1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .nofault = false, 170 .data_source = direction, 171 .__iov = iov, 172 .nr_segs = nr_segs, 173 .iov_offset = 0, 174 .count = count 175 }; 176 } 177 EXPORT_SYMBOL(iov_iter_init); 178 179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 180 { 181 if (WARN_ON_ONCE(i->data_source)) 182 return 0; 183 if (user_backed_iter(i)) 184 might_fault(); 185 return iterate_and_advance(i, bytes, (void *)addr, 186 copy_to_user_iter, memcpy_to_iter); 187 } 188 EXPORT_SYMBOL(_copy_to_iter); 189 190 #ifdef CONFIG_ARCH_HAS_COPY_MC 191 static __always_inline 192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 193 size_t len, void *from, void *priv2) 194 { 195 if (access_ok(iter_to, len)) { 196 from += progress; 197 instrument_copy_to_user(iter_to, from, len); 198 len = copy_mc_to_user(iter_to, from, len); 199 } 200 return len; 201 } 202 203 static __always_inline 204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 205 size_t len, void *from, void *priv2) 206 { 207 return copy_mc_to_kernel(iter_to, from + progress, len); 208 } 209 210 /** 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling 212 * @addr: source kernel address 213 * @bytes: total transfer length 214 * @i: destination iterator 215 * 216 * The pmem driver deploys this for the dax operation 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 219 * successfully copied. 220 * 221 * The main differences between this and typical _copy_to_iter(). 222 * 223 * * Typical tail/residue handling after a fault retries the copy 224 * byte-by-byte until the fault happens again. Re-triggering machine 225 * checks is potentially fatal so the implementation uses source 226 * alignment and poison alignment assumptions to avoid re-triggering 227 * hardware exceptions. 228 * 229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 231 * 232 * Return: number of bytes copied (may be %0) 233 */ 234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 235 { 236 if (WARN_ON_ONCE(i->data_source)) 237 return 0; 238 if (user_backed_iter(i)) 239 might_fault(); 240 return iterate_and_advance(i, bytes, (void *)addr, 241 copy_to_user_iter_mc, memcpy_to_iter_mc); 242 } 243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 244 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 245 246 static __always_inline 247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 248 { 249 return iterate_and_advance(i, bytes, addr, 250 copy_from_user_iter, memcpy_from_iter); 251 } 252 253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 254 { 255 if (WARN_ON_ONCE(!i->data_source)) 256 return 0; 257 258 if (user_backed_iter(i)) 259 might_fault(); 260 return __copy_from_iter(addr, bytes, i); 261 } 262 EXPORT_SYMBOL(_copy_from_iter); 263 264 static __always_inline 265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 266 size_t len, void *to, void *priv2) 267 { 268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 269 } 270 271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 272 { 273 if (WARN_ON_ONCE(!i->data_source)) 274 return 0; 275 276 return iterate_and_advance(i, bytes, addr, 277 copy_from_user_iter_nocache, 278 memcpy_from_iter); 279 } 280 EXPORT_SYMBOL(_copy_from_iter_nocache); 281 282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 283 static __always_inline 284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_flushcache(to + progress, iter_from, len); 288 } 289 290 static __always_inline 291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 292 size_t len, void *to, void *priv2) 293 { 294 memcpy_flushcache(to + progress, iter_from, len); 295 return 0; 296 } 297 298 /** 299 * _copy_from_iter_flushcache - write destination through cpu cache 300 * @addr: destination kernel address 301 * @bytes: total transfer length 302 * @i: source iterator 303 * 304 * The pmem driver arranges for filesystem-dax to use this facility via 305 * dax_copy_from_iter() for ensuring that writes to persistent memory 306 * are flushed through the CPU cache. It is differentiated from 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for 308 * all iterator types. The _copy_from_iter_nocache() only attempts to 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use 310 * instructions that strand dirty-data in the cache. 311 * 312 * Return: number of bytes copied (may be %0) 313 */ 314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 315 { 316 if (WARN_ON_ONCE(!i->data_source)) 317 return 0; 318 319 return iterate_and_advance(i, bytes, addr, 320 copy_from_user_iter_flushcache, 321 memcpy_from_iter_flushcache); 322 } 323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 324 #endif 325 326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 327 { 328 struct page *head; 329 size_t v = n + offset; 330 331 /* 332 * The general case needs to access the page order in order 333 * to compute the page size. 334 * However, we mostly deal with order-0 pages and thus can 335 * avoid a possible cache line miss for requests that fit all 336 * page orders. 337 */ 338 if (n <= v && v <= PAGE_SIZE) 339 return true; 340 341 head = compound_head(page); 342 v += (page - head) << PAGE_SHIFT; 343 344 if (WARN_ON(n > v || v > page_size(head))) 345 return false; 346 return true; 347 } 348 349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 350 struct iov_iter *i) 351 { 352 size_t res = 0; 353 if (!page_copy_sane(page, offset, bytes)) 354 return 0; 355 if (WARN_ON_ONCE(i->data_source)) 356 return 0; 357 page += offset / PAGE_SIZE; // first subpage 358 offset %= PAGE_SIZE; 359 while (1) { 360 void *kaddr = kmap_local_page(page); 361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 362 n = _copy_to_iter(kaddr + offset, n, i); 363 kunmap_local(kaddr); 364 res += n; 365 bytes -= n; 366 if (!bytes || !n) 367 break; 368 offset += n; 369 if (offset == PAGE_SIZE) { 370 page++; 371 offset = 0; 372 } 373 } 374 return res; 375 } 376 EXPORT_SYMBOL(copy_page_to_iter); 377 378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 379 struct iov_iter *i) 380 { 381 size_t res = 0; 382 383 if (!page_copy_sane(page, offset, bytes)) 384 return 0; 385 if (WARN_ON_ONCE(i->data_source)) 386 return 0; 387 page += offset / PAGE_SIZE; // first subpage 388 offset %= PAGE_SIZE; 389 while (1) { 390 void *kaddr = kmap_local_page(page); 391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 392 393 n = iterate_and_advance(i, n, kaddr + offset, 394 copy_to_user_iter_nofault, 395 memcpy_to_iter); 396 kunmap_local(kaddr); 397 res += n; 398 bytes -= n; 399 if (!bytes || !n) 400 break; 401 offset += n; 402 if (offset == PAGE_SIZE) { 403 page++; 404 offset = 0; 405 } 406 } 407 return res; 408 } 409 EXPORT_SYMBOL(copy_page_to_iter_nofault); 410 411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 412 struct iov_iter *i) 413 { 414 size_t res = 0; 415 if (!page_copy_sane(page, offset, bytes)) 416 return 0; 417 page += offset / PAGE_SIZE; // first subpage 418 offset %= PAGE_SIZE; 419 while (1) { 420 void *kaddr = kmap_local_page(page); 421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 422 n = _copy_from_iter(kaddr + offset, n, i); 423 kunmap_local(kaddr); 424 res += n; 425 bytes -= n; 426 if (!bytes || !n) 427 break; 428 offset += n; 429 if (offset == PAGE_SIZE) { 430 page++; 431 offset = 0; 432 } 433 } 434 return res; 435 } 436 EXPORT_SYMBOL(copy_page_from_iter); 437 438 static __always_inline 439 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 440 size_t len, void *priv, void *priv2) 441 { 442 return clear_user(iter_to, len); 443 } 444 445 static __always_inline 446 size_t zero_to_iter(void *iter_to, size_t progress, 447 size_t len, void *priv, void *priv2) 448 { 449 memset(iter_to, 0, len); 450 return 0; 451 } 452 453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 454 { 455 return iterate_and_advance(i, bytes, NULL, 456 zero_to_user_iter, zero_to_iter); 457 } 458 EXPORT_SYMBOL(iov_iter_zero); 459 460 size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, 461 size_t bytes, struct iov_iter *i) 462 { 463 size_t n, copied = 0; 464 465 if (!page_copy_sane(&folio->page, offset, bytes)) 466 return 0; 467 if (WARN_ON_ONCE(!i->data_source)) 468 return 0; 469 470 do { 471 char *to = kmap_local_folio(folio, offset); 472 473 n = bytes - copied; 474 if (folio_test_partial_kmap(folio) && 475 n > PAGE_SIZE - offset_in_page(offset)) 476 n = PAGE_SIZE - offset_in_page(offset); 477 478 pagefault_disable(); 479 n = __copy_from_iter(to, n, i); 480 pagefault_enable(); 481 kunmap_local(to); 482 copied += n; 483 offset += n; 484 } while (copied != bytes && n > 0); 485 486 return copied; 487 } 488 EXPORT_SYMBOL(copy_folio_from_iter_atomic); 489 490 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 491 { 492 const struct bio_vec *bvec, *end; 493 494 if (!i->count) 495 return; 496 i->count -= size; 497 498 size += i->iov_offset; 499 500 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 501 if (likely(size < bvec->bv_len)) 502 break; 503 size -= bvec->bv_len; 504 } 505 i->iov_offset = size; 506 i->nr_segs -= bvec - i->bvec; 507 i->bvec = bvec; 508 } 509 510 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 511 { 512 const struct iovec *iov, *end; 513 514 if (!i->count) 515 return; 516 i->count -= size; 517 518 size += i->iov_offset; // from beginning of current segment 519 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 520 if (likely(size < iov->iov_len)) 521 break; 522 size -= iov->iov_len; 523 } 524 i->iov_offset = size; 525 i->nr_segs -= iov - iter_iov(i); 526 i->__iov = iov; 527 } 528 529 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) 530 { 531 const struct folio_queue *folioq = i->folioq; 532 unsigned int slot = i->folioq_slot; 533 534 if (!i->count) 535 return; 536 i->count -= size; 537 538 if (slot >= folioq_nr_slots(folioq)) { 539 folioq = folioq->next; 540 slot = 0; 541 } 542 543 size += i->iov_offset; /* From beginning of current segment. */ 544 do { 545 size_t fsize = folioq_folio_size(folioq, slot); 546 547 if (likely(size < fsize)) 548 break; 549 size -= fsize; 550 slot++; 551 if (slot >= folioq_nr_slots(folioq) && folioq->next) { 552 folioq = folioq->next; 553 slot = 0; 554 } 555 } while (size); 556 557 i->iov_offset = size; 558 i->folioq_slot = slot; 559 i->folioq = folioq; 560 } 561 562 void iov_iter_advance(struct iov_iter *i, size_t size) 563 { 564 if (unlikely(i->count < size)) 565 size = i->count; 566 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 567 i->iov_offset += size; 568 i->count -= size; 569 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 570 /* iovec and kvec have identical layouts */ 571 iov_iter_iovec_advance(i, size); 572 } else if (iov_iter_is_bvec(i)) { 573 iov_iter_bvec_advance(i, size); 574 } else if (iov_iter_is_folioq(i)) { 575 iov_iter_folioq_advance(i, size); 576 } else if (iov_iter_is_discard(i)) { 577 i->count -= size; 578 } 579 } 580 EXPORT_SYMBOL(iov_iter_advance); 581 582 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) 583 { 584 const struct folio_queue *folioq = i->folioq; 585 unsigned int slot = i->folioq_slot; 586 587 for (;;) { 588 size_t fsize; 589 590 if (slot == 0) { 591 folioq = folioq->prev; 592 slot = folioq_nr_slots(folioq); 593 } 594 slot--; 595 596 fsize = folioq_folio_size(folioq, slot); 597 if (unroll <= fsize) { 598 i->iov_offset = fsize - unroll; 599 break; 600 } 601 unroll -= fsize; 602 } 603 604 i->folioq_slot = slot; 605 i->folioq = folioq; 606 } 607 608 void iov_iter_revert(struct iov_iter *i, size_t unroll) 609 { 610 if (!unroll) 611 return; 612 if (WARN_ON(unroll > MAX_RW_COUNT)) 613 return; 614 i->count += unroll; 615 if (unlikely(iov_iter_is_discard(i))) 616 return; 617 if (unroll <= i->iov_offset) { 618 i->iov_offset -= unroll; 619 return; 620 } 621 unroll -= i->iov_offset; 622 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 623 BUG(); /* We should never go beyond the start of the specified 624 * range since we might then be straying into pages that 625 * aren't pinned. 626 */ 627 } else if (iov_iter_is_bvec(i)) { 628 const struct bio_vec *bvec = i->bvec; 629 while (1) { 630 size_t n = (--bvec)->bv_len; 631 i->nr_segs++; 632 if (unroll <= n) { 633 i->bvec = bvec; 634 i->iov_offset = n - unroll; 635 return; 636 } 637 unroll -= n; 638 } 639 } else if (iov_iter_is_folioq(i)) { 640 i->iov_offset = 0; 641 iov_iter_folioq_revert(i, unroll); 642 } else { /* same logics for iovec and kvec */ 643 const struct iovec *iov = iter_iov(i); 644 while (1) { 645 size_t n = (--iov)->iov_len; 646 i->nr_segs++; 647 if (unroll <= n) { 648 i->__iov = iov; 649 i->iov_offset = n - unroll; 650 return; 651 } 652 unroll -= n; 653 } 654 } 655 } 656 EXPORT_SYMBOL(iov_iter_revert); 657 658 /* 659 * Return the count of just the current iov_iter segment. 660 */ 661 size_t iov_iter_single_seg_count(const struct iov_iter *i) 662 { 663 if (i->nr_segs > 1) { 664 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 665 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 666 if (iov_iter_is_bvec(i)) 667 return min(i->count, i->bvec->bv_len - i->iov_offset); 668 } 669 if (unlikely(iov_iter_is_folioq(i))) 670 return !i->count ? 0 : 671 umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); 672 return i->count; 673 } 674 EXPORT_SYMBOL(iov_iter_single_seg_count); 675 676 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 677 const struct kvec *kvec, unsigned long nr_segs, 678 size_t count) 679 { 680 WARN_ON(direction & ~(READ | WRITE)); 681 *i = (struct iov_iter){ 682 .iter_type = ITER_KVEC, 683 .data_source = direction, 684 .kvec = kvec, 685 .nr_segs = nr_segs, 686 .iov_offset = 0, 687 .count = count 688 }; 689 } 690 EXPORT_SYMBOL(iov_iter_kvec); 691 692 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 693 const struct bio_vec *bvec, unsigned long nr_segs, 694 size_t count) 695 { 696 WARN_ON(direction & ~(READ | WRITE)); 697 *i = (struct iov_iter){ 698 .iter_type = ITER_BVEC, 699 .data_source = direction, 700 .bvec = bvec, 701 .nr_segs = nr_segs, 702 .iov_offset = 0, 703 .count = count 704 }; 705 } 706 EXPORT_SYMBOL(iov_iter_bvec); 707 708 /** 709 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue 710 * @i: The iterator to initialise. 711 * @direction: The direction of the transfer. 712 * @folioq: The starting point in the folio queue. 713 * @first_slot: The first slot in the folio queue to use 714 * @offset: The offset into the folio in the first slot to start at 715 * @count: The size of the I/O buffer in bytes. 716 * 717 * Set up an I/O iterator to either draw data out of the pages attached to an 718 * inode or to inject data into those pages. The pages *must* be prevented 719 * from evaporation, either by taking a ref on them or locking them by the 720 * caller. 721 */ 722 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, 723 const struct folio_queue *folioq, unsigned int first_slot, 724 unsigned int offset, size_t count) 725 { 726 BUG_ON(direction & ~1); 727 *i = (struct iov_iter) { 728 .iter_type = ITER_FOLIOQ, 729 .data_source = direction, 730 .folioq = folioq, 731 .folioq_slot = first_slot, 732 .count = count, 733 .iov_offset = offset, 734 }; 735 } 736 EXPORT_SYMBOL(iov_iter_folio_queue); 737 738 /** 739 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 740 * @i: The iterator to initialise. 741 * @direction: The direction of the transfer. 742 * @xarray: The xarray to access. 743 * @start: The start file position. 744 * @count: The size of the I/O buffer in bytes. 745 * 746 * Set up an I/O iterator to either draw data out of the pages attached to an 747 * inode or to inject data into those pages. The pages *must* be prevented 748 * from evaporation, either by taking a ref on them or locking them by the 749 * caller. 750 */ 751 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 752 struct xarray *xarray, loff_t start, size_t count) 753 { 754 BUG_ON(direction & ~1); 755 *i = (struct iov_iter) { 756 .iter_type = ITER_XARRAY, 757 .data_source = direction, 758 .xarray = xarray, 759 .xarray_start = start, 760 .count = count, 761 .iov_offset = 0 762 }; 763 } 764 EXPORT_SYMBOL(iov_iter_xarray); 765 766 /** 767 * iov_iter_discard - Initialise an I/O iterator that discards data 768 * @i: The iterator to initialise. 769 * @direction: The direction of the transfer. 770 * @count: The size of the I/O buffer in bytes. 771 * 772 * Set up an I/O iterator that just discards everything that's written to it. 773 * It's only available as a READ iterator. 774 */ 775 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 776 { 777 BUG_ON(direction != READ); 778 *i = (struct iov_iter){ 779 .iter_type = ITER_DISCARD, 780 .data_source = false, 781 .count = count, 782 .iov_offset = 0 783 }; 784 } 785 EXPORT_SYMBOL(iov_iter_discard); 786 787 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 788 { 789 const struct iovec *iov = iter_iov(i); 790 unsigned long res = 0; 791 size_t size = i->count; 792 size_t skip = i->iov_offset; 793 794 do { 795 size_t len = iov->iov_len - skip; 796 if (len) { 797 res |= (unsigned long)iov->iov_base + skip; 798 if (len > size) 799 len = size; 800 res |= len; 801 size -= len; 802 } 803 iov++; 804 skip = 0; 805 } while (size); 806 return res; 807 } 808 809 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 810 { 811 const struct bio_vec *bvec = i->bvec; 812 unsigned res = 0; 813 size_t size = i->count; 814 unsigned skip = i->iov_offset; 815 816 do { 817 size_t len = bvec->bv_len - skip; 818 res |= (unsigned long)bvec->bv_offset + skip; 819 if (len > size) 820 len = size; 821 res |= len; 822 bvec++; 823 size -= len; 824 skip = 0; 825 } while (size); 826 827 return res; 828 } 829 830 unsigned long iov_iter_alignment(const struct iov_iter *i) 831 { 832 if (likely(iter_is_ubuf(i))) { 833 size_t size = i->count; 834 if (size) 835 return ((unsigned long)i->ubuf + i->iov_offset) | size; 836 return 0; 837 } 838 839 /* iovec and kvec have identical layouts */ 840 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 841 return iov_iter_alignment_iovec(i); 842 843 if (iov_iter_is_bvec(i)) 844 return iov_iter_alignment_bvec(i); 845 846 /* With both xarray and folioq types, we're dealing with whole folios. */ 847 if (iov_iter_is_folioq(i)) 848 return i->iov_offset | i->count; 849 if (iov_iter_is_xarray(i)) 850 return (i->xarray_start + i->iov_offset) | i->count; 851 852 return 0; 853 } 854 EXPORT_SYMBOL(iov_iter_alignment); 855 856 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 857 { 858 unsigned long res = 0; 859 unsigned long v = 0; 860 size_t size = i->count; 861 unsigned k; 862 863 if (iter_is_ubuf(i)) 864 return 0; 865 866 if (WARN_ON(!iter_is_iovec(i))) 867 return ~0U; 868 869 for (k = 0; k < i->nr_segs; k++) { 870 const struct iovec *iov = iter_iov(i) + k; 871 if (iov->iov_len) { 872 unsigned long base = (unsigned long)iov->iov_base; 873 if (v) // if not the first one 874 res |= base | v; // this start | previous end 875 v = base + iov->iov_len; 876 if (size <= iov->iov_len) 877 break; 878 size -= iov->iov_len; 879 } 880 } 881 return res; 882 } 883 EXPORT_SYMBOL(iov_iter_gap_alignment); 884 885 static int want_pages_array(struct page ***res, size_t size, 886 size_t start, unsigned int maxpages) 887 { 888 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 889 890 if (count > maxpages) 891 count = maxpages; 892 WARN_ON(!count); // caller should've prevented that 893 if (!*res) { 894 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 895 if (!*res) 896 return 0; 897 } 898 return count; 899 } 900 901 static ssize_t iter_folioq_get_pages(struct iov_iter *iter, 902 struct page ***ppages, size_t maxsize, 903 unsigned maxpages, size_t *_start_offset) 904 { 905 const struct folio_queue *folioq = iter->folioq; 906 struct page **pages; 907 unsigned int slot = iter->folioq_slot; 908 size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset; 909 910 if (slot >= folioq_nr_slots(folioq)) { 911 folioq = folioq->next; 912 slot = 0; 913 if (WARN_ON(iov_offset != 0)) 914 return -EIO; 915 } 916 917 maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages); 918 if (!maxpages) 919 return -ENOMEM; 920 *_start_offset = iov_offset & ~PAGE_MASK; 921 pages = *ppages; 922 923 for (;;) { 924 struct folio *folio = folioq_folio(folioq, slot); 925 size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); 926 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 927 928 if (offset < fsize) { 929 part = umin(part, umin(maxsize - extracted, fsize - offset)); 930 count -= part; 931 iov_offset += part; 932 extracted += part; 933 934 *pages = folio_page(folio, offset / PAGE_SIZE); 935 get_page(*pages); 936 pages++; 937 maxpages--; 938 } 939 940 if (maxpages == 0 || extracted >= maxsize) 941 break; 942 943 if (iov_offset >= fsize) { 944 iov_offset = 0; 945 slot++; 946 if (slot == folioq_nr_slots(folioq) && folioq->next) { 947 folioq = folioq->next; 948 slot = 0; 949 } 950 } 951 } 952 953 iter->count = count; 954 iter->iov_offset = iov_offset; 955 iter->folioq = folioq; 956 iter->folioq_slot = slot; 957 return extracted; 958 } 959 960 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 961 pgoff_t index, unsigned int nr_pages) 962 { 963 XA_STATE(xas, xa, index); 964 struct folio *folio; 965 unsigned int ret = 0; 966 967 rcu_read_lock(); 968 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 969 if (xas_retry(&xas, folio)) 970 continue; 971 972 /* Has the folio moved or been split? */ 973 if (unlikely(folio != xas_reload(&xas))) { 974 xas_reset(&xas); 975 continue; 976 } 977 978 pages[ret] = folio_file_page(folio, xas.xa_index); 979 folio_get(folio); 980 if (++ret == nr_pages) 981 break; 982 } 983 rcu_read_unlock(); 984 return ret; 985 } 986 987 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 988 struct page ***pages, size_t maxsize, 989 unsigned maxpages, size_t *_start_offset) 990 { 991 unsigned nr, offset, count; 992 pgoff_t index; 993 loff_t pos; 994 995 pos = i->xarray_start + i->iov_offset; 996 index = pos >> PAGE_SHIFT; 997 offset = pos & ~PAGE_MASK; 998 *_start_offset = offset; 999 1000 count = want_pages_array(pages, maxsize, offset, maxpages); 1001 if (!count) 1002 return -ENOMEM; 1003 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1004 if (nr == 0) 1005 return 0; 1006 1007 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1008 i->iov_offset += maxsize; 1009 i->count -= maxsize; 1010 return maxsize; 1011 } 1012 1013 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1014 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1015 { 1016 size_t skip; 1017 long k; 1018 1019 if (iter_is_ubuf(i)) 1020 return (unsigned long)i->ubuf + i->iov_offset; 1021 1022 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1023 const struct iovec *iov = iter_iov(i) + k; 1024 size_t len = iov->iov_len - skip; 1025 1026 if (unlikely(!len)) 1027 continue; 1028 if (*size > len) 1029 *size = len; 1030 return (unsigned long)iov->iov_base + skip; 1031 } 1032 BUG(); // if it had been empty, we wouldn't get called 1033 } 1034 1035 /* must be done on non-empty ITER_BVEC one */ 1036 static struct page *first_bvec_segment(const struct iov_iter *i, 1037 size_t *size, size_t *start) 1038 { 1039 struct page *page; 1040 size_t skip = i->iov_offset, len; 1041 1042 len = i->bvec->bv_len - skip; 1043 if (*size > len) 1044 *size = len; 1045 skip += i->bvec->bv_offset; 1046 page = i->bvec->bv_page + skip / PAGE_SIZE; 1047 *start = skip % PAGE_SIZE; 1048 return page; 1049 } 1050 1051 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1052 struct page ***pages, size_t maxsize, 1053 unsigned int maxpages, size_t *start) 1054 { 1055 unsigned int n, gup_flags = 0; 1056 1057 if (maxsize > i->count) 1058 maxsize = i->count; 1059 if (!maxsize) 1060 return 0; 1061 if (maxsize > MAX_RW_COUNT) 1062 maxsize = MAX_RW_COUNT; 1063 1064 if (likely(user_backed_iter(i))) { 1065 unsigned long addr; 1066 int res; 1067 1068 if (iov_iter_rw(i) != WRITE) 1069 gup_flags |= FOLL_WRITE; 1070 if (i->nofault) 1071 gup_flags |= FOLL_NOFAULT; 1072 1073 addr = first_iovec_segment(i, &maxsize); 1074 *start = addr % PAGE_SIZE; 1075 addr &= PAGE_MASK; 1076 n = want_pages_array(pages, maxsize, *start, maxpages); 1077 if (!n) 1078 return -ENOMEM; 1079 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1080 if (unlikely(res <= 0)) 1081 return res; 1082 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1083 iov_iter_advance(i, maxsize); 1084 return maxsize; 1085 } 1086 if (iov_iter_is_bvec(i)) { 1087 struct page **p; 1088 struct page *page; 1089 1090 page = first_bvec_segment(i, &maxsize, start); 1091 n = want_pages_array(pages, maxsize, *start, maxpages); 1092 if (!n) 1093 return -ENOMEM; 1094 p = *pages; 1095 for (int k = 0; k < n; k++) { 1096 struct folio *folio = page_folio(page + k); 1097 p[k] = page + k; 1098 if (!folio_test_slab(folio)) 1099 folio_get(folio); 1100 } 1101 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1102 i->count -= maxsize; 1103 i->iov_offset += maxsize; 1104 if (i->iov_offset == i->bvec->bv_len) { 1105 i->iov_offset = 0; 1106 i->bvec++; 1107 i->nr_segs--; 1108 } 1109 return maxsize; 1110 } 1111 if (iov_iter_is_folioq(i)) 1112 return iter_folioq_get_pages(i, pages, maxsize, maxpages, start); 1113 if (iov_iter_is_xarray(i)) 1114 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1115 return -EFAULT; 1116 } 1117 1118 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1119 size_t maxsize, unsigned maxpages, size_t *start) 1120 { 1121 if (!maxpages) 1122 return 0; 1123 BUG_ON(!pages); 1124 1125 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1126 } 1127 EXPORT_SYMBOL(iov_iter_get_pages2); 1128 1129 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1130 struct page ***pages, size_t maxsize, size_t *start) 1131 { 1132 ssize_t len; 1133 1134 *pages = NULL; 1135 1136 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1137 if (len <= 0) { 1138 kvfree(*pages); 1139 *pages = NULL; 1140 } 1141 return len; 1142 } 1143 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1144 1145 static int iov_npages(const struct iov_iter *i, int maxpages) 1146 { 1147 size_t skip = i->iov_offset, size = i->count; 1148 const struct iovec *p; 1149 int npages = 0; 1150 1151 for (p = iter_iov(i); size; skip = 0, p++) { 1152 unsigned offs = offset_in_page(p->iov_base + skip); 1153 size_t len = min(p->iov_len - skip, size); 1154 1155 if (len) { 1156 size -= len; 1157 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1158 if (unlikely(npages > maxpages)) 1159 return maxpages; 1160 } 1161 } 1162 return npages; 1163 } 1164 1165 static int bvec_npages(const struct iov_iter *i, int maxpages) 1166 { 1167 size_t skip = i->iov_offset, size = i->count; 1168 const struct bio_vec *p; 1169 int npages = 0; 1170 1171 for (p = i->bvec; size; skip = 0, p++) { 1172 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1173 size_t len = min(p->bv_len - skip, size); 1174 1175 size -= len; 1176 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1177 if (unlikely(npages > maxpages)) 1178 return maxpages; 1179 } 1180 return npages; 1181 } 1182 1183 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1184 { 1185 if (unlikely(!i->count)) 1186 return 0; 1187 if (likely(iter_is_ubuf(i))) { 1188 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1189 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1190 return min(npages, maxpages); 1191 } 1192 /* iovec and kvec have identical layouts */ 1193 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1194 return iov_npages(i, maxpages); 1195 if (iov_iter_is_bvec(i)) 1196 return bvec_npages(i, maxpages); 1197 if (iov_iter_is_folioq(i)) { 1198 unsigned offset = i->iov_offset % PAGE_SIZE; 1199 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1200 return min(npages, maxpages); 1201 } 1202 if (iov_iter_is_xarray(i)) { 1203 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1204 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1205 return min(npages, maxpages); 1206 } 1207 return 0; 1208 } 1209 EXPORT_SYMBOL(iov_iter_npages); 1210 1211 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1212 { 1213 *new = *old; 1214 if (iov_iter_is_bvec(new)) 1215 return new->bvec = kmemdup(new->bvec, 1216 new->nr_segs * sizeof(struct bio_vec), 1217 flags); 1218 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1219 /* iovec and kvec have identical layout */ 1220 return new->__iov = kmemdup(new->__iov, 1221 new->nr_segs * sizeof(struct iovec), 1222 flags); 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dup_iter); 1226 1227 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1228 const struct iovec __user *uvec, u32 nr_segs) 1229 { 1230 const struct compat_iovec __user *uiov = 1231 (const struct compat_iovec __user *)uvec; 1232 int ret = -EFAULT; 1233 u32 i; 1234 1235 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1236 return -EFAULT; 1237 1238 for (i = 0; i < nr_segs; i++) { 1239 compat_uptr_t buf; 1240 compat_ssize_t len; 1241 1242 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1243 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1244 1245 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1246 if (len < 0) { 1247 ret = -EINVAL; 1248 goto uaccess_end; 1249 } 1250 iov[i].iov_base = compat_ptr(buf); 1251 iov[i].iov_len = len; 1252 } 1253 1254 ret = 0; 1255 uaccess_end: 1256 user_access_end(); 1257 return ret; 1258 } 1259 1260 static __noclone int copy_iovec_from_user(struct iovec *iov, 1261 const struct iovec __user *uiov, unsigned long nr_segs) 1262 { 1263 int ret = -EFAULT; 1264 1265 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1266 return -EFAULT; 1267 1268 do { 1269 void __user *buf; 1270 ssize_t len; 1271 1272 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1273 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1274 1275 /* check for size_t not fitting in ssize_t .. */ 1276 if (unlikely(len < 0)) { 1277 ret = -EINVAL; 1278 goto uaccess_end; 1279 } 1280 iov->iov_base = buf; 1281 iov->iov_len = len; 1282 1283 uiov++; iov++; 1284 } while (--nr_segs); 1285 1286 ret = 0; 1287 uaccess_end: 1288 user_access_end(); 1289 return ret; 1290 } 1291 1292 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1293 unsigned long nr_segs, unsigned long fast_segs, 1294 struct iovec *fast_iov, bool compat) 1295 { 1296 struct iovec *iov = fast_iov; 1297 int ret; 1298 1299 /* 1300 * SuS says "The readv() function *may* fail if the iovcnt argument was 1301 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1302 * traditionally returned zero for zero segments, so... 1303 */ 1304 if (nr_segs == 0) 1305 return iov; 1306 if (nr_segs > UIO_MAXIOV) 1307 return ERR_PTR(-EINVAL); 1308 if (nr_segs > fast_segs) { 1309 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1310 if (!iov) 1311 return ERR_PTR(-ENOMEM); 1312 } 1313 1314 if (unlikely(compat)) 1315 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1316 else 1317 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1318 if (ret) { 1319 if (iov != fast_iov) 1320 kfree(iov); 1321 return ERR_PTR(ret); 1322 } 1323 1324 return iov; 1325 } 1326 1327 /* 1328 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1329 */ 1330 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1331 struct iovec **iovp, struct iov_iter *i, 1332 bool compat) 1333 { 1334 struct iovec *iov = *iovp; 1335 ssize_t ret; 1336 1337 *iovp = NULL; 1338 1339 if (compat) 1340 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1341 else 1342 ret = copy_iovec_from_user(iov, uvec, 1); 1343 if (unlikely(ret)) 1344 return ret; 1345 1346 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1347 if (unlikely(ret)) 1348 return ret; 1349 return i->count; 1350 } 1351 1352 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1353 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1354 struct iov_iter *i, bool compat) 1355 { 1356 ssize_t total_len = 0; 1357 unsigned long seg; 1358 struct iovec *iov; 1359 1360 if (nr_segs == 1) 1361 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1362 1363 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1364 if (IS_ERR(iov)) { 1365 *iovp = NULL; 1366 return PTR_ERR(iov); 1367 } 1368 1369 /* 1370 * According to the Single Unix Specification we should return EINVAL if 1371 * an element length is < 0 when cast to ssize_t or if the total length 1372 * would overflow the ssize_t return value of the system call. 1373 * 1374 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1375 * overflow case. 1376 */ 1377 for (seg = 0; seg < nr_segs; seg++) { 1378 ssize_t len = (ssize_t)iov[seg].iov_len; 1379 1380 if (!access_ok(iov[seg].iov_base, len)) { 1381 if (iov != *iovp) 1382 kfree(iov); 1383 *iovp = NULL; 1384 return -EFAULT; 1385 } 1386 1387 if (len > MAX_RW_COUNT - total_len) { 1388 len = MAX_RW_COUNT - total_len; 1389 iov[seg].iov_len = len; 1390 } 1391 total_len += len; 1392 } 1393 1394 iov_iter_init(i, type, iov, nr_segs, total_len); 1395 if (iov == *iovp) 1396 *iovp = NULL; 1397 else 1398 *iovp = iov; 1399 return total_len; 1400 } 1401 1402 /** 1403 * import_iovec() - Copy an array of &struct iovec from userspace 1404 * into the kernel, check that it is valid, and initialize a new 1405 * &struct iov_iter iterator to access it. 1406 * 1407 * @type: One of %READ or %WRITE. 1408 * @uvec: Pointer to the userspace array. 1409 * @nr_segs: Number of elements in userspace array. 1410 * @fast_segs: Number of elements in @iov. 1411 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1412 * on-stack) kernel array. 1413 * @i: Pointer to iterator that will be initialized on success. 1414 * 1415 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1416 * then this function places %NULL in *@iov on return. Otherwise, a new 1417 * array will be allocated and the result placed in *@iov. This means that 1418 * the caller may call kfree() on *@iov regardless of whether the small 1419 * on-stack array was used or not (and regardless of whether this function 1420 * returns an error or not). 1421 * 1422 * Return: Negative error code on error, bytes imported on success 1423 */ 1424 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1425 unsigned nr_segs, unsigned fast_segs, 1426 struct iovec **iovp, struct iov_iter *i) 1427 { 1428 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1429 in_compat_syscall()); 1430 } 1431 EXPORT_SYMBOL(import_iovec); 1432 1433 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1434 { 1435 if (len > MAX_RW_COUNT) 1436 len = MAX_RW_COUNT; 1437 if (unlikely(!access_ok(buf, len))) 1438 return -EFAULT; 1439 1440 iov_iter_ubuf(i, rw, buf, len); 1441 return 0; 1442 } 1443 EXPORT_SYMBOL_GPL(import_ubuf); 1444 1445 /** 1446 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1447 * iov_iter_save_state() was called. 1448 * 1449 * @i: &struct iov_iter to restore 1450 * @state: state to restore from 1451 * 1452 * Used after iov_iter_save_state() to bring restore @i, if operations may 1453 * have advanced it. 1454 * 1455 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1456 */ 1457 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1458 { 1459 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1460 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1461 return; 1462 i->iov_offset = state->iov_offset; 1463 i->count = state->count; 1464 if (iter_is_ubuf(i)) 1465 return; 1466 /* 1467 * For the *vec iters, nr_segs + iov is constant - if we increment 1468 * the vec, then we also decrement the nr_segs count. Hence we don't 1469 * need to track both of these, just one is enough and we can deduct 1470 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1471 * size, so we can just increment the iov pointer as they are unionzed. 1472 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1473 * not. Be safe and handle it separately. 1474 */ 1475 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1476 if (iov_iter_is_bvec(i)) 1477 i->bvec -= state->nr_segs - i->nr_segs; 1478 else 1479 i->__iov -= state->nr_segs - i->nr_segs; 1480 i->nr_segs = state->nr_segs; 1481 } 1482 1483 /* 1484 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does 1485 * not get references on the pages, nor does it get a pin on them. 1486 */ 1487 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i, 1488 struct page ***pages, size_t maxsize, 1489 unsigned int maxpages, 1490 iov_iter_extraction_t extraction_flags, 1491 size_t *offset0) 1492 { 1493 const struct folio_queue *folioq = i->folioq; 1494 struct page **p; 1495 unsigned int nr = 0; 1496 size_t extracted = 0, offset, slot = i->folioq_slot; 1497 1498 if (slot >= folioq_nr_slots(folioq)) { 1499 folioq = folioq->next; 1500 slot = 0; 1501 if (WARN_ON(i->iov_offset != 0)) 1502 return -EIO; 1503 } 1504 1505 offset = i->iov_offset & ~PAGE_MASK; 1506 *offset0 = offset; 1507 1508 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1509 if (!maxpages) 1510 return -ENOMEM; 1511 p = *pages; 1512 1513 for (;;) { 1514 struct folio *folio = folioq_folio(folioq, slot); 1515 size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); 1516 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 1517 1518 if (offset < fsize) { 1519 part = umin(part, umin(maxsize - extracted, fsize - offset)); 1520 i->count -= part; 1521 i->iov_offset += part; 1522 extracted += part; 1523 1524 p[nr++] = folio_page(folio, offset / PAGE_SIZE); 1525 } 1526 1527 if (nr >= maxpages || extracted >= maxsize) 1528 break; 1529 1530 if (i->iov_offset >= fsize) { 1531 i->iov_offset = 0; 1532 slot++; 1533 if (slot == folioq_nr_slots(folioq) && folioq->next) { 1534 folioq = folioq->next; 1535 slot = 0; 1536 } 1537 } 1538 } 1539 1540 i->folioq = folioq; 1541 i->folioq_slot = slot; 1542 return extracted; 1543 } 1544 1545 /* 1546 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1547 * get references on the pages, nor does it get a pin on them. 1548 */ 1549 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1550 struct page ***pages, size_t maxsize, 1551 unsigned int maxpages, 1552 iov_iter_extraction_t extraction_flags, 1553 size_t *offset0) 1554 { 1555 struct page **p; 1556 struct folio *folio; 1557 unsigned int nr = 0, offset; 1558 loff_t pos = i->xarray_start + i->iov_offset; 1559 XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT); 1560 1561 offset = pos & ~PAGE_MASK; 1562 *offset0 = offset; 1563 1564 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1565 if (!maxpages) 1566 return -ENOMEM; 1567 p = *pages; 1568 1569 rcu_read_lock(); 1570 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 1571 if (xas_retry(&xas, folio)) 1572 continue; 1573 1574 /* Has the folio moved or been split? */ 1575 if (unlikely(folio != xas_reload(&xas))) { 1576 xas_reset(&xas); 1577 continue; 1578 } 1579 1580 p[nr++] = folio_file_page(folio, xas.xa_index); 1581 if (nr == maxpages) 1582 break; 1583 } 1584 rcu_read_unlock(); 1585 1586 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1587 iov_iter_advance(i, maxsize); 1588 return maxsize; 1589 } 1590 1591 /* 1592 * Extract a list of virtually contiguous pages from an ITER_BVEC iterator. 1593 * This does not get references on the pages, nor does it get a pin on them. 1594 */ 1595 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1596 struct page ***pages, size_t maxsize, 1597 unsigned int maxpages, 1598 iov_iter_extraction_t extraction_flags, 1599 size_t *offset0) 1600 { 1601 size_t skip = i->iov_offset, size = 0; 1602 struct bvec_iter bi; 1603 int k = 0; 1604 1605 if (i->nr_segs == 0) 1606 return 0; 1607 1608 if (i->iov_offset == i->bvec->bv_len) { 1609 i->iov_offset = 0; 1610 i->nr_segs--; 1611 i->bvec++; 1612 skip = 0; 1613 } 1614 bi.bi_idx = 0; 1615 bi.bi_size = maxsize; 1616 bi.bi_bvec_done = skip; 1617 1618 maxpages = want_pages_array(pages, maxsize, skip, maxpages); 1619 1620 while (bi.bi_size && bi.bi_idx < i->nr_segs) { 1621 struct bio_vec bv = bvec_iter_bvec(i->bvec, bi); 1622 1623 /* 1624 * The iov_iter_extract_pages interface only allows an offset 1625 * into the first page. Break out of the loop if we see an 1626 * offset into subsequent pages, the caller will have to call 1627 * iov_iter_extract_pages again for the reminder. 1628 */ 1629 if (k) { 1630 if (bv.bv_offset) 1631 break; 1632 } else { 1633 *offset0 = bv.bv_offset; 1634 } 1635 1636 (*pages)[k++] = bv.bv_page; 1637 size += bv.bv_len; 1638 1639 if (k >= maxpages) 1640 break; 1641 1642 /* 1643 * We are done when the end of the bvec doesn't align to a page 1644 * boundary as that would create a hole in the returned space. 1645 * The caller will handle this with another call to 1646 * iov_iter_extract_pages. 1647 */ 1648 if (bv.bv_offset + bv.bv_len != PAGE_SIZE) 1649 break; 1650 1651 bvec_iter_advance_single(i->bvec, &bi, bv.bv_len); 1652 } 1653 1654 iov_iter_advance(i, size); 1655 return size; 1656 } 1657 1658 /* 1659 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1660 * This does not get references on the pages, nor does it get a pin on them. 1661 */ 1662 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1663 struct page ***pages, size_t maxsize, 1664 unsigned int maxpages, 1665 iov_iter_extraction_t extraction_flags, 1666 size_t *offset0) 1667 { 1668 struct page **p, *page; 1669 const void *kaddr; 1670 size_t skip = i->iov_offset, offset, len, size; 1671 int k; 1672 1673 for (;;) { 1674 if (i->nr_segs == 0) 1675 return 0; 1676 size = min(maxsize, i->kvec->iov_len - skip); 1677 if (size) 1678 break; 1679 i->iov_offset = 0; 1680 i->nr_segs--; 1681 i->kvec++; 1682 skip = 0; 1683 } 1684 1685 kaddr = i->kvec->iov_base + skip; 1686 offset = (unsigned long)kaddr & ~PAGE_MASK; 1687 *offset0 = offset; 1688 1689 maxpages = want_pages_array(pages, size, offset, maxpages); 1690 if (!maxpages) 1691 return -ENOMEM; 1692 p = *pages; 1693 1694 kaddr -= offset; 1695 len = offset + size; 1696 for (k = 0; k < maxpages; k++) { 1697 size_t seg = min_t(size_t, len, PAGE_SIZE); 1698 1699 if (is_vmalloc_or_module_addr(kaddr)) 1700 page = vmalloc_to_page(kaddr); 1701 else 1702 page = virt_to_page(kaddr); 1703 1704 p[k] = page; 1705 len -= seg; 1706 kaddr += PAGE_SIZE; 1707 } 1708 1709 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1710 iov_iter_advance(i, size); 1711 return size; 1712 } 1713 1714 /* 1715 * Extract a list of contiguous pages from a user iterator and get a pin on 1716 * each of them. This should only be used if the iterator is user-backed 1717 * (IOBUF/UBUF). 1718 * 1719 * It does not get refs on the pages, but the pages must be unpinned by the 1720 * caller once the transfer is complete. 1721 * 1722 * This is safe to be used where background IO/DMA *is* going to be modifying 1723 * the buffer; using a pin rather than a ref makes forces fork() to give the 1724 * child a copy of the page. 1725 */ 1726 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1727 struct page ***pages, 1728 size_t maxsize, 1729 unsigned int maxpages, 1730 iov_iter_extraction_t extraction_flags, 1731 size_t *offset0) 1732 { 1733 unsigned long addr; 1734 unsigned int gup_flags = 0; 1735 size_t offset; 1736 int res; 1737 1738 if (i->data_source == ITER_DEST) 1739 gup_flags |= FOLL_WRITE; 1740 if (extraction_flags & ITER_ALLOW_P2PDMA) 1741 gup_flags |= FOLL_PCI_P2PDMA; 1742 if (i->nofault) 1743 gup_flags |= FOLL_NOFAULT; 1744 1745 addr = first_iovec_segment(i, &maxsize); 1746 *offset0 = offset = addr % PAGE_SIZE; 1747 addr &= PAGE_MASK; 1748 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1749 if (!maxpages) 1750 return -ENOMEM; 1751 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1752 if (unlikely(res <= 0)) 1753 return res; 1754 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1755 iov_iter_advance(i, maxsize); 1756 return maxsize; 1757 } 1758 1759 /** 1760 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1761 * @i: The iterator to extract from 1762 * @pages: Where to return the list of pages 1763 * @maxsize: The maximum amount of iterator to extract 1764 * @maxpages: The maximum size of the list of pages 1765 * @extraction_flags: Flags to qualify request 1766 * @offset0: Where to return the starting offset into (*@pages)[0] 1767 * 1768 * Extract a list of contiguous pages from the current point of the iterator, 1769 * advancing the iterator. The maximum number of pages and the maximum amount 1770 * of page contents can be set. 1771 * 1772 * If *@pages is NULL, a page list will be allocated to the required size and 1773 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1774 * that the caller allocated a page list at least @maxpages in size and this 1775 * will be filled in. 1776 * 1777 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1778 * be allowed on the pages extracted. 1779 * 1780 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1781 * should be performed. 1782 * 1783 * Extra refs or pins on the pages may be obtained as follows: 1784 * 1785 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1786 * added to the pages, but refs will not be taken. 1787 * iov_iter_extract_will_pin() will return true. 1788 * 1789 * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the 1790 * pages are merely listed; no extra refs or pins are obtained. 1791 * iov_iter_extract_will_pin() will return 0. 1792 * 1793 * Note also: 1794 * 1795 * (*) Use with ITER_DISCARD is not supported as that has no content. 1796 * 1797 * On success, the function sets *@pages to the new pagelist, if allocated, and 1798 * sets *offset0 to the offset into the first page. 1799 * 1800 * It may also return -ENOMEM and -EFAULT. 1801 */ 1802 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1803 struct page ***pages, 1804 size_t maxsize, 1805 unsigned int maxpages, 1806 iov_iter_extraction_t extraction_flags, 1807 size_t *offset0) 1808 { 1809 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1810 if (!maxsize) 1811 return 0; 1812 1813 if (likely(user_backed_iter(i))) 1814 return iov_iter_extract_user_pages(i, pages, maxsize, 1815 maxpages, extraction_flags, 1816 offset0); 1817 if (iov_iter_is_kvec(i)) 1818 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1819 maxpages, extraction_flags, 1820 offset0); 1821 if (iov_iter_is_bvec(i)) 1822 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1823 maxpages, extraction_flags, 1824 offset0); 1825 if (iov_iter_is_folioq(i)) 1826 return iov_iter_extract_folioq_pages(i, pages, maxsize, 1827 maxpages, extraction_flags, 1828 offset0); 1829 if (iov_iter_is_xarray(i)) 1830 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1831 maxpages, extraction_flags, 1832 offset0); 1833 return -EFAULT; 1834 } 1835 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1836