1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40
41 #include "drop.h"
42 #include "flow_netlink.h"
43
44 struct ovs_len_tbl {
45 int len;
46 const struct ovs_len_tbl *next;
47 };
48
49 #define OVS_ATTR_NESTED -1
50 #define OVS_ATTR_VARIABLE -2
51 #define OVS_COPY_ACTIONS_MAX_DEPTH 16
52
actions_may_change_flow(const struct nlattr * actions)53 static bool actions_may_change_flow(const struct nlattr *actions)
54 {
55 struct nlattr *nla;
56 int rem;
57
58 nla_for_each_nested(nla, actions, rem) {
59 u16 action = nla_type(nla);
60
61 switch (action) {
62 case OVS_ACTION_ATTR_OUTPUT:
63 case OVS_ACTION_ATTR_RECIRC:
64 case OVS_ACTION_ATTR_TRUNC:
65 case OVS_ACTION_ATTR_USERSPACE:
66 case OVS_ACTION_ATTR_DROP:
67 case OVS_ACTION_ATTR_PSAMPLE:
68 break;
69
70 case OVS_ACTION_ATTR_CT:
71 case OVS_ACTION_ATTR_CT_CLEAR:
72 case OVS_ACTION_ATTR_HASH:
73 case OVS_ACTION_ATTR_POP_ETH:
74 case OVS_ACTION_ATTR_POP_MPLS:
75 case OVS_ACTION_ATTR_POP_NSH:
76 case OVS_ACTION_ATTR_POP_VLAN:
77 case OVS_ACTION_ATTR_PUSH_ETH:
78 case OVS_ACTION_ATTR_PUSH_MPLS:
79 case OVS_ACTION_ATTR_PUSH_NSH:
80 case OVS_ACTION_ATTR_PUSH_VLAN:
81 case OVS_ACTION_ATTR_SAMPLE:
82 case OVS_ACTION_ATTR_SET:
83 case OVS_ACTION_ATTR_SET_MASKED:
84 case OVS_ACTION_ATTR_METER:
85 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
86 case OVS_ACTION_ATTR_ADD_MPLS:
87 case OVS_ACTION_ATTR_DEC_TTL:
88 default:
89 return true;
90 }
91 }
92 return false;
93 }
94
update_range(struct sw_flow_match * match,size_t offset,size_t size,bool is_mask)95 static void update_range(struct sw_flow_match *match,
96 size_t offset, size_t size, bool is_mask)
97 {
98 struct sw_flow_key_range *range;
99 size_t start = rounddown(offset, sizeof(long));
100 size_t end = roundup(offset + size, sizeof(long));
101
102 if (!is_mask)
103 range = &match->range;
104 else
105 range = &match->mask->range;
106
107 if (range->start == range->end) {
108 range->start = start;
109 range->end = end;
110 return;
111 }
112
113 if (range->start > start)
114 range->start = start;
115
116 if (range->end < end)
117 range->end = end;
118 }
119
120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
121 do { \
122 update_range(match, offsetof(struct sw_flow_key, field), \
123 sizeof((match)->key->field), is_mask); \
124 if (is_mask) \
125 (match)->mask->key.field = value; \
126 else \
127 (match)->key->field = value; \
128 } while (0)
129
130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
131 do { \
132 update_range(match, offset, len, is_mask); \
133 if (is_mask) \
134 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
135 len); \
136 else \
137 memcpy((u8 *)(match)->key + offset, value_p, len); \
138 } while (0)
139
140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
141 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
142 value_p, len, is_mask)
143
144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
145 do { \
146 update_range(match, offsetof(struct sw_flow_key, field), \
147 sizeof((match)->key->field), is_mask); \
148 if (is_mask) \
149 memset((u8 *)&(match)->mask->key.field, value, \
150 sizeof((match)->mask->key.field)); \
151 else \
152 memset((u8 *)&(match)->key->field, value, \
153 sizeof((match)->key->field)); \
154 } while (0)
155
156 #define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({ \
157 update_range(match, offsetof(struct sw_flow_key, field), \
158 bitmap_size(nbits), is_mask); \
159 bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \
160 value_p, nbits); \
161 })
162
match_validate(const struct sw_flow_match * match,u64 key_attrs,u64 mask_attrs,bool log)163 static bool match_validate(const struct sw_flow_match *match,
164 u64 key_attrs, u64 mask_attrs, bool log)
165 {
166 u64 key_expected = 0;
167 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
168
169 /* The following mask attributes allowed only if they
170 * pass the validation tests. */
171 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
172 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
173 | (1 << OVS_KEY_ATTR_IPV6)
174 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
175 | (1 << OVS_KEY_ATTR_TCP)
176 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
177 | (1 << OVS_KEY_ATTR_UDP)
178 | (1 << OVS_KEY_ATTR_SCTP)
179 | (1 << OVS_KEY_ATTR_ICMP)
180 | (1 << OVS_KEY_ATTR_ICMPV6)
181 | (1 << OVS_KEY_ATTR_ARP)
182 | (1 << OVS_KEY_ATTR_ND)
183 | (1 << OVS_KEY_ATTR_MPLS)
184 | (1 << OVS_KEY_ATTR_NSH));
185
186 /* Always allowed mask fields. */
187 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
188 | (1 << OVS_KEY_ATTR_IN_PORT)
189 | (1 << OVS_KEY_ATTR_ETHERTYPE));
190
191 /* Check key attributes. */
192 if (match->key->eth.type == htons(ETH_P_ARP)
193 || match->key->eth.type == htons(ETH_P_RARP)) {
194 key_expected |= 1 << OVS_KEY_ATTR_ARP;
195 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
196 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
197 }
198
199 if (eth_p_mpls(match->key->eth.type)) {
200 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
201 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
203 }
204
205 if (match->key->eth.type == htons(ETH_P_IP)) {
206 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
207 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
208 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
209 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
210 }
211
212 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
213 if (match->key->ip.proto == IPPROTO_UDP) {
214 key_expected |= 1 << OVS_KEY_ATTR_UDP;
215 if (match->mask && (match->mask->key.ip.proto == 0xff))
216 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
217 }
218
219 if (match->key->ip.proto == IPPROTO_SCTP) {
220 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
221 if (match->mask && (match->mask->key.ip.proto == 0xff))
222 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
223 }
224
225 if (match->key->ip.proto == IPPROTO_TCP) {
226 key_expected |= 1 << OVS_KEY_ATTR_TCP;
227 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
228 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
229 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
230 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
231 }
232 }
233
234 if (match->key->ip.proto == IPPROTO_ICMP) {
235 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
236 if (match->mask && (match->mask->key.ip.proto == 0xff))
237 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
238 }
239 }
240 }
241
242 if (match->key->eth.type == htons(ETH_P_IPV6)) {
243 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
244 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
245 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
246 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
247 }
248
249 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
250 if (match->key->ip.proto == IPPROTO_UDP) {
251 key_expected |= 1 << OVS_KEY_ATTR_UDP;
252 if (match->mask && (match->mask->key.ip.proto == 0xff))
253 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
254 }
255
256 if (match->key->ip.proto == IPPROTO_SCTP) {
257 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
258 if (match->mask && (match->mask->key.ip.proto == 0xff))
259 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
260 }
261
262 if (match->key->ip.proto == IPPROTO_TCP) {
263 key_expected |= 1 << OVS_KEY_ATTR_TCP;
264 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
265 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
266 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
267 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
268 }
269 }
270
271 if (match->key->ip.proto == IPPROTO_ICMPV6) {
272 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
273 if (match->mask && (match->mask->key.ip.proto == 0xff))
274 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
275
276 if (match->key->tp.src ==
277 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
278 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
279 key_expected |= 1 << OVS_KEY_ATTR_ND;
280 /* Original direction conntrack tuple
281 * uses the same space as the ND fields
282 * in the key, so both are not allowed
283 * at the same time.
284 */
285 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
286 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
287 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
288 }
289 }
290 }
291 }
292
293 if (match->key->eth.type == htons(ETH_P_NSH)) {
294 key_expected |= 1 << OVS_KEY_ATTR_NSH;
295 if (match->mask &&
296 match->mask->key.eth.type == htons(0xffff)) {
297 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
298 }
299 }
300
301 if ((key_attrs & key_expected) != key_expected) {
302 /* Key attributes check failed. */
303 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
304 (unsigned long long)key_attrs,
305 (unsigned long long)key_expected);
306 return false;
307 }
308
309 if ((mask_attrs & mask_allowed) != mask_attrs) {
310 /* Mask attributes check failed. */
311 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
312 (unsigned long long)mask_attrs,
313 (unsigned long long)mask_allowed);
314 return false;
315 }
316
317 return true;
318 }
319
ovs_tun_key_attr_size(void)320 size_t ovs_tun_key_attr_size(void)
321 {
322 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
323 * updating this function.
324 */
325 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
326 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
327 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
328 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
329 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
330 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
331 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
332 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
333 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
334 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
335 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
336 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
337 */
338 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
339 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
340 }
341
ovs_nsh_key_attr_size(void)342 static size_t ovs_nsh_key_attr_size(void)
343 {
344 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
345 * updating this function.
346 */
347 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
348 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
349 * mutually exclusive, so the bigger one can cover
350 * the small one.
351 */
352 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
353 }
354
ovs_key_attr_size(void)355 size_t ovs_key_attr_size(void)
356 {
357 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
358 * updating this function.
359 */
360 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
361
362 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
363 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
364 + ovs_tun_key_attr_size()
365 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
366 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
367 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
368 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
369 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
370 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
371 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
372 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
373 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
374 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */
375 + ovs_nsh_key_attr_size()
376 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
377 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
378 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
379 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
380 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
381 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
382 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
383 + nla_total_size(28) /* OVS_KEY_ATTR_ND */
384 + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */
385 }
386
387 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
388 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
389 };
390
391 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
392 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
393 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
394 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
395 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
396 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
397 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
398 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
399 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
400 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
401 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
402 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
403 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
404 .next = ovs_vxlan_ext_key_lens },
405 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
406 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
407 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
408 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
409 };
410
411 static const struct ovs_len_tbl
412 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
413 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
414 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
415 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
416 };
417
418 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
419 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
420 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
421 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
422 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
423 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
424 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
425 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
426 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
427 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
428 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
429 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
430 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
431 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
432 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
433 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
434 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
435 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
436 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
437 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
438 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
439 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
440 .next = ovs_tunnel_key_lens, },
441 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
442 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
443 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
444 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
445 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
446 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
447 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
448 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
449 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
450 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
451 .next = ovs_nsh_key_attr_lens, },
452 [OVS_KEY_ATTR_IPV6_EXTHDRS] = {
453 .len = sizeof(struct ovs_key_ipv6_exthdrs) },
454 };
455
check_attr_len(unsigned int attr_len,unsigned int expected_len)456 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
457 {
458 return expected_len == attr_len ||
459 expected_len == OVS_ATTR_NESTED ||
460 expected_len == OVS_ATTR_VARIABLE;
461 }
462
is_all_zero(const u8 * fp,size_t size)463 static bool is_all_zero(const u8 *fp, size_t size)
464 {
465 int i;
466
467 if (!fp)
468 return false;
469
470 for (i = 0; i < size; i++)
471 if (fp[i])
472 return false;
473
474 return true;
475 }
476
__parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log,bool nz)477 static int __parse_flow_nlattrs(const struct nlattr *attr,
478 const struct nlattr *a[],
479 u64 *attrsp, bool log, bool nz)
480 {
481 const struct nlattr *nla;
482 u64 attrs;
483 int rem;
484
485 attrs = *attrsp;
486 nla_for_each_nested(nla, attr, rem) {
487 u16 type = nla_type(nla);
488 int expected_len;
489
490 if (type > OVS_KEY_ATTR_MAX) {
491 OVS_NLERR(log, "Key type %d is out of range max %d",
492 type, OVS_KEY_ATTR_MAX);
493 return -EINVAL;
494 }
495
496 if (type == OVS_KEY_ATTR_PACKET_TYPE ||
497 type == OVS_KEY_ATTR_ND_EXTENSIONS ||
498 type == OVS_KEY_ATTR_TUNNEL_INFO) {
499 OVS_NLERR(log, "Key type %d is not supported", type);
500 return -EINVAL;
501 }
502
503 if (attrs & (1ULL << type)) {
504 OVS_NLERR(log, "Duplicate key (type %d).", type);
505 return -EINVAL;
506 }
507
508 expected_len = ovs_key_lens[type].len;
509 if (!check_attr_len(nla_len(nla), expected_len)) {
510 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
511 type, nla_len(nla), expected_len);
512 return -EINVAL;
513 }
514
515 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
516 attrs |= 1ULL << type;
517 a[type] = nla;
518 }
519 }
520 if (rem) {
521 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
522 return -EINVAL;
523 }
524
525 *attrsp = attrs;
526 return 0;
527 }
528
parse_flow_mask_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)529 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
530 const struct nlattr *a[], u64 *attrsp,
531 bool log)
532 {
533 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
534 }
535
parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)536 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
537 u64 *attrsp, bool log)
538 {
539 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
540 }
541
genev_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)542 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
543 struct sw_flow_match *match, bool is_mask,
544 bool log)
545 {
546 unsigned long opt_key_offset;
547
548 if (nla_len(a) > sizeof(match->key->tun_opts)) {
549 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
550 nla_len(a), sizeof(match->key->tun_opts));
551 return -EINVAL;
552 }
553
554 if (nla_len(a) % 4 != 0) {
555 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
556 nla_len(a));
557 return -EINVAL;
558 }
559
560 /* We need to record the length of the options passed
561 * down, otherwise packets with the same format but
562 * additional options will be silently matched.
563 */
564 if (!is_mask) {
565 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
566 false);
567 } else {
568 /* This is somewhat unusual because it looks at
569 * both the key and mask while parsing the
570 * attributes (and by extension assumes the key
571 * is parsed first). Normally, we would verify
572 * that each is the correct length and that the
573 * attributes line up in the validate function.
574 * However, that is difficult because this is
575 * variable length and we won't have the
576 * information later.
577 */
578 if (match->key->tun_opts_len != nla_len(a)) {
579 OVS_NLERR(log, "Geneve option len %d != mask len %d",
580 match->key->tun_opts_len, nla_len(a));
581 return -EINVAL;
582 }
583
584 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
585 }
586
587 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
588 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
589 nla_len(a), is_mask);
590 return 0;
591 }
592
vxlan_tun_opt_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)593 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
594 struct sw_flow_match *match, bool is_mask,
595 bool log)
596 {
597 struct nlattr *a;
598 int rem;
599 unsigned long opt_key_offset;
600 struct vxlan_metadata opts;
601
602 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
603
604 memset(&opts, 0, sizeof(opts));
605 nla_for_each_nested(a, attr, rem) {
606 int type = nla_type(a);
607
608 if (type > OVS_VXLAN_EXT_MAX) {
609 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
610 type, OVS_VXLAN_EXT_MAX);
611 return -EINVAL;
612 }
613
614 if (!check_attr_len(nla_len(a),
615 ovs_vxlan_ext_key_lens[type].len)) {
616 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
617 type, nla_len(a),
618 ovs_vxlan_ext_key_lens[type].len);
619 return -EINVAL;
620 }
621
622 switch (type) {
623 case OVS_VXLAN_EXT_GBP:
624 opts.gbp = nla_get_u32(a);
625 break;
626 default:
627 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
628 type);
629 return -EINVAL;
630 }
631 }
632 if (rem) {
633 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
634 rem);
635 return -EINVAL;
636 }
637
638 if (!is_mask)
639 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
640 else
641 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
642
643 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
644 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
645 is_mask);
646 return 0;
647 }
648
erspan_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)649 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
650 struct sw_flow_match *match, bool is_mask,
651 bool log)
652 {
653 unsigned long opt_key_offset;
654
655 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
656 sizeof(match->key->tun_opts));
657
658 if (nla_len(a) > sizeof(match->key->tun_opts)) {
659 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
660 nla_len(a), sizeof(match->key->tun_opts));
661 return -EINVAL;
662 }
663
664 if (!is_mask)
665 SW_FLOW_KEY_PUT(match, tun_opts_len,
666 sizeof(struct erspan_metadata), false);
667 else
668 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
669
670 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
671 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
672 nla_len(a), is_mask);
673 return 0;
674 }
675
ip_tun_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)676 static int ip_tun_from_nlattr(const struct nlattr *attr,
677 struct sw_flow_match *match, bool is_mask,
678 bool log)
679 {
680 bool ttl = false, ipv4 = false, ipv6 = false;
681 IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { };
682 bool info_bridge_mode = false;
683 int opts_type = 0;
684 struct nlattr *a;
685 int rem;
686
687 nla_for_each_nested(a, attr, rem) {
688 int type = nla_type(a);
689 int err;
690
691 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
692 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
693 type, OVS_TUNNEL_KEY_ATTR_MAX);
694 return -EINVAL;
695 }
696
697 if (!check_attr_len(nla_len(a),
698 ovs_tunnel_key_lens[type].len)) {
699 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
700 type, nla_len(a), ovs_tunnel_key_lens[type].len);
701 return -EINVAL;
702 }
703
704 switch (type) {
705 case OVS_TUNNEL_KEY_ATTR_ID:
706 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
707 nla_get_be64(a), is_mask);
708 __set_bit(IP_TUNNEL_KEY_BIT, tun_flags);
709 break;
710 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
711 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
712 nla_get_in_addr(a), is_mask);
713 ipv4 = true;
714 break;
715 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
716 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
717 nla_get_in_addr(a), is_mask);
718 ipv4 = true;
719 break;
720 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
721 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
722 nla_get_in6_addr(a), is_mask);
723 ipv6 = true;
724 break;
725 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
726 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
727 nla_get_in6_addr(a), is_mask);
728 ipv6 = true;
729 break;
730 case OVS_TUNNEL_KEY_ATTR_TOS:
731 SW_FLOW_KEY_PUT(match, tun_key.tos,
732 nla_get_u8(a), is_mask);
733 break;
734 case OVS_TUNNEL_KEY_ATTR_TTL:
735 SW_FLOW_KEY_PUT(match, tun_key.ttl,
736 nla_get_u8(a), is_mask);
737 ttl = true;
738 break;
739 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
740 __set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags);
741 break;
742 case OVS_TUNNEL_KEY_ATTR_CSUM:
743 __set_bit(IP_TUNNEL_CSUM_BIT, tun_flags);
744 break;
745 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
746 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
747 nla_get_be16(a), is_mask);
748 break;
749 case OVS_TUNNEL_KEY_ATTR_TP_DST:
750 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
751 nla_get_be16(a), is_mask);
752 break;
753 case OVS_TUNNEL_KEY_ATTR_OAM:
754 __set_bit(IP_TUNNEL_OAM_BIT, tun_flags);
755 break;
756 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
757 if (opts_type) {
758 OVS_NLERR(log, "Multiple metadata blocks provided");
759 return -EINVAL;
760 }
761
762 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
763 if (err)
764 return err;
765
766 __set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags);
767 opts_type = type;
768 break;
769 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
770 if (opts_type) {
771 OVS_NLERR(log, "Multiple metadata blocks provided");
772 return -EINVAL;
773 }
774
775 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
776 if (err)
777 return err;
778
779 __set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags);
780 opts_type = type;
781 break;
782 case OVS_TUNNEL_KEY_ATTR_PAD:
783 break;
784 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
785 if (opts_type) {
786 OVS_NLERR(log, "Multiple metadata blocks provided");
787 return -EINVAL;
788 }
789
790 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
791 log);
792 if (err)
793 return err;
794
795 __set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags);
796 opts_type = type;
797 break;
798 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
799 info_bridge_mode = true;
800 ipv4 = true;
801 break;
802 default:
803 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
804 type);
805 return -EINVAL;
806 }
807 }
808
809 SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags,
810 __IP_TUNNEL_FLAG_NUM, is_mask);
811 if (is_mask)
812 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
813 else
814 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
815 false);
816
817 if (rem > 0) {
818 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
819 rem);
820 return -EINVAL;
821 }
822
823 if (ipv4 && ipv6) {
824 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
825 return -EINVAL;
826 }
827
828 if (!is_mask) {
829 if (!ipv4 && !ipv6) {
830 OVS_NLERR(log, "IP tunnel dst address not specified");
831 return -EINVAL;
832 }
833 if (ipv4) {
834 if (info_bridge_mode) {
835 __clear_bit(IP_TUNNEL_KEY_BIT, tun_flags);
836
837 if (match->key->tun_key.u.ipv4.src ||
838 match->key->tun_key.u.ipv4.dst ||
839 match->key->tun_key.tp_src ||
840 match->key->tun_key.tp_dst ||
841 match->key->tun_key.ttl ||
842 match->key->tun_key.tos ||
843 !ip_tunnel_flags_empty(tun_flags)) {
844 OVS_NLERR(log, "IPv4 tun info is not correct");
845 return -EINVAL;
846 }
847 } else if (!match->key->tun_key.u.ipv4.dst) {
848 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
849 return -EINVAL;
850 }
851 }
852 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
853 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
854 return -EINVAL;
855 }
856
857 if (!ttl && !info_bridge_mode) {
858 OVS_NLERR(log, "IP tunnel TTL not specified.");
859 return -EINVAL;
860 }
861 }
862
863 return opts_type;
864 }
865
vxlan_opt_to_nlattr(struct sk_buff * skb,const void * tun_opts,int swkey_tun_opts_len)866 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
867 const void *tun_opts, int swkey_tun_opts_len)
868 {
869 const struct vxlan_metadata *opts = tun_opts;
870 struct nlattr *nla;
871
872 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
873 if (!nla)
874 return -EMSGSIZE;
875
876 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
877 return -EMSGSIZE;
878
879 nla_nest_end(skb, nla);
880 return 0;
881 }
882
__ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)883 static int __ip_tun_to_nlattr(struct sk_buff *skb,
884 const struct ip_tunnel_key *output,
885 const void *tun_opts, int swkey_tun_opts_len,
886 unsigned short tun_proto, u8 mode)
887 {
888 if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) &&
889 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
890 OVS_TUNNEL_KEY_ATTR_PAD))
891 return -EMSGSIZE;
892
893 if (mode & IP_TUNNEL_INFO_BRIDGE)
894 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
895 ? -EMSGSIZE : 0;
896
897 switch (tun_proto) {
898 case AF_INET:
899 if (output->u.ipv4.src &&
900 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
901 output->u.ipv4.src))
902 return -EMSGSIZE;
903 if (output->u.ipv4.dst &&
904 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
905 output->u.ipv4.dst))
906 return -EMSGSIZE;
907 break;
908 case AF_INET6:
909 if (!ipv6_addr_any(&output->u.ipv6.src) &&
910 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
911 &output->u.ipv6.src))
912 return -EMSGSIZE;
913 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
914 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
915 &output->u.ipv6.dst))
916 return -EMSGSIZE;
917 break;
918 }
919 if (output->tos &&
920 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
921 return -EMSGSIZE;
922 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
923 return -EMSGSIZE;
924 if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) &&
925 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
926 return -EMSGSIZE;
927 if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) &&
928 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
929 return -EMSGSIZE;
930 if (output->tp_src &&
931 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
932 return -EMSGSIZE;
933 if (output->tp_dst &&
934 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
935 return -EMSGSIZE;
936 if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) &&
937 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
938 return -EMSGSIZE;
939 if (swkey_tun_opts_len) {
940 if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) &&
941 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
942 swkey_tun_opts_len, tun_opts))
943 return -EMSGSIZE;
944 else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT,
945 output->tun_flags) &&
946 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
947 return -EMSGSIZE;
948 else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT,
949 output->tun_flags) &&
950 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
951 swkey_tun_opts_len, tun_opts))
952 return -EMSGSIZE;
953 }
954
955 return 0;
956 }
957
ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)958 static int ip_tun_to_nlattr(struct sk_buff *skb,
959 const struct ip_tunnel_key *output,
960 const void *tun_opts, int swkey_tun_opts_len,
961 unsigned short tun_proto, u8 mode)
962 {
963 struct nlattr *nla;
964 int err;
965
966 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
967 if (!nla)
968 return -EMSGSIZE;
969
970 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
971 tun_proto, mode);
972 if (err)
973 return err;
974
975 nla_nest_end(skb, nla);
976 return 0;
977 }
978
ovs_nla_put_tunnel_info(struct sk_buff * skb,struct ip_tunnel_info * tun_info)979 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
980 struct ip_tunnel_info *tun_info)
981 {
982 return __ip_tun_to_nlattr(skb, &tun_info->key,
983 ip_tunnel_info_opts(tun_info),
984 tun_info->options_len,
985 ip_tunnel_info_af(tun_info), tun_info->mode);
986 }
987
encode_vlan_from_nlattrs(struct sw_flow_match * match,const struct nlattr * a[],bool is_mask,bool inner)988 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
989 const struct nlattr *a[],
990 bool is_mask, bool inner)
991 {
992 __be16 tci = 0;
993 __be16 tpid = 0;
994
995 if (a[OVS_KEY_ATTR_VLAN])
996 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
997
998 if (a[OVS_KEY_ATTR_ETHERTYPE])
999 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1000
1001 if (likely(!inner)) {
1002 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
1003 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
1004 } else {
1005 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
1006 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
1007 }
1008 return 0;
1009 }
1010
validate_vlan_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)1011 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
1012 u64 key_attrs, bool inner,
1013 const struct nlattr **a, bool log)
1014 {
1015 __be16 tci = 0;
1016
1017 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1018 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1019 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1020 /* Not a VLAN. */
1021 return 0;
1022 }
1023
1024 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1025 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1026 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1027 return -EINVAL;
1028 }
1029
1030 if (a[OVS_KEY_ATTR_VLAN])
1031 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1032
1033 if (!(tci & htons(VLAN_CFI_MASK))) {
1034 if (tci) {
1035 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1036 (inner) ? "C-VLAN" : "VLAN");
1037 return -EINVAL;
1038 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1039 /* Corner case for truncated VLAN header. */
1040 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1041 (inner) ? "C-VLAN" : "VLAN");
1042 return -EINVAL;
1043 }
1044 }
1045
1046 return 1;
1047 }
1048
validate_vlan_mask_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)1049 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1050 u64 key_attrs, bool inner,
1051 const struct nlattr **a, bool log)
1052 {
1053 __be16 tci = 0;
1054 __be16 tpid = 0;
1055 bool encap_valid = !!(match->key->eth.vlan.tci &
1056 htons(VLAN_CFI_MASK));
1057 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1058 htons(VLAN_CFI_MASK));
1059
1060 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1061 /* Not a VLAN. */
1062 return 0;
1063 }
1064
1065 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1066 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1067 (inner) ? "C-VLAN" : "VLAN");
1068 return -EINVAL;
1069 }
1070
1071 if (a[OVS_KEY_ATTR_VLAN])
1072 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1073
1074 if (a[OVS_KEY_ATTR_ETHERTYPE])
1075 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1076
1077 if (tpid != htons(0xffff)) {
1078 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1079 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1080 return -EINVAL;
1081 }
1082 if (!(tci & htons(VLAN_CFI_MASK))) {
1083 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1084 (inner) ? "C-VLAN" : "VLAN");
1085 return -EINVAL;
1086 }
1087
1088 return 1;
1089 }
1090
__parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,bool inner,const struct nlattr ** a,bool is_mask,bool log)1091 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1092 u64 *key_attrs, bool inner,
1093 const struct nlattr **a, bool is_mask,
1094 bool log)
1095 {
1096 int err;
1097 const struct nlattr *encap;
1098
1099 if (!is_mask)
1100 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1101 a, log);
1102 else
1103 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1104 a, log);
1105 if (err <= 0)
1106 return err;
1107
1108 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1109 if (err)
1110 return err;
1111
1112 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1113 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1114 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1115
1116 encap = a[OVS_KEY_ATTR_ENCAP];
1117
1118 if (!is_mask)
1119 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1120 else
1121 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1122
1123 return err;
1124 }
1125
parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,const struct nlattr ** a,bool is_mask,bool log)1126 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1127 u64 *key_attrs, const struct nlattr **a,
1128 bool is_mask, bool log)
1129 {
1130 int err;
1131 bool encap_valid = false;
1132
1133 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1134 is_mask, log);
1135 if (err)
1136 return err;
1137
1138 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1139 if (encap_valid) {
1140 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1141 is_mask, log);
1142 if (err)
1143 return err;
1144 }
1145
1146 return 0;
1147 }
1148
parse_eth_type_from_nlattrs(struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1149 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1150 u64 *attrs, const struct nlattr **a,
1151 bool is_mask, bool log)
1152 {
1153 __be16 eth_type;
1154
1155 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1156 if (is_mask) {
1157 /* Always exact match EtherType. */
1158 eth_type = htons(0xffff);
1159 } else if (!eth_proto_is_802_3(eth_type)) {
1160 OVS_NLERR(log, "EtherType %x is less than min %x",
1161 ntohs(eth_type), ETH_P_802_3_MIN);
1162 return -EINVAL;
1163 }
1164
1165 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1166 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1167 return 0;
1168 }
1169
metadata_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1170 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1171 u64 *attrs, const struct nlattr **a,
1172 bool is_mask, bool log)
1173 {
1174 u8 mac_proto = MAC_PROTO_ETHERNET;
1175
1176 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1177 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1178
1179 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1180 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1181 }
1182
1183 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1184 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1185
1186 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1187 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1188 }
1189
1190 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1191 SW_FLOW_KEY_PUT(match, phy.priority,
1192 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1193 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1194 }
1195
1196 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1197 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1198
1199 if (is_mask) {
1200 in_port = 0xffffffff; /* Always exact match in_port. */
1201 } else if (in_port >= DP_MAX_PORTS) {
1202 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1203 in_port, DP_MAX_PORTS);
1204 return -EINVAL;
1205 }
1206
1207 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1208 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1209 } else if (!is_mask) {
1210 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1211 }
1212
1213 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1214 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1215
1216 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1217 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1218 }
1219 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1220 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1221 is_mask, log) < 0)
1222 return -EINVAL;
1223 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1224 }
1225
1226 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1227 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1228 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1229
1230 if (ct_state & ~CT_SUPPORTED_MASK) {
1231 OVS_NLERR(log, "ct_state flags %08x unsupported",
1232 ct_state);
1233 return -EINVAL;
1234 }
1235
1236 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1237 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1238 }
1239 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1240 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1241 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1242
1243 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1244 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1245 }
1246 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1247 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1248 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1249
1250 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1251 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1252 }
1253 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1254 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1255 const struct ovs_key_ct_labels *cl;
1256
1257 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1258 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1259 sizeof(*cl), is_mask);
1260 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1261 }
1262 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1263 const struct ovs_key_ct_tuple_ipv4 *ct;
1264
1265 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1266
1267 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1268 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1269 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1272 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1273 }
1274 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1275 const struct ovs_key_ct_tuple_ipv6 *ct;
1276
1277 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1278
1279 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1280 sizeof(match->key->ipv6.ct_orig.src),
1281 is_mask);
1282 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1283 sizeof(match->key->ipv6.ct_orig.dst),
1284 is_mask);
1285 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1286 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1287 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1288 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1289 }
1290
1291 /* For layer 3 packets the Ethernet type is provided
1292 * and treated as metadata but no MAC addresses are provided.
1293 */
1294 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1295 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1296 mac_proto = MAC_PROTO_NONE;
1297
1298 /* Always exact match mac_proto */
1299 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1300
1301 if (mac_proto == MAC_PROTO_NONE)
1302 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1303 log);
1304
1305 return 0;
1306 }
1307
nsh_hdr_from_nlattr(const struct nlattr * attr,struct nshhdr * nh,size_t size)1308 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1309 struct nshhdr *nh, size_t size)
1310 {
1311 struct nlattr *a;
1312 int rem;
1313 u8 flags = 0;
1314 u8 ttl = 0;
1315 int mdlen = 0;
1316
1317 /* validate_nsh has check this, so we needn't do duplicate check here
1318 */
1319 if (size < NSH_BASE_HDR_LEN)
1320 return -ENOBUFS;
1321
1322 nla_for_each_nested(a, attr, rem) {
1323 int type = nla_type(a);
1324
1325 switch (type) {
1326 case OVS_NSH_KEY_ATTR_BASE: {
1327 const struct ovs_nsh_key_base *base = nla_data(a);
1328
1329 flags = base->flags;
1330 ttl = base->ttl;
1331 nh->np = base->np;
1332 nh->mdtype = base->mdtype;
1333 nh->path_hdr = base->path_hdr;
1334 break;
1335 }
1336 case OVS_NSH_KEY_ATTR_MD1:
1337 mdlen = nla_len(a);
1338 if (mdlen > size - NSH_BASE_HDR_LEN)
1339 return -ENOBUFS;
1340 memcpy(&nh->md1, nla_data(a), mdlen);
1341 break;
1342
1343 case OVS_NSH_KEY_ATTR_MD2:
1344 mdlen = nla_len(a);
1345 if (mdlen > size - NSH_BASE_HDR_LEN)
1346 return -ENOBUFS;
1347 memcpy(&nh->md2, nla_data(a), mdlen);
1348 break;
1349
1350 default:
1351 return -EINVAL;
1352 }
1353 }
1354
1355 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1356 nh->ver_flags_ttl_len = 0;
1357 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1358
1359 return 0;
1360 }
1361
nsh_key_from_nlattr(const struct nlattr * attr,struct ovs_key_nsh * nsh,struct ovs_key_nsh * nsh_mask)1362 int nsh_key_from_nlattr(const struct nlattr *attr,
1363 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1364 {
1365 struct nlattr *a;
1366 int rem;
1367
1368 /* validate_nsh has check this, so we needn't do duplicate check here
1369 */
1370 nla_for_each_nested(a, attr, rem) {
1371 int type = nla_type(a);
1372
1373 switch (type) {
1374 case OVS_NSH_KEY_ATTR_BASE: {
1375 const struct ovs_nsh_key_base *base = nla_data(a);
1376 const struct ovs_nsh_key_base *base_mask = base + 1;
1377
1378 nsh->base = *base;
1379 nsh_mask->base = *base_mask;
1380 break;
1381 }
1382 case OVS_NSH_KEY_ATTR_MD1: {
1383 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1384 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1385
1386 memcpy(nsh->context, md1->context, sizeof(*md1));
1387 memcpy(nsh_mask->context, md1_mask->context,
1388 sizeof(*md1_mask));
1389 break;
1390 }
1391 case OVS_NSH_KEY_ATTR_MD2:
1392 /* Not supported yet */
1393 return -ENOTSUPP;
1394 default:
1395 return -EINVAL;
1396 }
1397 }
1398
1399 return 0;
1400 }
1401
nsh_key_put_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool is_push_nsh,bool log)1402 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1403 struct sw_flow_match *match, bool is_mask,
1404 bool is_push_nsh, bool log)
1405 {
1406 struct nlattr *a;
1407 int rem;
1408 bool has_base = false;
1409 bool has_md1 = false;
1410 bool has_md2 = false;
1411 u8 mdtype = 0;
1412 int mdlen = 0;
1413
1414 if (WARN_ON(is_push_nsh && is_mask))
1415 return -EINVAL;
1416
1417 nla_for_each_nested(a, attr, rem) {
1418 int type = nla_type(a);
1419 int i;
1420
1421 if (type > OVS_NSH_KEY_ATTR_MAX) {
1422 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1423 type, OVS_NSH_KEY_ATTR_MAX);
1424 return -EINVAL;
1425 }
1426
1427 if (!check_attr_len(nla_len(a),
1428 ovs_nsh_key_attr_lens[type].len)) {
1429 OVS_NLERR(
1430 log,
1431 "nsh attr %d has unexpected len %d expected %d",
1432 type,
1433 nla_len(a),
1434 ovs_nsh_key_attr_lens[type].len
1435 );
1436 return -EINVAL;
1437 }
1438
1439 switch (type) {
1440 case OVS_NSH_KEY_ATTR_BASE: {
1441 const struct ovs_nsh_key_base *base = nla_data(a);
1442
1443 has_base = true;
1444 mdtype = base->mdtype;
1445 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1446 base->flags, is_mask);
1447 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1448 base->ttl, is_mask);
1449 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1450 base->mdtype, is_mask);
1451 SW_FLOW_KEY_PUT(match, nsh.base.np,
1452 base->np, is_mask);
1453 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1454 base->path_hdr, is_mask);
1455 break;
1456 }
1457 case OVS_NSH_KEY_ATTR_MD1: {
1458 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1459
1460 has_md1 = true;
1461 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1462 SW_FLOW_KEY_PUT(match, nsh.context[i],
1463 md1->context[i], is_mask);
1464 break;
1465 }
1466 case OVS_NSH_KEY_ATTR_MD2:
1467 if (!is_push_nsh) /* Not supported MD type 2 yet */
1468 return -ENOTSUPP;
1469
1470 has_md2 = true;
1471 mdlen = nla_len(a);
1472 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1473 OVS_NLERR(
1474 log,
1475 "Invalid MD length %d for MD type %d",
1476 mdlen,
1477 mdtype
1478 );
1479 return -EINVAL;
1480 }
1481 break;
1482 default:
1483 OVS_NLERR(log, "Unknown nsh attribute %d",
1484 type);
1485 return -EINVAL;
1486 }
1487 }
1488
1489 if (rem > 0) {
1490 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1491 return -EINVAL;
1492 }
1493
1494 if (has_md1 && has_md2) {
1495 OVS_NLERR(
1496 1,
1497 "invalid nsh attribute: md1 and md2 are exclusive."
1498 );
1499 return -EINVAL;
1500 }
1501
1502 if (!is_mask) {
1503 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1504 (has_md2 && mdtype != NSH_M_TYPE2)) {
1505 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1506 mdtype);
1507 return -EINVAL;
1508 }
1509
1510 if (is_push_nsh &&
1511 (!has_base || (!has_md1 && !has_md2))) {
1512 OVS_NLERR(
1513 1,
1514 "push_nsh: missing base or metadata attributes"
1515 );
1516 return -EINVAL;
1517 }
1518 }
1519
1520 return 0;
1521 }
1522
ovs_key_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 attrs,const struct nlattr ** a,bool is_mask,bool log)1523 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1524 u64 attrs, const struct nlattr **a,
1525 bool is_mask, bool log)
1526 {
1527 int err;
1528
1529 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1530 if (err)
1531 return err;
1532
1533 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1534 const struct ovs_key_ethernet *eth_key;
1535
1536 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1537 SW_FLOW_KEY_MEMCPY(match, eth.src,
1538 eth_key->eth_src, ETH_ALEN, is_mask);
1539 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1540 eth_key->eth_dst, ETH_ALEN, is_mask);
1541 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1542
1543 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1544 /* VLAN attribute is always parsed before getting here since it
1545 * may occur multiple times.
1546 */
1547 OVS_NLERR(log, "VLAN attribute unexpected.");
1548 return -EINVAL;
1549 }
1550
1551 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1552 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1553 log);
1554 if (err)
1555 return err;
1556 } else if (!is_mask) {
1557 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1558 }
1559 } else if (!match->key->eth.type) {
1560 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1561 return -EINVAL;
1562 }
1563
1564 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1565 const struct ovs_key_ipv4 *ipv4_key;
1566
1567 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1568 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1569 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1570 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1571 return -EINVAL;
1572 }
1573 SW_FLOW_KEY_PUT(match, ip.proto,
1574 ipv4_key->ipv4_proto, is_mask);
1575 SW_FLOW_KEY_PUT(match, ip.tos,
1576 ipv4_key->ipv4_tos, is_mask);
1577 SW_FLOW_KEY_PUT(match, ip.ttl,
1578 ipv4_key->ipv4_ttl, is_mask);
1579 SW_FLOW_KEY_PUT(match, ip.frag,
1580 ipv4_key->ipv4_frag, is_mask);
1581 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1582 ipv4_key->ipv4_src, is_mask);
1583 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1584 ipv4_key->ipv4_dst, is_mask);
1585 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1586 }
1587
1588 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1589 const struct ovs_key_ipv6 *ipv6_key;
1590
1591 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1592 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1593 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1594 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1595 return -EINVAL;
1596 }
1597
1598 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1599 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1600 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1601 return -EINVAL;
1602 }
1603
1604 SW_FLOW_KEY_PUT(match, ipv6.label,
1605 ipv6_key->ipv6_label, is_mask);
1606 SW_FLOW_KEY_PUT(match, ip.proto,
1607 ipv6_key->ipv6_proto, is_mask);
1608 SW_FLOW_KEY_PUT(match, ip.tos,
1609 ipv6_key->ipv6_tclass, is_mask);
1610 SW_FLOW_KEY_PUT(match, ip.ttl,
1611 ipv6_key->ipv6_hlimit, is_mask);
1612 SW_FLOW_KEY_PUT(match, ip.frag,
1613 ipv6_key->ipv6_frag, is_mask);
1614 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1615 ipv6_key->ipv6_src,
1616 sizeof(match->key->ipv6.addr.src),
1617 is_mask);
1618 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1619 ipv6_key->ipv6_dst,
1620 sizeof(match->key->ipv6.addr.dst),
1621 is_mask);
1622
1623 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1624 }
1625
1626 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1627 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1628
1629 ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1630
1631 SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1632 ipv6_exthdrs_key->hdrs, is_mask);
1633
1634 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1635 }
1636
1637 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1638 const struct ovs_key_arp *arp_key;
1639
1640 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1641 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1642 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1643 arp_key->arp_op);
1644 return -EINVAL;
1645 }
1646
1647 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1648 arp_key->arp_sip, is_mask);
1649 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1650 arp_key->arp_tip, is_mask);
1651 SW_FLOW_KEY_PUT(match, ip.proto,
1652 ntohs(arp_key->arp_op), is_mask);
1653 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1654 arp_key->arp_sha, ETH_ALEN, is_mask);
1655 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1656 arp_key->arp_tha, ETH_ALEN, is_mask);
1657
1658 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1659 }
1660
1661 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1662 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1663 is_mask, false, log) < 0)
1664 return -EINVAL;
1665 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1666 }
1667
1668 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1669 const struct ovs_key_mpls *mpls_key;
1670 u32 hdr_len;
1671 u32 label_count, label_count_mask, i;
1672
1673 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1674 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1675 label_count = hdr_len / sizeof(struct ovs_key_mpls);
1676
1677 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1678 hdr_len % sizeof(struct ovs_key_mpls))
1679 return -EINVAL;
1680
1681 label_count_mask = GENMASK(label_count - 1, 0);
1682
1683 for (i = 0 ; i < label_count; i++)
1684 SW_FLOW_KEY_PUT(match, mpls.lse[i],
1685 mpls_key[i].mpls_lse, is_mask);
1686
1687 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1688 label_count_mask, is_mask);
1689
1690 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1691 }
1692
1693 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1694 const struct ovs_key_tcp *tcp_key;
1695
1696 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1697 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1698 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1699 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1700 }
1701
1702 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1703 SW_FLOW_KEY_PUT(match, tp.flags,
1704 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1705 is_mask);
1706 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1707 }
1708
1709 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1710 const struct ovs_key_udp *udp_key;
1711
1712 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1713 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1714 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1715 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1716 }
1717
1718 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1719 const struct ovs_key_sctp *sctp_key;
1720
1721 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1722 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1723 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1724 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1725 }
1726
1727 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1728 const struct ovs_key_icmp *icmp_key;
1729
1730 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1731 SW_FLOW_KEY_PUT(match, tp.src,
1732 htons(icmp_key->icmp_type), is_mask);
1733 SW_FLOW_KEY_PUT(match, tp.dst,
1734 htons(icmp_key->icmp_code), is_mask);
1735 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1736 }
1737
1738 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1739 const struct ovs_key_icmpv6 *icmpv6_key;
1740
1741 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1742 SW_FLOW_KEY_PUT(match, tp.src,
1743 htons(icmpv6_key->icmpv6_type), is_mask);
1744 SW_FLOW_KEY_PUT(match, tp.dst,
1745 htons(icmpv6_key->icmpv6_code), is_mask);
1746 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1747 }
1748
1749 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1750 const struct ovs_key_nd *nd_key;
1751
1752 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1753 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1754 nd_key->nd_target,
1755 sizeof(match->key->ipv6.nd.target),
1756 is_mask);
1757 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1758 nd_key->nd_sll, ETH_ALEN, is_mask);
1759 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1760 nd_key->nd_tll, ETH_ALEN, is_mask);
1761 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1762 }
1763
1764 if (attrs != 0) {
1765 OVS_NLERR(log, "Unknown key attributes %llx",
1766 (unsigned long long)attrs);
1767 return -EINVAL;
1768 }
1769
1770 return 0;
1771 }
1772
nlattr_set(struct nlattr * attr,u8 val,const struct ovs_len_tbl * tbl)1773 static void nlattr_set(struct nlattr *attr, u8 val,
1774 const struct ovs_len_tbl *tbl)
1775 {
1776 struct nlattr *nla;
1777 int rem;
1778
1779 /* The nlattr stream should already have been validated */
1780 nla_for_each_nested(nla, attr, rem) {
1781 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1782 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1783 else
1784 memset(nla_data(nla), val, nla_len(nla));
1785
1786 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1787 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1788 }
1789 }
1790
mask_set_nlattr(struct nlattr * attr,u8 val)1791 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1792 {
1793 nlattr_set(attr, val, ovs_key_lens);
1794 }
1795
1796 /**
1797 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1798 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1799 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1800 * does not include any don't care bit.
1801 * @net: Used to determine per-namespace field support.
1802 * @match: receives the extracted flow match information.
1803 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1804 * sequence. The fields should of the packet that triggered the creation
1805 * of this flow.
1806 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1807 * Netlink attribute specifies the mask field of the wildcarded flow.
1808 * @log: Boolean to allow kernel error logging. Normally true, but when
1809 * probing for feature compatibility this should be passed in as false to
1810 * suppress unnecessary error logging.
1811 */
ovs_nla_get_match(struct net * net,struct sw_flow_match * match,const struct nlattr * nla_key,const struct nlattr * nla_mask,bool log)1812 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1813 const struct nlattr *nla_key,
1814 const struct nlattr *nla_mask,
1815 bool log)
1816 {
1817 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1818 struct nlattr *newmask = NULL;
1819 u64 key_attrs = 0;
1820 u64 mask_attrs = 0;
1821 int err;
1822
1823 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1824 if (err)
1825 return err;
1826
1827 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1828 if (err)
1829 return err;
1830
1831 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1832 if (err)
1833 return err;
1834
1835 if (match->mask) {
1836 if (!nla_mask) {
1837 /* Create an exact match mask. We need to set to 0xff
1838 * all the 'match->mask' fields that have been touched
1839 * in 'match->key'. We cannot simply memset
1840 * 'match->mask', because padding bytes and fields not
1841 * specified in 'match->key' should be left to 0.
1842 * Instead, we use a stream of netlink attributes,
1843 * copied from 'key' and set to 0xff.
1844 * ovs_key_from_nlattrs() will take care of filling
1845 * 'match->mask' appropriately.
1846 */
1847 newmask = kmemdup(nla_key,
1848 nla_total_size(nla_len(nla_key)),
1849 GFP_KERNEL);
1850 if (!newmask)
1851 return -ENOMEM;
1852
1853 mask_set_nlattr(newmask, 0xff);
1854
1855 /* The userspace does not send tunnel attributes that
1856 * are 0, but we should not wildcard them nonetheless.
1857 */
1858 if (match->key->tun_proto)
1859 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1860 0xff, true);
1861
1862 nla_mask = newmask;
1863 }
1864
1865 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1866 if (err)
1867 goto free_newmask;
1868
1869 /* Always match on tci. */
1870 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1871 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1872
1873 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1874 if (err)
1875 goto free_newmask;
1876
1877 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1878 log);
1879 if (err)
1880 goto free_newmask;
1881 }
1882
1883 if (!match_validate(match, key_attrs, mask_attrs, log))
1884 err = -EINVAL;
1885
1886 free_newmask:
1887 kfree(newmask);
1888 return err;
1889 }
1890
get_ufid_len(const struct nlattr * attr,bool log)1891 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1892 {
1893 size_t len;
1894
1895 if (!attr)
1896 return 0;
1897
1898 len = nla_len(attr);
1899 if (len < 1 || len > MAX_UFID_LENGTH) {
1900 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1901 nla_len(attr), MAX_UFID_LENGTH);
1902 return 0;
1903 }
1904
1905 return len;
1906 }
1907
1908 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1909 * or false otherwise.
1910 */
ovs_nla_get_ufid(struct sw_flow_id * sfid,const struct nlattr * attr,bool log)1911 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1912 bool log)
1913 {
1914 sfid->ufid_len = get_ufid_len(attr, log);
1915 if (sfid->ufid_len)
1916 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1917
1918 return sfid->ufid_len;
1919 }
1920
ovs_nla_get_identifier(struct sw_flow_id * sfid,const struct nlattr * ufid,const struct sw_flow_key * key,bool log)1921 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1922 const struct sw_flow_key *key, bool log)
1923 {
1924 struct sw_flow_key *new_key;
1925
1926 if (ovs_nla_get_ufid(sfid, ufid, log))
1927 return 0;
1928
1929 /* If UFID was not provided, use unmasked key. */
1930 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1931 if (!new_key)
1932 return -ENOMEM;
1933 memcpy(new_key, key, sizeof(*key));
1934 sfid->unmasked_key = new_key;
1935
1936 return 0;
1937 }
1938
ovs_nla_get_ufid_flags(const struct nlattr * attr)1939 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1940 {
1941 return nla_get_u32_default(attr, 0);
1942 }
1943
1944 /**
1945 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1946 * @net: Network namespace.
1947 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1948 * metadata.
1949 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1950 * attributes.
1951 * @attrs: Bit mask for the netlink attributes included in @a.
1952 * @log: Boolean to allow kernel error logging. Normally true, but when
1953 * probing for feature compatibility this should be passed in as false to
1954 * suppress unnecessary error logging.
1955 *
1956 * This parses a series of Netlink attributes that form a flow key, which must
1957 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1958 * get the metadata, that is, the parts of the flow key that cannot be
1959 * extracted from the packet itself.
1960 *
1961 * This must be called before the packet key fields are filled in 'key'.
1962 */
1963
ovs_nla_get_flow_metadata(struct net * net,const struct nlattr * a[OVS_KEY_ATTR_MAX+1],u64 attrs,struct sw_flow_key * key,bool log)1964 int ovs_nla_get_flow_metadata(struct net *net,
1965 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1966 u64 attrs, struct sw_flow_key *key, bool log)
1967 {
1968 struct sw_flow_match match;
1969
1970 memset(&match, 0, sizeof(match));
1971 match.key = key;
1972
1973 key->ct_state = 0;
1974 key->ct_zone = 0;
1975 key->ct_orig_proto = 0;
1976 memset(&key->ct, 0, sizeof(key->ct));
1977 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1978 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1979
1980 key->phy.in_port = DP_MAX_PORTS;
1981
1982 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1983 }
1984
ovs_nla_put_vlan(struct sk_buff * skb,const struct vlan_head * vh,bool is_mask)1985 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1986 bool is_mask)
1987 {
1988 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1989
1990 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1991 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1992 return -EMSGSIZE;
1993 return 0;
1994 }
1995
nsh_key_to_nlattr(const struct ovs_key_nsh * nsh,bool is_mask,struct sk_buff * skb)1996 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1997 struct sk_buff *skb)
1998 {
1999 struct nlattr *start;
2000
2001 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
2002 if (!start)
2003 return -EMSGSIZE;
2004
2005 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
2006 goto nla_put_failure;
2007
2008 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
2009 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
2010 sizeof(nsh->context), nsh->context))
2011 goto nla_put_failure;
2012 }
2013
2014 /* Don't support MD type 2 yet */
2015
2016 nla_nest_end(skb, start);
2017
2018 return 0;
2019
2020 nla_put_failure:
2021 return -EMSGSIZE;
2022 }
2023
__ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,bool is_mask,struct sk_buff * skb)2024 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2025 const struct sw_flow_key *output, bool is_mask,
2026 struct sk_buff *skb)
2027 {
2028 struct ovs_key_ethernet *eth_key;
2029 struct nlattr *nla;
2030 struct nlattr *encap = NULL;
2031 struct nlattr *in_encap = NULL;
2032
2033 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2034 goto nla_put_failure;
2035
2036 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2037 goto nla_put_failure;
2038
2039 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2040 goto nla_put_failure;
2041
2042 if ((swkey->tun_proto || is_mask)) {
2043 const void *opts = NULL;
2044
2045 if (ip_tunnel_is_options_present(output->tun_key.tun_flags))
2046 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2047
2048 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2049 swkey->tun_opts_len, swkey->tun_proto, 0))
2050 goto nla_put_failure;
2051 }
2052
2053 if (swkey->phy.in_port == DP_MAX_PORTS) {
2054 if (is_mask && (output->phy.in_port == 0xffff))
2055 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2056 goto nla_put_failure;
2057 } else {
2058 u16 upper_u16;
2059 upper_u16 = !is_mask ? 0 : 0xffff;
2060
2061 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2062 (upper_u16 << 16) | output->phy.in_port))
2063 goto nla_put_failure;
2064 }
2065
2066 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2067 goto nla_put_failure;
2068
2069 if (ovs_ct_put_key(swkey, output, skb))
2070 goto nla_put_failure;
2071
2072 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2073 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2074 if (!nla)
2075 goto nla_put_failure;
2076
2077 eth_key = nla_data(nla);
2078 ether_addr_copy(eth_key->eth_src, output->eth.src);
2079 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2080
2081 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2082 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2083 goto nla_put_failure;
2084 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2085 if (!swkey->eth.vlan.tci)
2086 goto unencap;
2087
2088 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2089 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2090 goto nla_put_failure;
2091 in_encap = nla_nest_start_noflag(skb,
2092 OVS_KEY_ATTR_ENCAP);
2093 if (!swkey->eth.cvlan.tci)
2094 goto unencap;
2095 }
2096 }
2097
2098 if (swkey->eth.type == htons(ETH_P_802_2)) {
2099 /*
2100 * Ethertype 802.2 is represented in the netlink with omitted
2101 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2102 * 0xffff in the mask attribute. Ethertype can also
2103 * be wildcarded.
2104 */
2105 if (is_mask && output->eth.type)
2106 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2107 output->eth.type))
2108 goto nla_put_failure;
2109 goto unencap;
2110 }
2111 }
2112
2113 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2114 goto nla_put_failure;
2115
2116 if (eth_type_vlan(swkey->eth.type)) {
2117 /* There are 3 VLAN tags, we don't know anything about the rest
2118 * of the packet, so truncate here.
2119 */
2120 WARN_ON_ONCE(!(encap && in_encap));
2121 goto unencap;
2122 }
2123
2124 if (swkey->eth.type == htons(ETH_P_IP)) {
2125 struct ovs_key_ipv4 *ipv4_key;
2126
2127 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2128 if (!nla)
2129 goto nla_put_failure;
2130 ipv4_key = nla_data(nla);
2131 ipv4_key->ipv4_src = output->ipv4.addr.src;
2132 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2133 ipv4_key->ipv4_proto = output->ip.proto;
2134 ipv4_key->ipv4_tos = output->ip.tos;
2135 ipv4_key->ipv4_ttl = output->ip.ttl;
2136 ipv4_key->ipv4_frag = output->ip.frag;
2137 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2138 struct ovs_key_ipv6 *ipv6_key;
2139 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2140
2141 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2142 if (!nla)
2143 goto nla_put_failure;
2144 ipv6_key = nla_data(nla);
2145 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2146 sizeof(ipv6_key->ipv6_src));
2147 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2148 sizeof(ipv6_key->ipv6_dst));
2149 ipv6_key->ipv6_label = output->ipv6.label;
2150 ipv6_key->ipv6_proto = output->ip.proto;
2151 ipv6_key->ipv6_tclass = output->ip.tos;
2152 ipv6_key->ipv6_hlimit = output->ip.ttl;
2153 ipv6_key->ipv6_frag = output->ip.frag;
2154
2155 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2156 sizeof(*ipv6_exthdrs_key));
2157 if (!nla)
2158 goto nla_put_failure;
2159 ipv6_exthdrs_key = nla_data(nla);
2160 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2161 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2162 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2163 goto nla_put_failure;
2164 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2165 swkey->eth.type == htons(ETH_P_RARP)) {
2166 struct ovs_key_arp *arp_key;
2167
2168 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2169 if (!nla)
2170 goto nla_put_failure;
2171 arp_key = nla_data(nla);
2172 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2173 arp_key->arp_sip = output->ipv4.addr.src;
2174 arp_key->arp_tip = output->ipv4.addr.dst;
2175 arp_key->arp_op = htons(output->ip.proto);
2176 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2177 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2178 } else if (eth_p_mpls(swkey->eth.type)) {
2179 u8 i, num_labels;
2180 struct ovs_key_mpls *mpls_key;
2181
2182 num_labels = hweight_long(output->mpls.num_labels_mask);
2183 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2184 num_labels * sizeof(*mpls_key));
2185 if (!nla)
2186 goto nla_put_failure;
2187
2188 mpls_key = nla_data(nla);
2189 for (i = 0; i < num_labels; i++)
2190 mpls_key[i].mpls_lse = output->mpls.lse[i];
2191 }
2192
2193 if ((swkey->eth.type == htons(ETH_P_IP) ||
2194 swkey->eth.type == htons(ETH_P_IPV6)) &&
2195 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2196
2197 if (swkey->ip.proto == IPPROTO_TCP) {
2198 struct ovs_key_tcp *tcp_key;
2199
2200 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2201 if (!nla)
2202 goto nla_put_failure;
2203 tcp_key = nla_data(nla);
2204 tcp_key->tcp_src = output->tp.src;
2205 tcp_key->tcp_dst = output->tp.dst;
2206 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2207 output->tp.flags))
2208 goto nla_put_failure;
2209 } else if (swkey->ip.proto == IPPROTO_UDP) {
2210 struct ovs_key_udp *udp_key;
2211
2212 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2213 if (!nla)
2214 goto nla_put_failure;
2215 udp_key = nla_data(nla);
2216 udp_key->udp_src = output->tp.src;
2217 udp_key->udp_dst = output->tp.dst;
2218 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2219 struct ovs_key_sctp *sctp_key;
2220
2221 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2222 if (!nla)
2223 goto nla_put_failure;
2224 sctp_key = nla_data(nla);
2225 sctp_key->sctp_src = output->tp.src;
2226 sctp_key->sctp_dst = output->tp.dst;
2227 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2228 swkey->ip.proto == IPPROTO_ICMP) {
2229 struct ovs_key_icmp *icmp_key;
2230
2231 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2232 if (!nla)
2233 goto nla_put_failure;
2234 icmp_key = nla_data(nla);
2235 icmp_key->icmp_type = ntohs(output->tp.src);
2236 icmp_key->icmp_code = ntohs(output->tp.dst);
2237 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2238 swkey->ip.proto == IPPROTO_ICMPV6) {
2239 struct ovs_key_icmpv6 *icmpv6_key;
2240
2241 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2242 sizeof(*icmpv6_key));
2243 if (!nla)
2244 goto nla_put_failure;
2245 icmpv6_key = nla_data(nla);
2246 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2247 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2248
2249 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2250 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2251 struct ovs_key_nd *nd_key;
2252
2253 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2254 if (!nla)
2255 goto nla_put_failure;
2256 nd_key = nla_data(nla);
2257 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2258 sizeof(nd_key->nd_target));
2259 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2260 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2261 }
2262 }
2263 }
2264
2265 unencap:
2266 if (in_encap)
2267 nla_nest_end(skb, in_encap);
2268 if (encap)
2269 nla_nest_end(skb, encap);
2270
2271 return 0;
2272
2273 nla_put_failure:
2274 return -EMSGSIZE;
2275 }
2276
ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,int attr,bool is_mask,struct sk_buff * skb)2277 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2278 const struct sw_flow_key *output, int attr, bool is_mask,
2279 struct sk_buff *skb)
2280 {
2281 int err;
2282 struct nlattr *nla;
2283
2284 nla = nla_nest_start_noflag(skb, attr);
2285 if (!nla)
2286 return -EMSGSIZE;
2287 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2288 if (err)
2289 return err;
2290 nla_nest_end(skb, nla);
2291
2292 return 0;
2293 }
2294
2295 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_identifier(const struct sw_flow * flow,struct sk_buff * skb)2296 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2297 {
2298 if (ovs_identifier_is_ufid(&flow->id))
2299 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2300 flow->id.ufid);
2301
2302 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2303 OVS_FLOW_ATTR_KEY, false, skb);
2304 }
2305
2306 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_masked_key(const struct sw_flow * flow,struct sk_buff * skb)2307 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2308 {
2309 return ovs_nla_put_key(&flow->key, &flow->key,
2310 OVS_FLOW_ATTR_KEY, false, skb);
2311 }
2312
2313 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_mask(const struct sw_flow * flow,struct sk_buff * skb)2314 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2315 {
2316 return ovs_nla_put_key(&flow->key, &flow->mask->key,
2317 OVS_FLOW_ATTR_MASK, true, skb);
2318 }
2319
nla_alloc_flow_actions(int size)2320 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2321 {
2322 struct sw_flow_actions *sfa;
2323
2324 sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2325 if (!sfa)
2326 return ERR_PTR(-ENOMEM);
2327
2328 sfa->actions_len = 0;
2329 return sfa;
2330 }
2331
2332 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2333
ovs_nla_free_check_pkt_len_action(const struct nlattr * action)2334 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2335 {
2336 const struct nlattr *a;
2337 int rem;
2338
2339 nla_for_each_nested(a, action, rem) {
2340 switch (nla_type(a)) {
2341 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2342 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2343 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2344 break;
2345 }
2346 }
2347 }
2348
ovs_nla_free_clone_action(const struct nlattr * action)2349 static void ovs_nla_free_clone_action(const struct nlattr *action)
2350 {
2351 const struct nlattr *a = nla_data(action);
2352 int rem = nla_len(action);
2353
2354 switch (nla_type(a)) {
2355 case OVS_CLONE_ATTR_EXEC:
2356 /* The real list of actions follows this attribute. */
2357 a = nla_next(a, &rem);
2358 ovs_nla_free_nested_actions(a, rem);
2359 break;
2360 }
2361 }
2362
ovs_nla_free_dec_ttl_action(const struct nlattr * action)2363 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2364 {
2365 const struct nlattr *a = nla_data(action);
2366
2367 switch (nla_type(a)) {
2368 case OVS_DEC_TTL_ATTR_ACTION:
2369 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2370 break;
2371 }
2372 }
2373
ovs_nla_free_sample_action(const struct nlattr * action)2374 static void ovs_nla_free_sample_action(const struct nlattr *action)
2375 {
2376 const struct nlattr *a = nla_data(action);
2377 int rem = nla_len(action);
2378
2379 switch (nla_type(a)) {
2380 case OVS_SAMPLE_ATTR_ARG:
2381 /* The real list of actions follows this attribute. */
2382 a = nla_next(a, &rem);
2383 ovs_nla_free_nested_actions(a, rem);
2384 break;
2385 }
2386 }
2387
ovs_nla_free_set_action(const struct nlattr * a)2388 static void ovs_nla_free_set_action(const struct nlattr *a)
2389 {
2390 const struct nlattr *ovs_key = nla_data(a);
2391 struct ovs_tunnel_info *ovs_tun;
2392
2393 switch (nla_type(ovs_key)) {
2394 case OVS_KEY_ATTR_TUNNEL_INFO:
2395 ovs_tun = nla_data(ovs_key);
2396 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2397 break;
2398 }
2399 }
2400
ovs_nla_free_nested_actions(const struct nlattr * actions,int len)2401 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2402 {
2403 const struct nlattr *a;
2404 int rem;
2405
2406 /* Whenever new actions are added, the need to update this
2407 * function should be considered.
2408 */
2409 BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 25);
2410
2411 if (!actions)
2412 return;
2413
2414 nla_for_each_attr(a, actions, len, rem) {
2415 switch (nla_type(a)) {
2416 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2417 ovs_nla_free_check_pkt_len_action(a);
2418 break;
2419
2420 case OVS_ACTION_ATTR_CLONE:
2421 ovs_nla_free_clone_action(a);
2422 break;
2423
2424 case OVS_ACTION_ATTR_CT:
2425 ovs_ct_free_action(a);
2426 break;
2427
2428 case OVS_ACTION_ATTR_DEC_TTL:
2429 ovs_nla_free_dec_ttl_action(a);
2430 break;
2431
2432 case OVS_ACTION_ATTR_SAMPLE:
2433 ovs_nla_free_sample_action(a);
2434 break;
2435
2436 case OVS_ACTION_ATTR_SET:
2437 ovs_nla_free_set_action(a);
2438 break;
2439 }
2440 }
2441 }
2442
ovs_nla_free_flow_actions(struct sw_flow_actions * sf_acts)2443 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2444 {
2445 if (!sf_acts)
2446 return;
2447
2448 ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2449 kfree(sf_acts);
2450 }
2451
__ovs_nla_free_flow_actions(struct rcu_head * head)2452 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2453 {
2454 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2455 }
2456
2457 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2458 * The caller must hold rcu_read_lock for this to be sensible. */
ovs_nla_free_flow_actions_rcu(struct sw_flow_actions * sf_acts)2459 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2460 {
2461 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2462 }
2463
reserve_sfa_size(struct sw_flow_actions ** sfa,int attr_len,bool log)2464 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2465 int attr_len, bool log)
2466 {
2467
2468 struct sw_flow_actions *acts;
2469 int new_acts_size;
2470 size_t req_size = NLA_ALIGN(attr_len);
2471 int next_offset = offsetof(struct sw_flow_actions, actions) +
2472 (*sfa)->actions_len;
2473
2474 if (req_size <= (ksize(*sfa) - next_offset))
2475 goto out;
2476
2477 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2478
2479 acts = nla_alloc_flow_actions(new_acts_size);
2480 if (IS_ERR(acts))
2481 return ERR_CAST(acts);
2482
2483 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2484 acts->actions_len = (*sfa)->actions_len;
2485 acts->orig_len = (*sfa)->orig_len;
2486 kfree(*sfa);
2487 *sfa = acts;
2488
2489 out:
2490 (*sfa)->actions_len += req_size;
2491 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2492 }
2493
__add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2494 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2495 int attrtype, void *data, int len, bool log)
2496 {
2497 struct nlattr *a;
2498
2499 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2500 if (IS_ERR(a))
2501 return a;
2502
2503 a->nla_type = attrtype;
2504 a->nla_len = nla_attr_size(len);
2505
2506 if (data)
2507 memcpy(nla_data(a), data, len);
2508 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2509
2510 return a;
2511 }
2512
ovs_nla_add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2513 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2514 int len, bool log)
2515 {
2516 struct nlattr *a;
2517
2518 a = __add_action(sfa, attrtype, data, len, log);
2519
2520 return PTR_ERR_OR_ZERO(a);
2521 }
2522
add_nested_action_start(struct sw_flow_actions ** sfa,int attrtype,bool log)2523 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2524 int attrtype, bool log)
2525 {
2526 int used = (*sfa)->actions_len;
2527 int err;
2528
2529 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2530 if (err)
2531 return err;
2532
2533 return used;
2534 }
2535
add_nested_action_end(struct sw_flow_actions * sfa,int st_offset)2536 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2537 int st_offset)
2538 {
2539 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2540 st_offset);
2541
2542 a->nla_len = sfa->actions_len - st_offset;
2543 }
2544
2545 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2546 const struct sw_flow_key *key,
2547 struct sw_flow_actions **sfa,
2548 __be16 eth_type, __be16 vlan_tci,
2549 u32 mpls_label_count, bool log,
2550 u32 depth);
2551
validate_and_copy_sample(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)2552 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2553 const struct sw_flow_key *key,
2554 struct sw_flow_actions **sfa,
2555 __be16 eth_type, __be16 vlan_tci,
2556 u32 mpls_label_count, bool log, bool last,
2557 u32 depth)
2558 {
2559 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2560 const struct nlattr *probability, *actions;
2561 const struct nlattr *a;
2562 int rem, start, err;
2563 struct sample_arg arg;
2564
2565 memset(attrs, 0, sizeof(attrs));
2566 nla_for_each_nested(a, attr, rem) {
2567 int type = nla_type(a);
2568 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2569 return -EINVAL;
2570 attrs[type] = a;
2571 }
2572 if (rem)
2573 return -EINVAL;
2574
2575 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2576 if (!probability || nla_len(probability) != sizeof(u32))
2577 return -EINVAL;
2578
2579 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2580 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2581 return -EINVAL;
2582
2583 /* validation done, copy sample action. */
2584 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2585 if (start < 0)
2586 return start;
2587
2588 /* When both skb and flow may be changed, put the sample
2589 * into a deferred fifo. On the other hand, if only skb
2590 * may be modified, the actions can be executed in place.
2591 *
2592 * Do this analysis at the flow installation time.
2593 * Set 'clone_action->exec' to true if the actions can be
2594 * executed without being deferred.
2595 *
2596 * If the sample is the last action, it can always be excuted
2597 * rather than deferred.
2598 */
2599 arg.exec = last || !actions_may_change_flow(actions);
2600 arg.probability = nla_get_u32(probability);
2601
2602 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2603 log);
2604 if (err)
2605 return err;
2606
2607 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2608 eth_type, vlan_tci, mpls_label_count, log,
2609 depth + 1);
2610
2611 if (err)
2612 return err;
2613
2614 add_nested_action_end(*sfa, start);
2615
2616 return 0;
2617 }
2618
validate_and_copy_dec_ttl(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,u32 depth)2619 static int validate_and_copy_dec_ttl(struct net *net,
2620 const struct nlattr *attr,
2621 const struct sw_flow_key *key,
2622 struct sw_flow_actions **sfa,
2623 __be16 eth_type, __be16 vlan_tci,
2624 u32 mpls_label_count, bool log,
2625 u32 depth)
2626 {
2627 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2628 int start, action_start, err, rem;
2629 const struct nlattr *a, *actions;
2630
2631 memset(attrs, 0, sizeof(attrs));
2632 nla_for_each_nested(a, attr, rem) {
2633 int type = nla_type(a);
2634
2635 /* Ignore unknown attributes to be future proof. */
2636 if (type > OVS_DEC_TTL_ATTR_MAX)
2637 continue;
2638
2639 if (!type || attrs[type]) {
2640 OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2641 type);
2642 return -EINVAL;
2643 }
2644
2645 attrs[type] = a;
2646 }
2647
2648 if (rem) {
2649 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2650 return -EINVAL;
2651 }
2652
2653 actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2654 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2655 OVS_NLERR(log, "Missing valid actions attribute.");
2656 return -EINVAL;
2657 }
2658
2659 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2660 if (start < 0)
2661 return start;
2662
2663 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2664 if (action_start < 0)
2665 return action_start;
2666
2667 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2668 vlan_tci, mpls_label_count, log,
2669 depth + 1);
2670 if (err)
2671 return err;
2672
2673 add_nested_action_end(*sfa, action_start);
2674 add_nested_action_end(*sfa, start);
2675 return 0;
2676 }
2677
validate_and_copy_clone(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)2678 static int validate_and_copy_clone(struct net *net,
2679 const struct nlattr *attr,
2680 const struct sw_flow_key *key,
2681 struct sw_flow_actions **sfa,
2682 __be16 eth_type, __be16 vlan_tci,
2683 u32 mpls_label_count, bool log, bool last,
2684 u32 depth)
2685 {
2686 int start, err;
2687 u32 exec;
2688
2689 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2690 return -EINVAL;
2691
2692 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2693 if (start < 0)
2694 return start;
2695
2696 exec = last || !actions_may_change_flow(attr);
2697
2698 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2699 sizeof(exec), log);
2700 if (err)
2701 return err;
2702
2703 err = __ovs_nla_copy_actions(net, attr, key, sfa,
2704 eth_type, vlan_tci, mpls_label_count, log,
2705 depth + 1);
2706 if (err)
2707 return err;
2708
2709 add_nested_action_end(*sfa, start);
2710
2711 return 0;
2712 }
2713
ovs_match_init(struct sw_flow_match * match,struct sw_flow_key * key,bool reset_key,struct sw_flow_mask * mask)2714 void ovs_match_init(struct sw_flow_match *match,
2715 struct sw_flow_key *key,
2716 bool reset_key,
2717 struct sw_flow_mask *mask)
2718 {
2719 memset(match, 0, sizeof(*match));
2720 match->key = key;
2721 match->mask = mask;
2722
2723 if (reset_key)
2724 memset(key, 0, sizeof(*key));
2725
2726 if (mask) {
2727 memset(&mask->key, 0, sizeof(mask->key));
2728 mask->range.start = mask->range.end = 0;
2729 }
2730 }
2731
validate_geneve_opts(struct sw_flow_key * key)2732 static int validate_geneve_opts(struct sw_flow_key *key)
2733 {
2734 struct geneve_opt *option;
2735 int opts_len = key->tun_opts_len;
2736 bool crit_opt = false;
2737
2738 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2739 while (opts_len > 0) {
2740 int len;
2741
2742 if (opts_len < sizeof(*option))
2743 return -EINVAL;
2744
2745 len = sizeof(*option) + option->length * 4;
2746 if (len > opts_len)
2747 return -EINVAL;
2748
2749 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2750
2751 option = (struct geneve_opt *)((u8 *)option + len);
2752 opts_len -= len;
2753 }
2754
2755 if (crit_opt)
2756 __set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags);
2757
2758 return 0;
2759 }
2760
validate_and_copy_set_tun(const struct nlattr * attr,struct sw_flow_actions ** sfa,bool log)2761 static int validate_and_copy_set_tun(const struct nlattr *attr,
2762 struct sw_flow_actions **sfa, bool log)
2763 {
2764 IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { };
2765 struct sw_flow_match match;
2766 struct sw_flow_key key;
2767 struct metadata_dst *tun_dst;
2768 struct ip_tunnel_info *tun_info;
2769 struct ovs_tunnel_info *ovs_tun;
2770 struct nlattr *a;
2771 int err = 0, start, opts_type;
2772
2773 ovs_match_init(&match, &key, true, NULL);
2774 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2775 if (opts_type < 0)
2776 return opts_type;
2777
2778 if (key.tun_opts_len) {
2779 switch (opts_type) {
2780 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2781 err = validate_geneve_opts(&key);
2782 if (err < 0)
2783 return err;
2784
2785 __set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type);
2786 break;
2787 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2788 __set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type);
2789 break;
2790 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2791 __set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type);
2792 break;
2793 }
2794 }
2795
2796 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2797 if (start < 0)
2798 return start;
2799
2800 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2801 GFP_KERNEL);
2802
2803 if (!tun_dst)
2804 return -ENOMEM;
2805
2806 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2807 if (err) {
2808 dst_release((struct dst_entry *)tun_dst);
2809 return err;
2810 }
2811
2812 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2813 sizeof(*ovs_tun), log);
2814 if (IS_ERR(a)) {
2815 dst_release((struct dst_entry *)tun_dst);
2816 return PTR_ERR(a);
2817 }
2818
2819 ovs_tun = nla_data(a);
2820 ovs_tun->tun_dst = tun_dst;
2821
2822 tun_info = &tun_dst->u.tun_info;
2823 tun_info->mode = IP_TUNNEL_INFO_TX;
2824 if (key.tun_proto == AF_INET6)
2825 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2826 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2827 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2828 tun_info->key = key.tun_key;
2829
2830 /* We need to store the options in the action itself since
2831 * everything else will go away after flow setup. We can append
2832 * it to tun_info and then point there.
2833 */
2834 ip_tunnel_info_opts_set(tun_info,
2835 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2836 key.tun_opts_len, dst_opt_type);
2837 add_nested_action_end(*sfa, start);
2838
2839 return err;
2840 }
2841
validate_nsh(const struct nlattr * attr,bool is_mask,bool is_push_nsh,bool log)2842 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2843 bool is_push_nsh, bool log)
2844 {
2845 struct sw_flow_match match;
2846 struct sw_flow_key key;
2847 int ret = 0;
2848
2849 ovs_match_init(&match, &key, true, NULL);
2850 ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2851 is_push_nsh, log);
2852 return !ret;
2853 }
2854
2855 /* Return false if there are any non-masked bits set.
2856 * Mask follows data immediately, before any netlink padding.
2857 */
validate_masked(u8 * data,int len)2858 static bool validate_masked(u8 *data, int len)
2859 {
2860 u8 *mask = data + len;
2861
2862 while (len--)
2863 if (*data++ & ~*mask++)
2864 return false;
2865
2866 return true;
2867 }
2868
validate_set(const struct nlattr * a,const struct sw_flow_key * flow_key,struct sw_flow_actions ** sfa,bool * skip_copy,u8 mac_proto,__be16 eth_type,bool masked,bool log)2869 static int validate_set(const struct nlattr *a,
2870 const struct sw_flow_key *flow_key,
2871 struct sw_flow_actions **sfa, bool *skip_copy,
2872 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2873 {
2874 const struct nlattr *ovs_key = nla_data(a);
2875 int key_type = nla_type(ovs_key);
2876 size_t key_len;
2877
2878 /* There can be only one key in a action */
2879 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2880 return -EINVAL;
2881
2882 key_len = nla_len(ovs_key);
2883 if (masked)
2884 key_len /= 2;
2885
2886 if (key_type > OVS_KEY_ATTR_MAX ||
2887 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2888 return -EINVAL;
2889
2890 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2891 return -EINVAL;
2892
2893 switch (key_type) {
2894 case OVS_KEY_ATTR_PRIORITY:
2895 case OVS_KEY_ATTR_SKB_MARK:
2896 case OVS_KEY_ATTR_CT_MARK:
2897 case OVS_KEY_ATTR_CT_LABELS:
2898 break;
2899
2900 case OVS_KEY_ATTR_ETHERNET:
2901 if (mac_proto != MAC_PROTO_ETHERNET)
2902 return -EINVAL;
2903 break;
2904
2905 case OVS_KEY_ATTR_TUNNEL: {
2906 int err;
2907
2908 if (masked)
2909 return -EINVAL; /* Masked tunnel set not supported. */
2910
2911 *skip_copy = true;
2912 err = validate_and_copy_set_tun(a, sfa, log);
2913 if (err)
2914 return err;
2915 break;
2916 }
2917 case OVS_KEY_ATTR_IPV4: {
2918 const struct ovs_key_ipv4 *ipv4_key;
2919
2920 if (eth_type != htons(ETH_P_IP))
2921 return -EINVAL;
2922
2923 ipv4_key = nla_data(ovs_key);
2924
2925 if (masked) {
2926 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2927
2928 /* Non-writeable fields. */
2929 if (mask->ipv4_proto || mask->ipv4_frag)
2930 return -EINVAL;
2931 } else {
2932 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2933 return -EINVAL;
2934
2935 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2936 return -EINVAL;
2937 }
2938 break;
2939 }
2940 case OVS_KEY_ATTR_IPV6: {
2941 const struct ovs_key_ipv6 *ipv6_key;
2942
2943 if (eth_type != htons(ETH_P_IPV6))
2944 return -EINVAL;
2945
2946 ipv6_key = nla_data(ovs_key);
2947
2948 if (masked) {
2949 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2950
2951 /* Non-writeable fields. */
2952 if (mask->ipv6_proto || mask->ipv6_frag)
2953 return -EINVAL;
2954
2955 /* Invalid bits in the flow label mask? */
2956 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2957 return -EINVAL;
2958 } else {
2959 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2960 return -EINVAL;
2961
2962 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2963 return -EINVAL;
2964 }
2965 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2966 return -EINVAL;
2967
2968 break;
2969 }
2970 case OVS_KEY_ATTR_TCP:
2971 if ((eth_type != htons(ETH_P_IP) &&
2972 eth_type != htons(ETH_P_IPV6)) ||
2973 flow_key->ip.proto != IPPROTO_TCP)
2974 return -EINVAL;
2975
2976 break;
2977
2978 case OVS_KEY_ATTR_UDP:
2979 if ((eth_type != htons(ETH_P_IP) &&
2980 eth_type != htons(ETH_P_IPV6)) ||
2981 flow_key->ip.proto != IPPROTO_UDP)
2982 return -EINVAL;
2983
2984 break;
2985
2986 case OVS_KEY_ATTR_MPLS:
2987 if (!eth_p_mpls(eth_type))
2988 return -EINVAL;
2989 break;
2990
2991 case OVS_KEY_ATTR_SCTP:
2992 if ((eth_type != htons(ETH_P_IP) &&
2993 eth_type != htons(ETH_P_IPV6)) ||
2994 flow_key->ip.proto != IPPROTO_SCTP)
2995 return -EINVAL;
2996
2997 break;
2998
2999 case OVS_KEY_ATTR_NSH:
3000 if (eth_type != htons(ETH_P_NSH))
3001 return -EINVAL;
3002 if (!validate_nsh(nla_data(a), masked, false, log))
3003 return -EINVAL;
3004 break;
3005
3006 default:
3007 return -EINVAL;
3008 }
3009
3010 /* Convert non-masked non-tunnel set actions to masked set actions. */
3011 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3012 int start, len = key_len * 2;
3013 struct nlattr *at;
3014
3015 *skip_copy = true;
3016
3017 start = add_nested_action_start(sfa,
3018 OVS_ACTION_ATTR_SET_TO_MASKED,
3019 log);
3020 if (start < 0)
3021 return start;
3022
3023 at = __add_action(sfa, key_type, NULL, len, log);
3024 if (IS_ERR(at))
3025 return PTR_ERR(at);
3026
3027 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3028 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
3029 /* Clear non-writeable bits from otherwise writeable fields. */
3030 if (key_type == OVS_KEY_ATTR_IPV6) {
3031 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3032
3033 mask->ipv6_label &= htonl(0x000FFFFF);
3034 }
3035 add_nested_action_end(*sfa, start);
3036 }
3037
3038 return 0;
3039 }
3040
validate_userspace(const struct nlattr * attr)3041 static int validate_userspace(const struct nlattr *attr)
3042 {
3043 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3044 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3045 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3046 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3047 };
3048 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3049 int error;
3050
3051 error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3052 userspace_policy, NULL);
3053 if (error)
3054 return error;
3055
3056 if (!a[OVS_USERSPACE_ATTR_PID] ||
3057 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3058 return -EINVAL;
3059
3060 return 0;
3061 }
3062
3063 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3064 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3065 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3066 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3067 };
3068
validate_and_copy_check_pkt_len(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)3069 static int validate_and_copy_check_pkt_len(struct net *net,
3070 const struct nlattr *attr,
3071 const struct sw_flow_key *key,
3072 struct sw_flow_actions **sfa,
3073 __be16 eth_type, __be16 vlan_tci,
3074 u32 mpls_label_count,
3075 bool log, bool last, u32 depth)
3076 {
3077 const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3078 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3079 struct check_pkt_len_arg arg;
3080 int nested_acts_start;
3081 int start, err;
3082
3083 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3084 nla_data(attr), nla_len(attr),
3085 cpl_policy, NULL);
3086 if (err)
3087 return err;
3088
3089 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3090 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3091 return -EINVAL;
3092
3093 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3094 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3095
3096 /* Both the nested action should be present. */
3097 if (!acts_if_greater || !acts_if_lesser_eq)
3098 return -EINVAL;
3099
3100 /* validation done, copy the nested actions. */
3101 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3102 log);
3103 if (start < 0)
3104 return start;
3105
3106 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3107 arg.exec_for_lesser_equal =
3108 last || !actions_may_change_flow(acts_if_lesser_eq);
3109 arg.exec_for_greater =
3110 last || !actions_may_change_flow(acts_if_greater);
3111
3112 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3113 sizeof(arg), log);
3114 if (err)
3115 return err;
3116
3117 nested_acts_start = add_nested_action_start(sfa,
3118 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3119 if (nested_acts_start < 0)
3120 return nested_acts_start;
3121
3122 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3123 eth_type, vlan_tci, mpls_label_count, log,
3124 depth + 1);
3125
3126 if (err)
3127 return err;
3128
3129 add_nested_action_end(*sfa, nested_acts_start);
3130
3131 nested_acts_start = add_nested_action_start(sfa,
3132 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3133 if (nested_acts_start < 0)
3134 return nested_acts_start;
3135
3136 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3137 eth_type, vlan_tci, mpls_label_count, log,
3138 depth + 1);
3139
3140 if (err)
3141 return err;
3142
3143 add_nested_action_end(*sfa, nested_acts_start);
3144 add_nested_action_end(*sfa, start);
3145 return 0;
3146 }
3147
validate_psample(const struct nlattr * attr)3148 static int validate_psample(const struct nlattr *attr)
3149 {
3150 static const struct nla_policy policy[OVS_PSAMPLE_ATTR_MAX + 1] = {
3151 [OVS_PSAMPLE_ATTR_GROUP] = { .type = NLA_U32 },
3152 [OVS_PSAMPLE_ATTR_COOKIE] = {
3153 .type = NLA_BINARY,
3154 .len = OVS_PSAMPLE_COOKIE_MAX_SIZE,
3155 },
3156 };
3157 struct nlattr *a[OVS_PSAMPLE_ATTR_MAX + 1];
3158 int err;
3159
3160 if (!IS_ENABLED(CONFIG_PSAMPLE))
3161 return -EOPNOTSUPP;
3162
3163 err = nla_parse_nested(a, OVS_PSAMPLE_ATTR_MAX, attr, policy, NULL);
3164 if (err)
3165 return err;
3166
3167 return a[OVS_PSAMPLE_ATTR_GROUP] ? 0 : -EINVAL;
3168 }
3169
copy_action(const struct nlattr * from,struct sw_flow_actions ** sfa,bool log)3170 static int copy_action(const struct nlattr *from,
3171 struct sw_flow_actions **sfa, bool log)
3172 {
3173 int totlen = NLA_ALIGN(from->nla_len);
3174 struct nlattr *to;
3175
3176 to = reserve_sfa_size(sfa, from->nla_len, log);
3177 if (IS_ERR(to))
3178 return PTR_ERR(to);
3179
3180 memcpy(to, from, totlen);
3181 return 0;
3182 }
3183
__ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,u32 depth)3184 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3185 const struct sw_flow_key *key,
3186 struct sw_flow_actions **sfa,
3187 __be16 eth_type, __be16 vlan_tci,
3188 u32 mpls_label_count, bool log,
3189 u32 depth)
3190 {
3191 u8 mac_proto = ovs_key_mac_proto(key);
3192 const struct nlattr *a;
3193 int rem, err;
3194
3195 if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3196 return -EOVERFLOW;
3197
3198 nla_for_each_nested(a, attr, rem) {
3199 /* Expected argument lengths, (u32)-1 for variable length. */
3200 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3201 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3202 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3203 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3204 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3205 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3206 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3207 [OVS_ACTION_ATTR_POP_VLAN] = 0,
3208 [OVS_ACTION_ATTR_SET] = (u32)-1,
3209 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3210 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3211 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3212 [OVS_ACTION_ATTR_CT] = (u32)-1,
3213 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
3214 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3215 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3216 [OVS_ACTION_ATTR_POP_ETH] = 0,
3217 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3218 [OVS_ACTION_ATTR_POP_NSH] = 0,
3219 [OVS_ACTION_ATTR_METER] = sizeof(u32),
3220 [OVS_ACTION_ATTR_CLONE] = (u32)-1,
3221 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3222 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3223 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3224 [OVS_ACTION_ATTR_DROP] = sizeof(u32),
3225 [OVS_ACTION_ATTR_PSAMPLE] = (u32)-1,
3226 };
3227 const struct ovs_action_push_vlan *vlan;
3228 int type = nla_type(a);
3229 bool skip_copy;
3230
3231 if (type > OVS_ACTION_ATTR_MAX ||
3232 (action_lens[type] != nla_len(a) &&
3233 action_lens[type] != (u32)-1))
3234 return -EINVAL;
3235
3236 skip_copy = false;
3237 switch (type) {
3238 case OVS_ACTION_ATTR_UNSPEC:
3239 return -EINVAL;
3240
3241 case OVS_ACTION_ATTR_USERSPACE:
3242 err = validate_userspace(a);
3243 if (err)
3244 return err;
3245 break;
3246
3247 case OVS_ACTION_ATTR_OUTPUT:
3248 if (nla_get_u32(a) >= DP_MAX_PORTS)
3249 return -EINVAL;
3250 break;
3251
3252 case OVS_ACTION_ATTR_TRUNC: {
3253 const struct ovs_action_trunc *trunc = nla_data(a);
3254
3255 if (trunc->max_len < ETH_HLEN)
3256 return -EINVAL;
3257 break;
3258 }
3259
3260 case OVS_ACTION_ATTR_HASH: {
3261 const struct ovs_action_hash *act_hash = nla_data(a);
3262
3263 switch (act_hash->hash_alg) {
3264 case OVS_HASH_ALG_L4:
3265 fallthrough;
3266 case OVS_HASH_ALG_SYM_L4:
3267 break;
3268 default:
3269 return -EINVAL;
3270 }
3271
3272 break;
3273 }
3274
3275 case OVS_ACTION_ATTR_POP_VLAN:
3276 if (mac_proto != MAC_PROTO_ETHERNET)
3277 return -EINVAL;
3278 vlan_tci = htons(0);
3279 break;
3280
3281 case OVS_ACTION_ATTR_PUSH_VLAN:
3282 if (mac_proto != MAC_PROTO_ETHERNET)
3283 return -EINVAL;
3284 vlan = nla_data(a);
3285 if (!eth_type_vlan(vlan->vlan_tpid))
3286 return -EINVAL;
3287 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3288 return -EINVAL;
3289 vlan_tci = vlan->vlan_tci;
3290 break;
3291
3292 case OVS_ACTION_ATTR_RECIRC:
3293 break;
3294
3295 case OVS_ACTION_ATTR_ADD_MPLS: {
3296 const struct ovs_action_add_mpls *mpls = nla_data(a);
3297
3298 if (!eth_p_mpls(mpls->mpls_ethertype))
3299 return -EINVAL;
3300
3301 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3302 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3303 (eth_type != htons(ETH_P_IP) &&
3304 eth_type != htons(ETH_P_IPV6) &&
3305 eth_type != htons(ETH_P_ARP) &&
3306 eth_type != htons(ETH_P_RARP) &&
3307 !eth_p_mpls(eth_type)))
3308 return -EINVAL;
3309 mpls_label_count++;
3310 } else {
3311 if (mac_proto == MAC_PROTO_ETHERNET) {
3312 mpls_label_count = 1;
3313 mac_proto = MAC_PROTO_NONE;
3314 } else {
3315 mpls_label_count++;
3316 }
3317 }
3318 eth_type = mpls->mpls_ethertype;
3319 break;
3320 }
3321
3322 case OVS_ACTION_ATTR_PUSH_MPLS: {
3323 const struct ovs_action_push_mpls *mpls = nla_data(a);
3324
3325 if (!eth_p_mpls(mpls->mpls_ethertype))
3326 return -EINVAL;
3327 /* Prohibit push MPLS other than to a white list
3328 * for packets that have a known tag order.
3329 */
3330 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3331 (eth_type != htons(ETH_P_IP) &&
3332 eth_type != htons(ETH_P_IPV6) &&
3333 eth_type != htons(ETH_P_ARP) &&
3334 eth_type != htons(ETH_P_RARP) &&
3335 !eth_p_mpls(eth_type)))
3336 return -EINVAL;
3337 eth_type = mpls->mpls_ethertype;
3338 mpls_label_count++;
3339 break;
3340 }
3341
3342 case OVS_ACTION_ATTR_POP_MPLS: {
3343 __be16 proto;
3344 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3345 !eth_p_mpls(eth_type))
3346 return -EINVAL;
3347
3348 /* Disallow subsequent L2.5+ set actions and mpls_pop
3349 * actions once the last MPLS label in the packet is
3350 * popped as there is no check here to ensure that
3351 * the new eth type is valid and thus set actions could
3352 * write off the end of the packet or otherwise corrupt
3353 * it.
3354 *
3355 * Support for these actions is planned using packet
3356 * recirculation.
3357 */
3358 proto = nla_get_be16(a);
3359
3360 if (proto == htons(ETH_P_TEB) &&
3361 mac_proto != MAC_PROTO_NONE)
3362 return -EINVAL;
3363
3364 mpls_label_count--;
3365
3366 if (!eth_p_mpls(proto) || !mpls_label_count)
3367 eth_type = htons(0);
3368 else
3369 eth_type = proto;
3370
3371 break;
3372 }
3373
3374 case OVS_ACTION_ATTR_SET:
3375 err = validate_set(a, key, sfa,
3376 &skip_copy, mac_proto, eth_type,
3377 false, log);
3378 if (err)
3379 return err;
3380 break;
3381
3382 case OVS_ACTION_ATTR_SET_MASKED:
3383 err = validate_set(a, key, sfa,
3384 &skip_copy, mac_proto, eth_type,
3385 true, log);
3386 if (err)
3387 return err;
3388 break;
3389
3390 case OVS_ACTION_ATTR_SAMPLE: {
3391 bool last = nla_is_last(a, rem);
3392
3393 err = validate_and_copy_sample(net, a, key, sfa,
3394 eth_type, vlan_tci,
3395 mpls_label_count,
3396 log, last, depth);
3397 if (err)
3398 return err;
3399 skip_copy = true;
3400 break;
3401 }
3402
3403 case OVS_ACTION_ATTR_CT:
3404 err = ovs_ct_copy_action(net, a, key, sfa, log);
3405 if (err)
3406 return err;
3407 skip_copy = true;
3408 break;
3409
3410 case OVS_ACTION_ATTR_CT_CLEAR:
3411 break;
3412
3413 case OVS_ACTION_ATTR_PUSH_ETH:
3414 /* Disallow pushing an Ethernet header if one
3415 * is already present */
3416 if (mac_proto != MAC_PROTO_NONE)
3417 return -EINVAL;
3418 mac_proto = MAC_PROTO_ETHERNET;
3419 break;
3420
3421 case OVS_ACTION_ATTR_POP_ETH:
3422 if (mac_proto != MAC_PROTO_ETHERNET)
3423 return -EINVAL;
3424 if (vlan_tci & htons(VLAN_CFI_MASK))
3425 return -EINVAL;
3426 mac_proto = MAC_PROTO_NONE;
3427 break;
3428
3429 case OVS_ACTION_ATTR_PUSH_NSH:
3430 if (mac_proto != MAC_PROTO_ETHERNET) {
3431 u8 next_proto;
3432
3433 next_proto = tun_p_from_eth_p(eth_type);
3434 if (!next_proto)
3435 return -EINVAL;
3436 }
3437 mac_proto = MAC_PROTO_NONE;
3438 if (!validate_nsh(nla_data(a), false, true, true))
3439 return -EINVAL;
3440 break;
3441
3442 case OVS_ACTION_ATTR_POP_NSH: {
3443 __be16 inner_proto;
3444
3445 if (eth_type != htons(ETH_P_NSH))
3446 return -EINVAL;
3447 inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3448 if (!inner_proto)
3449 return -EINVAL;
3450 if (key->nsh.base.np == TUN_P_ETHERNET)
3451 mac_proto = MAC_PROTO_ETHERNET;
3452 else
3453 mac_proto = MAC_PROTO_NONE;
3454 break;
3455 }
3456
3457 case OVS_ACTION_ATTR_METER:
3458 /* Non-existent meters are simply ignored. */
3459 break;
3460
3461 case OVS_ACTION_ATTR_CLONE: {
3462 bool last = nla_is_last(a, rem);
3463
3464 err = validate_and_copy_clone(net, a, key, sfa,
3465 eth_type, vlan_tci,
3466 mpls_label_count,
3467 log, last, depth);
3468 if (err)
3469 return err;
3470 skip_copy = true;
3471 break;
3472 }
3473
3474 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3475 bool last = nla_is_last(a, rem);
3476
3477 err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3478 eth_type,
3479 vlan_tci,
3480 mpls_label_count,
3481 log, last,
3482 depth);
3483 if (err)
3484 return err;
3485 skip_copy = true;
3486 break;
3487 }
3488
3489 case OVS_ACTION_ATTR_DEC_TTL:
3490 err = validate_and_copy_dec_ttl(net, a, key, sfa,
3491 eth_type, vlan_tci,
3492 mpls_label_count, log,
3493 depth);
3494 if (err)
3495 return err;
3496 skip_copy = true;
3497 break;
3498
3499 case OVS_ACTION_ATTR_DROP:
3500 if (!nla_is_last(a, rem))
3501 return -EINVAL;
3502 break;
3503
3504 case OVS_ACTION_ATTR_PSAMPLE:
3505 err = validate_psample(a);
3506 if (err)
3507 return err;
3508 break;
3509
3510 default:
3511 OVS_NLERR(log, "Unknown Action type %d", type);
3512 return -EINVAL;
3513 }
3514 if (!skip_copy) {
3515 err = copy_action(a, sfa, log);
3516 if (err)
3517 return err;
3518 }
3519 }
3520
3521 if (rem > 0)
3522 return -EINVAL;
3523
3524 return 0;
3525 }
3526
3527 /* 'key' must be the masked key. */
ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)3528 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3529 const struct sw_flow_key *key,
3530 struct sw_flow_actions **sfa, bool log)
3531 {
3532 int err;
3533 u32 mpls_label_count = 0;
3534
3535 *sfa = nla_alloc_flow_actions(nla_len(attr));
3536 if (IS_ERR(*sfa))
3537 return PTR_ERR(*sfa);
3538
3539 if (eth_p_mpls(key->eth.type))
3540 mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3541
3542 (*sfa)->orig_len = nla_len(attr);
3543 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3544 key->eth.vlan.tci, mpls_label_count, log,
3545 0);
3546 if (err)
3547 ovs_nla_free_flow_actions(*sfa);
3548
3549 return err;
3550 }
3551
sample_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3552 static int sample_action_to_attr(const struct nlattr *attr,
3553 struct sk_buff *skb)
3554 {
3555 struct nlattr *start, *ac_start = NULL, *sample_arg;
3556 int err = 0, rem = nla_len(attr);
3557 const struct sample_arg *arg;
3558 struct nlattr *actions;
3559
3560 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3561 if (!start)
3562 return -EMSGSIZE;
3563
3564 sample_arg = nla_data(attr);
3565 arg = nla_data(sample_arg);
3566 actions = nla_next(sample_arg, &rem);
3567
3568 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3569 err = -EMSGSIZE;
3570 goto out;
3571 }
3572
3573 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3574 if (!ac_start) {
3575 err = -EMSGSIZE;
3576 goto out;
3577 }
3578
3579 err = ovs_nla_put_actions(actions, rem, skb);
3580
3581 out:
3582 if (err) {
3583 nla_nest_cancel(skb, ac_start);
3584 nla_nest_cancel(skb, start);
3585 } else {
3586 nla_nest_end(skb, ac_start);
3587 nla_nest_end(skb, start);
3588 }
3589
3590 return err;
3591 }
3592
clone_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3593 static int clone_action_to_attr(const struct nlattr *attr,
3594 struct sk_buff *skb)
3595 {
3596 struct nlattr *start;
3597 int err = 0, rem = nla_len(attr);
3598
3599 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3600 if (!start)
3601 return -EMSGSIZE;
3602
3603 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3604 attr = nla_next(nla_data(attr), &rem);
3605 err = ovs_nla_put_actions(attr, rem, skb);
3606
3607 if (err)
3608 nla_nest_cancel(skb, start);
3609 else
3610 nla_nest_end(skb, start);
3611
3612 return err;
3613 }
3614
check_pkt_len_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3615 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3616 struct sk_buff *skb)
3617 {
3618 struct nlattr *start, *ac_start = NULL;
3619 const struct check_pkt_len_arg *arg;
3620 const struct nlattr *a, *cpl_arg;
3621 int err = 0, rem = nla_len(attr);
3622
3623 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3624 if (!start)
3625 return -EMSGSIZE;
3626
3627 /* The first nested attribute in 'attr' is always
3628 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3629 */
3630 cpl_arg = nla_data(attr);
3631 arg = nla_data(cpl_arg);
3632
3633 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3634 err = -EMSGSIZE;
3635 goto out;
3636 }
3637
3638 /* Second nested attribute in 'attr' is always
3639 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3640 */
3641 a = nla_next(cpl_arg, &rem);
3642 ac_start = nla_nest_start_noflag(skb,
3643 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3644 if (!ac_start) {
3645 err = -EMSGSIZE;
3646 goto out;
3647 }
3648
3649 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3650 if (err) {
3651 nla_nest_cancel(skb, ac_start);
3652 goto out;
3653 } else {
3654 nla_nest_end(skb, ac_start);
3655 }
3656
3657 /* Third nested attribute in 'attr' is always
3658 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3659 */
3660 a = nla_next(a, &rem);
3661 ac_start = nla_nest_start_noflag(skb,
3662 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3663 if (!ac_start) {
3664 err = -EMSGSIZE;
3665 goto out;
3666 }
3667
3668 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3669 if (err) {
3670 nla_nest_cancel(skb, ac_start);
3671 goto out;
3672 } else {
3673 nla_nest_end(skb, ac_start);
3674 }
3675
3676 nla_nest_end(skb, start);
3677 return 0;
3678
3679 out:
3680 nla_nest_cancel(skb, start);
3681 return err;
3682 }
3683
dec_ttl_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3684 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3685 struct sk_buff *skb)
3686 {
3687 struct nlattr *start, *action_start;
3688 const struct nlattr *a;
3689 int err = 0, rem;
3690
3691 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3692 if (!start)
3693 return -EMSGSIZE;
3694
3695 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3696 switch (nla_type(a)) {
3697 case OVS_DEC_TTL_ATTR_ACTION:
3698
3699 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3700 if (!action_start) {
3701 err = -EMSGSIZE;
3702 goto out;
3703 }
3704
3705 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3706 if (err)
3707 goto out;
3708
3709 nla_nest_end(skb, action_start);
3710 break;
3711
3712 default:
3713 /* Ignore all other option to be future compatible */
3714 break;
3715 }
3716 }
3717
3718 nla_nest_end(skb, start);
3719 return 0;
3720
3721 out:
3722 nla_nest_cancel(skb, start);
3723 return err;
3724 }
3725
set_action_to_attr(const struct nlattr * a,struct sk_buff * skb)3726 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3727 {
3728 const struct nlattr *ovs_key = nla_data(a);
3729 int key_type = nla_type(ovs_key);
3730 struct nlattr *start;
3731 int err;
3732
3733 switch (key_type) {
3734 case OVS_KEY_ATTR_TUNNEL_INFO: {
3735 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3736 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3737
3738 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3739 if (!start)
3740 return -EMSGSIZE;
3741
3742 err = ip_tun_to_nlattr(skb, &tun_info->key,
3743 ip_tunnel_info_opts(tun_info),
3744 tun_info->options_len,
3745 ip_tunnel_info_af(tun_info), tun_info->mode);
3746 if (err)
3747 return err;
3748 nla_nest_end(skb, start);
3749 break;
3750 }
3751 default:
3752 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3753 return -EMSGSIZE;
3754 break;
3755 }
3756
3757 return 0;
3758 }
3759
masked_set_action_to_set_action_attr(const struct nlattr * a,struct sk_buff * skb)3760 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3761 struct sk_buff *skb)
3762 {
3763 const struct nlattr *ovs_key = nla_data(a);
3764 struct nlattr *nla;
3765 size_t key_len = nla_len(ovs_key) / 2;
3766
3767 /* Revert the conversion we did from a non-masked set action to
3768 * masked set action.
3769 */
3770 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3771 if (!nla)
3772 return -EMSGSIZE;
3773
3774 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3775 return -EMSGSIZE;
3776
3777 nla_nest_end(skb, nla);
3778 return 0;
3779 }
3780
ovs_nla_put_actions(const struct nlattr * attr,int len,struct sk_buff * skb)3781 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3782 {
3783 const struct nlattr *a;
3784 int rem, err;
3785
3786 nla_for_each_attr(a, attr, len, rem) {
3787 int type = nla_type(a);
3788
3789 switch (type) {
3790 case OVS_ACTION_ATTR_SET:
3791 err = set_action_to_attr(a, skb);
3792 if (err)
3793 return err;
3794 break;
3795
3796 case OVS_ACTION_ATTR_SET_TO_MASKED:
3797 err = masked_set_action_to_set_action_attr(a, skb);
3798 if (err)
3799 return err;
3800 break;
3801
3802 case OVS_ACTION_ATTR_SAMPLE:
3803 err = sample_action_to_attr(a, skb);
3804 if (err)
3805 return err;
3806 break;
3807
3808 case OVS_ACTION_ATTR_CT:
3809 err = ovs_ct_action_to_attr(nla_data(a), skb);
3810 if (err)
3811 return err;
3812 break;
3813
3814 case OVS_ACTION_ATTR_CLONE:
3815 err = clone_action_to_attr(a, skb);
3816 if (err)
3817 return err;
3818 break;
3819
3820 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3821 err = check_pkt_len_action_to_attr(a, skb);
3822 if (err)
3823 return err;
3824 break;
3825
3826 case OVS_ACTION_ATTR_DEC_TTL:
3827 err = dec_ttl_action_to_attr(a, skb);
3828 if (err)
3829 return err;
3830 break;
3831
3832 default:
3833 if (nla_put(skb, type, nla_len(a), nla_data(a)))
3834 return -EMSGSIZE;
3835 break;
3836 }
3837 }
3838
3839 return 0;
3840 }
3841