1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39
40 #include "internal.h"
41
42 /*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
pipe_clear_nowait(struct file * file)48 static noinline void pipe_clear_nowait(struct file *file)
49 {
50 fmode_t fmode = READ_ONCE(file->f_mode);
51
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57
58 /*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
page_cache_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
66 {
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
69
70 folio_lock(folio);
71
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
75
76 /*
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
83 */
84 folio_wait_writeback(folio);
85
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
88
89 /*
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
92 */
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
96 }
97 }
98
99 /*
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
102 */
103 out_unlock:
104 folio_unlock(folio);
105 return false;
106 }
107
page_cache_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
110 {
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114
115 /*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
page_cache_pipe_buf_confirm(struct pipe_inode_info * pipe,struct pipe_buffer * buf)119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
121 {
122 struct folio *folio = page_folio(buf->page);
123 int err;
124
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
127
128 /*
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
131 */
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
135 }
136
137 /*
138 * Uh oh, read-error from disk.
139 */
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
143 }
144
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
147 }
148
149 return 0;
150 error:
151 folio_unlock(folio);
152 return err;
153 }
154
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
160 };
161
user_page_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
164 {
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
167
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
170 }
171
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
176 };
177
wakeup_pipe_readers(struct pipe_inode_info * pipe)178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185
186 /**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
190 *
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
195 *
196 */
splice_to_pipe(struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
199 {
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 ssize_t ret = 0;
204 int page_nr = 0;
205
206 if (!spd_pages)
207 return 0;
208
209 if (unlikely(!pipe->readers)) {
210 send_sig(SIGPIPE, current, 0);
211 ret = -EPIPE;
212 goto out;
213 }
214
215 while (!pipe_full(head, tail, pipe->max_usage)) {
216 struct pipe_buffer *buf = pipe_buf(pipe, head);
217
218 buf->page = spd->pages[page_nr];
219 buf->offset = spd->partial[page_nr].offset;
220 buf->len = spd->partial[page_nr].len;
221 buf->private = spd->partial[page_nr].private;
222 buf->ops = spd->ops;
223 buf->flags = 0;
224
225 head++;
226 pipe->head = head;
227 page_nr++;
228 ret += buf->len;
229
230 if (!--spd->nr_pages)
231 break;
232 }
233
234 if (!ret)
235 ret = -EAGAIN;
236
237 out:
238 while (page_nr < spd_pages)
239 spd->spd_release(spd, page_nr++);
240
241 return ret;
242 }
243 EXPORT_SYMBOL_GPL(splice_to_pipe);
244
add_to_pipe(struct pipe_inode_info * pipe,struct pipe_buffer * buf)245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
246 {
247 unsigned int head = pipe->head;
248 unsigned int tail = pipe->tail;
249 int ret;
250
251 if (unlikely(!pipe->readers)) {
252 send_sig(SIGPIPE, current, 0);
253 ret = -EPIPE;
254 } else if (pipe_full(head, tail, pipe->max_usage)) {
255 ret = -EAGAIN;
256 } else {
257 *pipe_buf(pipe, head) = *buf;
258 pipe->head = head + 1;
259 return buf->len;
260 }
261 pipe_buf_release(pipe, buf);
262 return ret;
263 }
264 EXPORT_SYMBOL(add_to_pipe);
265
266 /*
267 * Check if we need to grow the arrays holding pages and partial page
268 * descriptions.
269 */
splice_grow_spd(const struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)270 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
271 {
272 unsigned int max_usage = READ_ONCE(pipe->max_usage);
273
274 spd->nr_pages_max = max_usage;
275 if (max_usage <= PIPE_DEF_BUFFERS)
276 return 0;
277
278 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
279 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
280 GFP_KERNEL);
281
282 if (spd->pages && spd->partial)
283 return 0;
284
285 kfree(spd->pages);
286 kfree(spd->partial);
287 return -ENOMEM;
288 }
289
splice_shrink_spd(struct splice_pipe_desc * spd)290 void splice_shrink_spd(struct splice_pipe_desc *spd)
291 {
292 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
293 return;
294
295 kfree(spd->pages);
296 kfree(spd->partial);
297 }
298
299 /**
300 * copy_splice_read - Copy data from a file and splice the copy into a pipe
301 * @in: The file to read from
302 * @ppos: Pointer to the file position to read from
303 * @pipe: The pipe to splice into
304 * @len: The amount to splice
305 * @flags: The SPLICE_F_* flags
306 *
307 * This function allocates a bunch of pages sufficient to hold the requested
308 * amount of data (but limited by the remaining pipe capacity), passes it to
309 * the file's ->read_iter() to read into and then splices the used pages into
310 * the pipe.
311 *
312 * Return: On success, the number of bytes read will be returned and *@ppos
313 * will be updated if appropriate; 0 will be returned if there is no more data
314 * to be read; -EAGAIN will be returned if the pipe had no space, and some
315 * other negative error code will be returned on error. A short read may occur
316 * if the pipe has insufficient space, we reach the end of the data or we hit a
317 * hole.
318 */
copy_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)319 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
320 struct pipe_inode_info *pipe,
321 size_t len, unsigned int flags)
322 {
323 struct iov_iter to;
324 struct bio_vec *bv;
325 struct kiocb kiocb;
326 struct page **pages;
327 ssize_t ret;
328 size_t used, npages, chunk, remain, keep = 0;
329 int i;
330
331 /* Work out how much data we can actually add into the pipe */
332 used = pipe_buf_usage(pipe);
333 npages = max_t(ssize_t, pipe->max_usage - used, 0);
334 len = min_t(size_t, len, npages * PAGE_SIZE);
335 npages = DIV_ROUND_UP(len, PAGE_SIZE);
336
337 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
338 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
339 if (!bv)
340 return -ENOMEM;
341
342 pages = (struct page **)(bv + npages);
343 npages = alloc_pages_bulk(GFP_USER, npages, pages);
344 if (!npages) {
345 kfree(bv);
346 return -ENOMEM;
347 }
348
349 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
350
351 for (i = 0; i < npages; i++) {
352 chunk = min_t(size_t, PAGE_SIZE, remain);
353 bv[i].bv_page = pages[i];
354 bv[i].bv_offset = 0;
355 bv[i].bv_len = chunk;
356 remain -= chunk;
357 }
358
359 /* Do the I/O */
360 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
361 init_sync_kiocb(&kiocb, in);
362 kiocb.ki_pos = *ppos;
363 ret = in->f_op->read_iter(&kiocb, &to);
364
365 if (ret > 0) {
366 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
367 *ppos = kiocb.ki_pos;
368 }
369
370 /*
371 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
372 * there", rather than -EFAULT.
373 */
374 if (ret == -EFAULT)
375 ret = -EAGAIN;
376
377 /* Free any pages that didn't get touched at all. */
378 if (keep < npages)
379 release_pages(pages + keep, npages - keep);
380
381 /* Push the remaining pages into the pipe. */
382 remain = ret;
383 for (i = 0; i < keep; i++) {
384 struct pipe_buffer *buf = pipe_head_buf(pipe);
385
386 chunk = min_t(size_t, remain, PAGE_SIZE);
387 *buf = (struct pipe_buffer) {
388 .ops = &default_pipe_buf_ops,
389 .page = bv[i].bv_page,
390 .offset = 0,
391 .len = chunk,
392 };
393 pipe->head++;
394 remain -= chunk;
395 }
396
397 kfree(bv);
398 return ret;
399 }
400 EXPORT_SYMBOL(copy_splice_read);
401
402 const struct pipe_buf_operations default_pipe_buf_ops = {
403 .release = generic_pipe_buf_release,
404 .try_steal = generic_pipe_buf_try_steal,
405 .get = generic_pipe_buf_get,
406 };
407
408 /* Pipe buffer operations for a socket and similar. */
409 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
410 .release = generic_pipe_buf_release,
411 .get = generic_pipe_buf_get,
412 };
413 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
414
wakeup_pipe_writers(struct pipe_inode_info * pipe)415 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
416 {
417 smp_mb();
418 if (waitqueue_active(&pipe->wr_wait))
419 wake_up_interruptible(&pipe->wr_wait);
420 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
421 }
422
423 /**
424 * splice_from_pipe_feed - feed available data from a pipe to a file
425 * @pipe: pipe to splice from
426 * @sd: information to @actor
427 * @actor: handler that splices the data
428 *
429 * Description:
430 * This function loops over the pipe and calls @actor to do the
431 * actual moving of a single struct pipe_buffer to the desired
432 * destination. It returns when there's no more buffers left in
433 * the pipe or if the requested number of bytes (@sd->total_len)
434 * have been copied. It returns a positive number (one) if the
435 * pipe needs to be filled with more data, zero if the required
436 * number of bytes have been copied and -errno on error.
437 *
438 * This, together with splice_from_pipe_{begin,end,next}, may be
439 * used to implement the functionality of __splice_from_pipe() when
440 * locking is required around copying the pipe buffers to the
441 * destination.
442 */
splice_from_pipe_feed(struct pipe_inode_info * pipe,struct splice_desc * sd,splice_actor * actor)443 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
444 splice_actor *actor)
445 {
446 unsigned int head = pipe->head;
447 unsigned int tail = pipe->tail;
448 int ret;
449
450 while (!pipe_empty(head, tail)) {
451 struct pipe_buffer *buf = pipe_buf(pipe, tail);
452
453 sd->len = buf->len;
454 if (sd->len > sd->total_len)
455 sd->len = sd->total_len;
456
457 ret = pipe_buf_confirm(pipe, buf);
458 if (unlikely(ret)) {
459 if (ret == -ENODATA)
460 ret = 0;
461 return ret;
462 }
463
464 ret = actor(pipe, buf, sd);
465 if (ret <= 0)
466 return ret;
467
468 buf->offset += ret;
469 buf->len -= ret;
470
471 sd->num_spliced += ret;
472 sd->len -= ret;
473 sd->pos += ret;
474 sd->total_len -= ret;
475
476 if (!buf->len) {
477 pipe_buf_release(pipe, buf);
478 tail++;
479 pipe->tail = tail;
480 if (pipe->files)
481 sd->need_wakeup = true;
482 }
483
484 if (!sd->total_len)
485 return 0;
486 }
487
488 return 1;
489 }
490
491 /* We know we have a pipe buffer, but maybe it's empty? */
eat_empty_buffer(struct pipe_inode_info * pipe)492 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
493 {
494 unsigned int tail = pipe->tail;
495 struct pipe_buffer *buf = pipe_buf(pipe, tail);
496
497 if (unlikely(!buf->len)) {
498 pipe_buf_release(pipe, buf);
499 pipe->tail = tail+1;
500 return true;
501 }
502
503 return false;
504 }
505
506 /**
507 * splice_from_pipe_next - wait for some data to splice from
508 * @pipe: pipe to splice from
509 * @sd: information about the splice operation
510 *
511 * Description:
512 * This function will wait for some data and return a positive
513 * value (one) if pipe buffers are available. It will return zero
514 * or -errno if no more data needs to be spliced.
515 */
splice_from_pipe_next(struct pipe_inode_info * pipe,struct splice_desc * sd)516 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
517 {
518 /*
519 * Check for signal early to make process killable when there are
520 * always buffers available
521 */
522 if (signal_pending(current))
523 return -ERESTARTSYS;
524
525 repeat:
526 while (pipe_is_empty(pipe)) {
527 if (!pipe->writers)
528 return 0;
529
530 if (sd->num_spliced)
531 return 0;
532
533 if (sd->flags & SPLICE_F_NONBLOCK)
534 return -EAGAIN;
535
536 if (signal_pending(current))
537 return -ERESTARTSYS;
538
539 if (sd->need_wakeup) {
540 wakeup_pipe_writers(pipe);
541 sd->need_wakeup = false;
542 }
543
544 pipe_wait_readable(pipe);
545 }
546
547 if (eat_empty_buffer(pipe))
548 goto repeat;
549
550 return 1;
551 }
552
553 /**
554 * splice_from_pipe_begin - start splicing from pipe
555 * @sd: information about the splice operation
556 *
557 * Description:
558 * This function should be called before a loop containing
559 * splice_from_pipe_next() and splice_from_pipe_feed() to
560 * initialize the necessary fields of @sd.
561 */
splice_from_pipe_begin(struct splice_desc * sd)562 static void splice_from_pipe_begin(struct splice_desc *sd)
563 {
564 sd->num_spliced = 0;
565 sd->need_wakeup = false;
566 }
567
568 /**
569 * splice_from_pipe_end - finish splicing from pipe
570 * @pipe: pipe to splice from
571 * @sd: information about the splice operation
572 *
573 * Description:
574 * This function will wake up pipe writers if necessary. It should
575 * be called after a loop containing splice_from_pipe_next() and
576 * splice_from_pipe_feed().
577 */
splice_from_pipe_end(struct pipe_inode_info * pipe,struct splice_desc * sd)578 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
579 {
580 if (sd->need_wakeup)
581 wakeup_pipe_writers(pipe);
582 }
583
584 /**
585 * __splice_from_pipe - splice data from a pipe to given actor
586 * @pipe: pipe to splice from
587 * @sd: information to @actor
588 * @actor: handler that splices the data
589 *
590 * Description:
591 * This function does little more than loop over the pipe and call
592 * @actor to do the actual moving of a single struct pipe_buffer to
593 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
594 * pipe_to_user.
595 *
596 */
__splice_from_pipe(struct pipe_inode_info * pipe,struct splice_desc * sd,splice_actor * actor)597 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
598 splice_actor *actor)
599 {
600 int ret;
601
602 splice_from_pipe_begin(sd);
603 do {
604 cond_resched();
605 ret = splice_from_pipe_next(pipe, sd);
606 if (ret > 0)
607 ret = splice_from_pipe_feed(pipe, sd, actor);
608 } while (ret > 0);
609 splice_from_pipe_end(pipe, sd);
610
611 return sd->num_spliced ? sd->num_spliced : ret;
612 }
613 EXPORT_SYMBOL(__splice_from_pipe);
614
615 /**
616 * splice_from_pipe - splice data from a pipe to a file
617 * @pipe: pipe to splice from
618 * @out: file to splice to
619 * @ppos: position in @out
620 * @len: how many bytes to splice
621 * @flags: splice modifier flags
622 * @actor: handler that splices the data
623 *
624 * Description:
625 * See __splice_from_pipe. This function locks the pipe inode,
626 * otherwise it's identical to __splice_from_pipe().
627 *
628 */
splice_from_pipe(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags,splice_actor * actor)629 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
630 loff_t *ppos, size_t len, unsigned int flags,
631 splice_actor *actor)
632 {
633 ssize_t ret;
634 struct splice_desc sd = {
635 .total_len = len,
636 .flags = flags,
637 .pos = *ppos,
638 .u.file = out,
639 };
640
641 pipe_lock(pipe);
642 ret = __splice_from_pipe(pipe, &sd, actor);
643 pipe_unlock(pipe);
644
645 return ret;
646 }
647
648 /**
649 * iter_file_splice_write - splice data from a pipe to a file
650 * @pipe: pipe info
651 * @out: file to write to
652 * @ppos: position in @out
653 * @len: number of bytes to splice
654 * @flags: splice modifier flags
655 *
656 * Description:
657 * Will either move or copy pages (determined by @flags options) from
658 * the given pipe inode to the given file.
659 * This one is ->write_iter-based.
660 *
661 */
662 ssize_t
iter_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)663 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
664 loff_t *ppos, size_t len, unsigned int flags)
665 {
666 struct splice_desc sd = {
667 .total_len = len,
668 .flags = flags,
669 .pos = *ppos,
670 .u.file = out,
671 };
672 int nbufs = pipe->max_usage;
673 struct bio_vec *array;
674 ssize_t ret;
675
676 if (!out->f_op->write_iter)
677 return -EINVAL;
678
679 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
680 if (unlikely(!array))
681 return -ENOMEM;
682
683 pipe_lock(pipe);
684
685 splice_from_pipe_begin(&sd);
686 while (sd.total_len) {
687 struct kiocb kiocb;
688 struct iov_iter from;
689 unsigned int head, tail;
690 size_t left;
691 int n;
692
693 ret = splice_from_pipe_next(pipe, &sd);
694 if (ret <= 0)
695 break;
696
697 if (unlikely(nbufs < pipe->max_usage)) {
698 kfree(array);
699 nbufs = pipe->max_usage;
700 array = kcalloc(nbufs, sizeof(struct bio_vec),
701 GFP_KERNEL);
702 if (!array) {
703 ret = -ENOMEM;
704 break;
705 }
706 }
707
708 head = pipe->head;
709 tail = pipe->tail;
710
711 /* build the vector */
712 left = sd.total_len;
713 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
714 struct pipe_buffer *buf = pipe_buf(pipe, tail);
715 size_t this_len = buf->len;
716
717 /* zero-length bvecs are not supported, skip them */
718 if (!this_len)
719 continue;
720 this_len = min(this_len, left);
721
722 ret = pipe_buf_confirm(pipe, buf);
723 if (unlikely(ret)) {
724 if (ret == -ENODATA)
725 ret = 0;
726 goto done;
727 }
728
729 bvec_set_page(&array[n], buf->page, this_len,
730 buf->offset);
731 left -= this_len;
732 n++;
733 }
734
735 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
736 init_sync_kiocb(&kiocb, out);
737 kiocb.ki_pos = sd.pos;
738 ret = out->f_op->write_iter(&kiocb, &from);
739 sd.pos = kiocb.ki_pos;
740 if (ret <= 0)
741 break;
742 WARN_ONCE(ret > sd.total_len - left,
743 "Splice Exceeded! ret=%zd tot=%zu left=%zu\n",
744 ret, sd.total_len, left);
745
746 sd.num_spliced += ret;
747 sd.total_len -= ret;
748 *ppos = sd.pos;
749
750 /* dismiss the fully eaten buffers, adjust the partial one */
751 tail = pipe->tail;
752 while (ret) {
753 struct pipe_buffer *buf = pipe_buf(pipe, tail);
754 if (ret >= buf->len) {
755 ret -= buf->len;
756 buf->len = 0;
757 pipe_buf_release(pipe, buf);
758 tail++;
759 pipe->tail = tail;
760 if (pipe->files)
761 sd.need_wakeup = true;
762 } else {
763 buf->offset += ret;
764 buf->len -= ret;
765 ret = 0;
766 }
767 }
768 }
769 done:
770 kfree(array);
771 splice_from_pipe_end(pipe, &sd);
772
773 pipe_unlock(pipe);
774
775 if (sd.num_spliced)
776 ret = sd.num_spliced;
777
778 return ret;
779 }
780
781 EXPORT_SYMBOL(iter_file_splice_write);
782
783 #ifdef CONFIG_NET
784 /**
785 * splice_to_socket - splice data from a pipe to a socket
786 * @pipe: pipe to splice from
787 * @out: socket to write to
788 * @ppos: position in @out
789 * @len: number of bytes to splice
790 * @flags: splice modifier flags
791 *
792 * Description:
793 * Will send @len bytes from the pipe to a network socket. No data copying
794 * is involved.
795 *
796 */
splice_to_socket(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)797 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
798 loff_t *ppos, size_t len, unsigned int flags)
799 {
800 struct socket *sock = sock_from_file(out);
801 struct bio_vec bvec[16];
802 struct msghdr msg = {};
803 ssize_t ret = 0;
804 size_t spliced = 0;
805 bool need_wakeup = false;
806
807 pipe_lock(pipe);
808
809 while (len > 0) {
810 unsigned int head, tail, bc = 0;
811 size_t remain = len;
812
813 /*
814 * Check for signal early to make process killable when there
815 * are always buffers available
816 */
817 ret = -ERESTARTSYS;
818 if (signal_pending(current))
819 break;
820
821 while (pipe_is_empty(pipe)) {
822 ret = 0;
823 if (!pipe->writers)
824 goto out;
825
826 if (spliced)
827 goto out;
828
829 ret = -EAGAIN;
830 if (flags & SPLICE_F_NONBLOCK)
831 goto out;
832
833 ret = -ERESTARTSYS;
834 if (signal_pending(current))
835 goto out;
836
837 if (need_wakeup) {
838 wakeup_pipe_writers(pipe);
839 need_wakeup = false;
840 }
841
842 pipe_wait_readable(pipe);
843 }
844
845 head = pipe->head;
846 tail = pipe->tail;
847
848 while (!pipe_empty(head, tail)) {
849 struct pipe_buffer *buf = pipe_buf(pipe, tail);
850 size_t seg;
851
852 if (!buf->len) {
853 tail++;
854 continue;
855 }
856
857 seg = min_t(size_t, remain, buf->len);
858
859 ret = pipe_buf_confirm(pipe, buf);
860 if (unlikely(ret)) {
861 if (ret == -ENODATA)
862 ret = 0;
863 break;
864 }
865
866 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
867 remain -= seg;
868 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
869 break;
870 tail++;
871 }
872
873 if (!bc)
874 break;
875
876 msg.msg_flags = MSG_SPLICE_PAGES;
877 if (flags & SPLICE_F_MORE)
878 msg.msg_flags |= MSG_MORE;
879 if (remain && pipe_occupancy(pipe->head, tail) > 0)
880 msg.msg_flags |= MSG_MORE;
881 if (out->f_flags & O_NONBLOCK)
882 msg.msg_flags |= MSG_DONTWAIT;
883
884 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
885 len - remain);
886 ret = sock_sendmsg(sock, &msg);
887 if (ret <= 0)
888 break;
889
890 spliced += ret;
891 len -= ret;
892 tail = pipe->tail;
893 while (ret > 0) {
894 struct pipe_buffer *buf = pipe_buf(pipe, tail);
895 size_t seg = min_t(size_t, ret, buf->len);
896
897 buf->offset += seg;
898 buf->len -= seg;
899 ret -= seg;
900
901 if (!buf->len) {
902 pipe_buf_release(pipe, buf);
903 tail++;
904 }
905 }
906
907 if (tail != pipe->tail) {
908 pipe->tail = tail;
909 if (pipe->files)
910 need_wakeup = true;
911 }
912 }
913
914 out:
915 pipe_unlock(pipe);
916 if (need_wakeup)
917 wakeup_pipe_writers(pipe);
918 return spliced ?: ret;
919 }
920 #endif
921
warn_unsupported(struct file * file,const char * op)922 static int warn_unsupported(struct file *file, const char *op)
923 {
924 pr_debug_ratelimited(
925 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
926 op, file, current->pid, current->comm);
927 return -EINVAL;
928 }
929
930 /*
931 * Attempt to initiate a splice from pipe to file.
932 */
do_splice_from(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)933 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
934 loff_t *ppos, size_t len, unsigned int flags)
935 {
936 if (unlikely(!out->f_op->splice_write))
937 return warn_unsupported(out, "write");
938 return out->f_op->splice_write(pipe, out, ppos, len, flags);
939 }
940
941 /*
942 * Indicate to the caller that there was a premature EOF when reading from the
943 * source and the caller didn't indicate they would be sending more data after
944 * this.
945 */
do_splice_eof(struct splice_desc * sd)946 static void do_splice_eof(struct splice_desc *sd)
947 {
948 if (sd->splice_eof)
949 sd->splice_eof(sd);
950 }
951
952 /*
953 * Callers already called rw_verify_area() on the entire range.
954 * No need to call it for sub ranges.
955 */
do_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)956 static ssize_t do_splice_read(struct file *in, loff_t *ppos,
957 struct pipe_inode_info *pipe, size_t len,
958 unsigned int flags)
959 {
960 unsigned int p_space;
961
962 if (unlikely(!(in->f_mode & FMODE_READ)))
963 return -EBADF;
964 if (!len)
965 return 0;
966
967 /* Don't try to read more the pipe has space for. */
968 p_space = pipe->max_usage - pipe_buf_usage(pipe);
969 len = min_t(size_t, len, p_space << PAGE_SHIFT);
970
971 if (unlikely(len > MAX_RW_COUNT))
972 len = MAX_RW_COUNT;
973
974 if (unlikely(!in->f_op->splice_read))
975 return warn_unsupported(in, "read");
976 /*
977 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
978 * buffer, copy into it and splice that into the pipe.
979 */
980 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
981 return copy_splice_read(in, ppos, pipe, len, flags);
982 return in->f_op->splice_read(in, ppos, pipe, len, flags);
983 }
984
985 /**
986 * vfs_splice_read - Read data from a file and splice it into a pipe
987 * @in: File to splice from
988 * @ppos: Input file offset
989 * @pipe: Pipe to splice to
990 * @len: Number of bytes to splice
991 * @flags: Splice modifier flags (SPLICE_F_*)
992 *
993 * Splice the requested amount of data from the input file to the pipe. This
994 * is synchronous as the caller must hold the pipe lock across the entire
995 * operation.
996 *
997 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
998 * a hole and a negative error code otherwise.
999 */
vfs_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1000 ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1001 struct pipe_inode_info *pipe, size_t len,
1002 unsigned int flags)
1003 {
1004 ssize_t ret;
1005
1006 ret = rw_verify_area(READ, in, ppos, len);
1007 if (unlikely(ret < 0))
1008 return ret;
1009
1010 return do_splice_read(in, ppos, pipe, len, flags);
1011 }
1012 EXPORT_SYMBOL_GPL(vfs_splice_read);
1013
1014 /**
1015 * splice_direct_to_actor - splices data directly between two non-pipes
1016 * @in: file to splice from
1017 * @sd: actor information on where to splice to
1018 * @actor: handles the data splicing
1019 *
1020 * Description:
1021 * This is a special case helper to splice directly between two
1022 * points, without requiring an explicit pipe. Internally an allocated
1023 * pipe is cached in the process, and reused during the lifetime of
1024 * that process.
1025 *
1026 */
splice_direct_to_actor(struct file * in,struct splice_desc * sd,splice_direct_actor * actor)1027 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1028 splice_direct_actor *actor)
1029 {
1030 struct pipe_inode_info *pipe;
1031 ssize_t ret, bytes;
1032 size_t len;
1033 int i, flags, more;
1034
1035 /*
1036 * We require the input to be seekable, as we don't want to randomly
1037 * drop data for eg socket -> socket splicing. Use the piped splicing
1038 * for that!
1039 */
1040 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1041 return -EINVAL;
1042
1043 /*
1044 * neither in nor out is a pipe, setup an internal pipe attached to
1045 * 'out' and transfer the wanted data from 'in' to 'out' through that
1046 */
1047 pipe = current->splice_pipe;
1048 if (unlikely(!pipe)) {
1049 pipe = alloc_pipe_info();
1050 if (!pipe)
1051 return -ENOMEM;
1052
1053 /*
1054 * We don't have an immediate reader, but we'll read the stuff
1055 * out of the pipe right after the splice_to_pipe(). So set
1056 * PIPE_READERS appropriately.
1057 */
1058 pipe->readers = 1;
1059
1060 current->splice_pipe = pipe;
1061 }
1062
1063 /*
1064 * Do the splice.
1065 */
1066 bytes = 0;
1067 len = sd->total_len;
1068
1069 /* Don't block on output, we have to drain the direct pipe. */
1070 flags = sd->flags;
1071 sd->flags &= ~SPLICE_F_NONBLOCK;
1072
1073 /*
1074 * We signal MORE until we've read sufficient data to fulfill the
1075 * request and we keep signalling it if the caller set it.
1076 */
1077 more = sd->flags & SPLICE_F_MORE;
1078 sd->flags |= SPLICE_F_MORE;
1079
1080 WARN_ON_ONCE(!pipe_is_empty(pipe));
1081
1082 while (len) {
1083 size_t read_len;
1084 loff_t pos = sd->pos, prev_pos = pos;
1085
1086 ret = do_splice_read(in, &pos, pipe, len, flags);
1087 if (unlikely(ret <= 0))
1088 goto read_failure;
1089
1090 read_len = ret;
1091 sd->total_len = read_len;
1092
1093 /*
1094 * If we now have sufficient data to fulfill the request then
1095 * we clear SPLICE_F_MORE if it was not set initially.
1096 */
1097 if (read_len >= len && !more)
1098 sd->flags &= ~SPLICE_F_MORE;
1099
1100 /*
1101 * NOTE: nonblocking mode only applies to the input. We
1102 * must not do the output in nonblocking mode as then we
1103 * could get stuck data in the internal pipe:
1104 */
1105 ret = actor(pipe, sd);
1106 if (unlikely(ret <= 0)) {
1107 sd->pos = prev_pos;
1108 goto out_release;
1109 }
1110
1111 bytes += ret;
1112 len -= ret;
1113 sd->pos = pos;
1114
1115 if (ret < read_len) {
1116 sd->pos = prev_pos + ret;
1117 goto out_release;
1118 }
1119 }
1120
1121 done:
1122 pipe->tail = pipe->head = 0;
1123 file_accessed(in);
1124 return bytes;
1125
1126 read_failure:
1127 /*
1128 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1129 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1130 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1131 * least 1 byte *then* we will also do the ->splice_eof() call.
1132 */
1133 if (ret == 0 && !more && len > 0 && bytes)
1134 do_splice_eof(sd);
1135 out_release:
1136 /*
1137 * If we did an incomplete transfer we must release
1138 * the pipe buffers in question:
1139 */
1140 for (i = 0; i < pipe->ring_size; i++) {
1141 struct pipe_buffer *buf = &pipe->bufs[i];
1142
1143 if (buf->ops)
1144 pipe_buf_release(pipe, buf);
1145 }
1146
1147 if (!bytes)
1148 bytes = ret;
1149
1150 goto done;
1151 }
1152 EXPORT_SYMBOL(splice_direct_to_actor);
1153
direct_splice_actor(struct pipe_inode_info * pipe,struct splice_desc * sd)1154 static int direct_splice_actor(struct pipe_inode_info *pipe,
1155 struct splice_desc *sd)
1156 {
1157 struct file *file = sd->u.file;
1158 long ret;
1159
1160 file_start_write(file);
1161 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1162 file_end_write(file);
1163 return ret;
1164 }
1165
splice_file_range_actor(struct pipe_inode_info * pipe,struct splice_desc * sd)1166 static int splice_file_range_actor(struct pipe_inode_info *pipe,
1167 struct splice_desc *sd)
1168 {
1169 struct file *file = sd->u.file;
1170
1171 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1172 }
1173
direct_file_splice_eof(struct splice_desc * sd)1174 static void direct_file_splice_eof(struct splice_desc *sd)
1175 {
1176 struct file *file = sd->u.file;
1177
1178 if (file->f_op->splice_eof)
1179 file->f_op->splice_eof(file);
1180 }
1181
do_splice_direct_actor(struct file * in,loff_t * ppos,struct file * out,loff_t * opos,size_t len,unsigned int flags,splice_direct_actor * actor)1182 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1183 struct file *out, loff_t *opos,
1184 size_t len, unsigned int flags,
1185 splice_direct_actor *actor)
1186 {
1187 struct splice_desc sd = {
1188 .len = len,
1189 .total_len = len,
1190 .flags = flags,
1191 .pos = *ppos,
1192 .u.file = out,
1193 .splice_eof = direct_file_splice_eof,
1194 .opos = opos,
1195 };
1196 ssize_t ret;
1197
1198 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1199 return -EBADF;
1200
1201 if (unlikely(out->f_flags & O_APPEND))
1202 return -EINVAL;
1203
1204 ret = splice_direct_to_actor(in, &sd, actor);
1205 if (ret > 0)
1206 *ppos = sd.pos;
1207
1208 return ret;
1209 }
1210 /**
1211 * do_splice_direct - splices data directly between two files
1212 * @in: file to splice from
1213 * @ppos: input file offset
1214 * @out: file to splice to
1215 * @opos: output file offset
1216 * @len: number of bytes to splice
1217 * @flags: splice modifier flags
1218 *
1219 * Description:
1220 * For use by do_sendfile(). splice can easily emulate sendfile, but
1221 * doing it in the application would incur an extra system call
1222 * (splice in + splice out, as compared to just sendfile()). So this helper
1223 * can splice directly through a process-private pipe.
1224 *
1225 * Callers already called rw_verify_area() on the entire range.
1226 */
do_splice_direct(struct file * in,loff_t * ppos,struct file * out,loff_t * opos,size_t len,unsigned int flags)1227 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1228 loff_t *opos, size_t len, unsigned int flags)
1229 {
1230 return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1231 direct_splice_actor);
1232 }
1233 EXPORT_SYMBOL(do_splice_direct);
1234
1235 /**
1236 * splice_file_range - splices data between two files for copy_file_range()
1237 * @in: file to splice from
1238 * @ppos: input file offset
1239 * @out: file to splice to
1240 * @opos: output file offset
1241 * @len: number of bytes to splice
1242 *
1243 * Description:
1244 * For use by ->copy_file_range() methods.
1245 * Like do_splice_direct(), but vfs_copy_file_range() already holds
1246 * start_file_write() on @out file.
1247 *
1248 * Callers already called rw_verify_area() on the entire range.
1249 */
splice_file_range(struct file * in,loff_t * ppos,struct file * out,loff_t * opos,size_t len)1250 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1251 loff_t *opos, size_t len)
1252 {
1253 lockdep_assert(file_write_started(out));
1254
1255 return do_splice_direct_actor(in, ppos, out, opos,
1256 min_t(size_t, len, MAX_RW_COUNT),
1257 0, splice_file_range_actor);
1258 }
1259 EXPORT_SYMBOL(splice_file_range);
1260
wait_for_space(struct pipe_inode_info * pipe,unsigned flags)1261 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1262 {
1263 for (;;) {
1264 if (unlikely(!pipe->readers)) {
1265 send_sig(SIGPIPE, current, 0);
1266 return -EPIPE;
1267 }
1268 if (!pipe_is_full(pipe))
1269 return 0;
1270 if (flags & SPLICE_F_NONBLOCK)
1271 return -EAGAIN;
1272 if (signal_pending(current))
1273 return -ERESTARTSYS;
1274 pipe_wait_writable(pipe);
1275 }
1276 }
1277
1278 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1279 struct pipe_inode_info *opipe,
1280 size_t len, unsigned int flags);
1281
splice_file_to_pipe(struct file * in,struct pipe_inode_info * opipe,loff_t * offset,size_t len,unsigned int flags)1282 ssize_t splice_file_to_pipe(struct file *in,
1283 struct pipe_inode_info *opipe,
1284 loff_t *offset,
1285 size_t len, unsigned int flags)
1286 {
1287 ssize_t ret;
1288
1289 pipe_lock(opipe);
1290 ret = wait_for_space(opipe, flags);
1291 if (!ret)
1292 ret = do_splice_read(in, offset, opipe, len, flags);
1293 pipe_unlock(opipe);
1294 if (ret > 0)
1295 wakeup_pipe_readers(opipe);
1296 return ret;
1297 }
1298
1299 /*
1300 * Determine where to splice to/from.
1301 */
do_splice(struct file * in,loff_t * off_in,struct file * out,loff_t * off_out,size_t len,unsigned int flags)1302 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1303 loff_t *off_out, size_t len, unsigned int flags)
1304 {
1305 struct pipe_inode_info *ipipe;
1306 struct pipe_inode_info *opipe;
1307 loff_t offset;
1308 ssize_t ret;
1309
1310 if (unlikely(!(in->f_mode & FMODE_READ) ||
1311 !(out->f_mode & FMODE_WRITE)))
1312 return -EBADF;
1313
1314 ipipe = get_pipe_info(in, true);
1315 opipe = get_pipe_info(out, true);
1316
1317 if (ipipe && opipe) {
1318 if (off_in || off_out)
1319 return -ESPIPE;
1320
1321 /* Splicing to self would be fun, but... */
1322 if (ipipe == opipe)
1323 return -EINVAL;
1324
1325 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1326 flags |= SPLICE_F_NONBLOCK;
1327
1328 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1329 } else if (ipipe) {
1330 if (off_in)
1331 return -ESPIPE;
1332 if (off_out) {
1333 if (!(out->f_mode & FMODE_PWRITE))
1334 return -EINVAL;
1335 offset = *off_out;
1336 } else {
1337 offset = out->f_pos;
1338 }
1339
1340 if (unlikely(out->f_flags & O_APPEND))
1341 return -EINVAL;
1342
1343 ret = rw_verify_area(WRITE, out, &offset, len);
1344 if (unlikely(ret < 0))
1345 return ret;
1346
1347 if (in->f_flags & O_NONBLOCK)
1348 flags |= SPLICE_F_NONBLOCK;
1349
1350 file_start_write(out);
1351 ret = do_splice_from(ipipe, out, &offset, len, flags);
1352 file_end_write(out);
1353
1354 if (!off_out)
1355 out->f_pos = offset;
1356 else
1357 *off_out = offset;
1358 } else if (opipe) {
1359 if (off_out)
1360 return -ESPIPE;
1361 if (off_in) {
1362 if (!(in->f_mode & FMODE_PREAD))
1363 return -EINVAL;
1364 offset = *off_in;
1365 } else {
1366 offset = in->f_pos;
1367 }
1368
1369 ret = rw_verify_area(READ, in, &offset, len);
1370 if (unlikely(ret < 0))
1371 return ret;
1372
1373 if (out->f_flags & O_NONBLOCK)
1374 flags |= SPLICE_F_NONBLOCK;
1375
1376 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1377
1378 if (!off_in)
1379 in->f_pos = offset;
1380 else
1381 *off_in = offset;
1382 } else {
1383 ret = -EINVAL;
1384 }
1385
1386 if (ret > 0) {
1387 /*
1388 * Generate modify out before access in:
1389 * do_splice_from() may've already sent modify out,
1390 * and this ensures the events get merged.
1391 */
1392 fsnotify_modify(out);
1393 fsnotify_access(in);
1394 }
1395
1396 return ret;
1397 }
1398
__do_splice(struct file * in,loff_t __user * off_in,struct file * out,loff_t __user * off_out,size_t len,unsigned int flags)1399 static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1400 struct file *out, loff_t __user *off_out,
1401 size_t len, unsigned int flags)
1402 {
1403 struct pipe_inode_info *ipipe;
1404 struct pipe_inode_info *opipe;
1405 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1406 ssize_t ret;
1407
1408 ipipe = get_pipe_info(in, true);
1409 opipe = get_pipe_info(out, true);
1410
1411 if (ipipe) {
1412 if (off_in)
1413 return -ESPIPE;
1414 pipe_clear_nowait(in);
1415 }
1416 if (opipe) {
1417 if (off_out)
1418 return -ESPIPE;
1419 pipe_clear_nowait(out);
1420 }
1421
1422 if (off_out) {
1423 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1424 return -EFAULT;
1425 __off_out = &offset;
1426 }
1427 if (off_in) {
1428 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1429 return -EFAULT;
1430 __off_in = &offset;
1431 }
1432
1433 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1434 if (ret < 0)
1435 return ret;
1436
1437 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1438 return -EFAULT;
1439 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1440 return -EFAULT;
1441
1442 return ret;
1443 }
1444
iter_to_pipe(struct iov_iter * from,struct pipe_inode_info * pipe,unsigned int flags)1445 static ssize_t iter_to_pipe(struct iov_iter *from,
1446 struct pipe_inode_info *pipe,
1447 unsigned int flags)
1448 {
1449 struct pipe_buffer buf = {
1450 .ops = &user_page_pipe_buf_ops,
1451 .flags = flags
1452 };
1453 size_t total = 0;
1454 ssize_t ret = 0;
1455
1456 while (iov_iter_count(from)) {
1457 struct page *pages[16];
1458 ssize_t left;
1459 size_t start;
1460 int i, n;
1461
1462 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1463 if (left <= 0) {
1464 ret = left;
1465 break;
1466 }
1467
1468 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1469 for (i = 0; i < n; i++) {
1470 int size = min_t(int, left, PAGE_SIZE - start);
1471
1472 buf.page = pages[i];
1473 buf.offset = start;
1474 buf.len = size;
1475 ret = add_to_pipe(pipe, &buf);
1476 if (unlikely(ret < 0)) {
1477 iov_iter_revert(from, left);
1478 // this one got dropped by add_to_pipe()
1479 while (++i < n)
1480 put_page(pages[i]);
1481 goto out;
1482 }
1483 total += ret;
1484 left -= size;
1485 start = 0;
1486 }
1487 }
1488 out:
1489 return total ? total : ret;
1490 }
1491
pipe_to_user(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1493 struct splice_desc *sd)
1494 {
1495 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1496 return n == sd->len ? n : -EFAULT;
1497 }
1498
1499 /*
1500 * For lack of a better implementation, implement vmsplice() to userspace
1501 * as a simple copy of the pipes pages to the user iov.
1502 */
vmsplice_to_user(struct file * file,struct iov_iter * iter,unsigned int flags)1503 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1504 unsigned int flags)
1505 {
1506 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1507 struct splice_desc sd = {
1508 .total_len = iov_iter_count(iter),
1509 .flags = flags,
1510 .u.data = iter
1511 };
1512 ssize_t ret = 0;
1513
1514 if (!pipe)
1515 return -EBADF;
1516
1517 pipe_clear_nowait(file);
1518
1519 if (sd.total_len) {
1520 pipe_lock(pipe);
1521 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1522 pipe_unlock(pipe);
1523 }
1524
1525 if (ret > 0)
1526 fsnotify_access(file);
1527
1528 return ret;
1529 }
1530
1531 /*
1532 * vmsplice splices a user address range into a pipe. It can be thought of
1533 * as splice-from-memory, where the regular splice is splice-from-file (or
1534 * to file). In both cases the output is a pipe, naturally.
1535 */
vmsplice_to_pipe(struct file * file,struct iov_iter * iter,unsigned int flags)1536 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1537 unsigned int flags)
1538 {
1539 struct pipe_inode_info *pipe;
1540 ssize_t ret = 0;
1541 unsigned buf_flag = 0;
1542
1543 if (flags & SPLICE_F_GIFT)
1544 buf_flag = PIPE_BUF_FLAG_GIFT;
1545
1546 pipe = get_pipe_info(file, true);
1547 if (!pipe)
1548 return -EBADF;
1549
1550 pipe_clear_nowait(file);
1551
1552 pipe_lock(pipe);
1553 ret = wait_for_space(pipe, flags);
1554 if (!ret)
1555 ret = iter_to_pipe(iter, pipe, buf_flag);
1556 pipe_unlock(pipe);
1557 if (ret > 0) {
1558 wakeup_pipe_readers(pipe);
1559 fsnotify_modify(file);
1560 }
1561 return ret;
1562 }
1563
1564 /*
1565 * Note that vmsplice only really supports true splicing _from_ user memory
1566 * to a pipe, not the other way around. Splicing from user memory is a simple
1567 * operation that can be supported without any funky alignment restrictions
1568 * or nasty vm tricks. We simply map in the user memory and fill them into
1569 * a pipe. The reverse isn't quite as easy, though. There are two possible
1570 * solutions for that:
1571 *
1572 * - memcpy() the data internally, at which point we might as well just
1573 * do a regular read() on the buffer anyway.
1574 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1575 * has restriction limitations on both ends of the pipe).
1576 *
1577 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1578 *
1579 */
SYSCALL_DEFINE4(vmsplice,int,fd,const struct iovec __user *,uiov,unsigned long,nr_segs,unsigned int,flags)1580 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1581 unsigned long, nr_segs, unsigned int, flags)
1582 {
1583 struct iovec iovstack[UIO_FASTIOV];
1584 struct iovec *iov = iovstack;
1585 struct iov_iter iter;
1586 ssize_t error;
1587 int type;
1588
1589 if (unlikely(flags & ~SPLICE_F_ALL))
1590 return -EINVAL;
1591
1592 CLASS(fd, f)(fd);
1593 if (fd_empty(f))
1594 return -EBADF;
1595 if (fd_file(f)->f_mode & FMODE_WRITE)
1596 type = ITER_SOURCE;
1597 else if (fd_file(f)->f_mode & FMODE_READ)
1598 type = ITER_DEST;
1599 else
1600 return -EBADF;
1601
1602 error = import_iovec(type, uiov, nr_segs,
1603 ARRAY_SIZE(iovstack), &iov, &iter);
1604 if (error < 0)
1605 return error;
1606
1607 if (!iov_iter_count(&iter))
1608 error = 0;
1609 else if (type == ITER_SOURCE)
1610 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1611 else
1612 error = vmsplice_to_user(fd_file(f), &iter, flags);
1613
1614 kfree(iov);
1615 return error;
1616 }
1617
SYSCALL_DEFINE6(splice,int,fd_in,loff_t __user *,off_in,int,fd_out,loff_t __user *,off_out,size_t,len,unsigned int,flags)1618 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1619 int, fd_out, loff_t __user *, off_out,
1620 size_t, len, unsigned int, flags)
1621 {
1622 if (unlikely(!len))
1623 return 0;
1624
1625 if (unlikely(flags & ~SPLICE_F_ALL))
1626 return -EINVAL;
1627
1628 CLASS(fd, in)(fd_in);
1629 if (fd_empty(in))
1630 return -EBADF;
1631
1632 CLASS(fd, out)(fd_out);
1633 if (fd_empty(out))
1634 return -EBADF;
1635
1636 return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1637 len, flags);
1638 }
1639
1640 /*
1641 * Make sure there's data to read. Wait for input if we can, otherwise
1642 * return an appropriate error.
1643 */
ipipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1644 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1645 {
1646 int ret;
1647
1648 /*
1649 * Check the pipe occupancy without the inode lock first. This function
1650 * is speculative anyways, so missing one is ok.
1651 */
1652 if (!pipe_is_empty(pipe))
1653 return 0;
1654
1655 ret = 0;
1656 pipe_lock(pipe);
1657
1658 while (pipe_is_empty(pipe)) {
1659 if (signal_pending(current)) {
1660 ret = -ERESTARTSYS;
1661 break;
1662 }
1663 if (!pipe->writers)
1664 break;
1665 if (flags & SPLICE_F_NONBLOCK) {
1666 ret = -EAGAIN;
1667 break;
1668 }
1669 pipe_wait_readable(pipe);
1670 }
1671
1672 pipe_unlock(pipe);
1673 return ret;
1674 }
1675
1676 /*
1677 * Make sure there's writeable room. Wait for room if we can, otherwise
1678 * return an appropriate error.
1679 */
opipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1680 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1681 {
1682 int ret;
1683
1684 /*
1685 * Check pipe occupancy without the inode lock first. This function
1686 * is speculative anyways, so missing one is ok.
1687 */
1688 if (!pipe_is_full(pipe))
1689 return 0;
1690
1691 ret = 0;
1692 pipe_lock(pipe);
1693
1694 while (pipe_is_full(pipe)) {
1695 if (!pipe->readers) {
1696 send_sig(SIGPIPE, current, 0);
1697 ret = -EPIPE;
1698 break;
1699 }
1700 if (flags & SPLICE_F_NONBLOCK) {
1701 ret = -EAGAIN;
1702 break;
1703 }
1704 if (signal_pending(current)) {
1705 ret = -ERESTARTSYS;
1706 break;
1707 }
1708 pipe_wait_writable(pipe);
1709 }
1710
1711 pipe_unlock(pipe);
1712 return ret;
1713 }
1714
1715 /*
1716 * Splice contents of ipipe to opipe.
1717 */
splice_pipe_to_pipe(struct pipe_inode_info * ipipe,struct pipe_inode_info * opipe,size_t len,unsigned int flags)1718 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1719 struct pipe_inode_info *opipe,
1720 size_t len, unsigned int flags)
1721 {
1722 struct pipe_buffer *ibuf, *obuf;
1723 unsigned int i_head, o_head;
1724 unsigned int i_tail, o_tail;
1725 int ret = 0;
1726 bool input_wakeup = false;
1727
1728
1729 retry:
1730 ret = ipipe_prep(ipipe, flags);
1731 if (ret)
1732 return ret;
1733
1734 ret = opipe_prep(opipe, flags);
1735 if (ret)
1736 return ret;
1737
1738 /*
1739 * Potential ABBA deadlock, work around it by ordering lock
1740 * grabbing by pipe info address. Otherwise two different processes
1741 * could deadlock (one doing tee from A -> B, the other from B -> A).
1742 */
1743 pipe_double_lock(ipipe, opipe);
1744
1745 i_tail = ipipe->tail;
1746 o_head = opipe->head;
1747
1748 do {
1749 size_t o_len;
1750
1751 if (!opipe->readers) {
1752 send_sig(SIGPIPE, current, 0);
1753 if (!ret)
1754 ret = -EPIPE;
1755 break;
1756 }
1757
1758 i_head = ipipe->head;
1759 o_tail = opipe->tail;
1760
1761 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1762 break;
1763
1764 /*
1765 * Cannot make any progress, because either the input
1766 * pipe is empty or the output pipe is full.
1767 */
1768 if (pipe_empty(i_head, i_tail) ||
1769 pipe_full(o_head, o_tail, opipe->max_usage)) {
1770 /* Already processed some buffers, break */
1771 if (ret)
1772 break;
1773
1774 if (flags & SPLICE_F_NONBLOCK) {
1775 ret = -EAGAIN;
1776 break;
1777 }
1778
1779 /*
1780 * We raced with another reader/writer and haven't
1781 * managed to process any buffers. A zero return
1782 * value means EOF, so retry instead.
1783 */
1784 pipe_unlock(ipipe);
1785 pipe_unlock(opipe);
1786 goto retry;
1787 }
1788
1789 ibuf = pipe_buf(ipipe, i_tail);
1790 obuf = pipe_buf(opipe, o_head);
1791
1792 if (len >= ibuf->len) {
1793 /*
1794 * Simply move the whole buffer from ipipe to opipe
1795 */
1796 *obuf = *ibuf;
1797 ibuf->ops = NULL;
1798 i_tail++;
1799 ipipe->tail = i_tail;
1800 input_wakeup = true;
1801 o_len = obuf->len;
1802 o_head++;
1803 opipe->head = o_head;
1804 } else {
1805 /*
1806 * Get a reference to this pipe buffer,
1807 * so we can copy the contents over.
1808 */
1809 if (!pipe_buf_get(ipipe, ibuf)) {
1810 if (ret == 0)
1811 ret = -EFAULT;
1812 break;
1813 }
1814 *obuf = *ibuf;
1815
1816 /*
1817 * Don't inherit the gift and merge flags, we need to
1818 * prevent multiple steals of this page.
1819 */
1820 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1821 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1822
1823 obuf->len = len;
1824 ibuf->offset += len;
1825 ibuf->len -= len;
1826 o_len = len;
1827 o_head++;
1828 opipe->head = o_head;
1829 }
1830 ret += o_len;
1831 len -= o_len;
1832 } while (len);
1833
1834 pipe_unlock(ipipe);
1835 pipe_unlock(opipe);
1836
1837 /*
1838 * If we put data in the output pipe, wakeup any potential readers.
1839 */
1840 if (ret > 0)
1841 wakeup_pipe_readers(opipe);
1842
1843 if (input_wakeup)
1844 wakeup_pipe_writers(ipipe);
1845
1846 return ret;
1847 }
1848
1849 /*
1850 * Link contents of ipipe to opipe.
1851 */
link_pipe(struct pipe_inode_info * ipipe,struct pipe_inode_info * opipe,size_t len,unsigned int flags)1852 static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1853 struct pipe_inode_info *opipe,
1854 size_t len, unsigned int flags)
1855 {
1856 struct pipe_buffer *ibuf, *obuf;
1857 unsigned int i_head, o_head;
1858 unsigned int i_tail, o_tail;
1859 ssize_t ret = 0;
1860
1861 /*
1862 * Potential ABBA deadlock, work around it by ordering lock
1863 * grabbing by pipe info address. Otherwise two different processes
1864 * could deadlock (one doing tee from A -> B, the other from B -> A).
1865 */
1866 pipe_double_lock(ipipe, opipe);
1867
1868 i_tail = ipipe->tail;
1869 o_head = opipe->head;
1870
1871 do {
1872 if (!opipe->readers) {
1873 send_sig(SIGPIPE, current, 0);
1874 if (!ret)
1875 ret = -EPIPE;
1876 break;
1877 }
1878
1879 i_head = ipipe->head;
1880 o_tail = opipe->tail;
1881
1882 /*
1883 * If we have iterated all input buffers or run out of
1884 * output room, break.
1885 */
1886 if (pipe_empty(i_head, i_tail) ||
1887 pipe_full(o_head, o_tail, opipe->max_usage))
1888 break;
1889
1890 ibuf = pipe_buf(ipipe, i_tail);
1891 obuf = pipe_buf(opipe, o_head);
1892
1893 /*
1894 * Get a reference to this pipe buffer,
1895 * so we can copy the contents over.
1896 */
1897 if (!pipe_buf_get(ipipe, ibuf)) {
1898 if (ret == 0)
1899 ret = -EFAULT;
1900 break;
1901 }
1902
1903 *obuf = *ibuf;
1904
1905 /*
1906 * Don't inherit the gift and merge flag, we need to prevent
1907 * multiple steals of this page.
1908 */
1909 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1910 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1911
1912 if (obuf->len > len)
1913 obuf->len = len;
1914 ret += obuf->len;
1915 len -= obuf->len;
1916
1917 o_head++;
1918 opipe->head = o_head;
1919 i_tail++;
1920 } while (len);
1921
1922 pipe_unlock(ipipe);
1923 pipe_unlock(opipe);
1924
1925 /*
1926 * If we put data in the output pipe, wakeup any potential readers.
1927 */
1928 if (ret > 0)
1929 wakeup_pipe_readers(opipe);
1930
1931 return ret;
1932 }
1933
1934 /*
1935 * This is a tee(1) implementation that works on pipes. It doesn't copy
1936 * any data, it simply references the 'in' pages on the 'out' pipe.
1937 * The 'flags' used are the SPLICE_F_* variants, currently the only
1938 * applicable one is SPLICE_F_NONBLOCK.
1939 */
do_tee(struct file * in,struct file * out,size_t len,unsigned int flags)1940 ssize_t do_tee(struct file *in, struct file *out, size_t len,
1941 unsigned int flags)
1942 {
1943 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1944 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1945 ssize_t ret = -EINVAL;
1946
1947 if (unlikely(!(in->f_mode & FMODE_READ) ||
1948 !(out->f_mode & FMODE_WRITE)))
1949 return -EBADF;
1950
1951 /*
1952 * Duplicate the contents of ipipe to opipe without actually
1953 * copying the data.
1954 */
1955 if (ipipe && opipe && ipipe != opipe) {
1956 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1957 flags |= SPLICE_F_NONBLOCK;
1958
1959 /*
1960 * Keep going, unless we encounter an error. The ipipe/opipe
1961 * ordering doesn't really matter.
1962 */
1963 ret = ipipe_prep(ipipe, flags);
1964 if (!ret) {
1965 ret = opipe_prep(opipe, flags);
1966 if (!ret)
1967 ret = link_pipe(ipipe, opipe, len, flags);
1968 }
1969 }
1970
1971 if (ret > 0) {
1972 fsnotify_access(in);
1973 fsnotify_modify(out);
1974 }
1975
1976 return ret;
1977 }
1978
SYSCALL_DEFINE4(tee,int,fdin,int,fdout,size_t,len,unsigned int,flags)1979 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1980 {
1981 if (unlikely(flags & ~SPLICE_F_ALL))
1982 return -EINVAL;
1983
1984 if (unlikely(!len))
1985 return 0;
1986
1987 CLASS(fd, in)(fdin);
1988 if (fd_empty(in))
1989 return -EBADF;
1990
1991 CLASS(fd, out)(fdout);
1992 if (fd_empty(out))
1993 return -EBADF;
1994
1995 return do_tee(fd_file(in), fd_file(out), len, flags);
1996 }
1997