1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>
22 #include <linux/swap.h> /* folio_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
43 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
44
45 DEFINE_STATIC_SRCU(uprobes_srcu);
46
47 #define UPROBES_HASH_SZ 13
48 /* serialize uprobe->pending_list */
49 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
50 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51
52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
53
54 /* Have a copy of original instruction */
55 #define UPROBE_COPY_INSN 0
56
57 struct uprobe {
58 struct rb_node rb_node; /* node in the rb tree */
59 refcount_t ref;
60 struct rw_semaphore register_rwsem;
61 struct rw_semaphore consumer_rwsem;
62 struct list_head pending_list;
63 struct list_head consumers;
64 struct inode *inode; /* Also hold a ref to inode */
65 struct rcu_head rcu;
66 loff_t offset;
67 loff_t ref_ctr_offset;
68 unsigned long flags;
69
70 /*
71 * The generic code assumes that it has two members of unknown type
72 * owned by the arch-specific code:
73 *
74 * insn - copy_insn() saves the original instruction here for
75 * arch_uprobe_analyze_insn().
76 *
77 * ixol - potentially modified instruction to execute out of
78 * line, copied to xol_area by xol_get_insn_slot().
79 */
80 struct arch_uprobe arch;
81 };
82
83 struct delayed_uprobe {
84 struct list_head list;
85 struct uprobe *uprobe;
86 struct mm_struct *mm;
87 };
88
89 static DEFINE_MUTEX(delayed_uprobe_lock);
90 static LIST_HEAD(delayed_uprobe_list);
91
92 /*
93 * Execute out of line area: anonymous executable mapping installed
94 * by the probed task to execute the copy of the original instruction
95 * mangled by set_swbp().
96 *
97 * On a breakpoint hit, thread contests for a slot. It frees the
98 * slot after singlestep. Currently a fixed number of slots are
99 * allocated.
100 */
101 struct xol_area {
102 wait_queue_head_t wq; /* if all slots are busy */
103 atomic_t slot_count; /* number of in-use slots */
104 unsigned long *bitmap; /* 0 = free slot */
105
106 struct page *page;
107 /*
108 * We keep the vma's vm_start rather than a pointer to the vma
109 * itself. The probed process or a naughty kernel module could make
110 * the vma go away, and we must handle that reasonably gracefully.
111 */
112 unsigned long vaddr; /* Page(s) of instruction slots */
113 };
114
uprobe_warn(struct task_struct * t,const char * msg)115 static void uprobe_warn(struct task_struct *t, const char *msg)
116 {
117 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
118 }
119
120 /*
121 * valid_vma: Verify if the specified vma is an executable vma
122 * Relax restrictions while unregistering: vm_flags might have
123 * changed after breakpoint was inserted.
124 * - is_register: indicates if we are in register context.
125 * - Return 1 if the specified virtual address is in an
126 * executable vma.
127 */
valid_vma(struct vm_area_struct * vma,bool is_register)128 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
129 {
130 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
131
132 if (is_register)
133 flags |= VM_WRITE;
134
135 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
136 }
137
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)138 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
139 {
140 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 }
142
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)143 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
144 {
145 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
146 }
147
148 /**
149 * __replace_page - replace page in vma by new page.
150 * based on replace_page in mm/ksm.c
151 *
152 * @vma: vma that holds the pte pointing to page
153 * @addr: address the old @page is mapped at
154 * @old_page: the page we are replacing by new_page
155 * @new_page: the modified page we replace page by
156 *
157 * If @new_page is NULL, only unmap @old_page.
158 *
159 * Returns 0 on success, negative error code otherwise.
160 */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
162 struct page *old_page, struct page *new_page)
163 {
164 struct folio *old_folio = page_folio(old_page);
165 struct folio *new_folio;
166 struct mm_struct *mm = vma->vm_mm;
167 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
168 int err;
169 struct mmu_notifier_range range;
170
171 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
172 addr + PAGE_SIZE);
173
174 if (new_page) {
175 new_folio = page_folio(new_page);
176 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
177 if (err)
178 return err;
179 }
180
181 /* For folio_free_swap() below */
182 folio_lock(old_folio);
183
184 mmu_notifier_invalidate_range_start(&range);
185 err = -EAGAIN;
186 if (!page_vma_mapped_walk(&pvmw))
187 goto unlock;
188 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
189
190 if (new_page) {
191 folio_get(new_folio);
192 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
193 folio_add_lru_vma(new_folio, vma);
194 } else
195 /* no new page, just dec_mm_counter for old_page */
196 dec_mm_counter(mm, MM_ANONPAGES);
197
198 if (!folio_test_anon(old_folio)) {
199 dec_mm_counter(mm, mm_counter_file(old_folio));
200 inc_mm_counter(mm, MM_ANONPAGES);
201 }
202
203 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
204 ptep_clear_flush(vma, addr, pvmw.pte);
205 if (new_page)
206 set_pte_at(mm, addr, pvmw.pte,
207 mk_pte(new_page, vma->vm_page_prot));
208
209 folio_remove_rmap_pte(old_folio, old_page, vma);
210 if (!folio_mapped(old_folio))
211 folio_free_swap(old_folio);
212 page_vma_mapped_walk_done(&pvmw);
213 folio_put(old_folio);
214
215 err = 0;
216 unlock:
217 mmu_notifier_invalidate_range_end(&range);
218 folio_unlock(old_folio);
219 return err;
220 }
221
222 /**
223 * is_swbp_insn - check if instruction is breakpoint instruction.
224 * @insn: instruction to be checked.
225 * Default implementation of is_swbp_insn
226 * Returns true if @insn is a breakpoint instruction.
227 */
is_swbp_insn(uprobe_opcode_t * insn)228 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
229 {
230 return *insn == UPROBE_SWBP_INSN;
231 }
232
233 /**
234 * is_trap_insn - check if instruction is breakpoint instruction.
235 * @insn: instruction to be checked.
236 * Default implementation of is_trap_insn
237 * Returns true if @insn is a breakpoint instruction.
238 *
239 * This function is needed for the case where an architecture has multiple
240 * trap instructions (like powerpc).
241 */
is_trap_insn(uprobe_opcode_t * insn)242 bool __weak is_trap_insn(uprobe_opcode_t *insn)
243 {
244 return is_swbp_insn(insn);
245 }
246
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)247 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
248 {
249 void *kaddr = kmap_atomic(page);
250 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
251 kunmap_atomic(kaddr);
252 }
253
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)254 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
255 {
256 void *kaddr = kmap_atomic(page);
257 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
258 kunmap_atomic(kaddr);
259 }
260
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)261 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
262 {
263 uprobe_opcode_t old_opcode;
264 bool is_swbp;
265
266 /*
267 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
268 * We do not check if it is any other 'trap variant' which could
269 * be conditional trap instruction such as the one powerpc supports.
270 *
271 * The logic is that we do not care if the underlying instruction
272 * is a trap variant; uprobes always wins over any other (gdb)
273 * breakpoint.
274 */
275 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
276 is_swbp = is_swbp_insn(&old_opcode);
277
278 if (is_swbp_insn(new_opcode)) {
279 if (is_swbp) /* register: already installed? */
280 return 0;
281 } else {
282 if (!is_swbp) /* unregister: was it changed by us? */
283 return 0;
284 }
285
286 return 1;
287 }
288
289 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)290 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
291 {
292 struct delayed_uprobe *du;
293
294 list_for_each_entry(du, &delayed_uprobe_list, list)
295 if (du->uprobe == uprobe && du->mm == mm)
296 return du;
297 return NULL;
298 }
299
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)300 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
301 {
302 struct delayed_uprobe *du;
303
304 if (delayed_uprobe_check(uprobe, mm))
305 return 0;
306
307 du = kzalloc(sizeof(*du), GFP_KERNEL);
308 if (!du)
309 return -ENOMEM;
310
311 du->uprobe = uprobe;
312 du->mm = mm;
313 list_add(&du->list, &delayed_uprobe_list);
314 return 0;
315 }
316
delayed_uprobe_delete(struct delayed_uprobe * du)317 static void delayed_uprobe_delete(struct delayed_uprobe *du)
318 {
319 if (WARN_ON(!du))
320 return;
321 list_del(&du->list);
322 kfree(du);
323 }
324
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)325 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
326 {
327 struct list_head *pos, *q;
328 struct delayed_uprobe *du;
329
330 if (!uprobe && !mm)
331 return;
332
333 list_for_each_safe(pos, q, &delayed_uprobe_list) {
334 du = list_entry(pos, struct delayed_uprobe, list);
335
336 if (uprobe && du->uprobe != uprobe)
337 continue;
338 if (mm && du->mm != mm)
339 continue;
340
341 delayed_uprobe_delete(du);
342 }
343 }
344
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)345 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
346 struct vm_area_struct *vma)
347 {
348 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
349
350 return uprobe->ref_ctr_offset &&
351 vma->vm_file &&
352 file_inode(vma->vm_file) == uprobe->inode &&
353 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
354 vma->vm_start <= vaddr &&
355 vma->vm_end > vaddr;
356 }
357
358 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)359 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
360 {
361 VMA_ITERATOR(vmi, mm, 0);
362 struct vm_area_struct *tmp;
363
364 for_each_vma(vmi, tmp)
365 if (valid_ref_ctr_vma(uprobe, tmp))
366 return tmp;
367
368 return NULL;
369 }
370
371 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)372 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
373 {
374 void *kaddr;
375 struct page *page;
376 int ret;
377 short *ptr;
378
379 if (!vaddr || !d)
380 return -EINVAL;
381
382 ret = get_user_pages_remote(mm, vaddr, 1,
383 FOLL_WRITE, &page, NULL);
384 if (unlikely(ret <= 0)) {
385 /*
386 * We are asking for 1 page. If get_user_pages_remote() fails,
387 * it may return 0, in that case we have to return error.
388 */
389 return ret == 0 ? -EBUSY : ret;
390 }
391
392 kaddr = kmap_atomic(page);
393 ptr = kaddr + (vaddr & ~PAGE_MASK);
394
395 if (unlikely(*ptr + d < 0)) {
396 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
397 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
398 ret = -EINVAL;
399 goto out;
400 }
401
402 *ptr += d;
403 ret = 0;
404 out:
405 kunmap_atomic(kaddr);
406 put_page(page);
407 return ret;
408 }
409
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)410 static void update_ref_ctr_warn(struct uprobe *uprobe,
411 struct mm_struct *mm, short d)
412 {
413 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
414 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
415 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
416 (unsigned long long) uprobe->offset,
417 (unsigned long long) uprobe->ref_ctr_offset, mm);
418 }
419
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)420 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
421 short d)
422 {
423 struct vm_area_struct *rc_vma;
424 unsigned long rc_vaddr;
425 int ret = 0;
426
427 rc_vma = find_ref_ctr_vma(uprobe, mm);
428
429 if (rc_vma) {
430 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
431 ret = __update_ref_ctr(mm, rc_vaddr, d);
432 if (ret)
433 update_ref_ctr_warn(uprobe, mm, d);
434
435 if (d > 0)
436 return ret;
437 }
438
439 mutex_lock(&delayed_uprobe_lock);
440 if (d > 0)
441 ret = delayed_uprobe_add(uprobe, mm);
442 else
443 delayed_uprobe_remove(uprobe, mm);
444 mutex_unlock(&delayed_uprobe_lock);
445
446 return ret;
447 }
448
449 /*
450 * NOTE:
451 * Expect the breakpoint instruction to be the smallest size instruction for
452 * the architecture. If an arch has variable length instruction and the
453 * breakpoint instruction is not of the smallest length instruction
454 * supported by that architecture then we need to modify is_trap_at_addr and
455 * uprobe_write_opcode accordingly. This would never be a problem for archs
456 * that have fixed length instructions.
457 *
458 * uprobe_write_opcode - write the opcode at a given virtual address.
459 * @auprobe: arch specific probepoint information.
460 * @mm: the probed process address space.
461 * @vaddr: the virtual address to store the opcode.
462 * @opcode: opcode to be written at @vaddr.
463 *
464 * Called with mm->mmap_lock held for read or write.
465 * Return 0 (success) or a negative errno.
466 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)467 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
468 unsigned long vaddr, uprobe_opcode_t opcode)
469 {
470 struct uprobe *uprobe;
471 struct page *old_page, *new_page;
472 struct vm_area_struct *vma;
473 int ret, is_register, ref_ctr_updated = 0;
474 bool orig_page_huge = false;
475 unsigned int gup_flags = FOLL_FORCE;
476
477 is_register = is_swbp_insn(&opcode);
478 uprobe = container_of(auprobe, struct uprobe, arch);
479
480 retry:
481 if (is_register)
482 gup_flags |= FOLL_SPLIT_PMD;
483 /* Read the page with vaddr into memory */
484 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
485 if (IS_ERR(old_page))
486 return PTR_ERR(old_page);
487
488 ret = verify_opcode(old_page, vaddr, &opcode);
489 if (ret <= 0)
490 goto put_old;
491
492 if (WARN(!is_register && PageCompound(old_page),
493 "uprobe unregister should never work on compound page\n")) {
494 ret = -EINVAL;
495 goto put_old;
496 }
497
498 /* We are going to replace instruction, update ref_ctr. */
499 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
500 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
501 if (ret)
502 goto put_old;
503
504 ref_ctr_updated = 1;
505 }
506
507 ret = 0;
508 if (!is_register && !PageAnon(old_page))
509 goto put_old;
510
511 ret = anon_vma_prepare(vma);
512 if (ret)
513 goto put_old;
514
515 ret = -ENOMEM;
516 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
517 if (!new_page)
518 goto put_old;
519
520 __SetPageUptodate(new_page);
521 copy_highpage(new_page, old_page);
522 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
523
524 if (!is_register) {
525 struct page *orig_page;
526 pgoff_t index;
527
528 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
529
530 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
531 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
532 index);
533
534 if (orig_page) {
535 if (PageUptodate(orig_page) &&
536 pages_identical(new_page, orig_page)) {
537 /* let go new_page */
538 put_page(new_page);
539 new_page = NULL;
540
541 if (PageCompound(orig_page))
542 orig_page_huge = true;
543 }
544 put_page(orig_page);
545 }
546 }
547
548 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
549 if (new_page)
550 put_page(new_page);
551 put_old:
552 put_page(old_page);
553
554 if (unlikely(ret == -EAGAIN))
555 goto retry;
556
557 /* Revert back reference counter if instruction update failed. */
558 if (ret && is_register && ref_ctr_updated)
559 update_ref_ctr(uprobe, mm, -1);
560
561 /* try collapse pmd for compound page */
562 if (!ret && orig_page_huge)
563 collapse_pte_mapped_thp(mm, vaddr, false);
564
565 return ret;
566 }
567
568 /**
569 * set_swbp - store breakpoint at a given address.
570 * @auprobe: arch specific probepoint information.
571 * @mm: the probed process address space.
572 * @vaddr: the virtual address to insert the opcode.
573 *
574 * For mm @mm, store the breakpoint instruction at @vaddr.
575 * Return 0 (success) or a negative errno.
576 */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)577 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
578 {
579 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
580 }
581
582 /**
583 * set_orig_insn - Restore the original instruction.
584 * @mm: the probed process address space.
585 * @auprobe: arch specific probepoint information.
586 * @vaddr: the virtual address to insert the opcode.
587 *
588 * For mm @mm, restore the original opcode (opcode) at @vaddr.
589 * Return 0 (success) or a negative errno.
590 */
591 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)592 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
593 {
594 return uprobe_write_opcode(auprobe, mm, vaddr,
595 *(uprobe_opcode_t *)&auprobe->insn);
596 }
597
598 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)599 static struct uprobe *get_uprobe(struct uprobe *uprobe)
600 {
601 refcount_inc(&uprobe->ref);
602 return uprobe;
603 }
604
605 /*
606 * uprobe should have guaranteed lifetime, which can be either of:
607 * - caller already has refcount taken (and wants an extra one);
608 * - uprobe is RCU protected and won't be freed until after grace period;
609 * - we are holding uprobes_treelock (for read or write, doesn't matter).
610 */
try_get_uprobe(struct uprobe * uprobe)611 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
612 {
613 if (refcount_inc_not_zero(&uprobe->ref))
614 return uprobe;
615 return NULL;
616 }
617
uprobe_is_active(struct uprobe * uprobe)618 static inline bool uprobe_is_active(struct uprobe *uprobe)
619 {
620 return !RB_EMPTY_NODE(&uprobe->rb_node);
621 }
622
uprobe_free_rcu(struct rcu_head * rcu)623 static void uprobe_free_rcu(struct rcu_head *rcu)
624 {
625 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
626
627 kfree(uprobe);
628 }
629
put_uprobe(struct uprobe * uprobe)630 static void put_uprobe(struct uprobe *uprobe)
631 {
632 if (!refcount_dec_and_test(&uprobe->ref))
633 return;
634
635 write_lock(&uprobes_treelock);
636
637 if (uprobe_is_active(uprobe)) {
638 write_seqcount_begin(&uprobes_seqcount);
639 rb_erase(&uprobe->rb_node, &uprobes_tree);
640 write_seqcount_end(&uprobes_seqcount);
641 }
642
643 write_unlock(&uprobes_treelock);
644
645 /*
646 * If application munmap(exec_vma) before uprobe_unregister()
647 * gets called, we don't get a chance to remove uprobe from
648 * delayed_uprobe_list from remove_breakpoint(). Do it here.
649 */
650 mutex_lock(&delayed_uprobe_lock);
651 delayed_uprobe_remove(uprobe, NULL);
652 mutex_unlock(&delayed_uprobe_lock);
653
654 call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu);
655 }
656
657 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)658 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
659 const struct uprobe *r)
660 {
661 if (l_inode < r->inode)
662 return -1;
663
664 if (l_inode > r->inode)
665 return 1;
666
667 if (l_offset < r->offset)
668 return -1;
669
670 if (l_offset > r->offset)
671 return 1;
672
673 return 0;
674 }
675
676 #define __node_2_uprobe(node) \
677 rb_entry((node), struct uprobe, rb_node)
678
679 struct __uprobe_key {
680 struct inode *inode;
681 loff_t offset;
682 };
683
__uprobe_cmp_key(const void * key,const struct rb_node * b)684 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
685 {
686 const struct __uprobe_key *a = key;
687 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
688 }
689
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)690 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
691 {
692 struct uprobe *u = __node_2_uprobe(a);
693 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
694 }
695
696 /*
697 * Assumes being inside RCU protected region.
698 * No refcount is taken on returned uprobe.
699 */
find_uprobe_rcu(struct inode * inode,loff_t offset)700 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
701 {
702 struct __uprobe_key key = {
703 .inode = inode,
704 .offset = offset,
705 };
706 struct rb_node *node;
707 unsigned int seq;
708
709 lockdep_assert(srcu_read_lock_held(&uprobes_srcu));
710
711 do {
712 seq = read_seqcount_begin(&uprobes_seqcount);
713 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
714 /*
715 * Lockless RB-tree lookups can result only in false negatives.
716 * If the element is found, it is correct and can be returned
717 * under RCU protection. If we find nothing, we need to
718 * validate that seqcount didn't change. If it did, we have to
719 * try again as we might have missed the element (false
720 * negative). If seqcount is unchanged, search truly failed.
721 */
722 if (node)
723 return __node_2_uprobe(node);
724 } while (read_seqcount_retry(&uprobes_seqcount, seq));
725
726 return NULL;
727 }
728
729 /*
730 * Attempt to insert a new uprobe into uprobes_tree.
731 *
732 * If uprobe already exists (for given inode+offset), we just increment
733 * refcount of previously existing uprobe.
734 *
735 * If not, a provided new instance of uprobe is inserted into the tree (with
736 * assumed initial refcount == 1).
737 *
738 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
739 * Caller has to clean up new uprobe instance, if it ended up not being
740 * inserted into the tree.
741 *
742 * We assume that uprobes_treelock is held for writing.
743 */
__insert_uprobe(struct uprobe * uprobe)744 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
745 {
746 struct rb_node *node;
747 again:
748 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
749 if (node) {
750 struct uprobe *u = __node_2_uprobe(node);
751
752 if (!try_get_uprobe(u)) {
753 rb_erase(node, &uprobes_tree);
754 RB_CLEAR_NODE(&u->rb_node);
755 goto again;
756 }
757
758 return u;
759 }
760
761 return uprobe;
762 }
763
764 /*
765 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
766 * (or reuse existing one, see __insert_uprobe() comments above).
767 */
insert_uprobe(struct uprobe * uprobe)768 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
769 {
770 struct uprobe *u;
771
772 write_lock(&uprobes_treelock);
773 write_seqcount_begin(&uprobes_seqcount);
774 u = __insert_uprobe(uprobe);
775 write_seqcount_end(&uprobes_seqcount);
776 write_unlock(&uprobes_treelock);
777
778 return u;
779 }
780
781 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)782 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
783 {
784 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
785 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
786 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
787 (unsigned long long) cur_uprobe->ref_ctr_offset,
788 (unsigned long long) uprobe->ref_ctr_offset);
789 }
790
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)791 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
792 loff_t ref_ctr_offset)
793 {
794 struct uprobe *uprobe, *cur_uprobe;
795
796 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
797 if (!uprobe)
798 return ERR_PTR(-ENOMEM);
799
800 uprobe->inode = inode;
801 uprobe->offset = offset;
802 uprobe->ref_ctr_offset = ref_ctr_offset;
803 INIT_LIST_HEAD(&uprobe->consumers);
804 init_rwsem(&uprobe->register_rwsem);
805 init_rwsem(&uprobe->consumer_rwsem);
806 RB_CLEAR_NODE(&uprobe->rb_node);
807 refcount_set(&uprobe->ref, 1);
808
809 /* add to uprobes_tree, sorted on inode:offset */
810 cur_uprobe = insert_uprobe(uprobe);
811 /* a uprobe exists for this inode:offset combination */
812 if (cur_uprobe != uprobe) {
813 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
814 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
815 put_uprobe(cur_uprobe);
816 kfree(uprobe);
817 return ERR_PTR(-EINVAL);
818 }
819 kfree(uprobe);
820 uprobe = cur_uprobe;
821 }
822
823 return uprobe;
824 }
825
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)826 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
827 {
828 down_write(&uprobe->consumer_rwsem);
829 list_add_rcu(&uc->cons_node, &uprobe->consumers);
830 up_write(&uprobe->consumer_rwsem);
831 }
832
833 /*
834 * For uprobe @uprobe, delete the consumer @uc.
835 * Should never be called with consumer that's not part of @uprobe->consumers.
836 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)837 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839 down_write(&uprobe->consumer_rwsem);
840 list_del_rcu(&uc->cons_node);
841 up_write(&uprobe->consumer_rwsem);
842 }
843
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)844 static int __copy_insn(struct address_space *mapping, struct file *filp,
845 void *insn, int nbytes, loff_t offset)
846 {
847 struct page *page;
848 /*
849 * Ensure that the page that has the original instruction is populated
850 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
851 * see uprobe_register().
852 */
853 if (mapping->a_ops->read_folio)
854 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
855 else
856 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
857 if (IS_ERR(page))
858 return PTR_ERR(page);
859
860 copy_from_page(page, offset, insn, nbytes);
861 put_page(page);
862
863 return 0;
864 }
865
copy_insn(struct uprobe * uprobe,struct file * filp)866 static int copy_insn(struct uprobe *uprobe, struct file *filp)
867 {
868 struct address_space *mapping = uprobe->inode->i_mapping;
869 loff_t offs = uprobe->offset;
870 void *insn = &uprobe->arch.insn;
871 int size = sizeof(uprobe->arch.insn);
872 int len, err = -EIO;
873
874 /* Copy only available bytes, -EIO if nothing was read */
875 do {
876 if (offs >= i_size_read(uprobe->inode))
877 break;
878
879 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
880 err = __copy_insn(mapping, filp, insn, len, offs);
881 if (err)
882 break;
883
884 insn += len;
885 offs += len;
886 size -= len;
887 } while (size);
888
889 return err;
890 }
891
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)892 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
893 struct mm_struct *mm, unsigned long vaddr)
894 {
895 int ret = 0;
896
897 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
898 return ret;
899
900 /* TODO: move this into _register, until then we abuse this sem. */
901 down_write(&uprobe->consumer_rwsem);
902 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
903 goto out;
904
905 ret = copy_insn(uprobe, file);
906 if (ret)
907 goto out;
908
909 ret = -ENOTSUPP;
910 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
911 goto out;
912
913 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
914 if (ret)
915 goto out;
916
917 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
918 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
919
920 out:
921 up_write(&uprobe->consumer_rwsem);
922
923 return ret;
924 }
925
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)926 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
927 {
928 return !uc->filter || uc->filter(uc, mm);
929 }
930
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)931 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
932 {
933 struct uprobe_consumer *uc;
934 bool ret = false;
935
936 down_read(&uprobe->consumer_rwsem);
937 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
938 srcu_read_lock_held(&uprobes_srcu)) {
939 ret = consumer_filter(uc, mm);
940 if (ret)
941 break;
942 }
943 up_read(&uprobe->consumer_rwsem);
944
945 return ret;
946 }
947
948 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)949 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
950 struct vm_area_struct *vma, unsigned long vaddr)
951 {
952 bool first_uprobe;
953 int ret;
954
955 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
956 if (ret)
957 return ret;
958
959 /*
960 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
961 * the task can hit this breakpoint right after __replace_page().
962 */
963 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
964 if (first_uprobe)
965 set_bit(MMF_HAS_UPROBES, &mm->flags);
966
967 ret = set_swbp(&uprobe->arch, mm, vaddr);
968 if (!ret)
969 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
970 else if (first_uprobe)
971 clear_bit(MMF_HAS_UPROBES, &mm->flags);
972
973 return ret;
974 }
975
976 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)977 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
978 {
979 set_bit(MMF_RECALC_UPROBES, &mm->flags);
980 return set_orig_insn(&uprobe->arch, mm, vaddr);
981 }
982
983 struct map_info {
984 struct map_info *next;
985 struct mm_struct *mm;
986 unsigned long vaddr;
987 };
988
free_map_info(struct map_info * info)989 static inline struct map_info *free_map_info(struct map_info *info)
990 {
991 struct map_info *next = info->next;
992 kfree(info);
993 return next;
994 }
995
996 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)997 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
998 {
999 unsigned long pgoff = offset >> PAGE_SHIFT;
1000 struct vm_area_struct *vma;
1001 struct map_info *curr = NULL;
1002 struct map_info *prev = NULL;
1003 struct map_info *info;
1004 int more = 0;
1005
1006 again:
1007 i_mmap_lock_read(mapping);
1008 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1009 if (!valid_vma(vma, is_register))
1010 continue;
1011
1012 if (!prev && !more) {
1013 /*
1014 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1015 * reclaim. This is optimistic, no harm done if it fails.
1016 */
1017 prev = kmalloc(sizeof(struct map_info),
1018 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1019 if (prev)
1020 prev->next = NULL;
1021 }
1022 if (!prev) {
1023 more++;
1024 continue;
1025 }
1026
1027 if (!mmget_not_zero(vma->vm_mm))
1028 continue;
1029
1030 info = prev;
1031 prev = prev->next;
1032 info->next = curr;
1033 curr = info;
1034
1035 info->mm = vma->vm_mm;
1036 info->vaddr = offset_to_vaddr(vma, offset);
1037 }
1038 i_mmap_unlock_read(mapping);
1039
1040 if (!more)
1041 goto out;
1042
1043 prev = curr;
1044 while (curr) {
1045 mmput(curr->mm);
1046 curr = curr->next;
1047 }
1048
1049 do {
1050 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1051 if (!info) {
1052 curr = ERR_PTR(-ENOMEM);
1053 goto out;
1054 }
1055 info->next = prev;
1056 prev = info;
1057 } while (--more);
1058
1059 goto again;
1060 out:
1061 while (prev)
1062 prev = free_map_info(prev);
1063 return curr;
1064 }
1065
1066 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1067 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1068 {
1069 bool is_register = !!new;
1070 struct map_info *info;
1071 int err = 0;
1072
1073 percpu_down_write(&dup_mmap_sem);
1074 info = build_map_info(uprobe->inode->i_mapping,
1075 uprobe->offset, is_register);
1076 if (IS_ERR(info)) {
1077 err = PTR_ERR(info);
1078 goto out;
1079 }
1080
1081 while (info) {
1082 struct mm_struct *mm = info->mm;
1083 struct vm_area_struct *vma;
1084
1085 if (err && is_register)
1086 goto free;
1087 /*
1088 * We take mmap_lock for writing to avoid the race with
1089 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1090 * Thus this install_breakpoint() can not make
1091 * is_trap_at_addr() true right after find_uprobe_rcu()
1092 * returns NULL in find_active_uprobe_rcu().
1093 */
1094 mmap_write_lock(mm);
1095 vma = find_vma(mm, info->vaddr);
1096 if (!vma || !valid_vma(vma, is_register) ||
1097 file_inode(vma->vm_file) != uprobe->inode)
1098 goto unlock;
1099
1100 if (vma->vm_start > info->vaddr ||
1101 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1102 goto unlock;
1103
1104 if (is_register) {
1105 /* consult only the "caller", new consumer. */
1106 if (consumer_filter(new, mm))
1107 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1108 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1109 if (!filter_chain(uprobe, mm))
1110 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1111 }
1112
1113 unlock:
1114 mmap_write_unlock(mm);
1115 free:
1116 mmput(mm);
1117 info = free_map_info(info);
1118 }
1119 out:
1120 percpu_up_write(&dup_mmap_sem);
1121 return err;
1122 }
1123
1124 /**
1125 * uprobe_unregister_nosync - unregister an already registered probe.
1126 * @uprobe: uprobe to remove
1127 * @uc: identify which probe if multiple probes are colocated.
1128 */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1129 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1130 {
1131 int err;
1132
1133 down_write(&uprobe->register_rwsem);
1134 consumer_del(uprobe, uc);
1135 err = register_for_each_vma(uprobe, NULL);
1136 up_write(&uprobe->register_rwsem);
1137
1138 /* TODO : cant unregister? schedule a worker thread */
1139 if (unlikely(err)) {
1140 uprobe_warn(current, "unregister, leaking uprobe");
1141 return;
1142 }
1143
1144 put_uprobe(uprobe);
1145 }
1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1147
uprobe_unregister_sync(void)1148 void uprobe_unregister_sync(void)
1149 {
1150 /*
1151 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1152 * uprobe->consumers list under RCU protection without holding
1153 * uprobe->register_rwsem, we need to wait for RCU grace period to
1154 * make sure that we can't call into just unregistered
1155 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1156 * unlucky enough caller can free consumer's memory and cause
1157 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1158 */
1159 synchronize_srcu(&uprobes_srcu);
1160 }
1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1162
1163 /**
1164 * uprobe_register - register a probe
1165 * @inode: the file in which the probe has to be placed.
1166 * @offset: offset from the start of the file.
1167 * @ref_ctr_offset: offset of SDT marker / reference counter
1168 * @uc: information on howto handle the probe..
1169 *
1170 * Apart from the access refcount, uprobe_register() takes a creation
1171 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1172 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1173 * tuple). Creation refcount stops uprobe_unregister from freeing the
1174 * @uprobe even before the register operation is complete. Creation
1175 * refcount is released when the last @uc for the @uprobe
1176 * unregisters. Caller of uprobe_register() is required to keep @inode
1177 * (and the containing mount) referenced.
1178 *
1179 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1180 */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1181 struct uprobe *uprobe_register(struct inode *inode,
1182 loff_t offset, loff_t ref_ctr_offset,
1183 struct uprobe_consumer *uc)
1184 {
1185 struct uprobe *uprobe;
1186 int ret;
1187
1188 /* Uprobe must have at least one set consumer */
1189 if (!uc->handler && !uc->ret_handler)
1190 return ERR_PTR(-EINVAL);
1191
1192 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1193 if (!inode->i_mapping->a_ops->read_folio &&
1194 !shmem_mapping(inode->i_mapping))
1195 return ERR_PTR(-EIO);
1196 /* Racy, just to catch the obvious mistakes */
1197 if (offset > i_size_read(inode))
1198 return ERR_PTR(-EINVAL);
1199
1200 /*
1201 * This ensures that copy_from_page(), copy_to_page() and
1202 * __update_ref_ctr() can't cross page boundary.
1203 */
1204 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1205 return ERR_PTR(-EINVAL);
1206 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1207 return ERR_PTR(-EINVAL);
1208
1209 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1210 if (IS_ERR(uprobe))
1211 return uprobe;
1212
1213 down_write(&uprobe->register_rwsem);
1214 consumer_add(uprobe, uc);
1215 ret = register_for_each_vma(uprobe, uc);
1216 up_write(&uprobe->register_rwsem);
1217
1218 if (ret) {
1219 uprobe_unregister_nosync(uprobe, uc);
1220 /*
1221 * Registration might have partially succeeded, so we can have
1222 * this consumer being called right at this time. We need to
1223 * sync here. It's ok, it's unlikely slow path.
1224 */
1225 uprobe_unregister_sync();
1226 return ERR_PTR(ret);
1227 }
1228
1229 return uprobe;
1230 }
1231 EXPORT_SYMBOL_GPL(uprobe_register);
1232
1233 /**
1234 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1235 * @uprobe: uprobe which "owns" the breakpoint
1236 * @uc: consumer which wants to add more or remove some breakpoints
1237 * @add: add or remove the breakpoints
1238 * Return: 0 on success or negative error code.
1239 */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1240 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1241 {
1242 struct uprobe_consumer *con;
1243 int ret = -ENOENT, srcu_idx;
1244
1245 down_write(&uprobe->register_rwsem);
1246
1247 srcu_idx = srcu_read_lock(&uprobes_srcu);
1248 list_for_each_entry_srcu(con, &uprobe->consumers, cons_node,
1249 srcu_read_lock_held(&uprobes_srcu)) {
1250 if (con == uc) {
1251 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1252 break;
1253 }
1254 }
1255 srcu_read_unlock(&uprobes_srcu, srcu_idx);
1256
1257 up_write(&uprobe->register_rwsem);
1258
1259 return ret;
1260 }
1261
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1262 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1263 {
1264 VMA_ITERATOR(vmi, mm, 0);
1265 struct vm_area_struct *vma;
1266 int err = 0;
1267
1268 mmap_read_lock(mm);
1269 for_each_vma(vmi, vma) {
1270 unsigned long vaddr;
1271 loff_t offset;
1272
1273 if (!valid_vma(vma, false) ||
1274 file_inode(vma->vm_file) != uprobe->inode)
1275 continue;
1276
1277 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1278 if (uprobe->offset < offset ||
1279 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1280 continue;
1281
1282 vaddr = offset_to_vaddr(vma, uprobe->offset);
1283 err |= remove_breakpoint(uprobe, mm, vaddr);
1284 }
1285 mmap_read_unlock(mm);
1286
1287 return err;
1288 }
1289
1290 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1291 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1292 {
1293 struct rb_node *n = uprobes_tree.rb_node;
1294
1295 while (n) {
1296 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1297
1298 if (inode < u->inode) {
1299 n = n->rb_left;
1300 } else if (inode > u->inode) {
1301 n = n->rb_right;
1302 } else {
1303 if (max < u->offset)
1304 n = n->rb_left;
1305 else if (min > u->offset)
1306 n = n->rb_right;
1307 else
1308 break;
1309 }
1310 }
1311
1312 return n;
1313 }
1314
1315 /*
1316 * For a given range in vma, build a list of probes that need to be inserted.
1317 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1318 static void build_probe_list(struct inode *inode,
1319 struct vm_area_struct *vma,
1320 unsigned long start, unsigned long end,
1321 struct list_head *head)
1322 {
1323 loff_t min, max;
1324 struct rb_node *n, *t;
1325 struct uprobe *u;
1326
1327 INIT_LIST_HEAD(head);
1328 min = vaddr_to_offset(vma, start);
1329 max = min + (end - start) - 1;
1330
1331 read_lock(&uprobes_treelock);
1332 n = find_node_in_range(inode, min, max);
1333 if (n) {
1334 for (t = n; t; t = rb_prev(t)) {
1335 u = rb_entry(t, struct uprobe, rb_node);
1336 if (u->inode != inode || u->offset < min)
1337 break;
1338 /* if uprobe went away, it's safe to ignore it */
1339 if (try_get_uprobe(u))
1340 list_add(&u->pending_list, head);
1341 }
1342 for (t = n; (t = rb_next(t)); ) {
1343 u = rb_entry(t, struct uprobe, rb_node);
1344 if (u->inode != inode || u->offset > max)
1345 break;
1346 /* if uprobe went away, it's safe to ignore it */
1347 if (try_get_uprobe(u))
1348 list_add(&u->pending_list, head);
1349 }
1350 }
1351 read_unlock(&uprobes_treelock);
1352 }
1353
1354 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1355 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1356 {
1357 struct list_head *pos, *q;
1358 struct delayed_uprobe *du;
1359 unsigned long vaddr;
1360 int ret = 0, err = 0;
1361
1362 mutex_lock(&delayed_uprobe_lock);
1363 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1364 du = list_entry(pos, struct delayed_uprobe, list);
1365
1366 if (du->mm != vma->vm_mm ||
1367 !valid_ref_ctr_vma(du->uprobe, vma))
1368 continue;
1369
1370 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1371 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1372 if (ret) {
1373 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1374 if (!err)
1375 err = ret;
1376 }
1377 delayed_uprobe_delete(du);
1378 }
1379 mutex_unlock(&delayed_uprobe_lock);
1380 return err;
1381 }
1382
1383 /*
1384 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1385 *
1386 * Currently we ignore all errors and always return 0, the callers
1387 * can't handle the failure anyway.
1388 */
uprobe_mmap(struct vm_area_struct * vma)1389 int uprobe_mmap(struct vm_area_struct *vma)
1390 {
1391 struct list_head tmp_list;
1392 struct uprobe *uprobe, *u;
1393 struct inode *inode;
1394
1395 if (no_uprobe_events())
1396 return 0;
1397
1398 if (vma->vm_file &&
1399 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1400 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1401 delayed_ref_ctr_inc(vma);
1402
1403 if (!valid_vma(vma, true))
1404 return 0;
1405
1406 inode = file_inode(vma->vm_file);
1407 if (!inode)
1408 return 0;
1409
1410 mutex_lock(uprobes_mmap_hash(inode));
1411 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1412 /*
1413 * We can race with uprobe_unregister(), this uprobe can be already
1414 * removed. But in this case filter_chain() must return false, all
1415 * consumers have gone away.
1416 */
1417 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1418 if (!fatal_signal_pending(current) &&
1419 filter_chain(uprobe, vma->vm_mm)) {
1420 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1421 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1422 }
1423 put_uprobe(uprobe);
1424 }
1425 mutex_unlock(uprobes_mmap_hash(inode));
1426
1427 return 0;
1428 }
1429
1430 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1431 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1432 {
1433 loff_t min, max;
1434 struct inode *inode;
1435 struct rb_node *n;
1436
1437 inode = file_inode(vma->vm_file);
1438
1439 min = vaddr_to_offset(vma, start);
1440 max = min + (end - start) - 1;
1441
1442 read_lock(&uprobes_treelock);
1443 n = find_node_in_range(inode, min, max);
1444 read_unlock(&uprobes_treelock);
1445
1446 return !!n;
1447 }
1448
1449 /*
1450 * Called in context of a munmap of a vma.
1451 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1452 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1453 {
1454 if (no_uprobe_events() || !valid_vma(vma, false))
1455 return;
1456
1457 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1458 return;
1459
1460 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1461 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1462 return;
1463
1464 if (vma_has_uprobes(vma, start, end))
1465 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1466 }
1467
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1468 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1469 struct vm_area_struct *vma, struct vm_fault *vmf)
1470 {
1471 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1472
1473 vmf->page = area->page;
1474 get_page(vmf->page);
1475 return 0;
1476 }
1477
1478 static const struct vm_special_mapping xol_mapping = {
1479 .name = "[uprobes]",
1480 .fault = xol_fault,
1481 };
1482
1483 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1484 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1485 {
1486 struct vm_area_struct *vma;
1487 int ret;
1488
1489 if (mmap_write_lock_killable(mm))
1490 return -EINTR;
1491
1492 if (mm->uprobes_state.xol_area) {
1493 ret = -EALREADY;
1494 goto fail;
1495 }
1496
1497 if (!area->vaddr) {
1498 /* Try to map as high as possible, this is only a hint. */
1499 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1500 PAGE_SIZE, 0, 0);
1501 if (IS_ERR_VALUE(area->vaddr)) {
1502 ret = area->vaddr;
1503 goto fail;
1504 }
1505 }
1506
1507 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1508 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1509 &xol_mapping);
1510 if (IS_ERR(vma)) {
1511 ret = PTR_ERR(vma);
1512 goto fail;
1513 }
1514
1515 ret = 0;
1516 /* pairs with get_xol_area() */
1517 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1518 fail:
1519 mmap_write_unlock(mm);
1520
1521 return ret;
1522 }
1523
arch_uprobe_trampoline(unsigned long * psize)1524 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1525 {
1526 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1527
1528 *psize = UPROBE_SWBP_INSN_SIZE;
1529 return &insn;
1530 }
1531
__create_xol_area(unsigned long vaddr)1532 static struct xol_area *__create_xol_area(unsigned long vaddr)
1533 {
1534 struct mm_struct *mm = current->mm;
1535 unsigned long insns_size;
1536 struct xol_area *area;
1537 void *insns;
1538
1539 area = kzalloc(sizeof(*area), GFP_KERNEL);
1540 if (unlikely(!area))
1541 goto out;
1542
1543 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1544 GFP_KERNEL);
1545 if (!area->bitmap)
1546 goto free_area;
1547
1548 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1549 if (!area->page)
1550 goto free_bitmap;
1551
1552 area->vaddr = vaddr;
1553 init_waitqueue_head(&area->wq);
1554 /* Reserve the 1st slot for get_trampoline_vaddr() */
1555 set_bit(0, area->bitmap);
1556 atomic_set(&area->slot_count, 1);
1557 insns = arch_uprobe_trampoline(&insns_size);
1558 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1559
1560 if (!xol_add_vma(mm, area))
1561 return area;
1562
1563 __free_page(area->page);
1564 free_bitmap:
1565 kfree(area->bitmap);
1566 free_area:
1567 kfree(area);
1568 out:
1569 return NULL;
1570 }
1571
1572 /*
1573 * get_xol_area - Allocate process's xol_area if necessary.
1574 * This area will be used for storing instructions for execution out of line.
1575 *
1576 * Returns the allocated area or NULL.
1577 */
get_xol_area(void)1578 static struct xol_area *get_xol_area(void)
1579 {
1580 struct mm_struct *mm = current->mm;
1581 struct xol_area *area;
1582
1583 if (!mm->uprobes_state.xol_area)
1584 __create_xol_area(0);
1585
1586 /* Pairs with xol_add_vma() smp_store_release() */
1587 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1588 return area;
1589 }
1590
1591 /*
1592 * uprobe_clear_state - Free the area allocated for slots.
1593 */
uprobe_clear_state(struct mm_struct * mm)1594 void uprobe_clear_state(struct mm_struct *mm)
1595 {
1596 struct xol_area *area = mm->uprobes_state.xol_area;
1597
1598 mutex_lock(&delayed_uprobe_lock);
1599 delayed_uprobe_remove(NULL, mm);
1600 mutex_unlock(&delayed_uprobe_lock);
1601
1602 if (!area)
1603 return;
1604
1605 put_page(area->page);
1606 kfree(area->bitmap);
1607 kfree(area);
1608 }
1609
uprobe_start_dup_mmap(void)1610 void uprobe_start_dup_mmap(void)
1611 {
1612 percpu_down_read(&dup_mmap_sem);
1613 }
1614
uprobe_end_dup_mmap(void)1615 void uprobe_end_dup_mmap(void)
1616 {
1617 percpu_up_read(&dup_mmap_sem);
1618 }
1619
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1620 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1621 {
1622 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1623 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1624 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1625 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1626 }
1627 }
1628
1629 /*
1630 * - search for a free slot.
1631 */
xol_take_insn_slot(struct xol_area * area)1632 static unsigned long xol_take_insn_slot(struct xol_area *area)
1633 {
1634 unsigned long slot_addr;
1635 int slot_nr;
1636
1637 do {
1638 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1639 if (slot_nr < UINSNS_PER_PAGE) {
1640 if (!test_and_set_bit(slot_nr, area->bitmap))
1641 break;
1642
1643 slot_nr = UINSNS_PER_PAGE;
1644 continue;
1645 }
1646 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1647 } while (slot_nr >= UINSNS_PER_PAGE);
1648
1649 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1650 atomic_inc(&area->slot_count);
1651
1652 return slot_addr;
1653 }
1654
1655 /*
1656 * xol_get_insn_slot - allocate a slot for xol.
1657 * Returns the allocated slot address or 0.
1658 */
xol_get_insn_slot(struct uprobe * uprobe)1659 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1660 {
1661 struct xol_area *area;
1662 unsigned long xol_vaddr;
1663
1664 area = get_xol_area();
1665 if (!area)
1666 return 0;
1667
1668 xol_vaddr = xol_take_insn_slot(area);
1669 if (unlikely(!xol_vaddr))
1670 return 0;
1671
1672 arch_uprobe_copy_ixol(area->page, xol_vaddr,
1673 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1674
1675 return xol_vaddr;
1676 }
1677
1678 /*
1679 * xol_free_insn_slot - If slot was earlier allocated by
1680 * @xol_get_insn_slot(), make the slot available for
1681 * subsequent requests.
1682 */
xol_free_insn_slot(struct task_struct * tsk)1683 static void xol_free_insn_slot(struct task_struct *tsk)
1684 {
1685 struct xol_area *area;
1686 unsigned long vma_end;
1687 unsigned long slot_addr;
1688
1689 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1690 return;
1691
1692 slot_addr = tsk->utask->xol_vaddr;
1693 if (unlikely(!slot_addr))
1694 return;
1695
1696 area = tsk->mm->uprobes_state.xol_area;
1697 vma_end = area->vaddr + PAGE_SIZE;
1698 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1699 unsigned long offset;
1700 int slot_nr;
1701
1702 offset = slot_addr - area->vaddr;
1703 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1704 if (slot_nr >= UINSNS_PER_PAGE)
1705 return;
1706
1707 clear_bit(slot_nr, area->bitmap);
1708 atomic_dec(&area->slot_count);
1709 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1710 if (waitqueue_active(&area->wq))
1711 wake_up(&area->wq);
1712
1713 tsk->utask->xol_vaddr = 0;
1714 }
1715 }
1716
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1717 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1718 void *src, unsigned long len)
1719 {
1720 /* Initialize the slot */
1721 copy_to_page(page, vaddr, src, len);
1722
1723 /*
1724 * We probably need flush_icache_user_page() but it needs vma.
1725 * This should work on most of architectures by default. If
1726 * architecture needs to do something different it can define
1727 * its own version of the function.
1728 */
1729 flush_dcache_page(page);
1730 }
1731
1732 /**
1733 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1734 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1735 * instruction.
1736 * Return the address of the breakpoint instruction.
1737 */
uprobe_get_swbp_addr(struct pt_regs * regs)1738 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1739 {
1740 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1741 }
1742
uprobe_get_trap_addr(struct pt_regs * regs)1743 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1744 {
1745 struct uprobe_task *utask = current->utask;
1746
1747 if (unlikely(utask && utask->active_uprobe))
1748 return utask->vaddr;
1749
1750 return instruction_pointer(regs);
1751 }
1752
free_ret_instance(struct return_instance * ri)1753 static struct return_instance *free_ret_instance(struct return_instance *ri)
1754 {
1755 struct return_instance *next = ri->next;
1756 put_uprobe(ri->uprobe);
1757 kfree(ri);
1758 return next;
1759 }
1760
1761 /*
1762 * Called with no locks held.
1763 * Called in context of an exiting or an exec-ing thread.
1764 */
uprobe_free_utask(struct task_struct * t)1765 void uprobe_free_utask(struct task_struct *t)
1766 {
1767 struct uprobe_task *utask = t->utask;
1768 struct return_instance *ri;
1769
1770 if (!utask)
1771 return;
1772
1773 if (utask->active_uprobe)
1774 put_uprobe(utask->active_uprobe);
1775
1776 ri = utask->return_instances;
1777 while (ri)
1778 ri = free_ret_instance(ri);
1779
1780 xol_free_insn_slot(t);
1781 kfree(utask);
1782 t->utask = NULL;
1783 }
1784
1785 /*
1786 * Allocate a uprobe_task object for the task if necessary.
1787 * Called when the thread hits a breakpoint.
1788 *
1789 * Returns:
1790 * - pointer to new uprobe_task on success
1791 * - NULL otherwise
1792 */
get_utask(void)1793 static struct uprobe_task *get_utask(void)
1794 {
1795 if (!current->utask)
1796 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1797 return current->utask;
1798 }
1799
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1800 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1801 {
1802 struct uprobe_task *n_utask;
1803 struct return_instance **p, *o, *n;
1804
1805 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1806 if (!n_utask)
1807 return -ENOMEM;
1808 t->utask = n_utask;
1809
1810 p = &n_utask->return_instances;
1811 for (o = o_utask->return_instances; o; o = o->next) {
1812 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1813 if (!n)
1814 return -ENOMEM;
1815
1816 *n = *o;
1817 /*
1818 * uprobe's refcnt has to be positive at this point, kept by
1819 * utask->return_instances items; return_instances can't be
1820 * removed right now, as task is blocked due to duping; so
1821 * get_uprobe() is safe to use here.
1822 */
1823 get_uprobe(n->uprobe);
1824 n->next = NULL;
1825
1826 *p = n;
1827 p = &n->next;
1828 n_utask->depth++;
1829 }
1830
1831 return 0;
1832 }
1833
dup_xol_work(struct callback_head * work)1834 static void dup_xol_work(struct callback_head *work)
1835 {
1836 if (current->flags & PF_EXITING)
1837 return;
1838
1839 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1840 !fatal_signal_pending(current))
1841 uprobe_warn(current, "dup xol area");
1842 }
1843
1844 /*
1845 * Called in context of a new clone/fork from copy_process.
1846 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1847 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1848 {
1849 struct uprobe_task *utask = current->utask;
1850 struct mm_struct *mm = current->mm;
1851 struct xol_area *area;
1852
1853 t->utask = NULL;
1854
1855 if (!utask || !utask->return_instances)
1856 return;
1857
1858 if (mm == t->mm && !(flags & CLONE_VFORK))
1859 return;
1860
1861 if (dup_utask(t, utask))
1862 return uprobe_warn(t, "dup ret instances");
1863
1864 /* The task can fork() after dup_xol_work() fails */
1865 area = mm->uprobes_state.xol_area;
1866 if (!area)
1867 return uprobe_warn(t, "dup xol area");
1868
1869 if (mm == t->mm)
1870 return;
1871
1872 t->utask->dup_xol_addr = area->vaddr;
1873 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1874 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1875 }
1876
1877 /*
1878 * Current area->vaddr notion assume the trampoline address is always
1879 * equal area->vaddr.
1880 *
1881 * Returns -1 in case the xol_area is not allocated.
1882 */
uprobe_get_trampoline_vaddr(void)1883 unsigned long uprobe_get_trampoline_vaddr(void)
1884 {
1885 struct xol_area *area;
1886 unsigned long trampoline_vaddr = -1;
1887
1888 /* Pairs with xol_add_vma() smp_store_release() */
1889 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1890 if (area)
1891 trampoline_vaddr = area->vaddr;
1892
1893 return trampoline_vaddr;
1894 }
1895
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1896 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1897 struct pt_regs *regs)
1898 {
1899 struct return_instance *ri = utask->return_instances;
1900 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1901
1902 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1903 ri = free_ret_instance(ri);
1904 utask->depth--;
1905 }
1906 utask->return_instances = ri;
1907 }
1908
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1909 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1910 {
1911 struct return_instance *ri;
1912 struct uprobe_task *utask;
1913 unsigned long orig_ret_vaddr, trampoline_vaddr;
1914 bool chained;
1915
1916 if (!get_xol_area())
1917 return;
1918
1919 utask = get_utask();
1920 if (!utask)
1921 return;
1922
1923 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1924 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1925 " nestedness limit pid/tgid=%d/%d\n",
1926 current->pid, current->tgid);
1927 return;
1928 }
1929
1930 /* we need to bump refcount to store uprobe in utask */
1931 if (!try_get_uprobe(uprobe))
1932 return;
1933
1934 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1935 if (!ri)
1936 goto fail;
1937
1938 trampoline_vaddr = uprobe_get_trampoline_vaddr();
1939 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1940 if (orig_ret_vaddr == -1)
1941 goto fail;
1942
1943 /* drop the entries invalidated by longjmp() */
1944 chained = (orig_ret_vaddr == trampoline_vaddr);
1945 cleanup_return_instances(utask, chained, regs);
1946
1947 /*
1948 * We don't want to keep trampoline address in stack, rather keep the
1949 * original return address of first caller thru all the consequent
1950 * instances. This also makes breakpoint unwrapping easier.
1951 */
1952 if (chained) {
1953 if (!utask->return_instances) {
1954 /*
1955 * This situation is not possible. Likely we have an
1956 * attack from user-space.
1957 */
1958 uprobe_warn(current, "handle tail call");
1959 goto fail;
1960 }
1961 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1962 }
1963 ri->uprobe = uprobe;
1964 ri->func = instruction_pointer(regs);
1965 ri->stack = user_stack_pointer(regs);
1966 ri->orig_ret_vaddr = orig_ret_vaddr;
1967 ri->chained = chained;
1968
1969 utask->depth++;
1970 ri->next = utask->return_instances;
1971 utask->return_instances = ri;
1972
1973 return;
1974 fail:
1975 kfree(ri);
1976 put_uprobe(uprobe);
1977 }
1978
1979 /* Prepare to single-step probed instruction out of line. */
1980 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1981 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1982 {
1983 struct uprobe_task *utask;
1984 unsigned long xol_vaddr;
1985 int err;
1986
1987 utask = get_utask();
1988 if (!utask)
1989 return -ENOMEM;
1990
1991 if (!try_get_uprobe(uprobe))
1992 return -EINVAL;
1993
1994 xol_vaddr = xol_get_insn_slot(uprobe);
1995 if (!xol_vaddr) {
1996 err = -ENOMEM;
1997 goto err_out;
1998 }
1999
2000 utask->xol_vaddr = xol_vaddr;
2001 utask->vaddr = bp_vaddr;
2002
2003 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2004 if (unlikely(err)) {
2005 xol_free_insn_slot(current);
2006 goto err_out;
2007 }
2008
2009 utask->active_uprobe = uprobe;
2010 utask->state = UTASK_SSTEP;
2011 return 0;
2012 err_out:
2013 put_uprobe(uprobe);
2014 return err;
2015 }
2016
2017 /*
2018 * If we are singlestepping, then ensure this thread is not connected to
2019 * non-fatal signals until completion of singlestep. When xol insn itself
2020 * triggers the signal, restart the original insn even if the task is
2021 * already SIGKILL'ed (since coredump should report the correct ip). This
2022 * is even more important if the task has a handler for SIGSEGV/etc, The
2023 * _same_ instruction should be repeated again after return from the signal
2024 * handler, and SSTEP can never finish in this case.
2025 */
uprobe_deny_signal(void)2026 bool uprobe_deny_signal(void)
2027 {
2028 struct task_struct *t = current;
2029 struct uprobe_task *utask = t->utask;
2030
2031 if (likely(!utask || !utask->active_uprobe))
2032 return false;
2033
2034 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2035
2036 if (task_sigpending(t)) {
2037 spin_lock_irq(&t->sighand->siglock);
2038 clear_tsk_thread_flag(t, TIF_SIGPENDING);
2039 spin_unlock_irq(&t->sighand->siglock);
2040
2041 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2042 utask->state = UTASK_SSTEP_TRAPPED;
2043 set_tsk_thread_flag(t, TIF_UPROBE);
2044 }
2045 }
2046
2047 return true;
2048 }
2049
mmf_recalc_uprobes(struct mm_struct * mm)2050 static void mmf_recalc_uprobes(struct mm_struct *mm)
2051 {
2052 VMA_ITERATOR(vmi, mm, 0);
2053 struct vm_area_struct *vma;
2054
2055 for_each_vma(vmi, vma) {
2056 if (!valid_vma(vma, false))
2057 continue;
2058 /*
2059 * This is not strictly accurate, we can race with
2060 * uprobe_unregister() and see the already removed
2061 * uprobe if delete_uprobe() was not yet called.
2062 * Or this uprobe can be filtered out.
2063 */
2064 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2065 return;
2066 }
2067
2068 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2069 }
2070
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2071 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2072 {
2073 struct page *page;
2074 uprobe_opcode_t opcode;
2075 int result;
2076
2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2078 return -EINVAL;
2079
2080 pagefault_disable();
2081 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2082 pagefault_enable();
2083
2084 if (likely(result == 0))
2085 goto out;
2086
2087 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2088 if (result < 0)
2089 return result;
2090
2091 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2092 put_page(page);
2093 out:
2094 /* This needs to return true for any variant of the trap insn */
2095 return is_trap_insn(&opcode);
2096 }
2097
2098 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2099 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2100 {
2101 struct mm_struct *mm = current->mm;
2102 struct uprobe *uprobe = NULL;
2103 struct vm_area_struct *vma;
2104
2105 mmap_read_lock(mm);
2106 vma = vma_lookup(mm, bp_vaddr);
2107 if (vma) {
2108 if (valid_vma(vma, false)) {
2109 struct inode *inode = file_inode(vma->vm_file);
2110 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2111
2112 uprobe = find_uprobe_rcu(inode, offset);
2113 }
2114
2115 if (!uprobe)
2116 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2117 } else {
2118 *is_swbp = -EFAULT;
2119 }
2120
2121 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2122 mmf_recalc_uprobes(mm);
2123 mmap_read_unlock(mm);
2124
2125 return uprobe;
2126 }
2127
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2128 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2129 {
2130 struct uprobe_consumer *uc;
2131 int remove = UPROBE_HANDLER_REMOVE;
2132 bool need_prep = false; /* prepare return uprobe, when needed */
2133 bool has_consumers = false;
2134
2135 current->utask->auprobe = &uprobe->arch;
2136
2137 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2138 srcu_read_lock_held(&uprobes_srcu)) {
2139 int rc = 0;
2140
2141 if (uc->handler) {
2142 rc = uc->handler(uc, regs);
2143 WARN(rc & ~UPROBE_HANDLER_MASK,
2144 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2145 }
2146
2147 if (uc->ret_handler)
2148 need_prep = true;
2149
2150 remove &= rc;
2151 has_consumers = true;
2152 }
2153 current->utask->auprobe = NULL;
2154
2155 if (need_prep && !remove)
2156 prepare_uretprobe(uprobe, regs); /* put bp at return */
2157
2158 if (remove && has_consumers) {
2159 down_read(&uprobe->register_rwsem);
2160
2161 /* re-check that removal is still required, this time under lock */
2162 if (!filter_chain(uprobe, current->mm)) {
2163 WARN_ON(!uprobe_is_active(uprobe));
2164 unapply_uprobe(uprobe, current->mm);
2165 }
2166
2167 up_read(&uprobe->register_rwsem);
2168 }
2169 }
2170
2171 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2172 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2173 {
2174 struct uprobe *uprobe = ri->uprobe;
2175 struct uprobe_consumer *uc;
2176 int srcu_idx;
2177
2178 srcu_idx = srcu_read_lock(&uprobes_srcu);
2179 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2180 srcu_read_lock_held(&uprobes_srcu)) {
2181 if (uc->ret_handler)
2182 uc->ret_handler(uc, ri->func, regs);
2183 }
2184 srcu_read_unlock(&uprobes_srcu, srcu_idx);
2185 }
2186
find_next_ret_chain(struct return_instance * ri)2187 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2188 {
2189 bool chained;
2190
2191 do {
2192 chained = ri->chained;
2193 ri = ri->next; /* can't be NULL if chained */
2194 } while (chained);
2195
2196 return ri;
2197 }
2198
uprobe_handle_trampoline(struct pt_regs * regs)2199 void uprobe_handle_trampoline(struct pt_regs *regs)
2200 {
2201 struct uprobe_task *utask;
2202 struct return_instance *ri, *next;
2203 bool valid;
2204
2205 utask = current->utask;
2206 if (!utask)
2207 goto sigill;
2208
2209 ri = utask->return_instances;
2210 if (!ri)
2211 goto sigill;
2212
2213 do {
2214 /*
2215 * We should throw out the frames invalidated by longjmp().
2216 * If this chain is valid, then the next one should be alive
2217 * or NULL; the latter case means that nobody but ri->func
2218 * could hit this trampoline on return. TODO: sigaltstack().
2219 */
2220 next = find_next_ret_chain(ri);
2221 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2222
2223 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2224 do {
2225 /* pop current instance from the stack of pending return instances,
2226 * as it's not pending anymore: we just fixed up original
2227 * instruction pointer in regs and are about to call handlers;
2228 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2229 * captured stack traces from uretprobe handlers, in which pending
2230 * trampoline addresses on the stack are replaced with correct
2231 * original return addresses
2232 */
2233 utask->return_instances = ri->next;
2234 if (valid)
2235 handle_uretprobe_chain(ri, regs);
2236 ri = free_ret_instance(ri);
2237 utask->depth--;
2238 } while (ri != next);
2239 } while (!valid);
2240
2241 utask->return_instances = ri;
2242 return;
2243
2244 sigill:
2245 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2246 force_sig(SIGILL);
2247
2248 }
2249
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2250 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2251 {
2252 return false;
2253 }
2254
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2255 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2256 struct pt_regs *regs)
2257 {
2258 return true;
2259 }
2260
2261 /*
2262 * Run handler and ask thread to singlestep.
2263 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2264 */
handle_swbp(struct pt_regs * regs)2265 static void handle_swbp(struct pt_regs *regs)
2266 {
2267 struct uprobe *uprobe;
2268 unsigned long bp_vaddr;
2269 int is_swbp, srcu_idx;
2270
2271 bp_vaddr = uprobe_get_swbp_addr(regs);
2272 if (bp_vaddr == uprobe_get_trampoline_vaddr())
2273 return uprobe_handle_trampoline(regs);
2274
2275 srcu_idx = srcu_read_lock(&uprobes_srcu);
2276
2277 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2278 if (!uprobe) {
2279 if (is_swbp > 0) {
2280 /* No matching uprobe; signal SIGTRAP. */
2281 force_sig(SIGTRAP);
2282 } else {
2283 /*
2284 * Either we raced with uprobe_unregister() or we can't
2285 * access this memory. The latter is only possible if
2286 * another thread plays with our ->mm. In both cases
2287 * we can simply restart. If this vma was unmapped we
2288 * can pretend this insn was not executed yet and get
2289 * the (correct) SIGSEGV after restart.
2290 */
2291 instruction_pointer_set(regs, bp_vaddr);
2292 }
2293 goto out;
2294 }
2295
2296 /* change it in advance for ->handler() and restart */
2297 instruction_pointer_set(regs, bp_vaddr);
2298
2299 /*
2300 * TODO: move copy_insn/etc into _register and remove this hack.
2301 * After we hit the bp, _unregister + _register can install the
2302 * new and not-yet-analyzed uprobe at the same address, restart.
2303 */
2304 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2305 goto out;
2306
2307 /*
2308 * Pairs with the smp_wmb() in prepare_uprobe().
2309 *
2310 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2311 * we must also see the stores to &uprobe->arch performed by the
2312 * prepare_uprobe() call.
2313 */
2314 smp_rmb();
2315
2316 /* Tracing handlers use ->utask to communicate with fetch methods */
2317 if (!get_utask())
2318 goto out;
2319
2320 if (arch_uprobe_ignore(&uprobe->arch, regs))
2321 goto out;
2322
2323 handler_chain(uprobe, regs);
2324
2325 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2326 goto out;
2327
2328 if (pre_ssout(uprobe, regs, bp_vaddr))
2329 goto out;
2330
2331 out:
2332 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2333 srcu_read_unlock(&uprobes_srcu, srcu_idx);
2334 }
2335
2336 /*
2337 * Perform required fix-ups and disable singlestep.
2338 * Allow pending signals to take effect.
2339 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2340 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2341 {
2342 struct uprobe *uprobe;
2343 int err = 0;
2344
2345 uprobe = utask->active_uprobe;
2346 if (utask->state == UTASK_SSTEP_ACK)
2347 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2348 else if (utask->state == UTASK_SSTEP_TRAPPED)
2349 arch_uprobe_abort_xol(&uprobe->arch, regs);
2350 else
2351 WARN_ON_ONCE(1);
2352
2353 put_uprobe(uprobe);
2354 utask->active_uprobe = NULL;
2355 utask->state = UTASK_RUNNING;
2356 xol_free_insn_slot(current);
2357
2358 spin_lock_irq(¤t->sighand->siglock);
2359 recalc_sigpending(); /* see uprobe_deny_signal() */
2360 spin_unlock_irq(¤t->sighand->siglock);
2361
2362 if (unlikely(err)) {
2363 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2364 force_sig(SIGILL);
2365 }
2366 }
2367
2368 /*
2369 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2370 * allows the thread to return from interrupt. After that handle_swbp()
2371 * sets utask->active_uprobe.
2372 *
2373 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2374 * and allows the thread to return from interrupt.
2375 *
2376 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2377 * uprobe_notify_resume().
2378 */
uprobe_notify_resume(struct pt_regs * regs)2379 void uprobe_notify_resume(struct pt_regs *regs)
2380 {
2381 struct uprobe_task *utask;
2382
2383 clear_thread_flag(TIF_UPROBE);
2384
2385 utask = current->utask;
2386 if (utask && utask->active_uprobe)
2387 handle_singlestep(utask, regs);
2388 else
2389 handle_swbp(regs);
2390 }
2391
2392 /*
2393 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2394 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2395 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2396 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2397 {
2398 if (!current->mm)
2399 return 0;
2400
2401 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2402 (!current->utask || !current->utask->return_instances))
2403 return 0;
2404
2405 set_thread_flag(TIF_UPROBE);
2406 return 1;
2407 }
2408
2409 /*
2410 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2411 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2412 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2413 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2414 {
2415 struct uprobe_task *utask = current->utask;
2416
2417 if (!current->mm || !utask || !utask->active_uprobe)
2418 /* task is currently not uprobed */
2419 return 0;
2420
2421 utask->state = UTASK_SSTEP_ACK;
2422 set_thread_flag(TIF_UPROBE);
2423 return 1;
2424 }
2425
2426 static struct notifier_block uprobe_exception_nb = {
2427 .notifier_call = arch_uprobe_exception_notify,
2428 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2429 };
2430
uprobes_init(void)2431 void __init uprobes_init(void)
2432 {
2433 int i;
2434
2435 for (i = 0; i < UPROBES_HASH_SZ; i++)
2436 mutex_init(&uprobes_mmap_mutex[i]);
2437
2438 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2439 }
2440