 else 5392 msleep(1000); 5393 5394 if (i == 150) { 5395 /* Do post */ 5396 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5397 lpfc_sli_brdrestart(phba); 5398 } 5399 /* Read the HBA Host Status Register */ 5400 if (lpfc_readl(phba->HSregaddr, &status)) 5401 return -EIO; 5402 } 5403 5404 /* Check to see if any errors occurred during init */ 5405 if (status & HS_FFERM) { 5406 /* ERROR: During chipset initialization */ 5407 /* Adapter failed to init, chipset, status reg <status> */ 5408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5409 "0438 Adapter failed to init, chipset, " 5410 "status reg x%x, " 5411 "FW Data: A8 x%x AC x%x\n", status, 5412 readl(phba->MBslimaddr + 0xa8), 5413 readl(phba->MBslimaddr + 0xac)); 5414 phba->link_state = LPFC_HBA_ERROR; 5415 return -EIO; 5416 } 5417 5418 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5419 5420 /* Clear all interrupt enable conditions */ 5421 writel(0, phba->HCregaddr); 5422 readl(phba->HCregaddr); /* flush */ 5423 5424 /* setup host attn register */ 5425 writel(0xffffffff, phba->HAregaddr); 5426 readl(phba->HAregaddr); /* flush */ 5427 return 0; 5428 } 5429 5430 /** 5431 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5432 * 5433 * This function calculates and returns the number of HBQs required to be 5434 * configured. 5435 **/ 5436 int 5437 lpfc_sli_hbq_count(void) 5438 { 5439 return ARRAY_SIZE(lpfc_hbq_defs); 5440 } 5441 5442 /** 5443 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5444 * 5445 * This function adds the number of hbq entries in every HBQ to get 5446 * the total number of hbq entries required for the HBA and returns 5447 * the total count. 5448 **/ 5449 static int 5450 lpfc_sli_hbq_entry_count(void) 5451 { 5452 int hbq_count = lpfc_sli_hbq_count(); 5453 int count = 0; 5454 int i; 5455 5456 for (i = 0; i < hbq_count; ++i) 5457 count += lpfc_hbq_defs[i]->entry_count; 5458 return count; 5459 } 5460 5461 /** 5462 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5463 * 5464 * This function calculates amount of memory required for all hbq entries 5465 * to be configured and returns the total memory required. 5466 **/ 5467 int 5468 lpfc_sli_hbq_size(void) 5469 { 5470 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5471 } 5472 5473 /** 5474 * lpfc_sli_hbq_setup - configure and initialize HBQs 5475 * @phba: Pointer to HBA context object. 5476 * 5477 * This function is called during the SLI initialization to configure 5478 * all the HBQs and post buffers to the HBQ. The caller is not 5479 * required to hold any locks. This function will return zero if successful 5480 * else it will return negative error code. 5481 **/ 5482 static int 5483 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5484 { 5485 int hbq_count = lpfc_sli_hbq_count(); 5486 LPFC_MBOXQ_t *pmb; 5487 MAILBOX_t *pmbox; 5488 uint32_t hbqno; 5489 uint32_t hbq_entry_index; 5490 5491 /* Get a Mailbox buffer to setup mailbox 5492 * commands for HBA initialization 5493 */ 5494 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5495 5496 if (!pmb) 5497 return -ENOMEM; 5498 5499 pmbox = &pmb->u.mb; 5500 5501 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5502 phba->link_state = LPFC_INIT_MBX_CMDS; 5503 phba->hbq_in_use = 1; 5504 5505 hbq_entry_index = 0; 5506 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5507 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5508 phba->hbqs[hbqno].hbqPutIdx = 0; 5509 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5510 phba->hbqs[hbqno].entry_count = 5511 lpfc_hbq_defs[hbqno]->entry_count; 5512 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5513 hbq_entry_index, pmb); 5514 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5515 5516 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5517 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5518 mbxStatus <status>, ring <num> */ 5519 5520 lpfc_printf_log(phba, KERN_ERR, 5521 LOG_SLI | LOG_VPORT, 5522 "1805 Adapter failed to init. " 5523 "Data: x%x x%x x%x\n", 5524 pmbox->mbxCommand, 5525 pmbox->mbxStatus, hbqno); 5526 5527 phba->link_state = LPFC_HBA_ERROR; 5528 mempool_free(pmb, phba->mbox_mem_pool); 5529 return -ENXIO; 5530 } 5531 } 5532 phba->hbq_count = hbq_count; 5533 5534 mempool_free(pmb, phba->mbox_mem_pool); 5535 5536 /* Initially populate or replenish the HBQs */ 5537 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5538 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5539 return 0; 5540 } 5541 5542 /** 5543 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5544 * @phba: Pointer to HBA context object. 5545 * 5546 * This function is called during the SLI initialization to configure 5547 * all the HBQs and post buffers to the HBQ. The caller is not 5548 * required to hold any locks. This function will return zero if successful 5549 * else it will return negative error code. 5550 **/ 5551 static int 5552 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5553 { 5554 phba->hbq_in_use = 1; 5555 /** 5556 * Specific case when the MDS diagnostics is enabled and supported. 5557 * The receive buffer count is truncated to manage the incoming 5558 * traffic. 5559 **/ 5560 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5561 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5562 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5563 else 5564 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5565 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5566 phba->hbq_count = 1; 5567 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5568 /* Initially populate or replenish the HBQs */ 5569 return 0; 5570 } 5571 5572 /** 5573 * lpfc_sli_config_port - Issue config port mailbox command 5574 * @phba: Pointer to HBA context object. 5575 * @sli_mode: sli mode - 2/3 5576 * 5577 * This function is called by the sli initialization code path 5578 * to issue config_port mailbox command. This function restarts the 5579 * HBA firmware and issues a config_port mailbox command to configure 5580 * the SLI interface in the sli mode specified by sli_mode 5581 * variable. The caller is not required to hold any locks. 5582 * The function returns 0 if successful, else returns negative error 5583 * code. 5584 **/ 5585 int 5586 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5587 { 5588 LPFC_MBOXQ_t *pmb; 5589 uint32_t resetcount = 0, rc = 0, done = 0; 5590 5591 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5592 if (!pmb) { 5593 phba->link_state = LPFC_HBA_ERROR; 5594 return -ENOMEM; 5595 } 5596 5597 phba->sli_rev = sli_mode; 5598 while (resetcount < 2 && !done) { 5599 spin_lock_irq(&phba->hbalock); 5600 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5601 spin_unlock_irq(&phba->hbalock); 5602 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5603 lpfc_sli_brdrestart(phba); 5604 rc = lpfc_sli_chipset_init(phba); 5605 if (rc) 5606 break; 5607 5608 spin_lock_irq(&phba->hbalock); 5609 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5610 spin_unlock_irq(&phba->hbalock); 5611 resetcount++; 5612 5613 /* Call pre CONFIG_PORT mailbox command initialization. A 5614 * value of 0 means the call was successful. Any other 5615 * nonzero value is a failure, but if ERESTART is returned, 5616 * the driver may reset the HBA and try again. 5617 */ 5618 rc = lpfc_config_port_prep(phba); 5619 if (rc == -ERESTART) { 5620 phba->link_state = LPFC_LINK_UNKNOWN; 5621 continue; 5622 } else if (rc) 5623 break; 5624 5625 phba->link_state = LPFC_INIT_MBX_CMDS; 5626 lpfc_config_port(phba, pmb); 5627 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5628 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5629 LPFC_SLI3_HBQ_ENABLED | 5630 LPFC_SLI3_CRP_ENABLED | 5631 LPFC_SLI3_DSS_ENABLED); 5632 if (rc != MBX_SUCCESS) { 5633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5634 "0442 Adapter failed to init, mbxCmd x%x " 5635 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5636 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5637 spin_lock_irq(&phba->hbalock); 5638 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5639 spin_unlock_irq(&phba->hbalock); 5640 rc = -ENXIO; 5641 } else { 5642 /* Allow asynchronous mailbox command to go through */ 5643 spin_lock_irq(&phba->hbalock); 5644 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5645 spin_unlock_irq(&phba->hbalock); 5646 done = 1; 5647 5648 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5649 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5650 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5651 "3110 Port did not grant ASABT\n"); 5652 } 5653 } 5654 if (!done) { 5655 rc = -EINVAL; 5656 goto do_prep_failed; 5657 } 5658 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5659 if (!pmb->u.mb.un.varCfgPort.cMA) { 5660 rc = -ENXIO; 5661 goto do_prep_failed; 5662 } 5663 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5664 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5665 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5666 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5667 phba->max_vpi : phba->max_vports; 5668 5669 } else 5670 phba->max_vpi = 0; 5671 if (pmb->u.mb.un.varCfgPort.gerbm) 5672 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5673 if (pmb->u.mb.un.varCfgPort.gcrp) 5674 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5675 5676 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5677 phba->port_gp = phba->mbox->us.s3_pgp.port; 5678 5679 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5680 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5681 phba->cfg_enable_bg = 0; 5682 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5684 "0443 Adapter did not grant " 5685 "BlockGuard\n"); 5686 } 5687 } 5688 } else { 5689 phba->hbq_get = NULL; 5690 phba->port_gp = phba->mbox->us.s2.port; 5691 phba->max_vpi = 0; 5692 } 5693 do_prep_failed: 5694 mempool_free(pmb, phba->mbox_mem_pool); 5695 return rc; 5696 } 5697 5698 5699 /** 5700 * lpfc_sli_hba_setup - SLI initialization function 5701 * @phba: Pointer to HBA context object. 5702 * 5703 * This function is the main SLI initialization function. This function 5704 * is called by the HBA initialization code, HBA reset code and HBA 5705 * error attention handler code. Caller is not required to hold any 5706 * locks. This function issues config_port mailbox command to configure 5707 * the SLI, setup iocb rings and HBQ rings. In the end the function 5708 * calls the config_port_post function to issue init_link mailbox 5709 * command and to start the discovery. The function will return zero 5710 * if successful, else it will return negative error code. 5711 **/ 5712 int 5713 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5714 { 5715 uint32_t rc; 5716 int i; 5717 int longs; 5718 5719 /* Enable ISR already does config_port because of config_msi mbx */ 5720 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5721 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5722 if (rc) 5723 return -EIO; 5724 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5725 } 5726 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5727 5728 if (phba->sli_rev == 3) { 5729 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5730 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5731 } else { 5732 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5733 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5734 phba->sli3_options = 0; 5735 } 5736 5737 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5738 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5739 phba->sli_rev, phba->max_vpi); 5740 rc = lpfc_sli_ring_map(phba); 5741 5742 if (rc) 5743 goto lpfc_sli_hba_setup_error; 5744 5745 /* Initialize VPIs. */ 5746 if (phba->sli_rev == LPFC_SLI_REV3) { 5747 /* 5748 * The VPI bitmask and physical ID array are allocated 5749 * and initialized once only - at driver load. A port 5750 * reset doesn't need to reinitialize this memory. 5751 */ 5752 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5753 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5754 phba->vpi_bmask = kcalloc(longs, 5755 sizeof(unsigned long), 5756 GFP_KERNEL); 5757 if (!phba->vpi_bmask) { 5758 rc = -ENOMEM; 5759 goto lpfc_sli_hba_setup_error; 5760 } 5761 5762 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5763 sizeof(uint16_t), 5764 GFP_KERNEL); 5765 if (!phba->vpi_ids) { 5766 kfree(phba->vpi_bmask); 5767 rc = -ENOMEM; 5768 goto lpfc_sli_hba_setup_error; 5769 } 5770 for (i = 0; i < phba->max_vpi; i++) 5771 phba->vpi_ids[i] = i; 5772 } 5773 } 5774 5775 /* Init HBQs */ 5776 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5777 rc = lpfc_sli_hbq_setup(phba); 5778 if (rc) 5779 goto lpfc_sli_hba_setup_error; 5780 } 5781 spin_lock_irq(&phba->hbalock); 5782 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5783 spin_unlock_irq(&phba->hbalock); 5784 5785 rc = lpfc_config_port_post(phba); 5786 if (rc) 5787 goto lpfc_sli_hba_setup_error; 5788 5789 return rc; 5790 5791 lpfc_sli_hba_setup_error: 5792 phba->link_state = LPFC_HBA_ERROR; 5793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5794 "0445 Firmware initialization failed\n"); 5795 return rc; 5796 } 5797 5798 /** 5799 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5800 * @phba: Pointer to HBA context object. 5801 * 5802 * This function issue a dump mailbox command to read config region 5803 * 23 and parse the records in the region and populate driver 5804 * data structure. 5805 **/ 5806 static int 5807 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5808 { 5809 LPFC_MBOXQ_t *mboxq; 5810 struct lpfc_dmabuf *mp; 5811 struct lpfc_mqe *mqe; 5812 uint32_t data_length; 5813 int rc; 5814 5815 /* Program the default value of vlan_id and fc_map */ 5816 phba->valid_vlan = 0; 5817 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5818 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5819 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5820 5821 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5822 if (!mboxq) 5823 return -ENOMEM; 5824 5825 mqe = &mboxq->u.mqe; 5826 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5827 rc = -ENOMEM; 5828 goto out_free_mboxq; 5829 } 5830 5831 mp = mboxq->ctx_buf; 5832 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5833 5834 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5835 "(%d):2571 Mailbox cmd x%x Status x%x " 5836 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5837 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5838 "CQ: x%x x%x x%x x%x\n", 5839 mboxq->vport ? mboxq->vport->vpi : 0, 5840 bf_get(lpfc_mqe_command, mqe), 5841 bf_get(lpfc_mqe_status, mqe), 5842 mqe->un.mb_words[0], mqe->un.mb_words[1], 5843 mqe->un.mb_words[2], mqe->un.mb_words[3], 5844 mqe->un.mb_words[4], mqe->un.mb_words[5], 5845 mqe->un.mb_words[6], mqe->un.mb_words[7], 5846 mqe->un.mb_words[8], mqe->un.mb_words[9], 5847 mqe->un.mb_words[10], mqe->un.mb_words[11], 5848 mqe->un.mb_words[12], mqe->un.mb_words[13], 5849 mqe->un.mb_words[14], mqe->un.mb_words[15], 5850 mqe->un.mb_words[16], mqe->un.mb_words[50], 5851 mboxq->mcqe.word0, 5852 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5853 mboxq->mcqe.trailer); 5854 5855 if (rc) { 5856 rc = -EIO; 5857 goto out_free_mboxq; 5858 } 5859 data_length = mqe->un.mb_words[5]; 5860 if (data_length > DMP_RGN23_SIZE) { 5861 rc = -EIO; 5862 goto out_free_mboxq; 5863 } 5864 5865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5866 rc = 0; 5867 5868 out_free_mboxq: 5869 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5870 return rc; 5871 } 5872 5873 /** 5874 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5875 * @phba: pointer to lpfc hba data structure. 5876 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5877 * @vpd: pointer to the memory to hold resulting port vpd data. 5878 * @vpd_size: On input, the number of bytes allocated to @vpd. 5879 * On output, the number of data bytes in @vpd. 5880 * 5881 * This routine executes a READ_REV SLI4 mailbox command. In 5882 * addition, this routine gets the port vpd data. 5883 * 5884 * Return codes 5885 * 0 - successful 5886 * -ENOMEM - could not allocated memory. 5887 **/ 5888 static int 5889 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5890 uint8_t *vpd, uint32_t *vpd_size) 5891 { 5892 int rc = 0; 5893 uint32_t dma_size; 5894 struct lpfc_dmabuf *dmabuf; 5895 struct lpfc_mqe *mqe; 5896 5897 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5898 if (!dmabuf) 5899 return -ENOMEM; 5900 5901 /* 5902 * Get a DMA buffer for the vpd data resulting from the READ_REV 5903 * mailbox command. 5904 */ 5905 dma_size = *vpd_size; 5906 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5907 &dmabuf->phys, GFP_KERNEL); 5908 if (!dmabuf->virt) { 5909 kfree(dmabuf); 5910 return -ENOMEM; 5911 } 5912 5913 /* 5914 * The SLI4 implementation of READ_REV conflicts at word1, 5915 * bits 31:16 and SLI4 adds vpd functionality not present 5916 * in SLI3. This code corrects the conflicts. 5917 */ 5918 lpfc_read_rev(phba, mboxq); 5919 mqe = &mboxq->u.mqe; 5920 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5921 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5922 mqe->un.read_rev.word1 &= 0x0000FFFF; 5923 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5924 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5925 5926 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5927 if (rc) { 5928 dma_free_coherent(&phba->pcidev->dev, dma_size, 5929 dmabuf->virt, dmabuf->phys); 5930 kfree(dmabuf); 5931 return -EIO; 5932 } 5933 5934 /* 5935 * The available vpd length cannot be bigger than the 5936 * DMA buffer passed to the port. Catch the less than 5937 * case and update the caller's size. 5938 */ 5939 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5940 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5941 5942 memcpy(vpd, dmabuf->virt, *vpd_size); 5943 5944 dma_free_coherent(&phba->pcidev->dev, dma_size, 5945 dmabuf->virt, dmabuf->phys); 5946 kfree(dmabuf); 5947 return 0; 5948 } 5949 5950 /** 5951 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5952 * @phba: pointer to lpfc hba data structure. 5953 * 5954 * This routine retrieves SLI4 device physical port name this PCI function 5955 * is attached to. 5956 * 5957 * Return codes 5958 * 0 - successful 5959 * otherwise - failed to retrieve controller attributes 5960 **/ 5961 static int 5962 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5963 { 5964 LPFC_MBOXQ_t *mboxq; 5965 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5966 struct lpfc_controller_attribute *cntl_attr; 5967 void *virtaddr = NULL; 5968 uint32_t alloclen, reqlen; 5969 uint32_t shdr_status, shdr_add_status; 5970 union lpfc_sli4_cfg_shdr *shdr; 5971 int rc; 5972 5973 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5974 if (!mboxq) 5975 return -ENOMEM; 5976 5977 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5978 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5979 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5980 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5981 LPFC_SLI4_MBX_NEMBED); 5982 5983 if (alloclen < reqlen) { 5984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5985 "3084 Allocated DMA memory size (%d) is " 5986 "less than the requested DMA memory size " 5987 "(%d)\n", alloclen, reqlen); 5988 rc = -ENOMEM; 5989 goto out_free_mboxq; 5990 } 5991 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5992 virtaddr = mboxq->sge_array->addr[0]; 5993 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5994 shdr = &mbx_cntl_attr->cfg_shdr; 5995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5997 if (shdr_status || shdr_add_status || rc) { 5998 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5999 "3085 Mailbox x%x (x%x/x%x) failed, " 6000 "rc:x%x, status:x%x, add_status:x%x\n", 6001 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6002 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6003 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6004 rc, shdr_status, shdr_add_status); 6005 rc = -ENXIO; 6006 goto out_free_mboxq; 6007 } 6008 6009 cntl_attr = &mbx_cntl_attr->cntl_attr; 6010 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6011 phba->sli4_hba.lnk_info.lnk_tp = 6012 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6013 phba->sli4_hba.lnk_info.lnk_no = 6014 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6015 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6016 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6017 6018 memcpy(phba->BIOSVersion, cntl_attr->bios_ver_str, 6019 sizeof(phba->BIOSVersion)); 6020 phba->BIOSVersion[sizeof(phba->BIOSVersion) - 1] = '\0'; 6021 6022 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6023 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6024 "flash_id: x%02x, asic_rev: x%02x\n", 6025 phba->sli4_hba.lnk_info.lnk_tp, 6026 phba->sli4_hba.lnk_info.lnk_no, 6027 phba->BIOSVersion, phba->sli4_hba.flash_id, 6028 phba->sli4_hba.asic_rev); 6029 out_free_mboxq: 6030 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6031 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6032 else 6033 mempool_free(mboxq, phba->mbox_mem_pool); 6034 return rc; 6035 } 6036 6037 /** 6038 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6039 * @phba: pointer to lpfc hba data structure. 6040 * 6041 * This routine retrieves SLI4 device physical port name this PCI function 6042 * is attached to. 6043 * 6044 * Return codes 6045 * 0 - successful 6046 * otherwise - failed to retrieve physical port name 6047 **/ 6048 static int 6049 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6050 { 6051 LPFC_MBOXQ_t *mboxq; 6052 struct lpfc_mbx_get_port_name *get_port_name; 6053 uint32_t shdr_status, shdr_add_status; 6054 union lpfc_sli4_cfg_shdr *shdr; 6055 char cport_name = 0; 6056 int rc; 6057 6058 /* We assume nothing at this point */ 6059 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6061 6062 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6063 if (!mboxq) 6064 return -ENOMEM; 6065 /* obtain link type and link number via READ_CONFIG */ 6066 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6067 lpfc_sli4_read_config(phba); 6068 6069 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6070 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6071 6072 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6073 goto retrieve_ppname; 6074 6075 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6076 rc = lpfc_sli4_get_ctl_attr(phba); 6077 if (rc) 6078 goto out_free_mboxq; 6079 6080 retrieve_ppname: 6081 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6082 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6083 sizeof(struct lpfc_mbx_get_port_name) - 6084 sizeof(struct lpfc_sli4_cfg_mhdr), 6085 LPFC_SLI4_MBX_EMBED); 6086 get_port_name = &mboxq->u.mqe.un.get_port_name; 6087 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6088 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6089 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6090 phba->sli4_hba.lnk_info.lnk_tp); 6091 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6092 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6093 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6094 if (shdr_status || shdr_add_status || rc) { 6095 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6096 "3087 Mailbox x%x (x%x/x%x) failed: " 6097 "rc:x%x, status:x%x, add_status:x%x\n", 6098 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6099 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6100 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6101 rc, shdr_status, shdr_add_status); 6102 rc = -ENXIO; 6103 goto out_free_mboxq; 6104 } 6105 switch (phba->sli4_hba.lnk_info.lnk_no) { 6106 case LPFC_LINK_NUMBER_0: 6107 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6108 &get_port_name->u.response); 6109 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6110 break; 6111 case LPFC_LINK_NUMBER_1: 6112 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6113 &get_port_name->u.response); 6114 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6115 break; 6116 case LPFC_LINK_NUMBER_2: 6117 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6118 &get_port_name->u.response); 6119 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6120 break; 6121 case LPFC_LINK_NUMBER_3: 6122 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6123 &get_port_name->u.response); 6124 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6125 break; 6126 default: 6127 break; 6128 } 6129 6130 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6131 phba->Port[0] = cport_name; 6132 phba->Port[1] = '\0'; 6133 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6134 "3091 SLI get port name: %s\n", phba->Port); 6135 } 6136 6137 out_free_mboxq: 6138 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6139 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6140 else 6141 mempool_free(mboxq, phba->mbox_mem_pool); 6142 return rc; 6143 } 6144 6145 /** 6146 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6147 * @phba: pointer to lpfc hba data structure. 6148 * 6149 * This routine is called to explicitly arm the SLI4 device's completion and 6150 * event queues 6151 **/ 6152 static void 6153 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6154 { 6155 int qidx; 6156 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6157 struct lpfc_sli4_hdw_queue *qp; 6158 struct lpfc_queue *eq; 6159 6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6162 if (sli4_hba->nvmels_cq) 6163 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6164 LPFC_QUEUE_REARM); 6165 6166 if (sli4_hba->hdwq) { 6167 /* Loop thru all Hardware Queues */ 6168 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6169 qp = &sli4_hba->hdwq[qidx]; 6170 /* ARM the corresponding CQ */ 6171 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6172 LPFC_QUEUE_REARM); 6173 } 6174 6175 /* Loop thru all IRQ vectors */ 6176 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6177 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6178 /* ARM the corresponding EQ */ 6179 sli4_hba->sli4_write_eq_db(phba, eq, 6180 0, LPFC_QUEUE_REARM); 6181 } 6182 } 6183 6184 if (phba->nvmet_support) { 6185 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6186 sli4_hba->sli4_write_cq_db(phba, 6187 sli4_hba->nvmet_cqset[qidx], 0, 6188 LPFC_QUEUE_REARM); 6189 } 6190 } 6191 } 6192 6193 /** 6194 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6195 * @phba: Pointer to HBA context object. 6196 * @type: The resource extent type. 6197 * @extnt_count: buffer to hold port available extent count. 6198 * @extnt_size: buffer to hold element count per extent. 6199 * 6200 * This function calls the port and retrievs the number of available 6201 * extents and their size for a particular extent type. 6202 * 6203 * Returns: 0 if successful. Nonzero otherwise. 6204 **/ 6205 int 6206 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6207 uint16_t *extnt_count, uint16_t *extnt_size) 6208 { 6209 int rc = 0; 6210 uint32_t length; 6211 uint32_t mbox_tmo; 6212 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6213 LPFC_MBOXQ_t *mbox; 6214 6215 *extnt_count = 0; 6216 *extnt_size = 0; 6217 6218 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6219 if (!mbox) 6220 return -ENOMEM; 6221 6222 /* Find out how many extents are available for this resource type */ 6223 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6224 sizeof(struct lpfc_sli4_cfg_mhdr)); 6225 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6226 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6227 length, LPFC_SLI4_MBX_EMBED); 6228 6229 /* Send an extents count of 0 - the GET doesn't use it. */ 6230 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6231 LPFC_SLI4_MBX_EMBED); 6232 if (unlikely(rc)) { 6233 rc = -EIO; 6234 goto err_exit; 6235 } 6236 6237 if (!phba->sli4_hba.intr_enable) 6238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6239 else { 6240 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6241 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6242 } 6243 if (unlikely(rc)) { 6244 rc = -EIO; 6245 goto err_exit; 6246 } 6247 6248 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6249 if (bf_get(lpfc_mbox_hdr_status, 6250 &rsrc_info->header.cfg_shdr.response)) { 6251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6252 "2930 Failed to get resource extents " 6253 "Status 0x%x Add'l Status 0x%x\n", 6254 bf_get(lpfc_mbox_hdr_status, 6255 &rsrc_info->header.cfg_shdr.response), 6256 bf_get(lpfc_mbox_hdr_add_status, 6257 &rsrc_info->header.cfg_shdr.response)); 6258 rc = -EIO; 6259 goto err_exit; 6260 } 6261 6262 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6263 &rsrc_info->u.rsp); 6264 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6265 &rsrc_info->u.rsp); 6266 6267 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6268 "3162 Retrieved extents type-%d from port: count:%d, " 6269 "size:%d\n", type, *extnt_count, *extnt_size); 6270 6271 err_exit: 6272 mempool_free(mbox, phba->mbox_mem_pool); 6273 return rc; 6274 } 6275 6276 /** 6277 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6278 * @phba: Pointer to HBA context object. 6279 * @type: The extent type to check. 6280 * 6281 * This function reads the current available extents from the port and checks 6282 * if the extent count or extent size has changed since the last access. 6283 * Callers use this routine post port reset to understand if there is a 6284 * extent reprovisioning requirement. 6285 * 6286 * Returns: 6287 * -Error: error indicates problem. 6288 * 1: Extent count or size has changed. 6289 * 0: No changes. 6290 **/ 6291 static int 6292 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6293 { 6294 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6295 uint16_t size_diff, rsrc_ext_size; 6296 int rc = 0; 6297 struct lpfc_rsrc_blks *rsrc_entry; 6298 struct list_head *rsrc_blk_list = NULL; 6299 6300 size_diff = 0; 6301 curr_ext_cnt = 0; 6302 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6303 &rsrc_ext_cnt, 6304 &rsrc_ext_size); 6305 if (unlikely(rc)) 6306 return -EIO; 6307 6308 switch (type) { 6309 case LPFC_RSC_TYPE_FCOE_RPI: 6310 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6311 break; 6312 case LPFC_RSC_TYPE_FCOE_VPI: 6313 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6314 break; 6315 case LPFC_RSC_TYPE_FCOE_XRI: 6316 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6317 break; 6318 case LPFC_RSC_TYPE_FCOE_VFI: 6319 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6320 break; 6321 default: 6322 break; 6323 } 6324 6325 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6326 curr_ext_cnt++; 6327 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6328 size_diff++; 6329 } 6330 6331 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6332 rc = 1; 6333 6334 return rc; 6335 } 6336 6337 /** 6338 * lpfc_sli4_cfg_post_extnts - 6339 * @phba: Pointer to HBA context object. 6340 * @extnt_cnt: number of available extents. 6341 * @type: the extent type (rpi, xri, vfi, vpi). 6342 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6343 * @mbox: pointer to the caller's allocated mailbox structure. 6344 * 6345 * This function executes the extents allocation request. It also 6346 * takes care of the amount of memory needed to allocate or get the 6347 * allocated extents. It is the caller's responsibility to evaluate 6348 * the response. 6349 * 6350 * Returns: 6351 * -Error: Error value describes the condition found. 6352 * 0: if successful 6353 **/ 6354 static int 6355 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6356 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6357 { 6358 int rc = 0; 6359 uint32_t req_len; 6360 uint32_t emb_len; 6361 uint32_t alloc_len, mbox_tmo; 6362 6363 /* Calculate the total requested length of the dma memory */ 6364 req_len = extnt_cnt * sizeof(uint16_t); 6365 6366 /* 6367 * Calculate the size of an embedded mailbox. The uint32_t 6368 * accounts for extents-specific word. 6369 */ 6370 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6371 sizeof(uint32_t); 6372 6373 /* 6374 * Presume the allocation and response will fit into an embedded 6375 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6376 */ 6377 *emb = LPFC_SLI4_MBX_EMBED; 6378 if (req_len > emb_len) { 6379 req_len = extnt_cnt * sizeof(uint16_t) + 6380 sizeof(union lpfc_sli4_cfg_shdr) + 6381 sizeof(uint32_t); 6382 *emb = LPFC_SLI4_MBX_NEMBED; 6383 } 6384 6385 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6386 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6387 req_len, *emb); 6388 if (alloc_len < req_len) { 6389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6390 "2982 Allocated DMA memory size (x%x) is " 6391 "less than the requested DMA memory " 6392 "size (x%x)\n", alloc_len, req_len); 6393 return -ENOMEM; 6394 } 6395 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6396 if (unlikely(rc)) 6397 return -EIO; 6398 6399 if (!phba->sli4_hba.intr_enable) 6400 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6401 else { 6402 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6403 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6404 } 6405 6406 if (unlikely(rc)) 6407 rc = -EIO; 6408 return rc; 6409 } 6410 6411 /** 6412 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6413 * @phba: Pointer to HBA context object. 6414 * @type: The resource extent type to allocate. 6415 * 6416 * This function allocates the number of elements for the specified 6417 * resource type. 6418 **/ 6419 static int 6420 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6421 { 6422 bool emb = false; 6423 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6424 uint16_t rsrc_id, rsrc_start, j, k; 6425 uint16_t *ids; 6426 int i, rc; 6427 unsigned long longs; 6428 unsigned long *bmask; 6429 struct lpfc_rsrc_blks *rsrc_blks; 6430 LPFC_MBOXQ_t *mbox; 6431 uint32_t length; 6432 struct lpfc_id_range *id_array = NULL; 6433 void *virtaddr = NULL; 6434 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6435 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6436 struct list_head *ext_blk_list; 6437 6438 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6439 &rsrc_cnt, 6440 &rsrc_size); 6441 if (unlikely(rc)) 6442 return -EIO; 6443 6444 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6446 "3009 No available Resource Extents " 6447 "for resource type 0x%x: Count: 0x%x, " 6448 "Size 0x%x\n", type, rsrc_cnt, 6449 rsrc_size); 6450 return -ENOMEM; 6451 } 6452 6453 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6454 "2903 Post resource extents type-0x%x: " 6455 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6456 6457 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6458 if (!mbox) 6459 return -ENOMEM; 6460 6461 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6462 if (unlikely(rc)) { 6463 rc = -EIO; 6464 goto err_exit; 6465 } 6466 6467 /* 6468 * Figure out where the response is located. Then get local pointers 6469 * to the response data. The port does not guarantee to respond to 6470 * all extents counts request so update the local variable with the 6471 * allocated count from the port. 6472 */ 6473 if (emb == LPFC_SLI4_MBX_EMBED) { 6474 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6475 id_array = &rsrc_ext->u.rsp.id[0]; 6476 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6477 } else { 6478 virtaddr = mbox->sge_array->addr[0]; 6479 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6480 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6481 id_array = &n_rsrc->id; 6482 } 6483 6484 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6485 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6486 6487 /* 6488 * Based on the resource size and count, correct the base and max 6489 * resource values. 6490 */ 6491 length = sizeof(struct lpfc_rsrc_blks); 6492 switch (type) { 6493 case LPFC_RSC_TYPE_FCOE_RPI: 6494 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6495 sizeof(unsigned long), 6496 GFP_KERNEL); 6497 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6498 rc = -ENOMEM; 6499 goto err_exit; 6500 } 6501 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6502 sizeof(uint16_t), 6503 GFP_KERNEL); 6504 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6505 kfree(phba->sli4_hba.rpi_bmask); 6506 rc = -ENOMEM; 6507 goto err_exit; 6508 } 6509 6510 /* 6511 * The next_rpi was initialized with the maximum available 6512 * count but the port may allocate a smaller number. Catch 6513 * that case and update the next_rpi. 6514 */ 6515 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6516 6517 /* Initialize local ptrs for common extent processing later. */ 6518 bmask = phba->sli4_hba.rpi_bmask; 6519 ids = phba->sli4_hba.rpi_ids; 6520 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6521 break; 6522 case LPFC_RSC_TYPE_FCOE_VPI: 6523 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6524 GFP_KERNEL); 6525 if (unlikely(!phba->vpi_bmask)) { 6526 rc = -ENOMEM; 6527 goto err_exit; 6528 } 6529 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6530 GFP_KERNEL); 6531 if (unlikely(!phba->vpi_ids)) { 6532 kfree(phba->vpi_bmask); 6533 rc = -ENOMEM; 6534 goto err_exit; 6535 } 6536 6537 /* Initialize local ptrs for common extent processing later. */ 6538 bmask = phba->vpi_bmask; 6539 ids = phba->vpi_ids; 6540 ext_blk_list = &phba->lpfc_vpi_blk_list; 6541 break; 6542 case LPFC_RSC_TYPE_FCOE_XRI: 6543 phba->sli4_hba.xri_bmask = kcalloc(longs, 6544 sizeof(unsigned long), 6545 GFP_KERNEL); 6546 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6547 rc = -ENOMEM; 6548 goto err_exit; 6549 } 6550 phba->sli4_hba.max_cfg_param.xri_used = 0; 6551 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6552 sizeof(uint16_t), 6553 GFP_KERNEL); 6554 if (unlikely(!phba->sli4_hba.xri_ids)) { 6555 kfree(phba->sli4_hba.xri_bmask); 6556 rc = -ENOMEM; 6557 goto err_exit; 6558 } 6559 6560 /* Initialize local ptrs for common extent processing later. */ 6561 bmask = phba->sli4_hba.xri_bmask; 6562 ids = phba->sli4_hba.xri_ids; 6563 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6564 break; 6565 case LPFC_RSC_TYPE_FCOE_VFI: 6566 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6567 sizeof(unsigned long), 6568 GFP_KERNEL); 6569 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6570 rc = -ENOMEM; 6571 goto err_exit; 6572 } 6573 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6574 sizeof(uint16_t), 6575 GFP_KERNEL); 6576 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6577 kfree(phba->sli4_hba.vfi_bmask); 6578 rc = -ENOMEM; 6579 goto err_exit; 6580 } 6581 6582 /* Initialize local ptrs for common extent processing later. */ 6583 bmask = phba->sli4_hba.vfi_bmask; 6584 ids = phba->sli4_hba.vfi_ids; 6585 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6586 break; 6587 default: 6588 /* Unsupported Opcode. Fail call. */ 6589 id_array = NULL; 6590 bmask = NULL; 6591 ids = NULL; 6592 ext_blk_list = NULL; 6593 goto err_exit; 6594 } 6595 6596 /* 6597 * Complete initializing the extent configuration with the 6598 * allocated ids assigned to this function. The bitmask serves 6599 * as an index into the array and manages the available ids. The 6600 * array just stores the ids communicated to the port via the wqes. 6601 */ 6602 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6603 if ((i % 2) == 0) 6604 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6605 &id_array[k]); 6606 else 6607 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6608 &id_array[k]); 6609 6610 rsrc_blks = kzalloc(length, GFP_KERNEL); 6611 if (unlikely(!rsrc_blks)) { 6612 rc = -ENOMEM; 6613 kfree(bmask); 6614 kfree(ids); 6615 goto err_exit; 6616 } 6617 rsrc_blks->rsrc_start = rsrc_id; 6618 rsrc_blks->rsrc_size = rsrc_size; 6619 list_add_tail(&rsrc_blks->list, ext_blk_list); 6620 rsrc_start = rsrc_id; 6621 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6622 phba->sli4_hba.io_xri_start = rsrc_start + 6623 lpfc_sli4_get_iocb_cnt(phba); 6624 } 6625 6626 while (rsrc_id < (rsrc_start + rsrc_size)) { 6627 ids[j] = rsrc_id; 6628 rsrc_id++; 6629 j++; 6630 } 6631 /* Entire word processed. Get next word.*/ 6632 if ((i % 2) == 1) 6633 k++; 6634 } 6635 err_exit: 6636 lpfc_sli4_mbox_cmd_free(phba, mbox); 6637 return rc; 6638 } 6639 6640 6641 6642 /** 6643 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6644 * @phba: Pointer to HBA context object. 6645 * @type: the extent's type. 6646 * 6647 * This function deallocates all extents of a particular resource type. 6648 * SLI4 does not allow for deallocating a particular extent range. It 6649 * is the caller's responsibility to release all kernel memory resources. 6650 **/ 6651 static int 6652 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6653 { 6654 int rc; 6655 uint32_t length, mbox_tmo = 0; 6656 LPFC_MBOXQ_t *mbox; 6657 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6658 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6659 6660 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6661 if (!mbox) 6662 return -ENOMEM; 6663 6664 /* 6665 * This function sends an embedded mailbox because it only sends the 6666 * the resource type. All extents of this type are released by the 6667 * port. 6668 */ 6669 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6670 sizeof(struct lpfc_sli4_cfg_mhdr)); 6671 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6672 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6673 length, LPFC_SLI4_MBX_EMBED); 6674 6675 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6676 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6677 LPFC_SLI4_MBX_EMBED); 6678 if (unlikely(rc)) { 6679 rc = -EIO; 6680 goto out_free_mbox; 6681 } 6682 if (!phba->sli4_hba.intr_enable) 6683 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6684 else { 6685 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6686 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6687 } 6688 if (unlikely(rc)) { 6689 rc = -EIO; 6690 goto out_free_mbox; 6691 } 6692 6693 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6694 if (bf_get(lpfc_mbox_hdr_status, 6695 &dealloc_rsrc->header.cfg_shdr.response)) { 6696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6697 "2919 Failed to release resource extents " 6698 "for type %d - Status 0x%x Add'l Status 0x%x. " 6699 "Resource memory not released.\n", 6700 type, 6701 bf_get(lpfc_mbox_hdr_status, 6702 &dealloc_rsrc->header.cfg_shdr.response), 6703 bf_get(lpfc_mbox_hdr_add_status, 6704 &dealloc_rsrc->header.cfg_shdr.response)); 6705 rc = -EIO; 6706 goto out_free_mbox; 6707 } 6708 6709 /* Release kernel memory resources for the specific type. */ 6710 switch (type) { 6711 case LPFC_RSC_TYPE_FCOE_VPI: 6712 kfree(phba->vpi_bmask); 6713 kfree(phba->vpi_ids); 6714 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6715 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6716 &phba->lpfc_vpi_blk_list, list) { 6717 list_del_init(&rsrc_blk->list); 6718 kfree(rsrc_blk); 6719 } 6720 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6721 break; 6722 case LPFC_RSC_TYPE_FCOE_XRI: 6723 kfree(phba->sli4_hba.xri_bmask); 6724 kfree(phba->sli4_hba.xri_ids); 6725 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6726 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6727 list_del_init(&rsrc_blk->list); 6728 kfree(rsrc_blk); 6729 } 6730 break; 6731 case LPFC_RSC_TYPE_FCOE_VFI: 6732 kfree(phba->sli4_hba.vfi_bmask); 6733 kfree(phba->sli4_hba.vfi_ids); 6734 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6735 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6736 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6737 list_del_init(&rsrc_blk->list); 6738 kfree(rsrc_blk); 6739 } 6740 break; 6741 case LPFC_RSC_TYPE_FCOE_RPI: 6742 /* RPI bitmask and physical id array are cleaned up earlier. */ 6743 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6744 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6745 list_del_init(&rsrc_blk->list); 6746 kfree(rsrc_blk); 6747 } 6748 break; 6749 default: 6750 break; 6751 } 6752 6753 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6754 6755 out_free_mbox: 6756 mempool_free(mbox, phba->mbox_mem_pool); 6757 return rc; 6758 } 6759 6760 static void 6761 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6762 uint32_t feature) 6763 { 6764 uint32_t len; 6765 u32 sig_freq = 0; 6766 6767 len = sizeof(struct lpfc_mbx_set_feature) - 6768 sizeof(struct lpfc_sli4_cfg_mhdr); 6769 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6770 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6771 LPFC_SLI4_MBX_EMBED); 6772 6773 switch (feature) { 6774 case LPFC_SET_UE_RECOVERY: 6775 bf_set(lpfc_mbx_set_feature_UER, 6776 &mbox->u.mqe.un.set_feature, 1); 6777 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6778 mbox->u.mqe.un.set_feature.param_len = 8; 6779 break; 6780 case LPFC_SET_MDS_DIAGS: 6781 bf_set(lpfc_mbx_set_feature_mds, 6782 &mbox->u.mqe.un.set_feature, 1); 6783 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6784 &mbox->u.mqe.un.set_feature, 1); 6785 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6786 mbox->u.mqe.un.set_feature.param_len = 8; 6787 break; 6788 case LPFC_SET_CGN_SIGNAL: 6789 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6790 sig_freq = 0; 6791 else 6792 sig_freq = phba->cgn_sig_freq; 6793 6794 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6795 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6796 &mbox->u.mqe.un.set_feature, sig_freq); 6797 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6798 &mbox->u.mqe.un.set_feature, sig_freq); 6799 } 6800 6801 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6802 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6803 &mbox->u.mqe.un.set_feature, sig_freq); 6804 6805 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6806 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6807 sig_freq = 0; 6808 else 6809 sig_freq = lpfc_acqe_cgn_frequency; 6810 6811 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6812 &mbox->u.mqe.un.set_feature, sig_freq); 6813 6814 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6815 mbox->u.mqe.un.set_feature.param_len = 12; 6816 break; 6817 case LPFC_SET_DUAL_DUMP: 6818 bf_set(lpfc_mbx_set_feature_dd, 6819 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6820 bf_set(lpfc_mbx_set_feature_ddquery, 6821 &mbox->u.mqe.un.set_feature, 0); 6822 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6823 mbox->u.mqe.un.set_feature.param_len = 4; 6824 break; 6825 case LPFC_SET_ENABLE_MI: 6826 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6827 mbox->u.mqe.un.set_feature.param_len = 4; 6828 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6829 phba->pport->cfg_lun_queue_depth); 6830 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6831 phba->sli4_hba.pc_sli4_params.mi_ver); 6832 break; 6833 case LPFC_SET_LD_SIGNAL: 6834 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6835 mbox->u.mqe.un.set_feature.param_len = 16; 6836 bf_set(lpfc_mbx_set_feature_lds_qry, 6837 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6838 break; 6839 case LPFC_SET_ENABLE_CMF: 6840 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6841 mbox->u.mqe.un.set_feature.param_len = 4; 6842 bf_set(lpfc_mbx_set_feature_cmf, 6843 &mbox->u.mqe.un.set_feature, 1); 6844 break; 6845 } 6846 return; 6847 } 6848 6849 /** 6850 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6851 * @phba: Pointer to HBA context object. 6852 * 6853 * Disable FW logging into host memory on the adapter. To 6854 * be done before reading logs from the host memory. 6855 **/ 6856 void 6857 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6858 { 6859 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6860 6861 spin_lock_irq(&phba->ras_fwlog_lock); 6862 ras_fwlog->state = INACTIVE; 6863 spin_unlock_irq(&phba->ras_fwlog_lock); 6864 6865 /* Disable FW logging to host memory */ 6866 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6867 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6868 6869 /* Wait 10ms for firmware to stop using DMA buffer */ 6870 usleep_range(10 * 1000, 20 * 1000); 6871 } 6872 6873 /** 6874 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6875 * @phba: Pointer to HBA context object. 6876 * 6877 * This function is called to free memory allocated for RAS FW logging 6878 * support in the driver. 6879 **/ 6880 void 6881 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6882 { 6883 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6884 struct lpfc_dmabuf *dmabuf, *next; 6885 6886 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6887 list_for_each_entry_safe(dmabuf, next, 6888 &ras_fwlog->fwlog_buff_list, 6889 list) { 6890 list_del(&dmabuf->list); 6891 dma_free_coherent(&phba->pcidev->dev, 6892 LPFC_RAS_MAX_ENTRY_SIZE, 6893 dmabuf->virt, dmabuf->phys); 6894 kfree(dmabuf); 6895 } 6896 } 6897 6898 if (ras_fwlog->lwpd.virt) { 6899 dma_free_coherent(&phba->pcidev->dev, 6900 sizeof(uint32_t) * 2, 6901 ras_fwlog->lwpd.virt, 6902 ras_fwlog->lwpd.phys); 6903 ras_fwlog->lwpd.virt = NULL; 6904 } 6905 6906 spin_lock_irq(&phba->ras_fwlog_lock); 6907 ras_fwlog->state = INACTIVE; 6908 spin_unlock_irq(&phba->ras_fwlog_lock); 6909 } 6910 6911 /** 6912 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6913 * @phba: Pointer to HBA context object. 6914 * @fwlog_buff_count: Count of buffers to be created. 6915 * 6916 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6917 * to update FW log is posted to the adapter. 6918 * Buffer count is calculated based on module param ras_fwlog_buffsize 6919 * Size of each buffer posted to FW is 64K. 6920 **/ 6921 6922 static int 6923 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6924 uint32_t fwlog_buff_count) 6925 { 6926 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6927 struct lpfc_dmabuf *dmabuf; 6928 int rc = 0, i = 0; 6929 6930 /* Initialize List */ 6931 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6932 6933 /* Allocate memory for the LWPD */ 6934 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6935 sizeof(uint32_t) * 2, 6936 &ras_fwlog->lwpd.phys, 6937 GFP_KERNEL); 6938 if (!ras_fwlog->lwpd.virt) { 6939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6940 "6185 LWPD Memory Alloc Failed\n"); 6941 6942 return -ENOMEM; 6943 } 6944 6945 ras_fwlog->fw_buffcount = fwlog_buff_count; 6946 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6947 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6948 GFP_KERNEL); 6949 if (!dmabuf) { 6950 rc = -ENOMEM; 6951 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6952 "6186 Memory Alloc failed FW logging"); 6953 goto free_mem; 6954 } 6955 6956 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6957 LPFC_RAS_MAX_ENTRY_SIZE, 6958 &dmabuf->phys, GFP_KERNEL); 6959 if (!dmabuf->virt) { 6960 kfree(dmabuf); 6961 rc = -ENOMEM; 6962 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6963 "6187 DMA Alloc Failed FW logging"); 6964 goto free_mem; 6965 } 6966 dmabuf->buffer_tag = i; 6967 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6968 } 6969 6970 free_mem: 6971 if (rc) 6972 lpfc_sli4_ras_dma_free(phba); 6973 6974 return rc; 6975 } 6976 6977 /** 6978 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6979 * @phba: pointer to lpfc hba data structure. 6980 * @pmb: pointer to the driver internal queue element for mailbox command. 6981 * 6982 * Completion handler for driver's RAS MBX command to the device. 6983 **/ 6984 static void 6985 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6986 { 6987 MAILBOX_t *mb; 6988 union lpfc_sli4_cfg_shdr *shdr; 6989 uint32_t shdr_status, shdr_add_status; 6990 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6991 6992 mb = &pmb->u.mb; 6993 6994 shdr = (union lpfc_sli4_cfg_shdr *) 6995 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6996 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6998 6999 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 7000 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7001 "6188 FW LOG mailbox " 7002 "completed with status x%x add_status x%x," 7003 " mbx status x%x\n", 7004 shdr_status, shdr_add_status, mb->mbxStatus); 7005 7006 ras_fwlog->ras_hwsupport = false; 7007 goto disable_ras; 7008 } 7009 7010 spin_lock_irq(&phba->ras_fwlog_lock); 7011 ras_fwlog->state = ACTIVE; 7012 spin_unlock_irq(&phba->ras_fwlog_lock); 7013 mempool_free(pmb, phba->mbox_mem_pool); 7014 7015 return; 7016 7017 disable_ras: 7018 /* Free RAS DMA memory */ 7019 lpfc_sli4_ras_dma_free(phba); 7020 mempool_free(pmb, phba->mbox_mem_pool); 7021 } 7022 7023 /** 7024 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7025 * @phba: pointer to lpfc hba data structure. 7026 * @fwlog_level: Logging verbosity level. 7027 * @fwlog_enable: Enable/Disable logging. 7028 * 7029 * Initialize memory and post mailbox command to enable FW logging in host 7030 * memory. 7031 **/ 7032 int 7033 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7034 uint32_t fwlog_level, 7035 uint32_t fwlog_enable) 7036 { 7037 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7038 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7039 struct lpfc_dmabuf *dmabuf; 7040 LPFC_MBOXQ_t *mbox; 7041 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7042 int rc = 0; 7043 7044 spin_lock_irq(&phba->ras_fwlog_lock); 7045 ras_fwlog->state = INACTIVE; 7046 spin_unlock_irq(&phba->ras_fwlog_lock); 7047 7048 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7049 phba->cfg_ras_fwlog_buffsize); 7050 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7051 7052 /* 7053 * If re-enabling FW logging support use earlier allocated 7054 * DMA buffers while posting MBX command. 7055 **/ 7056 if (!ras_fwlog->lwpd.virt) { 7057 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7058 if (rc) { 7059 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7060 "6189 FW Log Memory Allocation Failed"); 7061 return rc; 7062 } 7063 } 7064 7065 /* Setup Mailbox command */ 7066 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7067 if (!mbox) { 7068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7069 "6190 RAS MBX Alloc Failed"); 7070 rc = -ENOMEM; 7071 goto mem_free; 7072 } 7073 7074 ras_fwlog->fw_loglevel = fwlog_level; 7075 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7076 sizeof(struct lpfc_sli4_cfg_mhdr)); 7077 7078 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7079 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7080 len, LPFC_SLI4_MBX_EMBED); 7081 7082 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7083 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7084 fwlog_enable); 7085 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7086 ras_fwlog->fw_loglevel); 7087 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7088 ras_fwlog->fw_buffcount); 7089 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7090 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7091 7092 /* Update DMA buffer address */ 7093 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7094 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7095 7096 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7097 putPaddrLow(dmabuf->phys); 7098 7099 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7100 putPaddrHigh(dmabuf->phys); 7101 } 7102 7103 /* Update LPWD address */ 7104 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7105 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7106 7107 spin_lock_irq(&phba->ras_fwlog_lock); 7108 ras_fwlog->state = REG_INPROGRESS; 7109 spin_unlock_irq(&phba->ras_fwlog_lock); 7110 mbox->vport = phba->pport; 7111 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7112 7113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7114 7115 if (rc == MBX_NOT_FINISHED) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7117 "6191 FW-Log Mailbox failed. " 7118 "status %d mbxStatus : x%x", rc, 7119 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7120 mempool_free(mbox, phba->mbox_mem_pool); 7121 rc = -EIO; 7122 goto mem_free; 7123 } else 7124 rc = 0; 7125 mem_free: 7126 if (rc) 7127 lpfc_sli4_ras_dma_free(phba); 7128 7129 return rc; 7130 } 7131 7132 /** 7133 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7134 * @phba: Pointer to HBA context object. 7135 * 7136 * Check if RAS is supported on the adapter and initialize it. 7137 **/ 7138 void 7139 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7140 { 7141 /* Check RAS FW Log needs to be enabled or not */ 7142 if (lpfc_check_fwlog_support(phba)) 7143 return; 7144 7145 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7146 LPFC_RAS_ENABLE_LOGGING); 7147 } 7148 7149 /** 7150 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7151 * @phba: Pointer to HBA context object. 7152 * 7153 * This function allocates all SLI4 resource identifiers. 7154 **/ 7155 int 7156 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7157 { 7158 int i, rc, error = 0; 7159 uint16_t count, base; 7160 unsigned long longs; 7161 7162 if (!phba->sli4_hba.rpi_hdrs_in_use) 7163 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7164 if (phba->sli4_hba.extents_in_use) { 7165 /* 7166 * The port supports resource extents. The XRI, VPI, VFI, RPI 7167 * resource extent count must be read and allocated before 7168 * provisioning the resource id arrays. 7169 */ 7170 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7171 LPFC_IDX_RSRC_RDY) { 7172 /* 7173 * Extent-based resources are set - the driver could 7174 * be in a port reset. Figure out if any corrective 7175 * actions need to be taken. 7176 */ 7177 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7178 LPFC_RSC_TYPE_FCOE_VFI); 7179 if (rc != 0) 7180 error++; 7181 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7182 LPFC_RSC_TYPE_FCOE_VPI); 7183 if (rc != 0) 7184 error++; 7185 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7186 LPFC_RSC_TYPE_FCOE_XRI); 7187 if (rc != 0) 7188 error++; 7189 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7190 LPFC_RSC_TYPE_FCOE_RPI); 7191 if (rc != 0) 7192 error++; 7193 7194 /* 7195 * It's possible that the number of resources 7196 * provided to this port instance changed between 7197 * resets. Detect this condition and reallocate 7198 * resources. Otherwise, there is no action. 7199 */ 7200 if (error) { 7201 lpfc_printf_log(phba, KERN_INFO, 7202 LOG_MBOX | LOG_INIT, 7203 "2931 Detected extent resource " 7204 "change. Reallocating all " 7205 "extents.\n"); 7206 rc = lpfc_sli4_dealloc_extent(phba, 7207 LPFC_RSC_TYPE_FCOE_VFI); 7208 rc = lpfc_sli4_dealloc_extent(phba, 7209 LPFC_RSC_TYPE_FCOE_VPI); 7210 rc = lpfc_sli4_dealloc_extent(phba, 7211 LPFC_RSC_TYPE_FCOE_XRI); 7212 rc = lpfc_sli4_dealloc_extent(phba, 7213 LPFC_RSC_TYPE_FCOE_RPI); 7214 } else 7215 return 0; 7216 } 7217 7218 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7219 if (unlikely(rc)) 7220 goto err_exit; 7221 7222 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7223 if (unlikely(rc)) 7224 goto err_exit; 7225 7226 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7227 if (unlikely(rc)) 7228 goto err_exit; 7229 7230 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7231 if (unlikely(rc)) 7232 goto err_exit; 7233 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7234 LPFC_IDX_RSRC_RDY); 7235 return rc; 7236 } else { 7237 /* 7238 * The port does not support resource extents. The XRI, VPI, 7239 * VFI, RPI resource ids were determined from READ_CONFIG. 7240 * Just allocate the bitmasks and provision the resource id 7241 * arrays. If a port reset is active, the resources don't 7242 * need any action - just exit. 7243 */ 7244 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7245 LPFC_IDX_RSRC_RDY) { 7246 lpfc_sli4_dealloc_resource_identifiers(phba); 7247 lpfc_sli4_remove_rpis(phba); 7248 } 7249 /* RPIs. */ 7250 count = phba->sli4_hba.max_cfg_param.max_rpi; 7251 if (count <= 0) { 7252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7253 "3279 Invalid provisioning of " 7254 "rpi:%d\n", count); 7255 rc = -EINVAL; 7256 goto err_exit; 7257 } 7258 base = phba->sli4_hba.max_cfg_param.rpi_base; 7259 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7260 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7261 sizeof(unsigned long), 7262 GFP_KERNEL); 7263 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7264 rc = -ENOMEM; 7265 goto err_exit; 7266 } 7267 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7268 GFP_KERNEL); 7269 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7270 rc = -ENOMEM; 7271 goto free_rpi_bmask; 7272 } 7273 7274 for (i = 0; i < count; i++) 7275 phba->sli4_hba.rpi_ids[i] = base + i; 7276 7277 /* VPIs. */ 7278 count = phba->sli4_hba.max_cfg_param.max_vpi; 7279 if (count <= 0) { 7280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7281 "3280 Invalid provisioning of " 7282 "vpi:%d\n", count); 7283 rc = -EINVAL; 7284 goto free_rpi_ids; 7285 } 7286 base = phba->sli4_hba.max_cfg_param.vpi_base; 7287 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7288 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7289 GFP_KERNEL); 7290 if (unlikely(!phba->vpi_bmask)) { 7291 rc = -ENOMEM; 7292 goto free_rpi_ids; 7293 } 7294 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7295 GFP_KERNEL); 7296 if (unlikely(!phba->vpi_ids)) { 7297 rc = -ENOMEM; 7298 goto free_vpi_bmask; 7299 } 7300 7301 for (i = 0; i < count; i++) 7302 phba->vpi_ids[i] = base + i; 7303 7304 /* XRIs. */ 7305 count = phba->sli4_hba.max_cfg_param.max_xri; 7306 if (count <= 0) { 7307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7308 "3281 Invalid provisioning of " 7309 "xri:%d\n", count); 7310 rc = -EINVAL; 7311 goto free_vpi_ids; 7312 } 7313 base = phba->sli4_hba.max_cfg_param.xri_base; 7314 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7315 phba->sli4_hba.xri_bmask = kcalloc(longs, 7316 sizeof(unsigned long), 7317 GFP_KERNEL); 7318 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7319 rc = -ENOMEM; 7320 goto free_vpi_ids; 7321 } 7322 phba->sli4_hba.max_cfg_param.xri_used = 0; 7323 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7324 GFP_KERNEL); 7325 if (unlikely(!phba->sli4_hba.xri_ids)) { 7326 rc = -ENOMEM; 7327 goto free_xri_bmask; 7328 } 7329 7330 for (i = 0; i < count; i++) 7331 phba->sli4_hba.xri_ids[i] = base + i; 7332 7333 /* VFIs. */ 7334 count = phba->sli4_hba.max_cfg_param.max_vfi; 7335 if (count <= 0) { 7336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7337 "3282 Invalid provisioning of " 7338 "vfi:%d\n", count); 7339 rc = -EINVAL; 7340 goto free_xri_ids; 7341 } 7342 base = phba->sli4_hba.max_cfg_param.vfi_base; 7343 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7344 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7345 sizeof(unsigned long), 7346 GFP_KERNEL); 7347 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7348 rc = -ENOMEM; 7349 goto free_xri_ids; 7350 } 7351 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7352 GFP_KERNEL); 7353 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7354 rc = -ENOMEM; 7355 goto free_vfi_bmask; 7356 } 7357 7358 for (i = 0; i < count; i++) 7359 phba->sli4_hba.vfi_ids[i] = base + i; 7360 7361 /* 7362 * Mark all resources ready. An HBA reset doesn't need 7363 * to reset the initialization. 7364 */ 7365 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7366 LPFC_IDX_RSRC_RDY); 7367 return 0; 7368 } 7369 7370 free_vfi_bmask: 7371 kfree(phba->sli4_hba.vfi_bmask); 7372 phba->sli4_hba.vfi_bmask = NULL; 7373 free_xri_ids: 7374 kfree(phba->sli4_hba.xri_ids); 7375 phba->sli4_hba.xri_ids = NULL; 7376 free_xri_bmask: 7377 kfree(phba->sli4_hba.xri_bmask); 7378 phba->sli4_hba.xri_bmask = NULL; 7379 free_vpi_ids: 7380 kfree(phba->vpi_ids); 7381 phba->vpi_ids = NULL; 7382 free_vpi_bmask: 7383 kfree(phba->vpi_bmask); 7384 phba->vpi_bmask = NULL; 7385 free_rpi_ids: 7386 kfree(phba->sli4_hba.rpi_ids); 7387 phba->sli4_hba.rpi_ids = NULL; 7388 free_rpi_bmask: 7389 kfree(phba->sli4_hba.rpi_bmask); 7390 phba->sli4_hba.rpi_bmask = NULL; 7391 err_exit: 7392 return rc; 7393 } 7394 7395 /** 7396 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7397 * @phba: Pointer to HBA context object. 7398 * 7399 * This function allocates the number of elements for the specified 7400 * resource type. 7401 **/ 7402 int 7403 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7404 { 7405 if (phba->sli4_hba.extents_in_use) { 7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7408 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7409 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7410 } else { 7411 kfree(phba->vpi_bmask); 7412 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7413 kfree(phba->vpi_ids); 7414 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7415 kfree(phba->sli4_hba.xri_bmask); 7416 kfree(phba->sli4_hba.xri_ids); 7417 kfree(phba->sli4_hba.vfi_bmask); 7418 kfree(phba->sli4_hba.vfi_ids); 7419 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7420 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7421 } 7422 7423 return 0; 7424 } 7425 7426 /** 7427 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7428 * @phba: Pointer to HBA context object. 7429 * @type: The resource extent type. 7430 * @extnt_cnt: buffer to hold port extent count response 7431 * @extnt_size: buffer to hold port extent size response. 7432 * 7433 * This function calls the port to read the host allocated extents 7434 * for a particular type. 7435 **/ 7436 int 7437 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7438 uint16_t *extnt_cnt, uint16_t *extnt_size) 7439 { 7440 bool emb; 7441 int rc = 0; 7442 uint16_t curr_blks = 0; 7443 uint32_t req_len, emb_len; 7444 uint32_t alloc_len, mbox_tmo; 7445 struct list_head *blk_list_head; 7446 struct lpfc_rsrc_blks *rsrc_blk; 7447 LPFC_MBOXQ_t *mbox; 7448 void *virtaddr = NULL; 7449 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7450 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7451 union lpfc_sli4_cfg_shdr *shdr; 7452 7453 switch (type) { 7454 case LPFC_RSC_TYPE_FCOE_VPI: 7455 blk_list_head = &phba->lpfc_vpi_blk_list; 7456 break; 7457 case LPFC_RSC_TYPE_FCOE_XRI: 7458 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7459 break; 7460 case LPFC_RSC_TYPE_FCOE_VFI: 7461 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7462 break; 7463 case LPFC_RSC_TYPE_FCOE_RPI: 7464 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7465 break; 7466 default: 7467 return -EIO; 7468 } 7469 7470 /* Count the number of extents currently allocatd for this type. */ 7471 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7472 if (curr_blks == 0) { 7473 /* 7474 * The GET_ALLOCATED mailbox does not return the size, 7475 * just the count. The size should be just the size 7476 * stored in the current allocated block and all sizes 7477 * for an extent type are the same so set the return 7478 * value now. 7479 */ 7480 *extnt_size = rsrc_blk->rsrc_size; 7481 } 7482 curr_blks++; 7483 } 7484 7485 /* 7486 * Calculate the size of an embedded mailbox. The uint32_t 7487 * accounts for extents-specific word. 7488 */ 7489 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7490 sizeof(uint32_t); 7491 7492 /* 7493 * Presume the allocation and response will fit into an embedded 7494 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7495 */ 7496 emb = LPFC_SLI4_MBX_EMBED; 7497 req_len = emb_len; 7498 if (req_len > emb_len) { 7499 req_len = curr_blks * sizeof(uint16_t) + 7500 sizeof(union lpfc_sli4_cfg_shdr) + 7501 sizeof(uint32_t); 7502 emb = LPFC_SLI4_MBX_NEMBED; 7503 } 7504 7505 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7506 if (!mbox) 7507 return -ENOMEM; 7508 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7509 7510 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7511 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7512 req_len, emb); 7513 if (alloc_len < req_len) { 7514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7515 "2983 Allocated DMA memory size (x%x) is " 7516 "less than the requested DMA memory " 7517 "size (x%x)\n", alloc_len, req_len); 7518 rc = -ENOMEM; 7519 goto err_exit; 7520 } 7521 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7522 if (unlikely(rc)) { 7523 rc = -EIO; 7524 goto err_exit; 7525 } 7526 7527 if (!phba->sli4_hba.intr_enable) 7528 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7529 else { 7530 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7531 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7532 } 7533 7534 if (unlikely(rc)) { 7535 rc = -EIO; 7536 goto err_exit; 7537 } 7538 7539 /* 7540 * Figure out where the response is located. Then get local pointers 7541 * to the response data. The port does not guarantee to respond to 7542 * all extents counts request so update the local variable with the 7543 * allocated count from the port. 7544 */ 7545 if (emb == LPFC_SLI4_MBX_EMBED) { 7546 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7547 shdr = &rsrc_ext->header.cfg_shdr; 7548 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7549 } else { 7550 virtaddr = mbox->sge_array->addr[0]; 7551 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7552 shdr = &n_rsrc->cfg_shdr; 7553 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7554 } 7555 7556 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7558 "2984 Failed to read allocated resources " 7559 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7560 type, 7561 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7562 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7563 rc = -EIO; 7564 goto err_exit; 7565 } 7566 err_exit: 7567 lpfc_sli4_mbox_cmd_free(phba, mbox); 7568 return rc; 7569 } 7570 7571 /** 7572 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7573 * @phba: pointer to lpfc hba data structure. 7574 * @sgl_list: linked link of sgl buffers to post 7575 * @cnt: number of linked list buffers 7576 * 7577 * This routine walks the list of buffers that have been allocated and 7578 * repost them to the port by using SGL block post. This is needed after a 7579 * pci_function_reset/warm_start or start. It attempts to construct blocks 7580 * of buffer sgls which contains contiguous xris and uses the non-embedded 7581 * SGL block post mailbox commands to post them to the port. For single 7582 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7583 * mailbox command for posting. 7584 * 7585 * Returns: 0 = success, non-zero failure. 7586 **/ 7587 static int 7588 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7589 struct list_head *sgl_list, int cnt) 7590 { 7591 struct lpfc_sglq *sglq_entry = NULL; 7592 struct lpfc_sglq *sglq_entry_next = NULL; 7593 struct lpfc_sglq *sglq_entry_first = NULL; 7594 int status = 0, total_cnt; 7595 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7596 int last_xritag = NO_XRI; 7597 LIST_HEAD(prep_sgl_list); 7598 LIST_HEAD(blck_sgl_list); 7599 LIST_HEAD(allc_sgl_list); 7600 LIST_HEAD(post_sgl_list); 7601 LIST_HEAD(free_sgl_list); 7602 7603 spin_lock_irq(&phba->hbalock); 7604 spin_lock(&phba->sli4_hba.sgl_list_lock); 7605 list_splice_init(sgl_list, &allc_sgl_list); 7606 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7607 spin_unlock_irq(&phba->hbalock); 7608 7609 total_cnt = cnt; 7610 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7611 &allc_sgl_list, list) { 7612 list_del_init(&sglq_entry->list); 7613 block_cnt++; 7614 if ((last_xritag != NO_XRI) && 7615 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7616 /* a hole in xri block, form a sgl posting block */ 7617 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7618 post_cnt = block_cnt - 1; 7619 /* prepare list for next posting block */ 7620 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7621 block_cnt = 1; 7622 } else { 7623 /* prepare list for next posting block */ 7624 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7625 /* enough sgls for non-embed sgl mbox command */ 7626 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7627 list_splice_init(&prep_sgl_list, 7628 &blck_sgl_list); 7629 post_cnt = block_cnt; 7630 block_cnt = 0; 7631 } 7632 } 7633 num_posted++; 7634 7635 /* keep track of last sgl's xritag */ 7636 last_xritag = sglq_entry->sli4_xritag; 7637 7638 /* end of repost sgl list condition for buffers */ 7639 if (num_posted == total_cnt) { 7640 if (post_cnt == 0) { 7641 list_splice_init(&prep_sgl_list, 7642 &blck_sgl_list); 7643 post_cnt = block_cnt; 7644 } else if (block_cnt == 1) { 7645 status = lpfc_sli4_post_sgl(phba, 7646 sglq_entry->phys, 0, 7647 sglq_entry->sli4_xritag); 7648 if (!status) { 7649 /* successful, put sgl to posted list */ 7650 list_add_tail(&sglq_entry->list, 7651 &post_sgl_list); 7652 } else { 7653 /* Failure, put sgl to free list */ 7654 lpfc_printf_log(phba, KERN_WARNING, 7655 LOG_SLI, 7656 "3159 Failed to post " 7657 "sgl, xritag:x%x\n", 7658 sglq_entry->sli4_xritag); 7659 list_add_tail(&sglq_entry->list, 7660 &free_sgl_list); 7661 total_cnt--; 7662 } 7663 } 7664 } 7665 7666 /* continue until a nembed page worth of sgls */ 7667 if (post_cnt == 0) 7668 continue; 7669 7670 /* post the buffer list sgls as a block */ 7671 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7672 post_cnt); 7673 7674 if (!status) { 7675 /* success, put sgl list to posted sgl list */ 7676 list_splice_init(&blck_sgl_list, &post_sgl_list); 7677 } else { 7678 /* Failure, put sgl list to free sgl list */ 7679 sglq_entry_first = list_first_entry(&blck_sgl_list, 7680 struct lpfc_sglq, 7681 list); 7682 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7683 "3160 Failed to post sgl-list, " 7684 "xritag:x%x-x%x\n", 7685 sglq_entry_first->sli4_xritag, 7686 (sglq_entry_first->sli4_xritag + 7687 post_cnt - 1)); 7688 list_splice_init(&blck_sgl_list, &free_sgl_list); 7689 total_cnt -= post_cnt; 7690 } 7691 7692 /* don't reset xirtag due to hole in xri block */ 7693 if (block_cnt == 0) 7694 last_xritag = NO_XRI; 7695 7696 /* reset sgl post count for next round of posting */ 7697 post_cnt = 0; 7698 } 7699 7700 /* free the sgls failed to post */ 7701 lpfc_free_sgl_list(phba, &free_sgl_list); 7702 7703 /* push sgls posted to the available list */ 7704 if (!list_empty(&post_sgl_list)) { 7705 spin_lock_irq(&phba->hbalock); 7706 spin_lock(&phba->sli4_hba.sgl_list_lock); 7707 list_splice_init(&post_sgl_list, sgl_list); 7708 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7709 spin_unlock_irq(&phba->hbalock); 7710 } else { 7711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7712 "3161 Failure to post sgl to port,status %x " 7713 "blkcnt %d totalcnt %d postcnt %d\n", 7714 status, block_cnt, total_cnt, post_cnt); 7715 return -EIO; 7716 } 7717 7718 /* return the number of XRIs actually posted */ 7719 return total_cnt; 7720 } 7721 7722 /** 7723 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7724 * @phba: pointer to lpfc hba data structure. 7725 * 7726 * This routine walks the list of nvme buffers that have been allocated and 7727 * repost them to the port by using SGL block post. This is needed after a 7728 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7729 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7730 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7731 * 7732 * Returns: 0 = success, non-zero failure. 7733 **/ 7734 static int 7735 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7736 { 7737 LIST_HEAD(post_nblist); 7738 int num_posted, rc = 0; 7739 7740 /* get all NVME buffers need to repost to a local list */ 7741 lpfc_io_buf_flush(phba, &post_nblist); 7742 7743 /* post the list of nvme buffer sgls to port if available */ 7744 if (!list_empty(&post_nblist)) { 7745 num_posted = lpfc_sli4_post_io_sgl_list( 7746 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7747 /* failed to post any nvme buffer, return error */ 7748 if (num_posted == 0) 7749 rc = -EIO; 7750 } 7751 return rc; 7752 } 7753 7754 static void 7755 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7756 { 7757 uint32_t len; 7758 7759 len = sizeof(struct lpfc_mbx_set_host_data) - 7760 sizeof(struct lpfc_sli4_cfg_mhdr); 7761 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7762 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7763 LPFC_SLI4_MBX_EMBED); 7764 7765 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7766 mbox->u.mqe.un.set_host_data.param_len = 7767 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7768 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7769 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7770 "Linux %s v"LPFC_DRIVER_VERSION, 7771 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7772 } 7773 7774 int 7775 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7776 struct lpfc_queue *drq, int count, int idx) 7777 { 7778 int rc, i; 7779 struct lpfc_rqe hrqe; 7780 struct lpfc_rqe drqe; 7781 struct lpfc_rqb *rqbp; 7782 unsigned long flags; 7783 struct rqb_dmabuf *rqb_buffer; 7784 LIST_HEAD(rqb_buf_list); 7785 7786 rqbp = hrq->rqbp; 7787 for (i = 0; i < count; i++) { 7788 spin_lock_irqsave(&phba->hbalock, flags); 7789 /* IF RQ is already full, don't bother */ 7790 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7791 spin_unlock_irqrestore(&phba->hbalock, flags); 7792 break; 7793 } 7794 spin_unlock_irqrestore(&phba->hbalock, flags); 7795 7796 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7797 if (!rqb_buffer) 7798 break; 7799 rqb_buffer->hrq = hrq; 7800 rqb_buffer->drq = drq; 7801 rqb_buffer->idx = idx; 7802 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7803 } 7804 7805 spin_lock_irqsave(&phba->hbalock, flags); 7806 while (!list_empty(&rqb_buf_list)) { 7807 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7808 hbuf.list); 7809 7810 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7811 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7812 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7813 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7814 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7815 if (rc < 0) { 7816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7817 "6421 Cannot post to HRQ %d: %x %x %x " 7818 "DRQ %x %x\n", 7819 hrq->queue_id, 7820 hrq->host_index, 7821 hrq->hba_index, 7822 hrq->entry_count, 7823 drq->host_index, 7824 drq->hba_index); 7825 rqbp->rqb_free_buffer(phba, rqb_buffer); 7826 } else { 7827 list_add_tail(&rqb_buffer->hbuf.list, 7828 &rqbp->rqb_buffer_list); 7829 rqbp->buffer_count++; 7830 } 7831 } 7832 spin_unlock_irqrestore(&phba->hbalock, flags); 7833 return 1; 7834 } 7835 7836 static void 7837 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7838 { 7839 union lpfc_sli4_cfg_shdr *shdr; 7840 u32 shdr_status, shdr_add_status; 7841 7842 shdr = (union lpfc_sli4_cfg_shdr *) 7843 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7844 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7845 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7846 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7847 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7848 "4622 SET_FEATURE (x%x) mbox failed, " 7849 "status x%x add_status x%x, mbx status x%x\n", 7850 LPFC_SET_LD_SIGNAL, shdr_status, 7851 shdr_add_status, pmb->u.mb.mbxStatus); 7852 phba->degrade_activate_threshold = 0; 7853 phba->degrade_deactivate_threshold = 0; 7854 phba->fec_degrade_interval = 0; 7855 goto out; 7856 } 7857 7858 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7859 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7860 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7861 7862 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7863 "4624 Success: da x%x dd x%x interval x%x\n", 7864 phba->degrade_activate_threshold, 7865 phba->degrade_deactivate_threshold, 7866 phba->fec_degrade_interval); 7867 out: 7868 mempool_free(pmb, phba->mbox_mem_pool); 7869 } 7870 7871 int 7872 lpfc_read_lds_params(struct lpfc_hba *phba) 7873 { 7874 LPFC_MBOXQ_t *mboxq; 7875 int rc; 7876 7877 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7878 if (!mboxq) 7879 return -ENOMEM; 7880 7881 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7882 mboxq->vport = phba->pport; 7883 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7884 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7885 if (rc == MBX_NOT_FINISHED) { 7886 mempool_free(mboxq, phba->mbox_mem_pool); 7887 return -EIO; 7888 } 7889 return 0; 7890 } 7891 7892 static void 7893 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7894 { 7895 struct lpfc_vport *vport = pmb->vport; 7896 union lpfc_sli4_cfg_shdr *shdr; 7897 u32 shdr_status, shdr_add_status; 7898 u32 sig, acqe; 7899 7900 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7901 * is done. (2) Mailbox failed and send FPIN support only. 7902 */ 7903 shdr = (union lpfc_sli4_cfg_shdr *) 7904 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7905 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7906 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7907 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7908 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7909 "2516 CGN SET_FEATURE mbox failed with " 7910 "status x%x add_status x%x, mbx status x%x " 7911 "Reset Congestion to FPINs only\n", 7912 shdr_status, shdr_add_status, 7913 pmb->u.mb.mbxStatus); 7914 /* If there is a mbox error, move on to RDF */ 7915 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7916 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7917 goto out; 7918 } 7919 7920 /* Zero out Congestion Signal ACQE counter */ 7921 phba->cgn_acqe_cnt = 0; 7922 7923 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7924 &pmb->u.mqe.un.set_feature); 7925 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7926 &pmb->u.mqe.un.set_feature); 7927 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7928 "4620 SET_FEATURES Success: Freq: %ds %dms " 7929 " Reg: x%x x%x\n", acqe, sig, 7930 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7931 out: 7932 mempool_free(pmb, phba->mbox_mem_pool); 7933 7934 /* Register for FPIN events from the fabric now that the 7935 * EDC common_set_features has completed. 7936 */ 7937 lpfc_issue_els_rdf(vport, 0); 7938 } 7939 7940 int 7941 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7942 { 7943 LPFC_MBOXQ_t *mboxq; 7944 u32 rc; 7945 7946 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7947 if (!mboxq) 7948 goto out_rdf; 7949 7950 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7951 mboxq->vport = phba->pport; 7952 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7953 7954 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7955 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7956 "Reg: x%x x%x\n", 7957 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7958 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7959 7960 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7961 if (rc == MBX_NOT_FINISHED) 7962 goto out; 7963 return 0; 7964 7965 out: 7966 mempool_free(mboxq, phba->mbox_mem_pool); 7967 out_rdf: 7968 /* If there is a mbox error, move on to RDF */ 7969 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7970 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7971 lpfc_issue_els_rdf(phba->pport, 0); 7972 return -EIO; 7973 } 7974 7975 /** 7976 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7977 * @phba: pointer to lpfc hba data structure. 7978 * 7979 * This routine initializes the per-eq idle_stat to dynamically dictate 7980 * polling decisions. 7981 * 7982 * Return codes: 7983 * None 7984 **/ 7985 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7986 { 7987 int i; 7988 struct lpfc_sli4_hdw_queue *hdwq; 7989 struct lpfc_queue *eq; 7990 struct lpfc_idle_stat *idle_stat; 7991 u64 wall; 7992 7993 for_each_present_cpu(i) { 7994 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7995 eq = hdwq->hba_eq; 7996 7997 /* Skip if we've already handled this eq's primary CPU */ 7998 if (eq->chann != i) 7999 continue; 8000 8001 idle_stat = &phba->sli4_hba.idle_stat[i]; 8002 8003 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8004 idle_stat->prev_wall = wall; 8005 8006 if (phba->nvmet_support || 8007 phba->cmf_active_mode != LPFC_CFG_OFF || 8008 phba->intr_type != MSIX) 8009 eq->poll_mode = LPFC_QUEUE_WORK; 8010 else 8011 eq->poll_mode = LPFC_THREADED_IRQ; 8012 } 8013 8014 if (!phba->nvmet_support && phba->intr_type == MSIX) 8015 schedule_delayed_work(&phba->idle_stat_delay_work, 8016 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8017 } 8018 8019 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8020 { 8021 uint32_t if_type; 8022 8023 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8024 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8025 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8026 struct lpfc_register reg_data; 8027 8028 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8029 ®_data.word0)) 8030 return; 8031 8032 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8033 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8034 "2904 Firmware Dump Image Present" 8035 " on Adapter"); 8036 } 8037 } 8038 8039 /** 8040 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8041 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8042 * @entries: Number of rx_info_entry objects to allocate in ring 8043 * 8044 * Return: 8045 * 0 - Success 8046 * ENOMEM - Failure to kmalloc 8047 **/ 8048 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8049 u32 entries) 8050 { 8051 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8052 GFP_KERNEL); 8053 if (!rx_monitor->ring) 8054 return -ENOMEM; 8055 8056 rx_monitor->head_idx = 0; 8057 rx_monitor->tail_idx = 0; 8058 spin_lock_init(&rx_monitor->lock); 8059 rx_monitor->entries = entries; 8060 8061 return 0; 8062 } 8063 8064 /** 8065 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8066 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8067 * 8068 * Called after cancellation of cmf_timer. 8069 **/ 8070 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8071 { 8072 kfree(rx_monitor->ring); 8073 rx_monitor->ring = NULL; 8074 rx_monitor->entries = 0; 8075 rx_monitor->head_idx = 0; 8076 rx_monitor->tail_idx = 0; 8077 } 8078 8079 /** 8080 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8081 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8082 * @entry: Pointer to rx_info_entry 8083 * 8084 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8085 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8086 * 8087 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8088 * 8089 * In cases of old data overflow, we do a best effort of FIFO order. 8090 **/ 8091 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8092 struct rx_info_entry *entry) 8093 { 8094 struct rx_info_entry *ring = rx_monitor->ring; 8095 u32 *head_idx = &rx_monitor->head_idx; 8096 u32 *tail_idx = &rx_monitor->tail_idx; 8097 spinlock_t *ring_lock = &rx_monitor->lock; 8098 u32 ring_size = rx_monitor->entries; 8099 8100 spin_lock(ring_lock); 8101 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8102 *tail_idx = (*tail_idx + 1) % ring_size; 8103 8104 /* Best effort of FIFO saved data */ 8105 if (*tail_idx == *head_idx) 8106 *head_idx = (*head_idx + 1) % ring_size; 8107 8108 spin_unlock(ring_lock); 8109 } 8110 8111 /** 8112 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8113 * @phba: Pointer to lpfc_hba object 8114 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8115 * @buf: Pointer to char buffer that will contain rx monitor info data 8116 * @buf_len: Length buf including null char 8117 * @max_read_entries: Maximum number of entries to read out of ring 8118 * 8119 * Used to dump/read what's in rx_monitor's ring buffer. 8120 * 8121 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8122 * information to kmsg instead of filling out buf. 8123 * 8124 * Return: 8125 * Number of entries read out of the ring 8126 **/ 8127 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8128 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8129 u32 buf_len, u32 max_read_entries) 8130 { 8131 struct rx_info_entry *ring = rx_monitor->ring; 8132 struct rx_info_entry *entry; 8133 u32 *head_idx = &rx_monitor->head_idx; 8134 u32 *tail_idx = &rx_monitor->tail_idx; 8135 spinlock_t *ring_lock = &rx_monitor->lock; 8136 u32 ring_size = rx_monitor->entries; 8137 u32 cnt = 0; 8138 char tmp[DBG_LOG_STR_SZ] = {0}; 8139 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8140 8141 if (!log_to_kmsg) { 8142 /* clear the buffer to be sure */ 8143 memset(buf, 0, buf_len); 8144 8145 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8146 "%-8s%-8s%-8s%-16s\n", 8147 "MaxBPI", "Tot_Data_CMF", 8148 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8149 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8150 "IO_cnt", "Info", "BWutil(ms)"); 8151 } 8152 8153 /* Needs to be _irq because record is called from timer interrupt 8154 * context 8155 */ 8156 spin_lock_irq(ring_lock); 8157 while (*head_idx != *tail_idx) { 8158 entry = &ring[*head_idx]; 8159 8160 /* Read out this entry's data. */ 8161 if (!log_to_kmsg) { 8162 /* If !log_to_kmsg, then store to buf. */ 8163 scnprintf(tmp, sizeof(tmp), 8164 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8165 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8166 *head_idx, entry->max_bytes_per_interval, 8167 entry->cmf_bytes, entry->total_bytes, 8168 entry->rcv_bytes, entry->avg_io_latency, 8169 entry->avg_io_size, entry->max_read_cnt, 8170 entry->cmf_busy, entry->io_cnt, 8171 entry->cmf_info, entry->timer_utilization, 8172 entry->timer_interval); 8173 8174 /* Check for buffer overflow */ 8175 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8176 break; 8177 8178 /* Append entry's data to buffer */ 8179 strlcat(buf, tmp, buf_len); 8180 } else { 8181 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8182 "4410 %02u: MBPI %llu Xmit %llu " 8183 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8184 "BWUtil %u Int %u slot %u\n", 8185 cnt, entry->max_bytes_per_interval, 8186 entry->total_bytes, entry->rcv_bytes, 8187 entry->avg_io_latency, 8188 entry->avg_io_size, entry->cmf_info, 8189 entry->timer_utilization, 8190 entry->timer_interval, *head_idx); 8191 } 8192 8193 *head_idx = (*head_idx + 1) % ring_size; 8194 8195 /* Don't feed more than max_read_entries */ 8196 cnt++; 8197 if (cnt >= max_read_entries) 8198 break; 8199 } 8200 spin_unlock_irq(ring_lock); 8201 8202 return cnt; 8203 } 8204 8205 /** 8206 * lpfc_cmf_setup - Initialize idle_stat tracking 8207 * @phba: Pointer to HBA context object. 8208 * 8209 * This is called from HBA setup during driver load or when the HBA 8210 * comes online. this does all the initialization to support CMF and MI. 8211 **/ 8212 static int 8213 lpfc_cmf_setup(struct lpfc_hba *phba) 8214 { 8215 LPFC_MBOXQ_t *mboxq; 8216 struct lpfc_dmabuf *mp; 8217 struct lpfc_pc_sli4_params *sli4_params; 8218 int rc, cmf, mi_ver; 8219 8220 rc = lpfc_sli4_refresh_params(phba); 8221 if (unlikely(rc)) 8222 return rc; 8223 8224 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8225 if (!mboxq) 8226 return -ENOMEM; 8227 8228 sli4_params = &phba->sli4_hba.pc_sli4_params; 8229 8230 /* Always try to enable MI feature if we can */ 8231 if (sli4_params->mi_ver) { 8232 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8233 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8234 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8235 &mboxq->u.mqe.un.set_feature); 8236 8237 if (rc == MBX_SUCCESS) { 8238 if (mi_ver) { 8239 lpfc_printf_log(phba, 8240 KERN_WARNING, LOG_CGN_MGMT, 8241 "6215 MI is enabled\n"); 8242 sli4_params->mi_ver = mi_ver; 8243 } else { 8244 lpfc_printf_log(phba, 8245 KERN_WARNING, LOG_CGN_MGMT, 8246 "6338 MI is disabled\n"); 8247 sli4_params->mi_ver = 0; 8248 } 8249 } else { 8250 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8251 lpfc_printf_log(phba, KERN_INFO, 8252 LOG_CGN_MGMT | LOG_INIT, 8253 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8254 "failed, rc:x%x mi:x%x\n", 8255 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8256 lpfc_sli_config_mbox_subsys_get 8257 (phba, mboxq), 8258 lpfc_sli_config_mbox_opcode_get 8259 (phba, mboxq), 8260 rc, sli4_params->mi_ver); 8261 } 8262 } else { 8263 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8264 "6217 MI is disabled\n"); 8265 } 8266 8267 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8268 if (sli4_params->mi_ver) 8269 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8270 8271 /* Always try to enable CMF feature if we can */ 8272 if (sli4_params->cmf) { 8273 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8274 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8275 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8276 &mboxq->u.mqe.un.set_feature); 8277 if (rc == MBX_SUCCESS && cmf) { 8278 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8279 "6218 CMF is enabled: mode %d\n", 8280 phba->cmf_active_mode); 8281 } else { 8282 lpfc_printf_log(phba, KERN_WARNING, 8283 LOG_CGN_MGMT | LOG_INIT, 8284 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8285 "failed, rc:x%x dd:x%x\n", 8286 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8287 lpfc_sli_config_mbox_subsys_get 8288 (phba, mboxq), 8289 lpfc_sli_config_mbox_opcode_get 8290 (phba, mboxq), 8291 rc, cmf); 8292 sli4_params->cmf = 0; 8293 phba->cmf_active_mode = LPFC_CFG_OFF; 8294 goto no_cmf; 8295 } 8296 8297 /* Allocate Congestion Information Buffer */ 8298 if (!phba->cgn_i) { 8299 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8300 if (mp) 8301 mp->virt = dma_alloc_coherent 8302 (&phba->pcidev->dev, 8303 sizeof(struct lpfc_cgn_info), 8304 &mp->phys, GFP_KERNEL); 8305 if (!mp || !mp->virt) { 8306 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8307 "2640 Failed to alloc memory " 8308 "for Congestion Info\n"); 8309 kfree(mp); 8310 sli4_params->cmf = 0; 8311 phba->cmf_active_mode = LPFC_CFG_OFF; 8312 goto no_cmf; 8313 } 8314 phba->cgn_i = mp; 8315 8316 /* initialize congestion buffer info */ 8317 lpfc_init_congestion_buf(phba); 8318 lpfc_init_congestion_stat(phba); 8319 8320 /* Zero out Congestion Signal counters */ 8321 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8322 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8323 } 8324 8325 rc = lpfc_sli4_cgn_params_read(phba); 8326 if (rc < 0) { 8327 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8328 "6242 Error reading Cgn Params (%d)\n", 8329 rc); 8330 /* Ensure CGN Mode is off */ 8331 sli4_params->cmf = 0; 8332 } else if (!rc) { 8333 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8334 "6243 CGN Event empty object.\n"); 8335 /* Ensure CGN Mode is off */ 8336 sli4_params->cmf = 0; 8337 } 8338 } else { 8339 no_cmf: 8340 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8341 "6220 CMF is disabled\n"); 8342 } 8343 8344 /* Only register congestion buffer with firmware if BOTH 8345 * CMF and E2E are enabled. 8346 */ 8347 if (sli4_params->cmf && sli4_params->mi_ver) { 8348 rc = lpfc_reg_congestion_buf(phba); 8349 if (rc) { 8350 dma_free_coherent(&phba->pcidev->dev, 8351 sizeof(struct lpfc_cgn_info), 8352 phba->cgn_i->virt, phba->cgn_i->phys); 8353 kfree(phba->cgn_i); 8354 phba->cgn_i = NULL; 8355 /* Ensure CGN Mode is off */ 8356 phba->cmf_active_mode = LPFC_CFG_OFF; 8357 sli4_params->cmf = 0; 8358 return 0; 8359 } 8360 } 8361 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8362 "6470 Setup MI version %d CMF %d mode %d\n", 8363 sli4_params->mi_ver, sli4_params->cmf, 8364 phba->cmf_active_mode); 8365 8366 mempool_free(mboxq, phba->mbox_mem_pool); 8367 8368 /* Initialize atomic counters */ 8369 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8370 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8371 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8372 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8373 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8374 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8375 atomic64_set(&phba->cgn_latency_evt, 0); 8376 8377 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8378 8379 /* Allocate RX Monitor Buffer */ 8380 if (!phba->rx_monitor) { 8381 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8382 GFP_KERNEL); 8383 8384 if (!phba->rx_monitor) { 8385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8386 "2644 Failed to alloc memory " 8387 "for RX Monitor Buffer\n"); 8388 return -ENOMEM; 8389 } 8390 8391 /* Instruct the rx_monitor object to instantiate its ring */ 8392 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8393 LPFC_MAX_RXMONITOR_ENTRY)) { 8394 kfree(phba->rx_monitor); 8395 phba->rx_monitor = NULL; 8396 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8397 "2645 Failed to alloc memory " 8398 "for RX Monitor's Ring\n"); 8399 return -ENOMEM; 8400 } 8401 } 8402 8403 return 0; 8404 } 8405 8406 static int 8407 lpfc_set_host_tm(struct lpfc_hba *phba) 8408 { 8409 LPFC_MBOXQ_t *mboxq; 8410 uint32_t len, rc; 8411 struct timespec64 cur_time; 8412 struct tm broken; 8413 uint32_t month, day, year; 8414 uint32_t hour, minute, second; 8415 struct lpfc_mbx_set_host_date_time *tm; 8416 8417 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8418 if (!mboxq) 8419 return -ENOMEM; 8420 8421 len = sizeof(struct lpfc_mbx_set_host_data) - 8422 sizeof(struct lpfc_sli4_cfg_mhdr); 8423 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8424 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8425 LPFC_SLI4_MBX_EMBED); 8426 8427 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8428 mboxq->u.mqe.un.set_host_data.param_len = 8429 sizeof(struct lpfc_mbx_set_host_date_time); 8430 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8431 ktime_get_real_ts64(&cur_time); 8432 time64_to_tm(cur_time.tv_sec, 0, &broken); 8433 month = broken.tm_mon + 1; 8434 day = broken.tm_mday; 8435 year = broken.tm_year - 100; 8436 hour = broken.tm_hour; 8437 minute = broken.tm_min; 8438 second = broken.tm_sec; 8439 bf_set(lpfc_mbx_set_host_month, tm, month); 8440 bf_set(lpfc_mbx_set_host_day, tm, day); 8441 bf_set(lpfc_mbx_set_host_year, tm, year); 8442 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8443 bf_set(lpfc_mbx_set_host_min, tm, minute); 8444 bf_set(lpfc_mbx_set_host_sec, tm, second); 8445 8446 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8447 mempool_free(mboxq, phba->mbox_mem_pool); 8448 return rc; 8449 } 8450 8451 /** 8452 * lpfc_get_platform_uuid - Attempts to extract a platform uuid 8453 * @phba: pointer to lpfc hba data structure. 8454 * 8455 * This routine attempts to first read SMBIOS DMI data for the System 8456 * Information structure offset 08h called System UUID. Else, no platform 8457 * UUID will be advertised. 8458 **/ 8459 static void 8460 lpfc_get_platform_uuid(struct lpfc_hba *phba) 8461 { 8462 int rc; 8463 const char *uuid; 8464 char pni[17] = {0}; /* 16 characters + '\0' */ 8465 bool is_ff = true, is_00 = true; 8466 u8 i; 8467 8468 /* First attempt SMBIOS DMI */ 8469 uuid = dmi_get_system_info(DMI_PRODUCT_UUID); 8470 if (uuid) { 8471 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8472 "2088 SMBIOS UUID %s\n", 8473 uuid); 8474 } else { 8475 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8476 "2099 Could not extract UUID\n"); 8477 } 8478 8479 if (uuid && uuid_is_valid(uuid)) { 8480 /* Generate PNI from UUID format. 8481 * 8482 * 1.) Extract lower 64 bits from UUID format. 8483 * 2.) Set 3h for NAA Locally Assigned Name Identifier format. 8484 * 8485 * e.g. xxxxxxxx-xxxx-xxxx-yyyy-yyyyyyyyyyyy 8486 * 8487 * extract the yyyy-yyyyyyyyyyyy portion 8488 * final PNI 3yyyyyyyyyyyyyyy 8489 */ 8490 scnprintf(pni, sizeof(pni), "3%c%c%c%s", 8491 uuid[20], uuid[21], uuid[22], &uuid[24]); 8492 8493 /* Sanitize the converted PNI */ 8494 for (i = 1; i < 16 && (is_ff || is_00); i++) { 8495 if (pni[i] != '0') 8496 is_00 = false; 8497 if (pni[i] != 'f' && pni[i] != 'F') 8498 is_ff = false; 8499 } 8500 8501 /* Convert from char* to unsigned long */ 8502 rc = kstrtoul(pni, 16, &phba->pni); 8503 if (!rc && !is_ff && !is_00) { 8504 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8505 "2100 PNI 0x%016lx\n", phba->pni); 8506 } else { 8507 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8508 "2101 PNI %s generation status %d\n", 8509 pni, rc); 8510 phba->pni = 0; 8511 } 8512 } 8513 } 8514 8515 /** 8516 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8517 * @phba: Pointer to HBA context object. 8518 * 8519 * This function is the main SLI4 device initialization PCI function. This 8520 * function is called by the HBA initialization code, HBA reset code and 8521 * HBA error attention handler code. Caller is not required to hold any 8522 * locks. 8523 **/ 8524 int 8525 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8526 { 8527 int rc, i, cnt, len, dd; 8528 LPFC_MBOXQ_t *mboxq; 8529 struct lpfc_mqe *mqe; 8530 uint8_t *vpd; 8531 uint32_t vpd_size; 8532 uint32_t ftr_rsp = 0; 8533 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8534 struct lpfc_vport *vport = phba->pport; 8535 struct lpfc_dmabuf *mp; 8536 struct lpfc_rqb *rqbp; 8537 u32 flg; 8538 8539 /* Perform a PCI function reset to start from clean */ 8540 rc = lpfc_pci_function_reset(phba); 8541 if (unlikely(rc)) 8542 return -ENODEV; 8543 8544 /* Check the HBA Host Status Register for readyness */ 8545 rc = lpfc_sli4_post_status_check(phba); 8546 if (unlikely(rc)) 8547 return -ENODEV; 8548 else { 8549 spin_lock_irq(&phba->hbalock); 8550 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8551 flg = phba->sli.sli_flag; 8552 spin_unlock_irq(&phba->hbalock); 8553 /* Allow a little time after setting SLI_ACTIVE for any polled 8554 * MBX commands to complete via BSG. 8555 */ 8556 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8557 msleep(20); 8558 spin_lock_irq(&phba->hbalock); 8559 flg = phba->sli.sli_flag; 8560 spin_unlock_irq(&phba->hbalock); 8561 } 8562 } 8563 clear_bit(HBA_SETUP, &phba->hba_flag); 8564 8565 lpfc_sli4_dip(phba); 8566 8567 /* 8568 * Allocate a single mailbox container for initializing the 8569 * port. 8570 */ 8571 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8572 if (!mboxq) 8573 return -ENOMEM; 8574 8575 /* Issue READ_REV to collect vpd and FW information. */ 8576 vpd_size = SLI4_PAGE_SIZE; 8577 vpd = kzalloc(vpd_size, GFP_KERNEL); 8578 if (!vpd) { 8579 rc = -ENOMEM; 8580 goto out_free_mbox; 8581 } 8582 8583 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8584 if (unlikely(rc)) { 8585 kfree(vpd); 8586 goto out_free_mbox; 8587 } 8588 8589 mqe = &mboxq->u.mqe; 8590 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8591 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8592 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8593 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8594 } else { 8595 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8596 } 8597 8598 /* Obtain platform UUID, only for SLI4 FC adapters */ 8599 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) 8600 lpfc_get_platform_uuid(phba); 8601 8602 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8603 LPFC_DCBX_CEE_MODE) 8604 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8605 else 8606 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8607 8608 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8609 8610 if (phba->sli_rev != LPFC_SLI_REV4) { 8611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8612 "0376 READ_REV Error. SLI Level %d " 8613 "FCoE enabled %d\n", 8614 phba->sli_rev, 8615 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8616 rc = -EIO; 8617 kfree(vpd); 8618 goto out_free_mbox; 8619 } 8620 8621 rc = lpfc_set_host_tm(phba); 8622 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8623 "6468 Set host date / time: Status x%x:\n", rc); 8624 8625 /* 8626 * Continue initialization with default values even if driver failed 8627 * to read FCoE param config regions, only read parameters if the 8628 * board is FCoE 8629 */ 8630 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8631 lpfc_sli4_read_fcoe_params(phba)) 8632 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8633 "2570 Failed to read FCoE parameters\n"); 8634 8635 /* 8636 * Retrieve sli4 device physical port name, failure of doing it 8637 * is considered as non-fatal. 8638 */ 8639 rc = lpfc_sli4_retrieve_pport_name(phba); 8640 if (!rc) 8641 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8642 "3080 Successful retrieving SLI4 device " 8643 "physical port name: %s.\n", phba->Port); 8644 8645 rc = lpfc_sli4_get_ctl_attr(phba); 8646 if (!rc) 8647 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8648 "8351 Successful retrieving SLI4 device " 8649 "CTL ATTR\n"); 8650 8651 /* 8652 * Evaluate the read rev and vpd data. Populate the driver 8653 * state with the results. If this routine fails, the failure 8654 * is not fatal as the driver will use generic values. 8655 */ 8656 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8657 if (unlikely(!rc)) 8658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8659 "0377 Error %d parsing vpd. " 8660 "Using defaults.\n", rc); 8661 kfree(vpd); 8662 8663 /* Save information as VPD data */ 8664 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8665 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8666 8667 /* 8668 * This is because first G7 ASIC doesn't support the standard 8669 * 0x5a NVME cmd descriptor type/subtype 8670 */ 8671 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8672 LPFC_SLI_INTF_IF_TYPE_6) && 8673 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8674 (phba->vpd.rev.smRev == 0) && 8675 (phba->cfg_nvme_embed_cmd == 1)) 8676 phba->cfg_nvme_embed_cmd = 0; 8677 8678 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8679 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8680 &mqe->un.read_rev); 8681 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8682 &mqe->un.read_rev); 8683 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8684 &mqe->un.read_rev); 8685 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8686 &mqe->un.read_rev); 8687 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8688 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8689 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8690 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8691 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8692 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8693 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8694 "(%d):0380 READ_REV Status x%x " 8695 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8696 mboxq->vport ? mboxq->vport->vpi : 0, 8697 bf_get(lpfc_mqe_status, mqe), 8698 phba->vpd.rev.opFwName, 8699 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8700 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8701 8702 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8703 LPFC_SLI_INTF_IF_TYPE_0) { 8704 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8705 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8706 if (rc == MBX_SUCCESS) { 8707 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8708 /* Set 1Sec interval to detect UE */ 8709 phba->eratt_poll_interval = 1; 8710 phba->sli4_hba.ue_to_sr = bf_get( 8711 lpfc_mbx_set_feature_UESR, 8712 &mboxq->u.mqe.un.set_feature); 8713 phba->sli4_hba.ue_to_rp = bf_get( 8714 lpfc_mbx_set_feature_UERP, 8715 &mboxq->u.mqe.un.set_feature); 8716 } 8717 } 8718 8719 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8720 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8721 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8723 if (rc != MBX_SUCCESS) 8724 phba->mds_diags_support = 0; 8725 } 8726 8727 /* 8728 * Discover the port's supported feature set and match it against the 8729 * hosts requests. 8730 */ 8731 lpfc_request_features(phba, mboxq); 8732 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8733 if (unlikely(rc)) { 8734 rc = -EIO; 8735 goto out_free_mbox; 8736 } 8737 8738 /* Disable VMID if app header is not supported */ 8739 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8740 &mqe->un.req_ftrs))) { 8741 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8742 phba->cfg_vmid_app_header = 0; 8743 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8744 "1242 vmid feature not supported\n"); 8745 } 8746 8747 /* 8748 * The port must support FCP initiator mode as this is the 8749 * only mode running in the host. 8750 */ 8751 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8752 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8753 "0378 No support for fcpi mode.\n"); 8754 ftr_rsp++; 8755 } 8756 8757 /* Performance Hints are ONLY for FCoE */ 8758 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8759 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8760 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8761 else 8762 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8763 } 8764 8765 /* 8766 * If the port cannot support the host's requested features 8767 * then turn off the global config parameters to disable the 8768 * feature in the driver. This is not a fatal error. 8769 */ 8770 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8771 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8772 phba->cfg_enable_bg = 0; 8773 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8774 ftr_rsp++; 8775 } 8776 } 8777 8778 if (phba->max_vpi && phba->cfg_enable_npiv && 8779 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8780 ftr_rsp++; 8781 8782 if (ftr_rsp) { 8783 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8784 "0379 Feature Mismatch Data: x%08x %08x " 8785 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8786 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8787 phba->cfg_enable_npiv, phba->max_vpi); 8788 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8789 phba->cfg_enable_bg = 0; 8790 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8791 phba->cfg_enable_npiv = 0; 8792 } 8793 8794 /* These SLI3 features are assumed in SLI4 */ 8795 spin_lock_irq(&phba->hbalock); 8796 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8797 spin_unlock_irq(&phba->hbalock); 8798 8799 /* Always try to enable dual dump feature if we can */ 8800 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8802 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8803 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8804 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8805 "6448 Dual Dump is enabled\n"); 8806 else 8807 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8808 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8809 "rc:x%x dd:x%x\n", 8810 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8811 lpfc_sli_config_mbox_subsys_get( 8812 phba, mboxq), 8813 lpfc_sli_config_mbox_opcode_get( 8814 phba, mboxq), 8815 rc, dd); 8816 8817 /* 8818 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8819 * calls depends on these resources to complete port setup. 8820 */ 8821 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8822 if (rc) { 8823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8824 "2920 Failed to alloc Resource IDs " 8825 "rc = x%x\n", rc); 8826 goto out_free_mbox; 8827 } 8828 8829 lpfc_sli4_node_rpi_restore(phba); 8830 8831 lpfc_set_host_data(phba, mboxq); 8832 8833 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8834 if (rc) { 8835 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8836 "2134 Failed to set host os driver version %x", 8837 rc); 8838 } 8839 8840 /* Read the port's service parameters. */ 8841 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8842 if (rc) { 8843 phba->link_state = LPFC_HBA_ERROR; 8844 rc = -ENOMEM; 8845 goto out_free_mbox; 8846 } 8847 8848 mboxq->vport = vport; 8849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8850 mp = mboxq->ctx_buf; 8851 if (rc == MBX_SUCCESS) { 8852 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8853 rc = 0; 8854 } 8855 8856 /* 8857 * This memory was allocated by the lpfc_read_sparam routine but is 8858 * no longer needed. It is released and ctx_buf NULLed to prevent 8859 * unintended pointer access as the mbox is reused. 8860 */ 8861 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8862 kfree(mp); 8863 mboxq->ctx_buf = NULL; 8864 if (unlikely(rc)) { 8865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8866 "0382 READ_SPARAM command failed " 8867 "status %d, mbxStatus x%x\n", 8868 rc, bf_get(lpfc_mqe_status, mqe)); 8869 phba->link_state = LPFC_HBA_ERROR; 8870 rc = -EIO; 8871 goto out_free_mbox; 8872 } 8873 8874 lpfc_update_vport_wwn(vport); 8875 8876 /* Update the fc_host data structures with new wwn. */ 8877 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8878 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8879 8880 /* Create all the SLI4 queues */ 8881 rc = lpfc_sli4_queue_create(phba); 8882 if (rc) { 8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8884 "3089 Failed to allocate queues\n"); 8885 rc = -ENODEV; 8886 goto out_free_mbox; 8887 } 8888 /* Set up all the queues to the device */ 8889 rc = lpfc_sli4_queue_setup(phba); 8890 if (unlikely(rc)) { 8891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8892 "0381 Error %d during queue setup.\n", rc); 8893 goto out_destroy_queue; 8894 } 8895 /* Initialize the driver internal SLI layer lists. */ 8896 lpfc_sli4_setup(phba); 8897 lpfc_sli4_queue_init(phba); 8898 8899 /* update host els xri-sgl sizes and mappings */ 8900 rc = lpfc_sli4_els_sgl_update(phba); 8901 if (unlikely(rc)) { 8902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8903 "1400 Failed to update xri-sgl size and " 8904 "mapping: %d\n", rc); 8905 goto out_destroy_queue; 8906 } 8907 8908 /* register the els sgl pool to the port */ 8909 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8910 phba->sli4_hba.els_xri_cnt); 8911 if (unlikely(rc < 0)) { 8912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8913 "0582 Error %d during els sgl post " 8914 "operation\n", rc); 8915 rc = -ENODEV; 8916 goto out_destroy_queue; 8917 } 8918 phba->sli4_hba.els_xri_cnt = rc; 8919 8920 if (phba->nvmet_support) { 8921 /* update host nvmet xri-sgl sizes and mappings */ 8922 rc = lpfc_sli4_nvmet_sgl_update(phba); 8923 if (unlikely(rc)) { 8924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8925 "6308 Failed to update nvmet-sgl size " 8926 "and mapping: %d\n", rc); 8927 goto out_destroy_queue; 8928 } 8929 8930 /* register the nvmet sgl pool to the port */ 8931 rc = lpfc_sli4_repost_sgl_list( 8932 phba, 8933 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8934 phba->sli4_hba.nvmet_xri_cnt); 8935 if (unlikely(rc < 0)) { 8936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8937 "3117 Error %d during nvmet " 8938 "sgl post\n", rc); 8939 rc = -ENODEV; 8940 goto out_destroy_queue; 8941 } 8942 phba->sli4_hba.nvmet_xri_cnt = rc; 8943 8944 /* We allocate an iocbq for every receive context SGL. 8945 * The additional allocation is for abort and ls handling. 8946 */ 8947 cnt = phba->sli4_hba.nvmet_xri_cnt + 8948 phba->sli4_hba.max_cfg_param.max_xri; 8949 } else { 8950 /* update host common xri-sgl sizes and mappings */ 8951 rc = lpfc_sli4_io_sgl_update(phba); 8952 if (unlikely(rc)) { 8953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8954 "6082 Failed to update nvme-sgl size " 8955 "and mapping: %d\n", rc); 8956 goto out_destroy_queue; 8957 } 8958 8959 /* register the allocated common sgl pool to the port */ 8960 rc = lpfc_sli4_repost_io_sgl_list(phba); 8961 if (unlikely(rc)) { 8962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8963 "6116 Error %d during nvme sgl post " 8964 "operation\n", rc); 8965 /* Some NVME buffers were moved to abort nvme list */ 8966 /* A pci function reset will repost them */ 8967 rc = -ENODEV; 8968 goto out_destroy_queue; 8969 } 8970 /* Each lpfc_io_buf job structure has an iocbq element. 8971 * This cnt provides for abort, els, ct and ls requests. 8972 */ 8973 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8974 } 8975 8976 if (!phba->sli.iocbq_lookup) { 8977 /* Initialize and populate the iocb list per host */ 8978 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8979 "2821 initialize iocb list with %d entries\n", 8980 cnt); 8981 rc = lpfc_init_iocb_list(phba, cnt); 8982 if (rc) { 8983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8984 "1413 Failed to init iocb list.\n"); 8985 goto out_destroy_queue; 8986 } 8987 } 8988 8989 if (phba->nvmet_support) 8990 lpfc_nvmet_create_targetport(phba); 8991 8992 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8993 /* Post initial buffers to all RQs created */ 8994 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8995 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8996 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8997 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8998 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8999 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 9000 rqbp->buffer_count = 0; 9001 9002 lpfc_post_rq_buffer( 9003 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 9004 phba->sli4_hba.nvmet_mrq_data[i], 9005 phba->cfg_nvmet_mrq_post, i); 9006 } 9007 } 9008 9009 /* Post the rpi header region to the device. */ 9010 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 9011 if (unlikely(rc)) { 9012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9013 "0393 Error %d during rpi post operation\n", 9014 rc); 9015 rc = -ENODEV; 9016 goto out_free_iocblist; 9017 } 9018 9019 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 9020 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 9021 /* 9022 * The FC Port needs to register FCFI (index 0) 9023 */ 9024 lpfc_reg_fcfi(phba, mboxq); 9025 mboxq->vport = phba->pport; 9026 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9027 if (rc != MBX_SUCCESS) 9028 goto out_unset_queue; 9029 rc = 0; 9030 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 9031 &mboxq->u.mqe.un.reg_fcfi); 9032 } else { 9033 /* We are a NVME Target mode with MRQ > 1 */ 9034 9035 /* First register the FCFI */ 9036 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 9037 mboxq->vport = phba->pport; 9038 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9039 if (rc != MBX_SUCCESS) 9040 goto out_unset_queue; 9041 rc = 0; 9042 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 9043 &mboxq->u.mqe.un.reg_fcfi_mrq); 9044 9045 /* Next register the MRQs */ 9046 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 9047 mboxq->vport = phba->pport; 9048 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9049 if (rc != MBX_SUCCESS) 9050 goto out_unset_queue; 9051 rc = 0; 9052 } 9053 /* Check if the port is configured to be disabled */ 9054 lpfc_sli_read_link_ste(phba); 9055 } 9056 9057 /* Don't post more new bufs if repost already recovered 9058 * the nvme sgls. 9059 */ 9060 if (phba->nvmet_support == 0) { 9061 if (phba->sli4_hba.io_xri_cnt == 0) { 9062 len = lpfc_new_io_buf( 9063 phba, phba->sli4_hba.io_xri_max); 9064 if (len == 0) { 9065 rc = -ENOMEM; 9066 goto out_unset_queue; 9067 } 9068 9069 if (phba->cfg_xri_rebalancing) 9070 lpfc_create_multixri_pools(phba); 9071 } 9072 } else { 9073 phba->cfg_xri_rebalancing = 0; 9074 } 9075 9076 /* Allow asynchronous mailbox command to go through */ 9077 spin_lock_irq(&phba->hbalock); 9078 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9079 spin_unlock_irq(&phba->hbalock); 9080 9081 /* Post receive buffers to the device */ 9082 lpfc_sli4_rb_setup(phba); 9083 9084 /* Reset HBA FCF states after HBA reset */ 9085 phba->fcf.fcf_flag = 0; 9086 phba->fcf.current_rec.flag = 0; 9087 9088 /* Start the ELS watchdog timer */ 9089 mod_timer(&vport->els_tmofunc, 9090 jiffies + secs_to_jiffies(phba->fc_ratov * 2)); 9091 9092 /* Start heart beat timer */ 9093 mod_timer(&phba->hb_tmofunc, 9094 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 9095 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9096 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9097 phba->last_completion_time = jiffies; 9098 9099 /* start eq_delay heartbeat */ 9100 if (phba->cfg_auto_imax) 9101 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9102 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9103 9104 /* start per phba idle_stat_delay heartbeat */ 9105 lpfc_init_idle_stat_hb(phba); 9106 9107 /* Start error attention (ERATT) polling timer */ 9108 mod_timer(&phba->eratt_poll, 9109 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 9110 9111 /* 9112 * The port is ready, set the host's link state to LINK_DOWN 9113 * in preparation for link interrupts. 9114 */ 9115 spin_lock_irq(&phba->hbalock); 9116 phba->link_state = LPFC_LINK_DOWN; 9117 9118 /* Check if physical ports are trunked */ 9119 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9120 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9121 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9122 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9123 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9124 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9125 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9126 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9127 spin_unlock_irq(&phba->hbalock); 9128 9129 /* Arm the CQs and then EQs on device */ 9130 lpfc_sli4_arm_cqeq_intr(phba); 9131 9132 /* Indicate device interrupt mode */ 9133 phba->sli4_hba.intr_enable = 1; 9134 9135 /* Setup CMF after HBA is initialized */ 9136 lpfc_cmf_setup(phba); 9137 9138 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9139 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9141 "3103 Adapter Link is disabled.\n"); 9142 lpfc_down_link(phba, mboxq); 9143 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9144 if (rc != MBX_SUCCESS) { 9145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9146 "3104 Adapter failed to issue " 9147 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9148 goto out_io_buff_free; 9149 } 9150 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9151 /* don't perform init_link on SLI4 FC port loopback test */ 9152 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9153 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9154 if (rc) 9155 goto out_io_buff_free; 9156 } 9157 } 9158 mempool_free(mboxq, phba->mbox_mem_pool); 9159 9160 /* Enable RAS FW log support */ 9161 lpfc_sli4_ras_setup(phba); 9162 9163 set_bit(HBA_SETUP, &phba->hba_flag); 9164 return rc; 9165 9166 out_io_buff_free: 9167 /* Free allocated IO Buffers */ 9168 lpfc_io_free(phba); 9169 out_unset_queue: 9170 /* Unset all the queues set up in this routine when error out */ 9171 lpfc_sli4_queue_unset(phba); 9172 out_free_iocblist: 9173 lpfc_free_iocb_list(phba); 9174 out_destroy_queue: 9175 lpfc_sli4_queue_destroy(phba); 9176 lpfc_stop_hba_timers(phba); 9177 out_free_mbox: 9178 mempool_free(mboxq, phba->mbox_mem_pool); 9179 return rc; 9180 } 9181 9182 /** 9183 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9184 * @t: Context to fetch pointer to hba structure from. 9185 * 9186 * This is the callback function for mailbox timer. The mailbox 9187 * timer is armed when a new mailbox command is issued and the timer 9188 * is deleted when the mailbox complete. The function is called by 9189 * the kernel timer code when a mailbox does not complete within 9190 * expected time. This function wakes up the worker thread to 9191 * process the mailbox timeout and returns. All the processing is 9192 * done by the worker thread function lpfc_mbox_timeout_handler. 9193 **/ 9194 void 9195 lpfc_mbox_timeout(struct timer_list *t) 9196 { 9197 struct lpfc_hba *phba = timer_container_of(phba, t, sli.mbox_tmo); 9198 unsigned long iflag; 9199 uint32_t tmo_posted; 9200 9201 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9202 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9203 if (!tmo_posted) 9204 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9205 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9206 9207 if (!tmo_posted) 9208 lpfc_worker_wake_up(phba); 9209 return; 9210 } 9211 9212 /** 9213 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9214 * are pending 9215 * @phba: Pointer to HBA context object. 9216 * 9217 * This function checks if any mailbox completions are present on the mailbox 9218 * completion queue. 9219 **/ 9220 static bool 9221 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9222 { 9223 9224 uint32_t idx; 9225 struct lpfc_queue *mcq; 9226 struct lpfc_mcqe *mcqe; 9227 bool pending_completions = false; 9228 uint8_t qe_valid; 9229 9230 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9231 return false; 9232 9233 /* Check for completions on mailbox completion queue */ 9234 9235 mcq = phba->sli4_hba.mbx_cq; 9236 idx = mcq->hba_index; 9237 qe_valid = mcq->qe_valid; 9238 while (bf_get_le32(lpfc_cqe_valid, 9239 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9240 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9241 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9242 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9243 pending_completions = true; 9244 break; 9245 } 9246 idx = (idx + 1) % mcq->entry_count; 9247 if (mcq->hba_index == idx) 9248 break; 9249 9250 /* if the index wrapped around, toggle the valid bit */ 9251 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9252 qe_valid = (qe_valid) ? 0 : 1; 9253 } 9254 return pending_completions; 9255 9256 } 9257 9258 /** 9259 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9260 * that were missed. 9261 * @phba: Pointer to HBA context object. 9262 * 9263 * For sli4, it is possible to miss an interrupt. As such mbox completions 9264 * maybe missed causing erroneous mailbox timeouts to occur. This function 9265 * checks to see if mbox completions are on the mailbox completion queue 9266 * and will process all the completions associated with the eq for the 9267 * mailbox completion queue. 9268 **/ 9269 static bool 9270 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9271 { 9272 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9273 uint32_t eqidx; 9274 struct lpfc_queue *fpeq = NULL; 9275 struct lpfc_queue *eq; 9276 bool mbox_pending; 9277 9278 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9279 return false; 9280 9281 /* Find the EQ associated with the mbox CQ */ 9282 if (sli4_hba->hdwq) { 9283 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9284 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9285 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9286 fpeq = eq; 9287 break; 9288 } 9289 } 9290 } 9291 if (!fpeq) 9292 return false; 9293 9294 /* Turn off interrupts from this EQ */ 9295 9296 sli4_hba->sli4_eq_clr_intr(fpeq); 9297 9298 /* Check to see if a mbox completion is pending */ 9299 9300 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9301 9302 /* 9303 * If a mbox completion is pending, process all the events on EQ 9304 * associated with the mbox completion queue (this could include 9305 * mailbox commands, async events, els commands, receive queue data 9306 * and fcp commands) 9307 */ 9308 9309 if (mbox_pending) 9310 /* process and rearm the EQ */ 9311 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9312 LPFC_QUEUE_WORK); 9313 else 9314 /* Always clear and re-arm the EQ */ 9315 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9316 9317 return mbox_pending; 9318 9319 } 9320 9321 /** 9322 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9323 * @phba: Pointer to HBA context object. 9324 * 9325 * This function is called from worker thread when a mailbox command times out. 9326 * The caller is not required to hold any locks. This function will reset the 9327 * HBA and recover all the pending commands. 9328 **/ 9329 void 9330 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9331 { 9332 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9333 MAILBOX_t *mb = NULL; 9334 9335 struct lpfc_sli *psli = &phba->sli; 9336 9337 /* If the mailbox completed, process the completion */ 9338 lpfc_sli4_process_missed_mbox_completions(phba); 9339 9340 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9341 return; 9342 9343 if (pmbox != NULL) 9344 mb = &pmbox->u.mb; 9345 /* Check the pmbox pointer first. There is a race condition 9346 * between the mbox timeout handler getting executed in the 9347 * worklist and the mailbox actually completing. When this 9348 * race condition occurs, the mbox_active will be NULL. 9349 */ 9350 spin_lock_irq(&phba->hbalock); 9351 if (pmbox == NULL) { 9352 lpfc_printf_log(phba, KERN_WARNING, 9353 LOG_MBOX | LOG_SLI, 9354 "0353 Active Mailbox cleared - mailbox timeout " 9355 "exiting\n"); 9356 spin_unlock_irq(&phba->hbalock); 9357 return; 9358 } 9359 9360 /* Mbox cmd <mbxCommand> timeout */ 9361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9362 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9363 mb->mbxCommand, 9364 phba->pport->port_state, 9365 phba->sli.sli_flag, 9366 phba->sli.mbox_active); 9367 spin_unlock_irq(&phba->hbalock); 9368 9369 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9370 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9371 * it to fail all outstanding SCSI IO. 9372 */ 9373 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9374 spin_lock_irq(&phba->pport->work_port_lock); 9375 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9376 spin_unlock_irq(&phba->pport->work_port_lock); 9377 spin_lock_irq(&phba->hbalock); 9378 phba->link_state = LPFC_LINK_UNKNOWN; 9379 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9380 spin_unlock_irq(&phba->hbalock); 9381 9382 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9383 "0345 Resetting board due to mailbox timeout\n"); 9384 9385 /* Reset the HBA device */ 9386 lpfc_reset_hba(phba); 9387 } 9388 9389 /** 9390 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9391 * @phba: Pointer to HBA context object. 9392 * @pmbox: Pointer to mailbox object. 9393 * @flag: Flag indicating how the mailbox need to be processed. 9394 * 9395 * This function is called by discovery code and HBA management code 9396 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9397 * function gets the hbalock to protect the data structures. 9398 * The mailbox command can be submitted in polling mode, in which case 9399 * this function will wait in a polling loop for the completion of the 9400 * mailbox. 9401 * If the mailbox is submitted in no_wait mode (not polling) the 9402 * function will submit the command and returns immediately without waiting 9403 * for the mailbox completion. The no_wait is supported only when HBA 9404 * is in SLI2/SLI3 mode - interrupts are enabled. 9405 * The SLI interface allows only one mailbox pending at a time. If the 9406 * mailbox is issued in polling mode and there is already a mailbox 9407 * pending, then the function will return an error. If the mailbox is issued 9408 * in NO_WAIT mode and there is a mailbox pending already, the function 9409 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9410 * The sli layer owns the mailbox object until the completion of mailbox 9411 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9412 * return codes the caller owns the mailbox command after the return of 9413 * the function. 9414 **/ 9415 static int 9416 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9417 uint32_t flag) 9418 { 9419 MAILBOX_t *mbx; 9420 struct lpfc_sli *psli = &phba->sli; 9421 uint32_t status, evtctr; 9422 uint32_t ha_copy, hc_copy; 9423 int i; 9424 unsigned long timeout; 9425 unsigned long drvr_flag = 0; 9426 uint32_t word0, ldata; 9427 void __iomem *to_slim; 9428 int processing_queue = 0; 9429 9430 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9431 if (!pmbox) { 9432 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9433 /* processing mbox queue from intr_handler */ 9434 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9435 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9436 return MBX_SUCCESS; 9437 } 9438 processing_queue = 1; 9439 pmbox = lpfc_mbox_get(phba); 9440 if (!pmbox) { 9441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9442 return MBX_SUCCESS; 9443 } 9444 } 9445 9446 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9447 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9448 if(!pmbox->vport) { 9449 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9450 lpfc_printf_log(phba, KERN_ERR, 9451 LOG_MBOX | LOG_VPORT, 9452 "1806 Mbox x%x failed. No vport\n", 9453 pmbox->u.mb.mbxCommand); 9454 dump_stack(); 9455 goto out_not_finished; 9456 } 9457 } 9458 9459 /* If the PCI channel is in offline state, do not post mbox. */ 9460 if (unlikely(pci_channel_offline(phba->pcidev))) { 9461 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9462 goto out_not_finished; 9463 } 9464 9465 /* If HBA has a deferred error attention, fail the iocb. */ 9466 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9468 goto out_not_finished; 9469 } 9470 9471 psli = &phba->sli; 9472 9473 mbx = &pmbox->u.mb; 9474 status = MBX_SUCCESS; 9475 9476 if (phba->link_state == LPFC_HBA_ERROR) { 9477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9478 9479 /* Mbox command <mbxCommand> cannot issue */ 9480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9481 "(%d):0311 Mailbox command x%x cannot " 9482 "issue Data: x%x x%x\n", 9483 pmbox->vport ? pmbox->vport->vpi : 0, 9484 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9485 goto out_not_finished; 9486 } 9487 9488 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9489 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9490 !(hc_copy & HC_MBINT_ENA)) { 9491 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9493 "(%d):2528 Mailbox command x%x cannot " 9494 "issue Data: x%x x%x\n", 9495 pmbox->vport ? pmbox->vport->vpi : 0, 9496 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9497 goto out_not_finished; 9498 } 9499 } 9500 9501 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9502 /* Polling for a mbox command when another one is already active 9503 * is not allowed in SLI. Also, the driver must have established 9504 * SLI2 mode to queue and process multiple mbox commands. 9505 */ 9506 9507 if (flag & MBX_POLL) { 9508 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9509 9510 /* Mbox command <mbxCommand> cannot issue */ 9511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9512 "(%d):2529 Mailbox command x%x " 9513 "cannot issue Data: x%x x%x\n", 9514 pmbox->vport ? pmbox->vport->vpi : 0, 9515 pmbox->u.mb.mbxCommand, 9516 psli->sli_flag, flag); 9517 goto out_not_finished; 9518 } 9519 9520 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9521 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9522 /* Mbox command <mbxCommand> cannot issue */ 9523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9524 "(%d):2530 Mailbox command x%x " 9525 "cannot issue Data: x%x x%x\n", 9526 pmbox->vport ? pmbox->vport->vpi : 0, 9527 pmbox->u.mb.mbxCommand, 9528 psli->sli_flag, flag); 9529 goto out_not_finished; 9530 } 9531 9532 /* Another mailbox command is still being processed, queue this 9533 * command to be processed later. 9534 */ 9535 lpfc_mbox_put(phba, pmbox); 9536 9537 /* Mbox cmd issue - BUSY */ 9538 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9539 "(%d):0308 Mbox cmd issue - BUSY Data: " 9540 "x%x x%x x%x x%x\n", 9541 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9542 mbx->mbxCommand, 9543 phba->pport ? phba->pport->port_state : 0xff, 9544 psli->sli_flag, flag); 9545 9546 psli->slistat.mbox_busy++; 9547 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9548 9549 if (pmbox->vport) { 9550 lpfc_debugfs_disc_trc(pmbox->vport, 9551 LPFC_DISC_TRC_MBOX_VPORT, 9552 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9553 (uint32_t)mbx->mbxCommand, 9554 mbx->un.varWords[0], mbx->un.varWords[1]); 9555 } 9556 else { 9557 lpfc_debugfs_disc_trc(phba->pport, 9558 LPFC_DISC_TRC_MBOX, 9559 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9560 (uint32_t)mbx->mbxCommand, 9561 mbx->un.varWords[0], mbx->un.varWords[1]); 9562 } 9563 9564 return MBX_BUSY; 9565 } 9566 9567 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9568 9569 /* If we are not polling, we MUST be in SLI2 mode */ 9570 if (flag != MBX_POLL) { 9571 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9572 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9573 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9574 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9575 /* Mbox command <mbxCommand> cannot issue */ 9576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9577 "(%d):2531 Mailbox command x%x " 9578 "cannot issue Data: x%x x%x\n", 9579 pmbox->vport ? pmbox->vport->vpi : 0, 9580 pmbox->u.mb.mbxCommand, 9581 psli->sli_flag, flag); 9582 goto out_not_finished; 9583 } 9584 /* timeout active mbox command */ 9585 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)); 9586 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9587 } 9588 9589 /* Mailbox cmd <cmd> issue */ 9590 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9591 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9592 "x%x\n", 9593 pmbox->vport ? pmbox->vport->vpi : 0, 9594 mbx->mbxCommand, 9595 phba->pport ? phba->pport->port_state : 0xff, 9596 psli->sli_flag, flag); 9597 9598 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9599 if (pmbox->vport) { 9600 lpfc_debugfs_disc_trc(pmbox->vport, 9601 LPFC_DISC_TRC_MBOX_VPORT, 9602 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9603 (uint32_t)mbx->mbxCommand, 9604 mbx->un.varWords[0], mbx->un.varWords[1]); 9605 } 9606 else { 9607 lpfc_debugfs_disc_trc(phba->pport, 9608 LPFC_DISC_TRC_MBOX, 9609 "MBOX Send: cmd:x%x mb:x%x x%x", 9610 (uint32_t)mbx->mbxCommand, 9611 mbx->un.varWords[0], mbx->un.varWords[1]); 9612 } 9613 } 9614 9615 psli->slistat.mbox_cmd++; 9616 evtctr = psli->slistat.mbox_event; 9617 9618 /* next set own bit for the adapter and copy over command word */ 9619 mbx->mbxOwner = OWN_CHIP; 9620 9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9622 /* Populate mbox extension offset word. */ 9623 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9624 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9625 = (uint8_t *)phba->mbox_ext 9626 - (uint8_t *)phba->mbox; 9627 } 9628 9629 /* Copy the mailbox extension data */ 9630 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9631 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9632 (uint8_t *)phba->mbox_ext, 9633 pmbox->in_ext_byte_len); 9634 } 9635 /* Copy command data to host SLIM area */ 9636 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9637 } else { 9638 /* Populate mbox extension offset word. */ 9639 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9640 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9641 = MAILBOX_HBA_EXT_OFFSET; 9642 9643 /* Copy the mailbox extension data */ 9644 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9645 lpfc_memcpy_to_slim(phba->MBslimaddr + 9646 MAILBOX_HBA_EXT_OFFSET, 9647 pmbox->ext_buf, pmbox->in_ext_byte_len); 9648 9649 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9650 /* copy command data into host mbox for cmpl */ 9651 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9652 MAILBOX_CMD_SIZE); 9653 9654 /* First copy mbox command data to HBA SLIM, skip past first 9655 word */ 9656 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9657 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9658 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9659 9660 /* Next copy over first word, with mbxOwner set */ 9661 ldata = *((uint32_t *)mbx); 9662 to_slim = phba->MBslimaddr; 9663 writel(ldata, to_slim); 9664 readl(to_slim); /* flush */ 9665 9666 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9667 /* switch over to host mailbox */ 9668 psli->sli_flag |= LPFC_SLI_ACTIVE; 9669 } 9670 9671 wmb(); 9672 9673 switch (flag) { 9674 case MBX_NOWAIT: 9675 /* Set up reference to mailbox command */ 9676 psli->mbox_active = pmbox; 9677 /* Interrupt board to do it */ 9678 writel(CA_MBATT, phba->CAregaddr); 9679 readl(phba->CAregaddr); /* flush */ 9680 /* Don't wait for it to finish, just return */ 9681 break; 9682 9683 case MBX_POLL: 9684 /* Set up null reference to mailbox command */ 9685 psli->mbox_active = NULL; 9686 /* Interrupt board to do it */ 9687 writel(CA_MBATT, phba->CAregaddr); 9688 readl(phba->CAregaddr); /* flush */ 9689 9690 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9691 /* First read mbox status word */ 9692 word0 = *((uint32_t *)phba->mbox); 9693 word0 = le32_to_cpu(word0); 9694 } else { 9695 /* First read mbox status word */ 9696 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9697 spin_unlock_irqrestore(&phba->hbalock, 9698 drvr_flag); 9699 goto out_not_finished; 9700 } 9701 } 9702 9703 /* Read the HBA Host Attention Register */ 9704 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9705 spin_unlock_irqrestore(&phba->hbalock, 9706 drvr_flag); 9707 goto out_not_finished; 9708 } 9709 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies; 9710 i = 0; 9711 /* Wait for command to complete */ 9712 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9713 (!(ha_copy & HA_MBATT) && 9714 (phba->link_state > LPFC_WARM_START))) { 9715 if (time_after(jiffies, timeout)) { 9716 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9717 spin_unlock_irqrestore(&phba->hbalock, 9718 drvr_flag); 9719 goto out_not_finished; 9720 } 9721 9722 /* Check if we took a mbox interrupt while we were 9723 polling */ 9724 if (((word0 & OWN_CHIP) != OWN_CHIP) 9725 && (evtctr != psli->slistat.mbox_event)) 9726 break; 9727 9728 if (i++ > 10) { 9729 spin_unlock_irqrestore(&phba->hbalock, 9730 drvr_flag); 9731 msleep(1); 9732 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9733 } 9734 9735 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9736 /* First copy command data */ 9737 word0 = *((uint32_t *)phba->mbox); 9738 word0 = le32_to_cpu(word0); 9739 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9740 MAILBOX_t *slimmb; 9741 uint32_t slimword0; 9742 /* Check real SLIM for any errors */ 9743 slimword0 = readl(phba->MBslimaddr); 9744 slimmb = (MAILBOX_t *) & slimword0; 9745 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9746 && slimmb->mbxStatus) { 9747 psli->sli_flag &= 9748 ~LPFC_SLI_ACTIVE; 9749 word0 = slimword0; 9750 } 9751 } 9752 } else { 9753 /* First copy command data */ 9754 word0 = readl(phba->MBslimaddr); 9755 } 9756 /* Read the HBA Host Attention Register */ 9757 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9758 spin_unlock_irqrestore(&phba->hbalock, 9759 drvr_flag); 9760 goto out_not_finished; 9761 } 9762 } 9763 9764 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9765 /* copy results back to user */ 9766 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9767 MAILBOX_CMD_SIZE); 9768 /* Copy the mailbox extension data */ 9769 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9770 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9771 pmbox->ext_buf, 9772 pmbox->out_ext_byte_len); 9773 } 9774 } else { 9775 /* First copy command data */ 9776 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9777 MAILBOX_CMD_SIZE); 9778 /* Copy the mailbox extension data */ 9779 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9780 lpfc_memcpy_from_slim( 9781 pmbox->ext_buf, 9782 phba->MBslimaddr + 9783 MAILBOX_HBA_EXT_OFFSET, 9784 pmbox->out_ext_byte_len); 9785 } 9786 } 9787 9788 writel(HA_MBATT, phba->HAregaddr); 9789 readl(phba->HAregaddr); /* flush */ 9790 9791 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9792 status = mbx->mbxStatus; 9793 } 9794 9795 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9796 return status; 9797 9798 out_not_finished: 9799 if (processing_queue) { 9800 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9801 lpfc_mbox_cmpl_put(phba, pmbox); 9802 } 9803 return MBX_NOT_FINISHED; 9804 } 9805 9806 /** 9807 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9808 * @phba: Pointer to HBA context object. 9809 * 9810 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9811 * the driver internal pending mailbox queue. It will then try to wait out the 9812 * possible outstanding mailbox command before return. 9813 * 9814 * Returns: 9815 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9816 * the outstanding mailbox command timed out. 9817 **/ 9818 static int 9819 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9820 { 9821 struct lpfc_sli *psli = &phba->sli; 9822 LPFC_MBOXQ_t *mboxq; 9823 int rc = 0; 9824 unsigned long timeout = 0; 9825 u32 sli_flag; 9826 u8 cmd, subsys, opcode; 9827 9828 /* Mark the asynchronous mailbox command posting as blocked */ 9829 spin_lock_irq(&phba->hbalock); 9830 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9831 /* Determine how long we might wait for the active mailbox 9832 * command to be gracefully completed by firmware. 9833 */ 9834 if (phba->sli.mbox_active) 9835 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 9836 phba->sli.mbox_active)) + jiffies; 9837 spin_unlock_irq(&phba->hbalock); 9838 9839 /* Make sure the mailbox is really active */ 9840 if (timeout) 9841 lpfc_sli4_process_missed_mbox_completions(phba); 9842 9843 /* Wait for the outstanding mailbox command to complete */ 9844 while (phba->sli.mbox_active) { 9845 /* Check active mailbox complete status every 2ms */ 9846 msleep(2); 9847 if (time_after(jiffies, timeout)) { 9848 /* Timeout, mark the outstanding cmd not complete */ 9849 9850 /* Sanity check sli.mbox_active has not completed or 9851 * cancelled from another context during last 2ms sleep, 9852 * so take hbalock to be sure before logging. 9853 */ 9854 spin_lock_irq(&phba->hbalock); 9855 if (phba->sli.mbox_active) { 9856 mboxq = phba->sli.mbox_active; 9857 cmd = mboxq->u.mb.mbxCommand; 9858 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9859 mboxq); 9860 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9861 mboxq); 9862 sli_flag = psli->sli_flag; 9863 spin_unlock_irq(&phba->hbalock); 9864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9865 "2352 Mailbox command x%x " 9866 "(x%x/x%x) sli_flag x%x could " 9867 "not complete\n", 9868 cmd, subsys, opcode, 9869 sli_flag); 9870 } else { 9871 spin_unlock_irq(&phba->hbalock); 9872 } 9873 9874 rc = 1; 9875 break; 9876 } 9877 } 9878 9879 /* Can not cleanly block async mailbox command, fails it */ 9880 if (rc) { 9881 spin_lock_irq(&phba->hbalock); 9882 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9883 spin_unlock_irq(&phba->hbalock); 9884 } 9885 return rc; 9886 } 9887 9888 /** 9889 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9890 * @phba: Pointer to HBA context object. 9891 * 9892 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9893 * commands from the driver internal pending mailbox queue. It makes sure 9894 * that there is no outstanding mailbox command before resuming posting 9895 * asynchronous mailbox commands. If, for any reason, there is outstanding 9896 * mailbox command, it will try to wait it out before resuming asynchronous 9897 * mailbox command posting. 9898 **/ 9899 static void 9900 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9901 { 9902 struct lpfc_sli *psli = &phba->sli; 9903 9904 spin_lock_irq(&phba->hbalock); 9905 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9906 /* Asynchronous mailbox posting is not blocked, do nothing */ 9907 spin_unlock_irq(&phba->hbalock); 9908 return; 9909 } 9910 9911 /* Outstanding synchronous mailbox command is guaranteed to be done, 9912 * successful or timeout, after timing-out the outstanding mailbox 9913 * command shall always be removed, so just unblock posting async 9914 * mailbox command and resume 9915 */ 9916 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9917 spin_unlock_irq(&phba->hbalock); 9918 9919 /* wake up worker thread to post asynchronous mailbox command */ 9920 lpfc_worker_wake_up(phba); 9921 } 9922 9923 /** 9924 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9925 * @phba: Pointer to HBA context object. 9926 * @mboxq: Pointer to mailbox object. 9927 * 9928 * The function waits for the bootstrap mailbox register ready bit from 9929 * port for twice the regular mailbox command timeout value. 9930 * 9931 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9932 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9933 * is in an unrecoverable state. 9934 **/ 9935 static int 9936 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9937 { 9938 uint32_t db_ready; 9939 unsigned long timeout; 9940 struct lpfc_register bmbx_reg; 9941 struct lpfc_register portstat_reg = {-1}; 9942 9943 /* Sanity check - there is no point to wait if the port is in an 9944 * unrecoverable state. 9945 */ 9946 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9947 LPFC_SLI_INTF_IF_TYPE_2) { 9948 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9949 &portstat_reg.word0) || 9950 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9951 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9952 "3858 Skipping bmbx ready because " 9953 "Port Status x%x\n", 9954 portstat_reg.word0); 9955 return MBXERR_ERROR; 9956 } 9957 } 9958 9959 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies; 9960 9961 do { 9962 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9963 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9964 if (!db_ready) 9965 mdelay(2); 9966 9967 if (time_after(jiffies, timeout)) 9968 return MBXERR_ERROR; 9969 } while (!db_ready); 9970 9971 return 0; 9972 } 9973 9974 /** 9975 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9976 * @phba: Pointer to HBA context object. 9977 * @mboxq: Pointer to mailbox object. 9978 * 9979 * The function posts a mailbox to the port. The mailbox is expected 9980 * to be comletely filled in and ready for the port to operate on it. 9981 * This routine executes a synchronous completion operation on the 9982 * mailbox by polling for its completion. 9983 * 9984 * The caller must not be holding any locks when calling this routine. 9985 * 9986 * Returns: 9987 * MBX_SUCCESS - mailbox posted successfully 9988 * Any of the MBX error values. 9989 **/ 9990 static int 9991 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9992 { 9993 int rc = MBX_SUCCESS; 9994 unsigned long iflag; 9995 uint32_t mcqe_status; 9996 uint32_t mbx_cmnd; 9997 struct lpfc_sli *psli = &phba->sli; 9998 struct lpfc_mqe *mb = &mboxq->u.mqe; 9999 struct lpfc_bmbx_create *mbox_rgn; 10000 struct dma_address *dma_address; 10001 10002 /* 10003 * Only one mailbox can be active to the bootstrap mailbox region 10004 * at a time and there is no queueing provided. 10005 */ 10006 spin_lock_irqsave(&phba->hbalock, iflag); 10007 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10008 spin_unlock_irqrestore(&phba->hbalock, iflag); 10009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10010 "(%d):2532 Mailbox command x%x (x%x/x%x) " 10011 "cannot issue Data: x%x x%x\n", 10012 mboxq->vport ? mboxq->vport->vpi : 0, 10013 mboxq->u.mb.mbxCommand, 10014 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10015 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10016 psli->sli_flag, MBX_POLL); 10017 return MBXERR_ERROR; 10018 } 10019 /* The server grabs the token and owns it until release */ 10020 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10021 phba->sli.mbox_active = mboxq; 10022 spin_unlock_irqrestore(&phba->hbalock, iflag); 10023 10024 /* wait for bootstrap mbox register for readyness */ 10025 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 10026 if (rc) 10027 goto exit; 10028 /* 10029 * Initialize the bootstrap memory region to avoid stale data areas 10030 * in the mailbox post. Then copy the caller's mailbox contents to 10031 * the bmbx mailbox region. 10032 */ 10033 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 10034 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 10035 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 10036 sizeof(struct lpfc_mqe)); 10037 10038 /* Post the high mailbox dma address to the port and wait for ready. */ 10039 dma_address = &phba->sli4_hba.bmbx.dma_address; 10040 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 10041 10042 /* wait for bootstrap mbox register for hi-address write done */ 10043 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 10044 if (rc) 10045 goto exit; 10046 10047 /* Post the low mailbox dma address to the port. */ 10048 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 10049 10050 /* wait for bootstrap mbox register for low address write done */ 10051 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 10052 if (rc) 10053 goto exit; 10054 10055 /* 10056 * Read the CQ to ensure the mailbox has completed. 10057 * If so, update the mailbox status so that the upper layers 10058 * can complete the request normally. 10059 */ 10060 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 10061 sizeof(struct lpfc_mqe)); 10062 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 10063 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 10064 sizeof(struct lpfc_mcqe)); 10065 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 10066 /* 10067 * When the CQE status indicates a failure and the mailbox status 10068 * indicates success then copy the CQE status into the mailbox status 10069 * (and prefix it with x4000). 10070 */ 10071 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10072 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10073 bf_set(lpfc_mqe_status, mb, 10074 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10075 rc = MBXERR_ERROR; 10076 } else 10077 lpfc_sli4_swap_str(phba, mboxq); 10078 10079 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10080 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10081 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10082 " x%x x%x CQ: x%x x%x x%x x%x\n", 10083 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10084 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10085 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10086 bf_get(lpfc_mqe_status, mb), 10087 mb->un.mb_words[0], mb->un.mb_words[1], 10088 mb->un.mb_words[2], mb->un.mb_words[3], 10089 mb->un.mb_words[4], mb->un.mb_words[5], 10090 mb->un.mb_words[6], mb->un.mb_words[7], 10091 mb->un.mb_words[8], mb->un.mb_words[9], 10092 mb->un.mb_words[10], mb->un.mb_words[11], 10093 mb->un.mb_words[12], mboxq->mcqe.word0, 10094 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10095 mboxq->mcqe.trailer); 10096 exit: 10097 /* We are holding the token, no needed for lock when release */ 10098 spin_lock_irqsave(&phba->hbalock, iflag); 10099 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10100 phba->sli.mbox_active = NULL; 10101 spin_unlock_irqrestore(&phba->hbalock, iflag); 10102 return rc; 10103 } 10104 10105 /** 10106 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10107 * @phba: Pointer to HBA context object. 10108 * @mboxq: Pointer to mailbox object. 10109 * @flag: Flag indicating how the mailbox need to be processed. 10110 * 10111 * This function is called by discovery code and HBA management code to submit 10112 * a mailbox command to firmware with SLI-4 interface spec. 10113 * 10114 * Return codes the caller owns the mailbox command after the return of the 10115 * function. 10116 **/ 10117 static int 10118 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10119 uint32_t flag) 10120 { 10121 struct lpfc_sli *psli = &phba->sli; 10122 unsigned long iflags; 10123 int rc; 10124 10125 /* dump from issue mailbox command if setup */ 10126 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10127 10128 rc = lpfc_mbox_dev_check(phba); 10129 if (unlikely(rc)) { 10130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10131 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10132 "cannot issue Data: x%x x%x\n", 10133 mboxq->vport ? mboxq->vport->vpi : 0, 10134 mboxq->u.mb.mbxCommand, 10135 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10136 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10137 psli->sli_flag, flag); 10138 goto out_not_finished; 10139 } 10140 10141 /* Detect polling mode and jump to a handler */ 10142 if (!phba->sli4_hba.intr_enable) { 10143 if (flag == MBX_POLL) 10144 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10145 else 10146 rc = -EIO; 10147 if (rc != MBX_SUCCESS) 10148 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10149 "(%d):2541 Mailbox command x%x " 10150 "(x%x/x%x) failure: " 10151 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10152 "Data: x%x x%x\n", 10153 mboxq->vport ? mboxq->vport->vpi : 0, 10154 mboxq->u.mb.mbxCommand, 10155 lpfc_sli_config_mbox_subsys_get(phba, 10156 mboxq), 10157 lpfc_sli_config_mbox_opcode_get(phba, 10158 mboxq), 10159 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10160 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10161 bf_get(lpfc_mcqe_ext_status, 10162 &mboxq->mcqe), 10163 psli->sli_flag, flag); 10164 return rc; 10165 } else if (flag == MBX_POLL) { 10166 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10167 "(%d):2542 Try to issue mailbox command " 10168 "x%x (x%x/x%x) synchronously ahead of async " 10169 "mailbox command queue: x%x x%x\n", 10170 mboxq->vport ? mboxq->vport->vpi : 0, 10171 mboxq->u.mb.mbxCommand, 10172 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10173 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10174 psli->sli_flag, flag); 10175 /* Try to block the asynchronous mailbox posting */ 10176 rc = lpfc_sli4_async_mbox_block(phba); 10177 if (!rc) { 10178 /* Successfully blocked, now issue sync mbox cmd */ 10179 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10180 if (rc != MBX_SUCCESS) 10181 lpfc_printf_log(phba, KERN_WARNING, 10182 LOG_MBOX | LOG_SLI, 10183 "(%d):2597 Sync Mailbox command " 10184 "x%x (x%x/x%x) failure: " 10185 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10186 "Data: x%x x%x\n", 10187 mboxq->vport ? mboxq->vport->vpi : 0, 10188 mboxq->u.mb.mbxCommand, 10189 lpfc_sli_config_mbox_subsys_get(phba, 10190 mboxq), 10191 lpfc_sli_config_mbox_opcode_get(phba, 10192 mboxq), 10193 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10194 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10195 bf_get(lpfc_mcqe_ext_status, 10196 &mboxq->mcqe), 10197 psli->sli_flag, flag); 10198 /* Unblock the async mailbox posting afterward */ 10199 lpfc_sli4_async_mbox_unblock(phba); 10200 } 10201 return rc; 10202 } 10203 10204 /* Now, interrupt mode asynchronous mailbox command */ 10205 rc = lpfc_mbox_cmd_check(phba, mboxq); 10206 if (rc) { 10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10208 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10209 "cannot issue Data: x%x x%x\n", 10210 mboxq->vport ? mboxq->vport->vpi : 0, 10211 mboxq->u.mb.mbxCommand, 10212 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10213 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10214 psli->sli_flag, flag); 10215 goto out_not_finished; 10216 } 10217 10218 /* Put the mailbox command to the driver internal FIFO */ 10219 psli->slistat.mbox_busy++; 10220 spin_lock_irqsave(&phba->hbalock, iflags); 10221 lpfc_mbox_put(phba, mboxq); 10222 spin_unlock_irqrestore(&phba->hbalock, iflags); 10223 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10224 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10225 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10226 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10227 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10228 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10229 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10230 mboxq->u.mb.un.varUnregLogin.rpi, 10231 phba->pport->port_state, 10232 psli->sli_flag, MBX_NOWAIT); 10233 /* Wake up worker thread to transport mailbox command from head */ 10234 lpfc_worker_wake_up(phba); 10235 10236 return MBX_BUSY; 10237 10238 out_not_finished: 10239 return MBX_NOT_FINISHED; 10240 } 10241 10242 /** 10243 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10244 * @phba: Pointer to HBA context object. 10245 * 10246 * This function is called by worker thread to send a mailbox command to 10247 * SLI4 HBA firmware. 10248 * 10249 **/ 10250 int 10251 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10252 { 10253 struct lpfc_sli *psli = &phba->sli; 10254 LPFC_MBOXQ_t *mboxq; 10255 int rc = MBX_SUCCESS; 10256 unsigned long iflags; 10257 struct lpfc_mqe *mqe; 10258 uint32_t mbx_cmnd; 10259 10260 /* Check interrupt mode before post async mailbox command */ 10261 if (unlikely(!phba->sli4_hba.intr_enable)) 10262 return MBX_NOT_FINISHED; 10263 10264 /* Check for mailbox command service token */ 10265 spin_lock_irqsave(&phba->hbalock, iflags); 10266 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10267 spin_unlock_irqrestore(&phba->hbalock, iflags); 10268 return MBX_NOT_FINISHED; 10269 } 10270 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10271 spin_unlock_irqrestore(&phba->hbalock, iflags); 10272 return MBX_NOT_FINISHED; 10273 } 10274 if (unlikely(phba->sli.mbox_active)) { 10275 spin_unlock_irqrestore(&phba->hbalock, iflags); 10276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10277 "0384 There is pending active mailbox cmd\n"); 10278 return MBX_NOT_FINISHED; 10279 } 10280 /* Take the mailbox command service token */ 10281 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10282 10283 /* Get the next mailbox command from head of queue */ 10284 mboxq = lpfc_mbox_get(phba); 10285 10286 /* If no more mailbox command waiting for post, we're done */ 10287 if (!mboxq) { 10288 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10289 spin_unlock_irqrestore(&phba->hbalock, iflags); 10290 return MBX_SUCCESS; 10291 } 10292 phba->sli.mbox_active = mboxq; 10293 spin_unlock_irqrestore(&phba->hbalock, iflags); 10294 10295 /* Check device readiness for posting mailbox command */ 10296 rc = lpfc_mbox_dev_check(phba); 10297 if (unlikely(rc)) 10298 /* Driver clean routine will clean up pending mailbox */ 10299 goto out_not_finished; 10300 10301 /* Prepare the mbox command to be posted */ 10302 mqe = &mboxq->u.mqe; 10303 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10304 10305 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10306 mod_timer(&psli->mbox_tmo, (jiffies + 10307 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)))); 10308 10309 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10310 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10311 "x%x x%x\n", 10312 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10313 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10314 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10315 phba->pport->port_state, psli->sli_flag); 10316 10317 if (mbx_cmnd != MBX_HEARTBEAT) { 10318 if (mboxq->vport) { 10319 lpfc_debugfs_disc_trc(mboxq->vport, 10320 LPFC_DISC_TRC_MBOX_VPORT, 10321 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10322 mbx_cmnd, mqe->un.mb_words[0], 10323 mqe->un.mb_words[1]); 10324 } else { 10325 lpfc_debugfs_disc_trc(phba->pport, 10326 LPFC_DISC_TRC_MBOX, 10327 "MBOX Send: cmd:x%x mb:x%x x%x", 10328 mbx_cmnd, mqe->un.mb_words[0], 10329 mqe->un.mb_words[1]); 10330 } 10331 } 10332 psli->slistat.mbox_cmd++; 10333 10334 /* Post the mailbox command to the port */ 10335 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10336 if (rc != MBX_SUCCESS) { 10337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10338 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10339 "cannot issue Data: x%x x%x\n", 10340 mboxq->vport ? mboxq->vport->vpi : 0, 10341 mboxq->u.mb.mbxCommand, 10342 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10343 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10344 psli->sli_flag, MBX_NOWAIT); 10345 goto out_not_finished; 10346 } 10347 10348 return rc; 10349 10350 out_not_finished: 10351 spin_lock_irqsave(&phba->hbalock, iflags); 10352 if (phba->sli.mbox_active) { 10353 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10354 __lpfc_mbox_cmpl_put(phba, mboxq); 10355 /* Release the token */ 10356 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10357 phba->sli.mbox_active = NULL; 10358 } 10359 spin_unlock_irqrestore(&phba->hbalock, iflags); 10360 10361 return MBX_NOT_FINISHED; 10362 } 10363 10364 /** 10365 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10366 * @phba: Pointer to HBA context object. 10367 * @pmbox: Pointer to mailbox object. 10368 * @flag: Flag indicating how the mailbox need to be processed. 10369 * 10370 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10371 * the API jump table function pointer from the lpfc_hba struct. 10372 * 10373 * Return codes the caller owns the mailbox command after the return of the 10374 * function. 10375 **/ 10376 int 10377 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10378 { 10379 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10380 } 10381 10382 /** 10383 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10384 * @phba: The hba struct for which this call is being executed. 10385 * @dev_grp: The HBA PCI-Device group number. 10386 * 10387 * This routine sets up the mbox interface API function jump table in @phba 10388 * struct. 10389 * Returns: 0 - success, -ENODEV - failure. 10390 **/ 10391 int 10392 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10393 { 10394 10395 switch (dev_grp) { 10396 case LPFC_PCI_DEV_LP: 10397 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10398 phba->lpfc_sli_handle_slow_ring_event = 10399 lpfc_sli_handle_slow_ring_event_s3; 10400 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10401 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10402 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10403 break; 10404 case LPFC_PCI_DEV_OC: 10405 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10406 phba->lpfc_sli_handle_slow_ring_event = 10407 lpfc_sli_handle_slow_ring_event_s4; 10408 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10409 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10410 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10411 break; 10412 default: 10413 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10414 "1420 Invalid HBA PCI-device group: 0x%x\n", 10415 dev_grp); 10416 return -ENODEV; 10417 } 10418 return 0; 10419 } 10420 10421 /** 10422 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10423 * @phba: Pointer to HBA context object. 10424 * @pring: Pointer to driver SLI ring object. 10425 * @piocb: Pointer to address of newly added command iocb. 10426 * 10427 * This function is called with hbalock held for SLI3 ports or 10428 * the ring lock held for SLI4 ports to add a command 10429 * iocb to the txq when SLI layer cannot submit the command iocb 10430 * to the ring. 10431 **/ 10432 void 10433 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10434 struct lpfc_iocbq *piocb) 10435 { 10436 if (phba->sli_rev == LPFC_SLI_REV4) 10437 lockdep_assert_held(&pring->ring_lock); 10438 else 10439 lockdep_assert_held(&phba->hbalock); 10440 /* Insert the caller's iocb in the txq tail for later processing. */ 10441 list_add_tail(&piocb->list, &pring->txq); 10442 } 10443 10444 /** 10445 * lpfc_sli_next_iocb - Get the next iocb in the txq 10446 * @phba: Pointer to HBA context object. 10447 * @pring: Pointer to driver SLI ring object. 10448 * @piocb: Pointer to address of newly added command iocb. 10449 * 10450 * This function is called with hbalock held before a new 10451 * iocb is submitted to the firmware. This function checks 10452 * txq to flush the iocbs in txq to Firmware before 10453 * submitting new iocbs to the Firmware. 10454 * If there are iocbs in the txq which need to be submitted 10455 * to firmware, lpfc_sli_next_iocb returns the first element 10456 * of the txq after dequeuing it from txq. 10457 * If there is no iocb in the txq then the function will return 10458 * *piocb and *piocb is set to NULL. Caller needs to check 10459 * *piocb to find if there are more commands in the txq. 10460 **/ 10461 static struct lpfc_iocbq * 10462 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10463 struct lpfc_iocbq **piocb) 10464 { 10465 struct lpfc_iocbq * nextiocb; 10466 10467 lockdep_assert_held(&phba->hbalock); 10468 10469 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10470 if (!nextiocb) { 10471 nextiocb = *piocb; 10472 *piocb = NULL; 10473 } 10474 10475 return nextiocb; 10476 } 10477 10478 /** 10479 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10480 * @phba: Pointer to HBA context object. 10481 * @ring_number: SLI ring number to issue iocb on. 10482 * @piocb: Pointer to command iocb. 10483 * @flag: Flag indicating if this command can be put into txq. 10484 * 10485 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10486 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10487 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10488 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10489 * this function allows only iocbs for posting buffers. This function finds 10490 * next available slot in the command ring and posts the command to the 10491 * available slot and writes the port attention register to request HBA start 10492 * processing new iocb. If there is no slot available in the ring and 10493 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10494 * the function returns IOCB_BUSY. 10495 * 10496 * This function is called with hbalock held. The function will return success 10497 * after it successfully submit the iocb to firmware or after adding to the 10498 * txq. 10499 **/ 10500 static int 10501 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10502 struct lpfc_iocbq *piocb, uint32_t flag) 10503 { 10504 struct lpfc_iocbq *nextiocb; 10505 IOCB_t *iocb; 10506 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10507 10508 lockdep_assert_held(&phba->hbalock); 10509 10510 if (piocb->cmd_cmpl && (!piocb->vport) && 10511 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10512 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10514 "1807 IOCB x%x failed. No vport\n", 10515 piocb->iocb.ulpCommand); 10516 dump_stack(); 10517 return IOCB_ERROR; 10518 } 10519 10520 10521 /* If the PCI channel is in offline state, do not post iocbs. */ 10522 if (unlikely(pci_channel_offline(phba->pcidev))) 10523 return IOCB_ERROR; 10524 10525 /* If HBA has a deferred error attention, fail the iocb. */ 10526 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10527 return IOCB_ERROR; 10528 10529 /* 10530 * We should never get an IOCB if we are in a < LINK_DOWN state 10531 */ 10532 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10533 return IOCB_ERROR; 10534 10535 /* 10536 * Check to see if we are blocking IOCB processing because of a 10537 * outstanding event. 10538 */ 10539 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10540 goto iocb_busy; 10541 10542 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10543 /* 10544 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10545 * can be issued if the link is not up. 10546 */ 10547 switch (piocb->iocb.ulpCommand) { 10548 case CMD_QUE_RING_BUF_CN: 10549 case CMD_QUE_RING_BUF64_CN: 10550 /* 10551 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10552 * completion, cmd_cmpl MUST be 0. 10553 */ 10554 if (piocb->cmd_cmpl) 10555 piocb->cmd_cmpl = NULL; 10556 fallthrough; 10557 case CMD_CREATE_XRI_CR: 10558 case CMD_CLOSE_XRI_CN: 10559 case CMD_CLOSE_XRI_CX: 10560 break; 10561 default: 10562 goto iocb_busy; 10563 } 10564 10565 /* 10566 * For FCP commands, we must be in a state where we can process link 10567 * attention events. 10568 */ 10569 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10570 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10571 goto iocb_busy; 10572 } 10573 10574 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10575 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10576 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10577 10578 if (iocb) 10579 lpfc_sli_update_ring(phba, pring); 10580 else 10581 lpfc_sli_update_full_ring(phba, pring); 10582 10583 if (!piocb) 10584 return IOCB_SUCCESS; 10585 10586 goto out_busy; 10587 10588 iocb_busy: 10589 pring->stats.iocb_cmd_delay++; 10590 10591 out_busy: 10592 10593 if (!(flag & SLI_IOCB_RET_IOCB)) { 10594 __lpfc_sli_ringtx_put(phba, pring, piocb); 10595 return IOCB_SUCCESS; 10596 } 10597 10598 return IOCB_BUSY; 10599 } 10600 10601 /** 10602 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10603 * @phba: Pointer to HBA context object. 10604 * @ring_number: SLI ring number to issue wqe on. 10605 * @piocb: Pointer to command iocb. 10606 * @flag: Flag indicating if this command can be put into txq. 10607 * 10608 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10609 * send an iocb command to an HBA with SLI-3 interface spec. 10610 * 10611 * This function takes the hbalock before invoking the lockless version. 10612 * The function will return success after it successfully submit the wqe to 10613 * firmware or after adding to the txq. 10614 **/ 10615 static int 10616 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10617 struct lpfc_iocbq *piocb, uint32_t flag) 10618 { 10619 unsigned long iflags; 10620 int rc; 10621 10622 spin_lock_irqsave(&phba->hbalock, iflags); 10623 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10624 spin_unlock_irqrestore(&phba->hbalock, iflags); 10625 10626 return rc; 10627 } 10628 10629 /** 10630 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10631 * @phba: Pointer to HBA context object. 10632 * @ring_number: SLI ring number to issue wqe on. 10633 * @piocb: Pointer to command iocb. 10634 * @flag: Flag indicating if this command can be put into txq. 10635 * 10636 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10637 * an wqe command to an HBA with SLI-4 interface spec. 10638 * 10639 * This function is a lockless version. The function will return success 10640 * after it successfully submit the wqe to firmware or after adding to the 10641 * txq. 10642 **/ 10643 static int 10644 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10645 struct lpfc_iocbq *piocb, uint32_t flag) 10646 { 10647 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10648 10649 lpfc_prep_embed_io(phba, lpfc_cmd); 10650 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10651 } 10652 10653 void 10654 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10655 { 10656 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10657 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10658 struct sli4_sge_le *sgl; 10659 u32 type_size; 10660 10661 /* 128 byte wqe support here */ 10662 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10663 10664 if (phba->fcp_embed_io) { 10665 struct fcp_cmnd *fcp_cmnd; 10666 u32 *ptr; 10667 10668 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10669 10670 /* Word 0-2 - FCP_CMND */ 10671 type_size = le32_to_cpu(sgl->sge_len); 10672 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10673 wqe->generic.bde.tus.w = type_size; 10674 wqe->generic.bde.addrHigh = 0; 10675 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10676 10677 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10678 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10679 10680 /* Word 18-29 FCP CMND Payload */ 10681 ptr = &wqe->words[18]; 10682 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10683 } else { 10684 /* Word 0-2 - Inline BDE */ 10685 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10686 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10687 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10688 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10689 10690 /* Word 10 */ 10691 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10692 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10693 } 10694 10695 /* add the VMID tags as per switch response */ 10696 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10697 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10698 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10699 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10700 (piocb->vmid_tag.cs_ctl_vmid)); 10701 } else if (phba->cfg_vmid_app_header) { 10702 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10703 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10704 wqe->words[31] = piocb->vmid_tag.app_id; 10705 } 10706 } 10707 } 10708 10709 /** 10710 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10711 * @phba: Pointer to HBA context object. 10712 * @ring_number: SLI ring number to issue iocb on. 10713 * @piocb: Pointer to command iocb. 10714 * @flag: Flag indicating if this command can be put into txq. 10715 * 10716 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10717 * an iocb command to an HBA with SLI-4 interface spec. 10718 * 10719 * This function is called with ringlock held. The function will return success 10720 * after it successfully submit the iocb to firmware or after adding to the 10721 * txq. 10722 **/ 10723 static int 10724 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10725 struct lpfc_iocbq *piocb, uint32_t flag) 10726 { 10727 struct lpfc_sglq *sglq; 10728 union lpfc_wqe128 *wqe; 10729 struct lpfc_queue *wq; 10730 struct lpfc_sli_ring *pring; 10731 u32 ulp_command = get_job_cmnd(phba, piocb); 10732 10733 /* Get the WQ */ 10734 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10735 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10736 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10737 } else { 10738 wq = phba->sli4_hba.els_wq; 10739 } 10740 10741 /* Get corresponding ring */ 10742 pring = wq->pring; 10743 10744 /* 10745 * The WQE can be either 64 or 128 bytes, 10746 */ 10747 10748 lockdep_assert_held(&pring->ring_lock); 10749 wqe = &piocb->wqe; 10750 if (piocb->sli4_xritag == NO_XRI) { 10751 if (ulp_command == CMD_ABORT_XRI_CX) 10752 sglq = NULL; 10753 else { 10754 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10755 if (!sglq) { 10756 if (!(flag & SLI_IOCB_RET_IOCB)) { 10757 __lpfc_sli_ringtx_put(phba, 10758 pring, 10759 piocb); 10760 return IOCB_SUCCESS; 10761 } else { 10762 return IOCB_BUSY; 10763 } 10764 } 10765 } 10766 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10767 /* These IO's already have an XRI and a mapped sgl. */ 10768 sglq = NULL; 10769 } 10770 else { 10771 /* 10772 * This is a continuation of a commandi,(CX) so this 10773 * sglq is on the active list 10774 */ 10775 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10776 if (!sglq) 10777 return IOCB_ERROR; 10778 } 10779 10780 if (sglq) { 10781 piocb->sli4_lxritag = sglq->sli4_lxritag; 10782 piocb->sli4_xritag = sglq->sli4_xritag; 10783 10784 /* ABTS sent by initiator to CT exchange, the 10785 * RX_ID field will be filled with the newly 10786 * allocated responder XRI. 10787 */ 10788 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10789 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10790 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10791 piocb->sli4_xritag); 10792 10793 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10794 piocb->sli4_xritag); 10795 10796 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10797 return IOCB_ERROR; 10798 } 10799 10800 if (lpfc_sli4_wq_put(wq, wqe)) 10801 return IOCB_ERROR; 10802 10803 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10804 10805 return 0; 10806 } 10807 10808 /* 10809 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10810 * 10811 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10812 * or IOCB for sli-3 function. 10813 * pointer from the lpfc_hba struct. 10814 * 10815 * Return codes: 10816 * IOCB_ERROR - Error 10817 * IOCB_SUCCESS - Success 10818 * IOCB_BUSY - Busy 10819 **/ 10820 int 10821 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10822 struct lpfc_iocbq *piocb, uint32_t flag) 10823 { 10824 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10825 } 10826 10827 /* 10828 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10829 * 10830 * This routine wraps the actual lockless version for issusing IOCB function 10831 * pointer from the lpfc_hba struct. 10832 * 10833 * Return codes: 10834 * IOCB_ERROR - Error 10835 * IOCB_SUCCESS - Success 10836 * IOCB_BUSY - Busy 10837 **/ 10838 int 10839 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10840 struct lpfc_iocbq *piocb, uint32_t flag) 10841 { 10842 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10843 } 10844 10845 static void 10846 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10847 struct lpfc_vport *vport, 10848 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10849 u32 elscmd, u8 tmo, u8 expect_rsp) 10850 { 10851 struct lpfc_hba *phba = vport->phba; 10852 IOCB_t *cmd; 10853 10854 cmd = &cmdiocbq->iocb; 10855 memset(cmd, 0, sizeof(*cmd)); 10856 10857 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10858 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10859 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10860 10861 if (expect_rsp) { 10862 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10863 cmd->un.elsreq64.remoteID = did; /* DID */ 10864 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10865 cmd->ulpTimeout = tmo; 10866 } else { 10867 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10868 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10869 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10870 cmd->ulpPU = PARM_NPIV_DID; 10871 } 10872 cmd->ulpBdeCount = 1; 10873 cmd->ulpLe = 1; 10874 cmd->ulpClass = CLASS3; 10875 10876 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10877 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10878 if (expect_rsp) { 10879 cmd->un.elsreq64.myID = vport->fc_myDID; 10880 10881 /* For ELS_REQUEST64_CR, use the VPI by default */ 10882 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10883 } 10884 10885 cmd->ulpCt_h = 0; 10886 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10887 if (elscmd == ELS_CMD_ECHO) 10888 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10889 else 10890 cmd->ulpCt_l = 1; /* context = VPI */ 10891 } 10892 } 10893 10894 static void 10895 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10896 struct lpfc_vport *vport, 10897 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10898 u32 elscmd, u8 tmo, u8 expect_rsp) 10899 { 10900 struct lpfc_hba *phba = vport->phba; 10901 union lpfc_wqe128 *wqe; 10902 struct ulp_bde64_le *bde; 10903 u8 els_id; 10904 10905 wqe = &cmdiocbq->wqe; 10906 memset(wqe, 0, sizeof(*wqe)); 10907 10908 /* Word 0 - 2 BDE */ 10909 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10910 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10911 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10912 bde->type_size = cpu_to_le32(cmd_size); 10913 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10914 10915 if (expect_rsp) { 10916 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10917 10918 /* Transfer length */ 10919 wqe->els_req.payload_len = cmd_size; 10920 wqe->els_req.max_response_payload_len = FCELSSIZE; 10921 10922 /* DID */ 10923 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10924 10925 /* Word 11 - ELS_ID */ 10926 switch (elscmd) { 10927 case ELS_CMD_PLOGI: 10928 els_id = LPFC_ELS_ID_PLOGI; 10929 break; 10930 case ELS_CMD_FLOGI: 10931 els_id = LPFC_ELS_ID_FLOGI; 10932 break; 10933 case ELS_CMD_LOGO: 10934 els_id = LPFC_ELS_ID_LOGO; 10935 break; 10936 case ELS_CMD_FDISC: 10937 if (!vport->fc_myDID) { 10938 els_id = LPFC_ELS_ID_FDISC; 10939 break; 10940 } 10941 fallthrough; 10942 default: 10943 els_id = LPFC_ELS_ID_DEFAULT; 10944 break; 10945 } 10946 10947 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10948 } else { 10949 /* DID */ 10950 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10951 10952 /* Transfer length */ 10953 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10954 10955 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10956 CMD_XMIT_ELS_RSP64_WQE); 10957 } 10958 10959 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10960 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10961 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10962 10963 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10964 * For SLI4, since the driver controls VPIs we also want to include 10965 * all ELS pt2pt protocol traffic as well. 10966 */ 10967 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10968 test_bit(FC_PT2PT, &vport->fc_flag)) { 10969 if (expect_rsp) { 10970 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10971 10972 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10973 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10974 phba->vpi_ids[vport->vpi]); 10975 } 10976 10977 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10978 if (elscmd == ELS_CMD_ECHO) 10979 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10980 else 10981 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10982 } 10983 } 10984 10985 void 10986 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10987 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10988 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10989 u8 expect_rsp) 10990 { 10991 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10992 elscmd, tmo, expect_rsp); 10993 } 10994 10995 static void 10996 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10997 u16 rpi, u32 num_entry, u8 tmo) 10998 { 10999 IOCB_t *cmd; 11000 11001 cmd = &cmdiocbq->iocb; 11002 memset(cmd, 0, sizeof(*cmd)); 11003 11004 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11005 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 11006 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11007 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 11008 11009 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 11010 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 11011 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 11012 11013 cmd->ulpContext = rpi; 11014 cmd->ulpClass = CLASS3; 11015 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 11016 cmd->ulpBdeCount = 1; 11017 cmd->ulpLe = 1; 11018 cmd->ulpOwner = OWN_CHIP; 11019 cmd->ulpTimeout = tmo; 11020 } 11021 11022 static void 11023 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 11024 u16 rpi, u32 num_entry, u8 tmo) 11025 { 11026 union lpfc_wqe128 *cmdwqe; 11027 struct ulp_bde64_le *bde, *bpl; 11028 u32 xmit_len = 0, total_len = 0, size, type, i; 11029 11030 cmdwqe = &cmdiocbq->wqe; 11031 memset(cmdwqe, 0, sizeof(*cmdwqe)); 11032 11033 /* Calculate total_len and xmit_len */ 11034 bpl = (struct ulp_bde64_le *)bmp->virt; 11035 for (i = 0; i < num_entry; i++) { 11036 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 11037 total_len += size; 11038 } 11039 for (i = 0; i < num_entry; i++) { 11040 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 11041 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 11042 if (type != ULP_BDE64_TYPE_BDE_64) 11043 break; 11044 xmit_len += size; 11045 } 11046 11047 /* Words 0 - 2 */ 11048 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 11049 bde->addr_low = bpl->addr_low; 11050 bde->addr_high = bpl->addr_high; 11051 bde->type_size = cpu_to_le32(xmit_len); 11052 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 11053 11054 /* Word 3 */ 11055 cmdwqe->gen_req.request_payload_len = xmit_len; 11056 11057 /* Word 5 */ 11058 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 11059 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 11060 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 11061 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 11062 11063 /* Word 6 */ 11064 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 11065 11066 /* Word 7 */ 11067 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 11068 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 11069 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11070 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11071 11072 /* Word 12 */ 11073 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11074 } 11075 11076 void 11077 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11078 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11079 { 11080 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11081 } 11082 11083 static void 11084 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11085 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11086 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11087 { 11088 IOCB_t *icmd; 11089 11090 icmd = &cmdiocbq->iocb; 11091 memset(icmd, 0, sizeof(*icmd)); 11092 11093 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11094 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11095 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11096 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11097 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11098 if (last_seq) 11099 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11100 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11101 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11102 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11103 11104 icmd->ulpBdeCount = 1; 11105 icmd->ulpLe = 1; 11106 icmd->ulpClass = CLASS3; 11107 11108 switch (cr_cx_cmd) { 11109 case CMD_XMIT_SEQUENCE64_CR: 11110 icmd->ulpContext = rpi; 11111 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11112 break; 11113 case CMD_XMIT_SEQUENCE64_CX: 11114 icmd->ulpContext = ox_id; 11115 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11116 break; 11117 default: 11118 break; 11119 } 11120 } 11121 11122 static void 11123 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11124 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11125 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11126 { 11127 union lpfc_wqe128 *wqe; 11128 struct ulp_bde64 *bpl; 11129 11130 wqe = &cmdiocbq->wqe; 11131 memset(wqe, 0, sizeof(*wqe)); 11132 11133 /* Words 0 - 2 */ 11134 bpl = (struct ulp_bde64 *)bmp->virt; 11135 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11136 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11137 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11138 11139 /* Word 5 */ 11140 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11141 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11142 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11143 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11144 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11145 11146 /* Word 6 */ 11147 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11148 11149 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11150 CMD_XMIT_SEQUENCE64_WQE); 11151 11152 /* Word 7 */ 11153 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11154 11155 /* Word 9 */ 11156 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11157 11158 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11159 /* Word 10 */ 11160 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11161 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11162 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11163 wqe->words[31] = LOOPBACK_SRC_APPID; 11164 } 11165 11166 /* Word 12 */ 11167 wqe->xmit_sequence.xmit_len = full_size; 11168 } 11169 else 11170 wqe->xmit_sequence.xmit_len = 11171 wqe->xmit_sequence.bde.tus.f.bdeSize; 11172 } 11173 11174 void 11175 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11176 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11177 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11178 { 11179 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11180 rctl, last_seq, cr_cx_cmd); 11181 } 11182 11183 static void 11184 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11185 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11186 bool wqec) 11187 { 11188 IOCB_t *icmd = NULL; 11189 11190 icmd = &cmdiocbq->iocb; 11191 memset(icmd, 0, sizeof(*icmd)); 11192 11193 /* Word 5 */ 11194 icmd->un.acxri.abortContextTag = ulp_context; 11195 icmd->un.acxri.abortIoTag = iotag; 11196 11197 if (ia) { 11198 /* Word 7 */ 11199 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11200 } else { 11201 /* Word 3 */ 11202 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11203 11204 /* Word 7 */ 11205 icmd->ulpClass = ulp_class; 11206 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11207 } 11208 11209 /* Word 7 */ 11210 icmd->ulpLe = 1; 11211 } 11212 11213 static void 11214 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11215 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11216 bool wqec) 11217 { 11218 union lpfc_wqe128 *wqe; 11219 11220 wqe = &cmdiocbq->wqe; 11221 memset(wqe, 0, sizeof(*wqe)); 11222 11223 /* Word 3 */ 11224 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11225 if (ia) 11226 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11227 else 11228 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11229 11230 /* Word 7 */ 11231 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11232 11233 /* Word 8 */ 11234 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11235 11236 /* Word 9 */ 11237 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11238 11239 /* Word 10 */ 11240 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11241 11242 /* Word 11 */ 11243 if (wqec) 11244 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11245 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11246 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11247 } 11248 11249 void 11250 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11251 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11252 bool ia, bool wqec) 11253 { 11254 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11255 cqid, ia, wqec); 11256 } 11257 11258 /** 11259 * lpfc_sli_api_table_setup - Set up sli api function jump table 11260 * @phba: The hba struct for which this call is being executed. 11261 * @dev_grp: The HBA PCI-Device group number. 11262 * 11263 * This routine sets up the SLI interface API function jump table in @phba 11264 * struct. 11265 * Returns: 0 - success, -ENODEV - failure. 11266 **/ 11267 int 11268 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11269 { 11270 11271 switch (dev_grp) { 11272 case LPFC_PCI_DEV_LP: 11273 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11274 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11275 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11276 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11277 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11278 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11279 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11280 break; 11281 case LPFC_PCI_DEV_OC: 11282 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11283 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11284 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11285 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11286 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11287 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11288 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11289 break; 11290 default: 11291 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11292 "1419 Invalid HBA PCI-device group: 0x%x\n", 11293 dev_grp); 11294 return -ENODEV; 11295 } 11296 return 0; 11297 } 11298 11299 /** 11300 * lpfc_sli4_calc_ring - Calculates which ring to use 11301 * @phba: Pointer to HBA context object. 11302 * @piocb: Pointer to command iocb. 11303 * 11304 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11305 * hba_wqidx, thus we need to calculate the corresponding ring. 11306 * Since ABORTS must go on the same WQ of the command they are 11307 * aborting, we use command's hba_wqidx. 11308 */ 11309 struct lpfc_sli_ring * 11310 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11311 { 11312 struct lpfc_io_buf *lpfc_cmd; 11313 11314 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11315 if (unlikely(!phba->sli4_hba.hdwq)) 11316 return NULL; 11317 /* 11318 * for abort iocb hba_wqidx should already 11319 * be setup based on what work queue we used. 11320 */ 11321 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11322 lpfc_cmd = piocb->io_buf; 11323 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11324 } 11325 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11326 } else { 11327 if (unlikely(!phba->sli4_hba.els_wq)) 11328 return NULL; 11329 piocb->hba_wqidx = 0; 11330 return phba->sli4_hba.els_wq->pring; 11331 } 11332 } 11333 11334 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11335 { 11336 struct lpfc_hba *phba = eq->phba; 11337 11338 /* 11339 * Unlocking an irq is one of the entry point to check 11340 * for re-schedule, but we are good for io submission 11341 * path as midlayer does a get_cpu to glue us in. Flush 11342 * out the invalidate queue so we can see the updated 11343 * value for flag. 11344 */ 11345 smp_rmb(); 11346 11347 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11348 /* We will not likely get the completion for the caller 11349 * during this iteration but i guess that's fine. 11350 * Future io's coming on this eq should be able to 11351 * pick it up. As for the case of single io's, they 11352 * will be handled through a sched from polling timer 11353 * function which is currently triggered every 1msec. 11354 */ 11355 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11356 LPFC_QUEUE_WORK); 11357 } 11358 11359 /** 11360 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11361 * @phba: Pointer to HBA context object. 11362 * @ring_number: Ring number 11363 * @piocb: Pointer to command iocb. 11364 * @flag: Flag indicating if this command can be put into txq. 11365 * 11366 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11367 * function. This function gets the hbalock and calls 11368 * __lpfc_sli_issue_iocb function and will return the error returned 11369 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11370 * functions which do not hold hbalock. 11371 **/ 11372 int 11373 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11374 struct lpfc_iocbq *piocb, uint32_t flag) 11375 { 11376 struct lpfc_sli_ring *pring; 11377 struct lpfc_queue *eq; 11378 unsigned long iflags; 11379 int rc; 11380 11381 /* If the PCI channel is in offline state, do not post iocbs. */ 11382 if (unlikely(pci_channel_offline(phba->pcidev))) 11383 return IOCB_ERROR; 11384 11385 if (phba->sli_rev == LPFC_SLI_REV4) { 11386 lpfc_sli_prep_wqe(phba, piocb); 11387 11388 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11389 11390 pring = lpfc_sli4_calc_ring(phba, piocb); 11391 if (unlikely(pring == NULL)) 11392 return IOCB_ERROR; 11393 11394 spin_lock_irqsave(&pring->ring_lock, iflags); 11395 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11396 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11397 11398 lpfc_sli4_poll_eq(eq); 11399 } else { 11400 /* For now, SLI2/3 will still use hbalock */ 11401 spin_lock_irqsave(&phba->hbalock, iflags); 11402 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11403 spin_unlock_irqrestore(&phba->hbalock, iflags); 11404 } 11405 return rc; 11406 } 11407 11408 /** 11409 * lpfc_extra_ring_setup - Extra ring setup function 11410 * @phba: Pointer to HBA context object. 11411 * 11412 * This function is called while driver attaches with the 11413 * HBA to setup the extra ring. The extra ring is used 11414 * only when driver needs to support target mode functionality 11415 * or IP over FC functionalities. 11416 * 11417 * This function is called with no lock held. SLI3 only. 11418 **/ 11419 static int 11420 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11421 { 11422 struct lpfc_sli *psli; 11423 struct lpfc_sli_ring *pring; 11424 11425 psli = &phba->sli; 11426 11427 /* Adjust cmd/rsp ring iocb entries more evenly */ 11428 11429 /* Take some away from the FCP ring */ 11430 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11431 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11432 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11433 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11434 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11435 11436 /* and give them to the extra ring */ 11437 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11438 11439 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11440 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11441 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11442 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11443 11444 /* Setup default profile for this ring */ 11445 pring->iotag_max = 4096; 11446 pring->num_mask = 1; 11447 pring->prt[0].profile = 0; /* Mask 0 */ 11448 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11449 pring->prt[0].type = phba->cfg_multi_ring_type; 11450 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11451 return 0; 11452 } 11453 11454 static void 11455 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11456 struct lpfc_nodelist *ndlp) 11457 { 11458 unsigned long iflags; 11459 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11460 11461 /* Hold a node reference for outstanding queued work */ 11462 if (!lpfc_nlp_get(ndlp)) 11463 return; 11464 11465 spin_lock_irqsave(&phba->hbalock, iflags); 11466 if (!list_empty(&evtp->evt_listp)) { 11467 spin_unlock_irqrestore(&phba->hbalock, iflags); 11468 lpfc_nlp_put(ndlp); 11469 return; 11470 } 11471 11472 evtp->evt_arg1 = ndlp; 11473 evtp->evt = LPFC_EVT_RECOVER_PORT; 11474 list_add_tail(&evtp->evt_listp, &phba->work_list); 11475 spin_unlock_irqrestore(&phba->hbalock, iflags); 11476 11477 lpfc_worker_wake_up(phba); 11478 } 11479 11480 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11481 * @phba: Pointer to HBA context object. 11482 * @iocbq: Pointer to iocb object. 11483 * 11484 * The async_event handler calls this routine when it receives 11485 * an ASYNC_STATUS_CN event from the port. The port generates 11486 * this event when an Abort Sequence request to an rport fails 11487 * twice in succession. The abort could be originated by the 11488 * driver or by the port. The ABTS could have been for an ELS 11489 * or FCP IO. The port only generates this event when an ABTS 11490 * fails to complete after one retry. 11491 */ 11492 static void 11493 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11494 struct lpfc_iocbq *iocbq) 11495 { 11496 struct lpfc_nodelist *ndlp = NULL; 11497 uint16_t rpi = 0, vpi = 0; 11498 struct lpfc_vport *vport = NULL; 11499 11500 /* The rpi in the ulpContext is vport-sensitive. */ 11501 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11502 rpi = iocbq->iocb.ulpContext; 11503 11504 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11505 "3092 Port generated ABTS async event " 11506 "on vpi %d rpi %d status 0x%x\n", 11507 vpi, rpi, iocbq->iocb.ulpStatus); 11508 11509 vport = lpfc_find_vport_by_vpid(phba, vpi); 11510 if (!vport) 11511 goto err_exit; 11512 ndlp = lpfc_findnode_rpi(vport, rpi); 11513 if (!ndlp) 11514 goto err_exit; 11515 11516 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11517 lpfc_sli_abts_recover_port(vport, ndlp); 11518 return; 11519 11520 err_exit: 11521 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11522 "3095 Event Context not found, no " 11523 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11524 vpi, rpi, iocbq->iocb.ulpStatus, 11525 iocbq->iocb.ulpContext); 11526 } 11527 11528 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11529 * @phba: pointer to HBA context object. 11530 * @ndlp: nodelist pointer for the impacted rport. 11531 * @axri: pointer to the wcqe containing the failed exchange. 11532 * 11533 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11534 * port. The port generates this event when an abort exchange request to an 11535 * rport fails twice in succession with no reply. The abort could be originated 11536 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11537 */ 11538 void 11539 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11540 struct lpfc_nodelist *ndlp, 11541 struct sli4_wcqe_xri_aborted *axri) 11542 { 11543 uint32_t ext_status = 0; 11544 11545 if (!ndlp) { 11546 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11547 "3115 Node Context not found, driver " 11548 "ignoring abts err event\n"); 11549 return; 11550 } 11551 11552 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11553 "3116 Port generated FCP XRI ABORT event on " 11554 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11555 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11556 bf_get(lpfc_wcqe_xa_xri, axri), 11557 bf_get(lpfc_wcqe_xa_status, axri), 11558 axri->parameter); 11559 11560 /* 11561 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11562 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11563 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11564 */ 11565 ext_status = axri->parameter & IOERR_PARAM_MASK; 11566 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11567 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11568 lpfc_sli_post_recovery_event(phba, ndlp); 11569 } 11570 11571 /** 11572 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11573 * @phba: Pointer to HBA context object. 11574 * @pring: Pointer to driver SLI ring object. 11575 * @iocbq: Pointer to iocb object. 11576 * 11577 * This function is called by the slow ring event handler 11578 * function when there is an ASYNC event iocb in the ring. 11579 * This function is called with no lock held. 11580 * Currently this function handles only temperature related 11581 * ASYNC events. The function decodes the temperature sensor 11582 * event message and posts events for the management applications. 11583 **/ 11584 static void 11585 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11586 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11587 { 11588 IOCB_t *icmd; 11589 uint16_t evt_code; 11590 struct temp_event temp_event_data; 11591 struct Scsi_Host *shost; 11592 uint32_t *iocb_w; 11593 11594 icmd = &iocbq->iocb; 11595 evt_code = icmd->un.asyncstat.evt_code; 11596 11597 switch (evt_code) { 11598 case ASYNC_TEMP_WARN: 11599 case ASYNC_TEMP_SAFE: 11600 temp_event_data.data = (uint32_t) icmd->ulpContext; 11601 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11602 if (evt_code == ASYNC_TEMP_WARN) { 11603 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11605 "0347 Adapter is very hot, please take " 11606 "corrective action. temperature : %d Celsius\n", 11607 (uint32_t) icmd->ulpContext); 11608 } else { 11609 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11611 "0340 Adapter temperature is OK now. " 11612 "temperature : %d Celsius\n", 11613 (uint32_t) icmd->ulpContext); 11614 } 11615 11616 /* Send temperature change event to applications */ 11617 shost = lpfc_shost_from_vport(phba->pport); 11618 fc_host_post_vendor_event(shost, fc_get_event_number(), 11619 sizeof(temp_event_data), (char *) &temp_event_data, 11620 LPFC_NL_VENDOR_ID); 11621 break; 11622 case ASYNC_STATUS_CN: 11623 lpfc_sli_abts_err_handler(phba, iocbq); 11624 break; 11625 default: 11626 iocb_w = (uint32_t *) icmd; 11627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11628 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11629 " evt_code 0x%x\n" 11630 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11631 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11632 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11633 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11634 pring->ringno, icmd->un.asyncstat.evt_code, 11635 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11636 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11637 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11638 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11639 11640 break; 11641 } 11642 } 11643 11644 11645 /** 11646 * lpfc_sli4_setup - SLI ring setup function 11647 * @phba: Pointer to HBA context object. 11648 * 11649 * lpfc_sli_setup sets up rings of the SLI interface with 11650 * number of iocbs per ring and iotags. This function is 11651 * called while driver attach to the HBA and before the 11652 * interrupts are enabled. So there is no need for locking. 11653 * 11654 * This function always returns 0. 11655 **/ 11656 int 11657 lpfc_sli4_setup(struct lpfc_hba *phba) 11658 { 11659 struct lpfc_sli_ring *pring; 11660 11661 pring = phba->sli4_hba.els_wq->pring; 11662 pring->num_mask = LPFC_MAX_RING_MASK; 11663 pring->prt[0].profile = 0; /* Mask 0 */ 11664 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11665 pring->prt[0].type = FC_TYPE_ELS; 11666 pring->prt[0].lpfc_sli_rcv_unsol_event = 11667 lpfc_els_unsol_event; 11668 pring->prt[1].profile = 0; /* Mask 1 */ 11669 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11670 pring->prt[1].type = FC_TYPE_ELS; 11671 pring->prt[1].lpfc_sli_rcv_unsol_event = 11672 lpfc_els_unsol_event; 11673 pring->prt[2].profile = 0; /* Mask 2 */ 11674 /* NameServer Inquiry */ 11675 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11676 /* NameServer */ 11677 pring->prt[2].type = FC_TYPE_CT; 11678 pring->prt[2].lpfc_sli_rcv_unsol_event = 11679 lpfc_ct_unsol_event; 11680 pring->prt[3].profile = 0; /* Mask 3 */ 11681 /* NameServer response */ 11682 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11683 /* NameServer */ 11684 pring->prt[3].type = FC_TYPE_CT; 11685 pring->prt[3].lpfc_sli_rcv_unsol_event = 11686 lpfc_ct_unsol_event; 11687 return 0; 11688 } 11689 11690 /** 11691 * lpfc_sli_setup - SLI ring setup function 11692 * @phba: Pointer to HBA context object. 11693 * 11694 * lpfc_sli_setup sets up rings of the SLI interface with 11695 * number of iocbs per ring and iotags. This function is 11696 * called while driver attach to the HBA and before the 11697 * interrupts are enabled. So there is no need for locking. 11698 * 11699 * This function always returns 0. SLI3 only. 11700 **/ 11701 int 11702 lpfc_sli_setup(struct lpfc_hba *phba) 11703 { 11704 int i, totiocbsize = 0; 11705 struct lpfc_sli *psli = &phba->sli; 11706 struct lpfc_sli_ring *pring; 11707 11708 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11709 psli->sli_flag = 0; 11710 11711 psli->iocbq_lookup = NULL; 11712 psli->iocbq_lookup_len = 0; 11713 psli->last_iotag = 0; 11714 11715 for (i = 0; i < psli->num_rings; i++) { 11716 pring = &psli->sli3_ring[i]; 11717 switch (i) { 11718 case LPFC_FCP_RING: /* ring 0 - FCP */ 11719 /* numCiocb and numRiocb are used in config_port */ 11720 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11721 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11722 pring->sli.sli3.numCiocb += 11723 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11724 pring->sli.sli3.numRiocb += 11725 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11726 pring->sli.sli3.numCiocb += 11727 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11728 pring->sli.sli3.numRiocb += 11729 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11730 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11731 SLI3_IOCB_CMD_SIZE : 11732 SLI2_IOCB_CMD_SIZE; 11733 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11734 SLI3_IOCB_RSP_SIZE : 11735 SLI2_IOCB_RSP_SIZE; 11736 pring->iotag_ctr = 0; 11737 pring->iotag_max = 11738 (phba->cfg_hba_queue_depth * 2); 11739 pring->fast_iotag = pring->iotag_max; 11740 pring->num_mask = 0; 11741 break; 11742 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11743 /* numCiocb and numRiocb are used in config_port */ 11744 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11745 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11746 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11747 SLI3_IOCB_CMD_SIZE : 11748 SLI2_IOCB_CMD_SIZE; 11749 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11750 SLI3_IOCB_RSP_SIZE : 11751 SLI2_IOCB_RSP_SIZE; 11752 pring->iotag_max = phba->cfg_hba_queue_depth; 11753 pring->num_mask = 0; 11754 break; 11755 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11756 /* numCiocb and numRiocb are used in config_port */ 11757 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11758 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11759 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11760 SLI3_IOCB_CMD_SIZE : 11761 SLI2_IOCB_CMD_SIZE; 11762 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11763 SLI3_IOCB_RSP_SIZE : 11764 SLI2_IOCB_RSP_SIZE; 11765 pring->fast_iotag = 0; 11766 pring->iotag_ctr = 0; 11767 pring->iotag_max = 4096; 11768 pring->lpfc_sli_rcv_async_status = 11769 lpfc_sli_async_event_handler; 11770 pring->num_mask = LPFC_MAX_RING_MASK; 11771 pring->prt[0].profile = 0; /* Mask 0 */ 11772 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11773 pring->prt[0].type = FC_TYPE_ELS; 11774 pring->prt[0].lpfc_sli_rcv_unsol_event = 11775 lpfc_els_unsol_event; 11776 pring->prt[1].profile = 0; /* Mask 1 */ 11777 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11778 pring->prt[1].type = FC_TYPE_ELS; 11779 pring->prt[1].lpfc_sli_rcv_unsol_event = 11780 lpfc_els_unsol_event; 11781 pring->prt[2].profile = 0; /* Mask 2 */ 11782 /* NameServer Inquiry */ 11783 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11784 /* NameServer */ 11785 pring->prt[2].type = FC_TYPE_CT; 11786 pring->prt[2].lpfc_sli_rcv_unsol_event = 11787 lpfc_ct_unsol_event; 11788 pring->prt[3].profile = 0; /* Mask 3 */ 11789 /* NameServer response */ 11790 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11791 /* NameServer */ 11792 pring->prt[3].type = FC_TYPE_CT; 11793 pring->prt[3].lpfc_sli_rcv_unsol_event = 11794 lpfc_ct_unsol_event; 11795 break; 11796 } 11797 totiocbsize += (pring->sli.sli3.numCiocb * 11798 pring->sli.sli3.sizeCiocb) + 11799 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11800 } 11801 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11802 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11803 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11804 "SLI2 SLIM Data: x%x x%lx\n", 11805 phba->brd_no, totiocbsize, 11806 (unsigned long) MAX_SLIM_IOCB_SIZE); 11807 } 11808 if (phba->cfg_multi_ring_support == 2) 11809 lpfc_extra_ring_setup(phba); 11810 11811 return 0; 11812 } 11813 11814 /** 11815 * lpfc_sli4_queue_init - Queue initialization function 11816 * @phba: Pointer to HBA context object. 11817 * 11818 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11819 * ring. This function also initializes ring indices of each ring. 11820 * This function is called during the initialization of the SLI 11821 * interface of an HBA. 11822 * This function is called with no lock held and always returns 11823 * 1. 11824 **/ 11825 void 11826 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11827 { 11828 struct lpfc_sli *psli; 11829 struct lpfc_sli_ring *pring; 11830 int i; 11831 11832 psli = &phba->sli; 11833 spin_lock_irq(&phba->hbalock); 11834 INIT_LIST_HEAD(&psli->mboxq); 11835 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11836 /* Initialize list headers for txq and txcmplq as double linked lists */ 11837 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11838 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11839 pring->flag = 0; 11840 pring->ringno = LPFC_FCP_RING; 11841 pring->txcmplq_cnt = 0; 11842 INIT_LIST_HEAD(&pring->txq); 11843 INIT_LIST_HEAD(&pring->txcmplq); 11844 INIT_LIST_HEAD(&pring->iocb_continueq); 11845 spin_lock_init(&pring->ring_lock); 11846 } 11847 pring = phba->sli4_hba.els_wq->pring; 11848 pring->flag = 0; 11849 pring->ringno = LPFC_ELS_RING; 11850 pring->txcmplq_cnt = 0; 11851 INIT_LIST_HEAD(&pring->txq); 11852 INIT_LIST_HEAD(&pring->txcmplq); 11853 INIT_LIST_HEAD(&pring->iocb_continueq); 11854 spin_lock_init(&pring->ring_lock); 11855 11856 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11857 pring = phba->sli4_hba.nvmels_wq->pring; 11858 pring->flag = 0; 11859 pring->ringno = LPFC_ELS_RING; 11860 pring->txcmplq_cnt = 0; 11861 INIT_LIST_HEAD(&pring->txq); 11862 INIT_LIST_HEAD(&pring->txcmplq); 11863 INIT_LIST_HEAD(&pring->iocb_continueq); 11864 spin_lock_init(&pring->ring_lock); 11865 } 11866 11867 spin_unlock_irq(&phba->hbalock); 11868 } 11869 11870 /** 11871 * lpfc_sli_queue_init - Queue initialization function 11872 * @phba: Pointer to HBA context object. 11873 * 11874 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11875 * ring. This function also initializes ring indices of each ring. 11876 * This function is called during the initialization of the SLI 11877 * interface of an HBA. 11878 * This function is called with no lock held and always returns 11879 * 1. 11880 **/ 11881 void 11882 lpfc_sli_queue_init(struct lpfc_hba *phba) 11883 { 11884 struct lpfc_sli *psli; 11885 struct lpfc_sli_ring *pring; 11886 int i; 11887 11888 psli = &phba->sli; 11889 spin_lock_irq(&phba->hbalock); 11890 INIT_LIST_HEAD(&psli->mboxq); 11891 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11892 /* Initialize list headers for txq and txcmplq as double linked lists */ 11893 for (i = 0; i < psli->num_rings; i++) { 11894 pring = &psli->sli3_ring[i]; 11895 pring->ringno = i; 11896 pring->sli.sli3.next_cmdidx = 0; 11897 pring->sli.sli3.local_getidx = 0; 11898 pring->sli.sli3.cmdidx = 0; 11899 INIT_LIST_HEAD(&pring->iocb_continueq); 11900 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11901 INIT_LIST_HEAD(&pring->postbufq); 11902 pring->flag = 0; 11903 INIT_LIST_HEAD(&pring->txq); 11904 INIT_LIST_HEAD(&pring->txcmplq); 11905 spin_lock_init(&pring->ring_lock); 11906 } 11907 spin_unlock_irq(&phba->hbalock); 11908 } 11909 11910 /** 11911 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11912 * @phba: Pointer to HBA context object. 11913 * 11914 * This routine flushes the mailbox command subsystem. It will unconditionally 11915 * flush all the mailbox commands in the three possible stages in the mailbox 11916 * command sub-system: pending mailbox command queue; the outstanding mailbox 11917 * command; and completed mailbox command queue. It is caller's responsibility 11918 * to make sure that the driver is in the proper state to flush the mailbox 11919 * command sub-system. Namely, the posting of mailbox commands into the 11920 * pending mailbox command queue from the various clients must be stopped; 11921 * either the HBA is in a state that it will never works on the outstanding 11922 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11923 * mailbox command has been completed. 11924 **/ 11925 static void 11926 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11927 { 11928 LIST_HEAD(completions); 11929 struct lpfc_sli *psli = &phba->sli; 11930 LPFC_MBOXQ_t *pmb; 11931 unsigned long iflag; 11932 11933 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11934 local_bh_disable(); 11935 11936 /* Flush all the mailbox commands in the mbox system */ 11937 spin_lock_irqsave(&phba->hbalock, iflag); 11938 11939 /* The pending mailbox command queue */ 11940 list_splice_init(&phba->sli.mboxq, &completions); 11941 /* The outstanding active mailbox command */ 11942 if (psli->mbox_active) { 11943 list_add_tail(&psli->mbox_active->list, &completions); 11944 psli->mbox_active = NULL; 11945 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11946 } 11947 /* The completed mailbox command queue */ 11948 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11949 spin_unlock_irqrestore(&phba->hbalock, iflag); 11950 11951 /* Enable softirqs again, done with phba->hbalock */ 11952 local_bh_enable(); 11953 11954 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11955 while (!list_empty(&completions)) { 11956 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11957 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11958 if (pmb->mbox_cmpl) 11959 pmb->mbox_cmpl(phba, pmb); 11960 } 11961 } 11962 11963 /** 11964 * lpfc_sli_host_down - Vport cleanup function 11965 * @vport: Pointer to virtual port object. 11966 * 11967 * lpfc_sli_host_down is called to clean up the resources 11968 * associated with a vport before destroying virtual 11969 * port data structures. 11970 * This function does following operations: 11971 * - Free discovery resources associated with this virtual 11972 * port. 11973 * - Free iocbs associated with this virtual port in 11974 * the txq. 11975 * - Send abort for all iocb commands associated with this 11976 * vport in txcmplq. 11977 * 11978 * This function is called with no lock held and always returns 1. 11979 **/ 11980 int 11981 lpfc_sli_host_down(struct lpfc_vport *vport) 11982 { 11983 LIST_HEAD(completions); 11984 struct lpfc_hba *phba = vport->phba; 11985 struct lpfc_sli *psli = &phba->sli; 11986 struct lpfc_queue *qp = NULL; 11987 struct lpfc_sli_ring *pring; 11988 struct lpfc_iocbq *iocb, *next_iocb; 11989 int i; 11990 unsigned long flags = 0; 11991 uint16_t prev_pring_flag; 11992 11993 lpfc_cleanup_discovery_resources(vport); 11994 11995 spin_lock_irqsave(&phba->hbalock, flags); 11996 11997 /* 11998 * Error everything on the txq since these iocbs 11999 * have not been given to the FW yet. 12000 * Also issue ABTS for everything on the txcmplq 12001 */ 12002 if (phba->sli_rev != LPFC_SLI_REV4) { 12003 for (i = 0; i < psli->num_rings; i++) { 12004 pring = &psli->sli3_ring[i]; 12005 prev_pring_flag = pring->flag; 12006 /* Only slow rings */ 12007 if (pring->ringno == LPFC_ELS_RING) { 12008 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12009 /* Set the lpfc data pending flag */ 12010 set_bit(LPFC_DATA_READY, &phba->data_flags); 12011 } 12012 list_for_each_entry_safe(iocb, next_iocb, 12013 &pring->txq, list) { 12014 if (iocb->vport != vport) 12015 continue; 12016 list_move_tail(&iocb->list, &completions); 12017 } 12018 list_for_each_entry_safe(iocb, next_iocb, 12019 &pring->txcmplq, list) { 12020 if (iocb->vport != vport) 12021 continue; 12022 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 12023 NULL); 12024 } 12025 pring->flag = prev_pring_flag; 12026 } 12027 } else { 12028 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12029 pring = qp->pring; 12030 if (!pring) 12031 continue; 12032 if (pring == phba->sli4_hba.els_wq->pring) { 12033 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12034 /* Set the lpfc data pending flag */ 12035 set_bit(LPFC_DATA_READY, &phba->data_flags); 12036 } 12037 prev_pring_flag = pring->flag; 12038 spin_lock(&pring->ring_lock); 12039 list_for_each_entry_safe(iocb, next_iocb, 12040 &pring->txq, list) { 12041 if (iocb->vport != vport) 12042 continue; 12043 list_move_tail(&iocb->list, &completions); 12044 } 12045 spin_unlock(&pring->ring_lock); 12046 list_for_each_entry_safe(iocb, next_iocb, 12047 &pring->txcmplq, list) { 12048 if (iocb->vport != vport) 12049 continue; 12050 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 12051 NULL); 12052 } 12053 pring->flag = prev_pring_flag; 12054 } 12055 } 12056 spin_unlock_irqrestore(&phba->hbalock, flags); 12057 12058 /* Make sure HBA is alive */ 12059 lpfc_issue_hb_tmo(phba); 12060 12061 /* Cancel all the IOCBs from the completions list */ 12062 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12063 IOERR_SLI_DOWN); 12064 return 1; 12065 } 12066 12067 /** 12068 * lpfc_sli_hba_down - Resource cleanup function for the HBA 12069 * @phba: Pointer to HBA context object. 12070 * 12071 * This function cleans up all iocb, buffers, mailbox commands 12072 * while shutting down the HBA. This function is called with no 12073 * lock held and always returns 1. 12074 * This function does the following to cleanup driver resources: 12075 * - Free discovery resources for each virtual port 12076 * - Cleanup any pending fabric iocbs 12077 * - Iterate through the iocb txq and free each entry 12078 * in the list. 12079 * - Free up any buffer posted to the HBA 12080 * - Free mailbox commands in the mailbox queue. 12081 **/ 12082 int 12083 lpfc_sli_hba_down(struct lpfc_hba *phba) 12084 { 12085 LIST_HEAD(completions); 12086 struct lpfc_sli *psli = &phba->sli; 12087 struct lpfc_queue *qp = NULL; 12088 struct lpfc_sli_ring *pring; 12089 struct lpfc_dmabuf *buf_ptr; 12090 unsigned long flags = 0; 12091 int i; 12092 12093 /* Shutdown the mailbox command sub-system */ 12094 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12095 12096 lpfc_hba_down_prep(phba); 12097 12098 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12099 local_bh_disable(); 12100 12101 lpfc_fabric_abort_hba(phba); 12102 12103 spin_lock_irqsave(&phba->hbalock, flags); 12104 12105 /* 12106 * Error everything on the txq since these iocbs 12107 * have not been given to the FW yet. 12108 */ 12109 if (phba->sli_rev != LPFC_SLI_REV4) { 12110 for (i = 0; i < psli->num_rings; i++) { 12111 pring = &psli->sli3_ring[i]; 12112 /* Only slow rings */ 12113 if (pring->ringno == LPFC_ELS_RING) { 12114 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12115 /* Set the lpfc data pending flag */ 12116 set_bit(LPFC_DATA_READY, &phba->data_flags); 12117 } 12118 list_splice_init(&pring->txq, &completions); 12119 } 12120 } else { 12121 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12122 pring = qp->pring; 12123 if (!pring) 12124 continue; 12125 spin_lock(&pring->ring_lock); 12126 list_splice_init(&pring->txq, &completions); 12127 spin_unlock(&pring->ring_lock); 12128 if (pring == phba->sli4_hba.els_wq->pring) { 12129 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12130 /* Set the lpfc data pending flag */ 12131 set_bit(LPFC_DATA_READY, &phba->data_flags); 12132 } 12133 } 12134 } 12135 spin_unlock_irqrestore(&phba->hbalock, flags); 12136 12137 /* Cancel all the IOCBs from the completions list */ 12138 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12139 IOERR_SLI_DOWN); 12140 12141 spin_lock_irqsave(&phba->hbalock, flags); 12142 list_splice_init(&phba->elsbuf, &completions); 12143 phba->elsbuf_cnt = 0; 12144 phba->elsbuf_prev_cnt = 0; 12145 spin_unlock_irqrestore(&phba->hbalock, flags); 12146 12147 while (!list_empty(&completions)) { 12148 list_remove_head(&completions, buf_ptr, 12149 struct lpfc_dmabuf, list); 12150 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12151 kfree(buf_ptr); 12152 } 12153 12154 /* Enable softirqs again, done with phba->hbalock */ 12155 local_bh_enable(); 12156 12157 /* Return any active mbox cmds */ 12158 timer_delete_sync(&psli->mbox_tmo); 12159 12160 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12161 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12162 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12163 12164 return 1; 12165 } 12166 12167 /** 12168 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12169 * @srcp: Source memory pointer. 12170 * @destp: Destination memory pointer. 12171 * @cnt: Number of words required to be copied. 12172 * 12173 * This function is used for copying data between driver memory 12174 * and the SLI memory. This function also changes the endianness 12175 * of each word if native endianness is different from SLI 12176 * endianness. This function can be called with or without 12177 * lock. 12178 **/ 12179 void 12180 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12181 { 12182 uint32_t *src = srcp; 12183 uint32_t *dest = destp; 12184 uint32_t ldata; 12185 int i; 12186 12187 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12188 ldata = *src; 12189 ldata = le32_to_cpu(ldata); 12190 *dest = ldata; 12191 src++; 12192 dest++; 12193 } 12194 } 12195 12196 12197 /** 12198 * lpfc_sli_bemem_bcopy - SLI memory copy function 12199 * @srcp: Source memory pointer. 12200 * @destp: Destination memory pointer. 12201 * @cnt: Number of words required to be copied. 12202 * 12203 * This function is used for copying data between a data structure 12204 * with big endian representation to local endianness. 12205 * This function can be called with or without lock. 12206 **/ 12207 void 12208 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12209 { 12210 uint32_t *src = srcp; 12211 uint32_t *dest = destp; 12212 uint32_t ldata; 12213 int i; 12214 12215 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12216 ldata = *src; 12217 ldata = be32_to_cpu(ldata); 12218 *dest = ldata; 12219 src++; 12220 dest++; 12221 } 12222 } 12223 12224 /** 12225 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12226 * @phba: Pointer to HBA context object. 12227 * @pring: Pointer to driver SLI ring object. 12228 * @mp: Pointer to driver buffer object. 12229 * 12230 * This function is called with no lock held. 12231 * It always return zero after adding the buffer to the postbufq 12232 * buffer list. 12233 **/ 12234 int 12235 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12236 struct lpfc_dmabuf *mp) 12237 { 12238 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12239 later */ 12240 spin_lock_irq(&phba->hbalock); 12241 list_add_tail(&mp->list, &pring->postbufq); 12242 pring->postbufq_cnt++; 12243 spin_unlock_irq(&phba->hbalock); 12244 return 0; 12245 } 12246 12247 /** 12248 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12249 * @phba: Pointer to HBA context object. 12250 * 12251 * When HBQ is enabled, buffers are searched based on tags. This function 12252 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12253 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12254 * does not conflict with tags of buffer posted for unsolicited events. 12255 * The function returns the allocated tag. The function is called with 12256 * no locks held. 12257 **/ 12258 uint32_t 12259 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12260 { 12261 spin_lock_irq(&phba->hbalock); 12262 phba->buffer_tag_count++; 12263 /* 12264 * Always set the QUE_BUFTAG_BIT to distiguish between 12265 * a tag assigned by HBQ. 12266 */ 12267 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12268 spin_unlock_irq(&phba->hbalock); 12269 return phba->buffer_tag_count; 12270 } 12271 12272 /** 12273 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12274 * @phba: Pointer to HBA context object. 12275 * @pring: Pointer to driver SLI ring object. 12276 * @tag: Buffer tag. 12277 * 12278 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12279 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12280 * iocb is posted to the response ring with the tag of the buffer. 12281 * This function searches the pring->postbufq list using the tag 12282 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12283 * iocb. If the buffer is found then lpfc_dmabuf object of the 12284 * buffer is returned to the caller else NULL is returned. 12285 * This function is called with no lock held. 12286 **/ 12287 struct lpfc_dmabuf * 12288 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12289 uint32_t tag) 12290 { 12291 struct lpfc_dmabuf *mp, *next_mp; 12292 struct list_head *slp = &pring->postbufq; 12293 12294 /* Search postbufq, from the beginning, looking for a match on tag */ 12295 spin_lock_irq(&phba->hbalock); 12296 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12297 if (mp->buffer_tag == tag) { 12298 list_del_init(&mp->list); 12299 pring->postbufq_cnt--; 12300 spin_unlock_irq(&phba->hbalock); 12301 return mp; 12302 } 12303 } 12304 12305 spin_unlock_irq(&phba->hbalock); 12306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12307 "0402 Cannot find virtual addr for buffer tag on " 12308 "ring %d Data x%lx x%px x%px x%x\n", 12309 pring->ringno, (unsigned long) tag, 12310 slp->next, slp->prev, pring->postbufq_cnt); 12311 12312 return NULL; 12313 } 12314 12315 /** 12316 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12317 * @phba: Pointer to HBA context object. 12318 * @pring: Pointer to driver SLI ring object. 12319 * @phys: DMA address of the buffer. 12320 * 12321 * This function searches the buffer list using the dma_address 12322 * of unsolicited event to find the driver's lpfc_dmabuf object 12323 * corresponding to the dma_address. The function returns the 12324 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12325 * This function is called by the ct and els unsolicited event 12326 * handlers to get the buffer associated with the unsolicited 12327 * event. 12328 * 12329 * This function is called with no lock held. 12330 **/ 12331 struct lpfc_dmabuf * 12332 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12333 dma_addr_t phys) 12334 { 12335 struct lpfc_dmabuf *mp, *next_mp; 12336 struct list_head *slp = &pring->postbufq; 12337 12338 /* Search postbufq, from the beginning, looking for a match on phys */ 12339 spin_lock_irq(&phba->hbalock); 12340 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12341 if (mp->phys == phys) { 12342 list_del_init(&mp->list); 12343 pring->postbufq_cnt--; 12344 spin_unlock_irq(&phba->hbalock); 12345 return mp; 12346 } 12347 } 12348 12349 spin_unlock_irq(&phba->hbalock); 12350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12351 "0410 Cannot find virtual addr for mapped buf on " 12352 "ring %d Data x%llx x%px x%px x%x\n", 12353 pring->ringno, (unsigned long long)phys, 12354 slp->next, slp->prev, pring->postbufq_cnt); 12355 return NULL; 12356 } 12357 12358 /** 12359 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12360 * @phba: Pointer to HBA context object. 12361 * @cmdiocb: Pointer to driver command iocb object. 12362 * @rspiocb: Pointer to driver response iocb object. 12363 * 12364 * This function is the completion handler for the abort iocbs for 12365 * ELS commands. This function is called from the ELS ring event 12366 * handler with no lock held. This function frees memory resources 12367 * associated with the abort iocb. 12368 **/ 12369 static void 12370 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12371 struct lpfc_iocbq *rspiocb) 12372 { 12373 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12374 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12375 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12376 12377 if (ulp_status) { 12378 /* 12379 * Assume that the port already completed and returned, or 12380 * will return the iocb. Just Log the message. 12381 */ 12382 if (phba->sli_rev < LPFC_SLI_REV4) { 12383 if (cmnd == CMD_ABORT_XRI_CX && 12384 ulp_status == IOSTAT_LOCAL_REJECT && 12385 ulp_word4 == IOERR_ABORT_REQUESTED) { 12386 goto release_iocb; 12387 } 12388 } 12389 } 12390 12391 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12392 "0327 Abort els iocb complete x%px with io cmd xri %x " 12393 "abort tag x%x abort status %x abort code %x\n", 12394 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12395 (phba->sli_rev == LPFC_SLI_REV4) ? 12396 get_wqe_reqtag(cmdiocb) : 12397 cmdiocb->iocb.ulpIoTag, 12398 ulp_status, ulp_word4); 12399 release_iocb: 12400 lpfc_sli_release_iocbq(phba, cmdiocb); 12401 return; 12402 } 12403 12404 /** 12405 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12406 * @phba: Pointer to HBA context object. 12407 * @cmdiocb: Pointer to driver command iocb object. 12408 * @rspiocb: Pointer to driver response iocb object. 12409 * 12410 * The function is called from SLI ring event handler with no 12411 * lock held. This function is the completion handler for ELS commands 12412 * which are aborted. The function frees memory resources used for 12413 * the aborted ELS commands. 12414 **/ 12415 void 12416 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12417 struct lpfc_iocbq *rspiocb) 12418 { 12419 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12420 IOCB_t *irsp; 12421 LPFC_MBOXQ_t *mbox; 12422 u32 ulp_command, ulp_status, ulp_word4, iotag; 12423 12424 ulp_command = get_job_cmnd(phba, cmdiocb); 12425 ulp_status = get_job_ulpstatus(phba, rspiocb); 12426 ulp_word4 = get_job_word4(phba, rspiocb); 12427 12428 if (phba->sli_rev == LPFC_SLI_REV4) { 12429 iotag = get_wqe_reqtag(cmdiocb); 12430 } else { 12431 irsp = &rspiocb->iocb; 12432 iotag = irsp->ulpIoTag; 12433 12434 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12435 * The MBX_REG_LOGIN64 mbox command is freed back to the 12436 * mbox_mem_pool here. 12437 */ 12438 if (cmdiocb->context_un.mbox) { 12439 mbox = cmdiocb->context_un.mbox; 12440 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12441 cmdiocb->context_un.mbox = NULL; 12442 } 12443 } 12444 12445 /* ELS cmd tag <ulpIoTag> completes */ 12446 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12447 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12448 "x%x x%x x%x x%px\n", 12449 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12450 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12451 /* 12452 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12453 * if exchange is busy. 12454 */ 12455 if (ulp_command == CMD_GEN_REQUEST64_CR) 12456 lpfc_ct_free_iocb(phba, cmdiocb); 12457 else 12458 lpfc_els_free_iocb(phba, cmdiocb); 12459 12460 lpfc_nlp_put(ndlp); 12461 } 12462 12463 /** 12464 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12465 * @phba: Pointer to HBA context object. 12466 * @pring: Pointer to driver SLI ring object. 12467 * @cmdiocb: Pointer to driver command iocb object. 12468 * @cmpl: completion function. 12469 * 12470 * This function issues an abort iocb for the provided command iocb. In case 12471 * of unloading, the abort iocb will not be issued to commands on the ELS 12472 * ring. Instead, the callback function shall be changed to those commands 12473 * so that nothing happens when them finishes. This function is called with 12474 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12475 * when the command iocb is an abort request. 12476 * 12477 **/ 12478 int 12479 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12480 struct lpfc_iocbq *cmdiocb, void *cmpl) 12481 { 12482 struct lpfc_vport *vport = cmdiocb->vport; 12483 struct lpfc_iocbq *abtsiocbp; 12484 int retval = IOCB_ERROR; 12485 unsigned long iflags; 12486 struct lpfc_nodelist *ndlp = NULL; 12487 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12488 u16 ulp_context, iotag; 12489 bool ia; 12490 12491 /* 12492 * There are certain command types we don't want to abort. And we 12493 * don't want to abort commands that are already in the process of 12494 * being aborted. 12495 */ 12496 if (ulp_command == CMD_ABORT_XRI_WQE || 12497 ulp_command == CMD_ABORT_XRI_CN || 12498 ulp_command == CMD_CLOSE_XRI_CN || 12499 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12500 return IOCB_ABORTING; 12501 12502 if (!pring) { 12503 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12504 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12505 else 12506 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12507 return retval; 12508 } 12509 12510 /* 12511 * Always abort the outstanding WQE and set the IA bit correctly 12512 * for the context. This is necessary for correctly removing 12513 * outstanding ndlp reference counts when the CQE completes with 12514 * the XB bit set. 12515 */ 12516 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12517 if (abtsiocbp == NULL) 12518 return IOCB_NORESOURCE; 12519 12520 /* This signals the response to set the correct status 12521 * before calling the completion handler 12522 */ 12523 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12524 12525 if (phba->sli_rev == LPFC_SLI_REV4) { 12526 ulp_context = cmdiocb->sli4_xritag; 12527 iotag = abtsiocbp->iotag; 12528 } else { 12529 iotag = cmdiocb->iocb.ulpIoTag; 12530 if (pring->ringno == LPFC_ELS_RING) { 12531 ndlp = cmdiocb->ndlp; 12532 ulp_context = ndlp->nlp_rpi; 12533 } else { 12534 ulp_context = cmdiocb->iocb.ulpContext; 12535 } 12536 } 12537 12538 /* Just close the exchange under certain conditions. */ 12539 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12540 phba->link_state < LPFC_LINK_UP || 12541 (phba->sli_rev == LPFC_SLI_REV4 && 12542 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12543 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12544 ia = true; 12545 else 12546 ia = false; 12547 12548 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12549 cmdiocb->iocb.ulpClass, 12550 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12551 12552 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12553 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12554 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12555 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12556 12557 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12558 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12559 12560 if (cmpl) 12561 abtsiocbp->cmd_cmpl = cmpl; 12562 else 12563 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12564 abtsiocbp->vport = vport; 12565 12566 if (phba->sli_rev == LPFC_SLI_REV4) { 12567 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12568 if (unlikely(pring == NULL)) 12569 goto abort_iotag_exit; 12570 /* Note: both hbalock and ring_lock need to be set here */ 12571 spin_lock_irqsave(&pring->ring_lock, iflags); 12572 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12573 abtsiocbp, 0); 12574 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12575 } else { 12576 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12577 abtsiocbp, 0); 12578 } 12579 12580 abort_iotag_exit: 12581 12582 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12583 "0339 Abort IO XRI x%x, Original iotag x%x, " 12584 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12585 "retval x%x : IA %d cmd_cmpl %ps\n", 12586 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12587 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12588 retval, ia, abtsiocbp->cmd_cmpl); 12589 if (retval) { 12590 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12591 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12592 } 12593 12594 /* 12595 * Caller to this routine should check for IOCB_ERROR 12596 * and handle it properly. This routine no longer removes 12597 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12598 */ 12599 return retval; 12600 } 12601 12602 /** 12603 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12604 * @phba: pointer to lpfc HBA data structure. 12605 * 12606 * This routine will abort all pending and outstanding iocbs to an HBA. 12607 **/ 12608 void 12609 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12610 { 12611 struct lpfc_sli *psli = &phba->sli; 12612 struct lpfc_sli_ring *pring; 12613 struct lpfc_queue *qp = NULL; 12614 int i; 12615 12616 if (phba->sli_rev != LPFC_SLI_REV4) { 12617 for (i = 0; i < psli->num_rings; i++) { 12618 pring = &psli->sli3_ring[i]; 12619 lpfc_sli_abort_iocb_ring(phba, pring); 12620 } 12621 return; 12622 } 12623 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12624 pring = qp->pring; 12625 if (!pring) 12626 continue; 12627 lpfc_sli_abort_iocb_ring(phba, pring); 12628 } 12629 } 12630 12631 /** 12632 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12633 * @iocbq: Pointer to iocb object. 12634 * @vport: Pointer to driver virtual port object. 12635 * 12636 * This function acts as an iocb filter for functions which abort FCP iocbs. 12637 * 12638 * Return values 12639 * -ENODEV, if a null iocb or vport ptr is encountered 12640 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12641 * driver already started the abort process, or is an abort iocb itself 12642 * 0, passes criteria for aborting the FCP I/O iocb 12643 **/ 12644 static int 12645 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12646 struct lpfc_vport *vport) 12647 { 12648 u8 ulp_command; 12649 12650 /* No null ptr vports */ 12651 if (!iocbq || iocbq->vport != vport) 12652 return -ENODEV; 12653 12654 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12655 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12656 */ 12657 ulp_command = get_job_cmnd(vport->phba, iocbq); 12658 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12659 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12660 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12661 (ulp_command == CMD_ABORT_XRI_CN || 12662 ulp_command == CMD_CLOSE_XRI_CN || 12663 ulp_command == CMD_ABORT_XRI_WQE)) 12664 return -EINVAL; 12665 12666 return 0; 12667 } 12668 12669 /** 12670 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12671 * @iocbq: Pointer to driver iocb object. 12672 * @vport: Pointer to driver virtual port object. 12673 * @tgt_id: SCSI ID of the target. 12674 * @lun_id: LUN ID of the scsi device. 12675 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12676 * 12677 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12678 * host. 12679 * 12680 * It will return 12681 * 0 if the filtering criteria is met for the given iocb and will return 12682 * 1 if the filtering criteria is not met. 12683 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12684 * given iocb is for the SCSI device specified by vport, tgt_id and 12685 * lun_id parameter. 12686 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12687 * given iocb is for the SCSI target specified by vport and tgt_id 12688 * parameters. 12689 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12690 * given iocb is for the SCSI host associated with the given vport. 12691 * This function is called with no locks held. 12692 **/ 12693 static int 12694 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12695 uint16_t tgt_id, uint64_t lun_id, 12696 lpfc_ctx_cmd ctx_cmd) 12697 { 12698 struct lpfc_io_buf *lpfc_cmd; 12699 int rc = 1; 12700 12701 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12702 12703 if (lpfc_cmd->pCmd == NULL) 12704 return rc; 12705 12706 switch (ctx_cmd) { 12707 case LPFC_CTX_LUN: 12708 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12709 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12710 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12711 rc = 0; 12712 break; 12713 case LPFC_CTX_TGT: 12714 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12715 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12716 rc = 0; 12717 break; 12718 case LPFC_CTX_HOST: 12719 rc = 0; 12720 break; 12721 default: 12722 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12723 __func__, ctx_cmd); 12724 break; 12725 } 12726 12727 return rc; 12728 } 12729 12730 /** 12731 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12732 * @vport: Pointer to virtual port. 12733 * @tgt_id: SCSI ID of the target. 12734 * @lun_id: LUN ID of the scsi device. 12735 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12736 * 12737 * This function returns number of FCP commands pending for the vport. 12738 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12739 * commands pending on the vport associated with SCSI device specified 12740 * by tgt_id and lun_id parameters. 12741 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12742 * commands pending on the vport associated with SCSI target specified 12743 * by tgt_id parameter. 12744 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12745 * commands pending on the vport. 12746 * This function returns the number of iocbs which satisfy the filter. 12747 * This function is called without any lock held. 12748 **/ 12749 int 12750 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12751 lpfc_ctx_cmd ctx_cmd) 12752 { 12753 struct lpfc_hba *phba = vport->phba; 12754 struct lpfc_iocbq *iocbq; 12755 int sum, i; 12756 unsigned long iflags; 12757 u8 ulp_command; 12758 12759 spin_lock_irqsave(&phba->hbalock, iflags); 12760 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12761 iocbq = phba->sli.iocbq_lookup[i]; 12762 12763 if (!iocbq || iocbq->vport != vport) 12764 continue; 12765 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12766 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12767 continue; 12768 12769 /* Include counting outstanding aborts */ 12770 ulp_command = get_job_cmnd(phba, iocbq); 12771 if (ulp_command == CMD_ABORT_XRI_CN || 12772 ulp_command == CMD_CLOSE_XRI_CN || 12773 ulp_command == CMD_ABORT_XRI_WQE) { 12774 sum++; 12775 continue; 12776 } 12777 12778 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12779 ctx_cmd) == 0) 12780 sum++; 12781 } 12782 spin_unlock_irqrestore(&phba->hbalock, iflags); 12783 12784 return sum; 12785 } 12786 12787 /** 12788 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12789 * @phba: Pointer to HBA context object 12790 * @cmdiocb: Pointer to command iocb object. 12791 * @rspiocb: Pointer to response iocb object. 12792 * 12793 * This function is called when an aborted FCP iocb completes. This 12794 * function is called by the ring event handler with no lock held. 12795 * This function frees the iocb. 12796 **/ 12797 void 12798 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12799 struct lpfc_iocbq *rspiocb) 12800 { 12801 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12802 "3096 ABORT_XRI_CX completing on rpi x%x " 12803 "original iotag x%x, abort cmd iotag x%x " 12804 "status 0x%x, reason 0x%x\n", 12805 (phba->sli_rev == LPFC_SLI_REV4) ? 12806 cmdiocb->sli4_xritag : 12807 cmdiocb->iocb.un.acxri.abortContextTag, 12808 get_job_abtsiotag(phba, cmdiocb), 12809 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12810 get_job_word4(phba, rspiocb)); 12811 lpfc_sli_release_iocbq(phba, cmdiocb); 12812 return; 12813 } 12814 12815 /** 12816 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12817 * @vport: Pointer to virtual port. 12818 * @tgt_id: SCSI ID of the target. 12819 * @lun_id: LUN ID of the scsi device. 12820 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12821 * 12822 * This function sends an abort command for every SCSI command 12823 * associated with the given virtual port pending on the ring 12824 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12825 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12826 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12827 * followed by lpfc_sli_validate_fcp_iocb. 12828 * 12829 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12830 * FCP iocbs associated with lun specified by tgt_id and lun_id 12831 * parameters 12832 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12833 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12834 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12835 * FCP iocbs associated with virtual port. 12836 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12837 * lpfc_sli4_calc_ring is used. 12838 * This function returns number of iocbs it failed to abort. 12839 * This function is called with no locks held. 12840 **/ 12841 int 12842 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12843 lpfc_ctx_cmd abort_cmd) 12844 { 12845 struct lpfc_hba *phba = vport->phba; 12846 struct lpfc_sli_ring *pring = NULL; 12847 struct lpfc_iocbq *iocbq; 12848 int errcnt = 0, ret_val = 0; 12849 unsigned long iflags; 12850 int i; 12851 12852 /* all I/Os are in process of being flushed */ 12853 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12854 return errcnt; 12855 12856 for (i = 1; i <= phba->sli.last_iotag; i++) { 12857 iocbq = phba->sli.iocbq_lookup[i]; 12858 12859 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12860 continue; 12861 12862 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12863 abort_cmd) != 0) 12864 continue; 12865 12866 spin_lock_irqsave(&phba->hbalock, iflags); 12867 if (phba->sli_rev == LPFC_SLI_REV3) { 12868 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12869 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12870 pring = lpfc_sli4_calc_ring(phba, iocbq); 12871 } 12872 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12873 lpfc_sli_abort_fcp_cmpl); 12874 spin_unlock_irqrestore(&phba->hbalock, iflags); 12875 if (ret_val != IOCB_SUCCESS) 12876 errcnt++; 12877 } 12878 12879 return errcnt; 12880 } 12881 12882 /** 12883 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12884 * @vport: Pointer to virtual port. 12885 * @pring: Pointer to driver SLI ring object. 12886 * @tgt_id: SCSI ID of the target. 12887 * @lun_id: LUN ID of the scsi device. 12888 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12889 * 12890 * This function sends an abort command for every SCSI command 12891 * associated with the given virtual port pending on the ring 12892 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12893 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12894 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12895 * followed by lpfc_sli_validate_fcp_iocb. 12896 * 12897 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12898 * FCP iocbs associated with lun specified by tgt_id and lun_id 12899 * parameters 12900 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12901 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12902 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12903 * FCP iocbs associated with virtual port. 12904 * This function returns number of iocbs it aborted . 12905 * This function is called with no locks held right after a taskmgmt 12906 * command is sent. 12907 **/ 12908 int 12909 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12910 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12911 { 12912 struct lpfc_hba *phba = vport->phba; 12913 struct lpfc_io_buf *lpfc_cmd; 12914 struct lpfc_iocbq *abtsiocbq; 12915 struct lpfc_nodelist *ndlp = NULL; 12916 struct lpfc_iocbq *iocbq; 12917 int sum, i, ret_val; 12918 unsigned long iflags; 12919 struct lpfc_sli_ring *pring_s4 = NULL; 12920 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12921 bool ia; 12922 12923 /* all I/Os are in process of being flushed */ 12924 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12925 return 0; 12926 12927 sum = 0; 12928 12929 spin_lock_irqsave(&phba->hbalock, iflags); 12930 for (i = 1; i <= phba->sli.last_iotag; i++) { 12931 iocbq = phba->sli.iocbq_lookup[i]; 12932 12933 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12934 continue; 12935 12936 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12937 cmd) != 0) 12938 continue; 12939 12940 /* Guard against IO completion being called at same time */ 12941 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12942 spin_lock(&lpfc_cmd->buf_lock); 12943 12944 if (!lpfc_cmd->pCmd) { 12945 spin_unlock(&lpfc_cmd->buf_lock); 12946 continue; 12947 } 12948 12949 if (phba->sli_rev == LPFC_SLI_REV4) { 12950 pring_s4 = 12951 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12952 if (!pring_s4) { 12953 spin_unlock(&lpfc_cmd->buf_lock); 12954 continue; 12955 } 12956 /* Note: both hbalock and ring_lock must be set here */ 12957 spin_lock(&pring_s4->ring_lock); 12958 } 12959 12960 /* 12961 * If the iocbq is already being aborted, don't take a second 12962 * action, but do count it. 12963 */ 12964 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12965 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12966 if (phba->sli_rev == LPFC_SLI_REV4) 12967 spin_unlock(&pring_s4->ring_lock); 12968 spin_unlock(&lpfc_cmd->buf_lock); 12969 continue; 12970 } 12971 12972 /* issue ABTS for this IOCB based on iotag */ 12973 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12974 if (!abtsiocbq) { 12975 if (phba->sli_rev == LPFC_SLI_REV4) 12976 spin_unlock(&pring_s4->ring_lock); 12977 spin_unlock(&lpfc_cmd->buf_lock); 12978 continue; 12979 } 12980 12981 if (phba->sli_rev == LPFC_SLI_REV4) { 12982 iotag = abtsiocbq->iotag; 12983 ulp_context = iocbq->sli4_xritag; 12984 cqid = lpfc_cmd->hdwq->io_cq_map; 12985 } else { 12986 iotag = iocbq->iocb.ulpIoTag; 12987 if (pring->ringno == LPFC_ELS_RING) { 12988 ndlp = iocbq->ndlp; 12989 ulp_context = ndlp->nlp_rpi; 12990 } else { 12991 ulp_context = iocbq->iocb.ulpContext; 12992 } 12993 } 12994 12995 ndlp = lpfc_cmd->rdata->pnode; 12996 12997 if (lpfc_is_link_up(phba) && 12998 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12999 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 13000 ia = false; 13001 else 13002 ia = true; 13003 13004 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 13005 iocbq->iocb.ulpClass, cqid, 13006 ia, false); 13007 13008 abtsiocbq->vport = vport; 13009 13010 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 13011 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 13012 if (iocbq->cmd_flag & LPFC_IO_FCP) 13013 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 13014 if (iocbq->cmd_flag & LPFC_IO_FOF) 13015 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 13016 13017 /* Setup callback routine and issue the command. */ 13018 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 13019 13020 /* 13021 * Indicate the IO is being aborted by the driver and set 13022 * the caller's flag into the aborted IO. 13023 */ 13024 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 13025 13026 if (phba->sli_rev == LPFC_SLI_REV4) { 13027 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 13028 abtsiocbq, 0); 13029 spin_unlock(&pring_s4->ring_lock); 13030 } else { 13031 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 13032 abtsiocbq, 0); 13033 } 13034 13035 spin_unlock(&lpfc_cmd->buf_lock); 13036 13037 if (ret_val == IOCB_ERROR) 13038 __lpfc_sli_release_iocbq(phba, abtsiocbq); 13039 else 13040 sum++; 13041 } 13042 spin_unlock_irqrestore(&phba->hbalock, iflags); 13043 return sum; 13044 } 13045 13046 /** 13047 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 13048 * @phba: Pointer to HBA context object. 13049 * @cmdiocbq: Pointer to command iocb. 13050 * @rspiocbq: Pointer to response iocb. 13051 * 13052 * This function is the completion handler for iocbs issued using 13053 * lpfc_sli_issue_iocb_wait function. This function is called by the 13054 * ring event handler function without any lock held. This function 13055 * can be called from both worker thread context and interrupt 13056 * context. This function also can be called from other thread which 13057 * cleans up the SLI layer objects. 13058 * This function copy the contents of the response iocb to the 13059 * response iocb memory object provided by the caller of 13060 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 13061 * sleeps for the iocb completion. 13062 **/ 13063 static void 13064 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 13065 struct lpfc_iocbq *cmdiocbq, 13066 struct lpfc_iocbq *rspiocbq) 13067 { 13068 wait_queue_head_t *pdone_q; 13069 unsigned long iflags; 13070 struct lpfc_io_buf *lpfc_cmd; 13071 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13072 13073 spin_lock_irqsave(&phba->hbalock, iflags); 13074 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13075 13076 /* 13077 * A time out has occurred for the iocb. If a time out 13078 * completion handler has been supplied, call it. Otherwise, 13079 * just free the iocbq. 13080 */ 13081 13082 spin_unlock_irqrestore(&phba->hbalock, iflags); 13083 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13084 cmdiocbq->wait_cmd_cmpl = NULL; 13085 if (cmdiocbq->cmd_cmpl) 13086 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13087 else 13088 lpfc_sli_release_iocbq(phba, cmdiocbq); 13089 return; 13090 } 13091 13092 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13093 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13094 if (cmdiocbq->rsp_iocb && rspiocbq) 13095 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13096 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13097 13098 /* Set the exchange busy flag for task management commands */ 13099 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13100 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13101 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13102 cur_iocbq); 13103 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13104 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13105 else 13106 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13107 } 13108 13109 pdone_q = cmdiocbq->context_un.wait_queue; 13110 if (pdone_q) 13111 wake_up(pdone_q); 13112 spin_unlock_irqrestore(&phba->hbalock, iflags); 13113 return; 13114 } 13115 13116 /** 13117 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13118 * @phba: Pointer to HBA context object.. 13119 * @piocbq: Pointer to command iocb. 13120 * @flag: Flag to test. 13121 * 13122 * This routine grabs the hbalock and then test the cmd_flag to 13123 * see if the passed in flag is set. 13124 * Returns: 13125 * 1 if flag is set. 13126 * 0 if flag is not set. 13127 **/ 13128 static int 13129 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13130 struct lpfc_iocbq *piocbq, uint32_t flag) 13131 { 13132 unsigned long iflags; 13133 int ret; 13134 13135 spin_lock_irqsave(&phba->hbalock, iflags); 13136 ret = piocbq->cmd_flag & flag; 13137 spin_unlock_irqrestore(&phba->hbalock, iflags); 13138 return ret; 13139 13140 } 13141 13142 /** 13143 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13144 * @phba: Pointer to HBA context object.. 13145 * @ring_number: Ring number 13146 * @piocb: Pointer to command iocb. 13147 * @prspiocbq: Pointer to response iocb. 13148 * @timeout: Timeout in number of seconds. 13149 * 13150 * This function issues the iocb to firmware and waits for the 13151 * iocb to complete. The cmd_cmpl field of the shall be used 13152 * to handle iocbs which time out. If the field is NULL, the 13153 * function shall free the iocbq structure. If more clean up is 13154 * needed, the caller is expected to provide a completion function 13155 * that will provide the needed clean up. If the iocb command is 13156 * not completed within timeout seconds, the function will either 13157 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13158 * completion function set in the cmd_cmpl field and then return 13159 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13160 * resources if this function returns IOCB_TIMEDOUT. 13161 * The function waits for the iocb completion using an 13162 * non-interruptible wait. 13163 * This function will sleep while waiting for iocb completion. 13164 * So, this function should not be called from any context which 13165 * does not allow sleeping. Due to the same reason, this function 13166 * cannot be called with interrupt disabled. 13167 * This function assumes that the iocb completions occur while 13168 * this function sleep. So, this function cannot be called from 13169 * the thread which process iocb completion for this ring. 13170 * This function clears the cmd_flag of the iocb object before 13171 * issuing the iocb and the iocb completion handler sets this 13172 * flag and wakes this thread when the iocb completes. 13173 * The contents of the response iocb will be copied to prspiocbq 13174 * by the completion handler when the command completes. 13175 * This function returns IOCB_SUCCESS when success. 13176 * This function is called with no lock held. 13177 **/ 13178 int 13179 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13180 uint32_t ring_number, 13181 struct lpfc_iocbq *piocb, 13182 struct lpfc_iocbq *prspiocbq, 13183 uint32_t timeout) 13184 { 13185 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13186 long timeleft, timeout_req = 0; 13187 int retval = IOCB_SUCCESS; 13188 uint32_t creg_val; 13189 struct lpfc_iocbq *iocb; 13190 int txq_cnt = 0; 13191 int txcmplq_cnt = 0; 13192 struct lpfc_sli_ring *pring; 13193 unsigned long iflags; 13194 bool iocb_completed = true; 13195 13196 if (phba->sli_rev >= LPFC_SLI_REV4) { 13197 lpfc_sli_prep_wqe(phba, piocb); 13198 13199 pring = lpfc_sli4_calc_ring(phba, piocb); 13200 } else 13201 pring = &phba->sli.sli3_ring[ring_number]; 13202 /* 13203 * If the caller has provided a response iocbq buffer, then rsp_iocb 13204 * is NULL or its an error. 13205 */ 13206 if (prspiocbq) { 13207 if (piocb->rsp_iocb) 13208 return IOCB_ERROR; 13209 piocb->rsp_iocb = prspiocbq; 13210 } 13211 13212 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13213 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13214 piocb->context_un.wait_queue = &done_q; 13215 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13216 13217 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13218 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13219 return IOCB_ERROR; 13220 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13221 writel(creg_val, phba->HCregaddr); 13222 readl(phba->HCregaddr); /* flush */ 13223 } 13224 13225 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13226 SLI_IOCB_RET_IOCB); 13227 if (retval == IOCB_SUCCESS) { 13228 timeout_req = secs_to_jiffies(timeout); 13229 timeleft = wait_event_timeout(done_q, 13230 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13231 timeout_req); 13232 spin_lock_irqsave(&phba->hbalock, iflags); 13233 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13234 13235 /* 13236 * IOCB timed out. Inform the wake iocb wait 13237 * completion function and set local status 13238 */ 13239 13240 iocb_completed = false; 13241 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13242 } 13243 spin_unlock_irqrestore(&phba->hbalock, iflags); 13244 if (iocb_completed) { 13245 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13246 "0331 IOCB wake signaled\n"); 13247 /* Note: we are not indicating if the IOCB has a success 13248 * status or not - that's for the caller to check. 13249 * IOCB_SUCCESS means just that the command was sent and 13250 * completed. Not that it completed successfully. 13251 * */ 13252 } else if (timeleft == 0) { 13253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13254 "0338 IOCB wait timeout error - no " 13255 "wake response Data x%x\n", timeout); 13256 retval = IOCB_TIMEDOUT; 13257 } else { 13258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13259 "0330 IOCB wake NOT set, " 13260 "Data x%x x%lx\n", 13261 timeout, (timeleft / jiffies)); 13262 retval = IOCB_TIMEDOUT; 13263 } 13264 } else if (retval == IOCB_BUSY) { 13265 if (phba->cfg_log_verbose & LOG_SLI) { 13266 list_for_each_entry(iocb, &pring->txq, list) { 13267 txq_cnt++; 13268 } 13269 list_for_each_entry(iocb, &pring->txcmplq, list) { 13270 txcmplq_cnt++; 13271 } 13272 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13273 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13274 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13275 } 13276 return retval; 13277 } else { 13278 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13279 "0332 IOCB wait issue failed, Data x%x\n", 13280 retval); 13281 retval = IOCB_ERROR; 13282 } 13283 13284 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13285 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13286 return IOCB_ERROR; 13287 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13288 writel(creg_val, phba->HCregaddr); 13289 readl(phba->HCregaddr); /* flush */ 13290 } 13291 13292 if (prspiocbq) 13293 piocb->rsp_iocb = NULL; 13294 13295 piocb->context_un.wait_queue = NULL; 13296 piocb->cmd_cmpl = NULL; 13297 return retval; 13298 } 13299 13300 /** 13301 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13302 * @phba: Pointer to HBA context object. 13303 * @pmboxq: Pointer to driver mailbox object. 13304 * @timeout: Timeout in number of seconds. 13305 * 13306 * This function issues the mailbox to firmware and waits for the 13307 * mailbox command to complete. If the mailbox command is not 13308 * completed within timeout seconds, it returns MBX_TIMEOUT. 13309 * The function waits for the mailbox completion using an 13310 * interruptible wait. If the thread is woken up due to a 13311 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13312 * should not free the mailbox resources, if this function returns 13313 * MBX_TIMEOUT. 13314 * This function will sleep while waiting for mailbox completion. 13315 * So, this function should not be called from any context which 13316 * does not allow sleeping. Due to the same reason, this function 13317 * cannot be called with interrupt disabled. 13318 * This function assumes that the mailbox completion occurs while 13319 * this function sleep. So, this function cannot be called from 13320 * the worker thread which processes mailbox completion. 13321 * This function is called in the context of HBA management 13322 * applications. 13323 * This function returns MBX_SUCCESS when successful. 13324 * This function is called with no lock held. 13325 **/ 13326 int 13327 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13328 uint32_t timeout) 13329 { 13330 struct completion mbox_done; 13331 int retval; 13332 unsigned long flag; 13333 13334 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13335 /* setup wake call as IOCB callback */ 13336 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13337 13338 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13339 init_completion(&mbox_done); 13340 pmboxq->ctx_u.mbox_wait = &mbox_done; 13341 /* now issue the command */ 13342 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13343 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13344 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout)); 13345 13346 spin_lock_irqsave(&phba->hbalock, flag); 13347 pmboxq->ctx_u.mbox_wait = NULL; 13348 /* 13349 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13350 * else do not free the resources. 13351 */ 13352 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13353 retval = MBX_SUCCESS; 13354 } else { 13355 retval = MBX_TIMEOUT; 13356 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13357 } 13358 spin_unlock_irqrestore(&phba->hbalock, flag); 13359 } 13360 return retval; 13361 } 13362 13363 /** 13364 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13365 * @phba: Pointer to HBA context. 13366 * @mbx_action: Mailbox shutdown options. 13367 * 13368 * This function is called to shutdown the driver's mailbox sub-system. 13369 * It first marks the mailbox sub-system is in a block state to prevent 13370 * the asynchronous mailbox command from issued off the pending mailbox 13371 * command queue. If the mailbox command sub-system shutdown is due to 13372 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13373 * the mailbox sub-system flush routine to forcefully bring down the 13374 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13375 * as with offline or HBA function reset), this routine will wait for the 13376 * outstanding mailbox command to complete before invoking the mailbox 13377 * sub-system flush routine to gracefully bring down mailbox sub-system. 13378 **/ 13379 void 13380 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13381 { 13382 struct lpfc_sli *psli = &phba->sli; 13383 unsigned long timeout; 13384 13385 if (mbx_action == LPFC_MBX_NO_WAIT) { 13386 /* delay 100ms for port state */ 13387 msleep(100); 13388 lpfc_sli_mbox_sys_flush(phba); 13389 return; 13390 } 13391 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 13392 13393 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13394 local_bh_disable(); 13395 13396 spin_lock_irq(&phba->hbalock); 13397 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13398 13399 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13400 /* Determine how long we might wait for the active mailbox 13401 * command to be gracefully completed by firmware. 13402 */ 13403 if (phba->sli.mbox_active) 13404 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 13405 phba->sli.mbox_active)) + jiffies; 13406 spin_unlock_irq(&phba->hbalock); 13407 13408 /* Enable softirqs again, done with phba->hbalock */ 13409 local_bh_enable(); 13410 13411 while (phba->sli.mbox_active) { 13412 /* Check active mailbox complete status every 2ms */ 13413 msleep(2); 13414 if (time_after(jiffies, timeout)) 13415 /* Timeout, let the mailbox flush routine to 13416 * forcefully release active mailbox command 13417 */ 13418 break; 13419 } 13420 } else { 13421 spin_unlock_irq(&phba->hbalock); 13422 13423 /* Enable softirqs again, done with phba->hbalock */ 13424 local_bh_enable(); 13425 } 13426 13427 lpfc_sli_mbox_sys_flush(phba); 13428 } 13429 13430 /** 13431 * lpfc_sli_eratt_read - read sli-3 error attention events 13432 * @phba: Pointer to HBA context. 13433 * 13434 * This function is called to read the SLI3 device error attention registers 13435 * for possible error attention events. The caller must hold the hostlock 13436 * with spin_lock_irq(). 13437 * 13438 * This function returns 1 when there is Error Attention in the Host Attention 13439 * Register and returns 0 otherwise. 13440 **/ 13441 static int 13442 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13443 { 13444 uint32_t ha_copy; 13445 13446 /* Read chip Host Attention (HA) register */ 13447 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13448 goto unplug_err; 13449 13450 if (ha_copy & HA_ERATT) { 13451 /* Read host status register to retrieve error event */ 13452 if (lpfc_sli_read_hs(phba)) 13453 goto unplug_err; 13454 13455 /* Check if there is a deferred error condition is active */ 13456 if ((HS_FFER1 & phba->work_hs) && 13457 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13458 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13459 set_bit(DEFER_ERATT, &phba->hba_flag); 13460 /* Clear all interrupt enable conditions */ 13461 writel(0, phba->HCregaddr); 13462 readl(phba->HCregaddr); 13463 } 13464 13465 /* Set the driver HA work bitmap */ 13466 phba->work_ha |= HA_ERATT; 13467 /* Indicate polling handles this ERATT */ 13468 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13469 return 1; 13470 } 13471 return 0; 13472 13473 unplug_err: 13474 /* Set the driver HS work bitmap */ 13475 phba->work_hs |= UNPLUG_ERR; 13476 /* Set the driver HA work bitmap */ 13477 phba->work_ha |= HA_ERATT; 13478 /* Indicate polling handles this ERATT */ 13479 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13480 return 1; 13481 } 13482 13483 /** 13484 * lpfc_sli4_eratt_read - read sli-4 error attention events 13485 * @phba: Pointer to HBA context. 13486 * 13487 * This function is called to read the SLI4 device error attention registers 13488 * for possible error attention events. The caller must hold the hostlock 13489 * with spin_lock_irq(). 13490 * 13491 * This function returns 1 when there is Error Attention in the Host Attention 13492 * Register and returns 0 otherwise. 13493 **/ 13494 static int 13495 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13496 { 13497 uint32_t uerr_sta_hi, uerr_sta_lo; 13498 uint32_t if_type, portsmphr; 13499 struct lpfc_register portstat_reg; 13500 u32 logmask; 13501 13502 /* 13503 * For now, use the SLI4 device internal unrecoverable error 13504 * registers for error attention. This can be changed later. 13505 */ 13506 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13507 switch (if_type) { 13508 case LPFC_SLI_INTF_IF_TYPE_0: 13509 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13510 &uerr_sta_lo) || 13511 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13512 &uerr_sta_hi)) { 13513 phba->work_hs |= UNPLUG_ERR; 13514 phba->work_ha |= HA_ERATT; 13515 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13516 return 1; 13517 } 13518 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13519 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13521 "1423 HBA Unrecoverable error: " 13522 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13523 "ue_mask_lo_reg=0x%x, " 13524 "ue_mask_hi_reg=0x%x\n", 13525 uerr_sta_lo, uerr_sta_hi, 13526 phba->sli4_hba.ue_mask_lo, 13527 phba->sli4_hba.ue_mask_hi); 13528 phba->work_status[0] = uerr_sta_lo; 13529 phba->work_status[1] = uerr_sta_hi; 13530 phba->work_ha |= HA_ERATT; 13531 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13532 return 1; 13533 } 13534 break; 13535 case LPFC_SLI_INTF_IF_TYPE_2: 13536 case LPFC_SLI_INTF_IF_TYPE_6: 13537 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13538 &portstat_reg.word0) || 13539 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13540 &portsmphr)){ 13541 phba->work_hs |= UNPLUG_ERR; 13542 phba->work_ha |= HA_ERATT; 13543 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13544 return 1; 13545 } 13546 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13547 phba->work_status[0] = 13548 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13549 phba->work_status[1] = 13550 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13551 logmask = LOG_TRACE_EVENT; 13552 if (phba->work_status[0] == 13553 SLIPORT_ERR1_REG_ERR_CODE_2 && 13554 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13555 logmask = LOG_SLI; 13556 lpfc_printf_log(phba, KERN_ERR, logmask, 13557 "2885 Port Status Event: " 13558 "port status reg 0x%x, " 13559 "port smphr reg 0x%x, " 13560 "error 1=0x%x, error 2=0x%x\n", 13561 portstat_reg.word0, 13562 portsmphr, 13563 phba->work_status[0], 13564 phba->work_status[1]); 13565 phba->work_ha |= HA_ERATT; 13566 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13567 return 1; 13568 } 13569 break; 13570 case LPFC_SLI_INTF_IF_TYPE_1: 13571 default: 13572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13573 "2886 HBA Error Attention on unsupported " 13574 "if type %d.", if_type); 13575 return 1; 13576 } 13577 13578 return 0; 13579 } 13580 13581 /** 13582 * lpfc_sli_check_eratt - check error attention events 13583 * @phba: Pointer to HBA context. 13584 * 13585 * This function is called from timer soft interrupt context to check HBA's 13586 * error attention register bit for error attention events. 13587 * 13588 * This function returns 1 when there is Error Attention in the Host Attention 13589 * Register and returns 0 otherwise. 13590 **/ 13591 int 13592 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13593 { 13594 uint32_t ha_copy; 13595 13596 /* If somebody is waiting to handle an eratt, don't process it 13597 * here. The brdkill function will do this. 13598 */ 13599 if (phba->link_flag & LS_IGNORE_ERATT) 13600 return 0; 13601 13602 /* Check if interrupt handler handles this ERATT */ 13603 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13604 /* Interrupt handler has handled ERATT */ 13605 return 0; 13606 13607 /* 13608 * If there is deferred error attention, do not check for error 13609 * attention 13610 */ 13611 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13612 return 0; 13613 13614 spin_lock_irq(&phba->hbalock); 13615 /* If PCI channel is offline, don't process it */ 13616 if (unlikely(pci_channel_offline(phba->pcidev))) { 13617 spin_unlock_irq(&phba->hbalock); 13618 return 0; 13619 } 13620 13621 switch (phba->sli_rev) { 13622 case LPFC_SLI_REV2: 13623 case LPFC_SLI_REV3: 13624 /* Read chip Host Attention (HA) register */ 13625 ha_copy = lpfc_sli_eratt_read(phba); 13626 break; 13627 case LPFC_SLI_REV4: 13628 /* Read device Uncoverable Error (UERR) registers */ 13629 ha_copy = lpfc_sli4_eratt_read(phba); 13630 break; 13631 default: 13632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13633 "0299 Invalid SLI revision (%d)\n", 13634 phba->sli_rev); 13635 ha_copy = 0; 13636 break; 13637 } 13638 spin_unlock_irq(&phba->hbalock); 13639 13640 return ha_copy; 13641 } 13642 13643 /** 13644 * lpfc_intr_state_check - Check device state for interrupt handling 13645 * @phba: Pointer to HBA context. 13646 * 13647 * This inline routine checks whether a device or its PCI slot is in a state 13648 * that the interrupt should be handled. 13649 * 13650 * This function returns 0 if the device or the PCI slot is in a state that 13651 * interrupt should be handled, otherwise -EIO. 13652 */ 13653 static inline int 13654 lpfc_intr_state_check(struct lpfc_hba *phba) 13655 { 13656 /* If the pci channel is offline, ignore all the interrupts */ 13657 if (unlikely(pci_channel_offline(phba->pcidev))) 13658 return -EIO; 13659 13660 /* Update device level interrupt statistics */ 13661 phba->sli.slistat.sli_intr++; 13662 13663 /* Ignore all interrupts during initialization. */ 13664 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13665 return -EIO; 13666 13667 return 0; 13668 } 13669 13670 /** 13671 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13672 * @irq: Interrupt number. 13673 * @dev_id: The device context pointer. 13674 * 13675 * This function is directly called from the PCI layer as an interrupt 13676 * service routine when device with SLI-3 interface spec is enabled with 13677 * MSI-X multi-message interrupt mode and there are slow-path events in 13678 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13679 * interrupt mode, this function is called as part of the device-level 13680 * interrupt handler. When the PCI slot is in error recovery or the HBA 13681 * is undergoing initialization, the interrupt handler will not process 13682 * the interrupt. The link attention and ELS ring attention events are 13683 * handled by the worker thread. The interrupt handler signals the worker 13684 * thread and returns for these events. This function is called without 13685 * any lock held. It gets the hbalock to access and update SLI data 13686 * structures. 13687 * 13688 * This function returns IRQ_HANDLED when interrupt is handled else it 13689 * returns IRQ_NONE. 13690 **/ 13691 irqreturn_t 13692 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13693 { 13694 struct lpfc_hba *phba; 13695 uint32_t ha_copy, hc_copy; 13696 uint32_t work_ha_copy; 13697 unsigned long status; 13698 unsigned long iflag; 13699 uint32_t control; 13700 13701 MAILBOX_t *mbox, *pmbox; 13702 struct lpfc_vport *vport; 13703 struct lpfc_nodelist *ndlp; 13704 struct lpfc_dmabuf *mp; 13705 LPFC_MBOXQ_t *pmb; 13706 int rc; 13707 13708 /* 13709 * Get the driver's phba structure from the dev_id and 13710 * assume the HBA is not interrupting. 13711 */ 13712 phba = (struct lpfc_hba *)dev_id; 13713 13714 if (unlikely(!phba)) 13715 return IRQ_NONE; 13716 13717 /* 13718 * Stuff needs to be attented to when this function is invoked as an 13719 * individual interrupt handler in MSI-X multi-message interrupt mode 13720 */ 13721 if (phba->intr_type == MSIX) { 13722 /* Check device state for handling interrupt */ 13723 if (lpfc_intr_state_check(phba)) 13724 return IRQ_NONE; 13725 /* Need to read HA REG for slow-path events */ 13726 spin_lock_irqsave(&phba->hbalock, iflag); 13727 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13728 goto unplug_error; 13729 /* If somebody is waiting to handle an eratt don't process it 13730 * here. The brdkill function will do this. 13731 */ 13732 if (phba->link_flag & LS_IGNORE_ERATT) 13733 ha_copy &= ~HA_ERATT; 13734 /* Check the need for handling ERATT in interrupt handler */ 13735 if (ha_copy & HA_ERATT) { 13736 if (test_and_set_bit(HBA_ERATT_HANDLED, 13737 &phba->hba_flag)) 13738 /* ERATT polling has handled ERATT */ 13739 ha_copy &= ~HA_ERATT; 13740 } 13741 13742 /* 13743 * If there is deferred error attention, do not check for any 13744 * interrupt. 13745 */ 13746 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13747 spin_unlock_irqrestore(&phba->hbalock, iflag); 13748 return IRQ_NONE; 13749 } 13750 13751 /* Clear up only attention source related to slow-path */ 13752 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13753 goto unplug_error; 13754 13755 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13756 HC_LAINT_ENA | HC_ERINT_ENA), 13757 phba->HCregaddr); 13758 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13759 phba->HAregaddr); 13760 writel(hc_copy, phba->HCregaddr); 13761 readl(phba->HAregaddr); /* flush */ 13762 spin_unlock_irqrestore(&phba->hbalock, iflag); 13763 } else 13764 ha_copy = phba->ha_copy; 13765 13766 work_ha_copy = ha_copy & phba->work_ha_mask; 13767 13768 if (work_ha_copy) { 13769 if (work_ha_copy & HA_LATT) { 13770 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13771 /* 13772 * Turn off Link Attention interrupts 13773 * until CLEAR_LA done 13774 */ 13775 spin_lock_irqsave(&phba->hbalock, iflag); 13776 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13777 if (lpfc_readl(phba->HCregaddr, &control)) 13778 goto unplug_error; 13779 control &= ~HC_LAINT_ENA; 13780 writel(control, phba->HCregaddr); 13781 readl(phba->HCregaddr); /* flush */ 13782 spin_unlock_irqrestore(&phba->hbalock, iflag); 13783 } 13784 else 13785 work_ha_copy &= ~HA_LATT; 13786 } 13787 13788 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13789 /* 13790 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13791 * the only slow ring. 13792 */ 13793 status = (work_ha_copy & 13794 (HA_RXMASK << (4*LPFC_ELS_RING))); 13795 status >>= (4*LPFC_ELS_RING); 13796 if (status & HA_RXMASK) { 13797 spin_lock_irqsave(&phba->hbalock, iflag); 13798 if (lpfc_readl(phba->HCregaddr, &control)) 13799 goto unplug_error; 13800 13801 lpfc_debugfs_slow_ring_trc(phba, 13802 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13803 control, status, 13804 (uint32_t)phba->sli.slistat.sli_intr); 13805 13806 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13807 lpfc_debugfs_slow_ring_trc(phba, 13808 "ISR Disable ring:" 13809 "pwork:x%x hawork:x%x wait:x%x", 13810 phba->work_ha, work_ha_copy, 13811 (uint32_t)((unsigned long) 13812 &phba->work_waitq)); 13813 13814 control &= 13815 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13816 writel(control, phba->HCregaddr); 13817 readl(phba->HCregaddr); /* flush */ 13818 } 13819 else { 13820 lpfc_debugfs_slow_ring_trc(phba, 13821 "ISR slow ring: pwork:" 13822 "x%x hawork:x%x wait:x%x", 13823 phba->work_ha, work_ha_copy, 13824 (uint32_t)((unsigned long) 13825 &phba->work_waitq)); 13826 } 13827 spin_unlock_irqrestore(&phba->hbalock, iflag); 13828 } 13829 } 13830 spin_lock_irqsave(&phba->hbalock, iflag); 13831 if (work_ha_copy & HA_ERATT) { 13832 if (lpfc_sli_read_hs(phba)) 13833 goto unplug_error; 13834 /* 13835 * Check if there is a deferred error condition 13836 * is active 13837 */ 13838 if ((HS_FFER1 & phba->work_hs) && 13839 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13840 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13841 phba->work_hs)) { 13842 set_bit(DEFER_ERATT, &phba->hba_flag); 13843 /* Clear all interrupt enable conditions */ 13844 writel(0, phba->HCregaddr); 13845 readl(phba->HCregaddr); 13846 } 13847 } 13848 13849 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13850 pmb = phba->sli.mbox_active; 13851 pmbox = &pmb->u.mb; 13852 mbox = phba->mbox; 13853 vport = pmb->vport; 13854 13855 /* First check out the status word */ 13856 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13857 if (pmbox->mbxOwner != OWN_HOST) { 13858 spin_unlock_irqrestore(&phba->hbalock, iflag); 13859 /* 13860 * Stray Mailbox Interrupt, mbxCommand <cmd> 13861 * mbxStatus <status> 13862 */ 13863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13864 "(%d):0304 Stray Mailbox " 13865 "Interrupt mbxCommand x%x " 13866 "mbxStatus x%x\n", 13867 (vport ? vport->vpi : 0), 13868 pmbox->mbxCommand, 13869 pmbox->mbxStatus); 13870 /* clear mailbox attention bit */ 13871 work_ha_copy &= ~HA_MBATT; 13872 } else { 13873 phba->sli.mbox_active = NULL; 13874 spin_unlock_irqrestore(&phba->hbalock, iflag); 13875 phba->last_completion_time = jiffies; 13876 timer_delete(&phba->sli.mbox_tmo); 13877 if (pmb->mbox_cmpl) { 13878 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13879 MAILBOX_CMD_SIZE); 13880 if (pmb->out_ext_byte_len && 13881 pmb->ext_buf) 13882 lpfc_sli_pcimem_bcopy( 13883 phba->mbox_ext, 13884 pmb->ext_buf, 13885 pmb->out_ext_byte_len); 13886 } 13887 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13888 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13889 13890 lpfc_debugfs_disc_trc(vport, 13891 LPFC_DISC_TRC_MBOX_VPORT, 13892 "MBOX dflt rpi: : " 13893 "status:x%x rpi:x%x", 13894 (uint32_t)pmbox->mbxStatus, 13895 pmbox->un.varWords[0], 0); 13896 13897 if (!pmbox->mbxStatus) { 13898 mp = pmb->ctx_buf; 13899 ndlp = pmb->ctx_ndlp; 13900 13901 /* Reg_LOGIN of dflt RPI was 13902 * successful. new lets get 13903 * rid of the RPI using the 13904 * same mbox buffer. 13905 */ 13906 lpfc_unreg_login(phba, 13907 vport->vpi, 13908 pmbox->un.varWords[0], 13909 pmb); 13910 pmb->mbox_cmpl = 13911 lpfc_mbx_cmpl_dflt_rpi; 13912 pmb->ctx_buf = mp; 13913 pmb->ctx_ndlp = ndlp; 13914 pmb->vport = vport; 13915 rc = lpfc_sli_issue_mbox(phba, 13916 pmb, 13917 MBX_NOWAIT); 13918 if (rc != MBX_BUSY) 13919 lpfc_printf_log(phba, 13920 KERN_ERR, 13921 LOG_TRACE_EVENT, 13922 "0350 rc should have" 13923 "been MBX_BUSY\n"); 13924 if (rc != MBX_NOT_FINISHED) 13925 goto send_current_mbox; 13926 } 13927 } 13928 spin_lock_irqsave( 13929 &phba->pport->work_port_lock, 13930 iflag); 13931 phba->pport->work_port_events &= 13932 ~WORKER_MBOX_TMO; 13933 spin_unlock_irqrestore( 13934 &phba->pport->work_port_lock, 13935 iflag); 13936 13937 /* Do NOT queue MBX_HEARTBEAT to the worker 13938 * thread for processing. 13939 */ 13940 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13941 /* Process mbox now */ 13942 phba->sli.mbox_active = NULL; 13943 phba->sli.sli_flag &= 13944 ~LPFC_SLI_MBOX_ACTIVE; 13945 if (pmb->mbox_cmpl) 13946 pmb->mbox_cmpl(phba, pmb); 13947 } else { 13948 /* Queue to worker thread to process */ 13949 lpfc_mbox_cmpl_put(phba, pmb); 13950 } 13951 } 13952 } else 13953 spin_unlock_irqrestore(&phba->hbalock, iflag); 13954 13955 if ((work_ha_copy & HA_MBATT) && 13956 (phba->sli.mbox_active == NULL)) { 13957 send_current_mbox: 13958 /* Process next mailbox command if there is one */ 13959 do { 13960 rc = lpfc_sli_issue_mbox(phba, NULL, 13961 MBX_NOWAIT); 13962 } while (rc == MBX_NOT_FINISHED); 13963 if (rc != MBX_SUCCESS) 13964 lpfc_printf_log(phba, KERN_ERR, 13965 LOG_TRACE_EVENT, 13966 "0349 rc should be " 13967 "MBX_SUCCESS\n"); 13968 } 13969 13970 spin_lock_irqsave(&phba->hbalock, iflag); 13971 phba->work_ha |= work_ha_copy; 13972 spin_unlock_irqrestore(&phba->hbalock, iflag); 13973 lpfc_worker_wake_up(phba); 13974 } 13975 return IRQ_HANDLED; 13976 unplug_error: 13977 spin_unlock_irqrestore(&phba->hbalock, iflag); 13978 return IRQ_HANDLED; 13979 13980 } /* lpfc_sli_sp_intr_handler */ 13981 13982 /** 13983 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13984 * @irq: Interrupt number. 13985 * @dev_id: The device context pointer. 13986 * 13987 * This function is directly called from the PCI layer as an interrupt 13988 * service routine when device with SLI-3 interface spec is enabled with 13989 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13990 * ring event in the HBA. However, when the device is enabled with either 13991 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13992 * device-level interrupt handler. When the PCI slot is in error recovery 13993 * or the HBA is undergoing initialization, the interrupt handler will not 13994 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13995 * the intrrupt context. This function is called without any lock held. 13996 * It gets the hbalock to access and update SLI data structures. 13997 * 13998 * This function returns IRQ_HANDLED when interrupt is handled else it 13999 * returns IRQ_NONE. 14000 **/ 14001 irqreturn_t 14002 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 14003 { 14004 struct lpfc_hba *phba; 14005 uint32_t ha_copy; 14006 unsigned long status; 14007 unsigned long iflag; 14008 struct lpfc_sli_ring *pring; 14009 14010 /* Get the driver's phba structure from the dev_id and 14011 * assume the HBA is not interrupting. 14012 */ 14013 phba = (struct lpfc_hba *) dev_id; 14014 14015 if (unlikely(!phba)) 14016 return IRQ_NONE; 14017 14018 /* 14019 * Stuff needs to be attented to when this function is invoked as an 14020 * individual interrupt handler in MSI-X multi-message interrupt mode 14021 */ 14022 if (phba->intr_type == MSIX) { 14023 /* Check device state for handling interrupt */ 14024 if (lpfc_intr_state_check(phba)) 14025 return IRQ_NONE; 14026 /* Need to read HA REG for FCP ring and other ring events */ 14027 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 14028 return IRQ_HANDLED; 14029 14030 /* 14031 * If there is deferred error attention, do not check for 14032 * any interrupt. 14033 */ 14034 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 14035 return IRQ_NONE; 14036 14037 /* Clear up only attention source related to fast-path */ 14038 spin_lock_irqsave(&phba->hbalock, iflag); 14039 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 14040 phba->HAregaddr); 14041 readl(phba->HAregaddr); /* flush */ 14042 spin_unlock_irqrestore(&phba->hbalock, iflag); 14043 } else 14044 ha_copy = phba->ha_copy; 14045 14046 /* 14047 * Process all events on FCP ring. Take the optimized path for FCP IO. 14048 */ 14049 ha_copy &= ~(phba->work_ha_mask); 14050 14051 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14052 status >>= (4*LPFC_FCP_RING); 14053 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 14054 if (status & HA_RXMASK) 14055 lpfc_sli_handle_fast_ring_event(phba, pring, status); 14056 14057 if (phba->cfg_multi_ring_support == 2) { 14058 /* 14059 * Process all events on extra ring. Take the optimized path 14060 * for extra ring IO. 14061 */ 14062 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14063 status >>= (4*LPFC_EXTRA_RING); 14064 if (status & HA_RXMASK) { 14065 lpfc_sli_handle_fast_ring_event(phba, 14066 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14067 status); 14068 } 14069 } 14070 return IRQ_HANDLED; 14071 } /* lpfc_sli_fp_intr_handler */ 14072 14073 /** 14074 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14075 * @irq: Interrupt number. 14076 * @dev_id: The device context pointer. 14077 * 14078 * This function is the HBA device-level interrupt handler to device with 14079 * SLI-3 interface spec, called from the PCI layer when either MSI or 14080 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14081 * requires driver attention. This function invokes the slow-path interrupt 14082 * attention handling function and fast-path interrupt attention handling 14083 * function in turn to process the relevant HBA attention events. This 14084 * function is called without any lock held. It gets the hbalock to access 14085 * and update SLI data structures. 14086 * 14087 * This function returns IRQ_HANDLED when interrupt is handled, else it 14088 * returns IRQ_NONE. 14089 **/ 14090 irqreturn_t 14091 lpfc_sli_intr_handler(int irq, void *dev_id) 14092 { 14093 struct lpfc_hba *phba; 14094 irqreturn_t sp_irq_rc, fp_irq_rc; 14095 unsigned long status1, status2; 14096 uint32_t hc_copy; 14097 14098 /* 14099 * Get the driver's phba structure from the dev_id and 14100 * assume the HBA is not interrupting. 14101 */ 14102 phba = (struct lpfc_hba *) dev_id; 14103 14104 if (unlikely(!phba)) 14105 return IRQ_NONE; 14106 14107 /* Check device state for handling interrupt */ 14108 if (lpfc_intr_state_check(phba)) 14109 return IRQ_NONE; 14110 14111 spin_lock(&phba->hbalock); 14112 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14113 spin_unlock(&phba->hbalock); 14114 return IRQ_HANDLED; 14115 } 14116 14117 if (unlikely(!phba->ha_copy)) { 14118 spin_unlock(&phba->hbalock); 14119 return IRQ_NONE; 14120 } else if (phba->ha_copy & HA_ERATT) { 14121 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14122 /* ERATT polling has handled ERATT */ 14123 phba->ha_copy &= ~HA_ERATT; 14124 } 14125 14126 /* 14127 * If there is deferred error attention, do not check for any interrupt. 14128 */ 14129 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14130 spin_unlock(&phba->hbalock); 14131 return IRQ_NONE; 14132 } 14133 14134 /* Clear attention sources except link and error attentions */ 14135 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14136 spin_unlock(&phba->hbalock); 14137 return IRQ_HANDLED; 14138 } 14139 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14140 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14141 phba->HCregaddr); 14142 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14143 writel(hc_copy, phba->HCregaddr); 14144 readl(phba->HAregaddr); /* flush */ 14145 spin_unlock(&phba->hbalock); 14146 14147 /* 14148 * Invokes slow-path host attention interrupt handling as appropriate. 14149 */ 14150 14151 /* status of events with mailbox and link attention */ 14152 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14153 14154 /* status of events with ELS ring */ 14155 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14156 status2 >>= (4*LPFC_ELS_RING); 14157 14158 if (status1 || (status2 & HA_RXMASK)) 14159 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14160 else 14161 sp_irq_rc = IRQ_NONE; 14162 14163 /* 14164 * Invoke fast-path host attention interrupt handling as appropriate. 14165 */ 14166 14167 /* status of events with FCP ring */ 14168 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14169 status1 >>= (4*LPFC_FCP_RING); 14170 14171 /* status of events with extra ring */ 14172 if (phba->cfg_multi_ring_support == 2) { 14173 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14174 status2 >>= (4*LPFC_EXTRA_RING); 14175 } else 14176 status2 = 0; 14177 14178 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14179 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14180 else 14181 fp_irq_rc = IRQ_NONE; 14182 14183 /* Return device-level interrupt handling status */ 14184 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14185 } /* lpfc_sli_intr_handler */ 14186 14187 /** 14188 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14189 * @phba: pointer to lpfc hba data structure. 14190 * 14191 * This routine is invoked by the worker thread to process all the pending 14192 * SLI4 els abort xri events. 14193 **/ 14194 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14195 { 14196 struct lpfc_cq_event *cq_event; 14197 unsigned long iflags; 14198 14199 /* First, declare the els xri abort event has been handled */ 14200 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14201 14202 /* Now, handle all the els xri abort events */ 14203 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14204 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14205 /* Get the first event from the head of the event queue */ 14206 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14207 cq_event, struct lpfc_cq_event, list); 14208 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14209 iflags); 14210 /* Notify aborted XRI for ELS work queue */ 14211 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14212 14213 /* Free the event processed back to the free pool */ 14214 lpfc_sli4_cq_event_release(phba, cq_event); 14215 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14216 iflags); 14217 } 14218 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14219 } 14220 14221 /** 14222 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14223 * @phba: Pointer to HBA context object. 14224 * @irspiocbq: Pointer to work-queue completion queue entry. 14225 * 14226 * This routine handles an ELS work-queue completion event and construct 14227 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14228 * discovery engine to handle. 14229 * 14230 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14231 **/ 14232 static struct lpfc_iocbq * 14233 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14234 struct lpfc_iocbq *irspiocbq) 14235 { 14236 struct lpfc_sli_ring *pring; 14237 struct lpfc_iocbq *cmdiocbq; 14238 struct lpfc_wcqe_complete *wcqe; 14239 unsigned long iflags; 14240 14241 pring = lpfc_phba_elsring(phba); 14242 if (unlikely(!pring)) 14243 return NULL; 14244 14245 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14246 spin_lock_irqsave(&pring->ring_lock, iflags); 14247 pring->stats.iocb_event++; 14248 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14249 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14250 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14251 if (unlikely(!cmdiocbq)) { 14252 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14253 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14254 "0386 ELS complete with no corresponding " 14255 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14256 wcqe->word0, wcqe->total_data_placed, 14257 wcqe->parameter, wcqe->word3); 14258 lpfc_sli_release_iocbq(phba, irspiocbq); 14259 return NULL; 14260 } 14261 14262 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14263 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14264 14265 /* Put the iocb back on the txcmplq */ 14266 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14267 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14268 14269 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14270 spin_lock_irqsave(&phba->hbalock, iflags); 14271 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14272 spin_unlock_irqrestore(&phba->hbalock, iflags); 14273 } 14274 14275 return irspiocbq; 14276 } 14277 14278 inline struct lpfc_cq_event * 14279 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14280 { 14281 struct lpfc_cq_event *cq_event; 14282 14283 /* Allocate a new internal CQ_EVENT entry */ 14284 cq_event = lpfc_sli4_cq_event_alloc(phba); 14285 if (!cq_event) { 14286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14287 "0602 Failed to alloc CQ_EVENT entry\n"); 14288 return NULL; 14289 } 14290 14291 /* Move the CQE into the event */ 14292 memcpy(&cq_event->cqe, entry, size); 14293 return cq_event; 14294 } 14295 14296 /** 14297 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14298 * @phba: Pointer to HBA context object. 14299 * @mcqe: Pointer to mailbox completion queue entry. 14300 * 14301 * This routine process a mailbox completion queue entry with asynchronous 14302 * event. 14303 * 14304 * Return: true if work posted to worker thread, otherwise false. 14305 **/ 14306 static bool 14307 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14308 { 14309 struct lpfc_cq_event *cq_event; 14310 unsigned long iflags; 14311 14312 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14313 "0392 Async Event: word0:x%x, word1:x%x, " 14314 "word2:x%x, word3:x%x\n", mcqe->word0, 14315 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14316 14317 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14318 if (!cq_event) 14319 return false; 14320 14321 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14322 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14323 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14324 14325 /* Set the async event flag */ 14326 set_bit(ASYNC_EVENT, &phba->hba_flag); 14327 14328 return true; 14329 } 14330 14331 /** 14332 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14333 * @phba: Pointer to HBA context object. 14334 * @mcqe: Pointer to mailbox completion queue entry. 14335 * 14336 * This routine process a mailbox completion queue entry with mailbox 14337 * completion event. 14338 * 14339 * Return: true if work posted to worker thread, otherwise false. 14340 **/ 14341 static bool 14342 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14343 { 14344 uint32_t mcqe_status; 14345 MAILBOX_t *mbox, *pmbox; 14346 struct lpfc_mqe *mqe; 14347 struct lpfc_vport *vport; 14348 struct lpfc_nodelist *ndlp; 14349 struct lpfc_dmabuf *mp; 14350 unsigned long iflags; 14351 LPFC_MBOXQ_t *pmb; 14352 bool workposted = false; 14353 int rc; 14354 14355 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14356 if (!bf_get(lpfc_trailer_completed, mcqe)) 14357 goto out_no_mqe_complete; 14358 14359 /* Get the reference to the active mbox command */ 14360 spin_lock_irqsave(&phba->hbalock, iflags); 14361 pmb = phba->sli.mbox_active; 14362 if (unlikely(!pmb)) { 14363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14364 "1832 No pending MBOX command to handle\n"); 14365 spin_unlock_irqrestore(&phba->hbalock, iflags); 14366 goto out_no_mqe_complete; 14367 } 14368 spin_unlock_irqrestore(&phba->hbalock, iflags); 14369 mqe = &pmb->u.mqe; 14370 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14371 mbox = phba->mbox; 14372 vport = pmb->vport; 14373 14374 /* Reset heartbeat timer */ 14375 phba->last_completion_time = jiffies; 14376 timer_delete(&phba->sli.mbox_tmo); 14377 14378 /* Move mbox data to caller's mailbox region, do endian swapping */ 14379 if (pmb->mbox_cmpl && mbox) 14380 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14381 14382 /* 14383 * For mcqe errors, conditionally move a modified error code to 14384 * the mbox so that the error will not be missed. 14385 */ 14386 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14387 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14388 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14389 bf_set(lpfc_mqe_status, mqe, 14390 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14391 } 14392 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14393 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14394 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14395 "MBOX dflt rpi: status:x%x rpi:x%x", 14396 mcqe_status, 14397 pmbox->un.varWords[0], 0); 14398 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14399 mp = pmb->ctx_buf; 14400 ndlp = pmb->ctx_ndlp; 14401 14402 /* Reg_LOGIN of dflt RPI was successful. Mark the 14403 * node as having an UNREG_LOGIN in progress to stop 14404 * an unsolicited PLOGI from the same NPortId from 14405 * starting another mailbox transaction. 14406 */ 14407 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 14408 lpfc_unreg_login(phba, vport->vpi, 14409 pmbox->un.varWords[0], pmb); 14410 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14411 pmb->ctx_buf = mp; 14412 14413 /* No reference taken here. This is a default 14414 * RPI reg/immediate unreg cycle. The reference was 14415 * taken in the reg rpi path and is released when 14416 * this mailbox completes. 14417 */ 14418 pmb->ctx_ndlp = ndlp; 14419 pmb->vport = vport; 14420 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14421 if (rc != MBX_BUSY) 14422 lpfc_printf_log(phba, KERN_ERR, 14423 LOG_TRACE_EVENT, 14424 "0385 rc should " 14425 "have been MBX_BUSY\n"); 14426 if (rc != MBX_NOT_FINISHED) 14427 goto send_current_mbox; 14428 } 14429 } 14430 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14431 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14432 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14433 14434 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14435 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14436 spin_lock_irqsave(&phba->hbalock, iflags); 14437 /* Release the mailbox command posting token */ 14438 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14439 phba->sli.mbox_active = NULL; 14440 if (bf_get(lpfc_trailer_consumed, mcqe)) 14441 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14442 spin_unlock_irqrestore(&phba->hbalock, iflags); 14443 14444 /* Post the next mbox command, if there is one */ 14445 lpfc_sli4_post_async_mbox(phba); 14446 14447 /* Process cmpl now */ 14448 if (pmb->mbox_cmpl) 14449 pmb->mbox_cmpl(phba, pmb); 14450 return false; 14451 } 14452 14453 /* There is mailbox completion work to queue to the worker thread */ 14454 spin_lock_irqsave(&phba->hbalock, iflags); 14455 __lpfc_mbox_cmpl_put(phba, pmb); 14456 phba->work_ha |= HA_MBATT; 14457 spin_unlock_irqrestore(&phba->hbalock, iflags); 14458 workposted = true; 14459 14460 send_current_mbox: 14461 spin_lock_irqsave(&phba->hbalock, iflags); 14462 /* Release the mailbox command posting token */ 14463 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14464 /* Setting active mailbox pointer need to be in sync to flag clear */ 14465 phba->sli.mbox_active = NULL; 14466 if (bf_get(lpfc_trailer_consumed, mcqe)) 14467 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14468 spin_unlock_irqrestore(&phba->hbalock, iflags); 14469 /* Wake up worker thread to post the next pending mailbox command */ 14470 lpfc_worker_wake_up(phba); 14471 return workposted; 14472 14473 out_no_mqe_complete: 14474 spin_lock_irqsave(&phba->hbalock, iflags); 14475 if (bf_get(lpfc_trailer_consumed, mcqe)) 14476 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14477 spin_unlock_irqrestore(&phba->hbalock, iflags); 14478 return false; 14479 } 14480 14481 /** 14482 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14483 * @phba: Pointer to HBA context object. 14484 * @cq: Pointer to associated CQ 14485 * @cqe: Pointer to mailbox completion queue entry. 14486 * 14487 * This routine process a mailbox completion queue entry, it invokes the 14488 * proper mailbox complete handling or asynchronous event handling routine 14489 * according to the MCQE's async bit. 14490 * 14491 * Return: true if work posted to worker thread, otherwise false. 14492 **/ 14493 static bool 14494 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14495 struct lpfc_cqe *cqe) 14496 { 14497 struct lpfc_mcqe mcqe; 14498 bool workposted; 14499 14500 cq->CQ_mbox++; 14501 14502 /* Copy the mailbox MCQE and convert endian order as needed */ 14503 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14504 14505 /* Invoke the proper event handling routine */ 14506 if (!bf_get(lpfc_trailer_async, &mcqe)) 14507 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14508 else 14509 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14510 return workposted; 14511 } 14512 14513 /** 14514 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14515 * @phba: Pointer to HBA context object. 14516 * @cq: Pointer to associated CQ 14517 * @wcqe: Pointer to work-queue completion queue entry. 14518 * 14519 * This routine handles an ELS work-queue completion event. 14520 * 14521 * Return: true if work posted to worker thread, otherwise false. 14522 **/ 14523 static bool 14524 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14525 struct lpfc_wcqe_complete *wcqe) 14526 { 14527 struct lpfc_iocbq *irspiocbq; 14528 unsigned long iflags; 14529 struct lpfc_sli_ring *pring = cq->pring; 14530 int txq_cnt = 0; 14531 int txcmplq_cnt = 0; 14532 14533 /* Check for response status */ 14534 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14535 /* Log the error status */ 14536 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14537 "0357 ELS CQE error: status=x%x: " 14538 "CQE: %08x %08x %08x %08x\n", 14539 bf_get(lpfc_wcqe_c_status, wcqe), 14540 wcqe->word0, wcqe->total_data_placed, 14541 wcqe->parameter, wcqe->word3); 14542 } 14543 14544 /* Get an irspiocbq for later ELS response processing use */ 14545 irspiocbq = lpfc_sli_get_iocbq(phba); 14546 if (!irspiocbq) { 14547 if (!list_empty(&pring->txq)) 14548 txq_cnt++; 14549 if (!list_empty(&pring->txcmplq)) 14550 txcmplq_cnt++; 14551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14552 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14553 "els_txcmplq_cnt=%d\n", 14554 txq_cnt, phba->iocb_cnt, 14555 txcmplq_cnt); 14556 return false; 14557 } 14558 14559 /* Save off the slow-path queue event for work thread to process */ 14560 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14561 spin_lock_irqsave(&phba->hbalock, iflags); 14562 list_add_tail(&irspiocbq->cq_event.list, 14563 &phba->sli4_hba.sp_queue_event); 14564 spin_unlock_irqrestore(&phba->hbalock, iflags); 14565 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14566 14567 return true; 14568 } 14569 14570 /** 14571 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14572 * @phba: Pointer to HBA context object. 14573 * @wcqe: Pointer to work-queue completion queue entry. 14574 * 14575 * This routine handles slow-path WQ entry consumed event by invoking the 14576 * proper WQ release routine to the slow-path WQ. 14577 **/ 14578 static void 14579 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14580 struct lpfc_wcqe_release *wcqe) 14581 { 14582 /* sanity check on queue memory */ 14583 if (unlikely(!phba->sli4_hba.els_wq)) 14584 return; 14585 /* Check for the slow-path ELS work queue */ 14586 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14587 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14588 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14589 else 14590 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14591 "2579 Slow-path wqe consume event carries " 14592 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14593 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14594 phba->sli4_hba.els_wq->queue_id); 14595 } 14596 14597 /** 14598 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14599 * @phba: Pointer to HBA context object. 14600 * @cq: Pointer to a WQ completion queue. 14601 * @wcqe: Pointer to work-queue completion queue entry. 14602 * 14603 * This routine handles an XRI abort event. 14604 * 14605 * Return: true if work posted to worker thread, otherwise false. 14606 **/ 14607 static bool 14608 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14609 struct lpfc_queue *cq, 14610 struct sli4_wcqe_xri_aborted *wcqe) 14611 { 14612 bool workposted = false; 14613 struct lpfc_cq_event *cq_event; 14614 unsigned long iflags; 14615 14616 switch (cq->subtype) { 14617 case LPFC_IO: 14618 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14619 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14620 /* Notify aborted XRI for NVME work queue */ 14621 if (phba->nvmet_support) 14622 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14623 } 14624 workposted = false; 14625 break; 14626 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14627 case LPFC_ELS: 14628 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14629 if (!cq_event) { 14630 workposted = false; 14631 break; 14632 } 14633 cq_event->hdwq = cq->hdwq; 14634 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14635 iflags); 14636 list_add_tail(&cq_event->list, 14637 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14638 /* Set the els xri abort event flag */ 14639 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14640 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14641 iflags); 14642 workposted = true; 14643 break; 14644 default: 14645 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14646 "0603 Invalid CQ subtype %d: " 14647 "%08x %08x %08x %08x\n", 14648 cq->subtype, wcqe->word0, wcqe->parameter, 14649 wcqe->word2, wcqe->word3); 14650 workposted = false; 14651 break; 14652 } 14653 return workposted; 14654 } 14655 14656 #define FC_RCTL_MDS_DIAGS 0xF4 14657 14658 /** 14659 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14660 * @phba: Pointer to HBA context object. 14661 * @rcqe: Pointer to receive-queue completion queue entry. 14662 * 14663 * This routine process a receive-queue completion queue entry. 14664 * 14665 * Return: true if work posted to worker thread, otherwise false. 14666 **/ 14667 static bool 14668 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14669 { 14670 bool workposted = false; 14671 struct fc_frame_header *fc_hdr; 14672 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14673 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14674 struct lpfc_nvmet_tgtport *tgtp; 14675 struct hbq_dmabuf *dma_buf; 14676 uint32_t status, rq_id; 14677 unsigned long iflags; 14678 14679 /* sanity check on queue memory */ 14680 if (unlikely(!hrq) || unlikely(!drq)) 14681 return workposted; 14682 14683 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14684 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14685 else 14686 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14687 if (rq_id != hrq->queue_id) 14688 goto out; 14689 14690 status = bf_get(lpfc_rcqe_status, rcqe); 14691 switch (status) { 14692 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14694 "2537 Receive Frame Truncated!!\n"); 14695 fallthrough; 14696 case FC_STATUS_RQ_SUCCESS: 14697 spin_lock_irqsave(&phba->hbalock, iflags); 14698 lpfc_sli4_rq_release(hrq, drq); 14699 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14700 if (!dma_buf) { 14701 hrq->RQ_no_buf_found++; 14702 spin_unlock_irqrestore(&phba->hbalock, iflags); 14703 goto out; 14704 } 14705 hrq->RQ_rcv_buf++; 14706 hrq->RQ_buf_posted--; 14707 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14708 14709 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14710 14711 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14712 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14713 spin_unlock_irqrestore(&phba->hbalock, iflags); 14714 /* Handle MDS Loopback frames */ 14715 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14716 lpfc_sli4_handle_mds_loopback(phba->pport, 14717 dma_buf); 14718 else 14719 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14720 break; 14721 } 14722 14723 /* save off the frame for the work thread to process */ 14724 list_add_tail(&dma_buf->cq_event.list, 14725 &phba->sli4_hba.sp_queue_event); 14726 spin_unlock_irqrestore(&phba->hbalock, iflags); 14727 /* Frame received */ 14728 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14729 workposted = true; 14730 break; 14731 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14732 if (phba->nvmet_support) { 14733 tgtp = phba->targetport->private; 14734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14735 "6402 RQE Error x%x, posted %d err_cnt " 14736 "%d: %x %x %x\n", 14737 status, hrq->RQ_buf_posted, 14738 hrq->RQ_no_posted_buf, 14739 atomic_read(&tgtp->rcv_fcp_cmd_in), 14740 atomic_read(&tgtp->rcv_fcp_cmd_out), 14741 atomic_read(&tgtp->xmt_fcp_release)); 14742 } 14743 fallthrough; 14744 14745 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14746 hrq->RQ_no_posted_buf++; 14747 /* Post more buffers if possible */ 14748 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14749 workposted = true; 14750 break; 14751 case FC_STATUS_RQ_DMA_FAILURE: 14752 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14753 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14754 "x%08x\n", 14755 status, rcqe->word0, rcqe->word1, 14756 rcqe->word2, rcqe->word3); 14757 14758 /* If IV set, no further recovery */ 14759 if (bf_get(lpfc_rcqe_iv, rcqe)) 14760 break; 14761 14762 /* recycle consumed resource */ 14763 spin_lock_irqsave(&phba->hbalock, iflags); 14764 lpfc_sli4_rq_release(hrq, drq); 14765 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14766 if (!dma_buf) { 14767 hrq->RQ_no_buf_found++; 14768 spin_unlock_irqrestore(&phba->hbalock, iflags); 14769 break; 14770 } 14771 hrq->RQ_rcv_buf++; 14772 hrq->RQ_buf_posted--; 14773 spin_unlock_irqrestore(&phba->hbalock, iflags); 14774 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14775 break; 14776 default: 14777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14778 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14779 "x%08x x%08x x%08x\n", 14780 status, rcqe->word0, rcqe->word1, 14781 rcqe->word2, rcqe->word3); 14782 break; 14783 } 14784 out: 14785 return workposted; 14786 } 14787 14788 /** 14789 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14790 * @phba: Pointer to HBA context object. 14791 * @cq: Pointer to the completion queue. 14792 * @cqe: Pointer to a completion queue entry. 14793 * 14794 * This routine process a slow-path work-queue or receive queue completion queue 14795 * entry. 14796 * 14797 * Return: true if work posted to worker thread, otherwise false. 14798 **/ 14799 static bool 14800 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14801 struct lpfc_cqe *cqe) 14802 { 14803 struct lpfc_cqe cqevt; 14804 bool workposted = false; 14805 14806 /* Copy the work queue CQE and convert endian order if needed */ 14807 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14808 14809 /* Check and process for different type of WCQE and dispatch */ 14810 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14811 case CQE_CODE_COMPL_WQE: 14812 /* Process the WQ/RQ complete event */ 14813 phba->last_completion_time = jiffies; 14814 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14815 (struct lpfc_wcqe_complete *)&cqevt); 14816 break; 14817 case CQE_CODE_RELEASE_WQE: 14818 /* Process the WQ release event */ 14819 lpfc_sli4_sp_handle_rel_wcqe(phba, 14820 (struct lpfc_wcqe_release *)&cqevt); 14821 break; 14822 case CQE_CODE_XRI_ABORTED: 14823 /* Process the WQ XRI abort event */ 14824 phba->last_completion_time = jiffies; 14825 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14826 (struct sli4_wcqe_xri_aborted *)&cqevt); 14827 break; 14828 case CQE_CODE_RECEIVE: 14829 case CQE_CODE_RECEIVE_V1: 14830 /* Process the RQ event */ 14831 phba->last_completion_time = jiffies; 14832 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14833 (struct lpfc_rcqe *)&cqevt); 14834 break; 14835 default: 14836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14837 "0388 Not a valid WCQE code: x%x\n", 14838 bf_get(lpfc_cqe_code, &cqevt)); 14839 break; 14840 } 14841 return workposted; 14842 } 14843 14844 /** 14845 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14846 * @phba: Pointer to HBA context object. 14847 * @eqe: Pointer to fast-path event queue entry. 14848 * @speq: Pointer to slow-path event queue. 14849 * 14850 * This routine process a event queue entry from the slow-path event queue. 14851 * It will check the MajorCode and MinorCode to determine this is for a 14852 * completion event on a completion queue, if not, an error shall be logged 14853 * and just return. Otherwise, it will get to the corresponding completion 14854 * queue and process all the entries on that completion queue, rearm the 14855 * completion queue, and then return. 14856 * 14857 **/ 14858 static void 14859 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14860 struct lpfc_queue *speq) 14861 { 14862 struct lpfc_queue *cq = NULL, *childq; 14863 uint16_t cqid; 14864 int ret = 0; 14865 14866 /* Get the reference to the corresponding CQ */ 14867 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14868 14869 list_for_each_entry(childq, &speq->child_list, list) { 14870 if (childq->queue_id == cqid) { 14871 cq = childq; 14872 break; 14873 } 14874 } 14875 if (unlikely(!cq)) { 14876 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14878 "0365 Slow-path CQ identifier " 14879 "(%d) does not exist\n", cqid); 14880 return; 14881 } 14882 14883 /* Save EQ associated with this CQ */ 14884 cq->assoc_qp = speq; 14885 14886 if (is_kdump_kernel()) 14887 ret = queue_work(phba->wq, &cq->spwork); 14888 else 14889 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14890 14891 if (!ret) 14892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14893 "0390 Cannot schedule queue work " 14894 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14895 cqid, cq->queue_id, raw_smp_processor_id()); 14896 } 14897 14898 /** 14899 * __lpfc_sli4_process_cq - Process elements of a CQ 14900 * @phba: Pointer to HBA context object. 14901 * @cq: Pointer to CQ to be processed 14902 * @handler: Routine to process each cqe 14903 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14904 * 14905 * This routine processes completion queue entries in a CQ. While a valid 14906 * queue element is found, the handler is called. During processing checks 14907 * are made for periodic doorbell writes to let the hardware know of 14908 * element consumption. 14909 * 14910 * If the max limit on cqes to process is hit, or there are no more valid 14911 * entries, the loop stops. If we processed a sufficient number of elements, 14912 * meaning there is sufficient load, rather than rearming and generating 14913 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14914 * indicates no rescheduling. 14915 * 14916 * Returns True if work scheduled, False otherwise. 14917 **/ 14918 static bool 14919 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14920 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14921 struct lpfc_cqe *), unsigned long *delay) 14922 { 14923 struct lpfc_cqe *cqe; 14924 bool workposted = false; 14925 int count = 0, consumed = 0; 14926 bool arm = true; 14927 14928 /* default - no reschedule */ 14929 *delay = 0; 14930 14931 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14932 goto rearm_and_exit; 14933 14934 /* Process all the entries to the CQ */ 14935 cq->q_flag = 0; 14936 cqe = lpfc_sli4_cq_get(cq); 14937 while (cqe) { 14938 workposted |= handler(phba, cq, cqe); 14939 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14940 14941 consumed++; 14942 if (!(++count % cq->max_proc_limit)) 14943 break; 14944 14945 if (!(count % cq->notify_interval)) { 14946 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14947 LPFC_QUEUE_NOARM); 14948 consumed = 0; 14949 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14950 } 14951 14952 if (count == LPFC_NVMET_CQ_NOTIFY) 14953 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14954 14955 cqe = lpfc_sli4_cq_get(cq); 14956 } 14957 if (count >= phba->cfg_cq_poll_threshold) { 14958 *delay = 1; 14959 arm = false; 14960 } 14961 14962 /* Track the max number of CQEs processed in 1 EQ */ 14963 if (count > cq->CQ_max_cqe) 14964 cq->CQ_max_cqe = count; 14965 14966 cq->assoc_qp->EQ_cqe_cnt += count; 14967 14968 /* Catch the no cq entry condition */ 14969 if (unlikely(count == 0)) 14970 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14971 "0369 No entry from completion queue " 14972 "qid=%d\n", cq->queue_id); 14973 14974 xchg(&cq->queue_claimed, 0); 14975 14976 rearm_and_exit: 14977 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14978 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14979 14980 return workposted; 14981 } 14982 14983 /** 14984 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14985 * @cq: pointer to CQ to process 14986 * 14987 * This routine calls the cq processing routine with a handler specific 14988 * to the type of queue bound to it. 14989 * 14990 * The CQ routine returns two values: the first is the calling status, 14991 * which indicates whether work was queued to the background discovery 14992 * thread. If true, the routine should wakeup the discovery thread; 14993 * the second is the delay parameter. If non-zero, rather than rearming 14994 * the CQ and yet another interrupt, the CQ handler should be queued so 14995 * that it is processed in a subsequent polling action. The value of 14996 * the delay indicates when to reschedule it. 14997 **/ 14998 static void 14999 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 15000 { 15001 struct lpfc_hba *phba = cq->phba; 15002 unsigned long delay; 15003 bool workposted = false; 15004 int ret = 0; 15005 15006 /* Process and rearm the CQ */ 15007 switch (cq->type) { 15008 case LPFC_MCQ: 15009 workposted |= __lpfc_sli4_process_cq(phba, cq, 15010 lpfc_sli4_sp_handle_mcqe, 15011 &delay); 15012 break; 15013 case LPFC_WCQ: 15014 if (cq->subtype == LPFC_IO) 15015 workposted |= __lpfc_sli4_process_cq(phba, cq, 15016 lpfc_sli4_fp_handle_cqe, 15017 &delay); 15018 else 15019 workposted |= __lpfc_sli4_process_cq(phba, cq, 15020 lpfc_sli4_sp_handle_cqe, 15021 &delay); 15022 break; 15023 default: 15024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15025 "0370 Invalid completion queue type (%d)\n", 15026 cq->type); 15027 return; 15028 } 15029 15030 if (delay) { 15031 if (is_kdump_kernel()) 15032 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 15033 delay); 15034 else 15035 ret = queue_delayed_work_on(cq->chann, phba->wq, 15036 &cq->sched_spwork, delay); 15037 if (!ret) 15038 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15039 "0394 Cannot schedule queue work " 15040 "for cqid=%d on CPU %d\n", 15041 cq->queue_id, cq->chann); 15042 } 15043 15044 /* wake up worker thread if there are works to be done */ 15045 if (workposted) 15046 lpfc_worker_wake_up(phba); 15047 } 15048 15049 /** 15050 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15051 * interrupt 15052 * @work: pointer to work element 15053 * 15054 * translates from the work handler and calls the slow-path handler. 15055 **/ 15056 static void 15057 lpfc_sli4_sp_process_cq(struct work_struct *work) 15058 { 15059 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15060 15061 __lpfc_sli4_sp_process_cq(cq); 15062 } 15063 15064 /** 15065 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15066 * @work: pointer to work element 15067 * 15068 * translates from the work handler and calls the slow-path handler. 15069 **/ 15070 static void 15071 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15072 { 15073 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15074 struct lpfc_queue, sched_spwork); 15075 15076 __lpfc_sli4_sp_process_cq(cq); 15077 } 15078 15079 /** 15080 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15081 * @phba: Pointer to HBA context object. 15082 * @cq: Pointer to associated CQ 15083 * @wcqe: Pointer to work-queue completion queue entry. 15084 * 15085 * This routine process a fast-path work queue completion entry from fast-path 15086 * event queue for FCP command response completion. 15087 **/ 15088 static void 15089 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15090 struct lpfc_wcqe_complete *wcqe) 15091 { 15092 struct lpfc_sli_ring *pring = cq->pring; 15093 struct lpfc_iocbq *cmdiocbq; 15094 unsigned long iflags; 15095 15096 /* Check for response status */ 15097 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15098 /* If resource errors reported from HBA, reduce queue 15099 * depth of the SCSI device. 15100 */ 15101 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15102 IOSTAT_LOCAL_REJECT)) && 15103 ((wcqe->parameter & IOERR_PARAM_MASK) == 15104 IOERR_NO_RESOURCES)) 15105 phba->lpfc_rampdown_queue_depth(phba); 15106 15107 /* Log the cmpl status */ 15108 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15109 "0373 FCP CQE cmpl: status=x%x: " 15110 "CQE: %08x %08x %08x %08x\n", 15111 bf_get(lpfc_wcqe_c_status, wcqe), 15112 wcqe->word0, wcqe->total_data_placed, 15113 wcqe->parameter, wcqe->word3); 15114 } 15115 15116 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15117 spin_lock_irqsave(&pring->ring_lock, iflags); 15118 pring->stats.iocb_event++; 15119 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15120 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15121 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15122 if (unlikely(!cmdiocbq)) { 15123 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15124 "0374 FCP complete with no corresponding " 15125 "cmdiocb: iotag (%d)\n", 15126 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15127 return; 15128 } 15129 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15130 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15131 #endif 15132 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15133 spin_lock_irqsave(&phba->hbalock, iflags); 15134 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15135 spin_unlock_irqrestore(&phba->hbalock, iflags); 15136 } 15137 15138 if (cmdiocbq->cmd_cmpl) { 15139 /* For FCP the flag is cleared in cmd_cmpl */ 15140 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15141 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15142 spin_lock_irqsave(&phba->hbalock, iflags); 15143 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15144 spin_unlock_irqrestore(&phba->hbalock, iflags); 15145 } 15146 15147 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15148 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15149 sizeof(struct lpfc_wcqe_complete)); 15150 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15151 } else { 15152 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15153 "0375 FCP cmdiocb not callback function " 15154 "iotag: (%d)\n", 15155 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15156 } 15157 } 15158 15159 /** 15160 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15161 * @phba: Pointer to HBA context object. 15162 * @cq: Pointer to completion queue. 15163 * @wcqe: Pointer to work-queue completion queue entry. 15164 * 15165 * This routine handles an fast-path WQ entry consumed event by invoking the 15166 * proper WQ release routine to the slow-path WQ. 15167 **/ 15168 static void 15169 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15170 struct lpfc_wcqe_release *wcqe) 15171 { 15172 struct lpfc_queue *childwq; 15173 bool wqid_matched = false; 15174 uint16_t hba_wqid; 15175 15176 /* Check for fast-path FCP work queue release */ 15177 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15178 list_for_each_entry(childwq, &cq->child_list, list) { 15179 if (childwq->queue_id == hba_wqid) { 15180 lpfc_sli4_wq_release(childwq, 15181 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15182 if (childwq->q_flag & HBA_NVMET_WQFULL) 15183 lpfc_nvmet_wqfull_process(phba, childwq); 15184 wqid_matched = true; 15185 break; 15186 } 15187 } 15188 /* Report warning log message if no match found */ 15189 if (wqid_matched != true) 15190 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15191 "2580 Fast-path wqe consume event carries " 15192 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15193 } 15194 15195 /** 15196 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15197 * @phba: Pointer to HBA context object. 15198 * @cq: Pointer to completion queue. 15199 * @rcqe: Pointer to receive-queue completion queue entry. 15200 * 15201 * This routine process a receive-queue completion queue entry. 15202 * 15203 * Return: true if work posted to worker thread, otherwise false. 15204 **/ 15205 static bool 15206 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15207 struct lpfc_rcqe *rcqe) 15208 { 15209 bool workposted = false; 15210 struct lpfc_queue *hrq; 15211 struct lpfc_queue *drq; 15212 struct rqb_dmabuf *dma_buf; 15213 struct fc_frame_header *fc_hdr; 15214 struct lpfc_nvmet_tgtport *tgtp; 15215 uint32_t status, rq_id; 15216 unsigned long iflags; 15217 uint32_t fctl, idx; 15218 15219 if ((phba->nvmet_support == 0) || 15220 (phba->sli4_hba.nvmet_cqset == NULL)) 15221 return workposted; 15222 15223 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15224 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15225 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15226 15227 /* sanity check on queue memory */ 15228 if (unlikely(!hrq) || unlikely(!drq)) 15229 return workposted; 15230 15231 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15232 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15233 else 15234 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15235 15236 if ((phba->nvmet_support == 0) || 15237 (rq_id != hrq->queue_id)) 15238 return workposted; 15239 15240 status = bf_get(lpfc_rcqe_status, rcqe); 15241 switch (status) { 15242 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15244 "6126 Receive Frame Truncated!!\n"); 15245 fallthrough; 15246 case FC_STATUS_RQ_SUCCESS: 15247 spin_lock_irqsave(&phba->hbalock, iflags); 15248 lpfc_sli4_rq_release(hrq, drq); 15249 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15250 if (!dma_buf) { 15251 hrq->RQ_no_buf_found++; 15252 spin_unlock_irqrestore(&phba->hbalock, iflags); 15253 goto out; 15254 } 15255 spin_unlock_irqrestore(&phba->hbalock, iflags); 15256 hrq->RQ_rcv_buf++; 15257 hrq->RQ_buf_posted--; 15258 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15259 15260 /* Just some basic sanity checks on FCP Command frame */ 15261 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15262 fc_hdr->fh_f_ctl[1] << 8 | 15263 fc_hdr->fh_f_ctl[2]); 15264 if (((fctl & 15265 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15266 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15267 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15268 goto drop; 15269 15270 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15271 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15272 lpfc_nvmet_unsol_fcp_event( 15273 phba, idx, dma_buf, cq->isr_timestamp, 15274 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15275 return false; 15276 } 15277 drop: 15278 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15279 break; 15280 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15281 if (phba->nvmet_support) { 15282 tgtp = phba->targetport->private; 15283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15284 "6401 RQE Error x%x, posted %d err_cnt " 15285 "%d: %x %x %x\n", 15286 status, hrq->RQ_buf_posted, 15287 hrq->RQ_no_posted_buf, 15288 atomic_read(&tgtp->rcv_fcp_cmd_in), 15289 atomic_read(&tgtp->rcv_fcp_cmd_out), 15290 atomic_read(&tgtp->xmt_fcp_release)); 15291 } 15292 fallthrough; 15293 15294 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15295 hrq->RQ_no_posted_buf++; 15296 /* Post more buffers if possible */ 15297 break; 15298 case FC_STATUS_RQ_DMA_FAILURE: 15299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15300 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15301 "x%08x\n", 15302 status, rcqe->word0, rcqe->word1, 15303 rcqe->word2, rcqe->word3); 15304 15305 /* If IV set, no further recovery */ 15306 if (bf_get(lpfc_rcqe_iv, rcqe)) 15307 break; 15308 15309 /* recycle consumed resource */ 15310 spin_lock_irqsave(&phba->hbalock, iflags); 15311 lpfc_sli4_rq_release(hrq, drq); 15312 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15313 if (!dma_buf) { 15314 hrq->RQ_no_buf_found++; 15315 spin_unlock_irqrestore(&phba->hbalock, iflags); 15316 break; 15317 } 15318 hrq->RQ_rcv_buf++; 15319 hrq->RQ_buf_posted--; 15320 spin_unlock_irqrestore(&phba->hbalock, iflags); 15321 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15322 break; 15323 default: 15324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15325 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15326 "x%08x x%08x x%08x\n", 15327 status, rcqe->word0, rcqe->word1, 15328 rcqe->word2, rcqe->word3); 15329 break; 15330 } 15331 out: 15332 return workposted; 15333 } 15334 15335 /** 15336 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15337 * @phba: adapter with cq 15338 * @cq: Pointer to the completion queue. 15339 * @cqe: Pointer to fast-path completion queue entry. 15340 * 15341 * This routine process a fast-path work queue completion entry from fast-path 15342 * event queue for FCP command response completion. 15343 * 15344 * Return: true if work posted to worker thread, otherwise false. 15345 **/ 15346 static bool 15347 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15348 struct lpfc_cqe *cqe) 15349 { 15350 struct lpfc_wcqe_release wcqe; 15351 bool workposted = false; 15352 15353 /* Copy the work queue CQE and convert endian order if needed */ 15354 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15355 15356 /* Check and process for different type of WCQE and dispatch */ 15357 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15358 case CQE_CODE_COMPL_WQE: 15359 case CQE_CODE_NVME_ERSP: 15360 cq->CQ_wq++; 15361 /* Process the WQ complete event */ 15362 phba->last_completion_time = jiffies; 15363 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15364 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15365 (struct lpfc_wcqe_complete *)&wcqe); 15366 break; 15367 case CQE_CODE_RELEASE_WQE: 15368 cq->CQ_release_wqe++; 15369 /* Process the WQ release event */ 15370 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15371 (struct lpfc_wcqe_release *)&wcqe); 15372 break; 15373 case CQE_CODE_XRI_ABORTED: 15374 cq->CQ_xri_aborted++; 15375 /* Process the WQ XRI abort event */ 15376 phba->last_completion_time = jiffies; 15377 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15378 (struct sli4_wcqe_xri_aborted *)&wcqe); 15379 break; 15380 case CQE_CODE_RECEIVE_V1: 15381 case CQE_CODE_RECEIVE: 15382 phba->last_completion_time = jiffies; 15383 if (cq->subtype == LPFC_NVMET) { 15384 workposted = lpfc_sli4_nvmet_handle_rcqe( 15385 phba, cq, (struct lpfc_rcqe *)&wcqe); 15386 } 15387 break; 15388 default: 15389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15390 "0144 Not a valid CQE code: x%x\n", 15391 bf_get(lpfc_wcqe_c_code, &wcqe)); 15392 break; 15393 } 15394 return workposted; 15395 } 15396 15397 /** 15398 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15399 * @cq: Pointer to CQ to be processed 15400 * 15401 * This routine calls the cq processing routine with the handler for 15402 * fast path CQEs. 15403 * 15404 * The CQ routine returns two values: the first is the calling status, 15405 * which indicates whether work was queued to the background discovery 15406 * thread. If true, the routine should wakeup the discovery thread; 15407 * the second is the delay parameter. If non-zero, rather than rearming 15408 * the CQ and yet another interrupt, the CQ handler should be queued so 15409 * that it is processed in a subsequent polling action. The value of 15410 * the delay indicates when to reschedule it. 15411 **/ 15412 static void 15413 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15414 { 15415 struct lpfc_hba *phba = cq->phba; 15416 unsigned long delay; 15417 bool workposted = false; 15418 int ret; 15419 15420 /* process and rearm the CQ */ 15421 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15422 &delay); 15423 15424 if (delay) { 15425 if (is_kdump_kernel()) 15426 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15427 delay); 15428 else 15429 ret = queue_delayed_work_on(cq->chann, phba->wq, 15430 &cq->sched_irqwork, delay); 15431 if (!ret) 15432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15433 "0367 Cannot schedule queue work " 15434 "for cqid=%d on CPU %d\n", 15435 cq->queue_id, cq->chann); 15436 } 15437 15438 /* wake up worker thread if there are works to be done */ 15439 if (workposted) 15440 lpfc_worker_wake_up(phba); 15441 } 15442 15443 /** 15444 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15445 * interrupt 15446 * @work: pointer to work element 15447 * 15448 * translates from the work handler and calls the fast-path handler. 15449 **/ 15450 static void 15451 lpfc_sli4_hba_process_cq(struct work_struct *work) 15452 { 15453 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15454 15455 __lpfc_sli4_hba_process_cq(cq); 15456 } 15457 15458 /** 15459 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15460 * @phba: Pointer to HBA context object. 15461 * @eq: Pointer to the queue structure. 15462 * @eqe: Pointer to fast-path event queue entry. 15463 * @poll_mode: poll_mode to execute processing the cq. 15464 * 15465 * This routine process a event queue entry from the fast-path event queue. 15466 * It will check the MajorCode and MinorCode to determine this is for a 15467 * completion event on a completion queue, if not, an error shall be logged 15468 * and just return. Otherwise, it will get to the corresponding completion 15469 * queue and process all the entries on the completion queue, rearm the 15470 * completion queue, and then return. 15471 **/ 15472 static void 15473 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15474 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15475 { 15476 struct lpfc_queue *cq = NULL; 15477 uint32_t qidx = eq->hdwq; 15478 uint16_t cqid, id; 15479 int ret; 15480 15481 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15483 "0366 Not a valid completion " 15484 "event: majorcode=x%x, minorcode=x%x\n", 15485 bf_get_le32(lpfc_eqe_major_code, eqe), 15486 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15487 return; 15488 } 15489 15490 /* Get the reference to the corresponding CQ */ 15491 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15492 15493 /* Use the fast lookup method first */ 15494 if (cqid <= phba->sli4_hba.cq_max) { 15495 cq = phba->sli4_hba.cq_lookup[cqid]; 15496 if (cq) 15497 goto work_cq; 15498 } 15499 15500 /* Next check for NVMET completion */ 15501 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15502 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15503 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15504 /* Process NVMET unsol rcv */ 15505 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15506 goto process_cq; 15507 } 15508 } 15509 15510 if (phba->sli4_hba.nvmels_cq && 15511 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15512 /* Process NVME unsol rcv */ 15513 cq = phba->sli4_hba.nvmels_cq; 15514 } 15515 15516 /* Otherwise this is a Slow path event */ 15517 if (cq == NULL) { 15518 lpfc_sli4_sp_handle_eqe(phba, eqe, 15519 phba->sli4_hba.hdwq[qidx].hba_eq); 15520 return; 15521 } 15522 15523 process_cq: 15524 if (unlikely(cqid != cq->queue_id)) { 15525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15526 "0368 Miss-matched fast-path completion " 15527 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15528 cqid, cq->queue_id); 15529 return; 15530 } 15531 15532 work_cq: 15533 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15534 if (phba->ktime_on) 15535 cq->isr_timestamp = ktime_get_ns(); 15536 else 15537 cq->isr_timestamp = 0; 15538 #endif 15539 15540 switch (poll_mode) { 15541 case LPFC_THREADED_IRQ: 15542 __lpfc_sli4_hba_process_cq(cq); 15543 break; 15544 case LPFC_QUEUE_WORK: 15545 default: 15546 if (is_kdump_kernel()) 15547 ret = queue_work(phba->wq, &cq->irqwork); 15548 else 15549 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15550 if (!ret) 15551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15552 "0383 Cannot schedule queue work " 15553 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15554 cqid, cq->queue_id, 15555 raw_smp_processor_id()); 15556 break; 15557 } 15558 } 15559 15560 /** 15561 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15562 * @work: pointer to work element 15563 * 15564 * translates from the work handler and calls the fast-path handler. 15565 **/ 15566 static void 15567 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15568 { 15569 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15570 struct lpfc_queue, sched_irqwork); 15571 15572 __lpfc_sli4_hba_process_cq(cq); 15573 } 15574 15575 /** 15576 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15577 * @irq: Interrupt number. 15578 * @dev_id: The device context pointer. 15579 * 15580 * This function is directly called from the PCI layer as an interrupt 15581 * service routine when device with SLI-4 interface spec is enabled with 15582 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15583 * ring event in the HBA. However, when the device is enabled with either 15584 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15585 * device-level interrupt handler. When the PCI slot is in error recovery 15586 * or the HBA is undergoing initialization, the interrupt handler will not 15587 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15588 * the intrrupt context. This function is called without any lock held. 15589 * It gets the hbalock to access and update SLI data structures. Note that, 15590 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15591 * equal to that of FCP CQ index. 15592 * 15593 * The link attention and ELS ring attention events are handled 15594 * by the worker thread. The interrupt handler signals the worker thread 15595 * and returns for these events. This function is called without any lock 15596 * held. It gets the hbalock to access and update SLI data structures. 15597 * 15598 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15599 * when interrupt is scheduled to be handled from a threaded irq context, or 15600 * else returns IRQ_NONE. 15601 **/ 15602 irqreturn_t 15603 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15604 { 15605 struct lpfc_hba *phba; 15606 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15607 struct lpfc_queue *fpeq; 15608 unsigned long iflag; 15609 int hba_eqidx; 15610 int ecount = 0; 15611 struct lpfc_eq_intr_info *eqi; 15612 15613 /* Get the driver's phba structure from the dev_id */ 15614 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15615 phba = hba_eq_hdl->phba; 15616 hba_eqidx = hba_eq_hdl->idx; 15617 15618 if (unlikely(!phba)) 15619 return IRQ_NONE; 15620 if (unlikely(!phba->sli4_hba.hdwq)) 15621 return IRQ_NONE; 15622 15623 /* Get to the EQ struct associated with this vector */ 15624 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15625 if (unlikely(!fpeq)) 15626 return IRQ_NONE; 15627 15628 /* Check device state for handling interrupt */ 15629 if (unlikely(lpfc_intr_state_check(phba))) { 15630 /* Check again for link_state with lock held */ 15631 spin_lock_irqsave(&phba->hbalock, iflag); 15632 if (phba->link_state < LPFC_LINK_DOWN) 15633 /* Flush, clear interrupt, and rearm the EQ */ 15634 lpfc_sli4_eqcq_flush(phba, fpeq); 15635 spin_unlock_irqrestore(&phba->hbalock, iflag); 15636 return IRQ_NONE; 15637 } 15638 15639 switch (fpeq->poll_mode) { 15640 case LPFC_THREADED_IRQ: 15641 /* CGN mgmt is mutually exclusive from irq processing */ 15642 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15643 return IRQ_WAKE_THREAD; 15644 fallthrough; 15645 case LPFC_QUEUE_WORK: 15646 default: 15647 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15648 eqi->icnt++; 15649 15650 fpeq->last_cpu = raw_smp_processor_id(); 15651 15652 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15653 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15654 phba->cfg_auto_imax && 15655 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15656 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15657 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15658 LPFC_MAX_AUTO_EQ_DELAY); 15659 15660 /* process and rearm the EQ */ 15661 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15662 LPFC_QUEUE_WORK); 15663 15664 if (unlikely(ecount == 0)) { 15665 fpeq->EQ_no_entry++; 15666 if (phba->intr_type == MSIX) 15667 /* MSI-X treated interrupt served as no EQ share INT */ 15668 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15669 "0358 MSI-X interrupt with no EQE\n"); 15670 else 15671 /* Non MSI-X treated on interrupt as EQ share INT */ 15672 return IRQ_NONE; 15673 } 15674 } 15675 15676 return IRQ_HANDLED; 15677 } /* lpfc_sli4_hba_intr_handler */ 15678 15679 /** 15680 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15681 * @irq: Interrupt number. 15682 * @dev_id: The device context pointer. 15683 * 15684 * This function is the device-level interrupt handler to device with SLI-4 15685 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15686 * interrupt mode is enabled and there is an event in the HBA which requires 15687 * driver attention. This function invokes the slow-path interrupt attention 15688 * handling function and fast-path interrupt attention handling function in 15689 * turn to process the relevant HBA attention events. This function is called 15690 * without any lock held. It gets the hbalock to access and update SLI data 15691 * structures. 15692 * 15693 * This function returns IRQ_HANDLED when interrupt is handled, else it 15694 * returns IRQ_NONE. 15695 **/ 15696 irqreturn_t 15697 lpfc_sli4_intr_handler(int irq, void *dev_id) 15698 { 15699 struct lpfc_hba *phba; 15700 irqreturn_t hba_irq_rc; 15701 bool hba_handled = false; 15702 int qidx; 15703 15704 /* Get the driver's phba structure from the dev_id */ 15705 phba = (struct lpfc_hba *)dev_id; 15706 15707 if (unlikely(!phba)) 15708 return IRQ_NONE; 15709 15710 /* 15711 * Invoke fast-path host attention interrupt handling as appropriate. 15712 */ 15713 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15714 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15715 &phba->sli4_hba.hba_eq_hdl[qidx]); 15716 if (hba_irq_rc == IRQ_HANDLED) 15717 hba_handled |= true; 15718 } 15719 15720 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15721 } /* lpfc_sli4_intr_handler */ 15722 15723 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15724 { 15725 struct lpfc_hba *phba = timer_container_of(phba, t, cpuhp_poll_timer); 15726 struct lpfc_queue *eq; 15727 15728 rcu_read_lock(); 15729 15730 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15731 lpfc_sli4_poll_eq(eq); 15732 if (!list_empty(&phba->poll_list)) 15733 mod_timer(&phba->cpuhp_poll_timer, 15734 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15735 15736 rcu_read_unlock(); 15737 } 15738 15739 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15740 { 15741 struct lpfc_hba *phba = eq->phba; 15742 15743 /* kickstart slowpath processing if needed */ 15744 if (list_empty(&phba->poll_list)) 15745 mod_timer(&phba->cpuhp_poll_timer, 15746 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15747 15748 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15749 synchronize_rcu(); 15750 } 15751 15752 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15753 { 15754 struct lpfc_hba *phba = eq->phba; 15755 15756 /* Disable slowpath processing for this eq. Kick start the eq 15757 * by RE-ARMING the eq's ASAP 15758 */ 15759 list_del_rcu(&eq->_poll_list); 15760 synchronize_rcu(); 15761 15762 if (list_empty(&phba->poll_list)) 15763 timer_delete_sync(&phba->cpuhp_poll_timer); 15764 } 15765 15766 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15767 { 15768 struct lpfc_queue *eq, *next; 15769 15770 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15771 list_del(&eq->_poll_list); 15772 15773 INIT_LIST_HEAD(&phba->poll_list); 15774 synchronize_rcu(); 15775 } 15776 15777 static inline void 15778 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15779 { 15780 if (mode == eq->mode) 15781 return; 15782 /* 15783 * currently this function is only called during a hotplug 15784 * event and the cpu on which this function is executing 15785 * is going offline. By now the hotplug has instructed 15786 * the scheduler to remove this cpu from cpu active mask. 15787 * So we don't need to work about being put aside by the 15788 * scheduler for a high priority process. Yes, the inte- 15789 * rrupts could come but they are known to retire ASAP. 15790 */ 15791 15792 /* Disable polling in the fastpath */ 15793 WRITE_ONCE(eq->mode, mode); 15794 /* flush out the store buffer */ 15795 smp_wmb(); 15796 15797 /* 15798 * Add this eq to the polling list and start polling. For 15799 * a grace period both interrupt handler and poller will 15800 * try to process the eq _but_ that's fine. We have a 15801 * synchronization mechanism in place (queue_claimed) to 15802 * deal with it. This is just a draining phase for int- 15803 * errupt handler (not eq's) as we have guranteed through 15804 * barrier that all the CPUs have seen the new CQ_POLLED 15805 * state. which will effectively disable the REARMING of 15806 * the EQ. The whole idea is eq's die off eventually as 15807 * we are not rearming EQ's anymore. 15808 */ 15809 mode ? lpfc_sli4_add_to_poll_list(eq) : 15810 lpfc_sli4_remove_from_poll_list(eq); 15811 } 15812 15813 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15814 { 15815 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15816 } 15817 15818 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15819 { 15820 struct lpfc_hba *phba = eq->phba; 15821 15822 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15823 15824 /* Kick start for the pending io's in h/w. 15825 * Once we switch back to interrupt processing on a eq 15826 * the io path completion will only arm eq's when it 15827 * receives a completion. But since eq's are in disa- 15828 * rmed state it doesn't receive a completion. This 15829 * creates a deadlock scenaro. 15830 */ 15831 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15832 } 15833 15834 /** 15835 * lpfc_sli4_queue_free - free a queue structure and associated memory 15836 * @queue: The queue structure to free. 15837 * 15838 * This function frees a queue structure and the DMAable memory used for 15839 * the host resident queue. This function must be called after destroying the 15840 * queue on the HBA. 15841 **/ 15842 void 15843 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15844 { 15845 struct lpfc_dmabuf *dmabuf; 15846 15847 if (!queue) 15848 return; 15849 15850 if (!list_empty(&queue->wq_list)) 15851 list_del(&queue->wq_list); 15852 15853 while (!list_empty(&queue->page_list)) { 15854 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15855 list); 15856 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15857 dmabuf->virt, dmabuf->phys); 15858 kfree(dmabuf); 15859 } 15860 if (queue->rqbp) { 15861 lpfc_free_rq_buffer(queue->phba, queue); 15862 kfree(queue->rqbp); 15863 } 15864 15865 if (!list_empty(&queue->cpu_list)) 15866 list_del(&queue->cpu_list); 15867 15868 kfree(queue); 15869 return; 15870 } 15871 15872 /** 15873 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15874 * @phba: The HBA that this queue is being created on. 15875 * @page_size: The size of a queue page 15876 * @entry_size: The size of each queue entry for this queue. 15877 * @entry_count: The number of entries that this queue will handle. 15878 * @cpu: The cpu that will primarily utilize this queue. 15879 * 15880 * This function allocates a queue structure and the DMAable memory used for 15881 * the host resident queue. This function must be called before creating the 15882 * queue on the HBA. 15883 **/ 15884 struct lpfc_queue * 15885 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15886 uint32_t entry_size, uint32_t entry_count, int cpu) 15887 { 15888 struct lpfc_queue *queue; 15889 struct lpfc_dmabuf *dmabuf; 15890 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15891 uint16_t x, pgcnt; 15892 15893 if (!phba->sli4_hba.pc_sli4_params.supported) 15894 hw_page_size = page_size; 15895 15896 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15897 15898 /* If needed, Adjust page count to match the max the adapter supports */ 15899 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15900 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15901 15902 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15903 GFP_KERNEL, cpu_to_node(cpu)); 15904 if (!queue) 15905 return NULL; 15906 15907 INIT_LIST_HEAD(&queue->list); 15908 INIT_LIST_HEAD(&queue->_poll_list); 15909 INIT_LIST_HEAD(&queue->wq_list); 15910 INIT_LIST_HEAD(&queue->wqfull_list); 15911 INIT_LIST_HEAD(&queue->page_list); 15912 INIT_LIST_HEAD(&queue->child_list); 15913 INIT_LIST_HEAD(&queue->cpu_list); 15914 15915 /* Set queue parameters now. If the system cannot provide memory 15916 * resources, the free routine needs to know what was allocated. 15917 */ 15918 queue->page_count = pgcnt; 15919 queue->q_pgs = (void **)&queue[1]; 15920 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15921 queue->entry_size = entry_size; 15922 queue->entry_count = entry_count; 15923 queue->page_size = hw_page_size; 15924 queue->phba = phba; 15925 15926 for (x = 0; x < queue->page_count; x++) { 15927 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15928 dev_to_node(&phba->pcidev->dev)); 15929 if (!dmabuf) 15930 goto out_fail; 15931 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15932 hw_page_size, &dmabuf->phys, 15933 GFP_KERNEL); 15934 if (!dmabuf->virt) { 15935 kfree(dmabuf); 15936 goto out_fail; 15937 } 15938 dmabuf->buffer_tag = x; 15939 list_add_tail(&dmabuf->list, &queue->page_list); 15940 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15941 queue->q_pgs[x] = dmabuf->virt; 15942 } 15943 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15944 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15945 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15946 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15947 15948 /* notify_interval will be set during q creation */ 15949 15950 return queue; 15951 out_fail: 15952 lpfc_sli4_queue_free(queue); 15953 return NULL; 15954 } 15955 15956 /** 15957 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15958 * @phba: HBA structure that indicates port to create a queue on. 15959 * @pci_barset: PCI BAR set flag. 15960 * 15961 * This function shall perform iomap of the specified PCI BAR address to host 15962 * memory address if not already done so and return it. The returned host 15963 * memory address can be NULL. 15964 */ 15965 static void __iomem * 15966 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15967 { 15968 if (!phba->pcidev) 15969 return NULL; 15970 15971 switch (pci_barset) { 15972 case WQ_PCI_BAR_0_AND_1: 15973 return phba->pci_bar0_memmap_p; 15974 case WQ_PCI_BAR_2_AND_3: 15975 return phba->pci_bar2_memmap_p; 15976 case WQ_PCI_BAR_4_AND_5: 15977 return phba->pci_bar4_memmap_p; 15978 default: 15979 break; 15980 } 15981 return NULL; 15982 } 15983 15984 /** 15985 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15986 * @phba: HBA structure that EQs are on. 15987 * @startq: The starting EQ index to modify 15988 * @numq: The number of EQs (consecutive indexes) to modify 15989 * @usdelay: amount of delay 15990 * 15991 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15992 * is set either by writing to a register (if supported by the SLI Port) 15993 * or by mailbox command. The mailbox command allows several EQs to be 15994 * updated at once. 15995 * 15996 * The @phba struct is used to send a mailbox command to HBA. The @startq 15997 * is used to get the starting EQ index to change. The @numq value is 15998 * used to specify how many consecutive EQ indexes, starting at EQ index, 15999 * are to be changed. This function is asynchronous and will wait for any 16000 * mailbox commands to finish before returning. 16001 * 16002 * On success this function will return a zero. If unable to allocate 16003 * enough memory this function will return -ENOMEM. If a mailbox command 16004 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 16005 * have had their delay multipler changed. 16006 **/ 16007 void 16008 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 16009 uint32_t numq, uint32_t usdelay) 16010 { 16011 struct lpfc_mbx_modify_eq_delay *eq_delay; 16012 LPFC_MBOXQ_t *mbox; 16013 struct lpfc_queue *eq; 16014 int cnt = 0, rc, length; 16015 uint32_t shdr_status, shdr_add_status; 16016 uint32_t dmult; 16017 int qidx; 16018 union lpfc_sli4_cfg_shdr *shdr; 16019 16020 if (startq >= phba->cfg_irq_chann) 16021 return; 16022 16023 if (usdelay > 0xFFFF) { 16024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 16025 "6429 usdelay %d too large. Scaled down to " 16026 "0xFFFF.\n", usdelay); 16027 usdelay = 0xFFFF; 16028 } 16029 16030 /* set values by EQ_DELAY register if supported */ 16031 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 16032 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16033 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16034 if (!eq) 16035 continue; 16036 16037 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 16038 16039 if (++cnt >= numq) 16040 break; 16041 } 16042 return; 16043 } 16044 16045 /* Otherwise, set values by mailbox cmd */ 16046 16047 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16048 if (!mbox) { 16049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16050 "6428 Failed allocating mailbox cmd buffer." 16051 " EQ delay was not set.\n"); 16052 return; 16053 } 16054 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16055 sizeof(struct lpfc_sli4_cfg_mhdr)); 16056 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16057 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16058 length, LPFC_SLI4_MBX_EMBED); 16059 eq_delay = &mbox->u.mqe.un.eq_delay; 16060 16061 /* Calculate delay multiper from maximum interrupt per second */ 16062 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16063 if (dmult) 16064 dmult--; 16065 if (dmult > LPFC_DMULT_MAX) 16066 dmult = LPFC_DMULT_MAX; 16067 16068 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16069 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16070 if (!eq) 16071 continue; 16072 eq->q_mode = usdelay; 16073 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16074 eq_delay->u.request.eq[cnt].phase = 0; 16075 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16076 16077 if (++cnt >= numq) 16078 break; 16079 } 16080 eq_delay->u.request.num_eq = cnt; 16081 16082 mbox->vport = phba->pport; 16083 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16084 mbox->ctx_ndlp = NULL; 16085 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16086 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16087 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16088 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16089 if (shdr_status || shdr_add_status || rc) { 16090 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16091 "2512 MODIFY_EQ_DELAY mailbox failed with " 16092 "status x%x add_status x%x, mbx status x%x\n", 16093 shdr_status, shdr_add_status, rc); 16094 } 16095 mempool_free(mbox, phba->mbox_mem_pool); 16096 return; 16097 } 16098 16099 /** 16100 * lpfc_eq_create - Create an Event Queue on the HBA 16101 * @phba: HBA structure that indicates port to create a queue on. 16102 * @eq: The queue structure to use to create the event queue. 16103 * @imax: The maximum interrupt per second limit. 16104 * 16105 * This function creates an event queue, as detailed in @eq, on a port, 16106 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16107 * 16108 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16109 * is used to get the entry count and entry size that are necessary to 16110 * determine the number of pages to allocate and use for this queue. This 16111 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16112 * event queue. This function is asynchronous and will wait for the mailbox 16113 * command to finish before continuing. 16114 * 16115 * On success this function will return a zero. If unable to allocate enough 16116 * memory this function will return -ENOMEM. If the queue create mailbox command 16117 * fails this function will return -ENXIO. 16118 **/ 16119 int 16120 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16121 { 16122 struct lpfc_mbx_eq_create *eq_create; 16123 LPFC_MBOXQ_t *mbox; 16124 int rc, length, status = 0; 16125 struct lpfc_dmabuf *dmabuf; 16126 uint32_t shdr_status, shdr_add_status; 16127 union lpfc_sli4_cfg_shdr *shdr; 16128 uint16_t dmult; 16129 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16130 16131 /* sanity check on queue memory */ 16132 if (!eq) 16133 return -ENODEV; 16134 if (!phba->sli4_hba.pc_sli4_params.supported) 16135 hw_page_size = SLI4_PAGE_SIZE; 16136 16137 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16138 if (!mbox) 16139 return -ENOMEM; 16140 length = (sizeof(struct lpfc_mbx_eq_create) - 16141 sizeof(struct lpfc_sli4_cfg_mhdr)); 16142 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16143 LPFC_MBOX_OPCODE_EQ_CREATE, 16144 length, LPFC_SLI4_MBX_EMBED); 16145 eq_create = &mbox->u.mqe.un.eq_create; 16146 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16147 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16148 eq->page_count); 16149 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16150 LPFC_EQE_SIZE); 16151 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16152 16153 /* Use version 2 of CREATE_EQ if eqav is set */ 16154 if (phba->sli4_hba.pc_sli4_params.eqav) { 16155 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16156 LPFC_Q_CREATE_VERSION_2); 16157 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16158 phba->sli4_hba.pc_sli4_params.eqav); 16159 } 16160 16161 /* don't setup delay multiplier using EQ_CREATE */ 16162 dmult = 0; 16163 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16164 dmult); 16165 switch (eq->entry_count) { 16166 default: 16167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16168 "0360 Unsupported EQ count. (%d)\n", 16169 eq->entry_count); 16170 if (eq->entry_count < 256) { 16171 status = -EINVAL; 16172 goto out; 16173 } 16174 fallthrough; /* otherwise default to smallest count */ 16175 case 256: 16176 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16177 LPFC_EQ_CNT_256); 16178 break; 16179 case 512: 16180 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16181 LPFC_EQ_CNT_512); 16182 break; 16183 case 1024: 16184 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16185 LPFC_EQ_CNT_1024); 16186 break; 16187 case 2048: 16188 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16189 LPFC_EQ_CNT_2048); 16190 break; 16191 case 4096: 16192 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16193 LPFC_EQ_CNT_4096); 16194 break; 16195 } 16196 list_for_each_entry(dmabuf, &eq->page_list, list) { 16197 memset(dmabuf->virt, 0, hw_page_size); 16198 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16199 putPaddrLow(dmabuf->phys); 16200 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16201 putPaddrHigh(dmabuf->phys); 16202 } 16203 mbox->vport = phba->pport; 16204 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16205 mbox->ctx_buf = NULL; 16206 mbox->ctx_ndlp = NULL; 16207 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16210 if (shdr_status || shdr_add_status || rc) { 16211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16212 "2500 EQ_CREATE mailbox failed with " 16213 "status x%x add_status x%x, mbx status x%x\n", 16214 shdr_status, shdr_add_status, rc); 16215 status = -ENXIO; 16216 } 16217 eq->type = LPFC_EQ; 16218 eq->subtype = LPFC_NONE; 16219 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16220 if (eq->queue_id == 0xFFFF) 16221 status = -ENXIO; 16222 eq->host_index = 0; 16223 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16224 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16225 out: 16226 mempool_free(mbox, phba->mbox_mem_pool); 16227 return status; 16228 } 16229 16230 /** 16231 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16232 * @irq: Interrupt number. 16233 * @dev_id: The device context pointer. 16234 * 16235 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16236 * threaded irq context. 16237 * 16238 * Returns 16239 * IRQ_HANDLED - interrupt is handled 16240 * IRQ_NONE - otherwise 16241 **/ 16242 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16243 { 16244 struct lpfc_hba *phba; 16245 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16246 struct lpfc_queue *fpeq; 16247 int ecount = 0; 16248 int hba_eqidx; 16249 struct lpfc_eq_intr_info *eqi; 16250 16251 /* Get the driver's phba structure from the dev_id */ 16252 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16253 phba = hba_eq_hdl->phba; 16254 hba_eqidx = hba_eq_hdl->idx; 16255 16256 if (unlikely(!phba)) 16257 return IRQ_NONE; 16258 if (unlikely(!phba->sli4_hba.hdwq)) 16259 return IRQ_NONE; 16260 16261 /* Get to the EQ struct associated with this vector */ 16262 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16263 if (unlikely(!fpeq)) 16264 return IRQ_NONE; 16265 16266 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16267 eqi->icnt++; 16268 16269 fpeq->last_cpu = raw_smp_processor_id(); 16270 16271 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16272 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16273 phba->cfg_auto_imax && 16274 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16275 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16276 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16277 16278 /* process and rearm the EQ */ 16279 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16280 LPFC_THREADED_IRQ); 16281 16282 if (unlikely(ecount == 0)) { 16283 fpeq->EQ_no_entry++; 16284 if (phba->intr_type == MSIX) 16285 /* MSI-X treated interrupt served as no EQ share INT */ 16286 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16287 "3358 MSI-X interrupt with no EQE\n"); 16288 else 16289 /* Non MSI-X treated on interrupt as EQ share INT */ 16290 return IRQ_NONE; 16291 } 16292 return IRQ_HANDLED; 16293 } 16294 16295 /** 16296 * lpfc_cq_create - Create a Completion Queue on the HBA 16297 * @phba: HBA structure that indicates port to create a queue on. 16298 * @cq: The queue structure to use to create the completion queue. 16299 * @eq: The event queue to bind this completion queue to. 16300 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16301 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16302 * 16303 * This function creates a completion queue, as detailed in @wq, on a port, 16304 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16305 * 16306 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16307 * is used to get the entry count and entry size that are necessary to 16308 * determine the number of pages to allocate and use for this queue. The @eq 16309 * is used to indicate which event queue to bind this completion queue to. This 16310 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16311 * completion queue. This function is asynchronous and will wait for the mailbox 16312 * command to finish before continuing. 16313 * 16314 * On success this function will return a zero. If unable to allocate enough 16315 * memory this function will return -ENOMEM. If the queue create mailbox command 16316 * fails this function will return -ENXIO. 16317 **/ 16318 int 16319 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16320 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16321 { 16322 struct lpfc_mbx_cq_create *cq_create; 16323 struct lpfc_dmabuf *dmabuf; 16324 LPFC_MBOXQ_t *mbox; 16325 int rc, length, status = 0; 16326 uint32_t shdr_status, shdr_add_status; 16327 union lpfc_sli4_cfg_shdr *shdr; 16328 16329 /* sanity check on queue memory */ 16330 if (!cq || !eq) 16331 return -ENODEV; 16332 16333 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16334 if (!mbox) 16335 return -ENOMEM; 16336 length = (sizeof(struct lpfc_mbx_cq_create) - 16337 sizeof(struct lpfc_sli4_cfg_mhdr)); 16338 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16339 LPFC_MBOX_OPCODE_CQ_CREATE, 16340 length, LPFC_SLI4_MBX_EMBED); 16341 cq_create = &mbox->u.mqe.un.cq_create; 16342 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16343 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16344 cq->page_count); 16345 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16346 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16347 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16348 phba->sli4_hba.pc_sli4_params.cqv); 16349 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16350 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16351 (cq->page_size / SLI4_PAGE_SIZE)); 16352 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16353 eq->queue_id); 16354 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16355 phba->sli4_hba.pc_sli4_params.cqav); 16356 } else { 16357 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16358 eq->queue_id); 16359 } 16360 switch (cq->entry_count) { 16361 case 2048: 16362 case 4096: 16363 if (phba->sli4_hba.pc_sli4_params.cqv == 16364 LPFC_Q_CREATE_VERSION_2) { 16365 cq_create->u.request.context.lpfc_cq_context_count = 16366 cq->entry_count; 16367 bf_set(lpfc_cq_context_count, 16368 &cq_create->u.request.context, 16369 LPFC_CQ_CNT_WORD7); 16370 break; 16371 } 16372 fallthrough; 16373 default: 16374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16375 "0361 Unsupported CQ count: " 16376 "entry cnt %d sz %d pg cnt %d\n", 16377 cq->entry_count, cq->entry_size, 16378 cq->page_count); 16379 if (cq->entry_count < 256) { 16380 status = -EINVAL; 16381 goto out; 16382 } 16383 fallthrough; /* otherwise default to smallest count */ 16384 case 256: 16385 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16386 LPFC_CQ_CNT_256); 16387 break; 16388 case 512: 16389 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16390 LPFC_CQ_CNT_512); 16391 break; 16392 case 1024: 16393 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16394 LPFC_CQ_CNT_1024); 16395 break; 16396 } 16397 list_for_each_entry(dmabuf, &cq->page_list, list) { 16398 memset(dmabuf->virt, 0, cq->page_size); 16399 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16400 putPaddrLow(dmabuf->phys); 16401 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16402 putPaddrHigh(dmabuf->phys); 16403 } 16404 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16405 16406 /* The IOCTL status is embedded in the mailbox subheader. */ 16407 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16408 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16409 if (shdr_status || shdr_add_status || rc) { 16410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16411 "2501 CQ_CREATE mailbox failed with " 16412 "status x%x add_status x%x, mbx status x%x\n", 16413 shdr_status, shdr_add_status, rc); 16414 status = -ENXIO; 16415 goto out; 16416 } 16417 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16418 if (cq->queue_id == 0xFFFF) { 16419 status = -ENXIO; 16420 goto out; 16421 } 16422 /* link the cq onto the parent eq child list */ 16423 list_add_tail(&cq->list, &eq->child_list); 16424 /* Set up completion queue's type and subtype */ 16425 cq->type = type; 16426 cq->subtype = subtype; 16427 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16428 cq->assoc_qid = eq->queue_id; 16429 cq->assoc_qp = eq; 16430 cq->host_index = 0; 16431 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16432 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16433 16434 if (cq->queue_id > phba->sli4_hba.cq_max) 16435 phba->sli4_hba.cq_max = cq->queue_id; 16436 out: 16437 mempool_free(mbox, phba->mbox_mem_pool); 16438 return status; 16439 } 16440 16441 /** 16442 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16443 * @phba: HBA structure that indicates port to create a queue on. 16444 * @cqp: The queue structure array to use to create the completion queues. 16445 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16446 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16447 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16448 * 16449 * This function creates a set of completion queue, s to support MRQ 16450 * as detailed in @cqp, on a port, 16451 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16452 * 16453 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16454 * is used to get the entry count and entry size that are necessary to 16455 * determine the number of pages to allocate and use for this queue. The @eq 16456 * is used to indicate which event queue to bind this completion queue to. This 16457 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16458 * completion queue. This function is asynchronous and will wait for the mailbox 16459 * command to finish before continuing. 16460 * 16461 * On success this function will return a zero. If unable to allocate enough 16462 * memory this function will return -ENOMEM. If the queue create mailbox command 16463 * fails this function will return -ENXIO. 16464 **/ 16465 int 16466 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16467 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16468 uint32_t subtype) 16469 { 16470 struct lpfc_queue *cq; 16471 struct lpfc_queue *eq; 16472 struct lpfc_mbx_cq_create_set *cq_set; 16473 struct lpfc_dmabuf *dmabuf; 16474 LPFC_MBOXQ_t *mbox; 16475 int rc, length, alloclen, status = 0; 16476 int cnt, idx, numcq, page_idx = 0; 16477 uint32_t shdr_status, shdr_add_status; 16478 union lpfc_sli4_cfg_shdr *shdr; 16479 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16480 16481 /* sanity check on queue memory */ 16482 numcq = phba->cfg_nvmet_mrq; 16483 if (!cqp || !hdwq || !numcq) 16484 return -ENODEV; 16485 16486 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16487 if (!mbox) 16488 return -ENOMEM; 16489 16490 length = sizeof(struct lpfc_mbx_cq_create_set); 16491 length += ((numcq * cqp[0]->page_count) * 16492 sizeof(struct dma_address)); 16493 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16494 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16495 LPFC_SLI4_MBX_NEMBED); 16496 if (alloclen < length) { 16497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16498 "3098 Allocated DMA memory size (%d) is " 16499 "less than the requested DMA memory size " 16500 "(%d)\n", alloclen, length); 16501 status = -ENOMEM; 16502 goto out; 16503 } 16504 cq_set = mbox->sge_array->addr[0]; 16505 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16506 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16507 16508 for (idx = 0; idx < numcq; idx++) { 16509 cq = cqp[idx]; 16510 eq = hdwq[idx].hba_eq; 16511 if (!cq || !eq) { 16512 status = -ENOMEM; 16513 goto out; 16514 } 16515 if (!phba->sli4_hba.pc_sli4_params.supported) 16516 hw_page_size = cq->page_size; 16517 16518 switch (idx) { 16519 case 0: 16520 bf_set(lpfc_mbx_cq_create_set_page_size, 16521 &cq_set->u.request, 16522 (hw_page_size / SLI4_PAGE_SIZE)); 16523 bf_set(lpfc_mbx_cq_create_set_num_pages, 16524 &cq_set->u.request, cq->page_count); 16525 bf_set(lpfc_mbx_cq_create_set_evt, 16526 &cq_set->u.request, 1); 16527 bf_set(lpfc_mbx_cq_create_set_valid, 16528 &cq_set->u.request, 1); 16529 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16530 &cq_set->u.request, 0); 16531 bf_set(lpfc_mbx_cq_create_set_num_cq, 16532 &cq_set->u.request, numcq); 16533 bf_set(lpfc_mbx_cq_create_set_autovalid, 16534 &cq_set->u.request, 16535 phba->sli4_hba.pc_sli4_params.cqav); 16536 switch (cq->entry_count) { 16537 case 2048: 16538 case 4096: 16539 if (phba->sli4_hba.pc_sli4_params.cqv == 16540 LPFC_Q_CREATE_VERSION_2) { 16541 bf_set(lpfc_mbx_cq_create_set_cqe_cnt_lo, 16542 &cq_set->u.request, 16543 cq->entry_count); 16544 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16545 &cq_set->u.request, 16546 LPFC_CQ_CNT_WORD7); 16547 break; 16548 } 16549 fallthrough; 16550 default: 16551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16552 "3118 Bad CQ count. (%d)\n", 16553 cq->entry_count); 16554 if (cq->entry_count < 256) { 16555 status = -EINVAL; 16556 goto out; 16557 } 16558 fallthrough; /* otherwise default to smallest */ 16559 case 256: 16560 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16561 &cq_set->u.request, LPFC_CQ_CNT_256); 16562 break; 16563 case 512: 16564 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16565 &cq_set->u.request, LPFC_CQ_CNT_512); 16566 break; 16567 case 1024: 16568 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16569 &cq_set->u.request, LPFC_CQ_CNT_1024); 16570 break; 16571 } 16572 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16573 &cq_set->u.request, eq->queue_id); 16574 break; 16575 case 1: 16576 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16577 &cq_set->u.request, eq->queue_id); 16578 break; 16579 case 2: 16580 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16581 &cq_set->u.request, eq->queue_id); 16582 break; 16583 case 3: 16584 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16585 &cq_set->u.request, eq->queue_id); 16586 break; 16587 case 4: 16588 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16589 &cq_set->u.request, eq->queue_id); 16590 break; 16591 case 5: 16592 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16593 &cq_set->u.request, eq->queue_id); 16594 break; 16595 case 6: 16596 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16597 &cq_set->u.request, eq->queue_id); 16598 break; 16599 case 7: 16600 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16601 &cq_set->u.request, eq->queue_id); 16602 break; 16603 case 8: 16604 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16605 &cq_set->u.request, eq->queue_id); 16606 break; 16607 case 9: 16608 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16609 &cq_set->u.request, eq->queue_id); 16610 break; 16611 case 10: 16612 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16613 &cq_set->u.request, eq->queue_id); 16614 break; 16615 case 11: 16616 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16617 &cq_set->u.request, eq->queue_id); 16618 break; 16619 case 12: 16620 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16621 &cq_set->u.request, eq->queue_id); 16622 break; 16623 case 13: 16624 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16625 &cq_set->u.request, eq->queue_id); 16626 break; 16627 case 14: 16628 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16629 &cq_set->u.request, eq->queue_id); 16630 break; 16631 case 15: 16632 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16633 &cq_set->u.request, eq->queue_id); 16634 break; 16635 } 16636 16637 /* link the cq onto the parent eq child list */ 16638 list_add_tail(&cq->list, &eq->child_list); 16639 /* Set up completion queue's type and subtype */ 16640 cq->type = type; 16641 cq->subtype = subtype; 16642 cq->assoc_qid = eq->queue_id; 16643 cq->assoc_qp = eq; 16644 cq->host_index = 0; 16645 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16646 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16647 cq->entry_count); 16648 cq->chann = idx; 16649 16650 rc = 0; 16651 list_for_each_entry(dmabuf, &cq->page_list, list) { 16652 memset(dmabuf->virt, 0, hw_page_size); 16653 cnt = page_idx + dmabuf->buffer_tag; 16654 cq_set->u.request.page[cnt].addr_lo = 16655 putPaddrLow(dmabuf->phys); 16656 cq_set->u.request.page[cnt].addr_hi = 16657 putPaddrHigh(dmabuf->phys); 16658 rc++; 16659 } 16660 page_idx += rc; 16661 } 16662 16663 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16664 16665 /* The IOCTL status is embedded in the mailbox subheader. */ 16666 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16667 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16668 if (shdr_status || shdr_add_status || rc) { 16669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16670 "3119 CQ_CREATE_SET mailbox failed with " 16671 "status x%x add_status x%x, mbx status x%x\n", 16672 shdr_status, shdr_add_status, rc); 16673 status = -ENXIO; 16674 goto out; 16675 } 16676 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16677 if (rc == 0xFFFF) { 16678 status = -ENXIO; 16679 goto out; 16680 } 16681 16682 for (idx = 0; idx < numcq; idx++) { 16683 cq = cqp[idx]; 16684 cq->queue_id = rc + idx; 16685 if (cq->queue_id > phba->sli4_hba.cq_max) 16686 phba->sli4_hba.cq_max = cq->queue_id; 16687 } 16688 16689 out: 16690 lpfc_sli4_mbox_cmd_free(phba, mbox); 16691 return status; 16692 } 16693 16694 /** 16695 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16696 * @phba: HBA structure that indicates port to create a queue on. 16697 * @mq: The queue structure to use to create the mailbox queue. 16698 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16699 * @cq: The completion queue to associate with this cq. 16700 * 16701 * This function provides failback (fb) functionality when the 16702 * mq_create_ext fails on older FW generations. It's purpose is identical 16703 * to mq_create_ext otherwise. 16704 * 16705 * This routine cannot fail as all attributes were previously accessed and 16706 * initialized in mq_create_ext. 16707 **/ 16708 static void 16709 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16710 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16711 { 16712 struct lpfc_mbx_mq_create *mq_create; 16713 struct lpfc_dmabuf *dmabuf; 16714 int length; 16715 16716 length = (sizeof(struct lpfc_mbx_mq_create) - 16717 sizeof(struct lpfc_sli4_cfg_mhdr)); 16718 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16719 LPFC_MBOX_OPCODE_MQ_CREATE, 16720 length, LPFC_SLI4_MBX_EMBED); 16721 mq_create = &mbox->u.mqe.un.mq_create; 16722 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16723 mq->page_count); 16724 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16725 cq->queue_id); 16726 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16727 switch (mq->entry_count) { 16728 case 16: 16729 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16730 LPFC_MQ_RING_SIZE_16); 16731 break; 16732 case 32: 16733 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16734 LPFC_MQ_RING_SIZE_32); 16735 break; 16736 case 64: 16737 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16738 LPFC_MQ_RING_SIZE_64); 16739 break; 16740 case 128: 16741 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16742 LPFC_MQ_RING_SIZE_128); 16743 break; 16744 } 16745 list_for_each_entry(dmabuf, &mq->page_list, list) { 16746 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16747 putPaddrLow(dmabuf->phys); 16748 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16749 putPaddrHigh(dmabuf->phys); 16750 } 16751 } 16752 16753 /** 16754 * lpfc_mq_create - Create a mailbox Queue on the HBA 16755 * @phba: HBA structure that indicates port to create a queue on. 16756 * @mq: The queue structure to use to create the mailbox queue. 16757 * @cq: The completion queue to associate with this cq. 16758 * @subtype: The queue's subtype. 16759 * 16760 * This function creates a mailbox queue, as detailed in @mq, on a port, 16761 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16762 * 16763 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16764 * is used to get the entry count and entry size that are necessary to 16765 * determine the number of pages to allocate and use for this queue. This 16766 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16767 * mailbox queue. This function is asynchronous and will wait for the mailbox 16768 * command to finish before continuing. 16769 * 16770 * On success this function will return a zero. If unable to allocate enough 16771 * memory this function will return -ENOMEM. If the queue create mailbox command 16772 * fails this function will return -ENXIO. 16773 **/ 16774 int32_t 16775 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16776 struct lpfc_queue *cq, uint32_t subtype) 16777 { 16778 struct lpfc_mbx_mq_create *mq_create; 16779 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16780 struct lpfc_dmabuf *dmabuf; 16781 LPFC_MBOXQ_t *mbox; 16782 int rc, length, status = 0; 16783 uint32_t shdr_status, shdr_add_status; 16784 union lpfc_sli4_cfg_shdr *shdr; 16785 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16786 16787 /* sanity check on queue memory */ 16788 if (!mq || !cq) 16789 return -ENODEV; 16790 if (!phba->sli4_hba.pc_sli4_params.supported) 16791 hw_page_size = SLI4_PAGE_SIZE; 16792 16793 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16794 if (!mbox) 16795 return -ENOMEM; 16796 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16797 sizeof(struct lpfc_sli4_cfg_mhdr)); 16798 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16799 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16800 length, LPFC_SLI4_MBX_EMBED); 16801 16802 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16803 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16804 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16805 &mq_create_ext->u.request, mq->page_count); 16806 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16807 &mq_create_ext->u.request, 1); 16808 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16809 &mq_create_ext->u.request, 1); 16810 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16811 &mq_create_ext->u.request, 1); 16812 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16813 &mq_create_ext->u.request, 1); 16814 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16815 &mq_create_ext->u.request, 1); 16816 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16817 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16818 phba->sli4_hba.pc_sli4_params.mqv); 16819 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16820 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16821 cq->queue_id); 16822 else 16823 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16824 cq->queue_id); 16825 switch (mq->entry_count) { 16826 default: 16827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16828 "0362 Unsupported MQ count. (%d)\n", 16829 mq->entry_count); 16830 if (mq->entry_count < 16) { 16831 status = -EINVAL; 16832 goto out; 16833 } 16834 fallthrough; /* otherwise default to smallest count */ 16835 case 16: 16836 bf_set(lpfc_mq_context_ring_size, 16837 &mq_create_ext->u.request.context, 16838 LPFC_MQ_RING_SIZE_16); 16839 break; 16840 case 32: 16841 bf_set(lpfc_mq_context_ring_size, 16842 &mq_create_ext->u.request.context, 16843 LPFC_MQ_RING_SIZE_32); 16844 break; 16845 case 64: 16846 bf_set(lpfc_mq_context_ring_size, 16847 &mq_create_ext->u.request.context, 16848 LPFC_MQ_RING_SIZE_64); 16849 break; 16850 case 128: 16851 bf_set(lpfc_mq_context_ring_size, 16852 &mq_create_ext->u.request.context, 16853 LPFC_MQ_RING_SIZE_128); 16854 break; 16855 } 16856 list_for_each_entry(dmabuf, &mq->page_list, list) { 16857 memset(dmabuf->virt, 0, hw_page_size); 16858 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16859 putPaddrLow(dmabuf->phys); 16860 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16861 putPaddrHigh(dmabuf->phys); 16862 } 16863 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16864 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16865 &mq_create_ext->u.response); 16866 if (rc != MBX_SUCCESS) { 16867 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16868 "2795 MQ_CREATE_EXT failed with " 16869 "status x%x. Failback to MQ_CREATE.\n", 16870 rc); 16871 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16872 mq_create = &mbox->u.mqe.un.mq_create; 16873 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16874 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16875 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16876 &mq_create->u.response); 16877 } 16878 16879 /* The IOCTL status is embedded in the mailbox subheader. */ 16880 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16881 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16882 if (shdr_status || shdr_add_status || rc) { 16883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16884 "2502 MQ_CREATE mailbox failed with " 16885 "status x%x add_status x%x, mbx status x%x\n", 16886 shdr_status, shdr_add_status, rc); 16887 status = -ENXIO; 16888 goto out; 16889 } 16890 if (mq->queue_id == 0xFFFF) { 16891 status = -ENXIO; 16892 goto out; 16893 } 16894 mq->type = LPFC_MQ; 16895 mq->assoc_qid = cq->queue_id; 16896 mq->subtype = subtype; 16897 mq->host_index = 0; 16898 mq->hba_index = 0; 16899 16900 /* link the mq onto the parent cq child list */ 16901 list_add_tail(&mq->list, &cq->child_list); 16902 out: 16903 mempool_free(mbox, phba->mbox_mem_pool); 16904 return status; 16905 } 16906 16907 /** 16908 * lpfc_wq_create - Create a Work Queue on the HBA 16909 * @phba: HBA structure that indicates port to create a queue on. 16910 * @wq: The queue structure to use to create the work queue. 16911 * @cq: The completion queue to bind this work queue to. 16912 * @subtype: The subtype of the work queue indicating its functionality. 16913 * 16914 * This function creates a work queue, as detailed in @wq, on a port, described 16915 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16916 * 16917 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16918 * is used to get the entry count and entry size that are necessary to 16919 * determine the number of pages to allocate and use for this queue. The @cq 16920 * is used to indicate which completion queue to bind this work queue to. This 16921 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16922 * work queue. This function is asynchronous and will wait for the mailbox 16923 * command to finish before continuing. 16924 * 16925 * On success this function will return a zero. If unable to allocate enough 16926 * memory this function will return -ENOMEM. If the queue create mailbox command 16927 * fails this function will return -ENXIO. 16928 **/ 16929 int 16930 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16931 struct lpfc_queue *cq, uint32_t subtype) 16932 { 16933 struct lpfc_mbx_wq_create *wq_create; 16934 struct lpfc_dmabuf *dmabuf; 16935 LPFC_MBOXQ_t *mbox; 16936 int rc, length, status = 0; 16937 uint32_t shdr_status, shdr_add_status; 16938 union lpfc_sli4_cfg_shdr *shdr; 16939 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16940 struct dma_address *page; 16941 void __iomem *bar_memmap_p; 16942 uint32_t db_offset; 16943 uint16_t pci_barset; 16944 uint8_t dpp_barset; 16945 uint32_t dpp_offset; 16946 uint8_t wq_create_version; 16947 #ifdef CONFIG_X86 16948 unsigned long pg_addr; 16949 #endif 16950 16951 /* sanity check on queue memory */ 16952 if (!wq || !cq) 16953 return -ENODEV; 16954 if (!phba->sli4_hba.pc_sli4_params.supported) 16955 hw_page_size = wq->page_size; 16956 16957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16958 if (!mbox) 16959 return -ENOMEM; 16960 length = (sizeof(struct lpfc_mbx_wq_create) - 16961 sizeof(struct lpfc_sli4_cfg_mhdr)); 16962 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16963 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16964 length, LPFC_SLI4_MBX_EMBED); 16965 wq_create = &mbox->u.mqe.un.wq_create; 16966 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16967 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16968 wq->page_count); 16969 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16970 cq->queue_id); 16971 16972 /* wqv is the earliest version supported, NOT the latest */ 16973 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16974 phba->sli4_hba.pc_sli4_params.wqv); 16975 16976 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16977 (wq->page_size > SLI4_PAGE_SIZE)) 16978 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16979 else 16980 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16981 16982 switch (wq_create_version) { 16983 case LPFC_Q_CREATE_VERSION_1: 16984 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16985 wq->entry_count); 16986 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16987 LPFC_Q_CREATE_VERSION_1); 16988 16989 switch (wq->entry_size) { 16990 default: 16991 case 64: 16992 bf_set(lpfc_mbx_wq_create_wqe_size, 16993 &wq_create->u.request_1, 16994 LPFC_WQ_WQE_SIZE_64); 16995 break; 16996 case 128: 16997 bf_set(lpfc_mbx_wq_create_wqe_size, 16998 &wq_create->u.request_1, 16999 LPFC_WQ_WQE_SIZE_128); 17000 break; 17001 } 17002 /* Request DPP by default */ 17003 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 17004 bf_set(lpfc_mbx_wq_create_page_size, 17005 &wq_create->u.request_1, 17006 (wq->page_size / SLI4_PAGE_SIZE)); 17007 page = wq_create->u.request_1.page; 17008 break; 17009 default: 17010 page = wq_create->u.request.page; 17011 break; 17012 } 17013 17014 list_for_each_entry(dmabuf, &wq->page_list, list) { 17015 memset(dmabuf->virt, 0, hw_page_size); 17016 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 17017 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 17018 } 17019 17020 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17021 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 17022 17023 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17024 /* The IOCTL status is embedded in the mailbox subheader. */ 17025 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17026 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17027 if (shdr_status || shdr_add_status || rc) { 17028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17029 "2503 WQ_CREATE mailbox failed with " 17030 "status x%x add_status x%x, mbx status x%x\n", 17031 shdr_status, shdr_add_status, rc); 17032 status = -ENXIO; 17033 goto out; 17034 } 17035 17036 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 17037 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 17038 &wq_create->u.response); 17039 else 17040 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 17041 &wq_create->u.response_1); 17042 17043 if (wq->queue_id == 0xFFFF) { 17044 status = -ENXIO; 17045 goto out; 17046 } 17047 17048 wq->db_format = LPFC_DB_LIST_FORMAT; 17049 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 17050 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17051 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17052 &wq_create->u.response); 17053 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17054 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17056 "3265 WQ[%d] doorbell format " 17057 "not supported: x%x\n", 17058 wq->queue_id, wq->db_format); 17059 status = -EINVAL; 17060 goto out; 17061 } 17062 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17063 &wq_create->u.response); 17064 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17065 pci_barset); 17066 if (!bar_memmap_p) { 17067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17068 "3263 WQ[%d] failed to memmap " 17069 "pci barset:x%x\n", 17070 wq->queue_id, pci_barset); 17071 status = -ENOMEM; 17072 goto out; 17073 } 17074 db_offset = wq_create->u.response.doorbell_offset; 17075 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17076 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17077 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17078 "3252 WQ[%d] doorbell offset " 17079 "not supported: x%x\n", 17080 wq->queue_id, db_offset); 17081 status = -EINVAL; 17082 goto out; 17083 } 17084 wq->db_regaddr = bar_memmap_p + db_offset; 17085 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17086 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17087 "format:x%x\n", wq->queue_id, 17088 pci_barset, db_offset, wq->db_format); 17089 } else 17090 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17091 } else { 17092 /* Check if DPP was honored by the firmware */ 17093 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17094 &wq_create->u.response_1); 17095 if (wq->dpp_enable) { 17096 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17097 &wq_create->u.response_1); 17098 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17099 pci_barset); 17100 if (!bar_memmap_p) { 17101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17102 "3267 WQ[%d] failed to memmap " 17103 "pci barset:x%x\n", 17104 wq->queue_id, pci_barset); 17105 status = -ENOMEM; 17106 goto out; 17107 } 17108 db_offset = wq_create->u.response_1.doorbell_offset; 17109 wq->db_regaddr = bar_memmap_p + db_offset; 17110 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17111 &wq_create->u.response_1); 17112 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17113 &wq_create->u.response_1); 17114 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17115 dpp_barset); 17116 if (!bar_memmap_p) { 17117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17118 "3268 WQ[%d] failed to memmap " 17119 "pci barset:x%x\n", 17120 wq->queue_id, dpp_barset); 17121 status = -ENOMEM; 17122 goto out; 17123 } 17124 dpp_offset = wq_create->u.response_1.dpp_offset; 17125 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17126 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17127 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17128 "dpp_id:x%x dpp_barset:x%x " 17129 "dpp_offset:x%x\n", 17130 wq->queue_id, pci_barset, db_offset, 17131 wq->dpp_id, dpp_barset, dpp_offset); 17132 17133 #ifdef CONFIG_X86 17134 /* Enable combined writes for DPP aperture */ 17135 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17136 rc = set_memory_wc(pg_addr, 1); 17137 if (rc) { 17138 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17139 "3272 Cannot setup Combined " 17140 "Write on WQ[%d] - disable DPP\n", 17141 wq->queue_id); 17142 phba->cfg_enable_dpp = 0; 17143 } 17144 #else 17145 phba->cfg_enable_dpp = 0; 17146 #endif 17147 } else 17148 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17149 } 17150 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17151 if (wq->pring == NULL) { 17152 status = -ENOMEM; 17153 goto out; 17154 } 17155 wq->type = LPFC_WQ; 17156 wq->assoc_qid = cq->queue_id; 17157 wq->subtype = subtype; 17158 wq->host_index = 0; 17159 wq->hba_index = 0; 17160 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17161 17162 /* link the wq onto the parent cq child list */ 17163 list_add_tail(&wq->list, &cq->child_list); 17164 out: 17165 mempool_free(mbox, phba->mbox_mem_pool); 17166 return status; 17167 } 17168 17169 /** 17170 * lpfc_rq_create - Create a Receive Queue on the HBA 17171 * @phba: HBA structure that indicates port to create a queue on. 17172 * @hrq: The queue structure to use to create the header receive queue. 17173 * @drq: The queue structure to use to create the data receive queue. 17174 * @cq: The completion queue to bind this work queue to. 17175 * @subtype: The subtype of the work queue indicating its functionality. 17176 * 17177 * This function creates a receive buffer queue pair , as detailed in @hrq and 17178 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17179 * to the HBA. 17180 * 17181 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17182 * struct is used to get the entry count that is necessary to determine the 17183 * number of pages to use for this queue. The @cq is used to indicate which 17184 * completion queue to bind received buffers that are posted to these queues to. 17185 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17186 * receive queue pair. This function is asynchronous and will wait for the 17187 * mailbox command to finish before continuing. 17188 * 17189 * On success this function will return a zero. If unable to allocate enough 17190 * memory this function will return -ENOMEM. If the queue create mailbox command 17191 * fails this function will return -ENXIO. 17192 **/ 17193 int 17194 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17195 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17196 { 17197 struct lpfc_mbx_rq_create *rq_create; 17198 struct lpfc_dmabuf *dmabuf; 17199 LPFC_MBOXQ_t *mbox; 17200 int rc, length, status = 0; 17201 uint32_t shdr_status, shdr_add_status; 17202 union lpfc_sli4_cfg_shdr *shdr; 17203 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17204 void __iomem *bar_memmap_p; 17205 uint32_t db_offset; 17206 uint16_t pci_barset; 17207 17208 /* sanity check on queue memory */ 17209 if (!hrq || !drq || !cq) 17210 return -ENODEV; 17211 if (!phba->sli4_hba.pc_sli4_params.supported) 17212 hw_page_size = SLI4_PAGE_SIZE; 17213 17214 if (hrq->entry_count != drq->entry_count) 17215 return -EINVAL; 17216 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17217 if (!mbox) 17218 return -ENOMEM; 17219 length = (sizeof(struct lpfc_mbx_rq_create) - 17220 sizeof(struct lpfc_sli4_cfg_mhdr)); 17221 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17222 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17223 length, LPFC_SLI4_MBX_EMBED); 17224 rq_create = &mbox->u.mqe.un.rq_create; 17225 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17226 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17227 phba->sli4_hba.pc_sli4_params.rqv); 17228 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17229 bf_set(lpfc_rq_context_rqe_count_1, 17230 &rq_create->u.request.context, 17231 hrq->entry_count); 17232 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17233 bf_set(lpfc_rq_context_rqe_size, 17234 &rq_create->u.request.context, 17235 LPFC_RQE_SIZE_8); 17236 bf_set(lpfc_rq_context_page_size, 17237 &rq_create->u.request.context, 17238 LPFC_RQ_PAGE_SIZE_4096); 17239 } else { 17240 switch (hrq->entry_count) { 17241 default: 17242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17243 "2535 Unsupported RQ count. (%d)\n", 17244 hrq->entry_count); 17245 if (hrq->entry_count < 512) { 17246 status = -EINVAL; 17247 goto out; 17248 } 17249 fallthrough; /* otherwise default to smallest count */ 17250 case 512: 17251 bf_set(lpfc_rq_context_rqe_count, 17252 &rq_create->u.request.context, 17253 LPFC_RQ_RING_SIZE_512); 17254 break; 17255 case 1024: 17256 bf_set(lpfc_rq_context_rqe_count, 17257 &rq_create->u.request.context, 17258 LPFC_RQ_RING_SIZE_1024); 17259 break; 17260 case 2048: 17261 bf_set(lpfc_rq_context_rqe_count, 17262 &rq_create->u.request.context, 17263 LPFC_RQ_RING_SIZE_2048); 17264 break; 17265 case 4096: 17266 bf_set(lpfc_rq_context_rqe_count, 17267 &rq_create->u.request.context, 17268 LPFC_RQ_RING_SIZE_4096); 17269 break; 17270 } 17271 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17272 LPFC_HDR_BUF_SIZE); 17273 } 17274 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17275 cq->queue_id); 17276 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17277 hrq->page_count); 17278 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17279 memset(dmabuf->virt, 0, hw_page_size); 17280 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17281 putPaddrLow(dmabuf->phys); 17282 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17283 putPaddrHigh(dmabuf->phys); 17284 } 17285 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17286 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17287 17288 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17289 /* The IOCTL status is embedded in the mailbox subheader. */ 17290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17292 if (shdr_status || shdr_add_status || rc) { 17293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17294 "2504 RQ_CREATE mailbox failed with " 17295 "status x%x add_status x%x, mbx status x%x\n", 17296 shdr_status, shdr_add_status, rc); 17297 status = -ENXIO; 17298 goto out; 17299 } 17300 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17301 if (hrq->queue_id == 0xFFFF) { 17302 status = -ENXIO; 17303 goto out; 17304 } 17305 17306 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17307 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17308 &rq_create->u.response); 17309 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17310 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17312 "3262 RQ [%d] doorbell format not " 17313 "supported: x%x\n", hrq->queue_id, 17314 hrq->db_format); 17315 status = -EINVAL; 17316 goto out; 17317 } 17318 17319 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17320 &rq_create->u.response); 17321 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17322 if (!bar_memmap_p) { 17323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17324 "3269 RQ[%d] failed to memmap pci " 17325 "barset:x%x\n", hrq->queue_id, 17326 pci_barset); 17327 status = -ENOMEM; 17328 goto out; 17329 } 17330 17331 db_offset = rq_create->u.response.doorbell_offset; 17332 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17333 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17335 "3270 RQ[%d] doorbell offset not " 17336 "supported: x%x\n", hrq->queue_id, 17337 db_offset); 17338 status = -EINVAL; 17339 goto out; 17340 } 17341 hrq->db_regaddr = bar_memmap_p + db_offset; 17342 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17343 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17344 "format:x%x\n", hrq->queue_id, pci_barset, 17345 db_offset, hrq->db_format); 17346 } else { 17347 hrq->db_format = LPFC_DB_RING_FORMAT; 17348 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17349 } 17350 hrq->type = LPFC_HRQ; 17351 hrq->assoc_qid = cq->queue_id; 17352 hrq->subtype = subtype; 17353 hrq->host_index = 0; 17354 hrq->hba_index = 0; 17355 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17356 17357 /* now create the data queue */ 17358 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17359 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17360 length, LPFC_SLI4_MBX_EMBED); 17361 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17362 phba->sli4_hba.pc_sli4_params.rqv); 17363 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17364 bf_set(lpfc_rq_context_rqe_count_1, 17365 &rq_create->u.request.context, hrq->entry_count); 17366 if (subtype == LPFC_NVMET) 17367 rq_create->u.request.context.buffer_size = 17368 LPFC_NVMET_DATA_BUF_SIZE; 17369 else 17370 rq_create->u.request.context.buffer_size = 17371 LPFC_DATA_BUF_SIZE; 17372 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17373 LPFC_RQE_SIZE_8); 17374 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17375 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17376 } else { 17377 switch (drq->entry_count) { 17378 default: 17379 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17380 "2536 Unsupported RQ count. (%d)\n", 17381 drq->entry_count); 17382 if (drq->entry_count < 512) { 17383 status = -EINVAL; 17384 goto out; 17385 } 17386 fallthrough; /* otherwise default to smallest count */ 17387 case 512: 17388 bf_set(lpfc_rq_context_rqe_count, 17389 &rq_create->u.request.context, 17390 LPFC_RQ_RING_SIZE_512); 17391 break; 17392 case 1024: 17393 bf_set(lpfc_rq_context_rqe_count, 17394 &rq_create->u.request.context, 17395 LPFC_RQ_RING_SIZE_1024); 17396 break; 17397 case 2048: 17398 bf_set(lpfc_rq_context_rqe_count, 17399 &rq_create->u.request.context, 17400 LPFC_RQ_RING_SIZE_2048); 17401 break; 17402 case 4096: 17403 bf_set(lpfc_rq_context_rqe_count, 17404 &rq_create->u.request.context, 17405 LPFC_RQ_RING_SIZE_4096); 17406 break; 17407 } 17408 if (subtype == LPFC_NVMET) 17409 bf_set(lpfc_rq_context_buf_size, 17410 &rq_create->u.request.context, 17411 LPFC_NVMET_DATA_BUF_SIZE); 17412 else 17413 bf_set(lpfc_rq_context_buf_size, 17414 &rq_create->u.request.context, 17415 LPFC_DATA_BUF_SIZE); 17416 } 17417 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17418 cq->queue_id); 17419 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17420 drq->page_count); 17421 list_for_each_entry(dmabuf, &drq->page_list, list) { 17422 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17423 putPaddrLow(dmabuf->phys); 17424 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17425 putPaddrHigh(dmabuf->phys); 17426 } 17427 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17428 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17429 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17430 /* The IOCTL status is embedded in the mailbox subheader. */ 17431 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17432 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17433 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17434 if (shdr_status || shdr_add_status || rc) { 17435 status = -ENXIO; 17436 goto out; 17437 } 17438 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17439 if (drq->queue_id == 0xFFFF) { 17440 status = -ENXIO; 17441 goto out; 17442 } 17443 drq->type = LPFC_DRQ; 17444 drq->assoc_qid = cq->queue_id; 17445 drq->subtype = subtype; 17446 drq->host_index = 0; 17447 drq->hba_index = 0; 17448 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17449 17450 /* link the header and data RQs onto the parent cq child list */ 17451 list_add_tail(&hrq->list, &cq->child_list); 17452 list_add_tail(&drq->list, &cq->child_list); 17453 17454 out: 17455 mempool_free(mbox, phba->mbox_mem_pool); 17456 return status; 17457 } 17458 17459 /** 17460 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17461 * @phba: HBA structure that indicates port to create a queue on. 17462 * @hrqp: The queue structure array to use to create the header receive queues. 17463 * @drqp: The queue structure array to use to create the data receive queues. 17464 * @cqp: The completion queue array to bind these receive queues to. 17465 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17466 * 17467 * This function creates a receive buffer queue pair , as detailed in @hrq and 17468 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17469 * to the HBA. 17470 * 17471 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17472 * struct is used to get the entry count that is necessary to determine the 17473 * number of pages to use for this queue. The @cq is used to indicate which 17474 * completion queue to bind received buffers that are posted to these queues to. 17475 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17476 * receive queue pair. This function is asynchronous and will wait for the 17477 * mailbox command to finish before continuing. 17478 * 17479 * On success this function will return a zero. If unable to allocate enough 17480 * memory this function will return -ENOMEM. If the queue create mailbox command 17481 * fails this function will return -ENXIO. 17482 **/ 17483 int 17484 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17485 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17486 uint32_t subtype) 17487 { 17488 struct lpfc_queue *hrq, *drq, *cq; 17489 struct lpfc_mbx_rq_create_v2 *rq_create; 17490 struct lpfc_dmabuf *dmabuf; 17491 LPFC_MBOXQ_t *mbox; 17492 int rc, length, alloclen, status = 0; 17493 int cnt, idx, numrq, page_idx = 0; 17494 uint32_t shdr_status, shdr_add_status; 17495 union lpfc_sli4_cfg_shdr *shdr; 17496 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17497 17498 numrq = phba->cfg_nvmet_mrq; 17499 /* sanity check on array memory */ 17500 if (!hrqp || !drqp || !cqp || !numrq) 17501 return -ENODEV; 17502 if (!phba->sli4_hba.pc_sli4_params.supported) 17503 hw_page_size = SLI4_PAGE_SIZE; 17504 17505 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17506 if (!mbox) 17507 return -ENOMEM; 17508 17509 length = sizeof(struct lpfc_mbx_rq_create_v2); 17510 length += ((2 * numrq * hrqp[0]->page_count) * 17511 sizeof(struct dma_address)); 17512 17513 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17514 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17515 LPFC_SLI4_MBX_NEMBED); 17516 if (alloclen < length) { 17517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17518 "3099 Allocated DMA memory size (%d) is " 17519 "less than the requested DMA memory size " 17520 "(%d)\n", alloclen, length); 17521 status = -ENOMEM; 17522 goto out; 17523 } 17524 17525 17526 17527 rq_create = mbox->sge_array->addr[0]; 17528 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17529 17530 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17531 cnt = 0; 17532 17533 for (idx = 0; idx < numrq; idx++) { 17534 hrq = hrqp[idx]; 17535 drq = drqp[idx]; 17536 cq = cqp[idx]; 17537 17538 /* sanity check on queue memory */ 17539 if (!hrq || !drq || !cq) { 17540 status = -ENODEV; 17541 goto out; 17542 } 17543 17544 if (hrq->entry_count != drq->entry_count) { 17545 status = -EINVAL; 17546 goto out; 17547 } 17548 17549 if (idx == 0) { 17550 bf_set(lpfc_mbx_rq_create_num_pages, 17551 &rq_create->u.request, 17552 hrq->page_count); 17553 bf_set(lpfc_mbx_rq_create_rq_cnt, 17554 &rq_create->u.request, (numrq * 2)); 17555 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17556 1); 17557 bf_set(lpfc_rq_context_base_cq, 17558 &rq_create->u.request.context, 17559 cq->queue_id); 17560 bf_set(lpfc_rq_context_data_size, 17561 &rq_create->u.request.context, 17562 LPFC_NVMET_DATA_BUF_SIZE); 17563 bf_set(lpfc_rq_context_hdr_size, 17564 &rq_create->u.request.context, 17565 LPFC_HDR_BUF_SIZE); 17566 bf_set(lpfc_rq_context_rqe_count_1, 17567 &rq_create->u.request.context, 17568 hrq->entry_count); 17569 bf_set(lpfc_rq_context_rqe_size, 17570 &rq_create->u.request.context, 17571 LPFC_RQE_SIZE_8); 17572 bf_set(lpfc_rq_context_page_size, 17573 &rq_create->u.request.context, 17574 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17575 } 17576 rc = 0; 17577 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17578 memset(dmabuf->virt, 0, hw_page_size); 17579 cnt = page_idx + dmabuf->buffer_tag; 17580 rq_create->u.request.page[cnt].addr_lo = 17581 putPaddrLow(dmabuf->phys); 17582 rq_create->u.request.page[cnt].addr_hi = 17583 putPaddrHigh(dmabuf->phys); 17584 rc++; 17585 } 17586 page_idx += rc; 17587 17588 rc = 0; 17589 list_for_each_entry(dmabuf, &drq->page_list, list) { 17590 memset(dmabuf->virt, 0, hw_page_size); 17591 cnt = page_idx + dmabuf->buffer_tag; 17592 rq_create->u.request.page[cnt].addr_lo = 17593 putPaddrLow(dmabuf->phys); 17594 rq_create->u.request.page[cnt].addr_hi = 17595 putPaddrHigh(dmabuf->phys); 17596 rc++; 17597 } 17598 page_idx += rc; 17599 17600 hrq->db_format = LPFC_DB_RING_FORMAT; 17601 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17602 hrq->type = LPFC_HRQ; 17603 hrq->assoc_qid = cq->queue_id; 17604 hrq->subtype = subtype; 17605 hrq->host_index = 0; 17606 hrq->hba_index = 0; 17607 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17608 17609 drq->db_format = LPFC_DB_RING_FORMAT; 17610 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17611 drq->type = LPFC_DRQ; 17612 drq->assoc_qid = cq->queue_id; 17613 drq->subtype = subtype; 17614 drq->host_index = 0; 17615 drq->hba_index = 0; 17616 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17617 17618 list_add_tail(&hrq->list, &cq->child_list); 17619 list_add_tail(&drq->list, &cq->child_list); 17620 } 17621 17622 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17623 /* The IOCTL status is embedded in the mailbox subheader. */ 17624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17626 if (shdr_status || shdr_add_status || rc) { 17627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17628 "3120 RQ_CREATE mailbox failed with " 17629 "status x%x add_status x%x, mbx status x%x\n", 17630 shdr_status, shdr_add_status, rc); 17631 status = -ENXIO; 17632 goto out; 17633 } 17634 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17635 if (rc == 0xFFFF) { 17636 status = -ENXIO; 17637 goto out; 17638 } 17639 17640 /* Initialize all RQs with associated queue id */ 17641 for (idx = 0; idx < numrq; idx++) { 17642 hrq = hrqp[idx]; 17643 hrq->queue_id = rc + (2 * idx); 17644 drq = drqp[idx]; 17645 drq->queue_id = rc + (2 * idx) + 1; 17646 } 17647 17648 out: 17649 lpfc_sli4_mbox_cmd_free(phba, mbox); 17650 return status; 17651 } 17652 17653 /** 17654 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17655 * @phba: HBA structure that indicates port to destroy a queue on. 17656 * @eq: The queue structure associated with the queue to destroy. 17657 * 17658 * This function destroys a queue, as detailed in @eq by sending an mailbox 17659 * command, specific to the type of queue, to the HBA. 17660 * 17661 * The @eq struct is used to get the queue ID of the queue to destroy. 17662 * 17663 * On success this function will return a zero. If the queue destroy mailbox 17664 * command fails this function will return -ENXIO. 17665 **/ 17666 int 17667 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17668 { 17669 LPFC_MBOXQ_t *mbox; 17670 int rc, length, status = 0; 17671 uint32_t shdr_status, shdr_add_status; 17672 union lpfc_sli4_cfg_shdr *shdr; 17673 17674 /* sanity check on queue memory */ 17675 if (!eq) 17676 return -ENODEV; 17677 17678 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17679 goto list_remove; 17680 17681 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17682 if (!mbox) 17683 return -ENOMEM; 17684 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17685 sizeof(struct lpfc_sli4_cfg_mhdr)); 17686 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17687 LPFC_MBOX_OPCODE_EQ_DESTROY, 17688 length, LPFC_SLI4_MBX_EMBED); 17689 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17690 eq->queue_id); 17691 mbox->vport = eq->phba->pport; 17692 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17693 17694 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17695 /* The IOCTL status is embedded in the mailbox subheader. */ 17696 shdr = (union lpfc_sli4_cfg_shdr *) 17697 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17698 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17699 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17700 if (shdr_status || shdr_add_status || rc) { 17701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17702 "2505 EQ_DESTROY mailbox failed with " 17703 "status x%x add_status x%x, mbx status x%x\n", 17704 shdr_status, shdr_add_status, rc); 17705 status = -ENXIO; 17706 } 17707 mempool_free(mbox, eq->phba->mbox_mem_pool); 17708 17709 list_remove: 17710 /* Remove eq from any list */ 17711 list_del_init(&eq->list); 17712 17713 return status; 17714 } 17715 17716 /** 17717 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17718 * @phba: HBA structure that indicates port to destroy a queue on. 17719 * @cq: The queue structure associated with the queue to destroy. 17720 * 17721 * This function destroys a queue, as detailed in @cq by sending an mailbox 17722 * command, specific to the type of queue, to the HBA. 17723 * 17724 * The @cq struct is used to get the queue ID of the queue to destroy. 17725 * 17726 * On success this function will return a zero. If the queue destroy mailbox 17727 * command fails this function will return -ENXIO. 17728 **/ 17729 int 17730 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17731 { 17732 LPFC_MBOXQ_t *mbox; 17733 int rc, length, status = 0; 17734 uint32_t shdr_status, shdr_add_status; 17735 union lpfc_sli4_cfg_shdr *shdr; 17736 17737 /* sanity check on queue memory */ 17738 if (!cq) 17739 return -ENODEV; 17740 17741 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17742 goto list_remove; 17743 17744 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17745 if (!mbox) 17746 return -ENOMEM; 17747 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17748 sizeof(struct lpfc_sli4_cfg_mhdr)); 17749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17750 LPFC_MBOX_OPCODE_CQ_DESTROY, 17751 length, LPFC_SLI4_MBX_EMBED); 17752 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17753 cq->queue_id); 17754 mbox->vport = cq->phba->pport; 17755 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17756 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17757 /* The IOCTL status is embedded in the mailbox subheader. */ 17758 shdr = (union lpfc_sli4_cfg_shdr *) 17759 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17762 if (shdr_status || shdr_add_status || rc) { 17763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17764 "2506 CQ_DESTROY mailbox failed with " 17765 "status x%x add_status x%x, mbx status x%x\n", 17766 shdr_status, shdr_add_status, rc); 17767 status = -ENXIO; 17768 } 17769 mempool_free(mbox, cq->phba->mbox_mem_pool); 17770 17771 list_remove: 17772 /* Remove cq from any list */ 17773 list_del_init(&cq->list); 17774 return status; 17775 } 17776 17777 /** 17778 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17779 * @phba: HBA structure that indicates port to destroy a queue on. 17780 * @mq: The queue structure associated with the queue to destroy. 17781 * 17782 * This function destroys a queue, as detailed in @mq by sending an mailbox 17783 * command, specific to the type of queue, to the HBA. 17784 * 17785 * The @mq struct is used to get the queue ID of the queue to destroy. 17786 * 17787 * On success this function will return a zero. If the queue destroy mailbox 17788 * command fails this function will return -ENXIO. 17789 **/ 17790 int 17791 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17792 { 17793 LPFC_MBOXQ_t *mbox; 17794 int rc, length, status = 0; 17795 uint32_t shdr_status, shdr_add_status; 17796 union lpfc_sli4_cfg_shdr *shdr; 17797 17798 /* sanity check on queue memory */ 17799 if (!mq) 17800 return -ENODEV; 17801 17802 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17803 goto list_remove; 17804 17805 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17806 if (!mbox) 17807 return -ENOMEM; 17808 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17809 sizeof(struct lpfc_sli4_cfg_mhdr)); 17810 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17811 LPFC_MBOX_OPCODE_MQ_DESTROY, 17812 length, LPFC_SLI4_MBX_EMBED); 17813 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17814 mq->queue_id); 17815 mbox->vport = mq->phba->pport; 17816 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17817 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17818 /* The IOCTL status is embedded in the mailbox subheader. */ 17819 shdr = (union lpfc_sli4_cfg_shdr *) 17820 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17821 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17822 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17823 if (shdr_status || shdr_add_status || rc) { 17824 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17825 "2507 MQ_DESTROY mailbox failed with " 17826 "status x%x add_status x%x, mbx status x%x\n", 17827 shdr_status, shdr_add_status, rc); 17828 status = -ENXIO; 17829 } 17830 mempool_free(mbox, mq->phba->mbox_mem_pool); 17831 17832 list_remove: 17833 /* Remove mq from any list */ 17834 list_del_init(&mq->list); 17835 return status; 17836 } 17837 17838 /** 17839 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17840 * @phba: HBA structure that indicates port to destroy a queue on. 17841 * @wq: The queue structure associated with the queue to destroy. 17842 * 17843 * This function destroys a queue, as detailed in @wq by sending an mailbox 17844 * command, specific to the type of queue, to the HBA. 17845 * 17846 * The @wq struct is used to get the queue ID of the queue to destroy. 17847 * 17848 * On success this function will return a zero. If the queue destroy mailbox 17849 * command fails this function will return -ENXIO. 17850 **/ 17851 int 17852 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17853 { 17854 LPFC_MBOXQ_t *mbox; 17855 int rc, length, status = 0; 17856 uint32_t shdr_status, shdr_add_status; 17857 union lpfc_sli4_cfg_shdr *shdr; 17858 17859 /* sanity check on queue memory */ 17860 if (!wq) 17861 return -ENODEV; 17862 17863 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17864 goto list_remove; 17865 17866 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17867 if (!mbox) 17868 return -ENOMEM; 17869 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17870 sizeof(struct lpfc_sli4_cfg_mhdr)); 17871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17872 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17873 length, LPFC_SLI4_MBX_EMBED); 17874 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17875 wq->queue_id); 17876 mbox->vport = wq->phba->pport; 17877 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17878 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17879 shdr = (union lpfc_sli4_cfg_shdr *) 17880 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17881 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17882 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17883 if (shdr_status || shdr_add_status || rc) { 17884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17885 "2508 WQ_DESTROY mailbox failed with " 17886 "status x%x add_status x%x, mbx status x%x\n", 17887 shdr_status, shdr_add_status, rc); 17888 status = -ENXIO; 17889 } 17890 mempool_free(mbox, wq->phba->mbox_mem_pool); 17891 17892 list_remove: 17893 /* Remove wq from any list */ 17894 list_del_init(&wq->list); 17895 kfree(wq->pring); 17896 wq->pring = NULL; 17897 return status; 17898 } 17899 17900 /** 17901 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17902 * @phba: HBA structure that indicates port to destroy a queue on. 17903 * @hrq: The queue structure associated with the queue to destroy. 17904 * @drq: The queue structure associated with the queue to destroy. 17905 * 17906 * This function destroys a queue, as detailed in @rq by sending an mailbox 17907 * command, specific to the type of queue, to the HBA. 17908 * 17909 * The @rq struct is used to get the queue ID of the queue to destroy. 17910 * 17911 * On success this function will return a zero. If the queue destroy mailbox 17912 * command fails this function will return -ENXIO. 17913 **/ 17914 int 17915 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17916 struct lpfc_queue *drq) 17917 { 17918 LPFC_MBOXQ_t *mbox; 17919 int rc, length, status = 0; 17920 uint32_t shdr_status, shdr_add_status; 17921 union lpfc_sli4_cfg_shdr *shdr; 17922 17923 /* sanity check on queue memory */ 17924 if (!hrq || !drq) 17925 return -ENODEV; 17926 17927 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17928 goto list_remove; 17929 17930 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17931 if (!mbox) 17932 return -ENOMEM; 17933 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17934 sizeof(struct lpfc_sli4_cfg_mhdr)); 17935 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17936 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17937 length, LPFC_SLI4_MBX_EMBED); 17938 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17939 hrq->queue_id); 17940 mbox->vport = hrq->phba->pport; 17941 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17942 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17943 /* The IOCTL status is embedded in the mailbox subheader. */ 17944 shdr = (union lpfc_sli4_cfg_shdr *) 17945 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17946 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17947 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17948 if (shdr_status || shdr_add_status || rc) { 17949 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17950 "2509 RQ_DESTROY mailbox failed with " 17951 "status x%x add_status x%x, mbx status x%x\n", 17952 shdr_status, shdr_add_status, rc); 17953 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17954 return -ENXIO; 17955 } 17956 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17957 drq->queue_id); 17958 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17959 shdr = (union lpfc_sli4_cfg_shdr *) 17960 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17963 if (shdr_status || shdr_add_status || rc) { 17964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17965 "2510 RQ_DESTROY mailbox failed with " 17966 "status x%x add_status x%x, mbx status x%x\n", 17967 shdr_status, shdr_add_status, rc); 17968 status = -ENXIO; 17969 } 17970 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17971 17972 list_remove: 17973 list_del_init(&hrq->list); 17974 list_del_init(&drq->list); 17975 return status; 17976 } 17977 17978 /** 17979 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17980 * @phba: The virtual port for which this call being executed. 17981 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17982 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17983 * @xritag: the xritag that ties this io to the SGL pages. 17984 * 17985 * This routine will post the sgl pages for the IO that has the xritag 17986 * that is in the iocbq structure. The xritag is assigned during iocbq 17987 * creation and persists for as long as the driver is loaded. 17988 * if the caller has fewer than 256 scatter gather segments to map then 17989 * pdma_phys_addr1 should be 0. 17990 * If the caller needs to map more than 256 scatter gather segment then 17991 * pdma_phys_addr1 should be a valid physical address. 17992 * physical address for SGLs must be 64 byte aligned. 17993 * If you are going to map 2 SGL's then the first one must have 256 entries 17994 * the second sgl can have between 1 and 256 entries. 17995 * 17996 * Return codes: 17997 * 0 - Success 17998 * -ENXIO, -ENOMEM - Failure 17999 **/ 18000 int 18001 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 18002 dma_addr_t pdma_phys_addr0, 18003 dma_addr_t pdma_phys_addr1, 18004 uint16_t xritag) 18005 { 18006 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 18007 LPFC_MBOXQ_t *mbox; 18008 int rc; 18009 uint32_t shdr_status, shdr_add_status; 18010 uint32_t mbox_tmo; 18011 union lpfc_sli4_cfg_shdr *shdr; 18012 18013 if (xritag == NO_XRI) { 18014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18015 "0364 Invalid param:\n"); 18016 return -EINVAL; 18017 } 18018 18019 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18020 if (!mbox) 18021 return -ENOMEM; 18022 18023 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18024 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18025 sizeof(struct lpfc_mbx_post_sgl_pages) - 18026 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18027 18028 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 18029 &mbox->u.mqe.un.post_sgl_pages; 18030 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 18031 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 18032 18033 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 18034 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 18035 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 18036 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 18037 18038 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 18039 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 18040 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 18041 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 18042 if (!phba->sli4_hba.intr_enable) 18043 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18044 else { 18045 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18046 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18047 } 18048 /* The IOCTL status is embedded in the mailbox subheader. */ 18049 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 18050 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18051 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18052 if (!phba->sli4_hba.intr_enable) 18053 mempool_free(mbox, phba->mbox_mem_pool); 18054 else if (rc != MBX_TIMEOUT) 18055 mempool_free(mbox, phba->mbox_mem_pool); 18056 if (shdr_status || shdr_add_status || rc) { 18057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18058 "2511 POST_SGL mailbox failed with " 18059 "status x%x add_status x%x, mbx status x%x\n", 18060 shdr_status, shdr_add_status, rc); 18061 } 18062 return 0; 18063 } 18064 18065 /** 18066 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 18067 * @phba: pointer to lpfc hba data structure. 18068 * 18069 * This routine is invoked to post rpi header templates to the 18070 * HBA consistent with the SLI-4 interface spec. This routine 18071 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18072 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18073 * 18074 * Returns 18075 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18076 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18077 **/ 18078 static uint16_t 18079 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18080 { 18081 unsigned long xri; 18082 18083 /* 18084 * Fetch the next logical xri. Because this index is logical, 18085 * the driver starts at 0 each time. 18086 */ 18087 spin_lock_irq(&phba->hbalock); 18088 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18089 phba->sli4_hba.max_cfg_param.max_xri); 18090 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18091 spin_unlock_irq(&phba->hbalock); 18092 return NO_XRI; 18093 } else { 18094 set_bit(xri, phba->sli4_hba.xri_bmask); 18095 phba->sli4_hba.max_cfg_param.xri_used++; 18096 } 18097 spin_unlock_irq(&phba->hbalock); 18098 return xri; 18099 } 18100 18101 /** 18102 * __lpfc_sli4_free_xri - Release an xri for reuse. 18103 * @phba: pointer to lpfc hba data structure. 18104 * @xri: xri to release. 18105 * 18106 * This routine is invoked to release an xri to the pool of 18107 * available rpis maintained by the driver. 18108 **/ 18109 static void 18110 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18111 { 18112 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18113 phba->sli4_hba.max_cfg_param.xri_used--; 18114 } 18115 } 18116 18117 /** 18118 * lpfc_sli4_free_xri - Release an xri for reuse. 18119 * @phba: pointer to lpfc hba data structure. 18120 * @xri: xri to release. 18121 * 18122 * This routine is invoked to release an xri to the pool of 18123 * available rpis maintained by the driver. 18124 **/ 18125 void 18126 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18127 { 18128 spin_lock_irq(&phba->hbalock); 18129 __lpfc_sli4_free_xri(phba, xri); 18130 spin_unlock_irq(&phba->hbalock); 18131 } 18132 18133 /** 18134 * lpfc_sli4_next_xritag - Get an xritag for the io 18135 * @phba: Pointer to HBA context object. 18136 * 18137 * This function gets an xritag for the iocb. If there is no unused xritag 18138 * it will return 0xffff. 18139 * The function returns the allocated xritag if successful, else returns zero. 18140 * Zero is not a valid xritag. 18141 * The caller is not required to hold any lock. 18142 **/ 18143 uint16_t 18144 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18145 { 18146 uint16_t xri_index; 18147 18148 xri_index = lpfc_sli4_alloc_xri(phba); 18149 if (xri_index == NO_XRI) 18150 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18151 "2004 Failed to allocate XRI.last XRITAG is %d" 18152 " Max XRI is %d, Used XRI is %d\n", 18153 xri_index, 18154 phba->sli4_hba.max_cfg_param.max_xri, 18155 phba->sli4_hba.max_cfg_param.xri_used); 18156 return xri_index; 18157 } 18158 18159 /** 18160 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18161 * @phba: pointer to lpfc hba data structure. 18162 * @post_sgl_list: pointer to els sgl entry list. 18163 * @post_cnt: number of els sgl entries on the list. 18164 * 18165 * This routine is invoked to post a block of driver's sgl pages to the 18166 * HBA using non-embedded mailbox command. No Lock is held. This routine 18167 * is only called when the driver is loading and after all IO has been 18168 * stopped. 18169 **/ 18170 static int 18171 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18172 struct list_head *post_sgl_list, 18173 int post_cnt) 18174 { 18175 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18176 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18177 struct sgl_page_pairs *sgl_pg_pairs; 18178 void *viraddr; 18179 LPFC_MBOXQ_t *mbox; 18180 uint32_t reqlen, alloclen, pg_pairs; 18181 uint32_t mbox_tmo; 18182 uint16_t xritag_start = 0; 18183 int rc = 0; 18184 uint32_t shdr_status, shdr_add_status; 18185 union lpfc_sli4_cfg_shdr *shdr; 18186 18187 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18188 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18189 if (reqlen > SLI4_PAGE_SIZE) { 18190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18191 "2559 Block sgl registration required DMA " 18192 "size (%d) great than a page\n", reqlen); 18193 return -ENOMEM; 18194 } 18195 18196 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18197 if (!mbox) 18198 return -ENOMEM; 18199 18200 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18201 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18202 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18203 LPFC_SLI4_MBX_NEMBED); 18204 18205 if (alloclen < reqlen) { 18206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18207 "0285 Allocated DMA memory size (%d) is " 18208 "less than the requested DMA memory " 18209 "size (%d)\n", alloclen, reqlen); 18210 lpfc_sli4_mbox_cmd_free(phba, mbox); 18211 return -ENOMEM; 18212 } 18213 /* Set up the SGL pages in the non-embedded DMA pages */ 18214 viraddr = mbox->sge_array->addr[0]; 18215 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18216 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18217 18218 pg_pairs = 0; 18219 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18220 /* Set up the sge entry */ 18221 sgl_pg_pairs->sgl_pg0_addr_lo = 18222 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18223 sgl_pg_pairs->sgl_pg0_addr_hi = 18224 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18225 sgl_pg_pairs->sgl_pg1_addr_lo = 18226 cpu_to_le32(putPaddrLow(0)); 18227 sgl_pg_pairs->sgl_pg1_addr_hi = 18228 cpu_to_le32(putPaddrHigh(0)); 18229 18230 /* Keep the first xritag on the list */ 18231 if (pg_pairs == 0) 18232 xritag_start = sglq_entry->sli4_xritag; 18233 sgl_pg_pairs++; 18234 pg_pairs++; 18235 } 18236 18237 /* Complete initialization and perform endian conversion. */ 18238 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18239 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18240 sgl->word0 = cpu_to_le32(sgl->word0); 18241 18242 if (!phba->sli4_hba.intr_enable) 18243 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18244 else { 18245 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18246 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18247 } 18248 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18249 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18250 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18251 if (!phba->sli4_hba.intr_enable) 18252 lpfc_sli4_mbox_cmd_free(phba, mbox); 18253 else if (rc != MBX_TIMEOUT) 18254 lpfc_sli4_mbox_cmd_free(phba, mbox); 18255 if (shdr_status || shdr_add_status || rc) { 18256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18257 "2513 POST_SGL_BLOCK mailbox command failed " 18258 "status x%x add_status x%x mbx status x%x\n", 18259 shdr_status, shdr_add_status, rc); 18260 rc = -ENXIO; 18261 } 18262 return rc; 18263 } 18264 18265 /** 18266 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18267 * @phba: pointer to lpfc hba data structure. 18268 * @nblist: pointer to nvme buffer list. 18269 * @count: number of scsi buffers on the list. 18270 * 18271 * This routine is invoked to post a block of @count scsi sgl pages from a 18272 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18273 * No Lock is held. 18274 * 18275 **/ 18276 static int 18277 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18278 int count) 18279 { 18280 struct lpfc_io_buf *lpfc_ncmd; 18281 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18282 struct sgl_page_pairs *sgl_pg_pairs; 18283 void *viraddr; 18284 LPFC_MBOXQ_t *mbox; 18285 uint32_t reqlen, alloclen, pg_pairs; 18286 uint32_t mbox_tmo; 18287 uint16_t xritag_start = 0; 18288 int rc = 0; 18289 uint32_t shdr_status, shdr_add_status; 18290 dma_addr_t pdma_phys_bpl1; 18291 union lpfc_sli4_cfg_shdr *shdr; 18292 18293 /* Calculate the requested length of the dma memory */ 18294 reqlen = count * sizeof(struct sgl_page_pairs) + 18295 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18296 if (reqlen > SLI4_PAGE_SIZE) { 18297 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18298 "6118 Block sgl registration required DMA " 18299 "size (%d) great than a page\n", reqlen); 18300 return -ENOMEM; 18301 } 18302 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18303 if (!mbox) { 18304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18305 "6119 Failed to allocate mbox cmd memory\n"); 18306 return -ENOMEM; 18307 } 18308 18309 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18310 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18311 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18312 reqlen, LPFC_SLI4_MBX_NEMBED); 18313 18314 if (alloclen < reqlen) { 18315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18316 "6120 Allocated DMA memory size (%d) is " 18317 "less than the requested DMA memory " 18318 "size (%d)\n", alloclen, reqlen); 18319 lpfc_sli4_mbox_cmd_free(phba, mbox); 18320 return -ENOMEM; 18321 } 18322 18323 /* Get the first SGE entry from the non-embedded DMA memory */ 18324 viraddr = mbox->sge_array->addr[0]; 18325 18326 /* Set up the SGL pages in the non-embedded DMA pages */ 18327 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18328 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18329 18330 pg_pairs = 0; 18331 list_for_each_entry(lpfc_ncmd, nblist, list) { 18332 /* Set up the sge entry */ 18333 sgl_pg_pairs->sgl_pg0_addr_lo = 18334 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18335 sgl_pg_pairs->sgl_pg0_addr_hi = 18336 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18337 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18338 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18339 SGL_PAGE_SIZE; 18340 else 18341 pdma_phys_bpl1 = 0; 18342 sgl_pg_pairs->sgl_pg1_addr_lo = 18343 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18344 sgl_pg_pairs->sgl_pg1_addr_hi = 18345 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18346 /* Keep the first xritag on the list */ 18347 if (pg_pairs == 0) 18348 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18349 sgl_pg_pairs++; 18350 pg_pairs++; 18351 } 18352 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18353 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18354 /* Perform endian conversion if necessary */ 18355 sgl->word0 = cpu_to_le32(sgl->word0); 18356 18357 if (!phba->sli4_hba.intr_enable) { 18358 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18359 } else { 18360 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18361 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18362 } 18363 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18366 if (!phba->sli4_hba.intr_enable) 18367 lpfc_sli4_mbox_cmd_free(phba, mbox); 18368 else if (rc != MBX_TIMEOUT) 18369 lpfc_sli4_mbox_cmd_free(phba, mbox); 18370 if (shdr_status || shdr_add_status || rc) { 18371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18372 "6125 POST_SGL_BLOCK mailbox command failed " 18373 "status x%x add_status x%x mbx status x%x\n", 18374 shdr_status, shdr_add_status, rc); 18375 rc = -ENXIO; 18376 } 18377 return rc; 18378 } 18379 18380 /** 18381 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18382 * @phba: pointer to lpfc hba data structure. 18383 * @post_nblist: pointer to the nvme buffer list. 18384 * @sb_count: number of nvme buffers. 18385 * 18386 * This routine walks a list of nvme buffers that was passed in. It attempts 18387 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18388 * uses the non-embedded SGL block post mailbox commands to post to the port. 18389 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18390 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18391 * must be local list, thus no lock is needed when manipulate the list. 18392 * 18393 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18394 **/ 18395 int 18396 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18397 struct list_head *post_nblist, int sb_count) 18398 { 18399 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18400 int status, sgl_size; 18401 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18402 dma_addr_t pdma_phys_sgl1; 18403 int last_xritag = NO_XRI; 18404 int cur_xritag; 18405 LIST_HEAD(prep_nblist); 18406 LIST_HEAD(blck_nblist); 18407 LIST_HEAD(nvme_nblist); 18408 18409 /* sanity check */ 18410 if (sb_count <= 0) 18411 return -EINVAL; 18412 18413 sgl_size = phba->cfg_sg_dma_buf_size; 18414 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18415 list_del_init(&lpfc_ncmd->list); 18416 block_cnt++; 18417 if ((last_xritag != NO_XRI) && 18418 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18419 /* a hole in xri block, form a sgl posting block */ 18420 list_splice_init(&prep_nblist, &blck_nblist); 18421 post_cnt = block_cnt - 1; 18422 /* prepare list for next posting block */ 18423 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18424 block_cnt = 1; 18425 } else { 18426 /* prepare list for next posting block */ 18427 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18428 /* enough sgls for non-embed sgl mbox command */ 18429 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18430 list_splice_init(&prep_nblist, &blck_nblist); 18431 post_cnt = block_cnt; 18432 block_cnt = 0; 18433 } 18434 } 18435 num_posting++; 18436 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18437 18438 /* end of repost sgl list condition for NVME buffers */ 18439 if (num_posting == sb_count) { 18440 if (post_cnt == 0) { 18441 /* last sgl posting block */ 18442 list_splice_init(&prep_nblist, &blck_nblist); 18443 post_cnt = block_cnt; 18444 } else if (block_cnt == 1) { 18445 /* last single sgl with non-contiguous xri */ 18446 if (sgl_size > SGL_PAGE_SIZE) 18447 pdma_phys_sgl1 = 18448 lpfc_ncmd->dma_phys_sgl + 18449 SGL_PAGE_SIZE; 18450 else 18451 pdma_phys_sgl1 = 0; 18452 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18453 status = lpfc_sli4_post_sgl( 18454 phba, lpfc_ncmd->dma_phys_sgl, 18455 pdma_phys_sgl1, cur_xritag); 18456 if (status) { 18457 /* Post error. Buffer unavailable. */ 18458 lpfc_ncmd->flags |= 18459 LPFC_SBUF_NOT_POSTED; 18460 } else { 18461 /* Post success. Bffer available. */ 18462 lpfc_ncmd->flags &= 18463 ~LPFC_SBUF_NOT_POSTED; 18464 lpfc_ncmd->status = IOSTAT_SUCCESS; 18465 num_posted++; 18466 } 18467 /* success, put on NVME buffer sgl list */ 18468 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18469 } 18470 } 18471 18472 /* continue until a nembed page worth of sgls */ 18473 if (post_cnt == 0) 18474 continue; 18475 18476 /* post block of NVME buffer list sgls */ 18477 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18478 post_cnt); 18479 18480 /* don't reset xirtag due to hole in xri block */ 18481 if (block_cnt == 0) 18482 last_xritag = NO_XRI; 18483 18484 /* reset NVME buffer post count for next round of posting */ 18485 post_cnt = 0; 18486 18487 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18488 while (!list_empty(&blck_nblist)) { 18489 list_remove_head(&blck_nblist, lpfc_ncmd, 18490 struct lpfc_io_buf, list); 18491 if (status) { 18492 /* Post error. Mark buffer unavailable. */ 18493 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18494 } else { 18495 /* Post success, Mark buffer available. */ 18496 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18497 lpfc_ncmd->status = IOSTAT_SUCCESS; 18498 num_posted++; 18499 } 18500 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18501 } 18502 } 18503 /* Push NVME buffers with sgl posted to the available list */ 18504 lpfc_io_buf_replenish(phba, &nvme_nblist); 18505 18506 return num_posted; 18507 } 18508 18509 /** 18510 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18511 * @phba: pointer to lpfc_hba struct that the frame was received on 18512 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18513 * 18514 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18515 * valid type of frame that the LPFC driver will handle. This function will 18516 * return a zero if the frame is a valid frame or a non zero value when the 18517 * frame does not pass the check. 18518 **/ 18519 static int 18520 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18521 { 18522 /* make rctl_names static to save stack space */ 18523 struct fc_vft_header *fc_vft_hdr; 18524 struct fc_app_header *fc_app_hdr; 18525 uint32_t *header = (uint32_t *) fc_hdr; 18526 18527 #define FC_RCTL_MDS_DIAGS 0xF4 18528 18529 switch (fc_hdr->fh_r_ctl) { 18530 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18531 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18532 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18533 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18534 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18535 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18536 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18537 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18538 case FC_RCTL_ELS_REQ: /* extended link services request */ 18539 case FC_RCTL_ELS_REP: /* extended link services reply */ 18540 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18541 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18542 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18543 case FC_RCTL_BA_RMC: /* remove connection */ 18544 case FC_RCTL_BA_ACC: /* basic accept */ 18545 case FC_RCTL_BA_RJT: /* basic reject */ 18546 case FC_RCTL_BA_PRMT: 18547 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18548 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18549 case FC_RCTL_P_RJT: /* port reject */ 18550 case FC_RCTL_F_RJT: /* fabric reject */ 18551 case FC_RCTL_P_BSY: /* port busy */ 18552 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18553 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18554 case FC_RCTL_LCR: /* link credit reset */ 18555 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18556 case FC_RCTL_END: /* end */ 18557 break; 18558 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18559 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18560 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18561 return lpfc_fc_frame_check(phba, fc_hdr); 18562 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18563 default: 18564 goto drop; 18565 } 18566 18567 switch (fc_hdr->fh_type) { 18568 case FC_TYPE_BLS: 18569 case FC_TYPE_ELS: 18570 case FC_TYPE_FCP: 18571 case FC_TYPE_CT: 18572 case FC_TYPE_NVME: 18573 break; 18574 case FC_TYPE_IP: 18575 case FC_TYPE_ILS: 18576 default: 18577 goto drop; 18578 } 18579 18580 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18581 phba->cfg_vmid_app_header)) { 18582 /* Application header is 16B device header */ 18583 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18584 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18585 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18586 LOOPBACK_SRC_APPID) { 18587 lpfc_printf_log(phba, KERN_WARNING, 18588 LOG_ELS | LOG_LIBDFC, 18589 "1932 Loopback src app id " 18590 "not matched, app_id:x%x\n", 18591 be32_to_cpu(fc_app_hdr->src_app_id)); 18592 18593 goto drop; 18594 } 18595 } else { 18596 lpfc_printf_log(phba, KERN_WARNING, 18597 LOG_ELS | LOG_LIBDFC, 18598 "1933 Loopback df_ctl bit not set, " 18599 "df_ctl:x%x\n", 18600 fc_hdr->fh_df_ctl); 18601 18602 goto drop; 18603 } 18604 } 18605 18606 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18607 "2538 Received frame rctl:x%x, type:x%x, " 18608 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18609 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18610 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18611 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18612 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18613 be32_to_cpu(header[6])); 18614 return 0; 18615 drop: 18616 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18617 "2539 Dropped frame rctl:x%x type:x%x\n", 18618 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18619 return 1; 18620 } 18621 18622 /** 18623 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18624 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18625 * 18626 * This function processes the FC header to retrieve the VFI from the VF 18627 * header, if one exists. This function will return the VFI if one exists 18628 * or 0 if no VSAN Header exists. 18629 **/ 18630 static uint32_t 18631 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18632 { 18633 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18634 18635 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18636 return 0; 18637 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18638 } 18639 18640 /** 18641 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18642 * @phba: Pointer to the HBA structure to search for the vport on 18643 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18644 * @fcfi: The FC Fabric ID that the frame came from 18645 * @did: Destination ID to match against 18646 * 18647 * This function searches the @phba for a vport that matches the content of the 18648 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18649 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18650 * returns the matching vport pointer or NULL if unable to match frame to a 18651 * vport. 18652 **/ 18653 static struct lpfc_vport * 18654 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18655 uint16_t fcfi, uint32_t did) 18656 { 18657 struct lpfc_vport **vports; 18658 struct lpfc_vport *vport = NULL; 18659 int i; 18660 18661 if (did == Fabric_DID) 18662 return phba->pport; 18663 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18664 phba->link_state != LPFC_HBA_READY) 18665 return phba->pport; 18666 18667 vports = lpfc_create_vport_work_array(phba); 18668 if (vports != NULL) { 18669 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18670 if (phba->fcf.fcfi == fcfi && 18671 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18672 vports[i]->fc_myDID == did) { 18673 vport = vports[i]; 18674 break; 18675 } 18676 } 18677 } 18678 lpfc_destroy_vport_work_array(phba, vports); 18679 return vport; 18680 } 18681 18682 /** 18683 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18684 * @vport: The vport to work on. 18685 * 18686 * This function updates the receive sequence time stamp for this vport. The 18687 * receive sequence time stamp indicates the time that the last frame of the 18688 * the sequence that has been idle for the longest amount of time was received. 18689 * the driver uses this time stamp to indicate if any received sequences have 18690 * timed out. 18691 **/ 18692 static void 18693 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18694 { 18695 struct lpfc_dmabuf *h_buf; 18696 struct hbq_dmabuf *dmabuf = NULL; 18697 18698 /* get the oldest sequence on the rcv list */ 18699 h_buf = list_get_first(&vport->rcv_buffer_list, 18700 struct lpfc_dmabuf, list); 18701 if (!h_buf) 18702 return; 18703 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18704 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18705 } 18706 18707 /** 18708 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18709 * @vport: The vport that the received sequences were sent to. 18710 * 18711 * This function cleans up all outstanding received sequences. This is called 18712 * by the driver when a link event or user action invalidates all the received 18713 * sequences. 18714 **/ 18715 void 18716 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18717 { 18718 struct lpfc_dmabuf *h_buf, *hnext; 18719 struct lpfc_dmabuf *d_buf, *dnext; 18720 struct hbq_dmabuf *dmabuf = NULL; 18721 18722 /* start with the oldest sequence on the rcv list */ 18723 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18724 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18725 list_del_init(&dmabuf->hbuf.list); 18726 list_for_each_entry_safe(d_buf, dnext, 18727 &dmabuf->dbuf.list, list) { 18728 list_del_init(&d_buf->list); 18729 lpfc_in_buf_free(vport->phba, d_buf); 18730 } 18731 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18732 } 18733 } 18734 18735 /** 18736 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18737 * @vport: The vport that the received sequences were sent to. 18738 * 18739 * This function determines whether any received sequences have timed out by 18740 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18741 * indicates that there is at least one timed out sequence this routine will 18742 * go through the received sequences one at a time from most inactive to most 18743 * active to determine which ones need to be cleaned up. Once it has determined 18744 * that a sequence needs to be cleaned up it will simply free up the resources 18745 * without sending an abort. 18746 **/ 18747 void 18748 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18749 { 18750 struct lpfc_dmabuf *h_buf, *hnext; 18751 struct lpfc_dmabuf *d_buf, *dnext; 18752 struct hbq_dmabuf *dmabuf = NULL; 18753 unsigned long timeout; 18754 int abort_count = 0; 18755 18756 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18757 vport->rcv_buffer_time_stamp); 18758 if (list_empty(&vport->rcv_buffer_list) || 18759 time_before(jiffies, timeout)) 18760 return; 18761 /* start with the oldest sequence on the rcv list */ 18762 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18763 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18764 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18765 dmabuf->time_stamp); 18766 if (time_before(jiffies, timeout)) 18767 break; 18768 abort_count++; 18769 list_del_init(&dmabuf->hbuf.list); 18770 list_for_each_entry_safe(d_buf, dnext, 18771 &dmabuf->dbuf.list, list) { 18772 list_del_init(&d_buf->list); 18773 lpfc_in_buf_free(vport->phba, d_buf); 18774 } 18775 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18776 } 18777 if (abort_count) 18778 lpfc_update_rcv_time_stamp(vport); 18779 } 18780 18781 /** 18782 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18783 * @vport: pointer to a vitural port 18784 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18785 * 18786 * This function searches through the existing incomplete sequences that have 18787 * been sent to this @vport. If the frame matches one of the incomplete 18788 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18789 * make up that sequence. If no sequence is found that matches this frame then 18790 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18791 * This function returns a pointer to the first dmabuf in the sequence list that 18792 * the frame was linked to. 18793 **/ 18794 static struct hbq_dmabuf * 18795 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18796 { 18797 struct fc_frame_header *new_hdr; 18798 struct fc_frame_header *temp_hdr; 18799 struct lpfc_dmabuf *d_buf; 18800 struct lpfc_dmabuf *h_buf; 18801 struct hbq_dmabuf *seq_dmabuf = NULL; 18802 struct hbq_dmabuf *temp_dmabuf = NULL; 18803 uint8_t found = 0; 18804 18805 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18806 dmabuf->time_stamp = jiffies; 18807 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18808 18809 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18810 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18811 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18812 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18813 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18814 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18815 continue; 18816 /* found a pending sequence that matches this frame */ 18817 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18818 break; 18819 } 18820 if (!seq_dmabuf) { 18821 /* 18822 * This indicates first frame received for this sequence. 18823 * Queue the buffer on the vport's rcv_buffer_list. 18824 */ 18825 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18826 lpfc_update_rcv_time_stamp(vport); 18827 return dmabuf; 18828 } 18829 temp_hdr = seq_dmabuf->hbuf.virt; 18830 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18831 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18832 list_del_init(&seq_dmabuf->hbuf.list); 18833 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18834 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18835 lpfc_update_rcv_time_stamp(vport); 18836 return dmabuf; 18837 } 18838 /* move this sequence to the tail to indicate a young sequence */ 18839 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18840 seq_dmabuf->time_stamp = jiffies; 18841 lpfc_update_rcv_time_stamp(vport); 18842 if (list_empty(&seq_dmabuf->dbuf.list)) { 18843 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18844 return seq_dmabuf; 18845 } 18846 /* find the correct place in the sequence to insert this frame */ 18847 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18848 while (!found) { 18849 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18850 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18851 /* 18852 * If the frame's sequence count is greater than the frame on 18853 * the list then insert the frame right after this frame 18854 */ 18855 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18856 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18857 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18858 found = 1; 18859 break; 18860 } 18861 18862 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18863 break; 18864 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18865 } 18866 18867 if (found) 18868 return seq_dmabuf; 18869 return NULL; 18870 } 18871 18872 /** 18873 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18874 * @vport: pointer to a vitural port 18875 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18876 * 18877 * This function tries to abort from the partially assembed sequence, described 18878 * by the information from basic abbort @dmabuf. It checks to see whether such 18879 * partially assembled sequence held by the driver. If so, it shall free up all 18880 * the frames from the partially assembled sequence. 18881 * 18882 * Return 18883 * true -- if there is matching partially assembled sequence present and all 18884 * the frames freed with the sequence; 18885 * false -- if there is no matching partially assembled sequence present so 18886 * nothing got aborted in the lower layer driver 18887 **/ 18888 static bool 18889 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18890 struct hbq_dmabuf *dmabuf) 18891 { 18892 struct fc_frame_header *new_hdr; 18893 struct fc_frame_header *temp_hdr; 18894 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18895 struct hbq_dmabuf *seq_dmabuf = NULL; 18896 18897 /* Use the hdr_buf to find the sequence that matches this frame */ 18898 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18899 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18900 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18901 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18902 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18903 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18904 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18905 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18906 continue; 18907 /* found a pending sequence that matches this frame */ 18908 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18909 break; 18910 } 18911 18912 /* Free up all the frames from the partially assembled sequence */ 18913 if (seq_dmabuf) { 18914 list_for_each_entry_safe(d_buf, n_buf, 18915 &seq_dmabuf->dbuf.list, list) { 18916 list_del_init(&d_buf->list); 18917 lpfc_in_buf_free(vport->phba, d_buf); 18918 } 18919 return true; 18920 } 18921 return false; 18922 } 18923 18924 /** 18925 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18926 * @vport: pointer to a vitural port 18927 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18928 * 18929 * This function tries to abort from the assembed sequence from upper level 18930 * protocol, described by the information from basic abbort @dmabuf. It 18931 * checks to see whether such pending context exists at upper level protocol. 18932 * If so, it shall clean up the pending context. 18933 * 18934 * Return 18935 * true -- if there is matching pending context of the sequence cleaned 18936 * at ulp; 18937 * false -- if there is no matching pending context of the sequence present 18938 * at ulp. 18939 **/ 18940 static bool 18941 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18942 { 18943 struct lpfc_hba *phba = vport->phba; 18944 int handled; 18945 18946 /* Accepting abort at ulp with SLI4 only */ 18947 if (phba->sli_rev < LPFC_SLI_REV4) 18948 return false; 18949 18950 /* Register all caring upper level protocols to attend abort */ 18951 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18952 if (handled) 18953 return true; 18954 18955 return false; 18956 } 18957 18958 /** 18959 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18960 * @phba: Pointer to HBA context object. 18961 * @cmd_iocbq: pointer to the command iocbq structure. 18962 * @rsp_iocbq: pointer to the response iocbq structure. 18963 * 18964 * This function handles the sequence abort response iocb command complete 18965 * event. It properly releases the memory allocated to the sequence abort 18966 * accept iocb. 18967 **/ 18968 static void 18969 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18970 struct lpfc_iocbq *cmd_iocbq, 18971 struct lpfc_iocbq *rsp_iocbq) 18972 { 18973 if (cmd_iocbq) { 18974 lpfc_nlp_put(cmd_iocbq->ndlp); 18975 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18976 } 18977 18978 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18979 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18981 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18982 get_job_ulpstatus(phba, rsp_iocbq), 18983 get_job_word4(phba, rsp_iocbq)); 18984 } 18985 18986 /** 18987 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18988 * @phba: Pointer to HBA context object. 18989 * @xri: xri id in transaction. 18990 * 18991 * This function validates the xri maps to the known range of XRIs allocated an 18992 * used by the driver. 18993 **/ 18994 uint16_t 18995 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18996 uint16_t xri) 18997 { 18998 uint16_t i; 18999 19000 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 19001 if (xri == phba->sli4_hba.xri_ids[i]) 19002 return i; 19003 } 19004 return NO_XRI; 19005 } 19006 19007 /** 19008 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 19009 * @vport: pointer to a virtual port. 19010 * @fc_hdr: pointer to a FC frame header. 19011 * @aborted: was the partially assembled receive sequence successfully aborted 19012 * 19013 * This function sends a basic response to a previous unsol sequence abort 19014 * event after aborting the sequence handling. 19015 **/ 19016 void 19017 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 19018 struct fc_frame_header *fc_hdr, bool aborted) 19019 { 19020 struct lpfc_hba *phba = vport->phba; 19021 struct lpfc_iocbq *ctiocb = NULL; 19022 struct lpfc_nodelist *ndlp; 19023 uint16_t oxid, rxid, xri, lxri; 19024 uint32_t sid, fctl; 19025 union lpfc_wqe128 *icmd; 19026 int rc; 19027 19028 if (!lpfc_is_link_up(phba)) 19029 return; 19030 19031 sid = sli4_sid_from_fc_hdr(fc_hdr); 19032 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 19033 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 19034 19035 ndlp = lpfc_findnode_did(vport, sid); 19036 if (!ndlp) { 19037 ndlp = lpfc_nlp_init(vport, sid); 19038 if (!ndlp) { 19039 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 19040 "1268 Failed to allocate ndlp for " 19041 "oxid:x%x SID:x%x\n", oxid, sid); 19042 return; 19043 } 19044 /* Put ndlp onto vport node list */ 19045 lpfc_enqueue_node(vport, ndlp); 19046 } 19047 19048 /* Allocate buffer for rsp iocb */ 19049 ctiocb = lpfc_sli_get_iocbq(phba); 19050 if (!ctiocb) 19051 return; 19052 19053 icmd = &ctiocb->wqe; 19054 19055 /* Extract the F_CTL field from FC_HDR */ 19056 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 19057 19058 ctiocb->ndlp = lpfc_nlp_get(ndlp); 19059 if (!ctiocb->ndlp) { 19060 lpfc_sli_release_iocbq(phba, ctiocb); 19061 return; 19062 } 19063 19064 ctiocb->vport = vport; 19065 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 19066 ctiocb->sli4_lxritag = NO_XRI; 19067 ctiocb->sli4_xritag = NO_XRI; 19068 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 19069 19070 if (fctl & FC_FC_EX_CTX) 19071 /* Exchange responder sent the abort so we 19072 * own the oxid. 19073 */ 19074 xri = oxid; 19075 else 19076 xri = rxid; 19077 lxri = lpfc_sli4_xri_inrange(phba, xri); 19078 if (lxri != NO_XRI) 19079 lpfc_set_rrq_active(phba, ndlp, lxri, 19080 (xri == oxid) ? rxid : oxid, 0); 19081 /* For BA_ABTS from exchange responder, if the logical xri with 19082 * the oxid maps to the FCP XRI range, the port no longer has 19083 * that exchange context, send a BLS_RJT. Override the IOCB for 19084 * a BA_RJT. 19085 */ 19086 if ((fctl & FC_FC_EX_CTX) && 19087 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19088 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19089 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19090 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19091 FC_BA_RJT_INV_XID); 19092 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19093 FC_BA_RJT_UNABLE); 19094 } 19095 19096 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19097 * the driver no longer has that exchange, send a BLS_RJT. Override 19098 * the IOCB for a BA_RJT. 19099 */ 19100 if (aborted == false) { 19101 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19102 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19103 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19104 FC_BA_RJT_INV_XID); 19105 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19106 FC_BA_RJT_UNABLE); 19107 } 19108 19109 if (fctl & FC_FC_EX_CTX) { 19110 /* ABTS sent by responder to CT exchange, construction 19111 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19112 * field and RX_ID from ABTS for RX_ID field. 19113 */ 19114 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19115 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19116 } else { 19117 /* ABTS sent by initiator to CT exchange, construction 19118 * of BA_ACC will need to allocate a new XRI as for the 19119 * XRI_TAG field. 19120 */ 19121 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19122 } 19123 19124 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19125 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19126 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19127 19128 /* Use CT=VPI */ 19129 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19130 ndlp->nlp_DID); 19131 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19132 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19133 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19134 19135 /* Xmit CT abts response on exchange <xid> */ 19136 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19137 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19138 ctiocb->abort_rctl, oxid, phba->link_state); 19139 19140 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19141 if (rc == IOCB_ERROR) { 19142 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19143 "2925 Failed to issue CT ABTS RSP x%x on " 19144 "xri x%x, Data x%x\n", 19145 ctiocb->abort_rctl, oxid, 19146 phba->link_state); 19147 lpfc_nlp_put(ndlp); 19148 ctiocb->ndlp = NULL; 19149 lpfc_sli_release_iocbq(phba, ctiocb); 19150 } 19151 19152 /* if only usage of this nodelist is BLS response, release initial ref 19153 * to free ndlp when transmit completes 19154 */ 19155 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19156 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) && 19157 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19158 set_bit(NLP_DROPPED, &ndlp->nlp_flag); 19159 lpfc_nlp_put(ndlp); 19160 } 19161 } 19162 19163 /** 19164 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19165 * @vport: Pointer to the vport on which this sequence was received 19166 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19167 * 19168 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19169 * receive sequence is only partially assembed by the driver, it shall abort 19170 * the partially assembled frames for the sequence. Otherwise, if the 19171 * unsolicited receive sequence has been completely assembled and passed to 19172 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19173 * unsolicited sequence has been aborted. After that, it will issue a basic 19174 * accept to accept the abort. 19175 **/ 19176 static void 19177 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19178 struct hbq_dmabuf *dmabuf) 19179 { 19180 struct lpfc_hba *phba = vport->phba; 19181 struct fc_frame_header fc_hdr; 19182 uint32_t fctl; 19183 bool aborted; 19184 19185 /* Make a copy of fc_hdr before the dmabuf being released */ 19186 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19187 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19188 19189 if (fctl & FC_FC_EX_CTX) { 19190 /* ABTS by responder to exchange, no cleanup needed */ 19191 aborted = true; 19192 } else { 19193 /* ABTS by initiator to exchange, need to do cleanup */ 19194 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19195 if (aborted == false) 19196 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19197 } 19198 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19199 19200 if (phba->nvmet_support) { 19201 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19202 return; 19203 } 19204 19205 /* Respond with BA_ACC or BA_RJT accordingly */ 19206 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19207 } 19208 19209 /** 19210 * lpfc_seq_complete - Indicates if a sequence is complete 19211 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19212 * 19213 * This function checks the sequence, starting with the frame described by 19214 * @dmabuf, to see if all the frames associated with this sequence are present. 19215 * the frames associated with this sequence are linked to the @dmabuf using the 19216 * dbuf list. This function looks for two major things. 1) That the first frame 19217 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19218 * set. 3) That there are no holes in the sequence count. The function will 19219 * return 1 when the sequence is complete, otherwise it will return 0. 19220 **/ 19221 static int 19222 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19223 { 19224 struct fc_frame_header *hdr; 19225 struct lpfc_dmabuf *d_buf; 19226 struct hbq_dmabuf *seq_dmabuf; 19227 uint32_t fctl; 19228 int seq_count = 0; 19229 19230 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19231 /* make sure first fame of sequence has a sequence count of zero */ 19232 if (hdr->fh_seq_cnt != seq_count) 19233 return 0; 19234 fctl = (hdr->fh_f_ctl[0] << 16 | 19235 hdr->fh_f_ctl[1] << 8 | 19236 hdr->fh_f_ctl[2]); 19237 /* If last frame of sequence we can return success. */ 19238 if (fctl & FC_FC_END_SEQ) 19239 return 1; 19240 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19241 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19242 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19243 /* If there is a hole in the sequence count then fail. */ 19244 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19245 return 0; 19246 fctl = (hdr->fh_f_ctl[0] << 16 | 19247 hdr->fh_f_ctl[1] << 8 | 19248 hdr->fh_f_ctl[2]); 19249 /* If last frame of sequence we can return success. */ 19250 if (fctl & FC_FC_END_SEQ) 19251 return 1; 19252 } 19253 return 0; 19254 } 19255 19256 /** 19257 * lpfc_prep_seq - Prep sequence for ULP processing 19258 * @vport: Pointer to the vport on which this sequence was received 19259 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19260 * 19261 * This function takes a sequence, described by a list of frames, and creates 19262 * a list of iocbq structures to describe the sequence. This iocbq list will be 19263 * used to issue to the generic unsolicited sequence handler. This routine 19264 * returns a pointer to the first iocbq in the list. If the function is unable 19265 * to allocate an iocbq then it throw out the received frames that were not 19266 * able to be described and return a pointer to the first iocbq. If unable to 19267 * allocate any iocbqs (including the first) this function will return NULL. 19268 **/ 19269 static struct lpfc_iocbq * 19270 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19271 { 19272 struct hbq_dmabuf *hbq_buf; 19273 struct lpfc_dmabuf *d_buf, *n_buf; 19274 struct lpfc_iocbq *first_iocbq, *iocbq; 19275 struct fc_frame_header *fc_hdr; 19276 uint32_t sid; 19277 uint32_t len, tot_len; 19278 19279 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19280 /* remove from receive buffer list */ 19281 list_del_init(&seq_dmabuf->hbuf.list); 19282 lpfc_update_rcv_time_stamp(vport); 19283 /* get the Remote Port's SID */ 19284 sid = sli4_sid_from_fc_hdr(fc_hdr); 19285 tot_len = 0; 19286 /* Get an iocbq struct to fill in. */ 19287 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19288 if (first_iocbq) { 19289 /* Initialize the first IOCB. */ 19290 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19291 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19292 IOSTAT_SUCCESS); 19293 first_iocbq->vport = vport; 19294 19295 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19296 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19297 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19298 sli4_did_from_fc_hdr(fc_hdr)); 19299 } 19300 19301 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19302 NO_XRI); 19303 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19304 be16_to_cpu(fc_hdr->fh_ox_id)); 19305 19306 /* put the first buffer into the first iocb */ 19307 tot_len = bf_get(lpfc_rcqe_length, 19308 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19309 19310 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19311 first_iocbq->bpl_dmabuf = NULL; 19312 /* Keep track of the BDE count */ 19313 first_iocbq->wcqe_cmpl.word3 = 1; 19314 19315 if (tot_len > LPFC_DATA_BUF_SIZE) 19316 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19317 LPFC_DATA_BUF_SIZE; 19318 else 19319 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19320 19321 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19322 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19323 sid); 19324 } 19325 iocbq = first_iocbq; 19326 /* 19327 * Each IOCBq can have two Buffers assigned, so go through the list 19328 * of buffers for this sequence and save two buffers in each IOCBq 19329 */ 19330 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19331 if (!iocbq) { 19332 lpfc_in_buf_free(vport->phba, d_buf); 19333 continue; 19334 } 19335 if (!iocbq->bpl_dmabuf) { 19336 iocbq->bpl_dmabuf = d_buf; 19337 iocbq->wcqe_cmpl.word3++; 19338 /* We need to get the size out of the right CQE */ 19339 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19340 len = bf_get(lpfc_rcqe_length, 19341 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19342 iocbq->unsol_rcv_len = len; 19343 iocbq->wcqe_cmpl.total_data_placed += len; 19344 tot_len += len; 19345 } else { 19346 iocbq = lpfc_sli_get_iocbq(vport->phba); 19347 if (!iocbq) { 19348 if (first_iocbq) { 19349 bf_set(lpfc_wcqe_c_status, 19350 &first_iocbq->wcqe_cmpl, 19351 IOSTAT_SUCCESS); 19352 first_iocbq->wcqe_cmpl.parameter = 19353 IOERR_NO_RESOURCES; 19354 } 19355 lpfc_in_buf_free(vport->phba, d_buf); 19356 continue; 19357 } 19358 /* We need to get the size out of the right CQE */ 19359 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19360 len = bf_get(lpfc_rcqe_length, 19361 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19362 iocbq->cmd_dmabuf = d_buf; 19363 iocbq->bpl_dmabuf = NULL; 19364 iocbq->wcqe_cmpl.word3 = 1; 19365 19366 if (len > LPFC_DATA_BUF_SIZE) 19367 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19368 LPFC_DATA_BUF_SIZE; 19369 else 19370 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19371 len; 19372 19373 tot_len += len; 19374 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19375 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19376 sid); 19377 list_add_tail(&iocbq->list, &first_iocbq->list); 19378 } 19379 } 19380 /* Free the sequence's header buffer */ 19381 if (!first_iocbq) 19382 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19383 19384 return first_iocbq; 19385 } 19386 19387 static void 19388 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19389 struct hbq_dmabuf *seq_dmabuf) 19390 { 19391 struct fc_frame_header *fc_hdr; 19392 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19393 struct lpfc_hba *phba = vport->phba; 19394 19395 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19396 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19397 if (!iocbq) { 19398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19399 "2707 Ring %d handler: Failed to allocate " 19400 "iocb Rctl x%x Type x%x received\n", 19401 LPFC_ELS_RING, 19402 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19403 return; 19404 } 19405 if (!lpfc_complete_unsol_iocb(phba, 19406 phba->sli4_hba.els_wq->pring, 19407 iocbq, fc_hdr->fh_r_ctl, 19408 fc_hdr->fh_type)) { 19409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19410 "2540 Ring %d handler: unexpected Rctl " 19411 "x%x Type x%x received\n", 19412 LPFC_ELS_RING, 19413 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19414 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19415 } 19416 19417 /* Free iocb created in lpfc_prep_seq */ 19418 list_for_each_entry_safe(curr_iocb, next_iocb, 19419 &iocbq->list, list) { 19420 list_del_init(&curr_iocb->list); 19421 lpfc_sli_release_iocbq(phba, curr_iocb); 19422 } 19423 lpfc_sli_release_iocbq(phba, iocbq); 19424 } 19425 19426 static void 19427 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19428 struct lpfc_iocbq *rspiocb) 19429 { 19430 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19431 19432 if (pcmd && pcmd->virt) 19433 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19434 kfree(pcmd); 19435 lpfc_sli_release_iocbq(phba, cmdiocb); 19436 lpfc_drain_txq(phba); 19437 } 19438 19439 static void 19440 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19441 struct hbq_dmabuf *dmabuf) 19442 { 19443 struct fc_frame_header *fc_hdr; 19444 struct lpfc_hba *phba = vport->phba; 19445 struct lpfc_iocbq *iocbq = NULL; 19446 union lpfc_wqe128 *pwqe; 19447 struct lpfc_dmabuf *pcmd = NULL; 19448 uint32_t frame_len; 19449 int rc; 19450 unsigned long iflags; 19451 19452 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19453 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19454 19455 /* Send the received frame back */ 19456 iocbq = lpfc_sli_get_iocbq(phba); 19457 if (!iocbq) { 19458 /* Queue cq event and wakeup worker thread to process it */ 19459 spin_lock_irqsave(&phba->hbalock, iflags); 19460 list_add_tail(&dmabuf->cq_event.list, 19461 &phba->sli4_hba.sp_queue_event); 19462 spin_unlock_irqrestore(&phba->hbalock, iflags); 19463 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19464 lpfc_worker_wake_up(phba); 19465 return; 19466 } 19467 19468 /* Allocate buffer for command payload */ 19469 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19470 if (pcmd) 19471 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19472 &pcmd->phys); 19473 if (!pcmd || !pcmd->virt) 19474 goto exit; 19475 19476 INIT_LIST_HEAD(&pcmd->list); 19477 19478 /* copyin the payload */ 19479 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19480 19481 iocbq->cmd_dmabuf = pcmd; 19482 iocbq->vport = vport; 19483 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19484 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19485 iocbq->num_bdes = 0; 19486 19487 pwqe = &iocbq->wqe; 19488 /* fill in BDE's for command */ 19489 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19490 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19491 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19492 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19493 19494 pwqe->send_frame.frame_len = frame_len; 19495 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19496 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19497 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19498 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19499 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19500 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19501 19502 pwqe->generic.wqe_com.word7 = 0; 19503 pwqe->generic.wqe_com.word10 = 0; 19504 19505 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19506 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19507 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19508 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19509 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19510 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19511 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19512 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19513 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19514 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19515 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19516 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19517 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19518 19519 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19520 19521 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19522 if (rc == IOCB_ERROR) 19523 goto exit; 19524 19525 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19526 return; 19527 19528 exit: 19529 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19530 "2023 Unable to process MDS loopback frame\n"); 19531 if (pcmd && pcmd->virt) 19532 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19533 kfree(pcmd); 19534 if (iocbq) 19535 lpfc_sli_release_iocbq(phba, iocbq); 19536 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19537 } 19538 19539 /** 19540 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19541 * @phba: Pointer to HBA context object. 19542 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19543 * 19544 * This function is called with no lock held. This function processes all 19545 * the received buffers and gives it to upper layers when a received buffer 19546 * indicates that it is the final frame in the sequence. The interrupt 19547 * service routine processes received buffers at interrupt contexts. 19548 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19549 * appropriate receive function when the final frame in a sequence is received. 19550 **/ 19551 void 19552 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19553 struct hbq_dmabuf *dmabuf) 19554 { 19555 struct hbq_dmabuf *seq_dmabuf; 19556 struct fc_frame_header *fc_hdr; 19557 struct lpfc_vport *vport; 19558 uint32_t fcfi; 19559 uint32_t did; 19560 19561 /* Process each received buffer */ 19562 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19563 19564 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19565 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19566 vport = phba->pport; 19567 /* Handle MDS Loopback frames */ 19568 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19569 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19570 else 19571 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19572 return; 19573 } 19574 19575 /* check to see if this a valid type of frame */ 19576 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19577 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19578 return; 19579 } 19580 19581 if ((bf_get(lpfc_cqe_code, 19582 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19583 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19584 &dmabuf->cq_event.cqe.rcqe_cmpl); 19585 else 19586 fcfi = bf_get(lpfc_rcqe_fcf_id, 19587 &dmabuf->cq_event.cqe.rcqe_cmpl); 19588 19589 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19590 vport = phba->pport; 19591 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19592 "2023 MDS Loopback %d bytes\n", 19593 bf_get(lpfc_rcqe_length, 19594 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19595 /* Handle MDS Loopback frames */ 19596 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19597 return; 19598 } 19599 19600 /* d_id this frame is directed to */ 19601 did = sli4_did_from_fc_hdr(fc_hdr); 19602 19603 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19604 if (!vport) { 19605 /* throw out the frame */ 19606 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19607 return; 19608 } 19609 19610 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19611 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19612 (did != Fabric_DID)) { 19613 /* 19614 * Throw out the frame if we are not pt2pt. 19615 * The pt2pt protocol allows for discovery frames 19616 * to be received without a registered VPI. 19617 */ 19618 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19619 phba->link_state == LPFC_HBA_READY) { 19620 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19621 return; 19622 } 19623 } 19624 19625 /* Handle the basic abort sequence (BA_ABTS) event */ 19626 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19627 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19628 return; 19629 } 19630 19631 /* Link this frame */ 19632 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19633 if (!seq_dmabuf) { 19634 /* unable to add frame to vport - throw it out */ 19635 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19636 return; 19637 } 19638 /* If not last frame in sequence continue processing frames. */ 19639 if (!lpfc_seq_complete(seq_dmabuf)) 19640 return; 19641 19642 /* Send the complete sequence to the upper layer protocol */ 19643 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19644 } 19645 19646 /** 19647 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19648 * @phba: pointer to lpfc hba data structure. 19649 * 19650 * This routine is invoked to post rpi header templates to the 19651 * HBA consistent with the SLI-4 interface spec. This routine 19652 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19653 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19654 * 19655 * This routine does not require any locks. It's usage is expected 19656 * to be driver load or reset recovery when the driver is 19657 * sequential. 19658 * 19659 * Return codes 19660 * 0 - successful 19661 * -EIO - The mailbox failed to complete successfully. 19662 * When this error occurs, the driver is not guaranteed 19663 * to have any rpi regions posted to the device and 19664 * must either attempt to repost the regions or take a 19665 * fatal error. 19666 **/ 19667 int 19668 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19669 { 19670 struct lpfc_rpi_hdr *rpi_page; 19671 uint32_t rc = 0; 19672 uint16_t lrpi = 0; 19673 19674 /* SLI4 ports that support extents do not require RPI headers. */ 19675 if (!phba->sli4_hba.rpi_hdrs_in_use) 19676 goto exit; 19677 if (phba->sli4_hba.extents_in_use) 19678 return -EIO; 19679 19680 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19681 /* 19682 * Assign the rpi headers a physical rpi only if the driver 19683 * has not initialized those resources. A port reset only 19684 * needs the headers posted. 19685 */ 19686 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19687 LPFC_RPI_RSRC_RDY) 19688 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19689 19690 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19691 if (rc != MBX_SUCCESS) { 19692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19693 "2008 Error %d posting all rpi " 19694 "headers\n", rc); 19695 rc = -EIO; 19696 break; 19697 } 19698 } 19699 19700 exit: 19701 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19702 LPFC_RPI_RSRC_RDY); 19703 return rc; 19704 } 19705 19706 /** 19707 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19708 * @phba: pointer to lpfc hba data structure. 19709 * @rpi_page: pointer to the rpi memory region. 19710 * 19711 * This routine is invoked to post a single rpi header to the 19712 * HBA consistent with the SLI-4 interface spec. This memory region 19713 * maps up to 64 rpi context regions. 19714 * 19715 * Return codes 19716 * 0 - successful 19717 * -ENOMEM - No available memory 19718 * -EIO - The mailbox failed to complete successfully. 19719 **/ 19720 int 19721 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19722 { 19723 LPFC_MBOXQ_t *mboxq; 19724 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19725 uint32_t rc = 0; 19726 uint32_t shdr_status, shdr_add_status; 19727 union lpfc_sli4_cfg_shdr *shdr; 19728 19729 /* SLI4 ports that support extents do not require RPI headers. */ 19730 if (!phba->sli4_hba.rpi_hdrs_in_use) 19731 return rc; 19732 if (phba->sli4_hba.extents_in_use) 19733 return -EIO; 19734 19735 /* The port is notified of the header region via a mailbox command. */ 19736 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19737 if (!mboxq) { 19738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19739 "2001 Unable to allocate memory for issuing " 19740 "SLI_CONFIG_SPECIAL mailbox command\n"); 19741 return -ENOMEM; 19742 } 19743 19744 /* Post all rpi memory regions to the port. */ 19745 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19746 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19747 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19748 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19749 sizeof(struct lpfc_sli4_cfg_mhdr), 19750 LPFC_SLI4_MBX_EMBED); 19751 19752 19753 /* Post the physical rpi to the port for this rpi header. */ 19754 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19755 rpi_page->start_rpi); 19756 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19757 hdr_tmpl, rpi_page->page_count); 19758 19759 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19760 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19761 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19762 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19763 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19764 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19765 mempool_free(mboxq, phba->mbox_mem_pool); 19766 if (shdr_status || shdr_add_status || rc) { 19767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19768 "2514 POST_RPI_HDR mailbox failed with " 19769 "status x%x add_status x%x, mbx status x%x\n", 19770 shdr_status, shdr_add_status, rc); 19771 rc = -ENXIO; 19772 } else { 19773 /* 19774 * The next_rpi stores the next logical module-64 rpi value used 19775 * to post physical rpis in subsequent rpi postings. 19776 */ 19777 spin_lock_irq(&phba->hbalock); 19778 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19779 spin_unlock_irq(&phba->hbalock); 19780 } 19781 return rc; 19782 } 19783 19784 /** 19785 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19786 * @phba: pointer to lpfc hba data structure. 19787 * 19788 * This routine is invoked to post rpi header templates to the 19789 * HBA consistent with the SLI-4 interface spec. This routine 19790 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19791 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19792 * 19793 * Returns 19794 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19795 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19796 **/ 19797 int 19798 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19799 { 19800 unsigned long rpi; 19801 uint16_t max_rpi, rpi_limit; 19802 uint16_t rpi_remaining, lrpi = 0; 19803 struct lpfc_rpi_hdr *rpi_hdr; 19804 unsigned long iflag; 19805 19806 /* 19807 * Fetch the next logical rpi. Because this index is logical, 19808 * the driver starts at 0 each time. 19809 */ 19810 spin_lock_irqsave(&phba->hbalock, iflag); 19811 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19812 rpi_limit = phba->sli4_hba.next_rpi; 19813 19814 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19815 if (rpi >= rpi_limit) 19816 rpi = LPFC_RPI_ALLOC_ERROR; 19817 else { 19818 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19819 phba->sli4_hba.max_cfg_param.rpi_used++; 19820 phba->sli4_hba.rpi_count++; 19821 } 19822 lpfc_printf_log(phba, KERN_INFO, 19823 LOG_NODE | LOG_DISCOVERY, 19824 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19825 (int) rpi, max_rpi, rpi_limit); 19826 19827 /* 19828 * Don't try to allocate more rpi header regions if the device limit 19829 * has been exhausted. 19830 */ 19831 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19832 (phba->sli4_hba.rpi_count >= max_rpi)) { 19833 spin_unlock_irqrestore(&phba->hbalock, iflag); 19834 return rpi; 19835 } 19836 19837 /* 19838 * RPI header postings are not required for SLI4 ports capable of 19839 * extents. 19840 */ 19841 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19842 spin_unlock_irqrestore(&phba->hbalock, iflag); 19843 return rpi; 19844 } 19845 19846 /* 19847 * If the driver is running low on rpi resources, allocate another 19848 * page now. Note that the next_rpi value is used because 19849 * it represents how many are actually in use whereas max_rpi notes 19850 * how many are supported max by the device. 19851 */ 19852 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19853 spin_unlock_irqrestore(&phba->hbalock, iflag); 19854 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19855 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19856 if (!rpi_hdr) { 19857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19858 "2002 Error Could not grow rpi " 19859 "count\n"); 19860 } else { 19861 lrpi = rpi_hdr->start_rpi; 19862 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19863 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19864 } 19865 } 19866 19867 return rpi; 19868 } 19869 19870 /** 19871 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19872 * @phba: pointer to lpfc hba data structure. 19873 * @rpi: rpi to free 19874 * 19875 * This routine is invoked to release an rpi to the pool of 19876 * available rpis maintained by the driver. 19877 **/ 19878 static void 19879 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19880 { 19881 /* 19882 * if the rpi value indicates a prior unreg has already 19883 * been done, skip the unreg. 19884 */ 19885 if (rpi == LPFC_RPI_ALLOC_ERROR) 19886 return; 19887 19888 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19889 phba->sli4_hba.rpi_count--; 19890 phba->sli4_hba.max_cfg_param.rpi_used--; 19891 } else { 19892 lpfc_printf_log(phba, KERN_INFO, 19893 LOG_NODE | LOG_DISCOVERY, 19894 "2016 rpi %x not inuse\n", 19895 rpi); 19896 } 19897 } 19898 19899 /** 19900 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19901 * @phba: pointer to lpfc hba data structure. 19902 * @rpi: rpi to free 19903 * 19904 * This routine is invoked to release an rpi to the pool of 19905 * available rpis maintained by the driver. 19906 **/ 19907 void 19908 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19909 { 19910 spin_lock_irq(&phba->hbalock); 19911 __lpfc_sli4_free_rpi(phba, rpi); 19912 spin_unlock_irq(&phba->hbalock); 19913 } 19914 19915 /** 19916 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19917 * @phba: pointer to lpfc hba data structure. 19918 * 19919 * This routine is invoked to remove the memory region that 19920 * provided rpi via a bitmask. 19921 **/ 19922 void 19923 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19924 { 19925 kfree(phba->sli4_hba.rpi_bmask); 19926 kfree(phba->sli4_hba.rpi_ids); 19927 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19928 } 19929 19930 /** 19931 * lpfc_sli4_resume_rpi - Resume traffic relative to an RPI 19932 * @ndlp: pointer to lpfc nodelist data structure. 19933 * @cmpl: completion call-back. 19934 * @iocbq: data to load as mbox ctx_u information 19935 * 19936 * Return codes 19937 * 0 - successful 19938 * -ENOMEM - No available memory 19939 * -EIO - The mailbox failed to complete successfully. 19940 **/ 19941 int 19942 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19943 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19944 struct lpfc_iocbq *iocbq) 19945 { 19946 LPFC_MBOXQ_t *mboxq; 19947 struct lpfc_hba *phba = ndlp->phba; 19948 int rc; 19949 19950 /* The port is notified of the header region via a mailbox command. */ 19951 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19952 if (!mboxq) 19953 return -ENOMEM; 19954 19955 /* If cmpl assigned, then this nlp_get pairs with 19956 * lpfc_mbx_cmpl_resume_rpi. 19957 * 19958 * Else cmpl is NULL, then this nlp_get pairs with 19959 * lpfc_sli_def_mbox_cmpl. 19960 */ 19961 if (!lpfc_nlp_get(ndlp)) { 19962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19963 "2122 %s: Failed to get nlp ref\n", 19964 __func__); 19965 mempool_free(mboxq, phba->mbox_mem_pool); 19966 return -EIO; 19967 } 19968 19969 lpfc_resume_rpi(mboxq, ndlp); 19970 if (cmpl) { 19971 mboxq->mbox_cmpl = cmpl; 19972 mboxq->ctx_u.save_iocb = iocbq; 19973 } else 19974 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19975 mboxq->ctx_ndlp = ndlp; 19976 mboxq->vport = ndlp->vport; 19977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19978 if (rc == MBX_NOT_FINISHED) { 19979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19980 "2010 Resume RPI Mailbox failed " 19981 "status %d, mbxStatus x%x\n", rc, 19982 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19983 lpfc_nlp_put(ndlp); 19984 mempool_free(mboxq, phba->mbox_mem_pool); 19985 return -EIO; 19986 } 19987 return 0; 19988 } 19989 19990 /** 19991 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19992 * @vport: Pointer to the vport for which the vpi is being initialized 19993 * 19994 * This routine is invoked to activate a vpi with the port. 19995 * 19996 * Returns: 19997 * 0 success 19998 * -Evalue otherwise 19999 **/ 20000 int 20001 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 20002 { 20003 LPFC_MBOXQ_t *mboxq; 20004 int rc = 0; 20005 int retval = MBX_SUCCESS; 20006 uint32_t mbox_tmo; 20007 struct lpfc_hba *phba = vport->phba; 20008 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20009 if (!mboxq) 20010 return -ENOMEM; 20011 lpfc_init_vpi(phba, mboxq, vport->vpi); 20012 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 20013 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 20014 if (rc != MBX_SUCCESS) { 20015 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 20016 "2022 INIT VPI Mailbox failed " 20017 "status %d, mbxStatus x%x\n", rc, 20018 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 20019 retval = -EIO; 20020 } 20021 if (rc != MBX_TIMEOUT) 20022 mempool_free(mboxq, vport->phba->mbox_mem_pool); 20023 20024 return retval; 20025 } 20026 20027 /** 20028 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 20029 * @phba: pointer to lpfc hba data structure. 20030 * @mboxq: Pointer to mailbox object. 20031 * 20032 * This routine is invoked to manually add a single FCF record. The caller 20033 * must pass a completely initialized FCF_Record. This routine takes 20034 * care of the nonembedded mailbox operations. 20035 **/ 20036 static void 20037 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 20038 { 20039 void *virt_addr; 20040 union lpfc_sli4_cfg_shdr *shdr; 20041 uint32_t shdr_status, shdr_add_status; 20042 20043 virt_addr = mboxq->sge_array->addr[0]; 20044 /* The IOCTL status is embedded in the mailbox subheader. */ 20045 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 20046 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 20047 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 20048 20049 if ((shdr_status || shdr_add_status) && 20050 (shdr_status != STATUS_FCF_IN_USE)) 20051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20052 "2558 ADD_FCF_RECORD mailbox failed with " 20053 "status x%x add_status x%x\n", 20054 shdr_status, shdr_add_status); 20055 20056 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20057 } 20058 20059 /** 20060 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 20061 * @phba: pointer to lpfc hba data structure. 20062 * @fcf_record: pointer to the initialized fcf record to add. 20063 * 20064 * This routine is invoked to manually add a single FCF record. The caller 20065 * must pass a completely initialized FCF_Record. This routine takes 20066 * care of the nonembedded mailbox operations. 20067 **/ 20068 int 20069 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 20070 { 20071 int rc = 0; 20072 LPFC_MBOXQ_t *mboxq; 20073 uint8_t *bytep; 20074 void *virt_addr; 20075 struct lpfc_mbx_sge sge; 20076 uint32_t alloc_len, req_len; 20077 uint32_t fcfindex; 20078 20079 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20080 if (!mboxq) { 20081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20082 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20083 return -ENOMEM; 20084 } 20085 20086 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20087 sizeof(uint32_t); 20088 20089 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20090 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20091 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20092 req_len, LPFC_SLI4_MBX_NEMBED); 20093 if (alloc_len < req_len) { 20094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20095 "2523 Allocated DMA memory size (x%x) is " 20096 "less than the requested DMA memory " 20097 "size (x%x)\n", alloc_len, req_len); 20098 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20099 return -ENOMEM; 20100 } 20101 20102 /* 20103 * Get the first SGE entry from the non-embedded DMA memory. This 20104 * routine only uses a single SGE. 20105 */ 20106 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20107 virt_addr = mboxq->sge_array->addr[0]; 20108 /* 20109 * Configure the FCF record for FCFI 0. This is the driver's 20110 * hardcoded default and gets used in nonFIP mode. 20111 */ 20112 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20113 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20114 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20115 20116 /* 20117 * Copy the fcf_index and the FCF Record Data. The data starts after 20118 * the FCoE header plus word10. The data copy needs to be endian 20119 * correct. 20120 */ 20121 bytep += sizeof(uint32_t); 20122 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20123 mboxq->vport = phba->pport; 20124 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20125 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20126 if (rc == MBX_NOT_FINISHED) { 20127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20128 "2515 ADD_FCF_RECORD mailbox failed with " 20129 "status 0x%x\n", rc); 20130 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20131 rc = -EIO; 20132 } else 20133 rc = 0; 20134 20135 return rc; 20136 } 20137 20138 /** 20139 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20140 * @phba: pointer to lpfc hba data structure. 20141 * @fcf_record: pointer to the fcf record to write the default data. 20142 * @fcf_index: FCF table entry index. 20143 * 20144 * This routine is invoked to build the driver's default FCF record. The 20145 * values used are hardcoded. This routine handles memory initialization. 20146 * 20147 **/ 20148 void 20149 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20150 struct fcf_record *fcf_record, 20151 uint16_t fcf_index) 20152 { 20153 memset(fcf_record, 0, sizeof(struct fcf_record)); 20154 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20155 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20156 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20157 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20158 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20159 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20160 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20161 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20162 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20163 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20164 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20165 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20166 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20167 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20168 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20169 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20170 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20171 /* Set the VLAN bit map */ 20172 if (phba->valid_vlan) { 20173 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20174 = 1 << (phba->vlan_id % 8); 20175 } 20176 } 20177 20178 /** 20179 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20180 * @phba: pointer to lpfc hba data structure. 20181 * @fcf_index: FCF table entry offset. 20182 * 20183 * This routine is invoked to scan the entire FCF table by reading FCF 20184 * record and processing it one at a time starting from the @fcf_index 20185 * for initial FCF discovery or fast FCF failover rediscovery. 20186 * 20187 * Return 0 if the mailbox command is submitted successfully, none 0 20188 * otherwise. 20189 **/ 20190 int 20191 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20192 { 20193 int rc = 0, error; 20194 LPFC_MBOXQ_t *mboxq; 20195 20196 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20197 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20198 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20199 if (!mboxq) { 20200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20201 "2000 Failed to allocate mbox for " 20202 "READ_FCF cmd\n"); 20203 error = -ENOMEM; 20204 goto fail_fcf_scan; 20205 } 20206 /* Construct the read FCF record mailbox command */ 20207 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20208 if (rc) { 20209 error = -EINVAL; 20210 goto fail_fcf_scan; 20211 } 20212 /* Issue the mailbox command asynchronously */ 20213 mboxq->vport = phba->pport; 20214 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20215 20216 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20217 20218 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20219 if (rc == MBX_NOT_FINISHED) 20220 error = -EIO; 20221 else { 20222 /* Reset eligible FCF count for new scan */ 20223 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20224 phba->fcf.eligible_fcf_cnt = 0; 20225 error = 0; 20226 } 20227 fail_fcf_scan: 20228 if (error) { 20229 if (mboxq) 20230 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20231 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20232 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20233 } 20234 return error; 20235 } 20236 20237 /** 20238 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20239 * @phba: pointer to lpfc hba data structure. 20240 * @fcf_index: FCF table entry offset. 20241 * 20242 * This routine is invoked to read an FCF record indicated by @fcf_index 20243 * and to use it for FLOGI roundrobin FCF failover. 20244 * 20245 * Return 0 if the mailbox command is submitted successfully, none 0 20246 * otherwise. 20247 **/ 20248 int 20249 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20250 { 20251 int rc = 0, error; 20252 LPFC_MBOXQ_t *mboxq; 20253 20254 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20255 if (!mboxq) { 20256 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20257 "2763 Failed to allocate mbox for " 20258 "READ_FCF cmd\n"); 20259 error = -ENOMEM; 20260 goto fail_fcf_read; 20261 } 20262 /* Construct the read FCF record mailbox command */ 20263 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20264 if (rc) { 20265 error = -EINVAL; 20266 goto fail_fcf_read; 20267 } 20268 /* Issue the mailbox command asynchronously */ 20269 mboxq->vport = phba->pport; 20270 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20271 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20272 if (rc == MBX_NOT_FINISHED) 20273 error = -EIO; 20274 else 20275 error = 0; 20276 20277 fail_fcf_read: 20278 if (error && mboxq) 20279 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20280 return error; 20281 } 20282 20283 /** 20284 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20285 * @phba: pointer to lpfc hba data structure. 20286 * @fcf_index: FCF table entry offset. 20287 * 20288 * This routine is invoked to read an FCF record indicated by @fcf_index to 20289 * determine whether it's eligible for FLOGI roundrobin failover list. 20290 * 20291 * Return 0 if the mailbox command is submitted successfully, none 0 20292 * otherwise. 20293 **/ 20294 int 20295 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20296 { 20297 int rc = 0, error; 20298 LPFC_MBOXQ_t *mboxq; 20299 20300 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20301 if (!mboxq) { 20302 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20303 "2758 Failed to allocate mbox for " 20304 "READ_FCF cmd\n"); 20305 error = -ENOMEM; 20306 goto fail_fcf_read; 20307 } 20308 /* Construct the read FCF record mailbox command */ 20309 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20310 if (rc) { 20311 error = -EINVAL; 20312 goto fail_fcf_read; 20313 } 20314 /* Issue the mailbox command asynchronously */ 20315 mboxq->vport = phba->pport; 20316 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20318 if (rc == MBX_NOT_FINISHED) 20319 error = -EIO; 20320 else 20321 error = 0; 20322 20323 fail_fcf_read: 20324 if (error && mboxq) 20325 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20326 return error; 20327 } 20328 20329 /** 20330 * lpfc_check_next_fcf_pri_level 20331 * @phba: pointer to the lpfc_hba struct for this port. 20332 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20333 * routine when the rr_bmask is empty. The FCF indecies are put into the 20334 * rr_bmask based on their priority level. Starting from the highest priority 20335 * to the lowest. The most likely FCF candidate will be in the highest 20336 * priority group. When this routine is called it searches the fcf_pri list for 20337 * next lowest priority group and repopulates the rr_bmask with only those 20338 * fcf_indexes. 20339 * returns: 20340 * 1=success 0=failure 20341 **/ 20342 static int 20343 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20344 { 20345 uint16_t next_fcf_pri; 20346 uint16_t last_index; 20347 struct lpfc_fcf_pri *fcf_pri; 20348 int rc; 20349 int ret = 0; 20350 20351 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20352 LPFC_SLI4_FCF_TBL_INDX_MAX); 20353 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20354 "3060 Last IDX %d\n", last_index); 20355 20356 /* Verify the priority list has 2 or more entries */ 20357 spin_lock_irq(&phba->hbalock); 20358 if (list_empty(&phba->fcf.fcf_pri_list) || 20359 list_is_singular(&phba->fcf.fcf_pri_list)) { 20360 spin_unlock_irq(&phba->hbalock); 20361 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20362 "3061 Last IDX %d\n", last_index); 20363 return 0; /* Empty rr list */ 20364 } 20365 spin_unlock_irq(&phba->hbalock); 20366 20367 next_fcf_pri = 0; 20368 /* 20369 * Clear the rr_bmask and set all of the bits that are at this 20370 * priority. 20371 */ 20372 memset(phba->fcf.fcf_rr_bmask, 0, 20373 sizeof(*phba->fcf.fcf_rr_bmask)); 20374 spin_lock_irq(&phba->hbalock); 20375 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20376 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20377 continue; 20378 /* 20379 * the 1st priority that has not FLOGI failed 20380 * will be the highest. 20381 */ 20382 if (!next_fcf_pri) 20383 next_fcf_pri = fcf_pri->fcf_rec.priority; 20384 spin_unlock_irq(&phba->hbalock); 20385 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20386 rc = lpfc_sli4_fcf_rr_index_set(phba, 20387 fcf_pri->fcf_rec.fcf_index); 20388 if (rc) 20389 return 0; 20390 } 20391 spin_lock_irq(&phba->hbalock); 20392 } 20393 /* 20394 * if next_fcf_pri was not set above and the list is not empty then 20395 * we have failed flogis on all of them. So reset flogi failed 20396 * and start at the beginning. 20397 */ 20398 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20399 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20400 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20401 /* 20402 * the 1st priority that has not FLOGI failed 20403 * will be the highest. 20404 */ 20405 if (!next_fcf_pri) 20406 next_fcf_pri = fcf_pri->fcf_rec.priority; 20407 spin_unlock_irq(&phba->hbalock); 20408 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20409 rc = lpfc_sli4_fcf_rr_index_set(phba, 20410 fcf_pri->fcf_rec.fcf_index); 20411 if (rc) 20412 return 0; 20413 } 20414 spin_lock_irq(&phba->hbalock); 20415 } 20416 } else 20417 ret = 1; 20418 spin_unlock_irq(&phba->hbalock); 20419 20420 return ret; 20421 } 20422 /** 20423 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20424 * @phba: pointer to lpfc hba data structure. 20425 * 20426 * This routine is to get the next eligible FCF record index in a round 20427 * robin fashion. If the next eligible FCF record index equals to the 20428 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20429 * shall be returned, otherwise, the next eligible FCF record's index 20430 * shall be returned. 20431 **/ 20432 uint16_t 20433 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20434 { 20435 uint16_t next; 20436 20437 do { 20438 for_each_set_bit_wrap(next, phba->fcf.fcf_rr_bmask, 20439 LPFC_SLI4_FCF_TBL_INDX_MAX, phba->fcf.current_rec.fcf_indx) { 20440 if (next == phba->fcf.current_rec.fcf_indx) 20441 continue; 20442 20443 if (!(phba->fcf.fcf_pri[next].fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)) { 20444 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20445 "2845 Get next roundrobin failover FCF (x%x)\n", next); 20446 return next; 20447 } 20448 20449 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20450 return LPFC_FCOE_FCF_NEXT_NONE; 20451 } 20452 20453 /* 20454 * If next fcf index is not found check if there are lower 20455 * Priority level fcf's in the fcf_priority list. 20456 * Set up the rr_bmask with all of the avaiable fcf bits 20457 * at that level and continue the selection process. 20458 */ 20459 } while (lpfc_check_next_fcf_pri_level(phba)); 20460 20461 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20462 "2844 No roundrobin failover FCF available\n"); 20463 20464 return LPFC_FCOE_FCF_NEXT_NONE; 20465 } 20466 20467 /** 20468 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20469 * @phba: pointer to lpfc hba data structure. 20470 * @fcf_index: index into the FCF table to 'set' 20471 * 20472 * This routine sets the FCF record index in to the eligible bmask for 20473 * roundrobin failover search. It checks to make sure that the index 20474 * does not go beyond the range of the driver allocated bmask dimension 20475 * before setting the bit. 20476 * 20477 * Returns 0 if the index bit successfully set, otherwise, it returns 20478 * -EINVAL. 20479 **/ 20480 int 20481 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20482 { 20483 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20484 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20485 "2610 FCF (x%x) reached driver's book " 20486 "keeping dimension:x%x\n", 20487 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20488 return -EINVAL; 20489 } 20490 /* Set the eligible FCF record index bmask */ 20491 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20492 20493 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20494 "2790 Set FCF (x%x) to roundrobin FCF failover " 20495 "bmask\n", fcf_index); 20496 20497 return 0; 20498 } 20499 20500 /** 20501 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20502 * @phba: pointer to lpfc hba data structure. 20503 * @fcf_index: index into the FCF table to 'clear' 20504 * 20505 * This routine clears the FCF record index from the eligible bmask for 20506 * roundrobin failover search. It checks to make sure that the index 20507 * does not go beyond the range of the driver allocated bmask dimension 20508 * before clearing the bit. 20509 **/ 20510 void 20511 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20512 { 20513 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20514 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20515 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20516 "2762 FCF (x%x) reached driver's book " 20517 "keeping dimension:x%x\n", 20518 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20519 return; 20520 } 20521 /* Clear the eligible FCF record index bmask */ 20522 spin_lock_irq(&phba->hbalock); 20523 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20524 list) { 20525 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20526 list_del_init(&fcf_pri->list); 20527 break; 20528 } 20529 } 20530 spin_unlock_irq(&phba->hbalock); 20531 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20532 20533 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20534 "2791 Clear FCF (x%x) from roundrobin failover " 20535 "bmask\n", fcf_index); 20536 } 20537 20538 /** 20539 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20540 * @phba: pointer to lpfc hba data structure. 20541 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20542 * 20543 * This routine is the completion routine for the rediscover FCF table mailbox 20544 * command. If the mailbox command returned failure, it will try to stop the 20545 * FCF rediscover wait timer. 20546 **/ 20547 static void 20548 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20549 { 20550 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20551 uint32_t shdr_status, shdr_add_status; 20552 20553 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20554 20555 shdr_status = bf_get(lpfc_mbox_hdr_status, 20556 &redisc_fcf->header.cfg_shdr.response); 20557 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20558 &redisc_fcf->header.cfg_shdr.response); 20559 if (shdr_status || shdr_add_status) { 20560 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20561 "2746 Requesting for FCF rediscovery failed " 20562 "status x%x add_status x%x\n", 20563 shdr_status, shdr_add_status); 20564 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20565 spin_lock_irq(&phba->hbalock); 20566 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20567 spin_unlock_irq(&phba->hbalock); 20568 /* 20569 * CVL event triggered FCF rediscover request failed, 20570 * last resort to re-try current registered FCF entry. 20571 */ 20572 lpfc_retry_pport_discovery(phba); 20573 } else { 20574 spin_lock_irq(&phba->hbalock); 20575 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20576 spin_unlock_irq(&phba->hbalock); 20577 /* 20578 * DEAD FCF event triggered FCF rediscover request 20579 * failed, last resort to fail over as a link down 20580 * to FCF registration. 20581 */ 20582 lpfc_sli4_fcf_dead_failthrough(phba); 20583 } 20584 } else { 20585 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20586 "2775 Start FCF rediscover quiescent timer\n"); 20587 /* 20588 * Start FCF rediscovery wait timer for pending FCF 20589 * before rescan FCF record table. 20590 */ 20591 lpfc_fcf_redisc_wait_start_timer(phba); 20592 } 20593 20594 mempool_free(mbox, phba->mbox_mem_pool); 20595 } 20596 20597 /** 20598 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20599 * @phba: pointer to lpfc hba data structure. 20600 * 20601 * This routine is invoked to request for rediscovery of the entire FCF table 20602 * by the port. 20603 **/ 20604 int 20605 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20606 { 20607 LPFC_MBOXQ_t *mbox; 20608 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20609 int rc, length; 20610 20611 /* Cancel retry delay timers to all vports before FCF rediscover */ 20612 lpfc_cancel_all_vport_retry_delay_timer(phba); 20613 20614 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20615 if (!mbox) { 20616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20617 "2745 Failed to allocate mbox for " 20618 "requesting FCF rediscover.\n"); 20619 return -ENOMEM; 20620 } 20621 20622 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20623 sizeof(struct lpfc_sli4_cfg_mhdr)); 20624 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20625 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20626 length, LPFC_SLI4_MBX_EMBED); 20627 20628 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20629 /* Set count to 0 for invalidating the entire FCF database */ 20630 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20631 20632 /* Issue the mailbox command asynchronously */ 20633 mbox->vport = phba->pport; 20634 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20635 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20636 20637 if (rc == MBX_NOT_FINISHED) { 20638 mempool_free(mbox, phba->mbox_mem_pool); 20639 return -EIO; 20640 } 20641 return 0; 20642 } 20643 20644 /** 20645 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20646 * @phba: pointer to lpfc hba data structure. 20647 * 20648 * This function is the failover routine as a last resort to the FCF DEAD 20649 * event when driver failed to perform fast FCF failover. 20650 **/ 20651 void 20652 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20653 { 20654 uint32_t link_state; 20655 20656 /* 20657 * Last resort as FCF DEAD event failover will treat this as 20658 * a link down, but save the link state because we don't want 20659 * it to be changed to Link Down unless it is already down. 20660 */ 20661 link_state = phba->link_state; 20662 lpfc_linkdown(phba); 20663 phba->link_state = link_state; 20664 20665 /* Unregister FCF if no devices connected to it */ 20666 lpfc_unregister_unused_fcf(phba); 20667 } 20668 20669 /** 20670 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20671 * @phba: pointer to lpfc hba data structure. 20672 * @rgn23_data: pointer to configure region 23 data. 20673 * 20674 * This function gets SLI3 port configure region 23 data through memory dump 20675 * mailbox command. When it successfully retrieves data, the size of the data 20676 * will be returned, otherwise, 0 will be returned. 20677 **/ 20678 static uint32_t 20679 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20680 { 20681 LPFC_MBOXQ_t *pmb = NULL; 20682 MAILBOX_t *mb; 20683 uint32_t offset = 0; 20684 int rc; 20685 20686 if (!rgn23_data) 20687 return 0; 20688 20689 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20690 if (!pmb) { 20691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20692 "2600 failed to allocate mailbox memory\n"); 20693 return 0; 20694 } 20695 mb = &pmb->u.mb; 20696 20697 do { 20698 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20699 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20700 20701 if (rc != MBX_SUCCESS) { 20702 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20703 "2601 failed to read config " 20704 "region 23, rc 0x%x Status 0x%x\n", 20705 rc, mb->mbxStatus); 20706 mb->un.varDmp.word_cnt = 0; 20707 } 20708 /* 20709 * dump mem may return a zero when finished or we got a 20710 * mailbox error, either way we are done. 20711 */ 20712 if (mb->un.varDmp.word_cnt == 0) 20713 break; 20714 20715 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20716 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20717 20718 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20719 rgn23_data + offset, 20720 mb->un.varDmp.word_cnt); 20721 offset += mb->un.varDmp.word_cnt; 20722 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20723 20724 mempool_free(pmb, phba->mbox_mem_pool); 20725 return offset; 20726 } 20727 20728 /** 20729 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20730 * @phba: pointer to lpfc hba data structure. 20731 * @rgn23_data: pointer to configure region 23 data. 20732 * 20733 * This function gets SLI4 port configure region 23 data through memory dump 20734 * mailbox command. When it successfully retrieves data, the size of the data 20735 * will be returned, otherwise, 0 will be returned. 20736 **/ 20737 static uint32_t 20738 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20739 { 20740 LPFC_MBOXQ_t *mboxq = NULL; 20741 struct lpfc_dmabuf *mp = NULL; 20742 struct lpfc_mqe *mqe; 20743 uint32_t data_length = 0; 20744 int rc; 20745 20746 if (!rgn23_data) 20747 return 0; 20748 20749 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20750 if (!mboxq) { 20751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20752 "3105 failed to allocate mailbox memory\n"); 20753 return 0; 20754 } 20755 20756 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20757 goto out; 20758 mqe = &mboxq->u.mqe; 20759 mp = mboxq->ctx_buf; 20760 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20761 if (rc) 20762 goto out; 20763 data_length = mqe->un.mb_words[5]; 20764 if (data_length == 0) 20765 goto out; 20766 if (data_length > DMP_RGN23_SIZE) { 20767 data_length = 0; 20768 goto out; 20769 } 20770 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20771 out: 20772 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20773 return data_length; 20774 } 20775 20776 /** 20777 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20778 * @phba: pointer to lpfc hba data structure. 20779 * 20780 * This function read region 23 and parse TLV for port status to 20781 * decide if the user disaled the port. If the TLV indicates the 20782 * port is disabled, the hba_flag is set accordingly. 20783 **/ 20784 void 20785 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20786 { 20787 uint8_t *rgn23_data = NULL; 20788 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20789 uint32_t offset = 0; 20790 20791 /* Get adapter Region 23 data */ 20792 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20793 if (!rgn23_data) 20794 goto out; 20795 20796 if (phba->sli_rev < LPFC_SLI_REV4) 20797 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20798 else { 20799 if_type = bf_get(lpfc_sli_intf_if_type, 20800 &phba->sli4_hba.sli_intf); 20801 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20802 goto out; 20803 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20804 } 20805 20806 if (!data_size) 20807 goto out; 20808 20809 /* Check the region signature first */ 20810 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20812 "2619 Config region 23 has bad signature\n"); 20813 goto out; 20814 } 20815 offset += 4; 20816 20817 /* Check the data structure version */ 20818 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20820 "2620 Config region 23 has bad version\n"); 20821 goto out; 20822 } 20823 offset += 4; 20824 20825 /* Parse TLV entries in the region */ 20826 while (offset < data_size) { 20827 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20828 break; 20829 /* 20830 * If the TLV is not driver specific TLV or driver id is 20831 * not linux driver id, skip the record. 20832 */ 20833 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20834 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20835 (rgn23_data[offset + 3] != 0)) { 20836 offset += rgn23_data[offset + 1] * 4 + 4; 20837 continue; 20838 } 20839 20840 /* Driver found a driver specific TLV in the config region */ 20841 sub_tlv_len = rgn23_data[offset + 1] * 4; 20842 offset += 4; 20843 tlv_offset = 0; 20844 20845 /* 20846 * Search for configured port state sub-TLV. 20847 */ 20848 while ((offset < data_size) && 20849 (tlv_offset < sub_tlv_len)) { 20850 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20851 offset += 4; 20852 tlv_offset += 4; 20853 break; 20854 } 20855 if (rgn23_data[offset] != PORT_STE_TYPE) { 20856 offset += rgn23_data[offset + 1] * 4 + 4; 20857 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20858 continue; 20859 } 20860 20861 /* This HBA contains PORT_STE configured */ 20862 if (!rgn23_data[offset + 2]) 20863 set_bit(LINK_DISABLED, &phba->hba_flag); 20864 20865 goto out; 20866 } 20867 } 20868 20869 out: 20870 kfree(rgn23_data); 20871 return; 20872 } 20873 20874 /** 20875 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20876 * @phba: pointer to lpfc hba data structure 20877 * @shdr_status: wr_object rsp's status field 20878 * @shdr_add_status: wr_object rsp's add_status field 20879 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20880 * @shdr_change_status: wr_object rsp's change_status field 20881 * @shdr_csf: wr_object rsp's csf bit 20882 * 20883 * This routine is intended to be called after a firmware write completes. 20884 * It will log next action items to be performed by the user to instantiate 20885 * the newly downloaded firmware or reason for incompatibility. 20886 **/ 20887 static void 20888 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20889 u32 shdr_add_status, u32 shdr_add_status_2, 20890 u32 shdr_change_status, u32 shdr_csf) 20891 { 20892 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20893 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20894 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20895 "change_status x%02x, csf %01x\n", __func__, 20896 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20897 shdr_status, shdr_add_status, shdr_add_status_2, 20898 shdr_change_status, shdr_csf); 20899 20900 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20901 switch (shdr_add_status_2) { 20902 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20903 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20904 "4199 Firmware write failed: " 20905 "image incompatible with flash x%02x\n", 20906 phba->sli4_hba.flash_id); 20907 break; 20908 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20909 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20910 "4200 Firmware write failed: " 20911 "image incompatible with ASIC " 20912 "architecture x%02x\n", 20913 phba->sli4_hba.asic_rev); 20914 break; 20915 default: 20916 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20917 "4210 Firmware write failed: " 20918 "add_status_2 x%02x\n", 20919 shdr_add_status_2); 20920 break; 20921 } 20922 } else if (!shdr_status && !shdr_add_status) { 20923 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20924 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20925 if (shdr_csf) 20926 shdr_change_status = 20927 LPFC_CHANGE_STATUS_PCI_RESET; 20928 } 20929 20930 switch (shdr_change_status) { 20931 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20932 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20933 "3198 Firmware write complete: System " 20934 "reboot required to instantiate\n"); 20935 break; 20936 case (LPFC_CHANGE_STATUS_FW_RESET): 20937 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20938 "3199 Firmware write complete: " 20939 "Firmware reset required to " 20940 "instantiate\n"); 20941 break; 20942 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20943 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20944 "3200 Firmware write complete: Port " 20945 "Migration or PCI Reset required to " 20946 "instantiate\n"); 20947 break; 20948 case (LPFC_CHANGE_STATUS_PCI_RESET): 20949 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20950 "3201 Firmware write complete: PCI " 20951 "Reset required to instantiate\n"); 20952 break; 20953 default: 20954 break; 20955 } 20956 } 20957 } 20958 20959 /** 20960 * lpfc_wr_object - write an object to the firmware 20961 * @phba: HBA structure that indicates port to create a queue on. 20962 * @dmabuf_list: list of dmabufs to write to the port. 20963 * @size: the total byte value of the objects to write to the port. 20964 * @offset: the current offset to be used to start the transfer. 20965 * 20966 * This routine will create a wr_object mailbox command to send to the port. 20967 * the mailbox command will be constructed using the dma buffers described in 20968 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20969 * BDEs that the imbedded mailbox can support. The @offset variable will be 20970 * used to indicate the starting offset of the transfer and will also return 20971 * the offset after the write object mailbox has completed. @size is used to 20972 * determine the end of the object and whether the eof bit should be set. 20973 * 20974 * Return 0 is successful and offset will contain the new offset to use 20975 * for the next write. 20976 * Return negative value for error cases. 20977 **/ 20978 int 20979 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20980 uint32_t size, uint32_t *offset) 20981 { 20982 struct lpfc_mbx_wr_object *wr_object; 20983 LPFC_MBOXQ_t *mbox; 20984 int rc = 0, i = 0; 20985 int mbox_status = 0; 20986 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20987 uint32_t shdr_change_status = 0, shdr_csf = 0; 20988 uint32_t mbox_tmo; 20989 struct lpfc_dmabuf *dmabuf; 20990 uint32_t written = 0; 20991 bool check_change_status = false; 20992 20993 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20994 if (!mbox) 20995 return -ENOMEM; 20996 20997 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20998 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20999 sizeof(struct lpfc_mbx_wr_object) - 21000 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 21001 21002 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 21003 wr_object->u.request.write_offset = *offset; 21004 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 21005 wr_object->u.request.object_name[0] = 21006 cpu_to_le32(wr_object->u.request.object_name[0]); 21007 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 21008 list_for_each_entry(dmabuf, dmabuf_list, list) { 21009 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 21010 break; 21011 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 21012 wr_object->u.request.bde[i].addrHigh = 21013 putPaddrHigh(dmabuf->phys); 21014 if (written + SLI4_PAGE_SIZE >= size) { 21015 wr_object->u.request.bde[i].tus.f.bdeSize = 21016 (size - written); 21017 written += (size - written); 21018 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 21019 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 21020 check_change_status = true; 21021 } else { 21022 wr_object->u.request.bde[i].tus.f.bdeSize = 21023 SLI4_PAGE_SIZE; 21024 written += SLI4_PAGE_SIZE; 21025 } 21026 i++; 21027 } 21028 wr_object->u.request.bde_count = i; 21029 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 21030 if (!phba->sli4_hba.intr_enable) 21031 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 21032 else { 21033 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 21034 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 21035 } 21036 21037 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 21038 rc = mbox_status; 21039 21040 /* The IOCTL status is embedded in the mailbox subheader. */ 21041 shdr_status = bf_get(lpfc_mbox_hdr_status, 21042 &wr_object->header.cfg_shdr.response); 21043 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 21044 &wr_object->header.cfg_shdr.response); 21045 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 21046 &wr_object->header.cfg_shdr.response); 21047 if (check_change_status) { 21048 shdr_change_status = bf_get(lpfc_wr_object_change_status, 21049 &wr_object->u.response); 21050 shdr_csf = bf_get(lpfc_wr_object_csf, 21051 &wr_object->u.response); 21052 } 21053 21054 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21056 "3025 Write Object mailbox failed with " 21057 "status x%x add_status x%x, add_status_2 x%x, " 21058 "mbx status x%x\n", 21059 shdr_status, shdr_add_status, shdr_add_status_2, 21060 rc); 21061 rc = -ENXIO; 21062 *offset = shdr_add_status; 21063 } else { 21064 *offset += wr_object->u.response.actual_write_length; 21065 } 21066 21067 if (rc || check_change_status) 21068 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21069 shdr_add_status_2, shdr_change_status, 21070 shdr_csf); 21071 21072 if (!phba->sli4_hba.intr_enable) 21073 mempool_free(mbox, phba->mbox_mem_pool); 21074 else if (mbox_status != MBX_TIMEOUT) 21075 mempool_free(mbox, phba->mbox_mem_pool); 21076 21077 return rc; 21078 } 21079 21080 /** 21081 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21082 * @vport: pointer to vport data structure. 21083 * 21084 * This function iterate through the mailboxq and clean up all REG_LOGIN 21085 * and REG_VPI mailbox commands associated with the vport. This function 21086 * is called when driver want to restart discovery of the vport due to 21087 * a Clear Virtual Link event. 21088 **/ 21089 void 21090 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21091 { 21092 struct lpfc_hba *phba = vport->phba; 21093 LPFC_MBOXQ_t *mb, *nextmb; 21094 struct lpfc_nodelist *ndlp; 21095 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21096 LIST_HEAD(mbox_cmd_list); 21097 uint8_t restart_loop; 21098 21099 /* Clean up internally queued mailbox commands with the vport */ 21100 spin_lock_irq(&phba->hbalock); 21101 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21102 if (mb->vport != vport) 21103 continue; 21104 21105 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21106 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21107 continue; 21108 21109 list_move_tail(&mb->list, &mbox_cmd_list); 21110 } 21111 /* Clean up active mailbox command with the vport */ 21112 mb = phba->sli.mbox_active; 21113 if (mb && (mb->vport == vport)) { 21114 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21115 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21116 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21117 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21118 act_mbx_ndlp = mb->ctx_ndlp; 21119 21120 /* This reference is local to this routine. The 21121 * reference is removed at routine exit. 21122 */ 21123 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21124 21125 /* Unregister the RPI when mailbox complete */ 21126 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21127 } 21128 } 21129 /* Cleanup any mailbox completions which are not yet processed */ 21130 do { 21131 restart_loop = 0; 21132 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21133 /* 21134 * If this mailox is already processed or it is 21135 * for another vport ignore it. 21136 */ 21137 if ((mb->vport != vport) || 21138 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21139 continue; 21140 21141 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21142 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21143 continue; 21144 21145 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21146 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21147 ndlp = mb->ctx_ndlp; 21148 /* Unregister the RPI when mailbox complete */ 21149 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21150 restart_loop = 1; 21151 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21152 break; 21153 } 21154 } 21155 } while (restart_loop); 21156 21157 spin_unlock_irq(&phba->hbalock); 21158 21159 /* Release the cleaned-up mailbox commands */ 21160 while (!list_empty(&mbox_cmd_list)) { 21161 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21162 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21163 ndlp = mb->ctx_ndlp; 21164 mb->ctx_ndlp = NULL; 21165 if (ndlp) { 21166 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21167 lpfc_nlp_put(ndlp); 21168 } 21169 } 21170 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21171 } 21172 21173 /* Release the ndlp with the cleaned-up active mailbox command */ 21174 if (act_mbx_ndlp) { 21175 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag); 21176 lpfc_nlp_put(act_mbx_ndlp); 21177 } 21178 } 21179 21180 /** 21181 * lpfc_drain_txq - Drain the txq 21182 * @phba: Pointer to HBA context object. 21183 * 21184 * This function attempt to submit IOCBs on the txq 21185 * to the adapter. For SLI4 adapters, the txq contains 21186 * ELS IOCBs that have been deferred because the there 21187 * are no SGLs. This congestion can occur with large 21188 * vport counts during node discovery. 21189 **/ 21190 21191 uint32_t 21192 lpfc_drain_txq(struct lpfc_hba *phba) 21193 { 21194 LIST_HEAD(completions); 21195 struct lpfc_sli_ring *pring; 21196 struct lpfc_iocbq *piocbq = NULL; 21197 unsigned long iflags = 0; 21198 char *fail_msg = NULL; 21199 uint32_t txq_cnt = 0; 21200 struct lpfc_queue *wq; 21201 int ret = 0; 21202 21203 if (phba->link_flag & LS_MDS_LOOPBACK) { 21204 /* MDS WQE are posted only to first WQ*/ 21205 wq = phba->sli4_hba.hdwq[0].io_wq; 21206 if (unlikely(!wq)) 21207 return 0; 21208 pring = wq->pring; 21209 } else { 21210 wq = phba->sli4_hba.els_wq; 21211 if (unlikely(!wq)) 21212 return 0; 21213 pring = lpfc_phba_elsring(phba); 21214 } 21215 21216 if (unlikely(!pring) || list_empty(&pring->txq)) 21217 return 0; 21218 21219 spin_lock_irqsave(&pring->ring_lock, iflags); 21220 list_for_each_entry(piocbq, &pring->txq, list) { 21221 txq_cnt++; 21222 } 21223 21224 if (txq_cnt > pring->txq_max) 21225 pring->txq_max = txq_cnt; 21226 21227 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21228 21229 while (!list_empty(&pring->txq)) { 21230 spin_lock_irqsave(&pring->ring_lock, iflags); 21231 21232 piocbq = lpfc_sli_ringtx_get(phba, pring); 21233 if (!piocbq) { 21234 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21236 "2823 txq empty and txq_cnt is %d\n", 21237 txq_cnt); 21238 break; 21239 } 21240 txq_cnt--; 21241 21242 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21243 21244 if (ret && ret != IOCB_BUSY) { 21245 fail_msg = " - Cannot send IO "; 21246 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21247 } 21248 if (fail_msg) { 21249 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21250 /* Failed means we can't issue and need to cancel */ 21251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21252 "2822 IOCB failed %s iotag 0x%x " 21253 "xri 0x%x %d flg x%x\n", 21254 fail_msg, piocbq->iotag, 21255 piocbq->sli4_xritag, ret, 21256 piocbq->cmd_flag); 21257 list_add_tail(&piocbq->list, &completions); 21258 fail_msg = NULL; 21259 } 21260 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21261 if (txq_cnt == 0 || ret == IOCB_BUSY) 21262 break; 21263 } 21264 /* Cancel all the IOCBs that cannot be issued */ 21265 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21266 IOERR_SLI_ABORTED); 21267 21268 return txq_cnt; 21269 } 21270 21271 /** 21272 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21273 * @phba: Pointer to HBA context object. 21274 * @pwqeq: Pointer to command WQE. 21275 * @sglq: Pointer to the scatter gather queue object. 21276 * 21277 * This routine converts the bpl or bde that is in the WQE 21278 * to a sgl list for the sli4 hardware. The physical address 21279 * of the bpl/bde is converted back to a virtual address. 21280 * If the WQE contains a BPL then the list of BDE's is 21281 * converted to sli4_sge's. If the WQE contains a single 21282 * BDE then it is converted to a single sli_sge. 21283 * The WQE is still in cpu endianness so the contents of 21284 * the bpl can be used without byte swapping. 21285 * 21286 * Returns valid XRI = Success, NO_XRI = Failure. 21287 */ 21288 static uint16_t 21289 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21290 struct lpfc_sglq *sglq) 21291 { 21292 uint16_t xritag = NO_XRI; 21293 struct ulp_bde64 *bpl = NULL; 21294 struct ulp_bde64 bde; 21295 struct sli4_sge *sgl = NULL; 21296 struct lpfc_dmabuf *dmabuf; 21297 union lpfc_wqe128 *wqe; 21298 int numBdes = 0; 21299 int i = 0; 21300 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21301 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21302 uint32_t cmd; 21303 21304 if (!pwqeq || !sglq) 21305 return xritag; 21306 21307 sgl = (struct sli4_sge *)sglq->sgl; 21308 wqe = &pwqeq->wqe; 21309 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21310 21311 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21312 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21313 return sglq->sli4_xritag; 21314 numBdes = pwqeq->num_bdes; 21315 if (numBdes) { 21316 /* The addrHigh and addrLow fields within the WQE 21317 * have not been byteswapped yet so there is no 21318 * need to swap them back. 21319 */ 21320 if (pwqeq->bpl_dmabuf) 21321 dmabuf = pwqeq->bpl_dmabuf; 21322 else 21323 return xritag; 21324 21325 bpl = (struct ulp_bde64 *)dmabuf->virt; 21326 if (!bpl) 21327 return xritag; 21328 21329 for (i = 0; i < numBdes; i++) { 21330 /* Should already be byte swapped. */ 21331 sgl->addr_hi = bpl->addrHigh; 21332 sgl->addr_lo = bpl->addrLow; 21333 21334 sgl->word2 = le32_to_cpu(sgl->word2); 21335 if ((i+1) == numBdes) 21336 bf_set(lpfc_sli4_sge_last, sgl, 1); 21337 else 21338 bf_set(lpfc_sli4_sge_last, sgl, 0); 21339 /* swap the size field back to the cpu so we 21340 * can assign it to the sgl. 21341 */ 21342 bde.tus.w = le32_to_cpu(bpl->tus.w); 21343 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21344 /* The offsets in the sgl need to be accumulated 21345 * separately for the request and reply lists. 21346 * The request is always first, the reply follows. 21347 */ 21348 switch (cmd) { 21349 case CMD_GEN_REQUEST64_WQE: 21350 /* add up the reply sg entries */ 21351 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21352 inbound++; 21353 /* first inbound? reset the offset */ 21354 if (inbound == 1) 21355 offset = 0; 21356 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21357 bf_set(lpfc_sli4_sge_type, sgl, 21358 LPFC_SGE_TYPE_DATA); 21359 offset += bde.tus.f.bdeSize; 21360 break; 21361 case CMD_FCP_TRSP64_WQE: 21362 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21363 bf_set(lpfc_sli4_sge_type, sgl, 21364 LPFC_SGE_TYPE_DATA); 21365 break; 21366 case CMD_FCP_TSEND64_WQE: 21367 case CMD_FCP_TRECEIVE64_WQE: 21368 bf_set(lpfc_sli4_sge_type, sgl, 21369 bpl->tus.f.bdeFlags); 21370 if (i < 3) 21371 offset = 0; 21372 else 21373 offset += bde.tus.f.bdeSize; 21374 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21375 break; 21376 } 21377 sgl->word2 = cpu_to_le32(sgl->word2); 21378 bpl++; 21379 sgl++; 21380 } 21381 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21382 /* The addrHigh and addrLow fields of the BDE have not 21383 * been byteswapped yet so they need to be swapped 21384 * before putting them in the sgl. 21385 */ 21386 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21387 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21388 sgl->word2 = le32_to_cpu(sgl->word2); 21389 bf_set(lpfc_sli4_sge_last, sgl, 1); 21390 sgl->word2 = cpu_to_le32(sgl->word2); 21391 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21392 } 21393 return sglq->sli4_xritag; 21394 } 21395 21396 /** 21397 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21398 * @phba: Pointer to HBA context object. 21399 * @qp: Pointer to HDW queue. 21400 * @pwqe: Pointer to command WQE. 21401 **/ 21402 int 21403 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21404 struct lpfc_iocbq *pwqe) 21405 { 21406 union lpfc_wqe128 *wqe = &pwqe->wqe; 21407 struct lpfc_async_xchg_ctx *ctxp; 21408 struct lpfc_queue *wq; 21409 struct lpfc_sglq *sglq; 21410 struct lpfc_sli_ring *pring; 21411 unsigned long iflags; 21412 int ret = 0; 21413 21414 /* NVME_LS and NVME_LS ABTS requests. */ 21415 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21416 pring = phba->sli4_hba.nvmels_wq->pring; 21417 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21418 qp, wq_access); 21419 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21420 if (!sglq) { 21421 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21422 return WQE_BUSY; 21423 } 21424 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21425 pwqe->sli4_xritag = sglq->sli4_xritag; 21426 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21427 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21428 return WQE_ERROR; 21429 } 21430 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21431 pwqe->sli4_xritag); 21432 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21433 if (ret) { 21434 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21435 return ret; 21436 } 21437 21438 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21439 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21440 21441 lpfc_sli4_poll_eq(qp->hba_eq); 21442 return 0; 21443 } 21444 21445 /* NVME_FCREQ and NVME_ABTS requests */ 21446 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21447 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21448 wq = qp->io_wq; 21449 pring = wq->pring; 21450 21451 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21452 21453 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21454 qp, wq_access); 21455 ret = lpfc_sli4_wq_put(wq, wqe); 21456 if (ret) { 21457 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21458 return ret; 21459 } 21460 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21461 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21462 21463 lpfc_sli4_poll_eq(qp->hba_eq); 21464 return 0; 21465 } 21466 21467 /* NVMET requests */ 21468 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21469 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21470 wq = qp->io_wq; 21471 pring = wq->pring; 21472 21473 ctxp = pwqe->context_un.axchg; 21474 sglq = ctxp->ctxbuf->sglq; 21475 if (pwqe->sli4_xritag == NO_XRI) { 21476 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21477 pwqe->sli4_xritag = sglq->sli4_xritag; 21478 } 21479 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21480 pwqe->sli4_xritag); 21481 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21482 21483 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21484 qp, wq_access); 21485 ret = lpfc_sli4_wq_put(wq, wqe); 21486 if (ret) { 21487 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21488 return ret; 21489 } 21490 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21491 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21492 21493 lpfc_sli4_poll_eq(qp->hba_eq); 21494 return 0; 21495 } 21496 return WQE_ERROR; 21497 } 21498 21499 /** 21500 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21501 * @phba: Pointer to HBA context object. 21502 * @cmdiocb: Pointer to driver command iocb object. 21503 * @cmpl: completion function. 21504 * 21505 * Fill the appropriate fields for the abort WQE and call 21506 * internal routine lpfc_sli4_issue_wqe to send the WQE 21507 * This function is called with hbalock held and no ring_lock held. 21508 * 21509 * RETURNS 0 - SUCCESS 21510 **/ 21511 21512 int 21513 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21514 void *cmpl) 21515 { 21516 struct lpfc_vport *vport = cmdiocb->vport; 21517 struct lpfc_iocbq *abtsiocb = NULL; 21518 union lpfc_wqe128 *abtswqe; 21519 struct lpfc_io_buf *lpfc_cmd; 21520 int retval = IOCB_ERROR; 21521 u16 xritag = cmdiocb->sli4_xritag; 21522 21523 /* 21524 * The scsi command can not be in txq and it is in flight because the 21525 * pCmd is still pointing at the SCSI command we have to abort. There 21526 * is no need to search the txcmplq. Just send an abort to the FW. 21527 */ 21528 21529 abtsiocb = __lpfc_sli_get_iocbq(phba); 21530 if (!abtsiocb) 21531 return WQE_NORESOURCE; 21532 21533 /* Indicate the IO is being aborted by the driver. */ 21534 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21535 21536 abtswqe = &abtsiocb->wqe; 21537 memset(abtswqe, 0, sizeof(*abtswqe)); 21538 21539 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21540 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21541 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21542 abtswqe->abort_cmd.rsrvd5 = 0; 21543 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21544 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21545 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21546 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21547 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21548 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21549 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21550 21551 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21552 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21553 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21554 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21555 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21556 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21557 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21558 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21559 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21560 abtsiocb->vport = vport; 21561 abtsiocb->cmd_cmpl = cmpl; 21562 21563 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21564 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21565 21566 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21567 "0359 Abort xri x%x, original iotag x%x, " 21568 "abort cmd iotag x%x retval x%x\n", 21569 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21570 21571 if (retval) { 21572 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21573 __lpfc_sli_release_iocbq(phba, abtsiocb); 21574 } 21575 21576 return retval; 21577 } 21578 21579 #ifdef LPFC_MXP_STAT 21580 /** 21581 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21582 * @phba: pointer to lpfc hba data structure. 21583 * @hwqid: belong to which HWQ. 21584 * 21585 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21586 * 15 seconds after a test case is running. 21587 * 21588 * The user should call lpfc_debugfs_multixripools_write before running a test 21589 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21590 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21591 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21592 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21593 **/ 21594 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21595 { 21596 struct lpfc_sli4_hdw_queue *qp; 21597 struct lpfc_multixri_pool *multixri_pool; 21598 struct lpfc_pvt_pool *pvt_pool; 21599 struct lpfc_pbl_pool *pbl_pool; 21600 u32 txcmplq_cnt; 21601 21602 qp = &phba->sli4_hba.hdwq[hwqid]; 21603 multixri_pool = qp->p_multixri_pool; 21604 if (!multixri_pool) 21605 return; 21606 21607 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21608 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21609 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21610 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21611 21612 multixri_pool->stat_pbl_count = pbl_pool->count; 21613 multixri_pool->stat_pvt_count = pvt_pool->count; 21614 multixri_pool->stat_busy_count = txcmplq_cnt; 21615 } 21616 21617 multixri_pool->stat_snapshot_taken++; 21618 } 21619 #endif 21620 21621 /** 21622 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21623 * @phba: pointer to lpfc hba data structure. 21624 * @hwqid: belong to which HWQ. 21625 * 21626 * This routine moves some XRIs from private to public pool when private pool 21627 * is not busy. 21628 **/ 21629 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21630 { 21631 struct lpfc_multixri_pool *multixri_pool; 21632 u32 io_req_count; 21633 u32 prev_io_req_count; 21634 21635 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21636 if (!multixri_pool) 21637 return; 21638 io_req_count = multixri_pool->io_req_count; 21639 prev_io_req_count = multixri_pool->prev_io_req_count; 21640 21641 if (prev_io_req_count != io_req_count) { 21642 /* Private pool is busy */ 21643 multixri_pool->prev_io_req_count = io_req_count; 21644 } else { 21645 /* Private pool is not busy. 21646 * Move XRIs from private to public pool. 21647 */ 21648 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21649 } 21650 } 21651 21652 /** 21653 * lpfc_adjust_high_watermark - Adjust high watermark 21654 * @phba: pointer to lpfc hba data structure. 21655 * @hwqid: belong to which HWQ. 21656 * 21657 * This routine sets high watermark as number of outstanding XRIs, 21658 * but make sure the new value is between xri_limit/2 and xri_limit. 21659 **/ 21660 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21661 { 21662 u32 new_watermark; 21663 u32 watermark_max; 21664 u32 watermark_min; 21665 u32 xri_limit; 21666 u32 txcmplq_cnt; 21667 u32 abts_io_bufs; 21668 struct lpfc_multixri_pool *multixri_pool; 21669 struct lpfc_sli4_hdw_queue *qp; 21670 21671 qp = &phba->sli4_hba.hdwq[hwqid]; 21672 multixri_pool = qp->p_multixri_pool; 21673 if (!multixri_pool) 21674 return; 21675 xri_limit = multixri_pool->xri_limit; 21676 21677 watermark_max = xri_limit; 21678 watermark_min = xri_limit / 2; 21679 21680 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21681 abts_io_bufs = qp->abts_scsi_io_bufs; 21682 abts_io_bufs += qp->abts_nvme_io_bufs; 21683 21684 new_watermark = txcmplq_cnt + abts_io_bufs; 21685 new_watermark = min(watermark_max, new_watermark); 21686 new_watermark = max(watermark_min, new_watermark); 21687 multixri_pool->pvt_pool.high_watermark = new_watermark; 21688 21689 #ifdef LPFC_MXP_STAT 21690 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21691 new_watermark); 21692 #endif 21693 } 21694 21695 /** 21696 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21697 * @phba: pointer to lpfc hba data structure. 21698 * @hwqid: belong to which HWQ. 21699 * 21700 * This routine is called from hearbeat timer when pvt_pool is idle. 21701 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21702 * The first step moves (all - low_watermark) amount of XRIs. 21703 * The second step moves the rest of XRIs. 21704 **/ 21705 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21706 { 21707 struct lpfc_pbl_pool *pbl_pool; 21708 struct lpfc_pvt_pool *pvt_pool; 21709 struct lpfc_sli4_hdw_queue *qp; 21710 struct lpfc_io_buf *lpfc_ncmd; 21711 struct lpfc_io_buf *lpfc_ncmd_next; 21712 unsigned long iflag; 21713 struct list_head tmp_list; 21714 u32 tmp_count; 21715 21716 qp = &phba->sli4_hba.hdwq[hwqid]; 21717 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21718 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21719 tmp_count = 0; 21720 21721 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21722 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21723 21724 if (pvt_pool->count > pvt_pool->low_watermark) { 21725 /* Step 1: move (all - low_watermark) from pvt_pool 21726 * to pbl_pool 21727 */ 21728 21729 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21730 INIT_LIST_HEAD(&tmp_list); 21731 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21732 &pvt_pool->list, list) { 21733 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21734 tmp_count++; 21735 if (tmp_count >= pvt_pool->low_watermark) 21736 break; 21737 } 21738 21739 /* Move all bufs from pvt_pool to pbl_pool */ 21740 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21741 21742 /* Move all bufs from tmp_list to pvt_pool */ 21743 list_splice(&tmp_list, &pvt_pool->list); 21744 21745 pbl_pool->count += (pvt_pool->count - tmp_count); 21746 pvt_pool->count = tmp_count; 21747 } else { 21748 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21749 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21750 pbl_pool->count += pvt_pool->count; 21751 pvt_pool->count = 0; 21752 } 21753 21754 spin_unlock(&pvt_pool->lock); 21755 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21756 } 21757 21758 /** 21759 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21760 * @phba: pointer to lpfc hba data structure 21761 * @qp: pointer to HDW queue 21762 * @pbl_pool: specified public free XRI pool 21763 * @pvt_pool: specified private free XRI pool 21764 * @count: number of XRIs to move 21765 * 21766 * This routine tries to move some free common bufs from the specified pbl_pool 21767 * to the specified pvt_pool. It might move less than count XRIs if there's not 21768 * enough in public pool. 21769 * 21770 * Return: 21771 * true - if XRIs are successfully moved from the specified pbl_pool to the 21772 * specified pvt_pool 21773 * false - if the specified pbl_pool is empty or locked by someone else 21774 **/ 21775 static bool 21776 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21777 struct lpfc_pbl_pool *pbl_pool, 21778 struct lpfc_pvt_pool *pvt_pool, u32 count) 21779 { 21780 struct lpfc_io_buf *lpfc_ncmd; 21781 struct lpfc_io_buf *lpfc_ncmd_next; 21782 unsigned long iflag; 21783 int ret; 21784 21785 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21786 if (ret) { 21787 if (pbl_pool->count) { 21788 /* Move a batch of XRIs from public to private pool */ 21789 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21790 list_for_each_entry_safe(lpfc_ncmd, 21791 lpfc_ncmd_next, 21792 &pbl_pool->list, 21793 list) { 21794 list_move_tail(&lpfc_ncmd->list, 21795 &pvt_pool->list); 21796 pvt_pool->count++; 21797 pbl_pool->count--; 21798 count--; 21799 if (count == 0) 21800 break; 21801 } 21802 21803 spin_unlock(&pvt_pool->lock); 21804 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21805 return true; 21806 } 21807 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21808 } 21809 21810 return false; 21811 } 21812 21813 /** 21814 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21815 * @phba: pointer to lpfc hba data structure. 21816 * @hwqid: belong to which HWQ. 21817 * @count: number of XRIs to move 21818 * 21819 * This routine tries to find some free common bufs in one of public pools with 21820 * Round Robin method. The search always starts from local hwqid, then the next 21821 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21822 * a batch of free common bufs are moved to private pool on hwqid. 21823 * It might move less than count XRIs if there's not enough in public pool. 21824 **/ 21825 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21826 { 21827 struct lpfc_multixri_pool *multixri_pool; 21828 struct lpfc_multixri_pool *next_multixri_pool; 21829 struct lpfc_pvt_pool *pvt_pool; 21830 struct lpfc_pbl_pool *pbl_pool; 21831 struct lpfc_sli4_hdw_queue *qp; 21832 u32 next_hwqid; 21833 u32 hwq_count; 21834 int ret; 21835 21836 qp = &phba->sli4_hba.hdwq[hwqid]; 21837 multixri_pool = qp->p_multixri_pool; 21838 pvt_pool = &multixri_pool->pvt_pool; 21839 pbl_pool = &multixri_pool->pbl_pool; 21840 21841 /* Check if local pbl_pool is available */ 21842 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21843 if (ret) { 21844 #ifdef LPFC_MXP_STAT 21845 multixri_pool->local_pbl_hit_count++; 21846 #endif 21847 return; 21848 } 21849 21850 hwq_count = phba->cfg_hdw_queue; 21851 21852 /* Get the next hwqid which was found last time */ 21853 next_hwqid = multixri_pool->rrb_next_hwqid; 21854 21855 do { 21856 /* Go to next hwq */ 21857 next_hwqid = (next_hwqid + 1) % hwq_count; 21858 21859 next_multixri_pool = 21860 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21861 pbl_pool = &next_multixri_pool->pbl_pool; 21862 21863 /* Check if the public free xri pool is available */ 21864 ret = _lpfc_move_xri_pbl_to_pvt( 21865 phba, qp, pbl_pool, pvt_pool, count); 21866 21867 /* Exit while-loop if success or all hwqid are checked */ 21868 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21869 21870 /* Starting point for the next time */ 21871 multixri_pool->rrb_next_hwqid = next_hwqid; 21872 21873 if (!ret) { 21874 /* stats: all public pools are empty*/ 21875 multixri_pool->pbl_empty_count++; 21876 } 21877 21878 #ifdef LPFC_MXP_STAT 21879 if (ret) { 21880 if (next_hwqid == hwqid) 21881 multixri_pool->local_pbl_hit_count++; 21882 else 21883 multixri_pool->other_pbl_hit_count++; 21884 } 21885 #endif 21886 } 21887 21888 /** 21889 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21890 * @phba: pointer to lpfc hba data structure. 21891 * @hwqid: belong to which HWQ. 21892 * 21893 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21894 * low watermark. 21895 **/ 21896 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21897 { 21898 struct lpfc_multixri_pool *multixri_pool; 21899 struct lpfc_pvt_pool *pvt_pool; 21900 21901 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21902 pvt_pool = &multixri_pool->pvt_pool; 21903 21904 if (pvt_pool->count < pvt_pool->low_watermark) 21905 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21906 } 21907 21908 /** 21909 * lpfc_release_io_buf - Return one IO buf back to free pool 21910 * @phba: pointer to lpfc hba data structure. 21911 * @lpfc_ncmd: IO buf to be returned. 21912 * @qp: belong to which HWQ. 21913 * 21914 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21915 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21916 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21917 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21918 * lpfc_io_buf_list_put. 21919 **/ 21920 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21921 struct lpfc_sli4_hdw_queue *qp) 21922 { 21923 unsigned long iflag; 21924 struct lpfc_pbl_pool *pbl_pool; 21925 struct lpfc_pvt_pool *pvt_pool; 21926 struct lpfc_epd_pool *epd_pool; 21927 u32 txcmplq_cnt; 21928 u32 xri_owned; 21929 u32 xri_limit; 21930 u32 abts_io_bufs; 21931 21932 /* MUST zero fields if buffer is reused by another protocol */ 21933 lpfc_ncmd->nvmeCmd = NULL; 21934 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21935 21936 if (phba->cfg_xpsgl && !phba->nvmet_support && 21937 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21938 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21939 21940 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21941 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21942 21943 if (phba->cfg_xri_rebalancing) { 21944 if (lpfc_ncmd->expedite) { 21945 /* Return to expedite pool */ 21946 epd_pool = &phba->epd_pool; 21947 spin_lock_irqsave(&epd_pool->lock, iflag); 21948 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21949 epd_pool->count++; 21950 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21951 return; 21952 } 21953 21954 /* Avoid invalid access if an IO sneaks in and is being rejected 21955 * just _after_ xri pools are destroyed in lpfc_offline. 21956 * Nothing much can be done at this point. 21957 */ 21958 if (!qp->p_multixri_pool) 21959 return; 21960 21961 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21962 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21963 21964 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21965 abts_io_bufs = qp->abts_scsi_io_bufs; 21966 abts_io_bufs += qp->abts_nvme_io_bufs; 21967 21968 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21969 xri_limit = qp->p_multixri_pool->xri_limit; 21970 21971 #ifdef LPFC_MXP_STAT 21972 if (xri_owned <= xri_limit) 21973 qp->p_multixri_pool->below_limit_count++; 21974 else 21975 qp->p_multixri_pool->above_limit_count++; 21976 #endif 21977 21978 /* XRI goes to either public or private free xri pool 21979 * based on watermark and xri_limit 21980 */ 21981 if ((pvt_pool->count < pvt_pool->low_watermark) || 21982 (xri_owned < xri_limit && 21983 pvt_pool->count < pvt_pool->high_watermark)) { 21984 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21985 qp, free_pvt_pool); 21986 list_add_tail(&lpfc_ncmd->list, 21987 &pvt_pool->list); 21988 pvt_pool->count++; 21989 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21990 } else { 21991 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21992 qp, free_pub_pool); 21993 list_add_tail(&lpfc_ncmd->list, 21994 &pbl_pool->list); 21995 pbl_pool->count++; 21996 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21997 } 21998 } else { 21999 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 22000 qp, free_xri); 22001 list_add_tail(&lpfc_ncmd->list, 22002 &qp->lpfc_io_buf_list_put); 22003 qp->put_io_bufs++; 22004 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 22005 iflag); 22006 } 22007 } 22008 22009 /** 22010 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 22011 * @phba: pointer to lpfc hba data structure. 22012 * @qp: pointer to HDW queue 22013 * @pvt_pool: pointer to private pool data structure. 22014 * @ndlp: pointer to lpfc nodelist data structure. 22015 * 22016 * This routine tries to get one free IO buf from private pool. 22017 * 22018 * Return: 22019 * pointer to one free IO buf - if private pool is not empty 22020 * NULL - if private pool is empty 22021 **/ 22022 static struct lpfc_io_buf * 22023 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 22024 struct lpfc_sli4_hdw_queue *qp, 22025 struct lpfc_pvt_pool *pvt_pool, 22026 struct lpfc_nodelist *ndlp) 22027 { 22028 struct lpfc_io_buf *lpfc_ncmd; 22029 struct lpfc_io_buf *lpfc_ncmd_next; 22030 unsigned long iflag; 22031 22032 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 22033 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 22034 &pvt_pool->list, list) { 22035 if (lpfc_test_rrq_active( 22036 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 22037 continue; 22038 list_del(&lpfc_ncmd->list); 22039 pvt_pool->count--; 22040 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22041 return lpfc_ncmd; 22042 } 22043 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22044 22045 return NULL; 22046 } 22047 22048 /** 22049 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22050 * @phba: pointer to lpfc hba data structure. 22051 * 22052 * This routine tries to get one free IO buf from expedite pool. 22053 * 22054 * Return: 22055 * pointer to one free IO buf - if expedite pool is not empty 22056 * NULL - if expedite pool is empty 22057 **/ 22058 static struct lpfc_io_buf * 22059 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22060 { 22061 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22062 struct lpfc_io_buf *lpfc_ncmd_next; 22063 unsigned long iflag; 22064 struct lpfc_epd_pool *epd_pool; 22065 22066 epd_pool = &phba->epd_pool; 22067 22068 spin_lock_irqsave(&epd_pool->lock, iflag); 22069 if (epd_pool->count > 0) { 22070 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22071 &epd_pool->list, list) { 22072 list_del(&iter->list); 22073 epd_pool->count--; 22074 lpfc_ncmd = iter; 22075 break; 22076 } 22077 } 22078 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22079 22080 return lpfc_ncmd; 22081 } 22082 22083 /** 22084 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22085 * @phba: pointer to lpfc hba data structure. 22086 * @ndlp: pointer to lpfc nodelist data structure. 22087 * @hwqid: belong to which HWQ 22088 * @expedite: 1 means this request is urgent. 22089 * 22090 * This routine will do the following actions and then return a pointer to 22091 * one free IO buf. 22092 * 22093 * 1. If private free xri count is empty, move some XRIs from public to 22094 * private pool. 22095 * 2. Get one XRI from private free xri pool. 22096 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22097 * get one free xri from expedite pool. 22098 * 22099 * Note: ndlp is only used on SCSI side for RRQ testing. 22100 * The caller should pass NULL for ndlp on NVME side. 22101 * 22102 * Return: 22103 * pointer to one free IO buf - if private pool is not empty 22104 * NULL - if private pool is empty 22105 **/ 22106 static struct lpfc_io_buf * 22107 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22108 struct lpfc_nodelist *ndlp, 22109 int hwqid, int expedite) 22110 { 22111 struct lpfc_sli4_hdw_queue *qp; 22112 struct lpfc_multixri_pool *multixri_pool; 22113 struct lpfc_pvt_pool *pvt_pool; 22114 struct lpfc_io_buf *lpfc_ncmd; 22115 22116 qp = &phba->sli4_hba.hdwq[hwqid]; 22117 lpfc_ncmd = NULL; 22118 if (!qp) { 22119 lpfc_printf_log(phba, KERN_INFO, 22120 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22121 "5556 NULL qp for hwqid x%x\n", hwqid); 22122 return lpfc_ncmd; 22123 } 22124 multixri_pool = qp->p_multixri_pool; 22125 if (!multixri_pool) { 22126 lpfc_printf_log(phba, KERN_INFO, 22127 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22128 "5557 NULL multixri for hwqid x%x\n", hwqid); 22129 return lpfc_ncmd; 22130 } 22131 pvt_pool = &multixri_pool->pvt_pool; 22132 if (!pvt_pool) { 22133 lpfc_printf_log(phba, KERN_INFO, 22134 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22135 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22136 return lpfc_ncmd; 22137 } 22138 multixri_pool->io_req_count++; 22139 22140 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22141 if (pvt_pool->count == 0) 22142 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22143 22144 /* Get one XRI from private free xri pool */ 22145 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22146 22147 if (lpfc_ncmd) { 22148 lpfc_ncmd->hdwq = qp; 22149 lpfc_ncmd->hdwq_no = hwqid; 22150 } else if (expedite) { 22151 /* If we fail to get one from pvt_pool and this is an expedite 22152 * request, get one free xri from expedite pool. 22153 */ 22154 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22155 } 22156 22157 return lpfc_ncmd; 22158 } 22159 22160 static inline struct lpfc_io_buf * 22161 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22162 { 22163 struct lpfc_sli4_hdw_queue *qp; 22164 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22165 22166 qp = &phba->sli4_hba.hdwq[idx]; 22167 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22168 &qp->lpfc_io_buf_list_get, list) { 22169 if (lpfc_test_rrq_active(phba, ndlp, 22170 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22171 continue; 22172 22173 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22174 continue; 22175 22176 list_del_init(&lpfc_cmd->list); 22177 qp->get_io_bufs--; 22178 lpfc_cmd->hdwq = qp; 22179 lpfc_cmd->hdwq_no = idx; 22180 return lpfc_cmd; 22181 } 22182 return NULL; 22183 } 22184 22185 /** 22186 * lpfc_get_io_buf - Get one IO buffer from free pool 22187 * @phba: The HBA for which this call is being executed. 22188 * @ndlp: pointer to lpfc nodelist data structure. 22189 * @hwqid: belong to which HWQ 22190 * @expedite: 1 means this request is urgent. 22191 * 22192 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22193 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22194 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22195 * 22196 * Note: ndlp is only used on SCSI side for RRQ testing. 22197 * The caller should pass NULL for ndlp on NVME side. 22198 * 22199 * Return codes: 22200 * NULL - Error 22201 * Pointer to lpfc_io_buf - Success 22202 **/ 22203 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22204 struct lpfc_nodelist *ndlp, 22205 u32 hwqid, int expedite) 22206 { 22207 struct lpfc_sli4_hdw_queue *qp; 22208 unsigned long iflag; 22209 struct lpfc_io_buf *lpfc_cmd; 22210 22211 qp = &phba->sli4_hba.hdwq[hwqid]; 22212 lpfc_cmd = NULL; 22213 if (!qp) { 22214 lpfc_printf_log(phba, KERN_WARNING, 22215 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22216 "5555 NULL qp for hwqid x%x\n", hwqid); 22217 return lpfc_cmd; 22218 } 22219 22220 if (phba->cfg_xri_rebalancing) 22221 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22222 phba, ndlp, hwqid, expedite); 22223 else { 22224 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22225 qp, alloc_xri_get); 22226 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22227 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22228 if (!lpfc_cmd) { 22229 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22230 qp, alloc_xri_put); 22231 list_splice(&qp->lpfc_io_buf_list_put, 22232 &qp->lpfc_io_buf_list_get); 22233 qp->get_io_bufs += qp->put_io_bufs; 22234 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22235 qp->put_io_bufs = 0; 22236 spin_unlock(&qp->io_buf_list_put_lock); 22237 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22238 expedite) 22239 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22240 } 22241 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22242 } 22243 22244 return lpfc_cmd; 22245 } 22246 22247 /** 22248 * lpfc_read_object - Retrieve object data from HBA 22249 * @phba: The HBA for which this call is being executed. 22250 * @rdobject: Pathname of object data we want to read. 22251 * @datap: Pointer to where data will be copied to. 22252 * @datasz: size of data area 22253 * 22254 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22255 * The data will be truncated if datasz is not large enough. 22256 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22257 * Returns the actual bytes read from the object. 22258 * 22259 * This routine is hard coded to use a poll completion. Unlike other 22260 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22261 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22262 * to use interrupt-based completions, code is needed to fully cleanup 22263 * the memory. 22264 */ 22265 int 22266 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22267 uint32_t datasz) 22268 { 22269 struct lpfc_mbx_read_object *read_object; 22270 LPFC_MBOXQ_t *mbox; 22271 int rc, length, eof, j, byte_cnt = 0; 22272 uint32_t shdr_status, shdr_add_status; 22273 union lpfc_sli4_cfg_shdr *shdr; 22274 struct lpfc_dmabuf *pcmd; 22275 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22276 22277 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22278 if (!mbox) 22279 return -ENOMEM; 22280 length = (sizeof(struct lpfc_mbx_read_object) - 22281 sizeof(struct lpfc_sli4_cfg_mhdr)); 22282 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22283 LPFC_MBOX_OPCODE_READ_OBJECT, 22284 length, LPFC_SLI4_MBX_EMBED); 22285 read_object = &mbox->u.mqe.un.read_object; 22286 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22287 22288 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22289 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22290 read_object->u.request.rd_object_offset = 0; 22291 read_object->u.request.rd_object_cnt = 1; 22292 22293 memset((void *)read_object->u.request.rd_object_name, 0, 22294 LPFC_OBJ_NAME_SZ); 22295 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22296 for (j = 0; j < strlen(rdobject); j++) 22297 read_object->u.request.rd_object_name[j] = 22298 cpu_to_le32(rd_object_name[j]); 22299 22300 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22301 if (pcmd) 22302 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22303 if (!pcmd || !pcmd->virt) { 22304 kfree(pcmd); 22305 mempool_free(mbox, phba->mbox_mem_pool); 22306 return -ENOMEM; 22307 } 22308 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22309 read_object->u.request.rd_object_hbuf[0].pa_lo = 22310 putPaddrLow(pcmd->phys); 22311 read_object->u.request.rd_object_hbuf[0].pa_hi = 22312 putPaddrHigh(pcmd->phys); 22313 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22314 22315 mbox->vport = phba->pport; 22316 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22317 mbox->ctx_ndlp = NULL; 22318 22319 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22320 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22321 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22322 22323 if (shdr_status == STATUS_FAILED && 22324 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22326 "4674 No port cfg file in FW.\n"); 22327 byte_cnt = -ENOENT; 22328 } else if (shdr_status || shdr_add_status || rc) { 22329 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22330 "2625 READ_OBJECT mailbox failed with " 22331 "status x%x add_status x%x, mbx status x%x\n", 22332 shdr_status, shdr_add_status, rc); 22333 byte_cnt = -ENXIO; 22334 } else { 22335 /* Success */ 22336 length = read_object->u.response.rd_object_actual_rlen; 22337 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22338 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22339 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22340 length, datasz, eof); 22341 22342 /* Detect the port config file exists but is empty */ 22343 if (!length && eof) { 22344 byte_cnt = 0; 22345 goto exit; 22346 } 22347 22348 byte_cnt = length; 22349 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22350 } 22351 22352 exit: 22353 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22354 * Free the pcmd and then cleanup with the correct routine. 22355 */ 22356 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22357 kfree(pcmd); 22358 lpfc_sli4_mbox_cmd_free(phba, mbox); 22359 return byte_cnt; 22360 } 22361 22362 /** 22363 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22364 * @phba: The HBA for which this call is being executed. 22365 * @lpfc_buf: IO buf structure to append the SGL chunk 22366 * 22367 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22368 * and will allocate an SGL chunk if the pool is empty. 22369 * 22370 * Return codes: 22371 * NULL - Error 22372 * Pointer to sli4_hybrid_sgl - Success 22373 **/ 22374 struct sli4_hybrid_sgl * 22375 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22376 { 22377 struct sli4_hybrid_sgl *list_entry = NULL; 22378 struct sli4_hybrid_sgl *tmp = NULL; 22379 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22380 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22381 struct list_head *buf_list = &hdwq->sgl_list; 22382 unsigned long iflags; 22383 22384 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22385 22386 if (likely(!list_empty(buf_list))) { 22387 /* break off 1 chunk from the sgl_list */ 22388 list_for_each_entry_safe(list_entry, tmp, 22389 buf_list, list_node) { 22390 list_move_tail(&list_entry->list_node, 22391 &lpfc_buf->dma_sgl_xtra_list); 22392 break; 22393 } 22394 } else { 22395 /* allocate more */ 22396 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22397 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22398 cpu_to_node(hdwq->io_wq->chann)); 22399 if (!tmp) { 22400 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22401 "8353 error kmalloc memory for HDWQ " 22402 "%d %s\n", 22403 lpfc_buf->hdwq_no, __func__); 22404 return NULL; 22405 } 22406 22407 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22408 GFP_ATOMIC, &tmp->dma_phys_sgl); 22409 if (!tmp->dma_sgl) { 22410 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22411 "8354 error pool_alloc memory for HDWQ " 22412 "%d %s\n", 22413 lpfc_buf->hdwq_no, __func__); 22414 kfree(tmp); 22415 return NULL; 22416 } 22417 22418 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22419 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22420 } 22421 22422 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22423 struct sli4_hybrid_sgl, 22424 list_node); 22425 22426 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22427 22428 return allocated_sgl; 22429 } 22430 22431 /** 22432 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22433 * @phba: The HBA for which this call is being executed. 22434 * @lpfc_buf: IO buf structure with the SGL chunk 22435 * 22436 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22437 * 22438 * Return codes: 22439 * 0 - Success 22440 * -EINVAL - Error 22441 **/ 22442 int 22443 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22444 { 22445 int rc = 0; 22446 struct sli4_hybrid_sgl *list_entry = NULL; 22447 struct sli4_hybrid_sgl *tmp = NULL; 22448 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22449 struct list_head *buf_list = &hdwq->sgl_list; 22450 unsigned long iflags; 22451 22452 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22453 22454 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22455 list_for_each_entry_safe(list_entry, tmp, 22456 &lpfc_buf->dma_sgl_xtra_list, 22457 list_node) { 22458 list_move_tail(&list_entry->list_node, 22459 buf_list); 22460 } 22461 } else { 22462 rc = -EINVAL; 22463 } 22464 22465 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22466 return rc; 22467 } 22468 22469 /** 22470 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22471 * @phba: phba object 22472 * @hdwq: hdwq to cleanup sgl buff resources on 22473 * 22474 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22475 * 22476 * Return codes: 22477 * None 22478 **/ 22479 void 22480 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22481 struct lpfc_sli4_hdw_queue *hdwq) 22482 { 22483 struct list_head *buf_list = &hdwq->sgl_list; 22484 struct sli4_hybrid_sgl *list_entry = NULL; 22485 struct sli4_hybrid_sgl *tmp = NULL; 22486 unsigned long iflags; 22487 22488 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22489 22490 /* Free sgl pool */ 22491 list_for_each_entry_safe(list_entry, tmp, 22492 buf_list, list_node) { 22493 list_del(&list_entry->list_node); 22494 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22495 list_entry->dma_sgl, 22496 list_entry->dma_phys_sgl); 22497 kfree(list_entry); 22498 } 22499 22500 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22501 } 22502 22503 /** 22504 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22505 * @phba: The HBA for which this call is being executed. 22506 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22507 * 22508 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22509 * and will allocate an CMD/RSP buffer if the pool is empty. 22510 * 22511 * Return codes: 22512 * NULL - Error 22513 * Pointer to fcp_cmd_rsp_buf - Success 22514 **/ 22515 struct fcp_cmd_rsp_buf * 22516 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22517 struct lpfc_io_buf *lpfc_buf) 22518 { 22519 struct fcp_cmd_rsp_buf *list_entry = NULL; 22520 struct fcp_cmd_rsp_buf *tmp = NULL; 22521 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22522 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22523 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22524 unsigned long iflags; 22525 22526 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22527 22528 if (likely(!list_empty(buf_list))) { 22529 /* break off 1 chunk from the list */ 22530 list_for_each_entry_safe(list_entry, tmp, 22531 buf_list, 22532 list_node) { 22533 list_move_tail(&list_entry->list_node, 22534 &lpfc_buf->dma_cmd_rsp_list); 22535 break; 22536 } 22537 } else { 22538 /* allocate more */ 22539 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22540 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22541 cpu_to_node(hdwq->io_wq->chann)); 22542 if (!tmp) { 22543 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22544 "8355 error kmalloc memory for HDWQ " 22545 "%d %s\n", 22546 lpfc_buf->hdwq_no, __func__); 22547 return NULL; 22548 } 22549 22550 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22551 GFP_ATOMIC, 22552 &tmp->fcp_cmd_rsp_dma_handle); 22553 22554 if (!tmp->fcp_cmnd) { 22555 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22556 "8356 error pool_alloc memory for HDWQ " 22557 "%d %s\n", 22558 lpfc_buf->hdwq_no, __func__); 22559 kfree(tmp); 22560 return NULL; 22561 } 22562 22563 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22564 sizeof(struct fcp_cmnd32)); 22565 22566 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22567 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22568 } 22569 22570 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22571 struct fcp_cmd_rsp_buf, 22572 list_node); 22573 22574 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22575 22576 return allocated_buf; 22577 } 22578 22579 /** 22580 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22581 * @phba: The HBA for which this call is being executed. 22582 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22583 * 22584 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22585 * 22586 * Return codes: 22587 * 0 - Success 22588 * -EINVAL - Error 22589 **/ 22590 int 22591 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22592 struct lpfc_io_buf *lpfc_buf) 22593 { 22594 int rc = 0; 22595 struct fcp_cmd_rsp_buf *list_entry = NULL; 22596 struct fcp_cmd_rsp_buf *tmp = NULL; 22597 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22598 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22599 unsigned long iflags; 22600 22601 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22602 22603 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22604 list_for_each_entry_safe(list_entry, tmp, 22605 &lpfc_buf->dma_cmd_rsp_list, 22606 list_node) { 22607 list_move_tail(&list_entry->list_node, 22608 buf_list); 22609 } 22610 } else { 22611 rc = -EINVAL; 22612 } 22613 22614 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22615 return rc; 22616 } 22617 22618 /** 22619 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22620 * @phba: phba object 22621 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22622 * 22623 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22624 * 22625 * Return codes: 22626 * None 22627 **/ 22628 void 22629 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22630 struct lpfc_sli4_hdw_queue *hdwq) 22631 { 22632 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22633 struct fcp_cmd_rsp_buf *list_entry = NULL; 22634 struct fcp_cmd_rsp_buf *tmp = NULL; 22635 unsigned long iflags; 22636 22637 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22638 22639 /* Free cmd_rsp buf pool */ 22640 list_for_each_entry_safe(list_entry, tmp, 22641 buf_list, 22642 list_node) { 22643 list_del(&list_entry->list_node); 22644 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22645 list_entry->fcp_cmnd, 22646 list_entry->fcp_cmd_rsp_dma_handle); 22647 kfree(list_entry); 22648 } 22649 22650 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22651 } 22652 22653 /** 22654 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22655 * @phba: phba object 22656 * @job: job entry of the command to be posted. 22657 * 22658 * Fill the common fields of the wqe for each of the command. 22659 * 22660 * Return codes: 22661 * None 22662 **/ 22663 void 22664 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22665 { 22666 u8 cmnd; 22667 u32 *pcmd; 22668 u32 if_type = 0; 22669 u32 abort_tag; 22670 bool fip; 22671 struct lpfc_nodelist *ndlp = NULL; 22672 union lpfc_wqe128 *wqe = &job->wqe; 22673 u8 command_type = ELS_COMMAND_NON_FIP; 22674 22675 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22676 /* The fcp commands will set command type */ 22677 if (job->cmd_flag & LPFC_IO_FCP) 22678 command_type = FCP_COMMAND; 22679 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22680 command_type = ELS_COMMAND_FIP; 22681 else 22682 command_type = ELS_COMMAND_NON_FIP; 22683 22684 abort_tag = job->iotag; 22685 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22686 22687 switch (cmnd) { 22688 case CMD_ELS_REQUEST64_WQE: 22689 ndlp = job->ndlp; 22690 22691 if_type = bf_get(lpfc_sli_intf_if_type, 22692 &phba->sli4_hba.sli_intf); 22693 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22694 pcmd = (u32 *)job->cmd_dmabuf->virt; 22695 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22696 *pcmd == ELS_CMD_SCR || 22697 *pcmd == ELS_CMD_RDF || 22698 *pcmd == ELS_CMD_EDC || 22699 *pcmd == ELS_CMD_RSCN_XMT || 22700 *pcmd == ELS_CMD_FDISC || 22701 *pcmd == ELS_CMD_LOGO || 22702 *pcmd == ELS_CMD_QFPA || 22703 *pcmd == ELS_CMD_UVEM || 22704 *pcmd == ELS_CMD_PLOGI)) { 22705 bf_set(els_req64_sp, &wqe->els_req, 1); 22706 bf_set(els_req64_sid, &wqe->els_req, 22707 job->vport->fc_myDID); 22708 22709 if ((*pcmd == ELS_CMD_FLOGI) && 22710 !(phba->fc_topology == 22711 LPFC_TOPOLOGY_LOOP)) 22712 bf_set(els_req64_sid, &wqe->els_req, 0); 22713 22714 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22715 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22716 phba->vpi_ids[job->vport->vpi]); 22717 } else if (pcmd) { 22718 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22719 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22720 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22721 } 22722 } 22723 22724 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22725 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22726 22727 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22728 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22729 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22730 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22731 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22732 break; 22733 case CMD_XMIT_ELS_RSP64_WQE: 22734 ndlp = job->ndlp; 22735 22736 /* word4 */ 22737 wqe->xmit_els_rsp.word4 = 0; 22738 22739 if_type = bf_get(lpfc_sli_intf_if_type, 22740 &phba->sli4_hba.sli_intf); 22741 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22742 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22743 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22744 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22745 job->vport->fc_myDID); 22746 if (job->vport->fc_myDID == Fabric_DID) { 22747 bf_set(wqe_els_did, 22748 &wqe->xmit_els_rsp.wqe_dest, 0); 22749 } 22750 } 22751 } 22752 22753 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22754 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22755 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22756 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22757 LPFC_WQE_LENLOC_WORD3); 22758 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22759 22760 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22761 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22762 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22763 job->vport->fc_myDID); 22764 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22765 } 22766 22767 if (phba->sli_rev == LPFC_SLI_REV4) { 22768 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22769 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22770 22771 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22772 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22773 phba->vpi_ids[job->vport->vpi]); 22774 } 22775 command_type = OTHER_COMMAND; 22776 break; 22777 case CMD_GEN_REQUEST64_WQE: 22778 /* Word 10 */ 22779 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22780 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22781 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22782 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22783 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22784 command_type = OTHER_COMMAND; 22785 break; 22786 case CMD_XMIT_SEQUENCE64_WQE: 22787 if (phba->link_flag & LS_LOOPBACK_MODE) 22788 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22789 22790 wqe->xmit_sequence.rsvd3 = 0; 22791 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22792 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22793 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22794 LPFC_WQE_IOD_WRITE); 22795 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22796 LPFC_WQE_LENLOC_WORD12); 22797 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22798 command_type = OTHER_COMMAND; 22799 break; 22800 case CMD_XMIT_BLS_RSP64_WQE: 22801 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22802 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22803 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22804 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22805 phba->vpi_ids[phba->pport->vpi]); 22806 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22807 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22808 LPFC_WQE_LENLOC_NONE); 22809 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22810 command_type = OTHER_COMMAND; 22811 break; 22812 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22813 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22814 case CMD_SEND_FRAME: /* mds loopback */ 22815 /* cases already formatted for sli4 wqe - no chgs necessary */ 22816 return; 22817 default: 22818 dump_stack(); 22819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22820 "6207 Invalid command 0x%x\n", 22821 cmnd); 22822 break; 22823 } 22824 22825 wqe->generic.wqe_com.abort_tag = abort_tag; 22826 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22827 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22828 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22829 } 22830