xref: /linux/net/core/skbuff.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 
85 #include <linux/uaccess.h>
86 #include <trace/events/skb.h>
87 #include <linux/highmem.h>
88 #include <linux/capability.h>
89 #include <linux/user_namespace.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/textsearch.h>
92 
93 #include "dev.h"
94 #include "devmem.h"
95 #include "netmem_priv.h"
96 #include "sock_destructor.h"
97 
98 #ifdef CONFIG_SKB_EXTENSIONS
99 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
100 #endif
101 
102 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
103 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
104 					       GRO_MAX_HEAD_PAD))
105 
106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
107  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
108  * size, and we can differentiate heads from skb_small_head_cache
109  * vs system slabs by looking at their size (skb_end_offset()).
110  */
111 #define SKB_SMALL_HEAD_CACHE_SIZE					\
112 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
113 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
114 		SKB_SMALL_HEAD_SIZE)
115 
116 #define SKB_SMALL_HEAD_HEADROOM						\
117 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
118 
119 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
120  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
121  * netmem is a page.
122  */
123 static_assert(offsetof(struct bio_vec, bv_page) ==
124 	      offsetof(skb_frag_t, netmem));
125 static_assert(sizeof_field(struct bio_vec, bv_page) ==
126 	      sizeof_field(skb_frag_t, netmem));
127 
128 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
129 static_assert(sizeof_field(struct bio_vec, bv_len) ==
130 	      sizeof_field(skb_frag_t, len));
131 
132 static_assert(offsetof(struct bio_vec, bv_offset) ==
133 	      offsetof(skb_frag_t, offset));
134 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
135 	      sizeof_field(skb_frag_t, offset));
136 
137 #undef FN
138 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
139 static const char * const drop_reasons[] = {
140 	[SKB_CONSUMED] = "CONSUMED",
141 	DEFINE_DROP_REASON(FN, FN)
142 };
143 
144 static const struct drop_reason_list drop_reasons_core = {
145 	.reasons = drop_reasons,
146 	.n_reasons = ARRAY_SIZE(drop_reasons),
147 };
148 
149 const struct drop_reason_list __rcu *
150 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
151 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
152 };
153 EXPORT_SYMBOL(drop_reasons_by_subsys);
154 
155 /**
156  * drop_reasons_register_subsys - register another drop reason subsystem
157  * @subsys: the subsystem to register, must not be the core
158  * @list: the list of drop reasons within the subsystem, must point to
159  *	a statically initialized list
160  */
161 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
162 				  const struct drop_reason_list *list)
163 {
164 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
165 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
166 		 "invalid subsystem %d\n", subsys))
167 		return;
168 
169 	/* must point to statically allocated memory, so INIT is OK */
170 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
173 
174 /**
175  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
176  * @subsys: the subsystem to remove, must not be the core
177  *
178  * Note: This will synchronize_rcu() to ensure no users when it returns.
179  */
180 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
181 {
182 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
183 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
184 		 "invalid subsystem %d\n", subsys))
185 		return;
186 
187 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
188 
189 	synchronize_rcu();
190 }
191 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
192 
193 /**
194  *	skb_panic - private function for out-of-line support
195  *	@skb:	buffer
196  *	@sz:	size
197  *	@addr:	address
198  *	@msg:	skb_over_panic or skb_under_panic
199  *
200  *	Out-of-line support for skb_put() and skb_push().
201  *	Called via the wrapper skb_over_panic() or skb_under_panic().
202  *	Keep out of line to prevent kernel bloat.
203  *	__builtin_return_address is not used because it is not always reliable.
204  */
205 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
206 		      const char msg[])
207 {
208 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
209 		 msg, addr, skb->len, sz, skb->head, skb->data,
210 		 (unsigned long)skb->tail, (unsigned long)skb->end,
211 		 skb->dev ? skb->dev->name : "<NULL>");
212 	BUG();
213 }
214 
215 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
221 {
222 	skb_panic(skb, sz, addr, __func__);
223 }
224 
225 #define NAPI_SKB_CACHE_SIZE	64
226 #define NAPI_SKB_CACHE_BULK	16
227 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
228 
229 struct napi_alloc_cache {
230 	local_lock_t bh_lock;
231 	struct page_frag_cache page;
232 	unsigned int skb_count;
233 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
234 };
235 
236 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
237 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
238 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
239 };
240 
241 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
242 {
243 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
244 	void *data;
245 
246 	fragsz = SKB_DATA_ALIGN(fragsz);
247 
248 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
249 	data = __page_frag_alloc_align(&nc->page, fragsz,
250 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
251 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
252 	return data;
253 
254 }
255 EXPORT_SYMBOL(__napi_alloc_frag_align);
256 
257 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
258 {
259 	void *data;
260 
261 	if (in_hardirq() || irqs_disabled()) {
262 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
263 
264 		fragsz = SKB_DATA_ALIGN(fragsz);
265 		data = __page_frag_alloc_align(nc, fragsz,
266 					       GFP_ATOMIC | __GFP_NOWARN,
267 					       align_mask);
268 	} else {
269 		local_bh_disable();
270 		data = __napi_alloc_frag_align(fragsz, align_mask);
271 		local_bh_enable();
272 	}
273 	return data;
274 }
275 EXPORT_SYMBOL(__netdev_alloc_frag_align);
276 
277 static struct sk_buff *napi_skb_cache_get(void)
278 {
279 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
280 	struct sk_buff *skb;
281 
282 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
283 	if (unlikely(!nc->skb_count)) {
284 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
285 						      GFP_ATOMIC | __GFP_NOWARN,
286 						      NAPI_SKB_CACHE_BULK,
287 						      nc->skb_cache);
288 		if (unlikely(!nc->skb_count)) {
289 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
290 			return NULL;
291 		}
292 	}
293 
294 	skb = nc->skb_cache[--nc->skb_count];
295 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
296 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
297 
298 	return skb;
299 }
300 
301 /**
302  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
303  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
304  * @n: number of entries to provide
305  *
306  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
307  * the pointers into the provided array @skbs. If there are less entries
308  * available, tries to replenish the cache and bulk-allocates the diff from
309  * the MM layer if needed.
310  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
311  * ready for {,__}build_skb_around() and don't have any data buffers attached.
312  * Must be called *only* from the BH context.
313  *
314  * Return: number of successfully allocated skbs (@n if no actual allocation
315  *	   needed or kmem_cache_alloc_bulk() didn't fail).
316  */
317 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
318 {
319 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
320 	u32 bulk, total = n;
321 
322 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
323 
324 	if (nc->skb_count >= n)
325 		goto get;
326 
327 	/* No enough cached skbs. Try refilling the cache first */
328 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
329 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
330 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
331 					       &nc->skb_cache[nc->skb_count]);
332 	if (likely(nc->skb_count >= n))
333 		goto get;
334 
335 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
336 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
337 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
338 				   n - nc->skb_count, &skbs[nc->skb_count]);
339 	if (likely(nc->skb_count >= n))
340 		goto get;
341 
342 	/* kmem_cache didn't allocate the number we need, limit the output */
343 	total -= n - nc->skb_count;
344 	n = nc->skb_count;
345 
346 get:
347 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
348 		u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
349 
350 		skbs[i] = nc->skb_cache[base + i];
351 
352 		kasan_mempool_unpoison_object(skbs[i], cache_size);
353 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
354 	}
355 
356 	nc->skb_count -= n;
357 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
358 
359 	return total;
360 }
361 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
362 
363 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
364 					 unsigned int size)
365 {
366 	struct skb_shared_info *shinfo;
367 
368 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
369 
370 	/* Assumes caller memset cleared SKB */
371 	skb->truesize = SKB_TRUESIZE(size);
372 	refcount_set(&skb->users, 1);
373 	skb->head = data;
374 	skb->data = data;
375 	skb_reset_tail_pointer(skb);
376 	skb_set_end_offset(skb, size);
377 	skb->mac_header = (typeof(skb->mac_header))~0U;
378 	skb->transport_header = (typeof(skb->transport_header))~0U;
379 	skb->alloc_cpu = raw_smp_processor_id();
380 	/* make sure we initialize shinfo sequentially */
381 	shinfo = skb_shinfo(skb);
382 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
383 	atomic_set(&shinfo->dataref, 1);
384 
385 	skb_set_kcov_handle(skb, kcov_common_handle());
386 }
387 
388 static inline void *__slab_build_skb(void *data, unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
416 			       GFP_ATOMIC | __GFP_NOWARN);
417 	if (unlikely(!skb))
418 		return NULL;
419 
420 	memset(skb, 0, offsetof(struct sk_buff, tail));
421 	data = __slab_build_skb(data, &size);
422 	__finalize_skb_around(skb, data, size);
423 
424 	return skb;
425 }
426 EXPORT_SYMBOL(slab_build_skb);
427 
428 /* Caller must provide SKB that is memset cleared */
429 static void __build_skb_around(struct sk_buff *skb, void *data,
430 			       unsigned int frag_size)
431 {
432 	unsigned int size = frag_size;
433 
434 	/* frag_size == 0 is considered deprecated now. Callers
435 	 * using slab buffer should use slab_build_skb() instead.
436 	 */
437 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
438 		data = __slab_build_skb(data, &size);
439 
440 	__finalize_skb_around(skb, data, size);
441 }
442 
443 /**
444  * __build_skb - build a network buffer
445  * @data: data buffer provided by caller
446  * @frag_size: size of data (must not be 0)
447  *
448  * Allocate a new &sk_buff. Caller provides space holding head and
449  * skb_shared_info. @data must have been allocated from the page
450  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
451  * allocation is deprecated, and callers should use slab_build_skb()
452  * instead.)
453  * The return is the new skb buffer.
454  * On a failure the return is %NULL, and @data is not freed.
455  * Notes :
456  *  Before IO, driver allocates only data buffer where NIC put incoming frame
457  *  Driver should add room at head (NET_SKB_PAD) and
458  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
459  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
460  *  before giving packet to stack.
461  *  RX rings only contains data buffers, not full skbs.
462  */
463 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
464 {
465 	struct sk_buff *skb;
466 
467 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
468 			       GFP_ATOMIC | __GFP_NOWARN);
469 	if (unlikely(!skb))
470 		return NULL;
471 
472 	memset(skb, 0, offsetof(struct sk_buff, tail));
473 	__build_skb_around(skb, data, frag_size);
474 
475 	return skb;
476 }
477 
478 /* build_skb() is wrapper over __build_skb(), that specifically
479  * takes care of skb->head and skb->pfmemalloc
480  */
481 struct sk_buff *build_skb(void *data, unsigned int frag_size)
482 {
483 	struct sk_buff *skb = __build_skb(data, frag_size);
484 
485 	if (likely(skb && frag_size)) {
486 		skb->head_frag = 1;
487 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
488 	}
489 	return skb;
490 }
491 EXPORT_SYMBOL(build_skb);
492 
493 /**
494  * build_skb_around - build a network buffer around provided skb
495  * @skb: sk_buff provide by caller, must be memset cleared
496  * @data: data buffer provided by caller
497  * @frag_size: size of data
498  */
499 struct sk_buff *build_skb_around(struct sk_buff *skb,
500 				 void *data, unsigned int frag_size)
501 {
502 	if (unlikely(!skb))
503 		return NULL;
504 
505 	__build_skb_around(skb, data, frag_size);
506 
507 	if (frag_size) {
508 		skb->head_frag = 1;
509 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
510 	}
511 	return skb;
512 }
513 EXPORT_SYMBOL(build_skb_around);
514 
515 /**
516  * __napi_build_skb - build a network buffer
517  * @data: data buffer provided by caller
518  * @frag_size: size of data
519  *
520  * Version of __build_skb() that uses NAPI percpu caches to obtain
521  * skbuff_head instead of inplace allocation.
522  *
523  * Returns a new &sk_buff on success, %NULL on allocation failure.
524  */
525 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
526 {
527 	struct sk_buff *skb;
528 
529 	skb = napi_skb_cache_get();
530 	if (unlikely(!skb))
531 		return NULL;
532 
533 	memset(skb, 0, offsetof(struct sk_buff, tail));
534 	__build_skb_around(skb, data, frag_size);
535 
536 	return skb;
537 }
538 
539 /**
540  * napi_build_skb - build a network buffer
541  * @data: data buffer provided by caller
542  * @frag_size: size of data
543  *
544  * Version of __napi_build_skb() that takes care of skb->head_frag
545  * and skb->pfmemalloc when the data is a page or page fragment.
546  *
547  * Returns a new &sk_buff on success, %NULL on allocation failure.
548  */
549 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
550 {
551 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
552 
553 	if (likely(skb) && frag_size) {
554 		skb->head_frag = 1;
555 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
556 	}
557 
558 	return skb;
559 }
560 EXPORT_SYMBOL(napi_build_skb);
561 
562 /*
563  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
564  * the caller if emergency pfmemalloc reserves are being used. If it is and
565  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
566  * may be used. Otherwise, the packet data may be discarded until enough
567  * memory is free
568  */
569 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
570 			     bool *pfmemalloc)
571 {
572 	bool ret_pfmemalloc = false;
573 	size_t obj_size;
574 	void *obj;
575 
576 	obj_size = SKB_HEAD_ALIGN(*size);
577 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
578 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
579 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
580 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
581 				node);
582 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
583 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
584 			goto out;
585 		/* Try again but now we are using pfmemalloc reserves */
586 		ret_pfmemalloc = true;
587 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
588 		goto out;
589 	}
590 
591 	obj_size = kmalloc_size_roundup(obj_size);
592 	/* The following cast might truncate high-order bits of obj_size, this
593 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
594 	 */
595 	*size = (unsigned int)obj_size;
596 
597 	/*
598 	 * Try a regular allocation, when that fails and we're not entitled
599 	 * to the reserves, fail.
600 	 */
601 	obj = kmalloc_node_track_caller(obj_size,
602 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
603 					node);
604 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
605 		goto out;
606 
607 	/* Try again but now we are using pfmemalloc reserves */
608 	ret_pfmemalloc = true;
609 	obj = kmalloc_node_track_caller(obj_size, flags, node);
610 
611 out:
612 	if (pfmemalloc)
613 		*pfmemalloc = ret_pfmemalloc;
614 
615 	return obj;
616 }
617 
618 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
619  *	'private' fields and also do memory statistics to find all the
620  *	[BEEP] leaks.
621  *
622  */
623 
624 /**
625  *	__alloc_skb	-	allocate a network buffer
626  *	@size: size to allocate
627  *	@gfp_mask: allocation mask
628  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
629  *		instead of head cache and allocate a cloned (child) skb.
630  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
631  *		allocations in case the data is required for writeback
632  *	@node: numa node to allocate memory on
633  *
634  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
635  *	tail room of at least size bytes. The object has a reference count
636  *	of one. The return is the buffer. On a failure the return is %NULL.
637  *
638  *	Buffers may only be allocated from interrupts using a @gfp_mask of
639  *	%GFP_ATOMIC.
640  */
641 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
642 			    int flags, int node)
643 {
644 	struct kmem_cache *cache;
645 	struct sk_buff *skb;
646 	bool pfmemalloc;
647 	u8 *data;
648 
649 	cache = (flags & SKB_ALLOC_FCLONE)
650 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
651 
652 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
653 		gfp_mask |= __GFP_MEMALLOC;
654 
655 	/* Get the HEAD */
656 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
657 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
658 		skb = napi_skb_cache_get();
659 	else
660 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
661 	if (unlikely(!skb))
662 		return NULL;
663 	prefetchw(skb);
664 
665 	/* We do our best to align skb_shared_info on a separate cache
666 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
667 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
668 	 * Both skb->head and skb_shared_info are cache line aligned.
669 	 */
670 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
671 	if (unlikely(!data))
672 		goto nodata;
673 	/* kmalloc_size_roundup() might give us more room than requested.
674 	 * Put skb_shared_info exactly at the end of allocated zone,
675 	 * to allow max possible filling before reallocation.
676 	 */
677 	prefetchw(data + SKB_WITH_OVERHEAD(size));
678 
679 	/*
680 	 * Only clear those fields we need to clear, not those that we will
681 	 * actually initialise below. Hence, don't put any more fields after
682 	 * the tail pointer in struct sk_buff!
683 	 */
684 	memset(skb, 0, offsetof(struct sk_buff, tail));
685 	__build_skb_around(skb, data, size);
686 	skb->pfmemalloc = pfmemalloc;
687 
688 	if (flags & SKB_ALLOC_FCLONE) {
689 		struct sk_buff_fclones *fclones;
690 
691 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
692 
693 		skb->fclone = SKB_FCLONE_ORIG;
694 		refcount_set(&fclones->fclone_ref, 1);
695 	}
696 
697 	return skb;
698 
699 nodata:
700 	kmem_cache_free(cache, skb);
701 	return NULL;
702 }
703 EXPORT_SYMBOL(__alloc_skb);
704 
705 /**
706  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
707  *	@dev: network device to receive on
708  *	@len: length to allocate
709  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
710  *
711  *	Allocate a new &sk_buff and assign it a usage count of one. The
712  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
713  *	the headroom they think they need without accounting for the
714  *	built in space. The built in space is used for optimisations.
715  *
716  *	%NULL is returned if there is no free memory.
717  */
718 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
719 				   gfp_t gfp_mask)
720 {
721 	struct page_frag_cache *nc;
722 	struct sk_buff *skb;
723 	bool pfmemalloc;
724 	void *data;
725 
726 	len += NET_SKB_PAD;
727 
728 	/* If requested length is either too small or too big,
729 	 * we use kmalloc() for skb->head allocation.
730 	 */
731 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
732 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
733 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
734 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
735 		if (!skb)
736 			goto skb_fail;
737 		goto skb_success;
738 	}
739 
740 	len = SKB_HEAD_ALIGN(len);
741 
742 	if (sk_memalloc_socks())
743 		gfp_mask |= __GFP_MEMALLOC;
744 
745 	if (in_hardirq() || irqs_disabled()) {
746 		nc = this_cpu_ptr(&netdev_alloc_cache);
747 		data = page_frag_alloc(nc, len, gfp_mask);
748 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
749 	} else {
750 		local_bh_disable();
751 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
752 
753 		nc = this_cpu_ptr(&napi_alloc_cache.page);
754 		data = page_frag_alloc(nc, len, gfp_mask);
755 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
756 
757 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
758 		local_bh_enable();
759 	}
760 
761 	if (unlikely(!data))
762 		return NULL;
763 
764 	skb = __build_skb(data, len);
765 	if (unlikely(!skb)) {
766 		skb_free_frag(data);
767 		return NULL;
768 	}
769 
770 	if (pfmemalloc)
771 		skb->pfmemalloc = 1;
772 	skb->head_frag = 1;
773 
774 skb_success:
775 	skb_reserve(skb, NET_SKB_PAD);
776 	skb->dev = dev;
777 
778 skb_fail:
779 	return skb;
780 }
781 EXPORT_SYMBOL(__netdev_alloc_skb);
782 
783 /**
784  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
785  *	@napi: napi instance this buffer was allocated for
786  *	@len: length to allocate
787  *
788  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
789  *	attempt to allocate the head from a special reserved region used
790  *	only for NAPI Rx allocation.  By doing this we can save several
791  *	CPU cycles by avoiding having to disable and re-enable IRQs.
792  *
793  *	%NULL is returned if there is no free memory.
794  */
795 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
796 {
797 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
798 	struct napi_alloc_cache *nc;
799 	struct sk_buff *skb;
800 	bool pfmemalloc;
801 	void *data;
802 
803 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
804 	len += NET_SKB_PAD + NET_IP_ALIGN;
805 
806 	/* If requested length is either too small or too big,
807 	 * we use kmalloc() for skb->head allocation.
808 	 */
809 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
810 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
811 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
812 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
813 				  NUMA_NO_NODE);
814 		if (!skb)
815 			goto skb_fail;
816 		goto skb_success;
817 	}
818 
819 	len = SKB_HEAD_ALIGN(len);
820 
821 	if (sk_memalloc_socks())
822 		gfp_mask |= __GFP_MEMALLOC;
823 
824 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
825 	nc = this_cpu_ptr(&napi_alloc_cache);
826 
827 	data = page_frag_alloc(&nc->page, len, gfp_mask);
828 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
829 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
830 
831 	if (unlikely(!data))
832 		return NULL;
833 
834 	skb = __napi_build_skb(data, len);
835 	if (unlikely(!skb)) {
836 		skb_free_frag(data);
837 		return NULL;
838 	}
839 
840 	if (pfmemalloc)
841 		skb->pfmemalloc = 1;
842 	skb->head_frag = 1;
843 
844 skb_success:
845 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
846 	skb->dev = napi->dev;
847 
848 skb_fail:
849 	return skb;
850 }
851 EXPORT_SYMBOL(napi_alloc_skb);
852 
853 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
854 			    int off, int size, unsigned int truesize)
855 {
856 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
857 
858 	skb_fill_netmem_desc(skb, i, netmem, off, size);
859 	skb->len += size;
860 	skb->data_len += size;
861 	skb->truesize += truesize;
862 }
863 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
864 
865 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
866 			  unsigned int truesize)
867 {
868 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
869 
870 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
871 
872 	skb_frag_size_add(frag, size);
873 	skb->len += size;
874 	skb->data_len += size;
875 	skb->truesize += truesize;
876 }
877 EXPORT_SYMBOL(skb_coalesce_rx_frag);
878 
879 static void skb_drop_list(struct sk_buff **listp)
880 {
881 	kfree_skb_list(*listp);
882 	*listp = NULL;
883 }
884 
885 static inline void skb_drop_fraglist(struct sk_buff *skb)
886 {
887 	skb_drop_list(&skb_shinfo(skb)->frag_list);
888 }
889 
890 static void skb_clone_fraglist(struct sk_buff *skb)
891 {
892 	struct sk_buff *list;
893 
894 	skb_walk_frags(skb, list)
895 		skb_get(list);
896 }
897 
898 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
899 		    unsigned int headroom)
900 {
901 #if IS_ENABLED(CONFIG_PAGE_POOL)
902 	u32 size, truesize, len, max_head_size, off;
903 	struct sk_buff *skb = *pskb, *nskb;
904 	int err, i, head_off;
905 	void *data;
906 
907 	/* XDP does not support fraglist so we need to linearize
908 	 * the skb.
909 	 */
910 	if (skb_has_frag_list(skb))
911 		return -EOPNOTSUPP;
912 
913 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
914 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
915 		return -ENOMEM;
916 
917 	size = min_t(u32, skb->len, max_head_size);
918 	truesize = SKB_HEAD_ALIGN(size) + headroom;
919 	data = page_pool_dev_alloc_va(pool, &truesize);
920 	if (!data)
921 		return -ENOMEM;
922 
923 	nskb = napi_build_skb(data, truesize);
924 	if (!nskb) {
925 		page_pool_free_va(pool, data, true);
926 		return -ENOMEM;
927 	}
928 
929 	skb_reserve(nskb, headroom);
930 	skb_copy_header(nskb, skb);
931 	skb_mark_for_recycle(nskb);
932 
933 	err = skb_copy_bits(skb, 0, nskb->data, size);
934 	if (err) {
935 		consume_skb(nskb);
936 		return err;
937 	}
938 	skb_put(nskb, size);
939 
940 	head_off = skb_headroom(nskb) - skb_headroom(skb);
941 	skb_headers_offset_update(nskb, head_off);
942 
943 	off = size;
944 	len = skb->len - off;
945 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
946 		struct page *page;
947 		u32 page_off;
948 
949 		size = min_t(u32, len, PAGE_SIZE);
950 		truesize = size;
951 
952 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
953 		if (!page) {
954 			consume_skb(nskb);
955 			return -ENOMEM;
956 		}
957 
958 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
959 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
960 				    size);
961 		if (err) {
962 			consume_skb(nskb);
963 			return err;
964 		}
965 
966 		len -= size;
967 		off += size;
968 	}
969 
970 	consume_skb(skb);
971 	*pskb = nskb;
972 
973 	return 0;
974 #else
975 	return -EOPNOTSUPP;
976 #endif
977 }
978 EXPORT_SYMBOL(skb_pp_cow_data);
979 
980 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
981 			 const struct bpf_prog *prog)
982 {
983 	if (!prog->aux->xdp_has_frags)
984 		return -EINVAL;
985 
986 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
987 }
988 EXPORT_SYMBOL(skb_cow_data_for_xdp);
989 
990 #if IS_ENABLED(CONFIG_PAGE_POOL)
991 bool napi_pp_put_page(netmem_ref netmem)
992 {
993 	netmem = netmem_compound_head(netmem);
994 
995 	if (unlikely(!netmem_is_pp(netmem)))
996 		return false;
997 
998 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
999 
1000 	return true;
1001 }
1002 EXPORT_SYMBOL(napi_pp_put_page);
1003 #endif
1004 
1005 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1006 {
1007 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1008 		return false;
1009 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1010 }
1011 
1012 /**
1013  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1014  * @skb:	page pool aware skb
1015  *
1016  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1017  * intended to gain fragment references only for page pool aware skbs,
1018  * i.e. when skb->pp_recycle is true, and not for fragments in a
1019  * non-pp-recycling skb. It has a fallback to increase references on normal
1020  * pages, as page pool aware skbs may also have normal page fragments.
1021  */
1022 static int skb_pp_frag_ref(struct sk_buff *skb)
1023 {
1024 	struct skb_shared_info *shinfo;
1025 	netmem_ref head_netmem;
1026 	int i;
1027 
1028 	if (!skb->pp_recycle)
1029 		return -EINVAL;
1030 
1031 	shinfo = skb_shinfo(skb);
1032 
1033 	for (i = 0; i < shinfo->nr_frags; i++) {
1034 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1035 		if (likely(netmem_is_pp(head_netmem)))
1036 			page_pool_ref_netmem(head_netmem);
1037 		else
1038 			page_ref_inc(netmem_to_page(head_netmem));
1039 	}
1040 	return 0;
1041 }
1042 
1043 static void skb_kfree_head(void *head, unsigned int end_offset)
1044 {
1045 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1046 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1047 	else
1048 		kfree(head);
1049 }
1050 
1051 static void skb_free_head(struct sk_buff *skb)
1052 {
1053 	unsigned char *head = skb->head;
1054 
1055 	if (skb->head_frag) {
1056 		if (skb_pp_recycle(skb, head))
1057 			return;
1058 		skb_free_frag(head);
1059 	} else {
1060 		skb_kfree_head(head, skb_end_offset(skb));
1061 	}
1062 }
1063 
1064 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1065 {
1066 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1067 	int i;
1068 
1069 	if (!skb_data_unref(skb, shinfo))
1070 		goto exit;
1071 
1072 	if (skb_zcopy(skb)) {
1073 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1074 
1075 		skb_zcopy_clear(skb, true);
1076 		if (skip_unref)
1077 			goto free_head;
1078 	}
1079 
1080 	for (i = 0; i < shinfo->nr_frags; i++)
1081 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1082 
1083 free_head:
1084 	if (shinfo->frag_list)
1085 		kfree_skb_list_reason(shinfo->frag_list, reason);
1086 
1087 	skb_free_head(skb);
1088 exit:
1089 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1090 	 * bit is only set on the head though, so in order to avoid races
1091 	 * while trying to recycle fragments on __skb_frag_unref() we need
1092 	 * to make one SKB responsible for triggering the recycle path.
1093 	 * So disable the recycling bit if an SKB is cloned and we have
1094 	 * additional references to the fragmented part of the SKB.
1095 	 * Eventually the last SKB will have the recycling bit set and it's
1096 	 * dataref set to 0, which will trigger the recycling
1097 	 */
1098 	skb->pp_recycle = 0;
1099 }
1100 
1101 /*
1102  *	Free an skbuff by memory without cleaning the state.
1103  */
1104 static void kfree_skbmem(struct sk_buff *skb)
1105 {
1106 	struct sk_buff_fclones *fclones;
1107 
1108 	switch (skb->fclone) {
1109 	case SKB_FCLONE_UNAVAILABLE:
1110 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1111 		return;
1112 
1113 	case SKB_FCLONE_ORIG:
1114 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1115 
1116 		/* We usually free the clone (TX completion) before original skb
1117 		 * This test would have no chance to be true for the clone,
1118 		 * while here, branch prediction will be good.
1119 		 */
1120 		if (refcount_read(&fclones->fclone_ref) == 1)
1121 			goto fastpath;
1122 		break;
1123 
1124 	default: /* SKB_FCLONE_CLONE */
1125 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1126 		break;
1127 	}
1128 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1129 		return;
1130 fastpath:
1131 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1132 }
1133 
1134 void skb_release_head_state(struct sk_buff *skb)
1135 {
1136 	skb_dst_drop(skb);
1137 	if (skb->destructor) {
1138 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1139 		skb->destructor(skb);
1140 	}
1141 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1142 	nf_conntrack_put(skb_nfct(skb));
1143 #endif
1144 	skb_ext_put(skb);
1145 }
1146 
1147 /* Free everything but the sk_buff shell. */
1148 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1149 {
1150 	skb_release_head_state(skb);
1151 	if (likely(skb->head))
1152 		skb_release_data(skb, reason);
1153 }
1154 
1155 /**
1156  *	__kfree_skb - private function
1157  *	@skb: buffer
1158  *
1159  *	Free an sk_buff. Release anything attached to the buffer.
1160  *	Clean the state. This is an internal helper function. Users should
1161  *	always call kfree_skb
1162  */
1163 
1164 void __kfree_skb(struct sk_buff *skb)
1165 {
1166 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1167 	kfree_skbmem(skb);
1168 }
1169 EXPORT_SYMBOL(__kfree_skb);
1170 
1171 static __always_inline
1172 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1173 			  enum skb_drop_reason reason)
1174 {
1175 	if (unlikely(!skb_unref(skb)))
1176 		return false;
1177 
1178 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1179 			       u32_get_bits(reason,
1180 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1181 				SKB_DROP_REASON_SUBSYS_NUM);
1182 
1183 	if (reason == SKB_CONSUMED)
1184 		trace_consume_skb(skb, __builtin_return_address(0));
1185 	else
1186 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1187 	return true;
1188 }
1189 
1190 /**
1191  *	sk_skb_reason_drop - free an sk_buff with special reason
1192  *	@sk: the socket to receive @skb, or NULL if not applicable
1193  *	@skb: buffer to free
1194  *	@reason: reason why this skb is dropped
1195  *
1196  *	Drop a reference to the buffer and free it if the usage count has hit
1197  *	zero. Meanwhile, pass the receiving socket and drop reason to
1198  *	'kfree_skb' tracepoint.
1199  */
1200 void __fix_address
1201 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1202 {
1203 	if (__sk_skb_reason_drop(sk, skb, reason))
1204 		__kfree_skb(skb);
1205 }
1206 EXPORT_SYMBOL(sk_skb_reason_drop);
1207 
1208 #define KFREE_SKB_BULK_SIZE	16
1209 
1210 struct skb_free_array {
1211 	unsigned int skb_count;
1212 	void *skb_array[KFREE_SKB_BULK_SIZE];
1213 };
1214 
1215 static void kfree_skb_add_bulk(struct sk_buff *skb,
1216 			       struct skb_free_array *sa,
1217 			       enum skb_drop_reason reason)
1218 {
1219 	/* if SKB is a clone, don't handle this case */
1220 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1221 		__kfree_skb(skb);
1222 		return;
1223 	}
1224 
1225 	skb_release_all(skb, reason);
1226 	sa->skb_array[sa->skb_count++] = skb;
1227 
1228 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1229 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1230 				     sa->skb_array);
1231 		sa->skb_count = 0;
1232 	}
1233 }
1234 
1235 void __fix_address
1236 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1237 {
1238 	struct skb_free_array sa;
1239 
1240 	sa.skb_count = 0;
1241 
1242 	while (segs) {
1243 		struct sk_buff *next = segs->next;
1244 
1245 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1246 			skb_poison_list(segs);
1247 			kfree_skb_add_bulk(segs, &sa, reason);
1248 		}
1249 
1250 		segs = next;
1251 	}
1252 
1253 	if (sa.skb_count)
1254 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1255 }
1256 EXPORT_SYMBOL(kfree_skb_list_reason);
1257 
1258 /* Dump skb information and contents.
1259  *
1260  * Must only be called from net_ratelimit()-ed paths.
1261  *
1262  * Dumps whole packets if full_pkt, only headers otherwise.
1263  */
1264 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1265 {
1266 	struct skb_shared_info *sh = skb_shinfo(skb);
1267 	struct net_device *dev = skb->dev;
1268 	struct sock *sk = skb->sk;
1269 	struct sk_buff *list_skb;
1270 	bool has_mac, has_trans;
1271 	int headroom, tailroom;
1272 	int i, len, seg_len;
1273 
1274 	if (full_pkt)
1275 		len = skb->len;
1276 	else
1277 		len = min_t(int, skb->len, MAX_HEADER + 128);
1278 
1279 	headroom = skb_headroom(skb);
1280 	tailroom = skb_tailroom(skb);
1281 
1282 	has_mac = skb_mac_header_was_set(skb);
1283 	has_trans = skb_transport_header_was_set(skb);
1284 
1285 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1286 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1287 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1288 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1289 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1290 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1291 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1292 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1293 	       has_mac ? skb->mac_header : -1,
1294 	       has_mac ? skb_mac_header_len(skb) : -1,
1295 	       skb->mac_len,
1296 	       skb->network_header,
1297 	       has_trans ? skb_network_header_len(skb) : -1,
1298 	       has_trans ? skb->transport_header : -1,
1299 	       sh->tx_flags, sh->nr_frags,
1300 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1301 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1302 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1303 	       skb->hash, skb->sw_hash, skb->l4_hash,
1304 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1305 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1306 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1307 	       skb->inner_network_header, skb->inner_transport_header);
1308 
1309 	if (dev)
1310 		printk("%sdev name=%s feat=%pNF\n",
1311 		       level, dev->name, &dev->features);
1312 	if (sk)
1313 		printk("%ssk family=%hu type=%u proto=%u\n",
1314 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1315 
1316 	if (full_pkt && headroom)
1317 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1318 			       16, 1, skb->head, headroom, false);
1319 
1320 	seg_len = min_t(int, skb_headlen(skb), len);
1321 	if (seg_len)
1322 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1323 			       16, 1, skb->data, seg_len, false);
1324 	len -= seg_len;
1325 
1326 	if (full_pkt && tailroom)
1327 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1328 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1329 
1330 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1331 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1332 		u32 p_off, p_len, copied;
1333 		struct page *p;
1334 		u8 *vaddr;
1335 
1336 		if (skb_frag_is_net_iov(frag)) {
1337 			printk("%sskb frag %d: not readable\n", level, i);
1338 			len -= skb_frag_size(frag);
1339 			if (!len)
1340 				break;
1341 			continue;
1342 		}
1343 
1344 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1345 				      skb_frag_size(frag), p, p_off, p_len,
1346 				      copied) {
1347 			seg_len = min_t(int, p_len, len);
1348 			vaddr = kmap_atomic(p);
1349 			print_hex_dump(level, "skb frag:     ",
1350 				       DUMP_PREFIX_OFFSET,
1351 				       16, 1, vaddr + p_off, seg_len, false);
1352 			kunmap_atomic(vaddr);
1353 			len -= seg_len;
1354 			if (!len)
1355 				break;
1356 		}
1357 	}
1358 
1359 	if (full_pkt && skb_has_frag_list(skb)) {
1360 		printk("skb fraglist:\n");
1361 		skb_walk_frags(skb, list_skb)
1362 			skb_dump(level, list_skb, true);
1363 	}
1364 }
1365 EXPORT_SYMBOL(skb_dump);
1366 
1367 /**
1368  *	skb_tx_error - report an sk_buff xmit error
1369  *	@skb: buffer that triggered an error
1370  *
1371  *	Report xmit error if a device callback is tracking this skb.
1372  *	skb must be freed afterwards.
1373  */
1374 void skb_tx_error(struct sk_buff *skb)
1375 {
1376 	if (skb) {
1377 		skb_zcopy_downgrade_managed(skb);
1378 		skb_zcopy_clear(skb, true);
1379 	}
1380 }
1381 EXPORT_SYMBOL(skb_tx_error);
1382 
1383 #ifdef CONFIG_TRACEPOINTS
1384 /**
1385  *	consume_skb - free an skbuff
1386  *	@skb: buffer to free
1387  *
1388  *	Drop a ref to the buffer and free it if the usage count has hit zero
1389  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1390  *	is being dropped after a failure and notes that
1391  */
1392 void consume_skb(struct sk_buff *skb)
1393 {
1394 	if (!skb_unref(skb))
1395 		return;
1396 
1397 	trace_consume_skb(skb, __builtin_return_address(0));
1398 	__kfree_skb(skb);
1399 }
1400 EXPORT_SYMBOL(consume_skb);
1401 #endif
1402 
1403 /**
1404  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1405  *	@skb: buffer to free
1406  *
1407  *	Alike consume_skb(), but this variant assumes that this is the last
1408  *	skb reference and all the head states have been already dropped
1409  */
1410 void __consume_stateless_skb(struct sk_buff *skb)
1411 {
1412 	trace_consume_skb(skb, __builtin_return_address(0));
1413 	skb_release_data(skb, SKB_CONSUMED);
1414 	kfree_skbmem(skb);
1415 }
1416 
1417 static void napi_skb_cache_put(struct sk_buff *skb)
1418 {
1419 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1420 	u32 i;
1421 
1422 	if (!kasan_mempool_poison_object(skb))
1423 		return;
1424 
1425 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1426 	nc->skb_cache[nc->skb_count++] = skb;
1427 
1428 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1429 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1430 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1431 						kmem_cache_size(net_hotdata.skbuff_cache));
1432 
1433 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1434 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1435 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1436 	}
1437 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1438 }
1439 
1440 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1441 {
1442 	skb_release_all(skb, reason);
1443 	napi_skb_cache_put(skb);
1444 }
1445 
1446 void napi_skb_free_stolen_head(struct sk_buff *skb)
1447 {
1448 	if (unlikely(skb->slow_gro)) {
1449 		nf_reset_ct(skb);
1450 		skb_dst_drop(skb);
1451 		skb_ext_put(skb);
1452 		skb_orphan(skb);
1453 		skb->slow_gro = 0;
1454 	}
1455 	napi_skb_cache_put(skb);
1456 }
1457 
1458 void napi_consume_skb(struct sk_buff *skb, int budget)
1459 {
1460 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1461 	if (unlikely(!budget)) {
1462 		dev_consume_skb_any(skb);
1463 		return;
1464 	}
1465 
1466 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1467 
1468 	if (!skb_unref(skb))
1469 		return;
1470 
1471 	/* if reaching here SKB is ready to free */
1472 	trace_consume_skb(skb, __builtin_return_address(0));
1473 
1474 	/* if SKB is a clone, don't handle this case */
1475 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1476 		__kfree_skb(skb);
1477 		return;
1478 	}
1479 
1480 	skb_release_all(skb, SKB_CONSUMED);
1481 	napi_skb_cache_put(skb);
1482 }
1483 EXPORT_SYMBOL(napi_consume_skb);
1484 
1485 /* Make sure a field is contained by headers group */
1486 #define CHECK_SKB_FIELD(field) \
1487 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1488 		     offsetof(struct sk_buff, headers.field));	\
1489 
1490 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1491 {
1492 	new->tstamp		= old->tstamp;
1493 	/* We do not copy old->sk */
1494 	new->dev		= old->dev;
1495 	memcpy(new->cb, old->cb, sizeof(old->cb));
1496 	skb_dst_copy(new, old);
1497 	__skb_ext_copy(new, old);
1498 	__nf_copy(new, old, false);
1499 
1500 	/* Note : this field could be in the headers group.
1501 	 * It is not yet because we do not want to have a 16 bit hole
1502 	 */
1503 	new->queue_mapping = old->queue_mapping;
1504 
1505 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1506 	CHECK_SKB_FIELD(protocol);
1507 	CHECK_SKB_FIELD(csum);
1508 	CHECK_SKB_FIELD(hash);
1509 	CHECK_SKB_FIELD(priority);
1510 	CHECK_SKB_FIELD(skb_iif);
1511 	CHECK_SKB_FIELD(vlan_proto);
1512 	CHECK_SKB_FIELD(vlan_tci);
1513 	CHECK_SKB_FIELD(transport_header);
1514 	CHECK_SKB_FIELD(network_header);
1515 	CHECK_SKB_FIELD(mac_header);
1516 	CHECK_SKB_FIELD(inner_protocol);
1517 	CHECK_SKB_FIELD(inner_transport_header);
1518 	CHECK_SKB_FIELD(inner_network_header);
1519 	CHECK_SKB_FIELD(inner_mac_header);
1520 	CHECK_SKB_FIELD(mark);
1521 #ifdef CONFIG_NETWORK_SECMARK
1522 	CHECK_SKB_FIELD(secmark);
1523 #endif
1524 #ifdef CONFIG_NET_RX_BUSY_POLL
1525 	CHECK_SKB_FIELD(napi_id);
1526 #endif
1527 	CHECK_SKB_FIELD(alloc_cpu);
1528 #ifdef CONFIG_XPS
1529 	CHECK_SKB_FIELD(sender_cpu);
1530 #endif
1531 #ifdef CONFIG_NET_SCHED
1532 	CHECK_SKB_FIELD(tc_index);
1533 #endif
1534 
1535 }
1536 
1537 /*
1538  * You should not add any new code to this function.  Add it to
1539  * __copy_skb_header above instead.
1540  */
1541 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1542 {
1543 #define C(x) n->x = skb->x
1544 
1545 	n->next = n->prev = NULL;
1546 	n->sk = NULL;
1547 	__copy_skb_header(n, skb);
1548 
1549 	C(len);
1550 	C(data_len);
1551 	C(mac_len);
1552 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1553 	n->cloned = 1;
1554 	n->nohdr = 0;
1555 	n->peeked = 0;
1556 	C(pfmemalloc);
1557 	C(pp_recycle);
1558 	n->destructor = NULL;
1559 	C(tail);
1560 	C(end);
1561 	C(head);
1562 	C(head_frag);
1563 	C(data);
1564 	C(truesize);
1565 	refcount_set(&n->users, 1);
1566 
1567 	atomic_inc(&(skb_shinfo(skb)->dataref));
1568 	skb->cloned = 1;
1569 
1570 	return n;
1571 #undef C
1572 }
1573 
1574 /**
1575  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1576  * @first: first sk_buff of the msg
1577  */
1578 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1579 {
1580 	struct sk_buff *n;
1581 
1582 	n = alloc_skb(0, GFP_ATOMIC);
1583 	if (!n)
1584 		return NULL;
1585 
1586 	n->len = first->len;
1587 	n->data_len = first->len;
1588 	n->truesize = first->truesize;
1589 
1590 	skb_shinfo(n)->frag_list = first;
1591 
1592 	__copy_skb_header(n, first);
1593 	n->destructor = NULL;
1594 
1595 	return n;
1596 }
1597 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1598 
1599 /**
1600  *	skb_morph	-	morph one skb into another
1601  *	@dst: the skb to receive the contents
1602  *	@src: the skb to supply the contents
1603  *
1604  *	This is identical to skb_clone except that the target skb is
1605  *	supplied by the user.
1606  *
1607  *	The target skb is returned upon exit.
1608  */
1609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1610 {
1611 	skb_release_all(dst, SKB_CONSUMED);
1612 	return __skb_clone(dst, src);
1613 }
1614 EXPORT_SYMBOL_GPL(skb_morph);
1615 
1616 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1617 {
1618 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1619 	struct user_struct *user;
1620 
1621 	if (capable(CAP_IPC_LOCK) || !size)
1622 		return 0;
1623 
1624 	rlim = rlimit(RLIMIT_MEMLOCK);
1625 	if (rlim == RLIM_INFINITY)
1626 		return 0;
1627 
1628 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1629 	max_pg = rlim >> PAGE_SHIFT;
1630 	user = mmp->user ? : current_user();
1631 
1632 	old_pg = atomic_long_read(&user->locked_vm);
1633 	do {
1634 		new_pg = old_pg + num_pg;
1635 		if (new_pg > max_pg)
1636 			return -ENOBUFS;
1637 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1638 
1639 	if (!mmp->user) {
1640 		mmp->user = get_uid(user);
1641 		mmp->num_pg = num_pg;
1642 	} else {
1643 		mmp->num_pg += num_pg;
1644 	}
1645 
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1649 
1650 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1651 {
1652 	if (mmp->user) {
1653 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1654 		free_uid(mmp->user);
1655 	}
1656 }
1657 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1658 
1659 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1660 					    bool devmem)
1661 {
1662 	struct ubuf_info_msgzc *uarg;
1663 	struct sk_buff *skb;
1664 
1665 	WARN_ON_ONCE(!in_task());
1666 
1667 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1668 	if (!skb)
1669 		return NULL;
1670 
1671 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1672 	uarg = (void *)skb->cb;
1673 	uarg->mmp.user = NULL;
1674 
1675 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1676 		kfree_skb(skb);
1677 		return NULL;
1678 	}
1679 
1680 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1681 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1682 	uarg->len = 1;
1683 	uarg->bytelen = size;
1684 	uarg->zerocopy = 1;
1685 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1686 	refcount_set(&uarg->ubuf.refcnt, 1);
1687 	sock_hold(sk);
1688 
1689 	return &uarg->ubuf;
1690 }
1691 
1692 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1693 {
1694 	return container_of((void *)uarg, struct sk_buff, cb);
1695 }
1696 
1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1698 				       struct ubuf_info *uarg, bool devmem)
1699 {
1700 	if (uarg) {
1701 		struct ubuf_info_msgzc *uarg_zc;
1702 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1703 		u32 bytelen, next;
1704 
1705 		/* there might be non MSG_ZEROCOPY users */
1706 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1707 			return NULL;
1708 
1709 		/* realloc only when socket is locked (TCP, UDP cork),
1710 		 * so uarg->len and sk_zckey access is serialized
1711 		 */
1712 		if (!sock_owned_by_user(sk)) {
1713 			WARN_ON_ONCE(1);
1714 			return NULL;
1715 		}
1716 
1717 		uarg_zc = uarg_to_msgzc(uarg);
1718 		bytelen = uarg_zc->bytelen + size;
1719 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1720 			/* TCP can create new skb to attach new uarg */
1721 			if (sk->sk_type == SOCK_STREAM)
1722 				goto new_alloc;
1723 			return NULL;
1724 		}
1725 
1726 		next = (u32)atomic_read(&sk->sk_zckey);
1727 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1728 			if (likely(!devmem) &&
1729 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1730 				return NULL;
1731 			uarg_zc->len++;
1732 			uarg_zc->bytelen = bytelen;
1733 			atomic_set(&sk->sk_zckey, ++next);
1734 
1735 			/* no extra ref when appending to datagram (MSG_MORE) */
1736 			if (sk->sk_type == SOCK_STREAM)
1737 				net_zcopy_get(uarg);
1738 
1739 			return uarg;
1740 		}
1741 	}
1742 
1743 new_alloc:
1744 	return msg_zerocopy_alloc(sk, size, devmem);
1745 }
1746 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1747 
1748 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1749 {
1750 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1751 	u32 old_lo, old_hi;
1752 	u64 sum_len;
1753 
1754 	old_lo = serr->ee.ee_info;
1755 	old_hi = serr->ee.ee_data;
1756 	sum_len = old_hi - old_lo + 1ULL + len;
1757 
1758 	if (sum_len >= (1ULL << 32))
1759 		return false;
1760 
1761 	if (lo != old_hi + 1)
1762 		return false;
1763 
1764 	serr->ee.ee_data += len;
1765 	return true;
1766 }
1767 
1768 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1769 {
1770 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1771 	struct sock_exterr_skb *serr;
1772 	struct sock *sk = skb->sk;
1773 	struct sk_buff_head *q;
1774 	unsigned long flags;
1775 	bool is_zerocopy;
1776 	u32 lo, hi;
1777 	u16 len;
1778 
1779 	mm_unaccount_pinned_pages(&uarg->mmp);
1780 
1781 	/* if !len, there was only 1 call, and it was aborted
1782 	 * so do not queue a completion notification
1783 	 */
1784 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1785 		goto release;
1786 
1787 	len = uarg->len;
1788 	lo = uarg->id;
1789 	hi = uarg->id + len - 1;
1790 	is_zerocopy = uarg->zerocopy;
1791 
1792 	serr = SKB_EXT_ERR(skb);
1793 	memset(serr, 0, sizeof(*serr));
1794 	serr->ee.ee_errno = 0;
1795 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1796 	serr->ee.ee_data = hi;
1797 	serr->ee.ee_info = lo;
1798 	if (!is_zerocopy)
1799 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1800 
1801 	q = &sk->sk_error_queue;
1802 	spin_lock_irqsave(&q->lock, flags);
1803 	tail = skb_peek_tail(q);
1804 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1805 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1806 		__skb_queue_tail(q, skb);
1807 		skb = NULL;
1808 	}
1809 	spin_unlock_irqrestore(&q->lock, flags);
1810 
1811 	sk_error_report(sk);
1812 
1813 release:
1814 	consume_skb(skb);
1815 	sock_put(sk);
1816 }
1817 
1818 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1819 				  bool success)
1820 {
1821 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1822 
1823 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1824 
1825 	if (refcount_dec_and_test(&uarg->refcnt))
1826 		__msg_zerocopy_callback(uarg_zc);
1827 }
1828 
1829 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1830 {
1831 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1832 
1833 	atomic_dec(&sk->sk_zckey);
1834 	uarg_to_msgzc(uarg)->len--;
1835 
1836 	if (have_uref)
1837 		msg_zerocopy_complete(NULL, uarg, true);
1838 }
1839 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1840 
1841 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1842 	.complete = msg_zerocopy_complete,
1843 };
1844 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1845 
1846 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1847 			     struct msghdr *msg, int len,
1848 			     struct ubuf_info *uarg,
1849 			     struct net_devmem_dmabuf_binding *binding)
1850 {
1851 	int err, orig_len = skb->len;
1852 
1853 	if (uarg->ops->link_skb) {
1854 		err = uarg->ops->link_skb(skb, uarg);
1855 		if (err)
1856 			return err;
1857 	} else {
1858 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1859 
1860 		/* An skb can only point to one uarg. This edge case happens
1861 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1862 		 * a new alloc.
1863 		 */
1864 		if (orig_uarg && uarg != orig_uarg)
1865 			return -EEXIST;
1866 	}
1867 
1868 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1869 				      binding);
1870 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1871 		struct sock *save_sk = skb->sk;
1872 
1873 		/* Streams do not free skb on error. Reset to prev state. */
1874 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1875 		skb->sk = sk;
1876 		___pskb_trim(skb, orig_len);
1877 		skb->sk = save_sk;
1878 		return err;
1879 	}
1880 
1881 	skb_zcopy_set(skb, uarg, NULL);
1882 	return skb->len - orig_len;
1883 }
1884 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1885 
1886 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1887 {
1888 	int i;
1889 
1890 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1891 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1892 		skb_frag_ref(skb, i);
1893 }
1894 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1895 
1896 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1897 			      gfp_t gfp_mask)
1898 {
1899 	if (skb_zcopy(orig)) {
1900 		if (skb_zcopy(nskb)) {
1901 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1902 			if (!gfp_mask) {
1903 				WARN_ON_ONCE(1);
1904 				return -ENOMEM;
1905 			}
1906 			if (skb_uarg(nskb) == skb_uarg(orig))
1907 				return 0;
1908 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1909 				return -EIO;
1910 		}
1911 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1912 	}
1913 	return 0;
1914 }
1915 
1916 /**
1917  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1918  *	@skb: the skb to modify
1919  *	@gfp_mask: allocation priority
1920  *
1921  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1922  *	It will copy all frags into kernel and drop the reference
1923  *	to userspace pages.
1924  *
1925  *	If this function is called from an interrupt gfp_mask() must be
1926  *	%GFP_ATOMIC.
1927  *
1928  *	Returns 0 on success or a negative error code on failure
1929  *	to allocate kernel memory to copy to.
1930  */
1931 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1932 {
1933 	int num_frags = skb_shinfo(skb)->nr_frags;
1934 	struct page *page, *head = NULL;
1935 	int i, order, psize, new_frags;
1936 	u32 d_off;
1937 
1938 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1939 		return -EINVAL;
1940 
1941 	if (!skb_frags_readable(skb))
1942 		return -EFAULT;
1943 
1944 	if (!num_frags)
1945 		goto release;
1946 
1947 	/* We might have to allocate high order pages, so compute what minimum
1948 	 * page order is needed.
1949 	 */
1950 	order = 0;
1951 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1952 		order++;
1953 	psize = (PAGE_SIZE << order);
1954 
1955 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1956 	for (i = 0; i < new_frags; i++) {
1957 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1958 		if (!page) {
1959 			while (head) {
1960 				struct page *next = (struct page *)page_private(head);
1961 				put_page(head);
1962 				head = next;
1963 			}
1964 			return -ENOMEM;
1965 		}
1966 		set_page_private(page, (unsigned long)head);
1967 		head = page;
1968 	}
1969 
1970 	page = head;
1971 	d_off = 0;
1972 	for (i = 0; i < num_frags; i++) {
1973 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1974 		u32 p_off, p_len, copied;
1975 		struct page *p;
1976 		u8 *vaddr;
1977 
1978 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1979 				      p, p_off, p_len, copied) {
1980 			u32 copy, done = 0;
1981 			vaddr = kmap_atomic(p);
1982 
1983 			while (done < p_len) {
1984 				if (d_off == psize) {
1985 					d_off = 0;
1986 					page = (struct page *)page_private(page);
1987 				}
1988 				copy = min_t(u32, psize - d_off, p_len - done);
1989 				memcpy(page_address(page) + d_off,
1990 				       vaddr + p_off + done, copy);
1991 				done += copy;
1992 				d_off += copy;
1993 			}
1994 			kunmap_atomic(vaddr);
1995 		}
1996 	}
1997 
1998 	/* skb frags release userspace buffers */
1999 	for (i = 0; i < num_frags; i++)
2000 		skb_frag_unref(skb, i);
2001 
2002 	/* skb frags point to kernel buffers */
2003 	for (i = 0; i < new_frags - 1; i++) {
2004 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2005 		head = (struct page *)page_private(head);
2006 	}
2007 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2008 			       d_off);
2009 	skb_shinfo(skb)->nr_frags = new_frags;
2010 
2011 release:
2012 	skb_zcopy_clear(skb, false);
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2016 
2017 /**
2018  *	skb_clone	-	duplicate an sk_buff
2019  *	@skb: buffer to clone
2020  *	@gfp_mask: allocation priority
2021  *
2022  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2023  *	copies share the same packet data but not structure. The new
2024  *	buffer has a reference count of 1. If the allocation fails the
2025  *	function returns %NULL otherwise the new buffer is returned.
2026  *
2027  *	If this function is called from an interrupt gfp_mask() must be
2028  *	%GFP_ATOMIC.
2029  */
2030 
2031 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2032 {
2033 	struct sk_buff_fclones *fclones = container_of(skb,
2034 						       struct sk_buff_fclones,
2035 						       skb1);
2036 	struct sk_buff *n;
2037 
2038 	if (skb_orphan_frags(skb, gfp_mask))
2039 		return NULL;
2040 
2041 	if (skb->fclone == SKB_FCLONE_ORIG &&
2042 	    refcount_read(&fclones->fclone_ref) == 1) {
2043 		n = &fclones->skb2;
2044 		refcount_set(&fclones->fclone_ref, 2);
2045 		n->fclone = SKB_FCLONE_CLONE;
2046 	} else {
2047 		if (skb_pfmemalloc(skb))
2048 			gfp_mask |= __GFP_MEMALLOC;
2049 
2050 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2051 		if (!n)
2052 			return NULL;
2053 
2054 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2055 	}
2056 
2057 	return __skb_clone(n, skb);
2058 }
2059 EXPORT_SYMBOL(skb_clone);
2060 
2061 void skb_headers_offset_update(struct sk_buff *skb, int off)
2062 {
2063 	/* Only adjust this if it actually is csum_start rather than csum */
2064 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2065 		skb->csum_start += off;
2066 	/* {transport,network,mac}_header and tail are relative to skb->head */
2067 	skb->transport_header += off;
2068 	skb->network_header   += off;
2069 	if (skb_mac_header_was_set(skb))
2070 		skb->mac_header += off;
2071 	skb->inner_transport_header += off;
2072 	skb->inner_network_header += off;
2073 	skb->inner_mac_header += off;
2074 }
2075 EXPORT_SYMBOL(skb_headers_offset_update);
2076 
2077 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2078 {
2079 	__copy_skb_header(new, old);
2080 
2081 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2082 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2083 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2084 }
2085 EXPORT_SYMBOL(skb_copy_header);
2086 
2087 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2088 {
2089 	if (skb_pfmemalloc(skb))
2090 		return SKB_ALLOC_RX;
2091 	return 0;
2092 }
2093 
2094 /**
2095  *	skb_copy	-	create private copy of an sk_buff
2096  *	@skb: buffer to copy
2097  *	@gfp_mask: allocation priority
2098  *
2099  *	Make a copy of both an &sk_buff and its data. This is used when the
2100  *	caller wishes to modify the data and needs a private copy of the
2101  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2102  *	on success. The returned buffer has a reference count of 1.
2103  *
2104  *	As by-product this function converts non-linear &sk_buff to linear
2105  *	one, so that &sk_buff becomes completely private and caller is allowed
2106  *	to modify all the data of returned buffer. This means that this
2107  *	function is not recommended for use in circumstances when only
2108  *	header is going to be modified. Use pskb_copy() instead.
2109  */
2110 
2111 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2112 {
2113 	struct sk_buff *n;
2114 	unsigned int size;
2115 	int headerlen;
2116 
2117 	if (!skb_frags_readable(skb))
2118 		return NULL;
2119 
2120 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2121 		return NULL;
2122 
2123 	headerlen = skb_headroom(skb);
2124 	size = skb_end_offset(skb) + skb->data_len;
2125 	n = __alloc_skb(size, gfp_mask,
2126 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2127 	if (!n)
2128 		return NULL;
2129 
2130 	/* Set the data pointer */
2131 	skb_reserve(n, headerlen);
2132 	/* Set the tail pointer and length */
2133 	skb_put(n, skb->len);
2134 
2135 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2136 
2137 	skb_copy_header(n, skb);
2138 	return n;
2139 }
2140 EXPORT_SYMBOL(skb_copy);
2141 
2142 /**
2143  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2144  *	@skb: buffer to copy
2145  *	@headroom: headroom of new skb
2146  *	@gfp_mask: allocation priority
2147  *	@fclone: if true allocate the copy of the skb from the fclone
2148  *	cache instead of the head cache; it is recommended to set this
2149  *	to true for the cases where the copy will likely be cloned
2150  *
2151  *	Make a copy of both an &sk_buff and part of its data, located
2152  *	in header. Fragmented data remain shared. This is used when
2153  *	the caller wishes to modify only header of &sk_buff and needs
2154  *	private copy of the header to alter. Returns %NULL on failure
2155  *	or the pointer to the buffer on success.
2156  *	The returned buffer has a reference count of 1.
2157  */
2158 
2159 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2160 				   gfp_t gfp_mask, bool fclone)
2161 {
2162 	unsigned int size = skb_headlen(skb) + headroom;
2163 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2164 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2165 
2166 	if (!n)
2167 		goto out;
2168 
2169 	/* Set the data pointer */
2170 	skb_reserve(n, headroom);
2171 	/* Set the tail pointer and length */
2172 	skb_put(n, skb_headlen(skb));
2173 	/* Copy the bytes */
2174 	skb_copy_from_linear_data(skb, n->data, n->len);
2175 
2176 	n->truesize += skb->data_len;
2177 	n->data_len  = skb->data_len;
2178 	n->len	     = skb->len;
2179 
2180 	if (skb_shinfo(skb)->nr_frags) {
2181 		int i;
2182 
2183 		if (skb_orphan_frags(skb, gfp_mask) ||
2184 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2185 			kfree_skb(n);
2186 			n = NULL;
2187 			goto out;
2188 		}
2189 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2191 			skb_frag_ref(skb, i);
2192 		}
2193 		skb_shinfo(n)->nr_frags = i;
2194 	}
2195 
2196 	if (skb_has_frag_list(skb)) {
2197 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2198 		skb_clone_fraglist(n);
2199 	}
2200 
2201 	skb_copy_header(n, skb);
2202 out:
2203 	return n;
2204 }
2205 EXPORT_SYMBOL(__pskb_copy_fclone);
2206 
2207 /**
2208  *	pskb_expand_head - reallocate header of &sk_buff
2209  *	@skb: buffer to reallocate
2210  *	@nhead: room to add at head
2211  *	@ntail: room to add at tail
2212  *	@gfp_mask: allocation priority
2213  *
2214  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2215  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2216  *	reference count of 1. Returns zero in the case of success or error,
2217  *	if expansion failed. In the last case, &sk_buff is not changed.
2218  *
2219  *	All the pointers pointing into skb header may change and must be
2220  *	reloaded after call to this function.
2221  */
2222 
2223 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2224 		     gfp_t gfp_mask)
2225 {
2226 	unsigned int osize = skb_end_offset(skb);
2227 	unsigned int size = osize + nhead + ntail;
2228 	long off;
2229 	u8 *data;
2230 	int i;
2231 
2232 	BUG_ON(nhead < 0);
2233 
2234 	BUG_ON(skb_shared(skb));
2235 
2236 	skb_zcopy_downgrade_managed(skb);
2237 
2238 	if (skb_pfmemalloc(skb))
2239 		gfp_mask |= __GFP_MEMALLOC;
2240 
2241 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2242 	if (!data)
2243 		goto nodata;
2244 	size = SKB_WITH_OVERHEAD(size);
2245 
2246 	/* Copy only real data... and, alas, header. This should be
2247 	 * optimized for the cases when header is void.
2248 	 */
2249 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2250 
2251 	memcpy((struct skb_shared_info *)(data + size),
2252 	       skb_shinfo(skb),
2253 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2254 
2255 	/*
2256 	 * if shinfo is shared we must drop the old head gracefully, but if it
2257 	 * is not we can just drop the old head and let the existing refcount
2258 	 * be since all we did is relocate the values
2259 	 */
2260 	if (skb_cloned(skb)) {
2261 		if (skb_orphan_frags(skb, gfp_mask))
2262 			goto nofrags;
2263 		if (skb_zcopy(skb))
2264 			refcount_inc(&skb_uarg(skb)->refcnt);
2265 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2266 			skb_frag_ref(skb, i);
2267 
2268 		if (skb_has_frag_list(skb))
2269 			skb_clone_fraglist(skb);
2270 
2271 		skb_release_data(skb, SKB_CONSUMED);
2272 	} else {
2273 		skb_free_head(skb);
2274 	}
2275 	off = (data + nhead) - skb->head;
2276 
2277 	skb->head     = data;
2278 	skb->head_frag = 0;
2279 	skb->data    += off;
2280 
2281 	skb_set_end_offset(skb, size);
2282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2283 	off           = nhead;
2284 #endif
2285 	skb->tail	      += off;
2286 	skb_headers_offset_update(skb, nhead);
2287 	skb->cloned   = 0;
2288 	skb->hdr_len  = 0;
2289 	skb->nohdr    = 0;
2290 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2291 
2292 	skb_metadata_clear(skb);
2293 
2294 	/* It is not generally safe to change skb->truesize.
2295 	 * For the moment, we really care of rx path, or
2296 	 * when skb is orphaned (not attached to a socket).
2297 	 */
2298 	if (!skb->sk || skb->destructor == sock_edemux)
2299 		skb->truesize += size - osize;
2300 
2301 	return 0;
2302 
2303 nofrags:
2304 	skb_kfree_head(data, size);
2305 nodata:
2306 	return -ENOMEM;
2307 }
2308 EXPORT_SYMBOL(pskb_expand_head);
2309 
2310 /* Make private copy of skb with writable head and some headroom */
2311 
2312 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2313 {
2314 	struct sk_buff *skb2;
2315 	int delta = headroom - skb_headroom(skb);
2316 
2317 	if (delta <= 0)
2318 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2319 	else {
2320 		skb2 = skb_clone(skb, GFP_ATOMIC);
2321 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2322 					     GFP_ATOMIC)) {
2323 			kfree_skb(skb2);
2324 			skb2 = NULL;
2325 		}
2326 	}
2327 	return skb2;
2328 }
2329 EXPORT_SYMBOL(skb_realloc_headroom);
2330 
2331 /* Note: We plan to rework this in linux-6.4 */
2332 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2333 {
2334 	unsigned int saved_end_offset, saved_truesize;
2335 	struct skb_shared_info *shinfo;
2336 	int res;
2337 
2338 	saved_end_offset = skb_end_offset(skb);
2339 	saved_truesize = skb->truesize;
2340 
2341 	res = pskb_expand_head(skb, 0, 0, pri);
2342 	if (res)
2343 		return res;
2344 
2345 	skb->truesize = saved_truesize;
2346 
2347 	if (likely(skb_end_offset(skb) == saved_end_offset))
2348 		return 0;
2349 
2350 	/* We can not change skb->end if the original or new value
2351 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2352 	 */
2353 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2354 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2355 		/* We think this path should not be taken.
2356 		 * Add a temporary trace to warn us just in case.
2357 		 */
2358 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2359 			    saved_end_offset, skb_end_offset(skb));
2360 		WARN_ON_ONCE(1);
2361 		return 0;
2362 	}
2363 
2364 	shinfo = skb_shinfo(skb);
2365 
2366 	/* We are about to change back skb->end,
2367 	 * we need to move skb_shinfo() to its new location.
2368 	 */
2369 	memmove(skb->head + saved_end_offset,
2370 		shinfo,
2371 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2372 
2373 	skb_set_end_offset(skb, saved_end_offset);
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  *	skb_expand_head - reallocate header of &sk_buff
2380  *	@skb: buffer to reallocate
2381  *	@headroom: needed headroom
2382  *
2383  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2384  *	if possible; copies skb->sk to new skb as needed
2385  *	and frees original skb in case of failures.
2386  *
2387  *	It expect increased headroom and generates warning otherwise.
2388  */
2389 
2390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2391 {
2392 	int delta = headroom - skb_headroom(skb);
2393 	int osize = skb_end_offset(skb);
2394 	struct sock *sk = skb->sk;
2395 
2396 	if (WARN_ONCE(delta <= 0,
2397 		      "%s is expecting an increase in the headroom", __func__))
2398 		return skb;
2399 
2400 	delta = SKB_DATA_ALIGN(delta);
2401 	/* pskb_expand_head() might crash, if skb is shared. */
2402 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2403 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2404 
2405 		if (unlikely(!nskb))
2406 			goto fail;
2407 
2408 		if (sk)
2409 			skb_set_owner_w(nskb, sk);
2410 		consume_skb(skb);
2411 		skb = nskb;
2412 	}
2413 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2414 		goto fail;
2415 
2416 	if (sk && is_skb_wmem(skb)) {
2417 		delta = skb_end_offset(skb) - osize;
2418 		refcount_add(delta, &sk->sk_wmem_alloc);
2419 		skb->truesize += delta;
2420 	}
2421 	return skb;
2422 
2423 fail:
2424 	kfree_skb(skb);
2425 	return NULL;
2426 }
2427 EXPORT_SYMBOL(skb_expand_head);
2428 
2429 /**
2430  *	skb_copy_expand	-	copy and expand sk_buff
2431  *	@skb: buffer to copy
2432  *	@newheadroom: new free bytes at head
2433  *	@newtailroom: new free bytes at tail
2434  *	@gfp_mask: allocation priority
2435  *
2436  *	Make a copy of both an &sk_buff and its data and while doing so
2437  *	allocate additional space.
2438  *
2439  *	This is used when the caller wishes to modify the data and needs a
2440  *	private copy of the data to alter as well as more space for new fields.
2441  *	Returns %NULL on failure or the pointer to the buffer
2442  *	on success. The returned buffer has a reference count of 1.
2443  *
2444  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2445  *	is called from an interrupt.
2446  */
2447 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2448 				int newheadroom, int newtailroom,
2449 				gfp_t gfp_mask)
2450 {
2451 	/*
2452 	 *	Allocate the copy buffer
2453 	 */
2454 	int head_copy_len, head_copy_off;
2455 	struct sk_buff *n;
2456 	int oldheadroom;
2457 
2458 	if (!skb_frags_readable(skb))
2459 		return NULL;
2460 
2461 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2462 		return NULL;
2463 
2464 	oldheadroom = skb_headroom(skb);
2465 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2466 			gfp_mask, skb_alloc_rx_flag(skb),
2467 			NUMA_NO_NODE);
2468 	if (!n)
2469 		return NULL;
2470 
2471 	skb_reserve(n, newheadroom);
2472 
2473 	/* Set the tail pointer and length */
2474 	skb_put(n, skb->len);
2475 
2476 	head_copy_len = oldheadroom;
2477 	head_copy_off = 0;
2478 	if (newheadroom <= head_copy_len)
2479 		head_copy_len = newheadroom;
2480 	else
2481 		head_copy_off = newheadroom - head_copy_len;
2482 
2483 	/* Copy the linear header and data. */
2484 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2485 			     skb->len + head_copy_len));
2486 
2487 	skb_copy_header(n, skb);
2488 
2489 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2490 
2491 	return n;
2492 }
2493 EXPORT_SYMBOL(skb_copy_expand);
2494 
2495 /**
2496  *	__skb_pad		-	zero pad the tail of an skb
2497  *	@skb: buffer to pad
2498  *	@pad: space to pad
2499  *	@free_on_error: free buffer on error
2500  *
2501  *	Ensure that a buffer is followed by a padding area that is zero
2502  *	filled. Used by network drivers which may DMA or transfer data
2503  *	beyond the buffer end onto the wire.
2504  *
2505  *	May return error in out of memory cases. The skb is freed on error
2506  *	if @free_on_error is true.
2507  */
2508 
2509 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2510 {
2511 	int err;
2512 	int ntail;
2513 
2514 	/* If the skbuff is non linear tailroom is always zero.. */
2515 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2516 		memset(skb->data+skb->len, 0, pad);
2517 		return 0;
2518 	}
2519 
2520 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2521 	if (likely(skb_cloned(skb) || ntail > 0)) {
2522 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2523 		if (unlikely(err))
2524 			goto free_skb;
2525 	}
2526 
2527 	/* FIXME: The use of this function with non-linear skb's really needs
2528 	 * to be audited.
2529 	 */
2530 	err = skb_linearize(skb);
2531 	if (unlikely(err))
2532 		goto free_skb;
2533 
2534 	memset(skb->data + skb->len, 0, pad);
2535 	return 0;
2536 
2537 free_skb:
2538 	if (free_on_error)
2539 		kfree_skb(skb);
2540 	return err;
2541 }
2542 EXPORT_SYMBOL(__skb_pad);
2543 
2544 /**
2545  *	pskb_put - add data to the tail of a potentially fragmented buffer
2546  *	@skb: start of the buffer to use
2547  *	@tail: tail fragment of the buffer to use
2548  *	@len: amount of data to add
2549  *
2550  *	This function extends the used data area of the potentially
2551  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2552  *	@skb itself. If this would exceed the total buffer size the kernel
2553  *	will panic. A pointer to the first byte of the extra data is
2554  *	returned.
2555  */
2556 
2557 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2558 {
2559 	if (tail != skb) {
2560 		skb->data_len += len;
2561 		skb->len += len;
2562 	}
2563 	return skb_put(tail, len);
2564 }
2565 EXPORT_SYMBOL_GPL(pskb_put);
2566 
2567 /**
2568  *	skb_put - add data to a buffer
2569  *	@skb: buffer to use
2570  *	@len: amount of data to add
2571  *
2572  *	This function extends the used data area of the buffer. If this would
2573  *	exceed the total buffer size the kernel will panic. A pointer to the
2574  *	first byte of the extra data is returned.
2575  */
2576 void *skb_put(struct sk_buff *skb, unsigned int len)
2577 {
2578 	void *tmp = skb_tail_pointer(skb);
2579 	SKB_LINEAR_ASSERT(skb);
2580 	skb->tail += len;
2581 	skb->len  += len;
2582 	if (unlikely(skb->tail > skb->end))
2583 		skb_over_panic(skb, len, __builtin_return_address(0));
2584 	return tmp;
2585 }
2586 EXPORT_SYMBOL(skb_put);
2587 
2588 /**
2589  *	skb_push - add data to the start of a buffer
2590  *	@skb: buffer to use
2591  *	@len: amount of data to add
2592  *
2593  *	This function extends the used data area of the buffer at the buffer
2594  *	start. If this would exceed the total buffer headroom the kernel will
2595  *	panic. A pointer to the first byte of the extra data is returned.
2596  */
2597 void *skb_push(struct sk_buff *skb, unsigned int len)
2598 {
2599 	skb->data -= len;
2600 	skb->len  += len;
2601 	if (unlikely(skb->data < skb->head))
2602 		skb_under_panic(skb, len, __builtin_return_address(0));
2603 	return skb->data;
2604 }
2605 EXPORT_SYMBOL(skb_push);
2606 
2607 /**
2608  *	skb_pull - remove data from the start of a buffer
2609  *	@skb: buffer to use
2610  *	@len: amount of data to remove
2611  *
2612  *	This function removes data from the start of a buffer, returning
2613  *	the memory to the headroom. A pointer to the next data in the buffer
2614  *	is returned. Once the data has been pulled future pushes will overwrite
2615  *	the old data.
2616  */
2617 void *skb_pull(struct sk_buff *skb, unsigned int len)
2618 {
2619 	return skb_pull_inline(skb, len);
2620 }
2621 EXPORT_SYMBOL(skb_pull);
2622 
2623 /**
2624  *	skb_pull_data - remove data from the start of a buffer returning its
2625  *	original position.
2626  *	@skb: buffer to use
2627  *	@len: amount of data to remove
2628  *
2629  *	This function removes data from the start of a buffer, returning
2630  *	the memory to the headroom. A pointer to the original data in the buffer
2631  *	is returned after checking if there is enough data to pull. Once the
2632  *	data has been pulled future pushes will overwrite the old data.
2633  */
2634 void *skb_pull_data(struct sk_buff *skb, size_t len)
2635 {
2636 	void *data = skb->data;
2637 
2638 	if (skb->len < len)
2639 		return NULL;
2640 
2641 	skb_pull(skb, len);
2642 
2643 	return data;
2644 }
2645 EXPORT_SYMBOL(skb_pull_data);
2646 
2647 /**
2648  *	skb_trim - remove end from a buffer
2649  *	@skb: buffer to alter
2650  *	@len: new length
2651  *
2652  *	Cut the length of a buffer down by removing data from the tail. If
2653  *	the buffer is already under the length specified it is not modified.
2654  *	The skb must be linear.
2655  */
2656 void skb_trim(struct sk_buff *skb, unsigned int len)
2657 {
2658 	if (skb->len > len)
2659 		__skb_trim(skb, len);
2660 }
2661 EXPORT_SYMBOL(skb_trim);
2662 
2663 /* Trims skb to length len. It can change skb pointers.
2664  */
2665 
2666 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2667 {
2668 	struct sk_buff **fragp;
2669 	struct sk_buff *frag;
2670 	int offset = skb_headlen(skb);
2671 	int nfrags = skb_shinfo(skb)->nr_frags;
2672 	int i;
2673 	int err;
2674 
2675 	if (skb_cloned(skb) &&
2676 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2677 		return err;
2678 
2679 	i = 0;
2680 	if (offset >= len)
2681 		goto drop_pages;
2682 
2683 	for (; i < nfrags; i++) {
2684 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2685 
2686 		if (end < len) {
2687 			offset = end;
2688 			continue;
2689 		}
2690 
2691 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2692 
2693 drop_pages:
2694 		skb_shinfo(skb)->nr_frags = i;
2695 
2696 		for (; i < nfrags; i++)
2697 			skb_frag_unref(skb, i);
2698 
2699 		if (skb_has_frag_list(skb))
2700 			skb_drop_fraglist(skb);
2701 		goto done;
2702 	}
2703 
2704 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2705 	     fragp = &frag->next) {
2706 		int end = offset + frag->len;
2707 
2708 		if (skb_shared(frag)) {
2709 			struct sk_buff *nfrag;
2710 
2711 			nfrag = skb_clone(frag, GFP_ATOMIC);
2712 			if (unlikely(!nfrag))
2713 				return -ENOMEM;
2714 
2715 			nfrag->next = frag->next;
2716 			consume_skb(frag);
2717 			frag = nfrag;
2718 			*fragp = frag;
2719 		}
2720 
2721 		if (end < len) {
2722 			offset = end;
2723 			continue;
2724 		}
2725 
2726 		if (end > len &&
2727 		    unlikely((err = pskb_trim(frag, len - offset))))
2728 			return err;
2729 
2730 		if (frag->next)
2731 			skb_drop_list(&frag->next);
2732 		break;
2733 	}
2734 
2735 done:
2736 	if (len > skb_headlen(skb)) {
2737 		skb->data_len -= skb->len - len;
2738 		skb->len       = len;
2739 	} else {
2740 		skb->len       = len;
2741 		skb->data_len  = 0;
2742 		skb_set_tail_pointer(skb, len);
2743 	}
2744 
2745 	if (!skb->sk || skb->destructor == sock_edemux)
2746 		skb_condense(skb);
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL(___pskb_trim);
2750 
2751 /* Note : use pskb_trim_rcsum() instead of calling this directly
2752  */
2753 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2754 {
2755 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2756 		int delta = skb->len - len;
2757 
2758 		skb->csum = csum_block_sub(skb->csum,
2759 					   skb_checksum(skb, len, delta, 0),
2760 					   len);
2761 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2763 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2764 
2765 		if (offset + sizeof(__sum16) > hdlen)
2766 			return -EINVAL;
2767 	}
2768 	return __pskb_trim(skb, len);
2769 }
2770 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2771 
2772 /**
2773  *	__pskb_pull_tail - advance tail of skb header
2774  *	@skb: buffer to reallocate
2775  *	@delta: number of bytes to advance tail
2776  *
2777  *	The function makes a sense only on a fragmented &sk_buff,
2778  *	it expands header moving its tail forward and copying necessary
2779  *	data from fragmented part.
2780  *
2781  *	&sk_buff MUST have reference count of 1.
2782  *
2783  *	Returns %NULL (and &sk_buff does not change) if pull failed
2784  *	or value of new tail of skb in the case of success.
2785  *
2786  *	All the pointers pointing into skb header may change and must be
2787  *	reloaded after call to this function.
2788  */
2789 
2790 /* Moves tail of skb head forward, copying data from fragmented part,
2791  * when it is necessary.
2792  * 1. It may fail due to malloc failure.
2793  * 2. It may change skb pointers.
2794  *
2795  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2796  */
2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2798 {
2799 	/* If skb has not enough free space at tail, get new one
2800 	 * plus 128 bytes for future expansions. If we have enough
2801 	 * room at tail, reallocate without expansion only if skb is cloned.
2802 	 */
2803 	int i, k, eat = (skb->tail + delta) - skb->end;
2804 
2805 	if (!skb_frags_readable(skb))
2806 		return NULL;
2807 
2808 	if (eat > 0 || skb_cloned(skb)) {
2809 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2810 				     GFP_ATOMIC))
2811 			return NULL;
2812 	}
2813 
2814 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2815 			     skb_tail_pointer(skb), delta));
2816 
2817 	/* Optimization: no fragments, no reasons to preestimate
2818 	 * size of pulled pages. Superb.
2819 	 */
2820 	if (!skb_has_frag_list(skb))
2821 		goto pull_pages;
2822 
2823 	/* Estimate size of pulled pages. */
2824 	eat = delta;
2825 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2826 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2827 
2828 		if (size >= eat)
2829 			goto pull_pages;
2830 		eat -= size;
2831 	}
2832 
2833 	/* If we need update frag list, we are in troubles.
2834 	 * Certainly, it is possible to add an offset to skb data,
2835 	 * but taking into account that pulling is expected to
2836 	 * be very rare operation, it is worth to fight against
2837 	 * further bloating skb head and crucify ourselves here instead.
2838 	 * Pure masohism, indeed. 8)8)
2839 	 */
2840 	if (eat) {
2841 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2842 		struct sk_buff *clone = NULL;
2843 		struct sk_buff *insp = NULL;
2844 
2845 		do {
2846 			if (list->len <= eat) {
2847 				/* Eaten as whole. */
2848 				eat -= list->len;
2849 				list = list->next;
2850 				insp = list;
2851 			} else {
2852 				/* Eaten partially. */
2853 				if (skb_is_gso(skb) && !list->head_frag &&
2854 				    skb_headlen(list))
2855 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2856 
2857 				if (skb_shared(list)) {
2858 					/* Sucks! We need to fork list. :-( */
2859 					clone = skb_clone(list, GFP_ATOMIC);
2860 					if (!clone)
2861 						return NULL;
2862 					insp = list->next;
2863 					list = clone;
2864 				} else {
2865 					/* This may be pulled without
2866 					 * problems. */
2867 					insp = list;
2868 				}
2869 				if (!pskb_pull(list, eat)) {
2870 					kfree_skb(clone);
2871 					return NULL;
2872 				}
2873 				break;
2874 			}
2875 		} while (eat);
2876 
2877 		/* Free pulled out fragments. */
2878 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2879 			skb_shinfo(skb)->frag_list = list->next;
2880 			consume_skb(list);
2881 		}
2882 		/* And insert new clone at head. */
2883 		if (clone) {
2884 			clone->next = list;
2885 			skb_shinfo(skb)->frag_list = clone;
2886 		}
2887 	}
2888 	/* Success! Now we may commit changes to skb data. */
2889 
2890 pull_pages:
2891 	eat = delta;
2892 	k = 0;
2893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2895 
2896 		if (size <= eat) {
2897 			skb_frag_unref(skb, i);
2898 			eat -= size;
2899 		} else {
2900 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2901 
2902 			*frag = skb_shinfo(skb)->frags[i];
2903 			if (eat) {
2904 				skb_frag_off_add(frag, eat);
2905 				skb_frag_size_sub(frag, eat);
2906 				if (!i)
2907 					goto end;
2908 				eat = 0;
2909 			}
2910 			k++;
2911 		}
2912 	}
2913 	skb_shinfo(skb)->nr_frags = k;
2914 
2915 end:
2916 	skb->tail     += delta;
2917 	skb->data_len -= delta;
2918 
2919 	if (!skb->data_len)
2920 		skb_zcopy_clear(skb, false);
2921 
2922 	return skb_tail_pointer(skb);
2923 }
2924 EXPORT_SYMBOL(__pskb_pull_tail);
2925 
2926 /**
2927  *	skb_copy_bits - copy bits from skb to kernel buffer
2928  *	@skb: source skb
2929  *	@offset: offset in source
2930  *	@to: destination buffer
2931  *	@len: number of bytes to copy
2932  *
2933  *	Copy the specified number of bytes from the source skb to the
2934  *	destination buffer.
2935  *
2936  *	CAUTION ! :
2937  *		If its prototype is ever changed,
2938  *		check arch/{*}/net/{*}.S files,
2939  *		since it is called from BPF assembly code.
2940  */
2941 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2942 {
2943 	int start = skb_headlen(skb);
2944 	struct sk_buff *frag_iter;
2945 	int i, copy;
2946 
2947 	if (offset > (int)skb->len - len)
2948 		goto fault;
2949 
2950 	/* Copy header. */
2951 	if ((copy = start - offset) > 0) {
2952 		if (copy > len)
2953 			copy = len;
2954 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2955 		if ((len -= copy) == 0)
2956 			return 0;
2957 		offset += copy;
2958 		to     += copy;
2959 	}
2960 
2961 	if (!skb_frags_readable(skb))
2962 		goto fault;
2963 
2964 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2965 		int end;
2966 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2967 
2968 		WARN_ON(start > offset + len);
2969 
2970 		end = start + skb_frag_size(f);
2971 		if ((copy = end - offset) > 0) {
2972 			u32 p_off, p_len, copied;
2973 			struct page *p;
2974 			u8 *vaddr;
2975 
2976 			if (copy > len)
2977 				copy = len;
2978 
2979 			skb_frag_foreach_page(f,
2980 					      skb_frag_off(f) + offset - start,
2981 					      copy, p, p_off, p_len, copied) {
2982 				vaddr = kmap_atomic(p);
2983 				memcpy(to + copied, vaddr + p_off, p_len);
2984 				kunmap_atomic(vaddr);
2985 			}
2986 
2987 			if ((len -= copy) == 0)
2988 				return 0;
2989 			offset += copy;
2990 			to     += copy;
2991 		}
2992 		start = end;
2993 	}
2994 
2995 	skb_walk_frags(skb, frag_iter) {
2996 		int end;
2997 
2998 		WARN_ON(start > offset + len);
2999 
3000 		end = start + frag_iter->len;
3001 		if ((copy = end - offset) > 0) {
3002 			if (copy > len)
3003 				copy = len;
3004 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3005 				goto fault;
3006 			if ((len -= copy) == 0)
3007 				return 0;
3008 			offset += copy;
3009 			to     += copy;
3010 		}
3011 		start = end;
3012 	}
3013 
3014 	if (!len)
3015 		return 0;
3016 
3017 fault:
3018 	return -EFAULT;
3019 }
3020 EXPORT_SYMBOL(skb_copy_bits);
3021 
3022 /*
3023  * Callback from splice_to_pipe(), if we need to release some pages
3024  * at the end of the spd in case we error'ed out in filling the pipe.
3025  */
3026 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3027 {
3028 	put_page(spd->pages[i]);
3029 }
3030 
3031 static struct page *linear_to_page(struct page *page, unsigned int *len,
3032 				   unsigned int *offset,
3033 				   struct sock *sk)
3034 {
3035 	struct page_frag *pfrag = sk_page_frag(sk);
3036 
3037 	if (!sk_page_frag_refill(sk, pfrag))
3038 		return NULL;
3039 
3040 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3041 
3042 	memcpy(page_address(pfrag->page) + pfrag->offset,
3043 	       page_address(page) + *offset, *len);
3044 	*offset = pfrag->offset;
3045 	pfrag->offset += *len;
3046 
3047 	return pfrag->page;
3048 }
3049 
3050 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3051 			     struct page *page,
3052 			     unsigned int offset)
3053 {
3054 	return	spd->nr_pages &&
3055 		spd->pages[spd->nr_pages - 1] == page &&
3056 		(spd->partial[spd->nr_pages - 1].offset +
3057 		 spd->partial[spd->nr_pages - 1].len == offset);
3058 }
3059 
3060 /*
3061  * Fill page/offset/length into spd, if it can hold more pages.
3062  */
3063 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3064 			  unsigned int *len, unsigned int offset, bool linear,
3065 			  struct sock *sk)
3066 {
3067 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3068 		return true;
3069 
3070 	if (linear) {
3071 		page = linear_to_page(page, len, &offset, sk);
3072 		if (!page)
3073 			return true;
3074 	}
3075 	if (spd_can_coalesce(spd, page, offset)) {
3076 		spd->partial[spd->nr_pages - 1].len += *len;
3077 		return false;
3078 	}
3079 	get_page(page);
3080 	spd->pages[spd->nr_pages] = page;
3081 	spd->partial[spd->nr_pages].len = *len;
3082 	spd->partial[spd->nr_pages].offset = offset;
3083 	spd->nr_pages++;
3084 
3085 	return false;
3086 }
3087 
3088 static bool __splice_segment(struct page *page, unsigned int poff,
3089 			     unsigned int plen, unsigned int *off,
3090 			     unsigned int *len,
3091 			     struct splice_pipe_desc *spd, bool linear,
3092 			     struct sock *sk)
3093 {
3094 	if (!*len)
3095 		return true;
3096 
3097 	/* skip this segment if already processed */
3098 	if (*off >= plen) {
3099 		*off -= plen;
3100 		return false;
3101 	}
3102 
3103 	/* ignore any bits we already processed */
3104 	poff += *off;
3105 	plen -= *off;
3106 	*off = 0;
3107 
3108 	do {
3109 		unsigned int flen = min(*len, plen);
3110 
3111 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3112 			return true;
3113 		poff += flen;
3114 		plen -= flen;
3115 		*len -= flen;
3116 		if (!*len)
3117 			return true;
3118 	} while (plen);
3119 
3120 	return false;
3121 }
3122 
3123 /*
3124  * Map linear and fragment data from the skb to spd. It reports true if the
3125  * pipe is full or if we already spliced the requested length.
3126  */
3127 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3128 			      unsigned int *offset, unsigned int *len,
3129 			      struct splice_pipe_desc *spd, struct sock *sk)
3130 {
3131 	struct sk_buff *iter;
3132 	int seg;
3133 
3134 	/* map the linear part :
3135 	 * If skb->head_frag is set, this 'linear' part is backed by a
3136 	 * fragment, and if the head is not shared with any clones then
3137 	 * we can avoid a copy since we own the head portion of this page.
3138 	 */
3139 	if (__splice_segment(virt_to_page(skb->data),
3140 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3141 			     skb_headlen(skb),
3142 			     offset, len, spd,
3143 			     skb_head_is_locked(skb),
3144 			     sk))
3145 		return true;
3146 
3147 	/*
3148 	 * then map the fragments
3149 	 */
3150 	if (!skb_frags_readable(skb))
3151 		return false;
3152 
3153 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3154 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3155 
3156 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3157 			return false;
3158 
3159 		if (__splice_segment(skb_frag_page(f),
3160 				     skb_frag_off(f), skb_frag_size(f),
3161 				     offset, len, spd, false, sk))
3162 			return true;
3163 	}
3164 
3165 	skb_walk_frags(skb, iter) {
3166 		if (*offset >= iter->len) {
3167 			*offset -= iter->len;
3168 			continue;
3169 		}
3170 		/* __skb_splice_bits() only fails if the output has no room
3171 		 * left, so no point in going over the frag_list for the error
3172 		 * case.
3173 		 */
3174 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3175 			return true;
3176 	}
3177 
3178 	return false;
3179 }
3180 
3181 /*
3182  * Map data from the skb to a pipe. Should handle both the linear part,
3183  * the fragments, and the frag list.
3184  */
3185 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3186 		    struct pipe_inode_info *pipe, unsigned int tlen,
3187 		    unsigned int flags)
3188 {
3189 	struct partial_page partial[MAX_SKB_FRAGS];
3190 	struct page *pages[MAX_SKB_FRAGS];
3191 	struct splice_pipe_desc spd = {
3192 		.pages = pages,
3193 		.partial = partial,
3194 		.nr_pages_max = MAX_SKB_FRAGS,
3195 		.ops = &nosteal_pipe_buf_ops,
3196 		.spd_release = sock_spd_release,
3197 	};
3198 	int ret = 0;
3199 
3200 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3201 
3202 	if (spd.nr_pages)
3203 		ret = splice_to_pipe(pipe, &spd);
3204 
3205 	return ret;
3206 }
3207 EXPORT_SYMBOL_GPL(skb_splice_bits);
3208 
3209 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3210 {
3211 	struct socket *sock = sk->sk_socket;
3212 	size_t size = msg_data_left(msg);
3213 
3214 	if (!sock)
3215 		return -EINVAL;
3216 
3217 	if (!sock->ops->sendmsg_locked)
3218 		return sock_no_sendmsg_locked(sk, msg, size);
3219 
3220 	return sock->ops->sendmsg_locked(sk, msg, size);
3221 }
3222 
3223 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3224 {
3225 	struct socket *sock = sk->sk_socket;
3226 
3227 	if (!sock)
3228 		return -EINVAL;
3229 	return sock_sendmsg(sock, msg);
3230 }
3231 
3232 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3233 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3234 			   int len, sendmsg_func sendmsg, int flags)
3235 {
3236 	int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3237 	unsigned int orig_len = len;
3238 	struct sk_buff *head = skb;
3239 	unsigned short fragidx;
3240 	int slen, ret;
3241 
3242 do_frag_list:
3243 
3244 	/* Deal with head data */
3245 	while (offset < skb_headlen(skb) && len) {
3246 		struct kvec kv;
3247 		struct msghdr msg;
3248 
3249 		slen = min_t(int, len, skb_headlen(skb) - offset);
3250 		kv.iov_base = skb->data + offset;
3251 		kv.iov_len = slen;
3252 		memset(&msg, 0, sizeof(msg));
3253 		msg.msg_flags = MSG_DONTWAIT | flags;
3254 		if (slen < len)
3255 			msg.msg_flags |= more_hint;
3256 
3257 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3258 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3259 				      sendmsg_unlocked, sk, &msg);
3260 		if (ret <= 0)
3261 			goto error;
3262 
3263 		offset += ret;
3264 		len -= ret;
3265 	}
3266 
3267 	/* All the data was skb head? */
3268 	if (!len)
3269 		goto out;
3270 
3271 	/* Make offset relative to start of frags */
3272 	offset -= skb_headlen(skb);
3273 
3274 	/* Find where we are in frag list */
3275 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3276 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3277 
3278 		if (offset < skb_frag_size(frag))
3279 			break;
3280 
3281 		offset -= skb_frag_size(frag);
3282 	}
3283 
3284 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3285 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3286 
3287 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3288 
3289 		while (slen) {
3290 			struct bio_vec bvec;
3291 			struct msghdr msg = {
3292 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3293 					     flags,
3294 			};
3295 
3296 			if (slen < len)
3297 				msg.msg_flags |= more_hint;
3298 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3299 				      skb_frag_off(frag) + offset);
3300 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3301 				      slen);
3302 
3303 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3304 					      sendmsg_unlocked, sk, &msg);
3305 			if (ret <= 0)
3306 				goto error;
3307 
3308 			len -= ret;
3309 			offset += ret;
3310 			slen -= ret;
3311 		}
3312 
3313 		offset = 0;
3314 	}
3315 
3316 	if (len) {
3317 		/* Process any frag lists */
3318 
3319 		if (skb == head) {
3320 			if (skb_has_frag_list(skb)) {
3321 				skb = skb_shinfo(skb)->frag_list;
3322 				goto do_frag_list;
3323 			}
3324 		} else if (skb->next) {
3325 			skb = skb->next;
3326 			goto do_frag_list;
3327 		}
3328 	}
3329 
3330 out:
3331 	return orig_len - len;
3332 
3333 error:
3334 	return orig_len == len ? ret : orig_len - len;
3335 }
3336 
3337 /* Send skb data on a socket. Socket must be locked. */
3338 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3339 			 int len)
3340 {
3341 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3342 }
3343 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3344 
3345 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3346 				    int offset, int len, int flags)
3347 {
3348 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3349 }
3350 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3351 
3352 /* Send skb data on a socket. Socket must be unlocked. */
3353 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3354 {
3355 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3356 }
3357 
3358 /**
3359  *	skb_store_bits - store bits from kernel buffer to skb
3360  *	@skb: destination buffer
3361  *	@offset: offset in destination
3362  *	@from: source buffer
3363  *	@len: number of bytes to copy
3364  *
3365  *	Copy the specified number of bytes from the source buffer to the
3366  *	destination skb.  This function handles all the messy bits of
3367  *	traversing fragment lists and such.
3368  */
3369 
3370 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3371 {
3372 	int start = skb_headlen(skb);
3373 	struct sk_buff *frag_iter;
3374 	int i, copy;
3375 
3376 	if (offset > (int)skb->len - len)
3377 		goto fault;
3378 
3379 	if ((copy = start - offset) > 0) {
3380 		if (copy > len)
3381 			copy = len;
3382 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3383 		if ((len -= copy) == 0)
3384 			return 0;
3385 		offset += copy;
3386 		from += copy;
3387 	}
3388 
3389 	if (!skb_frags_readable(skb))
3390 		goto fault;
3391 
3392 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3393 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3394 		int end;
3395 
3396 		WARN_ON(start > offset + len);
3397 
3398 		end = start + skb_frag_size(frag);
3399 		if ((copy = end - offset) > 0) {
3400 			u32 p_off, p_len, copied;
3401 			struct page *p;
3402 			u8 *vaddr;
3403 
3404 			if (copy > len)
3405 				copy = len;
3406 
3407 			skb_frag_foreach_page(frag,
3408 					      skb_frag_off(frag) + offset - start,
3409 					      copy, p, p_off, p_len, copied) {
3410 				vaddr = kmap_atomic(p);
3411 				memcpy(vaddr + p_off, from + copied, p_len);
3412 				kunmap_atomic(vaddr);
3413 			}
3414 
3415 			if ((len -= copy) == 0)
3416 				return 0;
3417 			offset += copy;
3418 			from += copy;
3419 		}
3420 		start = end;
3421 	}
3422 
3423 	skb_walk_frags(skb, frag_iter) {
3424 		int end;
3425 
3426 		WARN_ON(start > offset + len);
3427 
3428 		end = start + frag_iter->len;
3429 		if ((copy = end - offset) > 0) {
3430 			if (copy > len)
3431 				copy = len;
3432 			if (skb_store_bits(frag_iter, offset - start,
3433 					   from, copy))
3434 				goto fault;
3435 			if ((len -= copy) == 0)
3436 				return 0;
3437 			offset += copy;
3438 			from += copy;
3439 		}
3440 		start = end;
3441 	}
3442 	if (!len)
3443 		return 0;
3444 
3445 fault:
3446 	return -EFAULT;
3447 }
3448 EXPORT_SYMBOL(skb_store_bits);
3449 
3450 /* Checksum skb data. */
3451 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3452 {
3453 	int start = skb_headlen(skb);
3454 	int i, copy = start - offset;
3455 	struct sk_buff *frag_iter;
3456 	int pos = 0;
3457 
3458 	/* Checksum header. */
3459 	if (copy > 0) {
3460 		if (copy > len)
3461 			copy = len;
3462 		csum = csum_partial(skb->data + offset, copy, csum);
3463 		if ((len -= copy) == 0)
3464 			return csum;
3465 		offset += copy;
3466 		pos	= copy;
3467 	}
3468 
3469 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3470 		return 0;
3471 
3472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3473 		int end;
3474 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3475 
3476 		WARN_ON(start > offset + len);
3477 
3478 		end = start + skb_frag_size(frag);
3479 		if ((copy = end - offset) > 0) {
3480 			u32 p_off, p_len, copied;
3481 			struct page *p;
3482 			__wsum csum2;
3483 			u8 *vaddr;
3484 
3485 			if (copy > len)
3486 				copy = len;
3487 
3488 			skb_frag_foreach_page(frag,
3489 					      skb_frag_off(frag) + offset - start,
3490 					      copy, p, p_off, p_len, copied) {
3491 				vaddr = kmap_atomic(p);
3492 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3493 				kunmap_atomic(vaddr);
3494 				csum = csum_block_add(csum, csum2, pos);
3495 				pos += p_len;
3496 			}
3497 
3498 			if (!(len -= copy))
3499 				return csum;
3500 			offset += copy;
3501 		}
3502 		start = end;
3503 	}
3504 
3505 	skb_walk_frags(skb, frag_iter) {
3506 		int end;
3507 
3508 		WARN_ON(start > offset + len);
3509 
3510 		end = start + frag_iter->len;
3511 		if ((copy = end - offset) > 0) {
3512 			__wsum csum2;
3513 			if (copy > len)
3514 				copy = len;
3515 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3516 					     0);
3517 			csum = csum_block_add(csum, csum2, pos);
3518 			if ((len -= copy) == 0)
3519 				return csum;
3520 			offset += copy;
3521 			pos    += copy;
3522 		}
3523 		start = end;
3524 	}
3525 	BUG_ON(len);
3526 
3527 	return csum;
3528 }
3529 EXPORT_SYMBOL(skb_checksum);
3530 
3531 /* Both of above in one bottle. */
3532 
3533 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3534 				    u8 *to, int len)
3535 {
3536 	int start = skb_headlen(skb);
3537 	int i, copy = start - offset;
3538 	struct sk_buff *frag_iter;
3539 	int pos = 0;
3540 	__wsum csum = 0;
3541 
3542 	/* Copy header. */
3543 	if (copy > 0) {
3544 		if (copy > len)
3545 			copy = len;
3546 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3547 						 copy);
3548 		if ((len -= copy) == 0)
3549 			return csum;
3550 		offset += copy;
3551 		to     += copy;
3552 		pos	= copy;
3553 	}
3554 
3555 	if (!skb_frags_readable(skb))
3556 		return 0;
3557 
3558 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3559 		int end;
3560 
3561 		WARN_ON(start > offset + len);
3562 
3563 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3564 		if ((copy = end - offset) > 0) {
3565 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3566 			u32 p_off, p_len, copied;
3567 			struct page *p;
3568 			__wsum csum2;
3569 			u8 *vaddr;
3570 
3571 			if (copy > len)
3572 				copy = len;
3573 
3574 			skb_frag_foreach_page(frag,
3575 					      skb_frag_off(frag) + offset - start,
3576 					      copy, p, p_off, p_len, copied) {
3577 				vaddr = kmap_atomic(p);
3578 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3579 								  to + copied,
3580 								  p_len);
3581 				kunmap_atomic(vaddr);
3582 				csum = csum_block_add(csum, csum2, pos);
3583 				pos += p_len;
3584 			}
3585 
3586 			if (!(len -= copy))
3587 				return csum;
3588 			offset += copy;
3589 			to     += copy;
3590 		}
3591 		start = end;
3592 	}
3593 
3594 	skb_walk_frags(skb, frag_iter) {
3595 		__wsum csum2;
3596 		int end;
3597 
3598 		WARN_ON(start > offset + len);
3599 
3600 		end = start + frag_iter->len;
3601 		if ((copy = end - offset) > 0) {
3602 			if (copy > len)
3603 				copy = len;
3604 			csum2 = skb_copy_and_csum_bits(frag_iter,
3605 						       offset - start,
3606 						       to, copy);
3607 			csum = csum_block_add(csum, csum2, pos);
3608 			if ((len -= copy) == 0)
3609 				return csum;
3610 			offset += copy;
3611 			to     += copy;
3612 			pos    += copy;
3613 		}
3614 		start = end;
3615 	}
3616 	BUG_ON(len);
3617 	return csum;
3618 }
3619 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3620 
3621 #ifdef CONFIG_NET_CRC32C
3622 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3623 {
3624 	int start = skb_headlen(skb);
3625 	int i, copy = start - offset;
3626 	struct sk_buff *frag_iter;
3627 
3628 	if (copy > 0) {
3629 		copy = min(copy, len);
3630 		crc = crc32c(crc, skb->data + offset, copy);
3631 		len -= copy;
3632 		if (len == 0)
3633 			return crc;
3634 		offset += copy;
3635 	}
3636 
3637 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3638 		return 0;
3639 
3640 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3641 		int end;
3642 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3643 
3644 		WARN_ON(start > offset + len);
3645 
3646 		end = start + skb_frag_size(frag);
3647 		copy = end - offset;
3648 		if (copy > 0) {
3649 			u32 p_off, p_len, copied;
3650 			struct page *p;
3651 			u8 *vaddr;
3652 
3653 			copy = min(copy, len);
3654 			skb_frag_foreach_page(frag,
3655 					      skb_frag_off(frag) + offset - start,
3656 					      copy, p, p_off, p_len, copied) {
3657 				vaddr = kmap_atomic(p);
3658 				crc = crc32c(crc, vaddr + p_off, p_len);
3659 				kunmap_atomic(vaddr);
3660 			}
3661 			len -= copy;
3662 			if (len == 0)
3663 				return crc;
3664 			offset += copy;
3665 		}
3666 		start = end;
3667 	}
3668 
3669 	skb_walk_frags(skb, frag_iter) {
3670 		int end;
3671 
3672 		WARN_ON(start > offset + len);
3673 
3674 		end = start + frag_iter->len;
3675 		copy = end - offset;
3676 		if (copy > 0) {
3677 			copy = min(copy, len);
3678 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3679 			len -= copy;
3680 			if (len == 0)
3681 				return crc;
3682 			offset += copy;
3683 		}
3684 		start = end;
3685 	}
3686 	BUG_ON(len);
3687 
3688 	return crc;
3689 }
3690 EXPORT_SYMBOL(skb_crc32c);
3691 #endif /* CONFIG_NET_CRC32C */
3692 
3693 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3694 {
3695 	__sum16 sum;
3696 
3697 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3698 	/* See comments in __skb_checksum_complete(). */
3699 	if (likely(!sum)) {
3700 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3701 		    !skb->csum_complete_sw)
3702 			netdev_rx_csum_fault(skb->dev, skb);
3703 	}
3704 	if (!skb_shared(skb))
3705 		skb->csum_valid = !sum;
3706 	return sum;
3707 }
3708 EXPORT_SYMBOL(__skb_checksum_complete_head);
3709 
3710 /* This function assumes skb->csum already holds pseudo header's checksum,
3711  * which has been changed from the hardware checksum, for example, by
3712  * __skb_checksum_validate_complete(). And, the original skb->csum must
3713  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3714  *
3715  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3716  * zero. The new checksum is stored back into skb->csum unless the skb is
3717  * shared.
3718  */
3719 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3720 {
3721 	__wsum csum;
3722 	__sum16 sum;
3723 
3724 	csum = skb_checksum(skb, 0, skb->len, 0);
3725 
3726 	sum = csum_fold(csum_add(skb->csum, csum));
3727 	/* This check is inverted, because we already knew the hardware
3728 	 * checksum is invalid before calling this function. So, if the
3729 	 * re-computed checksum is valid instead, then we have a mismatch
3730 	 * between the original skb->csum and skb_checksum(). This means either
3731 	 * the original hardware checksum is incorrect or we screw up skb->csum
3732 	 * when moving skb->data around.
3733 	 */
3734 	if (likely(!sum)) {
3735 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3736 		    !skb->csum_complete_sw)
3737 			netdev_rx_csum_fault(skb->dev, skb);
3738 	}
3739 
3740 	if (!skb_shared(skb)) {
3741 		/* Save full packet checksum */
3742 		skb->csum = csum;
3743 		skb->ip_summed = CHECKSUM_COMPLETE;
3744 		skb->csum_complete_sw = 1;
3745 		skb->csum_valid = !sum;
3746 	}
3747 
3748 	return sum;
3749 }
3750 EXPORT_SYMBOL(__skb_checksum_complete);
3751 
3752  /**
3753  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3754  *	@from: source buffer
3755  *
3756  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3757  *	into skb_zerocopy().
3758  */
3759 unsigned int
3760 skb_zerocopy_headlen(const struct sk_buff *from)
3761 {
3762 	unsigned int hlen = 0;
3763 
3764 	if (!from->head_frag ||
3765 	    skb_headlen(from) < L1_CACHE_BYTES ||
3766 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3767 		hlen = skb_headlen(from);
3768 		if (!hlen)
3769 			hlen = from->len;
3770 	}
3771 
3772 	if (skb_has_frag_list(from))
3773 		hlen = from->len;
3774 
3775 	return hlen;
3776 }
3777 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3778 
3779 /**
3780  *	skb_zerocopy - Zero copy skb to skb
3781  *	@to: destination buffer
3782  *	@from: source buffer
3783  *	@len: number of bytes to copy from source buffer
3784  *	@hlen: size of linear headroom in destination buffer
3785  *
3786  *	Copies up to `len` bytes from `from` to `to` by creating references
3787  *	to the frags in the source buffer.
3788  *
3789  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3790  *	headroom in the `to` buffer.
3791  *
3792  *	Return value:
3793  *	0: everything is OK
3794  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3795  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3796  */
3797 int
3798 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3799 {
3800 	int i, j = 0;
3801 	int plen = 0; /* length of skb->head fragment */
3802 	int ret;
3803 	struct page *page;
3804 	unsigned int offset;
3805 
3806 	BUG_ON(!from->head_frag && !hlen);
3807 
3808 	/* dont bother with small payloads */
3809 	if (len <= skb_tailroom(to))
3810 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3811 
3812 	if (hlen) {
3813 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3814 		if (unlikely(ret))
3815 			return ret;
3816 		len -= hlen;
3817 	} else {
3818 		plen = min_t(int, skb_headlen(from), len);
3819 		if (plen) {
3820 			page = virt_to_head_page(from->head);
3821 			offset = from->data - (unsigned char *)page_address(page);
3822 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3823 					       offset, plen);
3824 			get_page(page);
3825 			j = 1;
3826 			len -= plen;
3827 		}
3828 	}
3829 
3830 	skb_len_add(to, len + plen);
3831 
3832 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3833 		skb_tx_error(from);
3834 		return -ENOMEM;
3835 	}
3836 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3837 
3838 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3839 		int size;
3840 
3841 		if (!len)
3842 			break;
3843 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3844 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3845 					len);
3846 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3847 		len -= size;
3848 		skb_frag_ref(to, j);
3849 		j++;
3850 	}
3851 	skb_shinfo(to)->nr_frags = j;
3852 
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL_GPL(skb_zerocopy);
3856 
3857 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3858 {
3859 	__wsum csum;
3860 	long csstart;
3861 
3862 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3863 		csstart = skb_checksum_start_offset(skb);
3864 	else
3865 		csstart = skb_headlen(skb);
3866 
3867 	BUG_ON(csstart > skb_headlen(skb));
3868 
3869 	skb_copy_from_linear_data(skb, to, csstart);
3870 
3871 	csum = 0;
3872 	if (csstart != skb->len)
3873 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3874 					      skb->len - csstart);
3875 
3876 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3877 		long csstuff = csstart + skb->csum_offset;
3878 
3879 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3880 	}
3881 }
3882 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3883 
3884 /**
3885  *	skb_dequeue - remove from the head of the queue
3886  *	@list: list to dequeue from
3887  *
3888  *	Remove the head of the list. The list lock is taken so the function
3889  *	may be used safely with other locking list functions. The head item is
3890  *	returned or %NULL if the list is empty.
3891  */
3892 
3893 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3894 {
3895 	unsigned long flags;
3896 	struct sk_buff *result;
3897 
3898 	spin_lock_irqsave(&list->lock, flags);
3899 	result = __skb_dequeue(list);
3900 	spin_unlock_irqrestore(&list->lock, flags);
3901 	return result;
3902 }
3903 EXPORT_SYMBOL(skb_dequeue);
3904 
3905 /**
3906  *	skb_dequeue_tail - remove from the tail of the queue
3907  *	@list: list to dequeue from
3908  *
3909  *	Remove the tail of the list. The list lock is taken so the function
3910  *	may be used safely with other locking list functions. The tail item is
3911  *	returned or %NULL if the list is empty.
3912  */
3913 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3914 {
3915 	unsigned long flags;
3916 	struct sk_buff *result;
3917 
3918 	spin_lock_irqsave(&list->lock, flags);
3919 	result = __skb_dequeue_tail(list);
3920 	spin_unlock_irqrestore(&list->lock, flags);
3921 	return result;
3922 }
3923 EXPORT_SYMBOL(skb_dequeue_tail);
3924 
3925 /**
3926  *	skb_queue_purge_reason - empty a list
3927  *	@list: list to empty
3928  *	@reason: drop reason
3929  *
3930  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3931  *	the list and one reference dropped. This function takes the list
3932  *	lock and is atomic with respect to other list locking functions.
3933  */
3934 void skb_queue_purge_reason(struct sk_buff_head *list,
3935 			    enum skb_drop_reason reason)
3936 {
3937 	struct sk_buff_head tmp;
3938 	unsigned long flags;
3939 
3940 	if (skb_queue_empty_lockless(list))
3941 		return;
3942 
3943 	__skb_queue_head_init(&tmp);
3944 
3945 	spin_lock_irqsave(&list->lock, flags);
3946 	skb_queue_splice_init(list, &tmp);
3947 	spin_unlock_irqrestore(&list->lock, flags);
3948 
3949 	__skb_queue_purge_reason(&tmp, reason);
3950 }
3951 EXPORT_SYMBOL(skb_queue_purge_reason);
3952 
3953 /**
3954  *	skb_rbtree_purge - empty a skb rbtree
3955  *	@root: root of the rbtree to empty
3956  *	Return value: the sum of truesizes of all purged skbs.
3957  *
3958  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3959  *	the list and one reference dropped. This function does not take
3960  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3961  *	out-of-order queue is protected by the socket lock).
3962  */
3963 unsigned int skb_rbtree_purge(struct rb_root *root)
3964 {
3965 	struct rb_node *p = rb_first(root);
3966 	unsigned int sum = 0;
3967 
3968 	while (p) {
3969 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3970 
3971 		p = rb_next(p);
3972 		rb_erase(&skb->rbnode, root);
3973 		sum += skb->truesize;
3974 		kfree_skb(skb);
3975 	}
3976 	return sum;
3977 }
3978 
3979 void skb_errqueue_purge(struct sk_buff_head *list)
3980 {
3981 	struct sk_buff *skb, *next;
3982 	struct sk_buff_head kill;
3983 	unsigned long flags;
3984 
3985 	__skb_queue_head_init(&kill);
3986 
3987 	spin_lock_irqsave(&list->lock, flags);
3988 	skb_queue_walk_safe(list, skb, next) {
3989 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3990 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3991 			continue;
3992 		__skb_unlink(skb, list);
3993 		__skb_queue_tail(&kill, skb);
3994 	}
3995 	spin_unlock_irqrestore(&list->lock, flags);
3996 	__skb_queue_purge(&kill);
3997 }
3998 EXPORT_SYMBOL(skb_errqueue_purge);
3999 
4000 /**
4001  *	skb_queue_head - queue a buffer at the list head
4002  *	@list: list to use
4003  *	@newsk: buffer to queue
4004  *
4005  *	Queue a buffer at the start of the list. This function takes the
4006  *	list lock and can be used safely with other locking &sk_buff functions
4007  *	safely.
4008  *
4009  *	A buffer cannot be placed on two lists at the same time.
4010  */
4011 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4012 {
4013 	unsigned long flags;
4014 
4015 	spin_lock_irqsave(&list->lock, flags);
4016 	__skb_queue_head(list, newsk);
4017 	spin_unlock_irqrestore(&list->lock, flags);
4018 }
4019 EXPORT_SYMBOL(skb_queue_head);
4020 
4021 /**
4022  *	skb_queue_tail - queue a buffer at the list tail
4023  *	@list: list to use
4024  *	@newsk: buffer to queue
4025  *
4026  *	Queue a buffer at the tail of the list. This function takes the
4027  *	list lock and can be used safely with other locking &sk_buff functions
4028  *	safely.
4029  *
4030  *	A buffer cannot be placed on two lists at the same time.
4031  */
4032 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4033 {
4034 	unsigned long flags;
4035 
4036 	spin_lock_irqsave(&list->lock, flags);
4037 	__skb_queue_tail(list, newsk);
4038 	spin_unlock_irqrestore(&list->lock, flags);
4039 }
4040 EXPORT_SYMBOL(skb_queue_tail);
4041 
4042 /**
4043  *	skb_unlink	-	remove a buffer from a list
4044  *	@skb: buffer to remove
4045  *	@list: list to use
4046  *
4047  *	Remove a packet from a list. The list locks are taken and this
4048  *	function is atomic with respect to other list locked calls
4049  *
4050  *	You must know what list the SKB is on.
4051  */
4052 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4053 {
4054 	unsigned long flags;
4055 
4056 	spin_lock_irqsave(&list->lock, flags);
4057 	__skb_unlink(skb, list);
4058 	spin_unlock_irqrestore(&list->lock, flags);
4059 }
4060 EXPORT_SYMBOL(skb_unlink);
4061 
4062 /**
4063  *	skb_append	-	append a buffer
4064  *	@old: buffer to insert after
4065  *	@newsk: buffer to insert
4066  *	@list: list to use
4067  *
4068  *	Place a packet after a given packet in a list. The list locks are taken
4069  *	and this function is atomic with respect to other list locked calls.
4070  *	A buffer cannot be placed on two lists at the same time.
4071  */
4072 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4073 {
4074 	unsigned long flags;
4075 
4076 	spin_lock_irqsave(&list->lock, flags);
4077 	__skb_queue_after(list, old, newsk);
4078 	spin_unlock_irqrestore(&list->lock, flags);
4079 }
4080 EXPORT_SYMBOL(skb_append);
4081 
4082 static inline void skb_split_inside_header(struct sk_buff *skb,
4083 					   struct sk_buff* skb1,
4084 					   const u32 len, const int pos)
4085 {
4086 	int i;
4087 
4088 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4089 					 pos - len);
4090 	/* And move data appendix as is. */
4091 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4092 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4093 
4094 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4095 	skb1->unreadable	   = skb->unreadable;
4096 	skb_shinfo(skb)->nr_frags  = 0;
4097 	skb1->data_len		   = skb->data_len;
4098 	skb1->len		   += skb1->data_len;
4099 	skb->data_len		   = 0;
4100 	skb->len		   = len;
4101 	skb_set_tail_pointer(skb, len);
4102 }
4103 
4104 static inline void skb_split_no_header(struct sk_buff *skb,
4105 				       struct sk_buff* skb1,
4106 				       const u32 len, int pos)
4107 {
4108 	int i, k = 0;
4109 	const int nfrags = skb_shinfo(skb)->nr_frags;
4110 
4111 	skb_shinfo(skb)->nr_frags = 0;
4112 	skb1->len		  = skb1->data_len = skb->len - len;
4113 	skb->len		  = len;
4114 	skb->data_len		  = len - pos;
4115 
4116 	for (i = 0; i < nfrags; i++) {
4117 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4118 
4119 		if (pos + size > len) {
4120 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4121 
4122 			if (pos < len) {
4123 				/* Split frag.
4124 				 * We have two variants in this case:
4125 				 * 1. Move all the frag to the second
4126 				 *    part, if it is possible. F.e.
4127 				 *    this approach is mandatory for TUX,
4128 				 *    where splitting is expensive.
4129 				 * 2. Split is accurately. We make this.
4130 				 */
4131 				skb_frag_ref(skb, i);
4132 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4133 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4134 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4135 				skb_shinfo(skb)->nr_frags++;
4136 			}
4137 			k++;
4138 		} else
4139 			skb_shinfo(skb)->nr_frags++;
4140 		pos += size;
4141 	}
4142 	skb_shinfo(skb1)->nr_frags = k;
4143 
4144 	skb1->unreadable = skb->unreadable;
4145 }
4146 
4147 /**
4148  * skb_split - Split fragmented skb to two parts at length len.
4149  * @skb: the buffer to split
4150  * @skb1: the buffer to receive the second part
4151  * @len: new length for skb
4152  */
4153 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4154 {
4155 	int pos = skb_headlen(skb);
4156 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4157 
4158 	skb_zcopy_downgrade_managed(skb);
4159 
4160 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4161 	skb_zerocopy_clone(skb1, skb, 0);
4162 	if (len < pos)	/* Split line is inside header. */
4163 		skb_split_inside_header(skb, skb1, len, pos);
4164 	else		/* Second chunk has no header, nothing to copy. */
4165 		skb_split_no_header(skb, skb1, len, pos);
4166 }
4167 EXPORT_SYMBOL(skb_split);
4168 
4169 /* Shifting from/to a cloned skb is a no-go.
4170  *
4171  * Caller cannot keep skb_shinfo related pointers past calling here!
4172  */
4173 static int skb_prepare_for_shift(struct sk_buff *skb)
4174 {
4175 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4176 }
4177 
4178 /**
4179  * skb_shift - Shifts paged data partially from skb to another
4180  * @tgt: buffer into which tail data gets added
4181  * @skb: buffer from which the paged data comes from
4182  * @shiftlen: shift up to this many bytes
4183  *
4184  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4185  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4186  * It's up to caller to free skb if everything was shifted.
4187  *
4188  * If @tgt runs out of frags, the whole operation is aborted.
4189  *
4190  * Skb cannot include anything else but paged data while tgt is allowed
4191  * to have non-paged data as well.
4192  *
4193  * TODO: full sized shift could be optimized but that would need
4194  * specialized skb free'er to handle frags without up-to-date nr_frags.
4195  */
4196 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4197 {
4198 	int from, to, merge, todo;
4199 	skb_frag_t *fragfrom, *fragto;
4200 
4201 	BUG_ON(shiftlen > skb->len);
4202 
4203 	if (skb_headlen(skb))
4204 		return 0;
4205 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4206 		return 0;
4207 
4208 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4209 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4210 
4211 	todo = shiftlen;
4212 	from = 0;
4213 	to = skb_shinfo(tgt)->nr_frags;
4214 	fragfrom = &skb_shinfo(skb)->frags[from];
4215 
4216 	/* Actual merge is delayed until the point when we know we can
4217 	 * commit all, so that we don't have to undo partial changes
4218 	 */
4219 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4220 			      skb_frag_off(fragfrom))) {
4221 		merge = -1;
4222 	} else {
4223 		merge = to - 1;
4224 
4225 		todo -= skb_frag_size(fragfrom);
4226 		if (todo < 0) {
4227 			if (skb_prepare_for_shift(skb) ||
4228 			    skb_prepare_for_shift(tgt))
4229 				return 0;
4230 
4231 			/* All previous frag pointers might be stale! */
4232 			fragfrom = &skb_shinfo(skb)->frags[from];
4233 			fragto = &skb_shinfo(tgt)->frags[merge];
4234 
4235 			skb_frag_size_add(fragto, shiftlen);
4236 			skb_frag_size_sub(fragfrom, shiftlen);
4237 			skb_frag_off_add(fragfrom, shiftlen);
4238 
4239 			goto onlymerged;
4240 		}
4241 
4242 		from++;
4243 	}
4244 
4245 	/* Skip full, not-fitting skb to avoid expensive operations */
4246 	if ((shiftlen == skb->len) &&
4247 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4248 		return 0;
4249 
4250 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4251 		return 0;
4252 
4253 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4254 		if (to == MAX_SKB_FRAGS)
4255 			return 0;
4256 
4257 		fragfrom = &skb_shinfo(skb)->frags[from];
4258 		fragto = &skb_shinfo(tgt)->frags[to];
4259 
4260 		if (todo >= skb_frag_size(fragfrom)) {
4261 			*fragto = *fragfrom;
4262 			todo -= skb_frag_size(fragfrom);
4263 			from++;
4264 			to++;
4265 
4266 		} else {
4267 			__skb_frag_ref(fragfrom);
4268 			skb_frag_page_copy(fragto, fragfrom);
4269 			skb_frag_off_copy(fragto, fragfrom);
4270 			skb_frag_size_set(fragto, todo);
4271 
4272 			skb_frag_off_add(fragfrom, todo);
4273 			skb_frag_size_sub(fragfrom, todo);
4274 			todo = 0;
4275 
4276 			to++;
4277 			break;
4278 		}
4279 	}
4280 
4281 	/* Ready to "commit" this state change to tgt */
4282 	skb_shinfo(tgt)->nr_frags = to;
4283 
4284 	if (merge >= 0) {
4285 		fragfrom = &skb_shinfo(skb)->frags[0];
4286 		fragto = &skb_shinfo(tgt)->frags[merge];
4287 
4288 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4289 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4290 	}
4291 
4292 	/* Reposition in the original skb */
4293 	to = 0;
4294 	while (from < skb_shinfo(skb)->nr_frags)
4295 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4296 	skb_shinfo(skb)->nr_frags = to;
4297 
4298 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4299 
4300 onlymerged:
4301 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4302 	 * the other hand might need it if it needs to be resent
4303 	 */
4304 	tgt->ip_summed = CHECKSUM_PARTIAL;
4305 	skb->ip_summed = CHECKSUM_PARTIAL;
4306 
4307 	skb_len_add(skb, -shiftlen);
4308 	skb_len_add(tgt, shiftlen);
4309 
4310 	return shiftlen;
4311 }
4312 
4313 /**
4314  * skb_prepare_seq_read - Prepare a sequential read of skb data
4315  * @skb: the buffer to read
4316  * @from: lower offset of data to be read
4317  * @to: upper offset of data to be read
4318  * @st: state variable
4319  *
4320  * Initializes the specified state variable. Must be called before
4321  * invoking skb_seq_read() for the first time.
4322  */
4323 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4324 			  unsigned int to, struct skb_seq_state *st)
4325 {
4326 	st->lower_offset = from;
4327 	st->upper_offset = to;
4328 	st->root_skb = st->cur_skb = skb;
4329 	st->frag_idx = st->stepped_offset = 0;
4330 	st->frag_data = NULL;
4331 	st->frag_off = 0;
4332 }
4333 EXPORT_SYMBOL(skb_prepare_seq_read);
4334 
4335 /**
4336  * skb_seq_read - Sequentially read skb data
4337  * @consumed: number of bytes consumed by the caller so far
4338  * @data: destination pointer for data to be returned
4339  * @st: state variable
4340  *
4341  * Reads a block of skb data at @consumed relative to the
4342  * lower offset specified to skb_prepare_seq_read(). Assigns
4343  * the head of the data block to @data and returns the length
4344  * of the block or 0 if the end of the skb data or the upper
4345  * offset has been reached.
4346  *
4347  * The caller is not required to consume all of the data
4348  * returned, i.e. @consumed is typically set to the number
4349  * of bytes already consumed and the next call to
4350  * skb_seq_read() will return the remaining part of the block.
4351  *
4352  * Note 1: The size of each block of data returned can be arbitrary,
4353  *       this limitation is the cost for zerocopy sequential
4354  *       reads of potentially non linear data.
4355  *
4356  * Note 2: Fragment lists within fragments are not implemented
4357  *       at the moment, state->root_skb could be replaced with
4358  *       a stack for this purpose.
4359  */
4360 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4361 			  struct skb_seq_state *st)
4362 {
4363 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4364 	skb_frag_t *frag;
4365 
4366 	if (unlikely(abs_offset >= st->upper_offset)) {
4367 		if (st->frag_data) {
4368 			kunmap_atomic(st->frag_data);
4369 			st->frag_data = NULL;
4370 		}
4371 		return 0;
4372 	}
4373 
4374 next_skb:
4375 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4376 
4377 	if (abs_offset < block_limit && !st->frag_data) {
4378 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4379 		return block_limit - abs_offset;
4380 	}
4381 
4382 	if (!skb_frags_readable(st->cur_skb))
4383 		return 0;
4384 
4385 	if (st->frag_idx == 0 && !st->frag_data)
4386 		st->stepped_offset += skb_headlen(st->cur_skb);
4387 
4388 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4389 		unsigned int pg_idx, pg_off, pg_sz;
4390 
4391 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4392 
4393 		pg_idx = 0;
4394 		pg_off = skb_frag_off(frag);
4395 		pg_sz = skb_frag_size(frag);
4396 
4397 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4398 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4399 			pg_off = offset_in_page(pg_off + st->frag_off);
4400 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4401 						    PAGE_SIZE - pg_off);
4402 		}
4403 
4404 		block_limit = pg_sz + st->stepped_offset;
4405 		if (abs_offset < block_limit) {
4406 			if (!st->frag_data)
4407 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4408 
4409 			*data = (u8 *)st->frag_data + pg_off +
4410 				(abs_offset - st->stepped_offset);
4411 
4412 			return block_limit - abs_offset;
4413 		}
4414 
4415 		if (st->frag_data) {
4416 			kunmap_atomic(st->frag_data);
4417 			st->frag_data = NULL;
4418 		}
4419 
4420 		st->stepped_offset += pg_sz;
4421 		st->frag_off += pg_sz;
4422 		if (st->frag_off == skb_frag_size(frag)) {
4423 			st->frag_off = 0;
4424 			st->frag_idx++;
4425 		}
4426 	}
4427 
4428 	if (st->frag_data) {
4429 		kunmap_atomic(st->frag_data);
4430 		st->frag_data = NULL;
4431 	}
4432 
4433 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4434 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4435 		st->frag_idx = 0;
4436 		goto next_skb;
4437 	} else if (st->cur_skb->next) {
4438 		st->cur_skb = st->cur_skb->next;
4439 		st->frag_idx = 0;
4440 		goto next_skb;
4441 	}
4442 
4443 	return 0;
4444 }
4445 EXPORT_SYMBOL(skb_seq_read);
4446 
4447 /**
4448  * skb_abort_seq_read - Abort a sequential read of skb data
4449  * @st: state variable
4450  *
4451  * Must be called if skb_seq_read() was not called until it
4452  * returned 0.
4453  */
4454 void skb_abort_seq_read(struct skb_seq_state *st)
4455 {
4456 	if (st->frag_data)
4457 		kunmap_atomic(st->frag_data);
4458 }
4459 EXPORT_SYMBOL(skb_abort_seq_read);
4460 
4461 /**
4462  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4463  * @st: source skb_seq_state
4464  * @offset: offset in source
4465  * @to: destination buffer
4466  * @len: number of bytes to copy
4467  *
4468  * Copy @len bytes from @offset bytes into the source @st to the destination
4469  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4470  * call to this function. If offset needs to decrease from the previous use `st`
4471  * should be reset first.
4472  *
4473  * Return: 0 on success or -EINVAL if the copy ended early
4474  */
4475 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4476 {
4477 	const u8 *data;
4478 	u32 sqlen;
4479 
4480 	for (;;) {
4481 		sqlen = skb_seq_read(offset, &data, st);
4482 		if (sqlen == 0)
4483 			return -EINVAL;
4484 		if (sqlen >= len) {
4485 			memcpy(to, data, len);
4486 			return 0;
4487 		}
4488 		memcpy(to, data, sqlen);
4489 		to += sqlen;
4490 		offset += sqlen;
4491 		len -= sqlen;
4492 	}
4493 }
4494 EXPORT_SYMBOL(skb_copy_seq_read);
4495 
4496 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4497 
4498 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4499 					  struct ts_config *conf,
4500 					  struct ts_state *state)
4501 {
4502 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4503 }
4504 
4505 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4506 {
4507 	skb_abort_seq_read(TS_SKB_CB(state));
4508 }
4509 
4510 /**
4511  * skb_find_text - Find a text pattern in skb data
4512  * @skb: the buffer to look in
4513  * @from: search offset
4514  * @to: search limit
4515  * @config: textsearch configuration
4516  *
4517  * Finds a pattern in the skb data according to the specified
4518  * textsearch configuration. Use textsearch_next() to retrieve
4519  * subsequent occurrences of the pattern. Returns the offset
4520  * to the first occurrence or UINT_MAX if no match was found.
4521  */
4522 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4523 			   unsigned int to, struct ts_config *config)
4524 {
4525 	unsigned int patlen = config->ops->get_pattern_len(config);
4526 	struct ts_state state;
4527 	unsigned int ret;
4528 
4529 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4530 
4531 	config->get_next_block = skb_ts_get_next_block;
4532 	config->finish = skb_ts_finish;
4533 
4534 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4535 
4536 	ret = textsearch_find(config, &state);
4537 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4538 }
4539 EXPORT_SYMBOL(skb_find_text);
4540 
4541 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4542 			 int offset, size_t size, size_t max_frags)
4543 {
4544 	int i = skb_shinfo(skb)->nr_frags;
4545 
4546 	if (skb_can_coalesce(skb, i, page, offset)) {
4547 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4548 	} else if (i < max_frags) {
4549 		skb_zcopy_downgrade_managed(skb);
4550 		get_page(page);
4551 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4552 	} else {
4553 		return -EMSGSIZE;
4554 	}
4555 
4556 	return 0;
4557 }
4558 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4559 
4560 /**
4561  *	skb_pull_rcsum - pull skb and update receive checksum
4562  *	@skb: buffer to update
4563  *	@len: length of data pulled
4564  *
4565  *	This function performs an skb_pull on the packet and updates
4566  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4567  *	receive path processing instead of skb_pull unless you know
4568  *	that the checksum difference is zero (e.g., a valid IP header)
4569  *	or you are setting ip_summed to CHECKSUM_NONE.
4570  */
4571 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4572 {
4573 	unsigned char *data = skb->data;
4574 
4575 	BUG_ON(len > skb->len);
4576 	__skb_pull(skb, len);
4577 	skb_postpull_rcsum(skb, data, len);
4578 	return skb->data;
4579 }
4580 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4581 
4582 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4583 {
4584 	skb_frag_t head_frag;
4585 	struct page *page;
4586 
4587 	page = virt_to_head_page(frag_skb->head);
4588 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4589 				(unsigned char *)page_address(page),
4590 				skb_headlen(frag_skb));
4591 	return head_frag;
4592 }
4593 
4594 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4595 				 netdev_features_t features,
4596 				 unsigned int offset)
4597 {
4598 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4599 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4600 	unsigned int delta_truesize = 0;
4601 	unsigned int delta_len = 0;
4602 	struct sk_buff *tail = NULL;
4603 	struct sk_buff *nskb, *tmp;
4604 	int len_diff, err;
4605 
4606 	skb_push(skb, -skb_network_offset(skb) + offset);
4607 
4608 	/* Ensure the head is writeable before touching the shared info */
4609 	err = skb_unclone(skb, GFP_ATOMIC);
4610 	if (err)
4611 		goto err_linearize;
4612 
4613 	skb_shinfo(skb)->frag_list = NULL;
4614 
4615 	while (list_skb) {
4616 		nskb = list_skb;
4617 		list_skb = list_skb->next;
4618 
4619 		err = 0;
4620 		delta_truesize += nskb->truesize;
4621 		if (skb_shared(nskb)) {
4622 			tmp = skb_clone(nskb, GFP_ATOMIC);
4623 			if (tmp) {
4624 				consume_skb(nskb);
4625 				nskb = tmp;
4626 				err = skb_unclone(nskb, GFP_ATOMIC);
4627 			} else {
4628 				err = -ENOMEM;
4629 			}
4630 		}
4631 
4632 		if (!tail)
4633 			skb->next = nskb;
4634 		else
4635 			tail->next = nskb;
4636 
4637 		if (unlikely(err)) {
4638 			nskb->next = list_skb;
4639 			goto err_linearize;
4640 		}
4641 
4642 		tail = nskb;
4643 
4644 		delta_len += nskb->len;
4645 
4646 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4647 
4648 		skb_release_head_state(nskb);
4649 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4650 		__copy_skb_header(nskb, skb);
4651 
4652 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4653 		nskb->transport_header += len_diff;
4654 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4655 						 nskb->data - tnl_hlen,
4656 						 offset + tnl_hlen);
4657 
4658 		if (skb_needs_linearize(nskb, features) &&
4659 		    __skb_linearize(nskb))
4660 			goto err_linearize;
4661 	}
4662 
4663 	skb->truesize = skb->truesize - delta_truesize;
4664 	skb->data_len = skb->data_len - delta_len;
4665 	skb->len = skb->len - delta_len;
4666 
4667 	skb_gso_reset(skb);
4668 
4669 	skb->prev = tail;
4670 
4671 	if (skb_needs_linearize(skb, features) &&
4672 	    __skb_linearize(skb))
4673 		goto err_linearize;
4674 
4675 	skb_get(skb);
4676 
4677 	return skb;
4678 
4679 err_linearize:
4680 	kfree_skb_list(skb->next);
4681 	skb->next = NULL;
4682 	return ERR_PTR(-ENOMEM);
4683 }
4684 EXPORT_SYMBOL_GPL(skb_segment_list);
4685 
4686 /**
4687  *	skb_segment - Perform protocol segmentation on skb.
4688  *	@head_skb: buffer to segment
4689  *	@features: features for the output path (see dev->features)
4690  *
4691  *	This function performs segmentation on the given skb.  It returns
4692  *	a pointer to the first in a list of new skbs for the segments.
4693  *	In case of error it returns ERR_PTR(err).
4694  */
4695 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4696 			    netdev_features_t features)
4697 {
4698 	struct sk_buff *segs = NULL;
4699 	struct sk_buff *tail = NULL;
4700 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4701 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4702 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4703 	unsigned int offset = doffset;
4704 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4705 	unsigned int partial_segs = 0;
4706 	unsigned int headroom;
4707 	unsigned int len = head_skb->len;
4708 	struct sk_buff *frag_skb;
4709 	skb_frag_t *frag;
4710 	__be16 proto;
4711 	bool csum, sg;
4712 	int err = -ENOMEM;
4713 	int i = 0;
4714 	int nfrags, pos;
4715 
4716 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4717 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4718 		struct sk_buff *check_skb;
4719 
4720 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4721 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4722 				/* gso_size is untrusted, and we have a frag_list with
4723 				 * a linear non head_frag item.
4724 				 *
4725 				 * If head_skb's headlen does not fit requested gso_size,
4726 				 * it means that the frag_list members do NOT terminate
4727 				 * on exact gso_size boundaries. Hence we cannot perform
4728 				 * skb_frag_t page sharing. Therefore we must fallback to
4729 				 * copying the frag_list skbs; we do so by disabling SG.
4730 				 */
4731 				features &= ~NETIF_F_SG;
4732 				break;
4733 			}
4734 		}
4735 	}
4736 
4737 	__skb_push(head_skb, doffset);
4738 	proto = skb_network_protocol(head_skb, NULL);
4739 	if (unlikely(!proto))
4740 		return ERR_PTR(-EINVAL);
4741 
4742 	sg = !!(features & NETIF_F_SG);
4743 	csum = !!can_checksum_protocol(features, proto);
4744 
4745 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4746 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4747 			struct sk_buff *iter;
4748 			unsigned int frag_len;
4749 
4750 			if (!list_skb ||
4751 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4752 				goto normal;
4753 
4754 			/* If we get here then all the required
4755 			 * GSO features except frag_list are supported.
4756 			 * Try to split the SKB to multiple GSO SKBs
4757 			 * with no frag_list.
4758 			 * Currently we can do that only when the buffers don't
4759 			 * have a linear part and all the buffers except
4760 			 * the last are of the same length.
4761 			 */
4762 			frag_len = list_skb->len;
4763 			skb_walk_frags(head_skb, iter) {
4764 				if (frag_len != iter->len && iter->next)
4765 					goto normal;
4766 				if (skb_headlen(iter) && !iter->head_frag)
4767 					goto normal;
4768 
4769 				len -= iter->len;
4770 			}
4771 
4772 			if (len != frag_len)
4773 				goto normal;
4774 		}
4775 
4776 		/* GSO partial only requires that we trim off any excess that
4777 		 * doesn't fit into an MSS sized block, so take care of that
4778 		 * now.
4779 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4780 		 */
4781 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4782 		if (partial_segs > 1)
4783 			mss *= partial_segs;
4784 		else
4785 			partial_segs = 0;
4786 	}
4787 
4788 normal:
4789 	headroom = skb_headroom(head_skb);
4790 	pos = skb_headlen(head_skb);
4791 
4792 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4793 		return ERR_PTR(-ENOMEM);
4794 
4795 	nfrags = skb_shinfo(head_skb)->nr_frags;
4796 	frag = skb_shinfo(head_skb)->frags;
4797 	frag_skb = head_skb;
4798 
4799 	do {
4800 		struct sk_buff *nskb;
4801 		skb_frag_t *nskb_frag;
4802 		int hsize;
4803 		int size;
4804 
4805 		if (unlikely(mss == GSO_BY_FRAGS)) {
4806 			len = list_skb->len;
4807 		} else {
4808 			len = head_skb->len - offset;
4809 			if (len > mss)
4810 				len = mss;
4811 		}
4812 
4813 		hsize = skb_headlen(head_skb) - offset;
4814 
4815 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4816 		    (skb_headlen(list_skb) == len || sg)) {
4817 			BUG_ON(skb_headlen(list_skb) > len);
4818 
4819 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4820 			if (unlikely(!nskb))
4821 				goto err;
4822 
4823 			i = 0;
4824 			nfrags = skb_shinfo(list_skb)->nr_frags;
4825 			frag = skb_shinfo(list_skb)->frags;
4826 			frag_skb = list_skb;
4827 			pos += skb_headlen(list_skb);
4828 
4829 			while (pos < offset + len) {
4830 				BUG_ON(i >= nfrags);
4831 
4832 				size = skb_frag_size(frag);
4833 				if (pos + size > offset + len)
4834 					break;
4835 
4836 				i++;
4837 				pos += size;
4838 				frag++;
4839 			}
4840 
4841 			list_skb = list_skb->next;
4842 
4843 			if (unlikely(pskb_trim(nskb, len))) {
4844 				kfree_skb(nskb);
4845 				goto err;
4846 			}
4847 
4848 			hsize = skb_end_offset(nskb);
4849 			if (skb_cow_head(nskb, doffset + headroom)) {
4850 				kfree_skb(nskb);
4851 				goto err;
4852 			}
4853 
4854 			nskb->truesize += skb_end_offset(nskb) - hsize;
4855 			skb_release_head_state(nskb);
4856 			__skb_push(nskb, doffset);
4857 		} else {
4858 			if (hsize < 0)
4859 				hsize = 0;
4860 			if (hsize > len || !sg)
4861 				hsize = len;
4862 
4863 			nskb = __alloc_skb(hsize + doffset + headroom,
4864 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4865 					   NUMA_NO_NODE);
4866 
4867 			if (unlikely(!nskb))
4868 				goto err;
4869 
4870 			skb_reserve(nskb, headroom);
4871 			__skb_put(nskb, doffset);
4872 		}
4873 
4874 		if (segs)
4875 			tail->next = nskb;
4876 		else
4877 			segs = nskb;
4878 		tail = nskb;
4879 
4880 		__copy_skb_header(nskb, head_skb);
4881 
4882 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4883 		skb_reset_mac_len(nskb);
4884 
4885 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4886 						 nskb->data - tnl_hlen,
4887 						 doffset + tnl_hlen);
4888 
4889 		if (nskb->len == len + doffset)
4890 			goto perform_csum_check;
4891 
4892 		if (!sg) {
4893 			if (!csum) {
4894 				if (!nskb->remcsum_offload)
4895 					nskb->ip_summed = CHECKSUM_NONE;
4896 				SKB_GSO_CB(nskb)->csum =
4897 					skb_copy_and_csum_bits(head_skb, offset,
4898 							       skb_put(nskb,
4899 								       len),
4900 							       len);
4901 				SKB_GSO_CB(nskb)->csum_start =
4902 					skb_headroom(nskb) + doffset;
4903 			} else {
4904 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4905 					goto err;
4906 			}
4907 			continue;
4908 		}
4909 
4910 		nskb_frag = skb_shinfo(nskb)->frags;
4911 
4912 		skb_copy_from_linear_data_offset(head_skb, offset,
4913 						 skb_put(nskb, hsize), hsize);
4914 
4915 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4916 					   SKBFL_SHARED_FRAG;
4917 
4918 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4919 			goto err;
4920 
4921 		while (pos < offset + len) {
4922 			if (i >= nfrags) {
4923 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4924 				    skb_zerocopy_clone(nskb, list_skb,
4925 						       GFP_ATOMIC))
4926 					goto err;
4927 
4928 				i = 0;
4929 				nfrags = skb_shinfo(list_skb)->nr_frags;
4930 				frag = skb_shinfo(list_skb)->frags;
4931 				frag_skb = list_skb;
4932 				if (!skb_headlen(list_skb)) {
4933 					BUG_ON(!nfrags);
4934 				} else {
4935 					BUG_ON(!list_skb->head_frag);
4936 
4937 					/* to make room for head_frag. */
4938 					i--;
4939 					frag--;
4940 				}
4941 
4942 				list_skb = list_skb->next;
4943 			}
4944 
4945 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4946 				     MAX_SKB_FRAGS)) {
4947 				net_warn_ratelimited(
4948 					"skb_segment: too many frags: %u %u\n",
4949 					pos, mss);
4950 				err = -EINVAL;
4951 				goto err;
4952 			}
4953 
4954 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4955 			__skb_frag_ref(nskb_frag);
4956 			size = skb_frag_size(nskb_frag);
4957 
4958 			if (pos < offset) {
4959 				skb_frag_off_add(nskb_frag, offset - pos);
4960 				skb_frag_size_sub(nskb_frag, offset - pos);
4961 			}
4962 
4963 			skb_shinfo(nskb)->nr_frags++;
4964 
4965 			if (pos + size <= offset + len) {
4966 				i++;
4967 				frag++;
4968 				pos += size;
4969 			} else {
4970 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4971 				goto skip_fraglist;
4972 			}
4973 
4974 			nskb_frag++;
4975 		}
4976 
4977 skip_fraglist:
4978 		nskb->data_len = len - hsize;
4979 		nskb->len += nskb->data_len;
4980 		nskb->truesize += nskb->data_len;
4981 
4982 perform_csum_check:
4983 		if (!csum) {
4984 			if (skb_has_shared_frag(nskb) &&
4985 			    __skb_linearize(nskb))
4986 				goto err;
4987 
4988 			if (!nskb->remcsum_offload)
4989 				nskb->ip_summed = CHECKSUM_NONE;
4990 			SKB_GSO_CB(nskb)->csum =
4991 				skb_checksum(nskb, doffset,
4992 					     nskb->len - doffset, 0);
4993 			SKB_GSO_CB(nskb)->csum_start =
4994 				skb_headroom(nskb) + doffset;
4995 		}
4996 	} while ((offset += len) < head_skb->len);
4997 
4998 	/* Some callers want to get the end of the list.
4999 	 * Put it in segs->prev to avoid walking the list.
5000 	 * (see validate_xmit_skb_list() for example)
5001 	 */
5002 	segs->prev = tail;
5003 
5004 	if (partial_segs) {
5005 		struct sk_buff *iter;
5006 		int type = skb_shinfo(head_skb)->gso_type;
5007 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5008 
5009 		/* Update type to add partial and then remove dodgy if set */
5010 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5011 		type &= ~SKB_GSO_DODGY;
5012 
5013 		/* Update GSO info and prepare to start updating headers on
5014 		 * our way back down the stack of protocols.
5015 		 */
5016 		for (iter = segs; iter; iter = iter->next) {
5017 			skb_shinfo(iter)->gso_size = gso_size;
5018 			skb_shinfo(iter)->gso_segs = partial_segs;
5019 			skb_shinfo(iter)->gso_type = type;
5020 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5021 		}
5022 
5023 		if (tail->len - doffset <= gso_size)
5024 			skb_shinfo(tail)->gso_size = 0;
5025 		else if (tail != segs)
5026 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5027 	}
5028 
5029 	/* Following permits correct backpressure, for protocols
5030 	 * using skb_set_owner_w().
5031 	 * Idea is to tranfert ownership from head_skb to last segment.
5032 	 */
5033 	if (head_skb->destructor == sock_wfree) {
5034 		swap(tail->truesize, head_skb->truesize);
5035 		swap(tail->destructor, head_skb->destructor);
5036 		swap(tail->sk, head_skb->sk);
5037 	}
5038 	return segs;
5039 
5040 err:
5041 	kfree_skb_list(segs);
5042 	return ERR_PTR(err);
5043 }
5044 EXPORT_SYMBOL_GPL(skb_segment);
5045 
5046 #ifdef CONFIG_SKB_EXTENSIONS
5047 #define SKB_EXT_ALIGN_VALUE	8
5048 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5049 
5050 static const u8 skb_ext_type_len[] = {
5051 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5052 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5053 #endif
5054 #ifdef CONFIG_XFRM
5055 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5056 #endif
5057 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5058 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5059 #endif
5060 #if IS_ENABLED(CONFIG_MPTCP)
5061 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5062 #endif
5063 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5064 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5065 #endif
5066 #if IS_ENABLED(CONFIG_INET_PSP)
5067 	[SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5068 #endif
5069 };
5070 
5071 static __always_inline unsigned int skb_ext_total_length(void)
5072 {
5073 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5074 	int i;
5075 
5076 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5077 		l += skb_ext_type_len[i];
5078 
5079 	return l;
5080 }
5081 
5082 static void skb_extensions_init(void)
5083 {
5084 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5085 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5086 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5087 #endif
5088 
5089 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5090 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5091 					     0,
5092 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5093 					     NULL);
5094 }
5095 #else
5096 static void skb_extensions_init(void) {}
5097 #endif
5098 
5099 /* The SKB kmem_cache slab is critical for network performance.  Never
5100  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5101  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5102  */
5103 #ifndef CONFIG_SLUB_TINY
5104 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5105 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5106 #define FLAG_SKB_NO_MERGE	0
5107 #endif
5108 
5109 void __init skb_init(void)
5110 {
5111 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5112 					      sizeof(struct sk_buff),
5113 					      0,
5114 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5115 						FLAG_SKB_NO_MERGE,
5116 					      offsetof(struct sk_buff, cb),
5117 					      sizeof_field(struct sk_buff, cb),
5118 					      NULL);
5119 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5120 						sizeof(struct sk_buff_fclones),
5121 						0,
5122 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5123 						NULL);
5124 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5125 	 * struct skb_shared_info is located at the end of skb->head,
5126 	 * and should not be copied to/from user.
5127 	 */
5128 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5129 						SKB_SMALL_HEAD_CACHE_SIZE,
5130 						0,
5131 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5132 						0,
5133 						SKB_SMALL_HEAD_HEADROOM,
5134 						NULL);
5135 	skb_extensions_init();
5136 }
5137 
5138 static int
5139 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5140 	       unsigned int recursion_level)
5141 {
5142 	int start = skb_headlen(skb);
5143 	int i, copy = start - offset;
5144 	struct sk_buff *frag_iter;
5145 	int elt = 0;
5146 
5147 	if (unlikely(recursion_level >= 24))
5148 		return -EMSGSIZE;
5149 
5150 	if (copy > 0) {
5151 		if (copy > len)
5152 			copy = len;
5153 		sg_set_buf(sg, skb->data + offset, copy);
5154 		elt++;
5155 		if ((len -= copy) == 0)
5156 			return elt;
5157 		offset += copy;
5158 	}
5159 
5160 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5161 		int end;
5162 
5163 		WARN_ON(start > offset + len);
5164 
5165 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5166 		if ((copy = end - offset) > 0) {
5167 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5168 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5169 				return -EMSGSIZE;
5170 
5171 			if (copy > len)
5172 				copy = len;
5173 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5174 				    skb_frag_off(frag) + offset - start);
5175 			elt++;
5176 			if (!(len -= copy))
5177 				return elt;
5178 			offset += copy;
5179 		}
5180 		start = end;
5181 	}
5182 
5183 	skb_walk_frags(skb, frag_iter) {
5184 		int end, ret;
5185 
5186 		WARN_ON(start > offset + len);
5187 
5188 		end = start + frag_iter->len;
5189 		if ((copy = end - offset) > 0) {
5190 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5191 				return -EMSGSIZE;
5192 
5193 			if (copy > len)
5194 				copy = len;
5195 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5196 					      copy, recursion_level + 1);
5197 			if (unlikely(ret < 0))
5198 				return ret;
5199 			elt += ret;
5200 			if ((len -= copy) == 0)
5201 				return elt;
5202 			offset += copy;
5203 		}
5204 		start = end;
5205 	}
5206 	BUG_ON(len);
5207 	return elt;
5208 }
5209 
5210 /**
5211  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5212  *	@skb: Socket buffer containing the buffers to be mapped
5213  *	@sg: The scatter-gather list to map into
5214  *	@offset: The offset into the buffer's contents to start mapping
5215  *	@len: Length of buffer space to be mapped
5216  *
5217  *	Fill the specified scatter-gather list with mappings/pointers into a
5218  *	region of the buffer space attached to a socket buffer. Returns either
5219  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5220  *	could not fit.
5221  */
5222 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5223 {
5224 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5225 
5226 	if (nsg <= 0)
5227 		return nsg;
5228 
5229 	sg_mark_end(&sg[nsg - 1]);
5230 
5231 	return nsg;
5232 }
5233 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5234 
5235 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5236  * sglist without mark the sg which contain last skb data as the end.
5237  * So the caller can mannipulate sg list as will when padding new data after
5238  * the first call without calling sg_unmark_end to expend sg list.
5239  *
5240  * Scenario to use skb_to_sgvec_nomark:
5241  * 1. sg_init_table
5242  * 2. skb_to_sgvec_nomark(payload1)
5243  * 3. skb_to_sgvec_nomark(payload2)
5244  *
5245  * This is equivalent to:
5246  * 1. sg_init_table
5247  * 2. skb_to_sgvec(payload1)
5248  * 3. sg_unmark_end
5249  * 4. skb_to_sgvec(payload2)
5250  *
5251  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5252  * is more preferable.
5253  */
5254 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5255 			int offset, int len)
5256 {
5257 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5258 }
5259 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5260 
5261 
5262 
5263 /**
5264  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5265  *	@skb: The socket buffer to check.
5266  *	@tailbits: Amount of trailing space to be added
5267  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5268  *
5269  *	Make sure that the data buffers attached to a socket buffer are
5270  *	writable. If they are not, private copies are made of the data buffers
5271  *	and the socket buffer is set to use these instead.
5272  *
5273  *	If @tailbits is given, make sure that there is space to write @tailbits
5274  *	bytes of data beyond current end of socket buffer.  @trailer will be
5275  *	set to point to the skb in which this space begins.
5276  *
5277  *	The number of scatterlist elements required to completely map the
5278  *	COW'd and extended socket buffer will be returned.
5279  */
5280 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5281 {
5282 	int copyflag;
5283 	int elt;
5284 	struct sk_buff *skb1, **skb_p;
5285 
5286 	/* If skb is cloned or its head is paged, reallocate
5287 	 * head pulling out all the pages (pages are considered not writable
5288 	 * at the moment even if they are anonymous).
5289 	 */
5290 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5291 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5292 		return -ENOMEM;
5293 
5294 	/* Easy case. Most of packets will go this way. */
5295 	if (!skb_has_frag_list(skb)) {
5296 		/* A little of trouble, not enough of space for trailer.
5297 		 * This should not happen, when stack is tuned to generate
5298 		 * good frames. OK, on miss we reallocate and reserve even more
5299 		 * space, 128 bytes is fair. */
5300 
5301 		if (skb_tailroom(skb) < tailbits &&
5302 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5303 			return -ENOMEM;
5304 
5305 		/* Voila! */
5306 		*trailer = skb;
5307 		return 1;
5308 	}
5309 
5310 	/* Misery. We are in troubles, going to mincer fragments... */
5311 
5312 	elt = 1;
5313 	skb_p = &skb_shinfo(skb)->frag_list;
5314 	copyflag = 0;
5315 
5316 	while ((skb1 = *skb_p) != NULL) {
5317 		int ntail = 0;
5318 
5319 		/* The fragment is partially pulled by someone,
5320 		 * this can happen on input. Copy it and everything
5321 		 * after it. */
5322 
5323 		if (skb_shared(skb1))
5324 			copyflag = 1;
5325 
5326 		/* If the skb is the last, worry about trailer. */
5327 
5328 		if (skb1->next == NULL && tailbits) {
5329 			if (skb_shinfo(skb1)->nr_frags ||
5330 			    skb_has_frag_list(skb1) ||
5331 			    skb_tailroom(skb1) < tailbits)
5332 				ntail = tailbits + 128;
5333 		}
5334 
5335 		if (copyflag ||
5336 		    skb_cloned(skb1) ||
5337 		    ntail ||
5338 		    skb_shinfo(skb1)->nr_frags ||
5339 		    skb_has_frag_list(skb1)) {
5340 			struct sk_buff *skb2;
5341 
5342 			/* Fuck, we are miserable poor guys... */
5343 			if (ntail == 0)
5344 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5345 			else
5346 				skb2 = skb_copy_expand(skb1,
5347 						       skb_headroom(skb1),
5348 						       ntail,
5349 						       GFP_ATOMIC);
5350 			if (unlikely(skb2 == NULL))
5351 				return -ENOMEM;
5352 
5353 			if (skb1->sk)
5354 				skb_set_owner_w(skb2, skb1->sk);
5355 
5356 			/* Looking around. Are we still alive?
5357 			 * OK, link new skb, drop old one */
5358 
5359 			skb2->next = skb1->next;
5360 			*skb_p = skb2;
5361 			kfree_skb(skb1);
5362 			skb1 = skb2;
5363 		}
5364 		elt++;
5365 		*trailer = skb1;
5366 		skb_p = &skb1->next;
5367 	}
5368 
5369 	return elt;
5370 }
5371 EXPORT_SYMBOL_GPL(skb_cow_data);
5372 
5373 static void sock_rmem_free(struct sk_buff *skb)
5374 {
5375 	struct sock *sk = skb->sk;
5376 
5377 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5378 }
5379 
5380 static void skb_set_err_queue(struct sk_buff *skb)
5381 {
5382 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5383 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5384 	 */
5385 	skb->pkt_type = PACKET_OUTGOING;
5386 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5387 }
5388 
5389 /*
5390  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5391  */
5392 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5393 {
5394 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5395 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5396 		return -ENOMEM;
5397 
5398 	skb_orphan(skb);
5399 	skb->sk = sk;
5400 	skb->destructor = sock_rmem_free;
5401 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5402 	skb_set_err_queue(skb);
5403 
5404 	/* before exiting rcu section, make sure dst is refcounted */
5405 	skb_dst_force(skb);
5406 
5407 	skb_queue_tail(&sk->sk_error_queue, skb);
5408 	if (!sock_flag(sk, SOCK_DEAD))
5409 		sk_error_report(sk);
5410 	return 0;
5411 }
5412 EXPORT_SYMBOL(sock_queue_err_skb);
5413 
5414 static bool is_icmp_err_skb(const struct sk_buff *skb)
5415 {
5416 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5417 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5418 }
5419 
5420 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5421 {
5422 	struct sk_buff_head *q = &sk->sk_error_queue;
5423 	struct sk_buff *skb, *skb_next = NULL;
5424 	bool icmp_next = false;
5425 	unsigned long flags;
5426 
5427 	if (skb_queue_empty_lockless(q))
5428 		return NULL;
5429 
5430 	spin_lock_irqsave(&q->lock, flags);
5431 	skb = __skb_dequeue(q);
5432 	if (skb && (skb_next = skb_peek(q))) {
5433 		icmp_next = is_icmp_err_skb(skb_next);
5434 		if (icmp_next)
5435 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5436 	}
5437 	spin_unlock_irqrestore(&q->lock, flags);
5438 
5439 	if (is_icmp_err_skb(skb) && !icmp_next)
5440 		sk->sk_err = 0;
5441 
5442 	if (skb_next)
5443 		sk_error_report(sk);
5444 
5445 	return skb;
5446 }
5447 EXPORT_SYMBOL(sock_dequeue_err_skb);
5448 
5449 /**
5450  * skb_clone_sk - create clone of skb, and take reference to socket
5451  * @skb: the skb to clone
5452  *
5453  * This function creates a clone of a buffer that holds a reference on
5454  * sk_refcnt.  Buffers created via this function are meant to be
5455  * returned using sock_queue_err_skb, or free via kfree_skb.
5456  *
5457  * When passing buffers allocated with this function to sock_queue_err_skb
5458  * it is necessary to wrap the call with sock_hold/sock_put in order to
5459  * prevent the socket from being released prior to being enqueued on
5460  * the sk_error_queue.
5461  */
5462 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5463 {
5464 	struct sock *sk = skb->sk;
5465 	struct sk_buff *clone;
5466 
5467 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5468 		return NULL;
5469 
5470 	clone = skb_clone(skb, GFP_ATOMIC);
5471 	if (!clone) {
5472 		sock_put(sk);
5473 		return NULL;
5474 	}
5475 
5476 	clone->sk = sk;
5477 	clone->destructor = sock_efree;
5478 
5479 	return clone;
5480 }
5481 EXPORT_SYMBOL(skb_clone_sk);
5482 
5483 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5484 					struct sock *sk,
5485 					int tstype,
5486 					bool opt_stats)
5487 {
5488 	struct sock_exterr_skb *serr;
5489 	int err;
5490 
5491 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5492 
5493 	serr = SKB_EXT_ERR(skb);
5494 	memset(serr, 0, sizeof(*serr));
5495 	serr->ee.ee_errno = ENOMSG;
5496 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5497 	serr->ee.ee_info = tstype;
5498 	serr->opt_stats = opt_stats;
5499 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5500 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5501 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5502 		if (sk_is_tcp(sk))
5503 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5504 	}
5505 
5506 	err = sock_queue_err_skb(sk, skb);
5507 
5508 	if (err)
5509 		kfree_skb(skb);
5510 }
5511 
5512 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5513 {
5514 	bool ret;
5515 
5516 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5517 		return true;
5518 
5519 	read_lock_bh(&sk->sk_callback_lock);
5520 	ret = sk->sk_socket && sk->sk_socket->file &&
5521 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5522 	read_unlock_bh(&sk->sk_callback_lock);
5523 	return ret;
5524 }
5525 
5526 void skb_complete_tx_timestamp(struct sk_buff *skb,
5527 			       struct skb_shared_hwtstamps *hwtstamps)
5528 {
5529 	struct sock *sk = skb->sk;
5530 
5531 	if (!skb_may_tx_timestamp(sk, false))
5532 		goto err;
5533 
5534 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5535 	 * but only if the socket refcount is not zero.
5536 	 */
5537 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5538 		*skb_hwtstamps(skb) = *hwtstamps;
5539 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5540 		sock_put(sk);
5541 		return;
5542 	}
5543 
5544 err:
5545 	kfree_skb(skb);
5546 }
5547 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5548 
5549 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5550 						 struct skb_shared_hwtstamps *hwtstamps,
5551 						 int tstype)
5552 {
5553 	switch (tstype) {
5554 	case SCM_TSTAMP_SCHED:
5555 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5556 	case SCM_TSTAMP_SND:
5557 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5558 						    SKBTX_SW_TSTAMP);
5559 	case SCM_TSTAMP_ACK:
5560 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5561 	case SCM_TSTAMP_COMPLETION:
5562 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5563 	}
5564 
5565 	return false;
5566 }
5567 
5568 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5569 						  struct skb_shared_hwtstamps *hwtstamps,
5570 						  struct sock *sk,
5571 						  int tstype)
5572 {
5573 	int op;
5574 
5575 	switch (tstype) {
5576 	case SCM_TSTAMP_SCHED:
5577 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5578 		break;
5579 	case SCM_TSTAMP_SND:
5580 		if (hwtstamps) {
5581 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5582 			*skb_hwtstamps(skb) = *hwtstamps;
5583 		} else {
5584 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5585 		}
5586 		break;
5587 	case SCM_TSTAMP_ACK:
5588 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5589 		break;
5590 	default:
5591 		return;
5592 	}
5593 
5594 	bpf_skops_tx_timestamping(sk, skb, op);
5595 }
5596 
5597 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5598 		     const struct sk_buff *ack_skb,
5599 		     struct skb_shared_hwtstamps *hwtstamps,
5600 		     struct sock *sk, int tstype)
5601 {
5602 	struct sk_buff *skb;
5603 	bool tsonly, opt_stats = false;
5604 	u32 tsflags;
5605 
5606 	if (!sk)
5607 		return;
5608 
5609 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5610 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5611 						      sk, tstype);
5612 
5613 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5614 		return;
5615 
5616 	tsflags = READ_ONCE(sk->sk_tsflags);
5617 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5618 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5619 		return;
5620 
5621 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5622 	if (!skb_may_tx_timestamp(sk, tsonly))
5623 		return;
5624 
5625 	if (tsonly) {
5626 #ifdef CONFIG_INET
5627 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5628 		    sk_is_tcp(sk)) {
5629 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5630 							     ack_skb);
5631 			opt_stats = true;
5632 		} else
5633 #endif
5634 			skb = alloc_skb(0, GFP_ATOMIC);
5635 	} else {
5636 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5637 
5638 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5639 			kfree_skb(skb);
5640 			return;
5641 		}
5642 	}
5643 	if (!skb)
5644 		return;
5645 
5646 	if (tsonly) {
5647 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5648 					     SKBTX_ANY_TSTAMP;
5649 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5650 	}
5651 
5652 	if (hwtstamps)
5653 		*skb_hwtstamps(skb) = *hwtstamps;
5654 	else
5655 		__net_timestamp(skb);
5656 
5657 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5658 }
5659 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5660 
5661 void skb_tstamp_tx(struct sk_buff *orig_skb,
5662 		   struct skb_shared_hwtstamps *hwtstamps)
5663 {
5664 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5665 			       SCM_TSTAMP_SND);
5666 }
5667 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5668 
5669 #ifdef CONFIG_WIRELESS
5670 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5671 {
5672 	struct sock *sk = skb->sk;
5673 	struct sock_exterr_skb *serr;
5674 	int err = 1;
5675 
5676 	skb->wifi_acked_valid = 1;
5677 	skb->wifi_acked = acked;
5678 
5679 	serr = SKB_EXT_ERR(skb);
5680 	memset(serr, 0, sizeof(*serr));
5681 	serr->ee.ee_errno = ENOMSG;
5682 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5683 
5684 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5685 	 * but only if the socket refcount is not zero.
5686 	 */
5687 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5688 		err = sock_queue_err_skb(sk, skb);
5689 		sock_put(sk);
5690 	}
5691 	if (err)
5692 		kfree_skb(skb);
5693 }
5694 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5695 #endif /* CONFIG_WIRELESS */
5696 
5697 /**
5698  * skb_partial_csum_set - set up and verify partial csum values for packet
5699  * @skb: the skb to set
5700  * @start: the number of bytes after skb->data to start checksumming.
5701  * @off: the offset from start to place the checksum.
5702  *
5703  * For untrusted partially-checksummed packets, we need to make sure the values
5704  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5705  *
5706  * This function checks and sets those values and skb->ip_summed: if this
5707  * returns false you should drop the packet.
5708  */
5709 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5710 {
5711 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5712 	u32 csum_start = skb_headroom(skb) + (u32)start;
5713 
5714 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5715 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5716 				     start, off, skb_headroom(skb), skb_headlen(skb));
5717 		return false;
5718 	}
5719 	skb->ip_summed = CHECKSUM_PARTIAL;
5720 	skb->csum_start = csum_start;
5721 	skb->csum_offset = off;
5722 	skb->transport_header = csum_start;
5723 	return true;
5724 }
5725 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5726 
5727 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5728 			       unsigned int max)
5729 {
5730 	if (skb_headlen(skb) >= len)
5731 		return 0;
5732 
5733 	/* If we need to pullup then pullup to the max, so we
5734 	 * won't need to do it again.
5735 	 */
5736 	if (max > skb->len)
5737 		max = skb->len;
5738 
5739 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5740 		return -ENOMEM;
5741 
5742 	if (skb_headlen(skb) < len)
5743 		return -EPROTO;
5744 
5745 	return 0;
5746 }
5747 
5748 #define MAX_TCP_HDR_LEN (15 * 4)
5749 
5750 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5751 				      typeof(IPPROTO_IP) proto,
5752 				      unsigned int off)
5753 {
5754 	int err;
5755 
5756 	switch (proto) {
5757 	case IPPROTO_TCP:
5758 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5759 					  off + MAX_TCP_HDR_LEN);
5760 		if (!err && !skb_partial_csum_set(skb, off,
5761 						  offsetof(struct tcphdr,
5762 							   check)))
5763 			err = -EPROTO;
5764 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5765 
5766 	case IPPROTO_UDP:
5767 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5768 					  off + sizeof(struct udphdr));
5769 		if (!err && !skb_partial_csum_set(skb, off,
5770 						  offsetof(struct udphdr,
5771 							   check)))
5772 			err = -EPROTO;
5773 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5774 	}
5775 
5776 	return ERR_PTR(-EPROTO);
5777 }
5778 
5779 /* This value should be large enough to cover a tagged ethernet header plus
5780  * maximally sized IP and TCP or UDP headers.
5781  */
5782 #define MAX_IP_HDR_LEN 128
5783 
5784 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5785 {
5786 	unsigned int off;
5787 	bool fragment;
5788 	__sum16 *csum;
5789 	int err;
5790 
5791 	fragment = false;
5792 
5793 	err = skb_maybe_pull_tail(skb,
5794 				  sizeof(struct iphdr),
5795 				  MAX_IP_HDR_LEN);
5796 	if (err < 0)
5797 		goto out;
5798 
5799 	if (ip_is_fragment(ip_hdr(skb)))
5800 		fragment = true;
5801 
5802 	off = ip_hdrlen(skb);
5803 
5804 	err = -EPROTO;
5805 
5806 	if (fragment)
5807 		goto out;
5808 
5809 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5810 	if (IS_ERR(csum))
5811 		return PTR_ERR(csum);
5812 
5813 	if (recalculate)
5814 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5815 					   ip_hdr(skb)->daddr,
5816 					   skb->len - off,
5817 					   ip_hdr(skb)->protocol, 0);
5818 	err = 0;
5819 
5820 out:
5821 	return err;
5822 }
5823 
5824 /* This value should be large enough to cover a tagged ethernet header plus
5825  * an IPv6 header, all options, and a maximal TCP or UDP header.
5826  */
5827 #define MAX_IPV6_HDR_LEN 256
5828 
5829 #define OPT_HDR(type, skb, off) \
5830 	(type *)(skb_network_header(skb) + (off))
5831 
5832 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5833 {
5834 	int err;
5835 	u8 nexthdr;
5836 	unsigned int off;
5837 	unsigned int len;
5838 	bool fragment;
5839 	bool done;
5840 	__sum16 *csum;
5841 
5842 	fragment = false;
5843 	done = false;
5844 
5845 	off = sizeof(struct ipv6hdr);
5846 
5847 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5848 	if (err < 0)
5849 		goto out;
5850 
5851 	nexthdr = ipv6_hdr(skb)->nexthdr;
5852 
5853 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5854 	while (off <= len && !done) {
5855 		switch (nexthdr) {
5856 		case IPPROTO_DSTOPTS:
5857 		case IPPROTO_HOPOPTS:
5858 		case IPPROTO_ROUTING: {
5859 			struct ipv6_opt_hdr *hp;
5860 
5861 			err = skb_maybe_pull_tail(skb,
5862 						  off +
5863 						  sizeof(struct ipv6_opt_hdr),
5864 						  MAX_IPV6_HDR_LEN);
5865 			if (err < 0)
5866 				goto out;
5867 
5868 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5869 			nexthdr = hp->nexthdr;
5870 			off += ipv6_optlen(hp);
5871 			break;
5872 		}
5873 		case IPPROTO_AH: {
5874 			struct ip_auth_hdr *hp;
5875 
5876 			err = skb_maybe_pull_tail(skb,
5877 						  off +
5878 						  sizeof(struct ip_auth_hdr),
5879 						  MAX_IPV6_HDR_LEN);
5880 			if (err < 0)
5881 				goto out;
5882 
5883 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5884 			nexthdr = hp->nexthdr;
5885 			off += ipv6_authlen(hp);
5886 			break;
5887 		}
5888 		case IPPROTO_FRAGMENT: {
5889 			struct frag_hdr *hp;
5890 
5891 			err = skb_maybe_pull_tail(skb,
5892 						  off +
5893 						  sizeof(struct frag_hdr),
5894 						  MAX_IPV6_HDR_LEN);
5895 			if (err < 0)
5896 				goto out;
5897 
5898 			hp = OPT_HDR(struct frag_hdr, skb, off);
5899 
5900 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5901 				fragment = true;
5902 
5903 			nexthdr = hp->nexthdr;
5904 			off += sizeof(struct frag_hdr);
5905 			break;
5906 		}
5907 		default:
5908 			done = true;
5909 			break;
5910 		}
5911 	}
5912 
5913 	err = -EPROTO;
5914 
5915 	if (!done || fragment)
5916 		goto out;
5917 
5918 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5919 	if (IS_ERR(csum))
5920 		return PTR_ERR(csum);
5921 
5922 	if (recalculate)
5923 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5924 					 &ipv6_hdr(skb)->daddr,
5925 					 skb->len - off, nexthdr, 0);
5926 	err = 0;
5927 
5928 out:
5929 	return err;
5930 }
5931 
5932 /**
5933  * skb_checksum_setup - set up partial checksum offset
5934  * @skb: the skb to set up
5935  * @recalculate: if true the pseudo-header checksum will be recalculated
5936  */
5937 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5938 {
5939 	int err;
5940 
5941 	switch (skb->protocol) {
5942 	case htons(ETH_P_IP):
5943 		err = skb_checksum_setup_ipv4(skb, recalculate);
5944 		break;
5945 
5946 	case htons(ETH_P_IPV6):
5947 		err = skb_checksum_setup_ipv6(skb, recalculate);
5948 		break;
5949 
5950 	default:
5951 		err = -EPROTO;
5952 		break;
5953 	}
5954 
5955 	return err;
5956 }
5957 EXPORT_SYMBOL(skb_checksum_setup);
5958 
5959 /**
5960  * skb_checksum_maybe_trim - maybe trims the given skb
5961  * @skb: the skb to check
5962  * @transport_len: the data length beyond the network header
5963  *
5964  * Checks whether the given skb has data beyond the given transport length.
5965  * If so, returns a cloned skb trimmed to this transport length.
5966  * Otherwise returns the provided skb. Returns NULL in error cases
5967  * (e.g. transport_len exceeds skb length or out-of-memory).
5968  *
5969  * Caller needs to set the skb transport header and free any returned skb if it
5970  * differs from the provided skb.
5971  */
5972 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5973 					       unsigned int transport_len)
5974 {
5975 	struct sk_buff *skb_chk;
5976 	unsigned int len = skb_transport_offset(skb) + transport_len;
5977 	int ret;
5978 
5979 	if (skb->len < len)
5980 		return NULL;
5981 	else if (skb->len == len)
5982 		return skb;
5983 
5984 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5985 	if (!skb_chk)
5986 		return NULL;
5987 
5988 	ret = pskb_trim_rcsum(skb_chk, len);
5989 	if (ret) {
5990 		kfree_skb(skb_chk);
5991 		return NULL;
5992 	}
5993 
5994 	return skb_chk;
5995 }
5996 
5997 /**
5998  * skb_checksum_trimmed - validate checksum of an skb
5999  * @skb: the skb to check
6000  * @transport_len: the data length beyond the network header
6001  * @skb_chkf: checksum function to use
6002  *
6003  * Applies the given checksum function skb_chkf to the provided skb.
6004  * Returns a checked and maybe trimmed skb. Returns NULL on error.
6005  *
6006  * If the skb has data beyond the given transport length, then a
6007  * trimmed & cloned skb is checked and returned.
6008  *
6009  * Caller needs to set the skb transport header and free any returned skb if it
6010  * differs from the provided skb.
6011  */
6012 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6013 				     unsigned int transport_len,
6014 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6015 {
6016 	struct sk_buff *skb_chk;
6017 	unsigned int offset = skb_transport_offset(skb);
6018 	__sum16 ret;
6019 
6020 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6021 	if (!skb_chk)
6022 		goto err;
6023 
6024 	if (!pskb_may_pull(skb_chk, offset))
6025 		goto err;
6026 
6027 	skb_pull_rcsum(skb_chk, offset);
6028 	ret = skb_chkf(skb_chk);
6029 	skb_push_rcsum(skb_chk, offset);
6030 
6031 	if (ret)
6032 		goto err;
6033 
6034 	return skb_chk;
6035 
6036 err:
6037 	if (skb_chk && skb_chk != skb)
6038 		kfree_skb(skb_chk);
6039 
6040 	return NULL;
6041 
6042 }
6043 EXPORT_SYMBOL(skb_checksum_trimmed);
6044 
6045 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6046 {
6047 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6048 			     skb->dev->name);
6049 }
6050 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6051 
6052 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6053 {
6054 	if (head_stolen) {
6055 		skb_release_head_state(skb);
6056 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6057 	} else {
6058 		__kfree_skb(skb);
6059 	}
6060 }
6061 EXPORT_SYMBOL(kfree_skb_partial);
6062 
6063 /**
6064  * skb_try_coalesce - try to merge skb to prior one
6065  * @to: prior buffer
6066  * @from: buffer to add
6067  * @fragstolen: pointer to boolean
6068  * @delta_truesize: how much more was allocated than was requested
6069  */
6070 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6071 		      bool *fragstolen, int *delta_truesize)
6072 {
6073 	struct skb_shared_info *to_shinfo, *from_shinfo;
6074 	int i, delta, len = from->len;
6075 
6076 	*fragstolen = false;
6077 
6078 	if (skb_cloned(to))
6079 		return false;
6080 
6081 	/* In general, avoid mixing page_pool and non-page_pool allocated
6082 	 * pages within the same SKB. In theory we could take full
6083 	 * references if @from is cloned and !@to->pp_recycle but its
6084 	 * tricky (due to potential race with the clone disappearing) and
6085 	 * rare, so not worth dealing with.
6086 	 */
6087 	if (to->pp_recycle != from->pp_recycle)
6088 		return false;
6089 
6090 	if (skb_frags_readable(from) != skb_frags_readable(to))
6091 		return false;
6092 
6093 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6094 		if (len)
6095 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6096 		*delta_truesize = 0;
6097 		return true;
6098 	}
6099 
6100 	to_shinfo = skb_shinfo(to);
6101 	from_shinfo = skb_shinfo(from);
6102 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6103 		return false;
6104 	if (skb_zcopy(to) || skb_zcopy(from))
6105 		return false;
6106 
6107 	if (skb_headlen(from) != 0) {
6108 		struct page *page;
6109 		unsigned int offset;
6110 
6111 		if (to_shinfo->nr_frags +
6112 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6113 			return false;
6114 
6115 		if (skb_head_is_locked(from))
6116 			return false;
6117 
6118 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6119 
6120 		page = virt_to_head_page(from->head);
6121 		offset = from->data - (unsigned char *)page_address(page);
6122 
6123 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6124 				   page, offset, skb_headlen(from));
6125 		*fragstolen = true;
6126 	} else {
6127 		if (to_shinfo->nr_frags +
6128 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6129 			return false;
6130 
6131 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6132 	}
6133 
6134 	WARN_ON_ONCE(delta < len);
6135 
6136 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6137 	       from_shinfo->frags,
6138 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6139 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6140 
6141 	if (!skb_cloned(from))
6142 		from_shinfo->nr_frags = 0;
6143 
6144 	/* if the skb is not cloned this does nothing
6145 	 * since we set nr_frags to 0.
6146 	 */
6147 	if (skb_pp_frag_ref(from)) {
6148 		for (i = 0; i < from_shinfo->nr_frags; i++)
6149 			__skb_frag_ref(&from_shinfo->frags[i]);
6150 	}
6151 
6152 	to->truesize += delta;
6153 	to->len += len;
6154 	to->data_len += len;
6155 
6156 	*delta_truesize = delta;
6157 	return true;
6158 }
6159 EXPORT_SYMBOL(skb_try_coalesce);
6160 
6161 /**
6162  * skb_scrub_packet - scrub an skb
6163  *
6164  * @skb: buffer to clean
6165  * @xnet: packet is crossing netns
6166  *
6167  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6168  * into/from a tunnel. Some information have to be cleared during these
6169  * operations.
6170  * skb_scrub_packet can also be used to clean a skb before injecting it in
6171  * another namespace (@xnet == true). We have to clear all information in the
6172  * skb that could impact namespace isolation.
6173  */
6174 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6175 {
6176 	skb->pkt_type = PACKET_HOST;
6177 	skb->skb_iif = 0;
6178 	skb->ignore_df = 0;
6179 	skb_dst_drop(skb);
6180 	skb_ext_reset(skb);
6181 	nf_reset_ct(skb);
6182 	nf_reset_trace(skb);
6183 
6184 #ifdef CONFIG_NET_SWITCHDEV
6185 	skb->offload_fwd_mark = 0;
6186 	skb->offload_l3_fwd_mark = 0;
6187 #endif
6188 	ipvs_reset(skb);
6189 
6190 	if (!xnet)
6191 		return;
6192 
6193 	skb->mark = 0;
6194 	skb_clear_tstamp(skb);
6195 }
6196 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6197 
6198 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6199 {
6200 	int mac_len, meta_len;
6201 	void *meta;
6202 
6203 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6204 		kfree_skb(skb);
6205 		return NULL;
6206 	}
6207 
6208 	mac_len = skb->data - skb_mac_header(skb);
6209 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6210 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6211 			mac_len - VLAN_HLEN - ETH_TLEN);
6212 	}
6213 
6214 	meta_len = skb_metadata_len(skb);
6215 	if (meta_len) {
6216 		meta = skb_metadata_end(skb) - meta_len;
6217 		memmove(meta + VLAN_HLEN, meta, meta_len);
6218 	}
6219 
6220 	skb->mac_header += VLAN_HLEN;
6221 	return skb;
6222 }
6223 
6224 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6225 {
6226 	struct vlan_hdr *vhdr;
6227 	u16 vlan_tci;
6228 
6229 	if (unlikely(skb_vlan_tag_present(skb))) {
6230 		/* vlan_tci is already set-up so leave this for another time */
6231 		return skb;
6232 	}
6233 
6234 	skb = skb_share_check(skb, GFP_ATOMIC);
6235 	if (unlikely(!skb))
6236 		goto err_free;
6237 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6238 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6239 		goto err_free;
6240 
6241 	vhdr = (struct vlan_hdr *)skb->data;
6242 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6243 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6244 
6245 	skb_pull_rcsum(skb, VLAN_HLEN);
6246 	vlan_set_encap_proto(skb, vhdr);
6247 
6248 	skb = skb_reorder_vlan_header(skb);
6249 	if (unlikely(!skb))
6250 		goto err_free;
6251 
6252 	skb_reset_network_header(skb);
6253 	if (!skb_transport_header_was_set(skb))
6254 		skb_reset_transport_header(skb);
6255 	skb_reset_mac_len(skb);
6256 
6257 	return skb;
6258 
6259 err_free:
6260 	kfree_skb(skb);
6261 	return NULL;
6262 }
6263 EXPORT_SYMBOL(skb_vlan_untag);
6264 
6265 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6266 {
6267 	if (!pskb_may_pull(skb, write_len))
6268 		return -ENOMEM;
6269 
6270 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6271 		return 0;
6272 
6273 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6274 }
6275 EXPORT_SYMBOL(skb_ensure_writable);
6276 
6277 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6278 {
6279 	int needed_headroom = dev->needed_headroom;
6280 	int needed_tailroom = dev->needed_tailroom;
6281 
6282 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6283 	 * that the tail tag does not fail at its role of being at the end of
6284 	 * the packet, once the conduit interface pads the frame. Account for
6285 	 * that pad length here, and pad later.
6286 	 */
6287 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6288 		needed_tailroom += ETH_ZLEN - skb->len;
6289 	/* skb_headroom() returns unsigned int... */
6290 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6291 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6292 
6293 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6294 		/* No reallocation needed, yay! */
6295 		return 0;
6296 
6297 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6298 				GFP_ATOMIC);
6299 }
6300 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6301 
6302 /* remove VLAN header from packet and update csum accordingly.
6303  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6304  */
6305 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6306 {
6307 	int offset = skb->data - skb_mac_header(skb);
6308 	int err;
6309 
6310 	if (WARN_ONCE(offset,
6311 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6312 		      offset)) {
6313 		return -EINVAL;
6314 	}
6315 
6316 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6317 	if (unlikely(err))
6318 		return err;
6319 
6320 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6321 
6322 	vlan_remove_tag(skb, vlan_tci);
6323 
6324 	skb->mac_header += VLAN_HLEN;
6325 
6326 	if (skb_network_offset(skb) < ETH_HLEN)
6327 		skb_set_network_header(skb, ETH_HLEN);
6328 
6329 	skb_reset_mac_len(skb);
6330 
6331 	return err;
6332 }
6333 EXPORT_SYMBOL(__skb_vlan_pop);
6334 
6335 /* Pop a vlan tag either from hwaccel or from payload.
6336  * Expects skb->data at mac header.
6337  */
6338 int skb_vlan_pop(struct sk_buff *skb)
6339 {
6340 	u16 vlan_tci;
6341 	__be16 vlan_proto;
6342 	int err;
6343 
6344 	if (likely(skb_vlan_tag_present(skb))) {
6345 		__vlan_hwaccel_clear_tag(skb);
6346 	} else {
6347 		if (unlikely(!eth_type_vlan(skb->protocol)))
6348 			return 0;
6349 
6350 		err = __skb_vlan_pop(skb, &vlan_tci);
6351 		if (err)
6352 			return err;
6353 	}
6354 	/* move next vlan tag to hw accel tag */
6355 	if (likely(!eth_type_vlan(skb->protocol)))
6356 		return 0;
6357 
6358 	vlan_proto = skb->protocol;
6359 	err = __skb_vlan_pop(skb, &vlan_tci);
6360 	if (unlikely(err))
6361 		return err;
6362 
6363 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6364 	return 0;
6365 }
6366 EXPORT_SYMBOL(skb_vlan_pop);
6367 
6368 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6369  * Expects skb->data at mac header.
6370  */
6371 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6372 {
6373 	if (skb_vlan_tag_present(skb)) {
6374 		int offset = skb->data - skb_mac_header(skb);
6375 		int err;
6376 
6377 		if (WARN_ONCE(offset,
6378 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6379 			      offset)) {
6380 			return -EINVAL;
6381 		}
6382 
6383 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6384 					skb_vlan_tag_get(skb));
6385 		if (err)
6386 			return err;
6387 
6388 		skb->protocol = skb->vlan_proto;
6389 		skb->network_header -= VLAN_HLEN;
6390 
6391 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6392 	}
6393 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6394 	return 0;
6395 }
6396 EXPORT_SYMBOL(skb_vlan_push);
6397 
6398 /**
6399  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6400  *
6401  * @skb: Socket buffer to modify
6402  *
6403  * Drop the Ethernet header of @skb.
6404  *
6405  * Expects that skb->data points to the mac header and that no VLAN tags are
6406  * present.
6407  *
6408  * Returns 0 on success, -errno otherwise.
6409  */
6410 int skb_eth_pop(struct sk_buff *skb)
6411 {
6412 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6413 	    skb_network_offset(skb) < ETH_HLEN)
6414 		return -EPROTO;
6415 
6416 	skb_pull_rcsum(skb, ETH_HLEN);
6417 	skb_reset_mac_header(skb);
6418 	skb_reset_mac_len(skb);
6419 
6420 	return 0;
6421 }
6422 EXPORT_SYMBOL(skb_eth_pop);
6423 
6424 /**
6425  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6426  *
6427  * @skb: Socket buffer to modify
6428  * @dst: Destination MAC address of the new header
6429  * @src: Source MAC address of the new header
6430  *
6431  * Prepend @skb with a new Ethernet header.
6432  *
6433  * Expects that skb->data points to the mac header, which must be empty.
6434  *
6435  * Returns 0 on success, -errno otherwise.
6436  */
6437 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6438 		 const unsigned char *src)
6439 {
6440 	struct ethhdr *eth;
6441 	int err;
6442 
6443 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6444 		return -EPROTO;
6445 
6446 	err = skb_cow_head(skb, sizeof(*eth));
6447 	if (err < 0)
6448 		return err;
6449 
6450 	skb_push(skb, sizeof(*eth));
6451 	skb_reset_mac_header(skb);
6452 	skb_reset_mac_len(skb);
6453 
6454 	eth = eth_hdr(skb);
6455 	ether_addr_copy(eth->h_dest, dst);
6456 	ether_addr_copy(eth->h_source, src);
6457 	eth->h_proto = skb->protocol;
6458 
6459 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6460 
6461 	return 0;
6462 }
6463 EXPORT_SYMBOL(skb_eth_push);
6464 
6465 /* Update the ethertype of hdr and the skb csum value if required. */
6466 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6467 			     __be16 ethertype)
6468 {
6469 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6470 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6471 
6472 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6473 	}
6474 
6475 	hdr->h_proto = ethertype;
6476 }
6477 
6478 /**
6479  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6480  *                   the packet
6481  *
6482  * @skb: buffer
6483  * @mpls_lse: MPLS label stack entry to push
6484  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6485  * @mac_len: length of the MAC header
6486  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6487  *            ethernet
6488  *
6489  * Expects skb->data at mac header.
6490  *
6491  * Returns 0 on success, -errno otherwise.
6492  */
6493 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6494 		  int mac_len, bool ethernet)
6495 {
6496 	struct mpls_shim_hdr *lse;
6497 	int err;
6498 
6499 	if (unlikely(!eth_p_mpls(mpls_proto)))
6500 		return -EINVAL;
6501 
6502 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6503 	if (skb->encapsulation)
6504 		return -EINVAL;
6505 
6506 	err = skb_cow_head(skb, MPLS_HLEN);
6507 	if (unlikely(err))
6508 		return err;
6509 
6510 	if (!skb->inner_protocol) {
6511 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6512 		skb_set_inner_protocol(skb, skb->protocol);
6513 	}
6514 
6515 	skb_push(skb, MPLS_HLEN);
6516 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6517 		mac_len);
6518 	skb_reset_mac_header(skb);
6519 	skb_set_network_header(skb, mac_len);
6520 	skb_reset_mac_len(skb);
6521 
6522 	lse = mpls_hdr(skb);
6523 	lse->label_stack_entry = mpls_lse;
6524 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6525 
6526 	if (ethernet && mac_len >= ETH_HLEN)
6527 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6528 	skb->protocol = mpls_proto;
6529 
6530 	return 0;
6531 }
6532 EXPORT_SYMBOL_GPL(skb_mpls_push);
6533 
6534 /**
6535  * skb_mpls_pop() - pop the outermost MPLS header
6536  *
6537  * @skb: buffer
6538  * @next_proto: ethertype of header after popped MPLS header
6539  * @mac_len: length of the MAC header
6540  * @ethernet: flag to indicate if the packet is ethernet
6541  *
6542  * Expects skb->data at mac header.
6543  *
6544  * Returns 0 on success, -errno otherwise.
6545  */
6546 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6547 		 bool ethernet)
6548 {
6549 	int err;
6550 
6551 	if (unlikely(!eth_p_mpls(skb->protocol)))
6552 		return 0;
6553 
6554 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6555 	if (unlikely(err))
6556 		return err;
6557 
6558 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6559 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6560 		mac_len);
6561 
6562 	__skb_pull(skb, MPLS_HLEN);
6563 	skb_reset_mac_header(skb);
6564 	skb_set_network_header(skb, mac_len);
6565 
6566 	if (ethernet && mac_len >= ETH_HLEN) {
6567 		struct ethhdr *hdr;
6568 
6569 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6570 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6571 		skb_mod_eth_type(skb, hdr, next_proto);
6572 	}
6573 	skb->protocol = next_proto;
6574 
6575 	return 0;
6576 }
6577 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6578 
6579 /**
6580  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6581  *
6582  * @skb: buffer
6583  * @mpls_lse: new MPLS label stack entry to update to
6584  *
6585  * Expects skb->data at mac header.
6586  *
6587  * Returns 0 on success, -errno otherwise.
6588  */
6589 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6590 {
6591 	int err;
6592 
6593 	if (unlikely(!eth_p_mpls(skb->protocol)))
6594 		return -EINVAL;
6595 
6596 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6597 	if (unlikely(err))
6598 		return err;
6599 
6600 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6601 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6602 
6603 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6604 	}
6605 
6606 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6607 
6608 	return 0;
6609 }
6610 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6611 
6612 /**
6613  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6614  *
6615  * @skb: buffer
6616  *
6617  * Expects skb->data at mac header.
6618  *
6619  * Returns 0 on success, -errno otherwise.
6620  */
6621 int skb_mpls_dec_ttl(struct sk_buff *skb)
6622 {
6623 	u32 lse;
6624 	u8 ttl;
6625 
6626 	if (unlikely(!eth_p_mpls(skb->protocol)))
6627 		return -EINVAL;
6628 
6629 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6630 		return -ENOMEM;
6631 
6632 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6633 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6634 	if (!--ttl)
6635 		return -EINVAL;
6636 
6637 	lse &= ~MPLS_LS_TTL_MASK;
6638 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6639 
6640 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6641 }
6642 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6643 
6644 /**
6645  * alloc_skb_with_frags - allocate skb with page frags
6646  *
6647  * @header_len: size of linear part
6648  * @data_len: needed length in frags
6649  * @order: max page order desired.
6650  * @errcode: pointer to error code if any
6651  * @gfp_mask: allocation mask
6652  *
6653  * This can be used to allocate a paged skb, given a maximal order for frags.
6654  */
6655 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6656 				     unsigned long data_len,
6657 				     int order,
6658 				     int *errcode,
6659 				     gfp_t gfp_mask)
6660 {
6661 	unsigned long chunk;
6662 	struct sk_buff *skb;
6663 	struct page *page;
6664 	int nr_frags = 0;
6665 
6666 	*errcode = -EMSGSIZE;
6667 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6668 		return NULL;
6669 
6670 	*errcode = -ENOBUFS;
6671 	skb = alloc_skb(header_len, gfp_mask);
6672 	if (!skb)
6673 		return NULL;
6674 
6675 	while (data_len) {
6676 		if (nr_frags == MAX_SKB_FRAGS)
6677 			goto failure;
6678 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6679 			order--;
6680 
6681 		if (order) {
6682 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6683 					   __GFP_COMP |
6684 					   __GFP_NOWARN,
6685 					   order);
6686 			if (!page) {
6687 				order--;
6688 				continue;
6689 			}
6690 		} else {
6691 			page = alloc_page(gfp_mask);
6692 			if (!page)
6693 				goto failure;
6694 		}
6695 		chunk = min_t(unsigned long, data_len,
6696 			      PAGE_SIZE << order);
6697 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6698 		nr_frags++;
6699 		skb->truesize += (PAGE_SIZE << order);
6700 		data_len -= chunk;
6701 	}
6702 	return skb;
6703 
6704 failure:
6705 	kfree_skb(skb);
6706 	return NULL;
6707 }
6708 EXPORT_SYMBOL(alloc_skb_with_frags);
6709 
6710 /* carve out the first off bytes from skb when off < headlen */
6711 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6712 				    const int headlen, gfp_t gfp_mask)
6713 {
6714 	int i;
6715 	unsigned int size = skb_end_offset(skb);
6716 	int new_hlen = headlen - off;
6717 	u8 *data;
6718 
6719 	if (skb_pfmemalloc(skb))
6720 		gfp_mask |= __GFP_MEMALLOC;
6721 
6722 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6723 	if (!data)
6724 		return -ENOMEM;
6725 	size = SKB_WITH_OVERHEAD(size);
6726 
6727 	/* Copy real data, and all frags */
6728 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6729 	skb->len -= off;
6730 
6731 	memcpy((struct skb_shared_info *)(data + size),
6732 	       skb_shinfo(skb),
6733 	       offsetof(struct skb_shared_info,
6734 			frags[skb_shinfo(skb)->nr_frags]));
6735 	if (skb_cloned(skb)) {
6736 		/* drop the old head gracefully */
6737 		if (skb_orphan_frags(skb, gfp_mask)) {
6738 			skb_kfree_head(data, size);
6739 			return -ENOMEM;
6740 		}
6741 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6742 			skb_frag_ref(skb, i);
6743 		if (skb_has_frag_list(skb))
6744 			skb_clone_fraglist(skb);
6745 		skb_release_data(skb, SKB_CONSUMED);
6746 	} else {
6747 		/* we can reuse existing recount- all we did was
6748 		 * relocate values
6749 		 */
6750 		skb_free_head(skb);
6751 	}
6752 
6753 	skb->head = data;
6754 	skb->data = data;
6755 	skb->head_frag = 0;
6756 	skb_set_end_offset(skb, size);
6757 	skb_set_tail_pointer(skb, skb_headlen(skb));
6758 	skb_headers_offset_update(skb, 0);
6759 	skb->cloned = 0;
6760 	skb->hdr_len = 0;
6761 	skb->nohdr = 0;
6762 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6763 
6764 	return 0;
6765 }
6766 
6767 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6768 
6769 /* carve out the first eat bytes from skb's frag_list. May recurse into
6770  * pskb_carve()
6771  */
6772 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6773 				gfp_t gfp_mask)
6774 {
6775 	struct sk_buff *list = shinfo->frag_list;
6776 	struct sk_buff *clone = NULL;
6777 	struct sk_buff *insp = NULL;
6778 
6779 	do {
6780 		if (!list) {
6781 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6782 			return -EFAULT;
6783 		}
6784 		if (list->len <= eat) {
6785 			/* Eaten as whole. */
6786 			eat -= list->len;
6787 			list = list->next;
6788 			insp = list;
6789 		} else {
6790 			/* Eaten partially. */
6791 			if (skb_shared(list)) {
6792 				clone = skb_clone(list, gfp_mask);
6793 				if (!clone)
6794 					return -ENOMEM;
6795 				insp = list->next;
6796 				list = clone;
6797 			} else {
6798 				/* This may be pulled without problems. */
6799 				insp = list;
6800 			}
6801 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6802 				kfree_skb(clone);
6803 				return -ENOMEM;
6804 			}
6805 			break;
6806 		}
6807 	} while (eat);
6808 
6809 	/* Free pulled out fragments. */
6810 	while ((list = shinfo->frag_list) != insp) {
6811 		shinfo->frag_list = list->next;
6812 		consume_skb(list);
6813 	}
6814 	/* And insert new clone at head. */
6815 	if (clone) {
6816 		clone->next = list;
6817 		shinfo->frag_list = clone;
6818 	}
6819 	return 0;
6820 }
6821 
6822 /* carve off first len bytes from skb. Split line (off) is in the
6823  * non-linear part of skb
6824  */
6825 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6826 				       int pos, gfp_t gfp_mask)
6827 {
6828 	int i, k = 0;
6829 	unsigned int size = skb_end_offset(skb);
6830 	u8 *data;
6831 	const int nfrags = skb_shinfo(skb)->nr_frags;
6832 	struct skb_shared_info *shinfo;
6833 
6834 	if (skb_pfmemalloc(skb))
6835 		gfp_mask |= __GFP_MEMALLOC;
6836 
6837 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6838 	if (!data)
6839 		return -ENOMEM;
6840 	size = SKB_WITH_OVERHEAD(size);
6841 
6842 	memcpy((struct skb_shared_info *)(data + size),
6843 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6844 	if (skb_orphan_frags(skb, gfp_mask)) {
6845 		skb_kfree_head(data, size);
6846 		return -ENOMEM;
6847 	}
6848 	shinfo = (struct skb_shared_info *)(data + size);
6849 	for (i = 0; i < nfrags; i++) {
6850 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6851 
6852 		if (pos + fsize > off) {
6853 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6854 
6855 			if (pos < off) {
6856 				/* Split frag.
6857 				 * We have two variants in this case:
6858 				 * 1. Move all the frag to the second
6859 				 *    part, if it is possible. F.e.
6860 				 *    this approach is mandatory for TUX,
6861 				 *    where splitting is expensive.
6862 				 * 2. Split is accurately. We make this.
6863 				 */
6864 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6865 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6866 			}
6867 			skb_frag_ref(skb, i);
6868 			k++;
6869 		}
6870 		pos += fsize;
6871 	}
6872 	shinfo->nr_frags = k;
6873 	if (skb_has_frag_list(skb))
6874 		skb_clone_fraglist(skb);
6875 
6876 	/* split line is in frag list */
6877 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6878 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6879 		if (skb_has_frag_list(skb))
6880 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6881 		skb_kfree_head(data, size);
6882 		return -ENOMEM;
6883 	}
6884 	skb_release_data(skb, SKB_CONSUMED);
6885 
6886 	skb->head = data;
6887 	skb->head_frag = 0;
6888 	skb->data = data;
6889 	skb_set_end_offset(skb, size);
6890 	skb_reset_tail_pointer(skb);
6891 	skb_headers_offset_update(skb, 0);
6892 	skb->cloned   = 0;
6893 	skb->hdr_len  = 0;
6894 	skb->nohdr    = 0;
6895 	skb->len -= off;
6896 	skb->data_len = skb->len;
6897 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6898 	return 0;
6899 }
6900 
6901 /* remove len bytes from the beginning of the skb */
6902 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6903 {
6904 	int headlen = skb_headlen(skb);
6905 
6906 	if (len < headlen)
6907 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6908 	else
6909 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6910 }
6911 
6912 /* Extract to_copy bytes starting at off from skb, and return this in
6913  * a new skb
6914  */
6915 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6916 			     int to_copy, gfp_t gfp)
6917 {
6918 	struct sk_buff  *clone = skb_clone(skb, gfp);
6919 
6920 	if (!clone)
6921 		return NULL;
6922 
6923 	if (pskb_carve(clone, off, gfp) < 0 ||
6924 	    pskb_trim(clone, to_copy)) {
6925 		kfree_skb(clone);
6926 		return NULL;
6927 	}
6928 	return clone;
6929 }
6930 EXPORT_SYMBOL(pskb_extract);
6931 
6932 /**
6933  * skb_condense - try to get rid of fragments/frag_list if possible
6934  * @skb: buffer
6935  *
6936  * Can be used to save memory before skb is added to a busy queue.
6937  * If packet has bytes in frags and enough tail room in skb->head,
6938  * pull all of them, so that we can free the frags right now and adjust
6939  * truesize.
6940  * Notes:
6941  *	We do not reallocate skb->head thus can not fail.
6942  *	Caller must re-evaluate skb->truesize if needed.
6943  */
6944 void skb_condense(struct sk_buff *skb)
6945 {
6946 	if (skb->data_len) {
6947 		if (skb->data_len > skb->end - skb->tail ||
6948 		    skb_cloned(skb) || !skb_frags_readable(skb))
6949 			return;
6950 
6951 		/* Nice, we can free page frag(s) right now */
6952 		__pskb_pull_tail(skb, skb->data_len);
6953 	}
6954 	/* At this point, skb->truesize might be over estimated,
6955 	 * because skb had a fragment, and fragments do not tell
6956 	 * their truesize.
6957 	 * When we pulled its content into skb->head, fragment
6958 	 * was freed, but __pskb_pull_tail() could not possibly
6959 	 * adjust skb->truesize, not knowing the frag truesize.
6960 	 */
6961 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6962 }
6963 EXPORT_SYMBOL(skb_condense);
6964 
6965 #ifdef CONFIG_SKB_EXTENSIONS
6966 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6967 {
6968 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6969 }
6970 
6971 /**
6972  * __skb_ext_alloc - allocate a new skb extensions storage
6973  *
6974  * @flags: See kmalloc().
6975  *
6976  * Returns the newly allocated pointer. The pointer can later attached to a
6977  * skb via __skb_ext_set().
6978  * Note: caller must handle the skb_ext as an opaque data.
6979  */
6980 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6981 {
6982 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6983 
6984 	if (new) {
6985 		memset(new->offset, 0, sizeof(new->offset));
6986 		refcount_set(&new->refcnt, 1);
6987 	}
6988 
6989 	return new;
6990 }
6991 
6992 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6993 					 unsigned int old_active)
6994 {
6995 	struct skb_ext *new;
6996 
6997 	if (refcount_read(&old->refcnt) == 1)
6998 		return old;
6999 
7000 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7001 	if (!new)
7002 		return NULL;
7003 
7004 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7005 	refcount_set(&new->refcnt, 1);
7006 
7007 #ifdef CONFIG_XFRM
7008 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7009 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7010 		unsigned int i;
7011 
7012 		for (i = 0; i < sp->len; i++)
7013 			xfrm_state_hold(sp->xvec[i]);
7014 	}
7015 #endif
7016 #ifdef CONFIG_MCTP_FLOWS
7017 	if (old_active & (1 << SKB_EXT_MCTP)) {
7018 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7019 
7020 		if (flow->key)
7021 			refcount_inc(&flow->key->refs);
7022 	}
7023 #endif
7024 	__skb_ext_put(old);
7025 	return new;
7026 }
7027 
7028 /**
7029  * __skb_ext_set - attach the specified extension storage to this skb
7030  * @skb: buffer
7031  * @id: extension id
7032  * @ext: extension storage previously allocated via __skb_ext_alloc()
7033  *
7034  * Existing extensions, if any, are cleared.
7035  *
7036  * Returns the pointer to the extension.
7037  */
7038 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7039 		    struct skb_ext *ext)
7040 {
7041 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7042 
7043 	skb_ext_put(skb);
7044 	newlen = newoff + skb_ext_type_len[id];
7045 	ext->chunks = newlen;
7046 	ext->offset[id] = newoff;
7047 	skb->extensions = ext;
7048 	skb->active_extensions = 1 << id;
7049 	return skb_ext_get_ptr(ext, id);
7050 }
7051 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7052 
7053 /**
7054  * skb_ext_add - allocate space for given extension, COW if needed
7055  * @skb: buffer
7056  * @id: extension to allocate space for
7057  *
7058  * Allocates enough space for the given extension.
7059  * If the extension is already present, a pointer to that extension
7060  * is returned.
7061  *
7062  * If the skb was cloned, COW applies and the returned memory can be
7063  * modified without changing the extension space of clones buffers.
7064  *
7065  * Returns pointer to the extension or NULL on allocation failure.
7066  */
7067 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7068 {
7069 	struct skb_ext *new, *old = NULL;
7070 	unsigned int newlen, newoff;
7071 
7072 	if (skb->active_extensions) {
7073 		old = skb->extensions;
7074 
7075 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7076 		if (!new)
7077 			return NULL;
7078 
7079 		if (__skb_ext_exist(new, id))
7080 			goto set_active;
7081 
7082 		newoff = new->chunks;
7083 	} else {
7084 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7085 
7086 		new = __skb_ext_alloc(GFP_ATOMIC);
7087 		if (!new)
7088 			return NULL;
7089 	}
7090 
7091 	newlen = newoff + skb_ext_type_len[id];
7092 	new->chunks = newlen;
7093 	new->offset[id] = newoff;
7094 set_active:
7095 	skb->slow_gro = 1;
7096 	skb->extensions = new;
7097 	skb->active_extensions |= 1 << id;
7098 	return skb_ext_get_ptr(new, id);
7099 }
7100 EXPORT_SYMBOL(skb_ext_add);
7101 
7102 #ifdef CONFIG_XFRM
7103 static void skb_ext_put_sp(struct sec_path *sp)
7104 {
7105 	unsigned int i;
7106 
7107 	for (i = 0; i < sp->len; i++)
7108 		xfrm_state_put(sp->xvec[i]);
7109 }
7110 #endif
7111 
7112 #ifdef CONFIG_MCTP_FLOWS
7113 static void skb_ext_put_mctp(struct mctp_flow *flow)
7114 {
7115 	if (flow->key)
7116 		mctp_key_unref(flow->key);
7117 }
7118 #endif
7119 
7120 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7121 {
7122 	struct skb_ext *ext = skb->extensions;
7123 
7124 	skb->active_extensions &= ~(1 << id);
7125 	if (skb->active_extensions == 0) {
7126 		skb->extensions = NULL;
7127 		__skb_ext_put(ext);
7128 #ifdef CONFIG_XFRM
7129 	} else if (id == SKB_EXT_SEC_PATH &&
7130 		   refcount_read(&ext->refcnt) == 1) {
7131 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7132 
7133 		skb_ext_put_sp(sp);
7134 		sp->len = 0;
7135 #endif
7136 	}
7137 }
7138 EXPORT_SYMBOL(__skb_ext_del);
7139 
7140 void __skb_ext_put(struct skb_ext *ext)
7141 {
7142 	/* If this is last clone, nothing can increment
7143 	 * it after check passes.  Avoids one atomic op.
7144 	 */
7145 	if (refcount_read(&ext->refcnt) == 1)
7146 		goto free_now;
7147 
7148 	if (!refcount_dec_and_test(&ext->refcnt))
7149 		return;
7150 free_now:
7151 #ifdef CONFIG_XFRM
7152 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7153 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7154 #endif
7155 #ifdef CONFIG_MCTP_FLOWS
7156 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7157 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7158 #endif
7159 
7160 	kmem_cache_free(skbuff_ext_cache, ext);
7161 }
7162 EXPORT_SYMBOL(__skb_ext_put);
7163 #endif /* CONFIG_SKB_EXTENSIONS */
7164 
7165 static void kfree_skb_napi_cache(struct sk_buff *skb)
7166 {
7167 	/* if SKB is a clone, don't handle this case */
7168 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7169 		__kfree_skb(skb);
7170 		return;
7171 	}
7172 
7173 	local_bh_disable();
7174 	__napi_kfree_skb(skb, SKB_CONSUMED);
7175 	local_bh_enable();
7176 }
7177 
7178 /**
7179  * skb_attempt_defer_free - queue skb for remote freeing
7180  * @skb: buffer
7181  *
7182  * Put @skb in a per-cpu list, using the cpu which
7183  * allocated the skb/pages to reduce false sharing
7184  * and memory zone spinlock contention.
7185  */
7186 void skb_attempt_defer_free(struct sk_buff *skb)
7187 {
7188 	struct skb_defer_node *sdn;
7189 	unsigned long defer_count;
7190 	int cpu = skb->alloc_cpu;
7191 	unsigned int defer_max;
7192 	bool kick;
7193 
7194 	if (cpu == raw_smp_processor_id() ||
7195 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7196 	    !cpu_online(cpu)) {
7197 nodefer:	kfree_skb_napi_cache(skb);
7198 		return;
7199 	}
7200 
7201 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7202 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7203 
7204 	sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7205 
7206 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7207 	defer_count = atomic_long_inc_return(&sdn->defer_count);
7208 
7209 	if (defer_count >= defer_max)
7210 		goto nodefer;
7211 
7212 	llist_add(&skb->ll_node, &sdn->defer_list);
7213 
7214 	/* Send an IPI every time queue reaches half capacity. */
7215 	kick = (defer_count - 1) == (defer_max >> 1);
7216 
7217 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7218 	 * if we are unlucky enough (this seems very unlikely).
7219 	 */
7220 	if (unlikely(kick))
7221 		kick_defer_list_purge(cpu);
7222 }
7223 
7224 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7225 				 size_t offset, size_t len)
7226 {
7227 	const char *kaddr;
7228 	__wsum csum;
7229 
7230 	kaddr = kmap_local_page(page);
7231 	csum = csum_partial(kaddr + offset, len, 0);
7232 	kunmap_local(kaddr);
7233 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7234 }
7235 
7236 /**
7237  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7238  * @skb: The buffer to add pages to
7239  * @iter: Iterator representing the pages to be added
7240  * @maxsize: Maximum amount of pages to be added
7241  *
7242  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7243  * extracts pages from an iterator and adds them to the socket buffer if
7244  * possible, copying them to fragments if not possible (such as if they're slab
7245  * pages).
7246  *
7247  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7248  * insufficient space in the buffer to transfer anything.
7249  */
7250 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7251 			     ssize_t maxsize)
7252 {
7253 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7254 	struct page *pages[8], **ppages = pages;
7255 	ssize_t spliced = 0, ret = 0;
7256 	unsigned int i;
7257 
7258 	while (iter->count > 0) {
7259 		ssize_t space, nr, len;
7260 		size_t off;
7261 
7262 		ret = -EMSGSIZE;
7263 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7264 		if (space < 0)
7265 			break;
7266 
7267 		/* We might be able to coalesce without increasing nr_frags */
7268 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7269 
7270 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7271 		if (len <= 0) {
7272 			ret = len ?: -EIO;
7273 			break;
7274 		}
7275 
7276 		i = 0;
7277 		do {
7278 			struct page *page = pages[i++];
7279 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7280 
7281 			ret = -EIO;
7282 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7283 				goto out;
7284 
7285 			ret = skb_append_pagefrags(skb, page, off, part,
7286 						   frag_limit);
7287 			if (ret < 0) {
7288 				iov_iter_revert(iter, len);
7289 				goto out;
7290 			}
7291 
7292 			if (skb->ip_summed == CHECKSUM_NONE)
7293 				skb_splice_csum_page(skb, page, off, part);
7294 
7295 			off = 0;
7296 			spliced += part;
7297 			maxsize -= part;
7298 			len -= part;
7299 		} while (len > 0);
7300 
7301 		if (maxsize <= 0)
7302 			break;
7303 	}
7304 
7305 out:
7306 	skb_len_add(skb, spliced);
7307 	return spliced ?: ret;
7308 }
7309 EXPORT_SYMBOL(skb_splice_from_iter);
7310 
7311 static __always_inline
7312 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7313 			     size_t len, void *to, void *priv2)
7314 {
7315 	__wsum *csum = priv2;
7316 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7317 
7318 	*csum = csum_block_add(*csum, next, progress);
7319 	return 0;
7320 }
7321 
7322 static __always_inline
7323 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7324 				size_t len, void *to, void *priv2)
7325 {
7326 	__wsum next, *csum = priv2;
7327 
7328 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7329 	*csum = csum_block_add(*csum, next, progress);
7330 	return next ? 0 : len;
7331 }
7332 
7333 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7334 				  __wsum *csum, struct iov_iter *i)
7335 {
7336 	size_t copied;
7337 
7338 	if (WARN_ON_ONCE(!i->data_source))
7339 		return false;
7340 	copied = iterate_and_advance2(i, bytes, addr, csum,
7341 				      copy_from_user_iter_csum,
7342 				      memcpy_from_iter_csum);
7343 	if (likely(copied == bytes))
7344 		return true;
7345 	iov_iter_revert(i, copied);
7346 	return false;
7347 }
7348 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7349 
7350 void get_netmem(netmem_ref netmem)
7351 {
7352 	struct net_iov *niov;
7353 
7354 	if (netmem_is_net_iov(netmem)) {
7355 		niov = netmem_to_net_iov(netmem);
7356 		if (net_is_devmem_iov(niov))
7357 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7358 		return;
7359 	}
7360 	get_page(netmem_to_page(netmem));
7361 }
7362 EXPORT_SYMBOL(get_netmem);
7363 
7364 void put_netmem(netmem_ref netmem)
7365 {
7366 	struct net_iov *niov;
7367 
7368 	if (netmem_is_net_iov(netmem)) {
7369 		niov = netmem_to_net_iov(netmem);
7370 		if (net_is_devmem_iov(niov))
7371 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7372 		return;
7373 	}
7374 
7375 	put_page(netmem_to_page(netmem));
7376 }
7377 EXPORT_SYMBOL(put_netmem);
7378