1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_write_stream = 0;
255 bio->bi_status = 0;
256 bio->bi_bvec_gap_bit = 0;
257 bio->bi_iter.bi_sector = 0;
258 bio->bi_iter.bi_size = 0;
259 bio->bi_iter.bi_idx = 0;
260 bio->bi_iter.bi_bvec_done = 0;
261 bio->bi_end_io = NULL;
262 bio->bi_private = NULL;
263 #ifdef CONFIG_BLK_CGROUP
264 bio->bi_blkg = NULL;
265 bio->issue_time_ns = 0;
266 if (bdev)
267 bio_associate_blkg(bio);
268 #ifdef CONFIG_BLK_CGROUP_IOCOST
269 bio->bi_iocost_cost = 0;
270 #endif
271 #endif
272 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
273 bio->bi_crypt_context = NULL;
274 #endif
275 #ifdef CONFIG_BLK_DEV_INTEGRITY
276 bio->bi_integrity = NULL;
277 #endif
278 bio->bi_vcnt = 0;
279
280 atomic_set(&bio->__bi_remaining, 1);
281 atomic_set(&bio->__bi_cnt, 1);
282 bio->bi_cookie = BLK_QC_T_NONE;
283
284 bio->bi_max_vecs = max_vecs;
285 bio->bi_io_vec = table;
286 bio->bi_pool = NULL;
287 }
288 EXPORT_SYMBOL(bio_init);
289
290 /**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 * @bdev: block device to use the bio for
294 * @opf: operation and flags for bio
295 *
296 * Description:
297 * After calling bio_reset(), @bio will be in the same state as a freshly
298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
299 * preserved are the ones that are initialized by bio_alloc_bioset(). See
300 * comment in struct bio.
301 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)302 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303 {
304 bio_uninit(bio);
305 memset(bio, 0, BIO_RESET_BYTES);
306 atomic_set(&bio->__bi_remaining, 1);
307 bio->bi_bdev = bdev;
308 if (bio->bi_bdev)
309 bio_associate_blkg(bio);
310 bio->bi_opf = opf;
311 }
312 EXPORT_SYMBOL(bio_reset);
313
__bio_chain_endio(struct bio * bio)314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 struct bio *parent = bio->bi_private;
317
318 if (bio->bi_status && !parent->bi_status)
319 parent->bi_status = bio->bi_status;
320 bio_put(bio);
321 return parent;
322 }
323
324 /*
325 * This function should only be used as a flag and must never be called.
326 * If execution reaches here, it indicates a serious programming error.
327 */
bio_chain_endio(struct bio * bio)328 static void bio_chain_endio(struct bio *bio)
329 {
330 BUG();
331 }
332
333 /**
334 * bio_chain - chain bio completions
335 * @bio: the target bio
336 * @parent: the parent bio of @bio
337 *
338 * The caller won't have a bi_end_io called when @bio completes - instead,
339 * @parent's bi_end_io won't be called until both @parent and @bio have
340 * completed; the chained bio will also be freed when it completes.
341 *
342 * The caller must not set bi_private or bi_end_io in @bio.
343 */
bio_chain(struct bio * bio,struct bio * parent)344 void bio_chain(struct bio *bio, struct bio *parent)
345 {
346 BUG_ON(bio->bi_private || bio->bi_end_io);
347
348 bio->bi_private = parent;
349 bio->bi_end_io = bio_chain_endio;
350 bio_inc_remaining(parent);
351 }
352 EXPORT_SYMBOL(bio_chain);
353
354 /**
355 * bio_chain_and_submit - submit a bio after chaining it to another one
356 * @prev: bio to chain and submit
357 * @new: bio to chain to
358 *
359 * If @prev is non-NULL, chain it to @new and submit it.
360 *
361 * Return: @new.
362 */
bio_chain_and_submit(struct bio * prev,struct bio * new)363 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
364 {
365 if (prev) {
366 bio_chain(prev, new);
367 submit_bio(prev);
368 }
369 return new;
370 }
371
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)372 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
373 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
374 {
375 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
376 }
377 EXPORT_SYMBOL_GPL(blk_next_bio);
378
bio_alloc_rescue(struct work_struct * work)379 static void bio_alloc_rescue(struct work_struct *work)
380 {
381 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
382 struct bio *bio;
383
384 while (1) {
385 spin_lock(&bs->rescue_lock);
386 bio = bio_list_pop(&bs->rescue_list);
387 spin_unlock(&bs->rescue_lock);
388
389 if (!bio)
390 break;
391
392 submit_bio_noacct(bio);
393 }
394 }
395
punt_bios_to_rescuer(struct bio_set * bs)396 static void punt_bios_to_rescuer(struct bio_set *bs)
397 {
398 struct bio_list punt, nopunt;
399 struct bio *bio;
400
401 if (WARN_ON_ONCE(!bs->rescue_workqueue))
402 return;
403 /*
404 * In order to guarantee forward progress we must punt only bios that
405 * were allocated from this bio_set; otherwise, if there was a bio on
406 * there for a stacking driver higher up in the stack, processing it
407 * could require allocating bios from this bio_set, and doing that from
408 * our own rescuer would be bad.
409 *
410 * Since bio lists are singly linked, pop them all instead of trying to
411 * remove from the middle of the list:
412 */
413
414 bio_list_init(&punt);
415 bio_list_init(&nopunt);
416
417 while ((bio = bio_list_pop(¤t->bio_list[0])))
418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 current->bio_list[0] = nopunt;
420
421 bio_list_init(&nopunt);
422 while ((bio = bio_list_pop(¤t->bio_list[1])))
423 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
424 current->bio_list[1] = nopunt;
425
426 spin_lock(&bs->rescue_lock);
427 bio_list_merge(&bs->rescue_list, &punt);
428 spin_unlock(&bs->rescue_lock);
429
430 queue_work(bs->rescue_workqueue, &bs->rescue_work);
431 }
432
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)433 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
434 {
435 unsigned long flags;
436
437 /* cache->free_list must be empty */
438 if (WARN_ON_ONCE(cache->free_list))
439 return;
440
441 local_irq_save(flags);
442 cache->free_list = cache->free_list_irq;
443 cache->free_list_irq = NULL;
444 cache->nr += cache->nr_irq;
445 cache->nr_irq = 0;
446 local_irq_restore(flags);
447 }
448
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)449 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
450 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
451 struct bio_set *bs)
452 {
453 struct bio_alloc_cache *cache;
454 struct bio *bio;
455
456 cache = per_cpu_ptr(bs->cache, get_cpu());
457 if (!cache->free_list) {
458 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
459 bio_alloc_irq_cache_splice(cache);
460 if (!cache->free_list) {
461 put_cpu();
462 return NULL;
463 }
464 }
465 bio = cache->free_list;
466 cache->free_list = bio->bi_next;
467 cache->nr--;
468 put_cpu();
469
470 if (nr_vecs)
471 bio_init_inline(bio, bdev, nr_vecs, opf);
472 else
473 bio_init(bio, bdev, NULL, nr_vecs, opf);
474 bio->bi_pool = bs;
475 return bio;
476 }
477
478 /**
479 * bio_alloc_bioset - allocate a bio for I/O
480 * @bdev: block device to allocate the bio for (can be %NULL)
481 * @nr_vecs: number of bvecs to pre-allocate
482 * @opf: operation and flags for bio
483 * @gfp_mask: the GFP_* mask given to the slab allocator
484 * @bs: the bio_set to allocate from.
485 *
486 * Allocate a bio from the mempools in @bs.
487 *
488 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
489 * allocate a bio. This is due to the mempool guarantees. To make this work,
490 * callers must never allocate more than 1 bio at a time from the general pool.
491 * Callers that need to allocate more than 1 bio must always submit the
492 * previously allocated bio for IO before attempting to allocate a new one.
493 * Failure to do so can cause deadlocks under memory pressure.
494 *
495 * Note that when running under submit_bio_noacct() (i.e. any block driver),
496 * bios are not submitted until after you return - see the code in
497 * submit_bio_noacct() that converts recursion into iteration, to prevent
498 * stack overflows.
499 *
500 * This would normally mean allocating multiple bios under submit_bio_noacct()
501 * would be susceptible to deadlocks, but we have
502 * deadlock avoidance code that resubmits any blocked bios from a rescuer
503 * thread.
504 *
505 * However, we do not guarantee forward progress for allocations from other
506 * mempools. Doing multiple allocations from the same mempool under
507 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
508 * for per bio allocations.
509 *
510 * Returns: Pointer to new bio on success, NULL on failure.
511 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)512 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
513 blk_opf_t opf, gfp_t gfp_mask,
514 struct bio_set *bs)
515 {
516 gfp_t saved_gfp = gfp_mask;
517 struct bio *bio;
518 void *p;
519
520 /* should not use nobvec bioset for nr_vecs > 0 */
521 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
522 return NULL;
523
524 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
525 opf |= REQ_ALLOC_CACHE;
526 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
527 gfp_mask, bs);
528 if (bio)
529 return bio;
530 /*
531 * No cached bio available, bio returned below marked with
532 * REQ_ALLOC_CACHE to participate in per-cpu alloc cache.
533 */
534 } else
535 opf &= ~REQ_ALLOC_CACHE;
536
537 /*
538 * submit_bio_noacct() converts recursion to iteration; this means if
539 * we're running beneath it, any bios we allocate and submit will not be
540 * submitted (and thus freed) until after we return.
541 *
542 * This exposes us to a potential deadlock if we allocate multiple bios
543 * from the same bio_set() while running underneath submit_bio_noacct().
544 * If we were to allocate multiple bios (say a stacking block driver
545 * that was splitting bios), we would deadlock if we exhausted the
546 * mempool's reserve.
547 *
548 * We solve this, and guarantee forward progress, with a rescuer
549 * workqueue per bio_set. If we go to allocate and there are bios on
550 * current->bio_list, we first try the allocation without
551 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
552 * blocking to the rescuer workqueue before we retry with the original
553 * gfp_flags.
554 */
555 if (current->bio_list &&
556 (!bio_list_empty(¤t->bio_list[0]) ||
557 !bio_list_empty(¤t->bio_list[1])) &&
558 bs->rescue_workqueue)
559 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
560
561 p = mempool_alloc(&bs->bio_pool, gfp_mask);
562 if (!p && gfp_mask != saved_gfp) {
563 punt_bios_to_rescuer(bs);
564 gfp_mask = saved_gfp;
565 p = mempool_alloc(&bs->bio_pool, gfp_mask);
566 }
567 if (unlikely(!p))
568 return NULL;
569 if (!mempool_is_saturated(&bs->bio_pool))
570 opf &= ~REQ_ALLOC_CACHE;
571
572 bio = p + bs->front_pad;
573 if (nr_vecs > BIO_INLINE_VECS) {
574 struct bio_vec *bvl = NULL;
575
576 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577 if (!bvl && gfp_mask != saved_gfp) {
578 punt_bios_to_rescuer(bs);
579 gfp_mask = saved_gfp;
580 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
581 }
582 if (unlikely(!bvl))
583 goto err_free;
584
585 bio_init(bio, bdev, bvl, nr_vecs, opf);
586 } else if (nr_vecs) {
587 bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
588 } else {
589 bio_init(bio, bdev, NULL, 0, opf);
590 }
591
592 bio->bi_pool = bs;
593 return bio;
594
595 err_free:
596 mempool_free(p, &bs->bio_pool);
597 return NULL;
598 }
599 EXPORT_SYMBOL(bio_alloc_bioset);
600
601 /**
602 * bio_kmalloc - kmalloc a bio
603 * @nr_vecs: number of bio_vecs to allocate
604 * @gfp_mask: the GFP_* mask given to the slab allocator
605 *
606 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
607 * using bio_init() before use. To free a bio returned from this function use
608 * kfree() after calling bio_uninit(). A bio returned from this function can
609 * be reused by calling bio_uninit() before calling bio_init() again.
610 *
611 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
612 * function are not backed by a mempool can fail. Do not use this function
613 * for allocations in the file system I/O path.
614 *
615 * Returns: Pointer to new bio on success, NULL on failure.
616 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)617 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
618 {
619 struct bio *bio;
620
621 if (nr_vecs > BIO_MAX_INLINE_VECS)
622 return NULL;
623 return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
624 gfp_mask);
625 }
626 EXPORT_SYMBOL(bio_kmalloc);
627
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)628 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
629 {
630 struct bio_vec bv;
631 struct bvec_iter iter;
632
633 __bio_for_each_segment(bv, bio, iter, start)
634 memzero_bvec(&bv);
635 }
636 EXPORT_SYMBOL(zero_fill_bio_iter);
637
638 /**
639 * bio_truncate - truncate the bio to small size of @new_size
640 * @bio: the bio to be truncated
641 * @new_size: new size for truncating the bio
642 *
643 * Description:
644 * Truncate the bio to new size of @new_size. If bio_op(bio) is
645 * REQ_OP_READ, zero the truncated part. This function should only
646 * be used for handling corner cases, such as bio eod.
647 */
bio_truncate(struct bio * bio,unsigned new_size)648 static void bio_truncate(struct bio *bio, unsigned new_size)
649 {
650 struct bio_vec bv;
651 struct bvec_iter iter;
652 unsigned int done = 0;
653 bool truncated = false;
654
655 if (new_size >= bio->bi_iter.bi_size)
656 return;
657
658 if (bio_op(bio) != REQ_OP_READ)
659 goto exit;
660
661 bio_for_each_segment(bv, bio, iter) {
662 if (done + bv.bv_len > new_size) {
663 size_t offset;
664
665 if (!truncated)
666 offset = new_size - done;
667 else
668 offset = 0;
669 memzero_page(bv.bv_page, bv.bv_offset + offset,
670 bv.bv_len - offset);
671 truncated = true;
672 }
673 done += bv.bv_len;
674 }
675
676 exit:
677 /*
678 * Don't touch bvec table here and make it really immutable, since
679 * fs bio user has to retrieve all pages via bio_for_each_segment_all
680 * in its .end_bio() callback.
681 *
682 * It is enough to truncate bio by updating .bi_size since we can make
683 * correct bvec with the updated .bi_size for drivers.
684 */
685 bio->bi_iter.bi_size = new_size;
686 }
687
688 /**
689 * guard_bio_eod - truncate a BIO to fit the block device
690 * @bio: bio to truncate
691 *
692 * This allows us to do IO even on the odd last sectors of a device, even if the
693 * block size is some multiple of the physical sector size.
694 *
695 * We'll just truncate the bio to the size of the device, and clear the end of
696 * the buffer head manually. Truly out-of-range accesses will turn into actual
697 * I/O errors, this only handles the "we need to be able to do I/O at the final
698 * sector" case.
699 */
guard_bio_eod(struct bio * bio)700 void guard_bio_eod(struct bio *bio)
701 {
702 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
703
704 if (!maxsector)
705 return;
706
707 /*
708 * If the *whole* IO is past the end of the device,
709 * let it through, and the IO layer will turn it into
710 * an EIO.
711 */
712 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
713 return;
714
715 maxsector -= bio->bi_iter.bi_sector;
716 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
717 return;
718
719 bio_truncate(bio, maxsector << 9);
720 }
721
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)722 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
723 unsigned int nr)
724 {
725 unsigned int i = 0;
726 struct bio *bio;
727
728 while ((bio = cache->free_list) != NULL) {
729 cache->free_list = bio->bi_next;
730 cache->nr--;
731 bio_free(bio);
732 if (++i == nr)
733 break;
734 }
735 return i;
736 }
737
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)738 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
739 unsigned int nr)
740 {
741 nr -= __bio_alloc_cache_prune(cache, nr);
742 if (!READ_ONCE(cache->free_list)) {
743 bio_alloc_irq_cache_splice(cache);
744 __bio_alloc_cache_prune(cache, nr);
745 }
746 }
747
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)748 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
749 {
750 struct bio_set *bs;
751
752 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
753 if (bs->cache) {
754 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
755
756 bio_alloc_cache_prune(cache, -1U);
757 }
758 return 0;
759 }
760
bio_alloc_cache_destroy(struct bio_set * bs)761 static void bio_alloc_cache_destroy(struct bio_set *bs)
762 {
763 int cpu;
764
765 if (!bs->cache)
766 return;
767
768 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
769 for_each_possible_cpu(cpu) {
770 struct bio_alloc_cache *cache;
771
772 cache = per_cpu_ptr(bs->cache, cpu);
773 bio_alloc_cache_prune(cache, -1U);
774 }
775 free_percpu(bs->cache);
776 bs->cache = NULL;
777 }
778
bio_put_percpu_cache(struct bio * bio)779 static inline void bio_put_percpu_cache(struct bio *bio)
780 {
781 struct bio_alloc_cache *cache;
782
783 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
784 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
785 goto out_free;
786
787 if (in_task()) {
788 bio_uninit(bio);
789 bio->bi_next = cache->free_list;
790 /* Not necessary but helps not to iopoll already freed bios */
791 bio->bi_bdev = NULL;
792 cache->free_list = bio;
793 cache->nr++;
794 } else if (in_hardirq()) {
795 lockdep_assert_irqs_disabled();
796
797 bio_uninit(bio);
798 bio->bi_next = cache->free_list_irq;
799 cache->free_list_irq = bio;
800 cache->nr_irq++;
801 } else {
802 goto out_free;
803 }
804 put_cpu();
805 return;
806 out_free:
807 put_cpu();
808 bio_free(bio);
809 }
810
811 /**
812 * bio_put - release a reference to a bio
813 * @bio: bio to release reference to
814 *
815 * Description:
816 * Put a reference to a &struct bio, either one you have gotten with
817 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
818 **/
bio_put(struct bio * bio)819 void bio_put(struct bio *bio)
820 {
821 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
822 BUG_ON(!atomic_read(&bio->__bi_cnt));
823 if (!atomic_dec_and_test(&bio->__bi_cnt))
824 return;
825 }
826 if (bio->bi_opf & REQ_ALLOC_CACHE)
827 bio_put_percpu_cache(bio);
828 else
829 bio_free(bio);
830 }
831 EXPORT_SYMBOL(bio_put);
832
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)833 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
834 {
835 bio_set_flag(bio, BIO_CLONED);
836 bio->bi_ioprio = bio_src->bi_ioprio;
837 bio->bi_write_hint = bio_src->bi_write_hint;
838 bio->bi_write_stream = bio_src->bi_write_stream;
839 bio->bi_iter = bio_src->bi_iter;
840
841 if (bio->bi_bdev) {
842 if (bio->bi_bdev == bio_src->bi_bdev &&
843 bio_flagged(bio_src, BIO_REMAPPED))
844 bio_set_flag(bio, BIO_REMAPPED);
845 bio_clone_blkg_association(bio, bio_src);
846 }
847
848 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
849 return -ENOMEM;
850 if (bio_integrity(bio_src) &&
851 bio_integrity_clone(bio, bio_src, gfp) < 0)
852 return -ENOMEM;
853 return 0;
854 }
855
856 /**
857 * bio_alloc_clone - clone a bio that shares the original bio's biovec
858 * @bdev: block_device to clone onto
859 * @bio_src: bio to clone from
860 * @gfp: allocation priority
861 * @bs: bio_set to allocate from
862 *
863 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
864 * bio, but not the actual data it points to.
865 *
866 * The caller must ensure that the return bio is not freed before @bio_src.
867 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)868 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
869 gfp_t gfp, struct bio_set *bs)
870 {
871 struct bio *bio;
872
873 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
874 if (!bio)
875 return NULL;
876
877 if (__bio_clone(bio, bio_src, gfp) < 0) {
878 bio_put(bio);
879 return NULL;
880 }
881 bio->bi_io_vec = bio_src->bi_io_vec;
882
883 return bio;
884 }
885 EXPORT_SYMBOL(bio_alloc_clone);
886
887 /**
888 * bio_init_clone - clone a bio that shares the original bio's biovec
889 * @bdev: block_device to clone onto
890 * @bio: bio to clone into
891 * @bio_src: bio to clone from
892 * @gfp: allocation priority
893 *
894 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
895 * The caller owns the returned bio, but not the actual data it points to.
896 *
897 * The caller must ensure that @bio_src is not freed before @bio.
898 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)899 int bio_init_clone(struct block_device *bdev, struct bio *bio,
900 struct bio *bio_src, gfp_t gfp)
901 {
902 int ret;
903
904 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
905 ret = __bio_clone(bio, bio_src, gfp);
906 if (ret)
907 bio_uninit(bio);
908 return ret;
909 }
910 EXPORT_SYMBOL(bio_init_clone);
911
912 /**
913 * bio_full - check if the bio is full
914 * @bio: bio to check
915 * @len: length of one segment to be added
916 *
917 * Return true if @bio is full and one segment with @len bytes can't be
918 * added to the bio, otherwise return false
919 */
bio_full(struct bio * bio,unsigned len)920 static inline bool bio_full(struct bio *bio, unsigned len)
921 {
922 if (bio->bi_vcnt >= bio->bi_max_vecs)
923 return true;
924 if (bio->bi_iter.bi_size > UINT_MAX - len)
925 return true;
926 return false;
927 }
928
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)929 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
930 unsigned int len, unsigned int off)
931 {
932 size_t bv_end = bv->bv_offset + bv->bv_len;
933 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
934 phys_addr_t page_addr = page_to_phys(page);
935
936 if (vec_end_addr + 1 != page_addr + off)
937 return false;
938 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
939 return false;
940
941 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
942 if (IS_ENABLED(CONFIG_KMSAN))
943 return false;
944 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
945 return false;
946 }
947
948 bv->bv_len += len;
949 return true;
950 }
951
952 /*
953 * Try to merge a page into a segment, while obeying the hardware segment
954 * size limit.
955 *
956 * This is kept around for the integrity metadata, which is still tries
957 * to build the initial bio to the hardware limit and doesn't have proper
958 * helpers to split. Hopefully this will go away soon.
959 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)960 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
961 struct page *page, unsigned len, unsigned offset)
962 {
963 unsigned long mask = queue_segment_boundary(q);
964 phys_addr_t addr1 = bvec_phys(bv);
965 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
966
967 if ((addr1 | mask) != (addr2 | mask))
968 return false;
969 if (len > queue_max_segment_size(q) - bv->bv_len)
970 return false;
971 return bvec_try_merge_page(bv, page, len, offset);
972 }
973
974 /**
975 * __bio_add_page - add page(s) to a bio in a new segment
976 * @bio: destination bio
977 * @page: start page to add
978 * @len: length of the data to add, may cross pages
979 * @off: offset of the data relative to @page, may cross pages
980 *
981 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
982 * that @bio has space for another bvec.
983 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)984 void __bio_add_page(struct bio *bio, struct page *page,
985 unsigned int len, unsigned int off)
986 {
987 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
988 WARN_ON_ONCE(bio_full(bio, len));
989
990 if (is_pci_p2pdma_page(page))
991 bio->bi_opf |= REQ_NOMERGE;
992
993 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
994 bio->bi_iter.bi_size += len;
995 bio->bi_vcnt++;
996 }
997 EXPORT_SYMBOL_GPL(__bio_add_page);
998
999 /**
1000 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
1001 * @bio: destination bio
1002 * @vaddr: data to add
1003 * @len: length of the data to add, may cross pages
1004 *
1005 * Add the data at @vaddr to @bio. The caller must have ensure a segment
1006 * is available for the added data. No merging into an existing segment
1007 * will be performed.
1008 */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1009 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1010 {
1011 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1012 }
1013 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1014
1015 /**
1016 * bio_add_page - attempt to add page(s) to bio
1017 * @bio: destination bio
1018 * @page: start page to add
1019 * @len: vec entry length, may cross pages
1020 * @offset: vec entry offset relative to @page, may cross pages
1021 *
1022 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1023 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1024 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1025 int bio_add_page(struct bio *bio, struct page *page,
1026 unsigned int len, unsigned int offset)
1027 {
1028 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1029 return 0;
1030 if (bio->bi_iter.bi_size > UINT_MAX - len)
1031 return 0;
1032
1033 if (bio->bi_vcnt > 0) {
1034 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1035
1036 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1037 return 0;
1038
1039 if (bvec_try_merge_page(bv, page, len, offset)) {
1040 bio->bi_iter.bi_size += len;
1041 return len;
1042 }
1043 }
1044
1045 if (bio->bi_vcnt >= bio->bi_max_vecs)
1046 return 0;
1047 __bio_add_page(bio, page, len, offset);
1048 return len;
1049 }
1050 EXPORT_SYMBOL(bio_add_page);
1051
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1052 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1053 size_t off)
1054 {
1055 unsigned long nr = off / PAGE_SIZE;
1056
1057 WARN_ON_ONCE(len > UINT_MAX);
1058 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1059 }
1060 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1061
1062 /**
1063 * bio_add_folio - Attempt to add part of a folio to a bio.
1064 * @bio: BIO to add to.
1065 * @folio: Folio to add.
1066 * @len: How many bytes from the folio to add.
1067 * @off: First byte in this folio to add.
1068 *
1069 * Filesystems that use folios can call this function instead of calling
1070 * bio_add_page() for each page in the folio. If @off is bigger than
1071 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1072 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1073 *
1074 * Return: Whether the addition was successful.
1075 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1076 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1077 size_t off)
1078 {
1079 unsigned long nr = off / PAGE_SIZE;
1080
1081 if (len > UINT_MAX)
1082 return false;
1083 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1084 }
1085 EXPORT_SYMBOL(bio_add_folio);
1086
1087 /**
1088 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1089 * @bio: destination bio
1090 * @vaddr: vmalloc address to add
1091 * @len: total length in bytes of the data to add
1092 *
1093 * Add data starting at @vaddr to @bio and return how many bytes were added.
1094 * This may be less than the amount originally asked. Returns 0 if no data
1095 * could be added to @bio.
1096 *
1097 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1098 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1099 * the completion handler.
1100 */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1101 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1102 {
1103 unsigned int offset = offset_in_page(vaddr);
1104
1105 len = min(len, PAGE_SIZE - offset);
1106 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1107 return 0;
1108 if (op_is_write(bio_op(bio)))
1109 flush_kernel_vmap_range(vaddr, len);
1110 return len;
1111 }
1112 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1113
1114 /**
1115 * bio_add_vmalloc - add a vmalloc region to a bio
1116 * @bio: destination bio
1117 * @vaddr: vmalloc address to add
1118 * @len: total length in bytes of the data to add
1119 *
1120 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1121 * @bio does not have enough space for the payload.
1122 *
1123 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1124 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1125 * the completion handler.
1126 */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1127 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1128 {
1129 do {
1130 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1131
1132 if (!added)
1133 return false;
1134 vaddr += added;
1135 len -= added;
1136 } while (len);
1137
1138 return true;
1139 }
1140 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1141
__bio_release_pages(struct bio * bio,bool mark_dirty)1142 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1143 {
1144 struct folio_iter fi;
1145
1146 bio_for_each_folio_all(fi, bio) {
1147 size_t nr_pages;
1148
1149 if (mark_dirty) {
1150 folio_lock(fi.folio);
1151 folio_mark_dirty(fi.folio);
1152 folio_unlock(fi.folio);
1153 }
1154 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1155 fi.offset / PAGE_SIZE + 1;
1156 unpin_user_folio(fi.folio, nr_pages);
1157 }
1158 }
1159 EXPORT_SYMBOL_GPL(__bio_release_pages);
1160
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1161 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1162 {
1163 WARN_ON_ONCE(bio->bi_max_vecs);
1164
1165 bio->bi_vcnt = iter->nr_segs;
1166 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1167 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1168 bio->bi_iter.bi_size = iov_iter_count(iter);
1169 bio_set_flag(bio, BIO_CLONED);
1170 }
1171
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1172 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1173 struct page **pages, unsigned int i,
1174 struct folio *folio, size_t left,
1175 size_t offset)
1176 {
1177 size_t bytes = left;
1178 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1179 unsigned int j;
1180
1181 /*
1182 * We might COW a single page in the middle of
1183 * a large folio, so we have to check that all
1184 * pages belong to the same folio.
1185 */
1186 bytes -= contig_sz;
1187 for (j = i + 1; j < i + *num_pages; j++) {
1188 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1189
1190 if (page_folio(pages[j]) != folio ||
1191 pages[j] != pages[j - 1] + 1) {
1192 break;
1193 }
1194 contig_sz += next;
1195 bytes -= next;
1196 }
1197 *num_pages = j - i;
1198
1199 return contig_sz;
1200 }
1201
1202 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1203
1204 /**
1205 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1206 * @bio: bio to add pages to
1207 * @iter: iov iterator describing the region to be mapped
1208 *
1209 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1210 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1211 * For a multi-segment *iter, this function only adds pages from the next
1212 * non-empty segment of the iov iterator.
1213 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1214 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1215 {
1216 iov_iter_extraction_t extraction_flags = 0;
1217 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1218 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1219 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1220 struct page **pages = (struct page **)bv;
1221 ssize_t size;
1222 unsigned int num_pages, i = 0;
1223 size_t offset, folio_offset, left, len;
1224 int ret = 0;
1225
1226 /*
1227 * Move page array up in the allocated memory for the bio vecs as far as
1228 * possible so that we can start filling biovecs from the beginning
1229 * without overwriting the temporary page array.
1230 */
1231 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1232 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1233
1234 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1235 extraction_flags |= ITER_ALLOW_P2PDMA;
1236
1237 size = iov_iter_extract_pages(iter, &pages,
1238 UINT_MAX - bio->bi_iter.bi_size,
1239 nr_pages, extraction_flags, &offset);
1240 if (unlikely(size <= 0))
1241 return size ? size : -EFAULT;
1242
1243 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1244 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1245 struct page *page = pages[i];
1246 struct folio *folio = page_folio(page);
1247 unsigned int old_vcnt = bio->bi_vcnt;
1248
1249 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1250 PAGE_SHIFT) + offset;
1251
1252 len = min(folio_size(folio) - folio_offset, left);
1253
1254 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1255
1256 if (num_pages > 1)
1257 len = get_contig_folio_len(&num_pages, pages, i,
1258 folio, left, offset);
1259
1260 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1261 WARN_ON_ONCE(1);
1262 ret = -EINVAL;
1263 goto out;
1264 }
1265
1266 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1267 /*
1268 * We're adding another fragment of a page that already
1269 * was part of the last segment. Undo our pin as the
1270 * page was pinned when an earlier fragment of it was
1271 * added to the bio and __bio_release_pages expects a
1272 * single pin per page.
1273 */
1274 if (offset && bio->bi_vcnt == old_vcnt)
1275 unpin_user_folio(folio, 1);
1276 }
1277 offset = 0;
1278 }
1279
1280 iov_iter_revert(iter, left);
1281 out:
1282 while (i < nr_pages)
1283 bio_release_page(bio, pages[i++]);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1290 * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1291 * for the next iteration.
1292 */
bio_iov_iter_align_down(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1293 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1294 unsigned len_align_mask)
1295 {
1296 size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1297
1298 if (!nbytes)
1299 return 0;
1300
1301 iov_iter_revert(iter, nbytes);
1302 bio->bi_iter.bi_size -= nbytes;
1303 do {
1304 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1305
1306 if (nbytes < bv->bv_len) {
1307 bv->bv_len -= nbytes;
1308 break;
1309 }
1310
1311 bio_release_page(bio, bv->bv_page);
1312 bio->bi_vcnt--;
1313 nbytes -= bv->bv_len;
1314 } while (nbytes);
1315
1316 if (!bio->bi_vcnt)
1317 return -EFAULT;
1318 return 0;
1319 }
1320
1321 /**
1322 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1323 * @bio: bio to add pages to
1324 * @iter: iov iterator describing the region to be added
1325 * @len_align_mask: the mask to align the total size to, 0 for any length
1326 *
1327 * This takes either an iterator pointing to user memory, or one pointing to
1328 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1329 * map them into the kernel. On IO completion, the caller should put those
1330 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1331 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1332 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1333 * completed by a call to ->ki_complete() or returns with an error other than
1334 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1335 * on IO completion. If it isn't, then pages should be released.
1336 *
1337 * The function tries, but does not guarantee, to pin as many pages as
1338 * fit into the bio, or are requested in @iter, whatever is smaller. If
1339 * MM encounters an error pinning the requested pages, it stops. Error
1340 * is returned only if 0 pages could be pinned.
1341 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1342 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1343 unsigned len_align_mask)
1344 {
1345 int ret = 0;
1346
1347 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1348 return -EIO;
1349
1350 if (iov_iter_is_bvec(iter)) {
1351 bio_iov_bvec_set(bio, iter);
1352 iov_iter_advance(iter, bio->bi_iter.bi_size);
1353 return 0;
1354 }
1355
1356 if (iov_iter_extract_will_pin(iter))
1357 bio_set_flag(bio, BIO_PAGE_PINNED);
1358 do {
1359 ret = __bio_iov_iter_get_pages(bio, iter);
1360 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1361
1362 if (bio->bi_vcnt)
1363 return bio_iov_iter_align_down(bio, iter, len_align_mask);
1364 return ret;
1365 }
1366
submit_bio_wait_endio(struct bio * bio)1367 static void submit_bio_wait_endio(struct bio *bio)
1368 {
1369 complete(bio->bi_private);
1370 }
1371
1372 /**
1373 * submit_bio_wait - submit a bio, and wait until it completes
1374 * @bio: The &struct bio which describes the I/O
1375 *
1376 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1377 * bio_endio() on failure.
1378 *
1379 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1380 * result in bio reference to be consumed. The caller must drop the reference
1381 * on his own.
1382 */
submit_bio_wait(struct bio * bio)1383 int submit_bio_wait(struct bio *bio)
1384 {
1385 DECLARE_COMPLETION_ONSTACK_MAP(done,
1386 bio->bi_bdev->bd_disk->lockdep_map);
1387
1388 bio->bi_private = &done;
1389 bio->bi_end_io = submit_bio_wait_endio;
1390 bio->bi_opf |= REQ_SYNC;
1391 submit_bio(bio);
1392 blk_wait_io(&done);
1393
1394 return blk_status_to_errno(bio->bi_status);
1395 }
1396 EXPORT_SYMBOL(submit_bio_wait);
1397
1398 /**
1399 * bdev_rw_virt - synchronously read into / write from kernel mapping
1400 * @bdev: block device to access
1401 * @sector: sector to access
1402 * @data: data to read/write
1403 * @len: length in byte to read/write
1404 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1405 *
1406 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1407 * the kernel direct mapping and not a vmalloc address.
1408 */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1409 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1410 size_t len, enum req_op op)
1411 {
1412 struct bio_vec bv;
1413 struct bio bio;
1414 int error;
1415
1416 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1417 return -EIO;
1418
1419 bio_init(&bio, bdev, &bv, 1, op);
1420 bio.bi_iter.bi_sector = sector;
1421 bio_add_virt_nofail(&bio, data, len);
1422 error = submit_bio_wait(&bio);
1423 bio_uninit(&bio);
1424 return error;
1425 }
1426 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1427
bio_wait_end_io(struct bio * bio)1428 static void bio_wait_end_io(struct bio *bio)
1429 {
1430 complete(bio->bi_private);
1431 bio_put(bio);
1432 }
1433
1434 /*
1435 * bio_await_chain - ends @bio and waits for every chained bio to complete
1436 */
bio_await_chain(struct bio * bio)1437 void bio_await_chain(struct bio *bio)
1438 {
1439 DECLARE_COMPLETION_ONSTACK_MAP(done,
1440 bio->bi_bdev->bd_disk->lockdep_map);
1441
1442 bio->bi_private = &done;
1443 bio->bi_end_io = bio_wait_end_io;
1444 bio_endio(bio);
1445 blk_wait_io(&done);
1446 }
1447
__bio_advance(struct bio * bio,unsigned bytes)1448 void __bio_advance(struct bio *bio, unsigned bytes)
1449 {
1450 if (bio_integrity(bio))
1451 bio_integrity_advance(bio, bytes);
1452
1453 bio_crypt_advance(bio, bytes);
1454 bio_advance_iter(bio, &bio->bi_iter, bytes);
1455 }
1456 EXPORT_SYMBOL(__bio_advance);
1457
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1458 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1459 struct bio *src, struct bvec_iter *src_iter)
1460 {
1461 while (src_iter->bi_size && dst_iter->bi_size) {
1462 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1463 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1464 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1465 void *src_buf = bvec_kmap_local(&src_bv);
1466 void *dst_buf = bvec_kmap_local(&dst_bv);
1467
1468 memcpy(dst_buf, src_buf, bytes);
1469
1470 kunmap_local(dst_buf);
1471 kunmap_local(src_buf);
1472
1473 bio_advance_iter_single(src, src_iter, bytes);
1474 bio_advance_iter_single(dst, dst_iter, bytes);
1475 }
1476 }
1477 EXPORT_SYMBOL(bio_copy_data_iter);
1478
1479 /**
1480 * bio_copy_data - copy contents of data buffers from one bio to another
1481 * @src: source bio
1482 * @dst: destination bio
1483 *
1484 * Stops when it reaches the end of either @src or @dst - that is, copies
1485 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1486 */
bio_copy_data(struct bio * dst,struct bio * src)1487 void bio_copy_data(struct bio *dst, struct bio *src)
1488 {
1489 struct bvec_iter src_iter = src->bi_iter;
1490 struct bvec_iter dst_iter = dst->bi_iter;
1491
1492 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1493 }
1494 EXPORT_SYMBOL(bio_copy_data);
1495
bio_free_pages(struct bio * bio)1496 void bio_free_pages(struct bio *bio)
1497 {
1498 struct bio_vec *bvec;
1499 struct bvec_iter_all iter_all;
1500
1501 bio_for_each_segment_all(bvec, bio, iter_all)
1502 __free_page(bvec->bv_page);
1503 }
1504 EXPORT_SYMBOL(bio_free_pages);
1505
1506 /*
1507 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1508 * for performing direct-IO in BIOs.
1509 *
1510 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1511 * because the required locks are not interrupt-safe. So what we can do is to
1512 * mark the pages dirty _before_ performing IO. And in interrupt context,
1513 * check that the pages are still dirty. If so, fine. If not, redirty them
1514 * in process context.
1515 *
1516 * Note that this code is very hard to test under normal circumstances because
1517 * direct-io pins the pages with get_user_pages(). This makes
1518 * is_page_cache_freeable return false, and the VM will not clean the pages.
1519 * But other code (eg, flusher threads) could clean the pages if they are mapped
1520 * pagecache.
1521 *
1522 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1523 * deferred bio dirtying paths.
1524 */
1525
1526 /*
1527 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1528 */
bio_set_pages_dirty(struct bio * bio)1529 void bio_set_pages_dirty(struct bio *bio)
1530 {
1531 struct folio_iter fi;
1532
1533 bio_for_each_folio_all(fi, bio) {
1534 folio_lock(fi.folio);
1535 folio_mark_dirty(fi.folio);
1536 folio_unlock(fi.folio);
1537 }
1538 }
1539 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1540
1541 /*
1542 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1543 * If they are, then fine. If, however, some pages are clean then they must
1544 * have been written out during the direct-IO read. So we take another ref on
1545 * the BIO and re-dirty the pages in process context.
1546 *
1547 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1548 * here on. It will unpin each page and will run one bio_put() against the
1549 * BIO.
1550 */
1551
1552 static void bio_dirty_fn(struct work_struct *work);
1553
1554 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1555 static DEFINE_SPINLOCK(bio_dirty_lock);
1556 static struct bio *bio_dirty_list;
1557
1558 /*
1559 * This runs in process context
1560 */
bio_dirty_fn(struct work_struct * work)1561 static void bio_dirty_fn(struct work_struct *work)
1562 {
1563 struct bio *bio, *next;
1564
1565 spin_lock_irq(&bio_dirty_lock);
1566 next = bio_dirty_list;
1567 bio_dirty_list = NULL;
1568 spin_unlock_irq(&bio_dirty_lock);
1569
1570 while ((bio = next) != NULL) {
1571 next = bio->bi_private;
1572
1573 bio_release_pages(bio, true);
1574 bio_put(bio);
1575 }
1576 }
1577
bio_check_pages_dirty(struct bio * bio)1578 void bio_check_pages_dirty(struct bio *bio)
1579 {
1580 struct folio_iter fi;
1581 unsigned long flags;
1582
1583 bio_for_each_folio_all(fi, bio) {
1584 if (!folio_test_dirty(fi.folio))
1585 goto defer;
1586 }
1587
1588 bio_release_pages(bio, false);
1589 bio_put(bio);
1590 return;
1591 defer:
1592 spin_lock_irqsave(&bio_dirty_lock, flags);
1593 bio->bi_private = bio_dirty_list;
1594 bio_dirty_list = bio;
1595 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1596 schedule_work(&bio_dirty_work);
1597 }
1598 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1599
bio_remaining_done(struct bio * bio)1600 static inline bool bio_remaining_done(struct bio *bio)
1601 {
1602 /*
1603 * If we're not chaining, then ->__bi_remaining is always 1 and
1604 * we always end io on the first invocation.
1605 */
1606 if (!bio_flagged(bio, BIO_CHAIN))
1607 return true;
1608
1609 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1610
1611 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1612 bio_clear_flag(bio, BIO_CHAIN);
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
1619 /**
1620 * bio_endio - end I/O on a bio
1621 * @bio: bio
1622 *
1623 * Description:
1624 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1625 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1626 * bio unless they own it and thus know that it has an end_io function.
1627 *
1628 * bio_endio() can be called several times on a bio that has been chained
1629 * using bio_chain(). The ->bi_end_io() function will only be called the
1630 * last time.
1631 **/
bio_endio(struct bio * bio)1632 void bio_endio(struct bio *bio)
1633 {
1634 again:
1635 if (!bio_remaining_done(bio))
1636 return;
1637 if (!bio_integrity_endio(bio))
1638 return;
1639
1640 blk_zone_bio_endio(bio);
1641
1642 rq_qos_done_bio(bio);
1643
1644 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1645 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1646 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1647 }
1648
1649 /*
1650 * Need to have a real endio function for chained bios, otherwise
1651 * various corner cases will break (like stacking block devices that
1652 * save/restore bi_end_io) - however, we want to avoid unbounded
1653 * recursion and blowing the stack. Tail call optimization would
1654 * handle this, but compiling with frame pointers also disables
1655 * gcc's sibling call optimization.
1656 */
1657 if (bio->bi_end_io == bio_chain_endio) {
1658 bio = __bio_chain_endio(bio);
1659 goto again;
1660 }
1661
1662 #ifdef CONFIG_BLK_CGROUP
1663 /*
1664 * Release cgroup info. We shouldn't have to do this here, but quite
1665 * a few callers of bio_init fail to call bio_uninit, so we cover up
1666 * for that here at least for now.
1667 */
1668 if (bio->bi_blkg) {
1669 blkg_put(bio->bi_blkg);
1670 bio->bi_blkg = NULL;
1671 }
1672 #endif
1673
1674 if (bio->bi_end_io)
1675 bio->bi_end_io(bio);
1676 }
1677 EXPORT_SYMBOL(bio_endio);
1678
1679 /**
1680 * bio_split - split a bio
1681 * @bio: bio to split
1682 * @sectors: number of sectors to split from the front of @bio
1683 * @gfp: gfp mask
1684 * @bs: bio set to allocate from
1685 *
1686 * Allocates and returns a new bio which represents @sectors from the start of
1687 * @bio, and updates @bio to represent the remaining sectors.
1688 *
1689 * Unless this is a discard request the newly allocated bio will point
1690 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1691 * neither @bio nor @bs are freed before the split bio.
1692 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1693 struct bio *bio_split(struct bio *bio, int sectors,
1694 gfp_t gfp, struct bio_set *bs)
1695 {
1696 struct bio *split;
1697
1698 if (WARN_ON_ONCE(sectors <= 0))
1699 return ERR_PTR(-EINVAL);
1700 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1701 return ERR_PTR(-EINVAL);
1702
1703 /* Zone append commands cannot be split */
1704 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1705 return ERR_PTR(-EINVAL);
1706
1707 /* atomic writes cannot be split */
1708 if (bio->bi_opf & REQ_ATOMIC)
1709 return ERR_PTR(-EINVAL);
1710
1711 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1712 if (!split)
1713 return ERR_PTR(-ENOMEM);
1714
1715 split->bi_iter.bi_size = sectors << 9;
1716
1717 if (bio_integrity(split))
1718 bio_integrity_trim(split);
1719
1720 bio_advance(bio, split->bi_iter.bi_size);
1721
1722 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1723 bio_set_flag(split, BIO_TRACE_COMPLETION);
1724
1725 return split;
1726 }
1727 EXPORT_SYMBOL(bio_split);
1728
1729 /**
1730 * bio_trim - trim a bio
1731 * @bio: bio to trim
1732 * @offset: number of sectors to trim from the front of @bio
1733 * @size: size we want to trim @bio to, in sectors
1734 *
1735 * This function is typically used for bios that are cloned and submitted
1736 * to the underlying device in parts.
1737 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1738 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1739 {
1740 /* We should never trim an atomic write */
1741 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1742 return;
1743
1744 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1745 offset + size > bio_sectors(bio)))
1746 return;
1747
1748 size <<= 9;
1749 if (offset == 0 && size == bio->bi_iter.bi_size)
1750 return;
1751
1752 bio_advance(bio, offset << 9);
1753 bio->bi_iter.bi_size = size;
1754
1755 if (bio_integrity(bio))
1756 bio_integrity_trim(bio);
1757 }
1758 EXPORT_SYMBOL_GPL(bio_trim);
1759
1760 /*
1761 * create memory pools for biovec's in a bio_set.
1762 * use the global biovec slabs created for general use.
1763 */
biovec_init_pool(mempool_t * pool,int pool_entries)1764 int biovec_init_pool(mempool_t *pool, int pool_entries)
1765 {
1766 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1767
1768 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1769 }
1770
1771 /*
1772 * bioset_exit - exit a bioset initialized with bioset_init()
1773 *
1774 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1775 * kzalloc()).
1776 */
bioset_exit(struct bio_set * bs)1777 void bioset_exit(struct bio_set *bs)
1778 {
1779 bio_alloc_cache_destroy(bs);
1780 if (bs->rescue_workqueue)
1781 destroy_workqueue(bs->rescue_workqueue);
1782 bs->rescue_workqueue = NULL;
1783
1784 mempool_exit(&bs->bio_pool);
1785 mempool_exit(&bs->bvec_pool);
1786
1787 if (bs->bio_slab)
1788 bio_put_slab(bs);
1789 bs->bio_slab = NULL;
1790 }
1791 EXPORT_SYMBOL(bioset_exit);
1792
1793 /**
1794 * bioset_init - Initialize a bio_set
1795 * @bs: pool to initialize
1796 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1797 * @front_pad: Number of bytes to allocate in front of the returned bio
1798 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1799 * and %BIOSET_NEED_RESCUER
1800 *
1801 * Description:
1802 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1803 * to ask for a number of bytes to be allocated in front of the bio.
1804 * Front pad allocation is useful for embedding the bio inside
1805 * another structure, to avoid allocating extra data to go with the bio.
1806 * Note that the bio must be embedded at the END of that structure always,
1807 * or things will break badly.
1808 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1809 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1810 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1811 * to dispatch queued requests when the mempool runs out of space.
1812 *
1813 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1814 int bioset_init(struct bio_set *bs,
1815 unsigned int pool_size,
1816 unsigned int front_pad,
1817 int flags)
1818 {
1819 bs->front_pad = front_pad;
1820 if (flags & BIOSET_NEED_BVECS)
1821 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1822 else
1823 bs->back_pad = 0;
1824
1825 spin_lock_init(&bs->rescue_lock);
1826 bio_list_init(&bs->rescue_list);
1827 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1828
1829 bs->bio_slab = bio_find_or_create_slab(bs);
1830 if (!bs->bio_slab)
1831 return -ENOMEM;
1832
1833 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1834 goto bad;
1835
1836 if ((flags & BIOSET_NEED_BVECS) &&
1837 biovec_init_pool(&bs->bvec_pool, pool_size))
1838 goto bad;
1839
1840 if (flags & BIOSET_NEED_RESCUER) {
1841 bs->rescue_workqueue = alloc_workqueue("bioset",
1842 WQ_MEM_RECLAIM, 0);
1843 if (!bs->rescue_workqueue)
1844 goto bad;
1845 }
1846 if (flags & BIOSET_PERCPU_CACHE) {
1847 bs->cache = alloc_percpu(struct bio_alloc_cache);
1848 if (!bs->cache)
1849 goto bad;
1850 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1851 }
1852
1853 return 0;
1854 bad:
1855 bioset_exit(bs);
1856 return -ENOMEM;
1857 }
1858 EXPORT_SYMBOL(bioset_init);
1859
init_bio(void)1860 static int __init init_bio(void)
1861 {
1862 int i;
1863
1864 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1865
1866 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1867 struct biovec_slab *bvs = bvec_slabs + i;
1868
1869 bvs->slab = kmem_cache_create(bvs->name,
1870 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1871 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1872 }
1873
1874 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1875 bio_cpu_dead);
1876
1877 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1878 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1879 panic("bio: can't allocate bios\n");
1880
1881 return 0;
1882 }
1883 subsys_initcall(init_bio);
1884