1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46
47 static struct dentry *debugfs_root;
48
49 /*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59 };
60
61 /*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71 };
72
73 /*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84 };
85
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102
rdev_get_name(struct regulator_dev * rdev)103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113
have_full_constraints(void)114 static bool have_full_constraints(void)
115 {
116 return has_full_constraints || of_have_populated_dt();
117 }
118
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130 }
131
132 /**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147 {
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176 }
177
178 /**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
regulator_lock(struct regulator_dev * rdev)188 static void regulator_lock(struct regulator_dev *rdev)
189 {
190 regulator_lock_nested(rdev, NULL);
191 }
192
193 /**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
regulator_unlock(struct regulator_dev * rdev)200 static void regulator_unlock(struct regulator_dev *rdev)
201 {
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212 }
213
214 /**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225 {
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257 exit:
258 ww_acquire_done(ww_ctx);
259 }
260
261 /**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273 {
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277 }
278
regulator_supply_is_couple(struct regulator_dev * rdev)279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280 {
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292 }
293
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296 {
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316 }
317
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322 {
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361 err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365 }
366
367 /**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377 {
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380 }
381
382 /**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392 {
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422 }
423
424 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425 int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427 {
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447 }
448
449 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)450 static int regulator_check_states(suspend_state_t state)
451 {
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453 }
454
455 /* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458 int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461 {
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487 }
488
489 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492 {
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA)
501 *max_uA = rdev->constraints->max_uA;
502 if (*min_uA < rdev->constraints->min_uA)
503 *min_uA = rdev->constraints->min_uA;
504
505 if (*min_uA > *max_uA) {
506 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
507 *min_uA, *max_uA);
508 return -EINVAL;
509 }
510
511 return 0;
512 }
513
514 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)515 static int regulator_mode_constrain(struct regulator_dev *rdev,
516 unsigned int *mode)
517 {
518 switch (*mode) {
519 case REGULATOR_MODE_FAST:
520 case REGULATOR_MODE_NORMAL:
521 case REGULATOR_MODE_IDLE:
522 case REGULATOR_MODE_STANDBY:
523 break;
524 default:
525 rdev_err(rdev, "invalid mode %x specified\n", *mode);
526 return -EINVAL;
527 }
528
529 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
530 rdev_err(rdev, "mode operation not allowed\n");
531 return -EPERM;
532 }
533
534 /* The modes are bitmasks, the most power hungry modes having
535 * the lowest values. If the requested mode isn't supported
536 * try higher modes.
537 */
538 while (*mode) {
539 if (rdev->constraints->valid_modes_mask & *mode)
540 return 0;
541 *mode /= 2;
542 }
543
544 return -EINVAL;
545 }
546
547 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)548 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
549 {
550 if (rdev->constraints == NULL)
551 return NULL;
552
553 switch (state) {
554 case PM_SUSPEND_STANDBY:
555 return &rdev->constraints->state_standby;
556 case PM_SUSPEND_MEM:
557 return &rdev->constraints->state_mem;
558 case PM_SUSPEND_MAX:
559 return &rdev->constraints->state_disk;
560 default:
561 return NULL;
562 }
563 }
564
565 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)566 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
567 {
568 const struct regulator_state *rstate;
569
570 rstate = regulator_get_suspend_state(rdev, state);
571 if (rstate == NULL)
572 return NULL;
573
574 /* If we have no suspend mode configuration don't set anything;
575 * only warn if the driver implements set_suspend_voltage or
576 * set_suspend_mode callback.
577 */
578 if (rstate->enabled != ENABLE_IN_SUSPEND &&
579 rstate->enabled != DISABLE_IN_SUSPEND) {
580 if (rdev->desc->ops->set_suspend_voltage ||
581 rdev->desc->ops->set_suspend_mode)
582 rdev_warn(rdev, "No configuration\n");
583 return NULL;
584 }
585
586 return rstate;
587 }
588
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)589 static ssize_t microvolts_show(struct device *dev,
590 struct device_attribute *attr, char *buf)
591 {
592 struct regulator_dev *rdev = dev_get_drvdata(dev);
593 int uV;
594
595 regulator_lock(rdev);
596 uV = regulator_get_voltage_rdev(rdev);
597 regulator_unlock(rdev);
598
599 if (uV < 0)
600 return uV;
601 return sprintf(buf, "%d\n", uV);
602 }
603 static DEVICE_ATTR_RO(microvolts);
604
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)605 static ssize_t microamps_show(struct device *dev,
606 struct device_attribute *attr, char *buf)
607 {
608 struct regulator_dev *rdev = dev_get_drvdata(dev);
609
610 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
611 }
612 static DEVICE_ATTR_RO(microamps);
613
name_show(struct device * dev,struct device_attribute * attr,char * buf)614 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
615 char *buf)
616 {
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619 return sprintf(buf, "%s\n", rdev_get_name(rdev));
620 }
621 static DEVICE_ATTR_RO(name);
622
regulator_opmode_to_str(int mode)623 static const char *regulator_opmode_to_str(int mode)
624 {
625 switch (mode) {
626 case REGULATOR_MODE_FAST:
627 return "fast";
628 case REGULATOR_MODE_NORMAL:
629 return "normal";
630 case REGULATOR_MODE_IDLE:
631 return "idle";
632 case REGULATOR_MODE_STANDBY:
633 return "standby";
634 }
635 return "unknown";
636 }
637
regulator_print_opmode(char * buf,int mode)638 static ssize_t regulator_print_opmode(char *buf, int mode)
639 {
640 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
641 }
642
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)643 static ssize_t opmode_show(struct device *dev,
644 struct device_attribute *attr, char *buf)
645 {
646 struct regulator_dev *rdev = dev_get_drvdata(dev);
647
648 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
649 }
650 static DEVICE_ATTR_RO(opmode);
651
regulator_print_state(char * buf,int state)652 static ssize_t regulator_print_state(char *buf, int state)
653 {
654 if (state > 0)
655 return sprintf(buf, "enabled\n");
656 else if (state == 0)
657 return sprintf(buf, "disabled\n");
658 else
659 return sprintf(buf, "unknown\n");
660 }
661
state_show(struct device * dev,struct device_attribute * attr,char * buf)662 static ssize_t state_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
664 {
665 struct regulator_dev *rdev = dev_get_drvdata(dev);
666 ssize_t ret;
667
668 regulator_lock(rdev);
669 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
670 regulator_unlock(rdev);
671
672 return ret;
673 }
674 static DEVICE_ATTR_RO(state);
675
status_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t status_show(struct device *dev,
677 struct device_attribute *attr, char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680 int status;
681 char *label;
682
683 status = rdev->desc->ops->get_status(rdev);
684 if (status < 0)
685 return status;
686
687 switch (status) {
688 case REGULATOR_STATUS_OFF:
689 label = "off";
690 break;
691 case REGULATOR_STATUS_ON:
692 label = "on";
693 break;
694 case REGULATOR_STATUS_ERROR:
695 label = "error";
696 break;
697 case REGULATOR_STATUS_FAST:
698 label = "fast";
699 break;
700 case REGULATOR_STATUS_NORMAL:
701 label = "normal";
702 break;
703 case REGULATOR_STATUS_IDLE:
704 label = "idle";
705 break;
706 case REGULATOR_STATUS_STANDBY:
707 label = "standby";
708 break;
709 case REGULATOR_STATUS_BYPASS:
710 label = "bypass";
711 break;
712 case REGULATOR_STATUS_UNDEFINED:
713 label = "undefined";
714 break;
715 default:
716 return -ERANGE;
717 }
718
719 return sprintf(buf, "%s\n", label);
720 }
721 static DEVICE_ATTR_RO(status);
722
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)723 static ssize_t min_microamps_show(struct device *dev,
724 struct device_attribute *attr, char *buf)
725 {
726 struct regulator_dev *rdev = dev_get_drvdata(dev);
727
728 if (!rdev->constraints)
729 return sprintf(buf, "constraint not defined\n");
730
731 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
732 }
733 static DEVICE_ATTR_RO(min_microamps);
734
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)735 static ssize_t max_microamps_show(struct device *dev,
736 struct device_attribute *attr, char *buf)
737 {
738 struct regulator_dev *rdev = dev_get_drvdata(dev);
739
740 if (!rdev->constraints)
741 return sprintf(buf, "constraint not defined\n");
742
743 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
744 }
745 static DEVICE_ATTR_RO(max_microamps);
746
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)747 static ssize_t min_microvolts_show(struct device *dev,
748 struct device_attribute *attr, char *buf)
749 {
750 struct regulator_dev *rdev = dev_get_drvdata(dev);
751
752 if (!rdev->constraints)
753 return sprintf(buf, "constraint not defined\n");
754
755 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
756 }
757 static DEVICE_ATTR_RO(min_microvolts);
758
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)759 static ssize_t max_microvolts_show(struct device *dev,
760 struct device_attribute *attr, char *buf)
761 {
762 struct regulator_dev *rdev = dev_get_drvdata(dev);
763
764 if (!rdev->constraints)
765 return sprintf(buf, "constraint not defined\n");
766
767 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
768 }
769 static DEVICE_ATTR_RO(max_microvolts);
770
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)771 static ssize_t requested_microamps_show(struct device *dev,
772 struct device_attribute *attr, char *buf)
773 {
774 struct regulator_dev *rdev = dev_get_drvdata(dev);
775 struct regulator *regulator;
776 int uA = 0;
777
778 regulator_lock(rdev);
779 list_for_each_entry(regulator, &rdev->consumer_list, list) {
780 if (regulator->enable_count)
781 uA += regulator->uA_load;
782 }
783 regulator_unlock(rdev);
784 return sprintf(buf, "%d\n", uA);
785 }
786 static DEVICE_ATTR_RO(requested_microamps);
787
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)788 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
789 char *buf)
790 {
791 struct regulator_dev *rdev = dev_get_drvdata(dev);
792 return sprintf(buf, "%d\n", rdev->use_count);
793 }
794 static DEVICE_ATTR_RO(num_users);
795
type_show(struct device * dev,struct device_attribute * attr,char * buf)796 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
797 char *buf)
798 {
799 struct regulator_dev *rdev = dev_get_drvdata(dev);
800
801 switch (rdev->desc->type) {
802 case REGULATOR_VOLTAGE:
803 return sprintf(buf, "voltage\n");
804 case REGULATOR_CURRENT:
805 return sprintf(buf, "current\n");
806 }
807 return sprintf(buf, "unknown\n");
808 }
809 static DEVICE_ATTR_RO(type);
810
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)811 static ssize_t suspend_mem_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813 {
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
817 }
818 static DEVICE_ATTR_RO(suspend_mem_microvolts);
819
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t suspend_disk_microvolts_show(struct device *dev,
821 struct device_attribute *attr, char *buf)
822 {
823 struct regulator_dev *rdev = dev_get_drvdata(dev);
824
825 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
826 }
827 static DEVICE_ATTR_RO(suspend_disk_microvolts);
828
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)829 static ssize_t suspend_standby_microvolts_show(struct device *dev,
830 struct device_attribute *attr, char *buf)
831 {
832 struct regulator_dev *rdev = dev_get_drvdata(dev);
833
834 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
835 }
836 static DEVICE_ATTR_RO(suspend_standby_microvolts);
837
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)838 static ssize_t suspend_mem_mode_show(struct device *dev,
839 struct device_attribute *attr, char *buf)
840 {
841 struct regulator_dev *rdev = dev_get_drvdata(dev);
842
843 return regulator_print_opmode(buf,
844 rdev->constraints->state_mem.mode);
845 }
846 static DEVICE_ATTR_RO(suspend_mem_mode);
847
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t suspend_disk_mode_show(struct device *dev,
849 struct device_attribute *attr, char *buf)
850 {
851 struct regulator_dev *rdev = dev_get_drvdata(dev);
852
853 return regulator_print_opmode(buf,
854 rdev->constraints->state_disk.mode);
855 }
856 static DEVICE_ATTR_RO(suspend_disk_mode);
857
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t suspend_standby_mode_show(struct device *dev,
859 struct device_attribute *attr, char *buf)
860 {
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 return regulator_print_opmode(buf,
864 rdev->constraints->state_standby.mode);
865 }
866 static DEVICE_ATTR_RO(suspend_standby_mode);
867
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)868 static ssize_t suspend_mem_state_show(struct device *dev,
869 struct device_attribute *attr, char *buf)
870 {
871 struct regulator_dev *rdev = dev_get_drvdata(dev);
872
873 return regulator_print_state(buf,
874 rdev->constraints->state_mem.enabled);
875 }
876 static DEVICE_ATTR_RO(suspend_mem_state);
877
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)878 static ssize_t suspend_disk_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_disk.enabled);
885 }
886 static DEVICE_ATTR_RO(suspend_disk_state);
887
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t suspend_standby_state_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893 return regulator_print_state(buf,
894 rdev->constraints->state_standby.enabled);
895 }
896 static DEVICE_ATTR_RO(suspend_standby_state);
897
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t bypass_show(struct device *dev,
899 struct device_attribute *attr, char *buf)
900 {
901 struct regulator_dev *rdev = dev_get_drvdata(dev);
902 const char *report;
903 bool bypass;
904 int ret;
905
906 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
907
908 if (ret != 0)
909 report = "unknown";
910 else if (bypass)
911 report = "enabled";
912 else
913 report = "disabled";
914
915 return sprintf(buf, "%s\n", report);
916 }
917 static DEVICE_ATTR_RO(bypass);
918
919 #define REGULATOR_ERROR_ATTR(name, bit) \
920 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
921 char *buf) \
922 { \
923 int ret; \
924 unsigned int flags; \
925 struct regulator_dev *rdev = dev_get_drvdata(dev); \
926 ret = _regulator_get_error_flags(rdev, &flags); \
927 if (ret) \
928 return ret; \
929 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
930 } \
931 static DEVICE_ATTR_RO(name)
932
933 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
934 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
935 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
936 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
937 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
938 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
939 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
940 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
941 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
942
943 /* Calculate the new optimum regulator operating mode based on the new total
944 * consumer load. All locks held by caller
945 */
drms_uA_update(struct regulator_dev * rdev)946 static int drms_uA_update(struct regulator_dev *rdev)
947 {
948 struct regulator *sibling;
949 int current_uA = 0, output_uV, input_uV, err;
950 unsigned int mode;
951
952 /*
953 * first check to see if we can set modes at all, otherwise just
954 * tell the consumer everything is OK.
955 */
956 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
957 rdev_dbg(rdev, "DRMS operation not allowed\n");
958 return 0;
959 }
960
961 if (!rdev->desc->ops->get_optimum_mode &&
962 !rdev->desc->ops->set_load)
963 return 0;
964
965 if (!rdev->desc->ops->set_mode &&
966 !rdev->desc->ops->set_load)
967 return -EINVAL;
968
969 /* calc total requested load */
970 list_for_each_entry(sibling, &rdev->consumer_list, list) {
971 if (sibling->enable_count)
972 current_uA += sibling->uA_load;
973 }
974
975 current_uA += rdev->constraints->system_load;
976
977 if (rdev->desc->ops->set_load) {
978 /* set the optimum mode for our new total regulator load */
979 err = rdev->desc->ops->set_load(rdev, current_uA);
980 if (err < 0)
981 rdev_err(rdev, "failed to set load %d: %pe\n",
982 current_uA, ERR_PTR(err));
983 } else {
984 /*
985 * Unfortunately in some cases the constraints->valid_ops has
986 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
987 * That's not really legit but we won't consider it a fatal
988 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
989 * wasn't set.
990 */
991 if (!rdev->constraints->valid_modes_mask) {
992 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
993 return 0;
994 }
995
996 /* get output voltage */
997 output_uV = regulator_get_voltage_rdev(rdev);
998
999 /*
1000 * Don't return an error; if regulator driver cares about
1001 * output_uV then it's up to the driver to validate.
1002 */
1003 if (output_uV <= 0)
1004 rdev_dbg(rdev, "invalid output voltage found\n");
1005
1006 /* get input voltage */
1007 input_uV = 0;
1008 if (rdev->supply)
1009 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1010 if (input_uV <= 0)
1011 input_uV = rdev->constraints->input_uV;
1012
1013 /*
1014 * Don't return an error; if regulator driver cares about
1015 * input_uV then it's up to the driver to validate.
1016 */
1017 if (input_uV <= 0)
1018 rdev_dbg(rdev, "invalid input voltage found\n");
1019
1020 /* now get the optimum mode for our new total regulator load */
1021 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1022 output_uV, current_uA);
1023
1024 /* check the new mode is allowed */
1025 err = regulator_mode_constrain(rdev, &mode);
1026 if (err < 0) {
1027 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1028 current_uA, input_uV, output_uV, ERR_PTR(err));
1029 return err;
1030 }
1031
1032 err = rdev->desc->ops->set_mode(rdev, mode);
1033 if (err < 0)
1034 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1035 mode, ERR_PTR(err));
1036 }
1037
1038 return err;
1039 }
1040
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1041 static int __suspend_set_state(struct regulator_dev *rdev,
1042 const struct regulator_state *rstate)
1043 {
1044 int ret = 0;
1045
1046 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1047 rdev->desc->ops->set_suspend_enable)
1048 ret = rdev->desc->ops->set_suspend_enable(rdev);
1049 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1050 rdev->desc->ops->set_suspend_disable)
1051 ret = rdev->desc->ops->set_suspend_disable(rdev);
1052 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1053 ret = 0;
1054
1055 if (ret < 0) {
1056 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1057 return ret;
1058 }
1059
1060 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1061 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1062 if (ret < 0) {
1063 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1064 return ret;
1065 }
1066 }
1067
1068 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1069 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1070 if (ret < 0) {
1071 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1072 return ret;
1073 }
1074 }
1075
1076 return ret;
1077 }
1078
suspend_set_initial_state(struct regulator_dev * rdev)1079 static int suspend_set_initial_state(struct regulator_dev *rdev)
1080 {
1081 const struct regulator_state *rstate;
1082
1083 rstate = regulator_get_suspend_state_check(rdev,
1084 rdev->constraints->initial_state);
1085 if (!rstate)
1086 return 0;
1087
1088 return __suspend_set_state(rdev, rstate);
1089 }
1090
1091 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1092 static void print_constraints_debug(struct regulator_dev *rdev)
1093 {
1094 struct regulation_constraints *constraints = rdev->constraints;
1095 char buf[160] = "";
1096 size_t len = sizeof(buf) - 1;
1097 int count = 0;
1098 int ret;
1099
1100 if (constraints->min_uV && constraints->max_uV) {
1101 if (constraints->min_uV == constraints->max_uV)
1102 count += scnprintf(buf + count, len - count, "%d mV ",
1103 constraints->min_uV / 1000);
1104 else
1105 count += scnprintf(buf + count, len - count,
1106 "%d <--> %d mV ",
1107 constraints->min_uV / 1000,
1108 constraints->max_uV / 1000);
1109 }
1110
1111 if (!constraints->min_uV ||
1112 constraints->min_uV != constraints->max_uV) {
1113 ret = regulator_get_voltage_rdev(rdev);
1114 if (ret > 0)
1115 count += scnprintf(buf + count, len - count,
1116 "at %d mV ", ret / 1000);
1117 }
1118
1119 if (constraints->uV_offset)
1120 count += scnprintf(buf + count, len - count, "%dmV offset ",
1121 constraints->uV_offset / 1000);
1122
1123 if (constraints->min_uA && constraints->max_uA) {
1124 if (constraints->min_uA == constraints->max_uA)
1125 count += scnprintf(buf + count, len - count, "%d mA ",
1126 constraints->min_uA / 1000);
1127 else
1128 count += scnprintf(buf + count, len - count,
1129 "%d <--> %d mA ",
1130 constraints->min_uA / 1000,
1131 constraints->max_uA / 1000);
1132 }
1133
1134 if (!constraints->min_uA ||
1135 constraints->min_uA != constraints->max_uA) {
1136 ret = _regulator_get_current_limit(rdev);
1137 if (ret > 0)
1138 count += scnprintf(buf + count, len - count,
1139 "at %d mA ", ret / 1000);
1140 }
1141
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1143 count += scnprintf(buf + count, len - count, "fast ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1145 count += scnprintf(buf + count, len - count, "normal ");
1146 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1147 count += scnprintf(buf + count, len - count, "idle ");
1148 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1149 count += scnprintf(buf + count, len - count, "standby ");
1150
1151 if (!count)
1152 count = scnprintf(buf, len, "no parameters");
1153 else
1154 --count;
1155
1156 count += scnprintf(buf + count, len - count, ", %s",
1157 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1158
1159 rdev_dbg(rdev, "%s\n", buf);
1160 }
1161 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1162 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1163 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1164
print_constraints(struct regulator_dev * rdev)1165 static void print_constraints(struct regulator_dev *rdev)
1166 {
1167 struct regulation_constraints *constraints = rdev->constraints;
1168
1169 print_constraints_debug(rdev);
1170
1171 if ((constraints->min_uV != constraints->max_uV) &&
1172 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1173 rdev_warn(rdev,
1174 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1175 }
1176
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1177 static int machine_constraints_voltage(struct regulator_dev *rdev,
1178 struct regulation_constraints *constraints)
1179 {
1180 const struct regulator_ops *ops = rdev->desc->ops;
1181 int ret;
1182
1183 /* do we need to apply the constraint voltage */
1184 if (rdev->constraints->apply_uV &&
1185 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1186 int target_min, target_max;
1187 int current_uV = regulator_get_voltage_rdev(rdev);
1188
1189 if (current_uV == -ENOTRECOVERABLE) {
1190 /* This regulator can't be read and must be initialized */
1191 rdev_info(rdev, "Setting %d-%duV\n",
1192 rdev->constraints->min_uV,
1193 rdev->constraints->max_uV);
1194 _regulator_do_set_voltage(rdev,
1195 rdev->constraints->min_uV,
1196 rdev->constraints->max_uV);
1197 current_uV = regulator_get_voltage_rdev(rdev);
1198 }
1199
1200 if (current_uV < 0) {
1201 if (current_uV != -EPROBE_DEFER)
1202 rdev_err(rdev,
1203 "failed to get the current voltage: %pe\n",
1204 ERR_PTR(current_uV));
1205 return current_uV;
1206 }
1207
1208 /*
1209 * If we're below the minimum voltage move up to the
1210 * minimum voltage, if we're above the maximum voltage
1211 * then move down to the maximum.
1212 */
1213 target_min = current_uV;
1214 target_max = current_uV;
1215
1216 if (current_uV < rdev->constraints->min_uV) {
1217 target_min = rdev->constraints->min_uV;
1218 target_max = rdev->constraints->min_uV;
1219 }
1220
1221 if (current_uV > rdev->constraints->max_uV) {
1222 target_min = rdev->constraints->max_uV;
1223 target_max = rdev->constraints->max_uV;
1224 }
1225
1226 if (target_min != current_uV || target_max != current_uV) {
1227 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1228 current_uV, target_min, target_max);
1229 ret = _regulator_do_set_voltage(
1230 rdev, target_min, target_max);
1231 if (ret < 0) {
1232 rdev_err(rdev,
1233 "failed to apply %d-%duV constraint: %pe\n",
1234 target_min, target_max, ERR_PTR(ret));
1235 return ret;
1236 }
1237 }
1238 }
1239
1240 /* constrain machine-level voltage specs to fit
1241 * the actual range supported by this regulator.
1242 */
1243 if (ops->list_voltage && rdev->desc->n_voltages) {
1244 int count = rdev->desc->n_voltages;
1245 int i;
1246 int min_uV = INT_MAX;
1247 int max_uV = INT_MIN;
1248 int cmin = constraints->min_uV;
1249 int cmax = constraints->max_uV;
1250
1251 /* it's safe to autoconfigure fixed-voltage supplies
1252 * and the constraints are used by list_voltage.
1253 */
1254 if (count == 1 && !cmin) {
1255 cmin = 1;
1256 cmax = INT_MAX;
1257 constraints->min_uV = cmin;
1258 constraints->max_uV = cmax;
1259 }
1260
1261 /* voltage constraints are optional */
1262 if ((cmin == 0) && (cmax == 0))
1263 return 0;
1264
1265 /* else require explicit machine-level constraints */
1266 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1267 rdev_err(rdev, "invalid voltage constraints\n");
1268 return -EINVAL;
1269 }
1270
1271 /* no need to loop voltages if range is continuous */
1272 if (rdev->desc->continuous_voltage_range)
1273 return 0;
1274
1275 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1276 for (i = 0; i < count; i++) {
1277 int value;
1278
1279 value = ops->list_voltage(rdev, i);
1280 if (value <= 0)
1281 continue;
1282
1283 /* maybe adjust [min_uV..max_uV] */
1284 if (value >= cmin && value < min_uV)
1285 min_uV = value;
1286 if (value <= cmax && value > max_uV)
1287 max_uV = value;
1288 }
1289
1290 /* final: [min_uV..max_uV] valid iff constraints valid */
1291 if (max_uV < min_uV) {
1292 rdev_err(rdev,
1293 "unsupportable voltage constraints %u-%uuV\n",
1294 min_uV, max_uV);
1295 return -EINVAL;
1296 }
1297
1298 /* use regulator's subset of machine constraints */
1299 if (constraints->min_uV < min_uV) {
1300 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1301 constraints->min_uV, min_uV);
1302 constraints->min_uV = min_uV;
1303 }
1304 if (constraints->max_uV > max_uV) {
1305 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1306 constraints->max_uV, max_uV);
1307 constraints->max_uV = max_uV;
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1314 static int machine_constraints_current(struct regulator_dev *rdev,
1315 struct regulation_constraints *constraints)
1316 {
1317 const struct regulator_ops *ops = rdev->desc->ops;
1318 int ret;
1319
1320 if (!constraints->min_uA && !constraints->max_uA)
1321 return 0;
1322
1323 if (constraints->min_uA > constraints->max_uA) {
1324 rdev_err(rdev, "Invalid current constraints\n");
1325 return -EINVAL;
1326 }
1327
1328 if (!ops->set_current_limit || !ops->get_current_limit) {
1329 rdev_warn(rdev, "Operation of current configuration missing\n");
1330 return 0;
1331 }
1332
1333 /* Set regulator current in constraints range */
1334 ret = ops->set_current_limit(rdev, constraints->min_uA,
1335 constraints->max_uA);
1336 if (ret < 0) {
1337 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1338 return ret;
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int _regulator_do_enable(struct regulator_dev *rdev);
1345
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1346 static int notif_set_limit(struct regulator_dev *rdev,
1347 int (*set)(struct regulator_dev *, int, int, bool),
1348 int limit, int severity)
1349 {
1350 bool enable;
1351
1352 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1353 enable = false;
1354 limit = 0;
1355 } else {
1356 enable = true;
1357 }
1358
1359 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1360 limit = 0;
1361
1362 return set(rdev, limit, severity, enable);
1363 }
1364
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1365 static int handle_notify_limits(struct regulator_dev *rdev,
1366 int (*set)(struct regulator_dev *, int, int, bool),
1367 struct notification_limit *limits)
1368 {
1369 int ret = 0;
1370
1371 if (!set)
1372 return -EOPNOTSUPP;
1373
1374 if (limits->prot)
1375 ret = notif_set_limit(rdev, set, limits->prot,
1376 REGULATOR_SEVERITY_PROT);
1377 if (ret)
1378 return ret;
1379
1380 if (limits->err)
1381 ret = notif_set_limit(rdev, set, limits->err,
1382 REGULATOR_SEVERITY_ERR);
1383 if (ret)
1384 return ret;
1385
1386 if (limits->warn)
1387 ret = notif_set_limit(rdev, set, limits->warn,
1388 REGULATOR_SEVERITY_WARN);
1389
1390 return ret;
1391 }
1392 /**
1393 * set_machine_constraints - sets regulator constraints
1394 * @rdev: regulator source
1395 *
1396 * Allows platform initialisation code to define and constrain
1397 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1398 * Constraints *must* be set by platform code in order for some
1399 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1400 * set_mode.
1401 *
1402 * Return: 0 on success or a negative error number on failure.
1403 */
set_machine_constraints(struct regulator_dev * rdev)1404 static int set_machine_constraints(struct regulator_dev *rdev)
1405 {
1406 int ret = 0;
1407 const struct regulator_ops *ops = rdev->desc->ops;
1408
1409 ret = machine_constraints_voltage(rdev, rdev->constraints);
1410 if (ret != 0)
1411 return ret;
1412
1413 ret = machine_constraints_current(rdev, rdev->constraints);
1414 if (ret != 0)
1415 return ret;
1416
1417 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1418 ret = ops->set_input_current_limit(rdev,
1419 rdev->constraints->ilim_uA);
1420 if (ret < 0) {
1421 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1422 return ret;
1423 }
1424 }
1425
1426 /* do we need to setup our suspend state */
1427 if (rdev->constraints->initial_state) {
1428 ret = suspend_set_initial_state(rdev);
1429 if (ret < 0) {
1430 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1431 return ret;
1432 }
1433 }
1434
1435 if (rdev->constraints->initial_mode) {
1436 if (!ops->set_mode) {
1437 rdev_err(rdev, "no set_mode operation\n");
1438 return -EINVAL;
1439 }
1440
1441 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1442 if (ret < 0) {
1443 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1444 return ret;
1445 }
1446 } else if (rdev->constraints->system_load) {
1447 /*
1448 * We'll only apply the initial system load if an
1449 * initial mode wasn't specified.
1450 */
1451 drms_uA_update(rdev);
1452 }
1453
1454 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1455 && ops->set_ramp_delay) {
1456 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1457 if (ret < 0) {
1458 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1459 return ret;
1460 }
1461 }
1462
1463 if (rdev->constraints->pull_down && ops->set_pull_down) {
1464 ret = ops->set_pull_down(rdev);
1465 if (ret < 0) {
1466 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1467 return ret;
1468 }
1469 }
1470
1471 if (rdev->constraints->soft_start && ops->set_soft_start) {
1472 ret = ops->set_soft_start(rdev);
1473 if (ret < 0) {
1474 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1475 return ret;
1476 }
1477 }
1478
1479 /*
1480 * Existing logic does not warn if over_current_protection is given as
1481 * a constraint but driver does not support that. I think we should
1482 * warn about this type of issues as it is possible someone changes
1483 * PMIC on board to another type - and the another PMIC's driver does
1484 * not support setting protection. Board composer may happily believe
1485 * the DT limits are respected - especially if the new PMIC HW also
1486 * supports protection but the driver does not. I won't change the logic
1487 * without hearing more experienced opinion on this though.
1488 *
1489 * If warning is seen as a good idea then we can merge handling the
1490 * over-curret protection and detection and get rid of this special
1491 * handling.
1492 */
1493 if (rdev->constraints->over_current_protection
1494 && ops->set_over_current_protection) {
1495 int lim = rdev->constraints->over_curr_limits.prot;
1496
1497 ret = ops->set_over_current_protection(rdev, lim,
1498 REGULATOR_SEVERITY_PROT,
1499 true);
1500 if (ret < 0) {
1501 rdev_err(rdev, "failed to set over current protection: %pe\n",
1502 ERR_PTR(ret));
1503 return ret;
1504 }
1505 }
1506
1507 if (rdev->constraints->over_current_detection)
1508 ret = handle_notify_limits(rdev,
1509 ops->set_over_current_protection,
1510 &rdev->constraints->over_curr_limits);
1511 if (ret) {
1512 if (ret != -EOPNOTSUPP) {
1513 rdev_err(rdev, "failed to set over current limits: %pe\n",
1514 ERR_PTR(ret));
1515 return ret;
1516 }
1517 rdev_warn(rdev,
1518 "IC does not support requested over-current limits\n");
1519 }
1520
1521 if (rdev->constraints->over_voltage_detection)
1522 ret = handle_notify_limits(rdev,
1523 ops->set_over_voltage_protection,
1524 &rdev->constraints->over_voltage_limits);
1525 if (ret) {
1526 if (ret != -EOPNOTSUPP) {
1527 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1528 ERR_PTR(ret));
1529 return ret;
1530 }
1531 rdev_warn(rdev,
1532 "IC does not support requested over voltage limits\n");
1533 }
1534
1535 if (rdev->constraints->under_voltage_detection)
1536 ret = handle_notify_limits(rdev,
1537 ops->set_under_voltage_protection,
1538 &rdev->constraints->under_voltage_limits);
1539 if (ret) {
1540 if (ret != -EOPNOTSUPP) {
1541 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1542 ERR_PTR(ret));
1543 return ret;
1544 }
1545 rdev_warn(rdev,
1546 "IC does not support requested under voltage limits\n");
1547 }
1548
1549 if (rdev->constraints->over_temp_detection)
1550 ret = handle_notify_limits(rdev,
1551 ops->set_thermal_protection,
1552 &rdev->constraints->temp_limits);
1553 if (ret) {
1554 if (ret != -EOPNOTSUPP) {
1555 rdev_err(rdev, "failed to set temperature limits %pe\n",
1556 ERR_PTR(ret));
1557 return ret;
1558 }
1559 rdev_warn(rdev,
1560 "IC does not support requested temperature limits\n");
1561 }
1562
1563 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1564 bool ad_state = (rdev->constraints->active_discharge ==
1565 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1566
1567 ret = ops->set_active_discharge(rdev, ad_state);
1568 if (ret < 0) {
1569 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1570 return ret;
1571 }
1572 }
1573
1574 /*
1575 * If there is no mechanism for controlling the regulator then
1576 * flag it as always_on so we don't end up duplicating checks
1577 * for this so much. Note that we could control the state of
1578 * a supply to control the output on a regulator that has no
1579 * direct control.
1580 */
1581 if (!rdev->ena_pin && !ops->enable) {
1582 if (rdev->supply_name && !rdev->supply)
1583 return -EPROBE_DEFER;
1584
1585 if (rdev->supply)
1586 rdev->constraints->always_on =
1587 rdev->supply->rdev->constraints->always_on;
1588 else
1589 rdev->constraints->always_on = true;
1590 }
1591
1592 /* If the constraints say the regulator should be on at this point
1593 * and we have control then make sure it is enabled.
1594 */
1595 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1596 /* If we want to enable this regulator, make sure that we know
1597 * the supplying regulator.
1598 */
1599 if (rdev->supply_name && !rdev->supply)
1600 return -EPROBE_DEFER;
1601
1602 /* If supplying regulator has already been enabled,
1603 * it's not intended to have use_count increment
1604 * when rdev is only boot-on.
1605 */
1606 if (rdev->supply &&
1607 (rdev->constraints->always_on ||
1608 !regulator_is_enabled(rdev->supply))) {
1609 ret = regulator_enable(rdev->supply);
1610 if (ret < 0) {
1611 _regulator_put(rdev->supply);
1612 rdev->supply = NULL;
1613 return ret;
1614 }
1615 }
1616
1617 ret = _regulator_do_enable(rdev);
1618 if (ret < 0 && ret != -EINVAL) {
1619 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1620 return ret;
1621 }
1622
1623 if (rdev->constraints->always_on)
1624 rdev->use_count++;
1625 } else if (rdev->desc->off_on_delay) {
1626 rdev->last_off = ktime_get();
1627 }
1628
1629 print_constraints(rdev);
1630 return 0;
1631 }
1632
1633 /**
1634 * set_supply - set regulator supply regulator
1635 * @rdev: regulator (locked)
1636 * @supply_rdev: supply regulator (locked))
1637 *
1638 * Called by platform initialisation code to set the supply regulator for this
1639 * regulator. This ensures that a regulators supply will also be enabled by the
1640 * core if it's child is enabled.
1641 *
1642 * Return: 0 on success or a negative error number on failure.
1643 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1644 static int set_supply(struct regulator_dev *rdev,
1645 struct regulator_dev *supply_rdev)
1646 {
1647 int err;
1648
1649 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1650
1651 if (!try_module_get(supply_rdev->owner))
1652 return -ENODEV;
1653
1654 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1655 if (rdev->supply == NULL) {
1656 module_put(supply_rdev->owner);
1657 err = -ENOMEM;
1658 return err;
1659 }
1660 supply_rdev->open_count++;
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1667 * @rdev: regulator source
1668 * @consumer_dev_name: dev_name() string for device supply applies to
1669 * @supply: symbolic name for supply
1670 *
1671 * Allows platform initialisation code to map physical regulator
1672 * sources to symbolic names for supplies for use by devices. Devices
1673 * should use these symbolic names to request regulators, avoiding the
1674 * need to provide board-specific regulator names as platform data.
1675 *
1676 * Return: 0 on success or a negative error number on failure.
1677 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1678 static int set_consumer_device_supply(struct regulator_dev *rdev,
1679 const char *consumer_dev_name,
1680 const char *supply)
1681 {
1682 struct regulator_map *node, *new_node;
1683 int has_dev;
1684
1685 if (supply == NULL)
1686 return -EINVAL;
1687
1688 if (consumer_dev_name != NULL)
1689 has_dev = 1;
1690 else
1691 has_dev = 0;
1692
1693 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1694 if (new_node == NULL)
1695 return -ENOMEM;
1696
1697 new_node->regulator = rdev;
1698 new_node->supply = supply;
1699
1700 if (has_dev) {
1701 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1702 if (new_node->dev_name == NULL) {
1703 kfree(new_node);
1704 return -ENOMEM;
1705 }
1706 }
1707
1708 mutex_lock(®ulator_list_mutex);
1709 list_for_each_entry(node, ®ulator_map_list, list) {
1710 if (node->dev_name && consumer_dev_name) {
1711 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1712 continue;
1713 } else if (node->dev_name || consumer_dev_name) {
1714 continue;
1715 }
1716
1717 if (strcmp(node->supply, supply) != 0)
1718 continue;
1719
1720 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1721 consumer_dev_name,
1722 dev_name(&node->regulator->dev),
1723 node->regulator->desc->name,
1724 supply,
1725 dev_name(&rdev->dev), rdev_get_name(rdev));
1726 goto fail;
1727 }
1728
1729 list_add(&new_node->list, ®ulator_map_list);
1730 mutex_unlock(®ulator_list_mutex);
1731
1732 return 0;
1733
1734 fail:
1735 mutex_unlock(®ulator_list_mutex);
1736 kfree(new_node->dev_name);
1737 kfree(new_node);
1738 return -EBUSY;
1739 }
1740
unset_regulator_supplies(struct regulator_dev * rdev)1741 static void unset_regulator_supplies(struct regulator_dev *rdev)
1742 {
1743 struct regulator_map *node, *n;
1744
1745 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1746 if (rdev == node->regulator) {
1747 list_del(&node->list);
1748 kfree(node->dev_name);
1749 kfree(node);
1750 }
1751 }
1752 }
1753
1754 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1755 static ssize_t constraint_flags_read_file(struct file *file,
1756 char __user *user_buf,
1757 size_t count, loff_t *ppos)
1758 {
1759 const struct regulator *regulator = file->private_data;
1760 const struct regulation_constraints *c = regulator->rdev->constraints;
1761 char *buf;
1762 ssize_t ret;
1763
1764 if (!c)
1765 return 0;
1766
1767 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1768 if (!buf)
1769 return -ENOMEM;
1770
1771 ret = snprintf(buf, PAGE_SIZE,
1772 "always_on: %u\n"
1773 "boot_on: %u\n"
1774 "apply_uV: %u\n"
1775 "ramp_disable: %u\n"
1776 "soft_start: %u\n"
1777 "pull_down: %u\n"
1778 "over_current_protection: %u\n",
1779 c->always_on,
1780 c->boot_on,
1781 c->apply_uV,
1782 c->ramp_disable,
1783 c->soft_start,
1784 c->pull_down,
1785 c->over_current_protection);
1786
1787 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1788 kfree(buf);
1789
1790 return ret;
1791 }
1792
1793 #endif
1794
1795 static const struct file_operations constraint_flags_fops = {
1796 #ifdef CONFIG_DEBUG_FS
1797 .open = simple_open,
1798 .read = constraint_flags_read_file,
1799 .llseek = default_llseek,
1800 #endif
1801 };
1802
1803 #define REG_STR_SIZE 64
1804
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1805 static struct regulator *create_regulator(struct regulator_dev *rdev,
1806 struct device *dev,
1807 const char *supply_name)
1808 {
1809 struct regulator *regulator;
1810 int err = 0;
1811
1812 lockdep_assert_held_once(&rdev->mutex.base);
1813
1814 if (dev) {
1815 char buf[REG_STR_SIZE];
1816 int size;
1817
1818 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1819 dev->kobj.name, supply_name);
1820 if (size >= REG_STR_SIZE)
1821 return NULL;
1822
1823 supply_name = kstrdup(buf, GFP_KERNEL);
1824 if (supply_name == NULL)
1825 return NULL;
1826 } else {
1827 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1828 if (supply_name == NULL)
1829 return NULL;
1830 }
1831
1832 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1833 if (regulator == NULL) {
1834 kfree_const(supply_name);
1835 return NULL;
1836 }
1837
1838 regulator->rdev = rdev;
1839 regulator->supply_name = supply_name;
1840
1841 list_add(®ulator->list, &rdev->consumer_list);
1842
1843 if (dev) {
1844 regulator->dev = dev;
1845
1846 /* Add a link to the device sysfs entry */
1847 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1848 supply_name);
1849 if (err) {
1850 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1851 dev->kobj.name, ERR_PTR(err));
1852 /* non-fatal */
1853 }
1854 }
1855
1856 if (err != -EEXIST) {
1857 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1858 if (IS_ERR(regulator->debugfs)) {
1859 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1860 regulator->debugfs = NULL;
1861 }
1862 }
1863
1864 if (regulator->debugfs) {
1865 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1866 ®ulator->uA_load);
1867 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1868 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1869 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1870 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1871 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1872 regulator, &constraint_flags_fops);
1873 }
1874
1875 /*
1876 * Check now if the regulator is an always on regulator - if
1877 * it is then we don't need to do nearly so much work for
1878 * enable/disable calls.
1879 */
1880 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1881 _regulator_is_enabled(rdev))
1882 regulator->always_on = true;
1883
1884 return regulator;
1885 }
1886
_regulator_get_enable_time(struct regulator_dev * rdev)1887 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1888 {
1889 if (rdev->constraints && rdev->constraints->enable_time)
1890 return rdev->constraints->enable_time;
1891 if (rdev->desc->ops->enable_time)
1892 return rdev->desc->ops->enable_time(rdev);
1893 return rdev->desc->enable_time;
1894 }
1895
regulator_find_supply_alias(struct device * dev,const char * supply)1896 static struct regulator_supply_alias *regulator_find_supply_alias(
1897 struct device *dev, const char *supply)
1898 {
1899 struct regulator_supply_alias *map;
1900
1901 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1902 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1903 return map;
1904
1905 return NULL;
1906 }
1907
regulator_supply_alias(struct device ** dev,const char ** supply)1908 static void regulator_supply_alias(struct device **dev, const char **supply)
1909 {
1910 struct regulator_supply_alias *map;
1911
1912 map = regulator_find_supply_alias(*dev, *supply);
1913 if (map) {
1914 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1915 *supply, map->alias_supply,
1916 dev_name(map->alias_dev));
1917 *dev = map->alias_dev;
1918 *supply = map->alias_supply;
1919 }
1920 }
1921
regulator_match(struct device * dev,const void * data)1922 static int regulator_match(struct device *dev, const void *data)
1923 {
1924 struct regulator_dev *r = dev_to_rdev(dev);
1925
1926 return strcmp(rdev_get_name(r), data) == 0;
1927 }
1928
regulator_lookup_by_name(const char * name)1929 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1930 {
1931 struct device *dev;
1932
1933 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1934
1935 return dev ? dev_to_rdev(dev) : NULL;
1936 }
1937
1938 /**
1939 * regulator_dev_lookup - lookup a regulator device.
1940 * @dev: device for regulator "consumer".
1941 * @supply: Supply name or regulator ID.
1942 *
1943 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1944 *
1945 * If successful, returns a struct regulator_dev that corresponds to the name
1946 * @supply and with the embedded struct device refcount incremented by one.
1947 * The refcount must be dropped by calling put_device().
1948 * On failure one of the following ERR_PTR() encoded values is returned:
1949 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1950 * in the future.
1951 */
regulator_dev_lookup(struct device * dev,const char * supply)1952 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1953 const char *supply)
1954 {
1955 struct regulator_dev *r = NULL;
1956 struct regulator_map *map;
1957 const char *devname = NULL;
1958
1959 regulator_supply_alias(&dev, &supply);
1960
1961 /* first do a dt based lookup */
1962 if (dev && dev->of_node) {
1963 r = of_regulator_dev_lookup(dev, supply);
1964 if (!IS_ERR(r))
1965 return r;
1966 if (PTR_ERR(r) == -EPROBE_DEFER)
1967 return r;
1968
1969 if (PTR_ERR(r) == -ENODEV)
1970 r = NULL;
1971 }
1972
1973 /* if not found, try doing it non-dt way */
1974 if (dev)
1975 devname = dev_name(dev);
1976
1977 mutex_lock(®ulator_list_mutex);
1978 list_for_each_entry(map, ®ulator_map_list, list) {
1979 /* If the mapping has a device set up it must match */
1980 if (map->dev_name &&
1981 (!devname || strcmp(map->dev_name, devname)))
1982 continue;
1983
1984 if (strcmp(map->supply, supply) == 0 &&
1985 get_device(&map->regulator->dev)) {
1986 r = map->regulator;
1987 break;
1988 }
1989 }
1990 mutex_unlock(®ulator_list_mutex);
1991
1992 if (r)
1993 return r;
1994
1995 r = regulator_lookup_by_name(supply);
1996 if (r)
1997 return r;
1998
1999 return ERR_PTR(-ENODEV);
2000 }
2001
regulator_resolve_supply(struct regulator_dev * rdev)2002 static int regulator_resolve_supply(struct regulator_dev *rdev)
2003 {
2004 struct regulator_dev *r;
2005 struct device *dev = rdev->dev.parent;
2006 struct ww_acquire_ctx ww_ctx;
2007 int ret = 0;
2008
2009 /* No supply to resolve? */
2010 if (!rdev->supply_name)
2011 return 0;
2012
2013 /* Supply already resolved? (fast-path without locking contention) */
2014 if (rdev->supply)
2015 return 0;
2016
2017 r = regulator_dev_lookup(dev, rdev->supply_name);
2018 if (IS_ERR(r)) {
2019 ret = PTR_ERR(r);
2020
2021 /* Did the lookup explicitly defer for us? */
2022 if (ret == -EPROBE_DEFER)
2023 goto out;
2024
2025 if (have_full_constraints()) {
2026 r = dummy_regulator_rdev;
2027 get_device(&r->dev);
2028 } else {
2029 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2030 rdev->supply_name, rdev->desc->name);
2031 ret = -EPROBE_DEFER;
2032 goto out;
2033 }
2034 }
2035
2036 if (r == rdev) {
2037 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2038 rdev->desc->name, rdev->supply_name);
2039 if (!have_full_constraints()) {
2040 ret = -EINVAL;
2041 goto out;
2042 }
2043 r = dummy_regulator_rdev;
2044 get_device(&r->dev);
2045 }
2046
2047 /*
2048 * If the supply's parent device is not the same as the
2049 * regulator's parent device, then ensure the parent device
2050 * is bound before we resolve the supply, in case the parent
2051 * device get probe deferred and unregisters the supply.
2052 */
2053 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2054 if (!device_is_bound(r->dev.parent)) {
2055 put_device(&r->dev);
2056 ret = -EPROBE_DEFER;
2057 goto out;
2058 }
2059 }
2060
2061 /* Recursively resolve the supply of the supply */
2062 ret = regulator_resolve_supply(r);
2063 if (ret < 0) {
2064 put_device(&r->dev);
2065 goto out;
2066 }
2067
2068 /*
2069 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2070 * between rdev->supply null check and setting rdev->supply in
2071 * set_supply() from concurrent tasks.
2072 */
2073 regulator_lock_two(rdev, r, &ww_ctx);
2074
2075 /* Supply just resolved by a concurrent task? */
2076 if (rdev->supply) {
2077 regulator_unlock_two(rdev, r, &ww_ctx);
2078 put_device(&r->dev);
2079 goto out;
2080 }
2081
2082 ret = set_supply(rdev, r);
2083 if (ret < 0) {
2084 regulator_unlock_two(rdev, r, &ww_ctx);
2085 put_device(&r->dev);
2086 goto out;
2087 }
2088
2089 regulator_unlock_two(rdev, r, &ww_ctx);
2090
2091 /*
2092 * In set_machine_constraints() we may have turned this regulator on
2093 * but we couldn't propagate to the supply if it hadn't been resolved
2094 * yet. Do it now.
2095 */
2096 if (rdev->use_count) {
2097 ret = regulator_enable(rdev->supply);
2098 if (ret < 0) {
2099 _regulator_put(rdev->supply);
2100 rdev->supply = NULL;
2101 goto out;
2102 }
2103 }
2104
2105 out:
2106 return ret;
2107 }
2108
2109 /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2110 int _regulator_get_common_check(struct device *dev, const char *id,
2111 enum regulator_get_type get_type)
2112 {
2113 if (get_type >= MAX_GET_TYPE) {
2114 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2115 return -EINVAL;
2116 }
2117
2118 if (id == NULL) {
2119 dev_err(dev, "regulator request with no identifier\n");
2120 return -EINVAL;
2121 }
2122
2123 return 0;
2124 }
2125
2126 /**
2127 * _regulator_get_common - Common code for regulator requests
2128 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2129 * Its reference count is expected to have been incremented.
2130 * @dev: device used for dev_printk messages
2131 * @id: Supply name or regulator ID
2132 * @get_type: enum regulator_get_type value corresponding to type of request
2133 *
2134 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2135 * encoded error.
2136 *
2137 * This function should be chained with *regulator_dev_lookup() functions.
2138 */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2139 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2140 const char *id, enum regulator_get_type get_type)
2141 {
2142 struct regulator *regulator;
2143 struct device_link *link;
2144 int ret;
2145
2146 if (IS_ERR(rdev)) {
2147 ret = PTR_ERR(rdev);
2148
2149 /*
2150 * If regulator_dev_lookup() fails with error other
2151 * than -ENODEV our job here is done, we simply return it.
2152 */
2153 if (ret != -ENODEV)
2154 return ERR_PTR(ret);
2155
2156 if (!have_full_constraints()) {
2157 dev_warn(dev,
2158 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2159 return ERR_PTR(-ENODEV);
2160 }
2161
2162 switch (get_type) {
2163 case NORMAL_GET:
2164 /*
2165 * Assume that a regulator is physically present and
2166 * enabled, even if it isn't hooked up, and just
2167 * provide a dummy.
2168 */
2169 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2170 rdev = dummy_regulator_rdev;
2171 get_device(&rdev->dev);
2172 break;
2173
2174 case EXCLUSIVE_GET:
2175 dev_warn(dev,
2176 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2177 fallthrough;
2178
2179 default:
2180 return ERR_PTR(-ENODEV);
2181 }
2182 }
2183
2184 if (rdev->exclusive) {
2185 regulator = ERR_PTR(-EPERM);
2186 put_device(&rdev->dev);
2187 return regulator;
2188 }
2189
2190 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2191 regulator = ERR_PTR(-EBUSY);
2192 put_device(&rdev->dev);
2193 return regulator;
2194 }
2195
2196 mutex_lock(®ulator_list_mutex);
2197 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2198 mutex_unlock(®ulator_list_mutex);
2199
2200 if (ret != 0) {
2201 regulator = ERR_PTR(-EPROBE_DEFER);
2202 put_device(&rdev->dev);
2203 return regulator;
2204 }
2205
2206 ret = regulator_resolve_supply(rdev);
2207 if (ret < 0) {
2208 regulator = ERR_PTR(ret);
2209 put_device(&rdev->dev);
2210 return regulator;
2211 }
2212
2213 if (!try_module_get(rdev->owner)) {
2214 regulator = ERR_PTR(-EPROBE_DEFER);
2215 put_device(&rdev->dev);
2216 return regulator;
2217 }
2218
2219 regulator_lock(rdev);
2220 regulator = create_regulator(rdev, dev, id);
2221 regulator_unlock(rdev);
2222 if (regulator == NULL) {
2223 regulator = ERR_PTR(-ENOMEM);
2224 module_put(rdev->owner);
2225 put_device(&rdev->dev);
2226 return regulator;
2227 }
2228
2229 rdev->open_count++;
2230 if (get_type == EXCLUSIVE_GET) {
2231 rdev->exclusive = 1;
2232
2233 ret = _regulator_is_enabled(rdev);
2234 if (ret > 0) {
2235 rdev->use_count = 1;
2236 regulator->enable_count = 1;
2237
2238 /* Propagate the regulator state to its supply */
2239 if (rdev->supply) {
2240 ret = regulator_enable(rdev->supply);
2241 if (ret < 0) {
2242 destroy_regulator(regulator);
2243 module_put(rdev->owner);
2244 put_device(&rdev->dev);
2245 return ERR_PTR(ret);
2246 }
2247 }
2248 } else {
2249 rdev->use_count = 0;
2250 regulator->enable_count = 0;
2251 }
2252 }
2253
2254 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2255 if (!IS_ERR_OR_NULL(link))
2256 regulator->device_link = true;
2257
2258 return regulator;
2259 }
2260
2261 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2262 struct regulator *_regulator_get(struct device *dev, const char *id,
2263 enum regulator_get_type get_type)
2264 {
2265 struct regulator_dev *rdev;
2266 int ret;
2267
2268 ret = _regulator_get_common_check(dev, id, get_type);
2269 if (ret)
2270 return ERR_PTR(ret);
2271
2272 rdev = regulator_dev_lookup(dev, id);
2273 return _regulator_get_common(rdev, dev, id, get_type);
2274 }
2275
2276 /**
2277 * regulator_get - lookup and obtain a reference to a regulator.
2278 * @dev: device for regulator "consumer"
2279 * @id: Supply name or regulator ID.
2280 *
2281 * Use of supply names configured via set_consumer_device_supply() is
2282 * strongly encouraged. It is recommended that the supply name used
2283 * should match the name used for the supply and/or the relevant
2284 * device pins in the datasheet.
2285 *
2286 * Return: Pointer to a &struct regulator corresponding to the regulator
2287 * producer, or an ERR_PTR() encoded negative error number.
2288 */
regulator_get(struct device * dev,const char * id)2289 struct regulator *regulator_get(struct device *dev, const char *id)
2290 {
2291 return _regulator_get(dev, id, NORMAL_GET);
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_get);
2294
2295 /**
2296 * regulator_get_exclusive - obtain exclusive access to a regulator.
2297 * @dev: device for regulator "consumer"
2298 * @id: Supply name or regulator ID.
2299 *
2300 * Other consumers will be unable to obtain this regulator while this
2301 * reference is held and the use count for the regulator will be
2302 * initialised to reflect the current state of the regulator.
2303 *
2304 * This is intended for use by consumers which cannot tolerate shared
2305 * use of the regulator such as those which need to force the
2306 * regulator off for correct operation of the hardware they are
2307 * controlling.
2308 *
2309 * Use of supply names configured via set_consumer_device_supply() is
2310 * strongly encouraged. It is recommended that the supply name used
2311 * should match the name used for the supply and/or the relevant
2312 * device pins in the datasheet.
2313 *
2314 * Return: Pointer to a &struct regulator corresponding to the regulator
2315 * producer, or an ERR_PTR() encoded negative error number.
2316 */
regulator_get_exclusive(struct device * dev,const char * id)2317 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2318 {
2319 return _regulator_get(dev, id, EXCLUSIVE_GET);
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2322
2323 /**
2324 * regulator_get_optional - obtain optional access to a regulator.
2325 * @dev: device for regulator "consumer"
2326 * @id: Supply name or regulator ID.
2327 *
2328 * This is intended for use by consumers for devices which can have
2329 * some supplies unconnected in normal use, such as some MMC devices.
2330 * It can allow the regulator core to provide stub supplies for other
2331 * supplies requested using normal regulator_get() calls without
2332 * disrupting the operation of drivers that can handle absent
2333 * supplies.
2334 *
2335 * Use of supply names configured via set_consumer_device_supply() is
2336 * strongly encouraged. It is recommended that the supply name used
2337 * should match the name used for the supply and/or the relevant
2338 * device pins in the datasheet.
2339 *
2340 * Return: Pointer to a &struct regulator corresponding to the regulator
2341 * producer, or an ERR_PTR() encoded negative error number.
2342 */
regulator_get_optional(struct device * dev,const char * id)2343 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2344 {
2345 return _regulator_get(dev, id, OPTIONAL_GET);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_get_optional);
2348
destroy_regulator(struct regulator * regulator)2349 static void destroy_regulator(struct regulator *regulator)
2350 {
2351 struct regulator_dev *rdev = regulator->rdev;
2352
2353 debugfs_remove_recursive(regulator->debugfs);
2354
2355 if (regulator->dev) {
2356 if (regulator->device_link)
2357 device_link_remove(regulator->dev, &rdev->dev);
2358
2359 /* remove any sysfs entries */
2360 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2361 }
2362
2363 regulator_lock(rdev);
2364 list_del(®ulator->list);
2365
2366 rdev->open_count--;
2367 rdev->exclusive = 0;
2368 regulator_unlock(rdev);
2369
2370 kfree_const(regulator->supply_name);
2371 kfree(regulator);
2372 }
2373
2374 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2375 static void _regulator_put(struct regulator *regulator)
2376 {
2377 struct regulator_dev *rdev;
2378
2379 if (IS_ERR_OR_NULL(regulator))
2380 return;
2381
2382 lockdep_assert_held_once(®ulator_list_mutex);
2383
2384 /* Docs say you must disable before calling regulator_put() */
2385 WARN_ON(regulator->enable_count);
2386
2387 rdev = regulator->rdev;
2388
2389 destroy_regulator(regulator);
2390
2391 module_put(rdev->owner);
2392 put_device(&rdev->dev);
2393 }
2394
2395 /**
2396 * regulator_put - "free" the regulator source
2397 * @regulator: regulator source
2398 *
2399 * Note: drivers must ensure that all regulator_enable calls made on this
2400 * regulator source are balanced by regulator_disable calls prior to calling
2401 * this function.
2402 */
regulator_put(struct regulator * regulator)2403 void regulator_put(struct regulator *regulator)
2404 {
2405 mutex_lock(®ulator_list_mutex);
2406 _regulator_put(regulator);
2407 mutex_unlock(®ulator_list_mutex);
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_put);
2410
2411 /**
2412 * regulator_register_supply_alias - Provide device alias for supply lookup
2413 *
2414 * @dev: device that will be given as the regulator "consumer"
2415 * @id: Supply name or regulator ID
2416 * @alias_dev: device that should be used to lookup the supply
2417 * @alias_id: Supply name or regulator ID that should be used to lookup the
2418 * supply
2419 *
2420 * All lookups for id on dev will instead be conducted for alias_id on
2421 * alias_dev.
2422 *
2423 * Return: 0 on success or a negative error number on failure.
2424 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2425 int regulator_register_supply_alias(struct device *dev, const char *id,
2426 struct device *alias_dev,
2427 const char *alias_id)
2428 {
2429 struct regulator_supply_alias *map;
2430
2431 map = regulator_find_supply_alias(dev, id);
2432 if (map)
2433 return -EEXIST;
2434
2435 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2436 if (!map)
2437 return -ENOMEM;
2438
2439 map->src_dev = dev;
2440 map->src_supply = id;
2441 map->alias_dev = alias_dev;
2442 map->alias_supply = alias_id;
2443
2444 list_add(&map->list, ®ulator_supply_alias_list);
2445
2446 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2447 id, dev_name(dev), alias_id, dev_name(alias_dev));
2448
2449 return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2452
2453 /**
2454 * regulator_unregister_supply_alias - Remove device alias
2455 *
2456 * @dev: device that will be given as the regulator "consumer"
2457 * @id: Supply name or regulator ID
2458 *
2459 * Remove a lookup alias if one exists for id on dev.
2460 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2461 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2462 {
2463 struct regulator_supply_alias *map;
2464
2465 map = regulator_find_supply_alias(dev, id);
2466 if (map) {
2467 list_del(&map->list);
2468 kfree(map);
2469 }
2470 }
2471 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2472
2473 /**
2474 * regulator_bulk_register_supply_alias - register multiple aliases
2475 *
2476 * @dev: device that will be given as the regulator "consumer"
2477 * @id: List of supply names or regulator IDs
2478 * @alias_dev: device that should be used to lookup the supply
2479 * @alias_id: List of supply names or regulator IDs that should be used to
2480 * lookup the supply
2481 * @num_id: Number of aliases to register
2482 *
2483 * This helper function allows drivers to register several supply
2484 * aliases in one operation. If any of the aliases cannot be
2485 * registered any aliases that were registered will be removed
2486 * before returning to the caller.
2487 *
2488 * Return: 0 on success or a negative error number on failure.
2489 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2490 int regulator_bulk_register_supply_alias(struct device *dev,
2491 const char *const *id,
2492 struct device *alias_dev,
2493 const char *const *alias_id,
2494 int num_id)
2495 {
2496 int i;
2497 int ret;
2498
2499 for (i = 0; i < num_id; ++i) {
2500 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2501 alias_id[i]);
2502 if (ret < 0)
2503 goto err;
2504 }
2505
2506 return 0;
2507
2508 err:
2509 dev_err(dev,
2510 "Failed to create supply alias %s,%s -> %s,%s\n",
2511 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2512
2513 while (--i >= 0)
2514 regulator_unregister_supply_alias(dev, id[i]);
2515
2516 return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2519
2520 /**
2521 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2522 *
2523 * @dev: device that will be given as the regulator "consumer"
2524 * @id: List of supply names or regulator IDs
2525 * @num_id: Number of aliases to unregister
2526 *
2527 * This helper function allows drivers to unregister several supply
2528 * aliases in one operation.
2529 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2530 void regulator_bulk_unregister_supply_alias(struct device *dev,
2531 const char *const *id,
2532 int num_id)
2533 {
2534 int i;
2535
2536 for (i = 0; i < num_id; ++i)
2537 regulator_unregister_supply_alias(dev, id[i]);
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2540
2541
2542 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2543 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2544 const struct regulator_config *config)
2545 {
2546 struct regulator_enable_gpio *pin, *new_pin;
2547 struct gpio_desc *gpiod;
2548
2549 gpiod = config->ena_gpiod;
2550 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2551
2552 mutex_lock(®ulator_list_mutex);
2553
2554 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2555 if (pin->gpiod == gpiod) {
2556 rdev_dbg(rdev, "GPIO is already used\n");
2557 goto update_ena_gpio_to_rdev;
2558 }
2559 }
2560
2561 if (new_pin == NULL) {
2562 mutex_unlock(®ulator_list_mutex);
2563 return -ENOMEM;
2564 }
2565
2566 pin = new_pin;
2567 new_pin = NULL;
2568
2569 pin->gpiod = gpiod;
2570 list_add(&pin->list, ®ulator_ena_gpio_list);
2571
2572 update_ena_gpio_to_rdev:
2573 pin->request_count++;
2574 rdev->ena_pin = pin;
2575
2576 mutex_unlock(®ulator_list_mutex);
2577 kfree(new_pin);
2578
2579 return 0;
2580 }
2581
regulator_ena_gpio_free(struct regulator_dev * rdev)2582 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2583 {
2584 struct regulator_enable_gpio *pin, *n;
2585
2586 if (!rdev->ena_pin)
2587 return;
2588
2589 /* Free the GPIO only in case of no use */
2590 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2591 if (pin != rdev->ena_pin)
2592 continue;
2593
2594 if (--pin->request_count)
2595 break;
2596
2597 gpiod_put(pin->gpiod);
2598 list_del(&pin->list);
2599 kfree(pin);
2600 break;
2601 }
2602
2603 rdev->ena_pin = NULL;
2604 }
2605
2606 /**
2607 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2608 * @rdev: regulator_dev structure
2609 * @enable: enable GPIO at initial use?
2610 *
2611 * GPIO is enabled in case of initial use. (enable_count is 0)
2612 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2613 *
2614 * Return: 0 on success or a negative error number on failure.
2615 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2616 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2617 {
2618 struct regulator_enable_gpio *pin = rdev->ena_pin;
2619
2620 if (!pin)
2621 return -EINVAL;
2622
2623 if (enable) {
2624 /* Enable GPIO at initial use */
2625 if (pin->enable_count == 0)
2626 gpiod_set_value_cansleep(pin->gpiod, 1);
2627
2628 pin->enable_count++;
2629 } else {
2630 if (pin->enable_count > 1) {
2631 pin->enable_count--;
2632 return 0;
2633 }
2634
2635 /* Disable GPIO if not used */
2636 if (pin->enable_count <= 1) {
2637 gpiod_set_value_cansleep(pin->gpiod, 0);
2638 pin->enable_count = 0;
2639 }
2640 }
2641
2642 return 0;
2643 }
2644
2645 /**
2646 * _regulator_delay_helper - a delay helper function
2647 * @delay: time to delay in microseconds
2648 *
2649 * Delay for the requested amount of time as per the guidelines in:
2650 *
2651 * Documentation/timers/timers-howto.rst
2652 *
2653 * The assumption here is that these regulator operations will never used in
2654 * atomic context and therefore sleeping functions can be used.
2655 */
_regulator_delay_helper(unsigned int delay)2656 static void _regulator_delay_helper(unsigned int delay)
2657 {
2658 unsigned int ms = delay / 1000;
2659 unsigned int us = delay % 1000;
2660
2661 if (ms > 0) {
2662 /*
2663 * For small enough values, handle super-millisecond
2664 * delays in the usleep_range() call below.
2665 */
2666 if (ms < 20)
2667 us += ms * 1000;
2668 else
2669 msleep(ms);
2670 }
2671
2672 /*
2673 * Give the scheduler some room to coalesce with any other
2674 * wakeup sources. For delays shorter than 10 us, don't even
2675 * bother setting up high-resolution timers and just busy-
2676 * loop.
2677 */
2678 if (us >= 10)
2679 usleep_range(us, us + 100);
2680 else
2681 udelay(us);
2682 }
2683
2684 /**
2685 * _regulator_check_status_enabled - check if regulator status can be
2686 * interpreted as "regulator is enabled"
2687 * @rdev: the regulator device to check
2688 *
2689 * Return:
2690 * * 1 - if status shows regulator is in enabled state
2691 * * 0 - if not enabled state
2692 * * Error Value - as received from ops->get_status()
2693 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2694 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2695 {
2696 int ret = rdev->desc->ops->get_status(rdev);
2697
2698 if (ret < 0) {
2699 rdev_info(rdev, "get_status returned error: %d\n", ret);
2700 return ret;
2701 }
2702
2703 switch (ret) {
2704 case REGULATOR_STATUS_OFF:
2705 case REGULATOR_STATUS_ERROR:
2706 case REGULATOR_STATUS_UNDEFINED:
2707 return 0;
2708 default:
2709 return 1;
2710 }
2711 }
2712
_regulator_do_enable(struct regulator_dev * rdev)2713 static int _regulator_do_enable(struct regulator_dev *rdev)
2714 {
2715 int ret, delay;
2716
2717 /* Query before enabling in case configuration dependent. */
2718 ret = _regulator_get_enable_time(rdev);
2719 if (ret >= 0) {
2720 delay = ret;
2721 } else {
2722 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2723 delay = 0;
2724 }
2725
2726 trace_regulator_enable(rdev_get_name(rdev));
2727
2728 if (rdev->desc->off_on_delay) {
2729 /* if needed, keep a distance of off_on_delay from last time
2730 * this regulator was disabled.
2731 */
2732 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2733 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2734
2735 if (remaining > 0)
2736 _regulator_delay_helper(remaining);
2737 }
2738
2739 if (rdev->ena_pin) {
2740 if (!rdev->ena_gpio_state) {
2741 ret = regulator_ena_gpio_ctrl(rdev, true);
2742 if (ret < 0)
2743 return ret;
2744 rdev->ena_gpio_state = 1;
2745 }
2746 } else if (rdev->desc->ops->enable) {
2747 ret = rdev->desc->ops->enable(rdev);
2748 if (ret < 0)
2749 return ret;
2750 } else {
2751 return -EINVAL;
2752 }
2753
2754 /* Allow the regulator to ramp; it would be useful to extend
2755 * this for bulk operations so that the regulators can ramp
2756 * together.
2757 */
2758 trace_regulator_enable_delay(rdev_get_name(rdev));
2759
2760 /* If poll_enabled_time is set, poll upto the delay calculated
2761 * above, delaying poll_enabled_time uS to check if the regulator
2762 * actually got enabled.
2763 * If the regulator isn't enabled after our delay helper has expired,
2764 * return -ETIMEDOUT.
2765 */
2766 if (rdev->desc->poll_enabled_time) {
2767 int time_remaining = delay;
2768
2769 while (time_remaining > 0) {
2770 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2771
2772 if (rdev->desc->ops->get_status) {
2773 ret = _regulator_check_status_enabled(rdev);
2774 if (ret < 0)
2775 return ret;
2776 else if (ret)
2777 break;
2778 } else if (rdev->desc->ops->is_enabled(rdev))
2779 break;
2780
2781 time_remaining -= rdev->desc->poll_enabled_time;
2782 }
2783
2784 if (time_remaining <= 0) {
2785 rdev_err(rdev, "Enabled check timed out\n");
2786 return -ETIMEDOUT;
2787 }
2788 } else {
2789 _regulator_delay_helper(delay);
2790 }
2791
2792 trace_regulator_enable_complete(rdev_get_name(rdev));
2793
2794 return 0;
2795 }
2796
2797 /**
2798 * _regulator_handle_consumer_enable - handle that a consumer enabled
2799 * @regulator: regulator source
2800 *
2801 * Some things on a regulator consumer (like the contribution towards total
2802 * load on the regulator) only have an effect when the consumer wants the
2803 * regulator enabled. Explained in example with two consumers of the same
2804 * regulator:
2805 * consumer A: set_load(100); => total load = 0
2806 * consumer A: regulator_enable(); => total load = 100
2807 * consumer B: set_load(1000); => total load = 100
2808 * consumer B: regulator_enable(); => total load = 1100
2809 * consumer A: regulator_disable(); => total_load = 1000
2810 *
2811 * This function (together with _regulator_handle_consumer_disable) is
2812 * responsible for keeping track of the refcount for a given regulator consumer
2813 * and applying / unapplying these things.
2814 *
2815 * Return: 0 on success or negative error number on failure.
2816 */
_regulator_handle_consumer_enable(struct regulator * regulator)2817 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2818 {
2819 int ret;
2820 struct regulator_dev *rdev = regulator->rdev;
2821
2822 lockdep_assert_held_once(&rdev->mutex.base);
2823
2824 regulator->enable_count++;
2825 if (regulator->uA_load && regulator->enable_count == 1) {
2826 ret = drms_uA_update(rdev);
2827 if (ret)
2828 regulator->enable_count--;
2829 return ret;
2830 }
2831
2832 return 0;
2833 }
2834
2835 /**
2836 * _regulator_handle_consumer_disable - handle that a consumer disabled
2837 * @regulator: regulator source
2838 *
2839 * The opposite of _regulator_handle_consumer_enable().
2840 *
2841 * Return: 0 on success or a negative error number on failure.
2842 */
_regulator_handle_consumer_disable(struct regulator * regulator)2843 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2844 {
2845 struct regulator_dev *rdev = regulator->rdev;
2846
2847 lockdep_assert_held_once(&rdev->mutex.base);
2848
2849 if (!regulator->enable_count) {
2850 rdev_err(rdev, "Underflow of regulator enable count\n");
2851 return -EINVAL;
2852 }
2853
2854 regulator->enable_count--;
2855 if (regulator->uA_load && regulator->enable_count == 0)
2856 return drms_uA_update(rdev);
2857
2858 return 0;
2859 }
2860
2861 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2862 static int _regulator_enable(struct regulator *regulator)
2863 {
2864 struct regulator_dev *rdev = regulator->rdev;
2865 int ret;
2866
2867 lockdep_assert_held_once(&rdev->mutex.base);
2868
2869 if (rdev->use_count == 0 && rdev->supply) {
2870 ret = _regulator_enable(rdev->supply);
2871 if (ret < 0)
2872 return ret;
2873 }
2874
2875 /* balance only if there are regulators coupled */
2876 if (rdev->coupling_desc.n_coupled > 1) {
2877 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2878 if (ret < 0)
2879 goto err_disable_supply;
2880 }
2881
2882 ret = _regulator_handle_consumer_enable(regulator);
2883 if (ret < 0)
2884 goto err_disable_supply;
2885
2886 if (rdev->use_count == 0) {
2887 /*
2888 * The regulator may already be enabled if it's not switchable
2889 * or was left on
2890 */
2891 ret = _regulator_is_enabled(rdev);
2892 if (ret == -EINVAL || ret == 0) {
2893 if (!regulator_ops_is_valid(rdev,
2894 REGULATOR_CHANGE_STATUS)) {
2895 ret = -EPERM;
2896 goto err_consumer_disable;
2897 }
2898
2899 ret = _regulator_do_enable(rdev);
2900 if (ret < 0)
2901 goto err_consumer_disable;
2902
2903 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2904 NULL);
2905 } else if (ret < 0) {
2906 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2907 goto err_consumer_disable;
2908 }
2909 /* Fallthrough on positive return values - already enabled */
2910 }
2911
2912 if (regulator->enable_count == 1)
2913 rdev->use_count++;
2914
2915 return 0;
2916
2917 err_consumer_disable:
2918 _regulator_handle_consumer_disable(regulator);
2919
2920 err_disable_supply:
2921 if (rdev->use_count == 0 && rdev->supply)
2922 _regulator_disable(rdev->supply);
2923
2924 return ret;
2925 }
2926
2927 /**
2928 * regulator_enable - enable regulator output
2929 * @regulator: regulator source
2930 *
2931 * Request that the regulator be enabled with the regulator output at
2932 * the predefined voltage or current value. Calls to regulator_enable()
2933 * must be balanced with calls to regulator_disable().
2934 *
2935 * NOTE: the output value can be set by other drivers, boot loader or may be
2936 * hardwired in the regulator.
2937 *
2938 * Return: 0 on success or a negative error number on failure.
2939 */
regulator_enable(struct regulator * regulator)2940 int regulator_enable(struct regulator *regulator)
2941 {
2942 struct regulator_dev *rdev = regulator->rdev;
2943 struct ww_acquire_ctx ww_ctx;
2944 int ret;
2945
2946 regulator_lock_dependent(rdev, &ww_ctx);
2947 ret = _regulator_enable(regulator);
2948 regulator_unlock_dependent(rdev, &ww_ctx);
2949
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_enable);
2953
_regulator_do_disable(struct regulator_dev * rdev)2954 static int _regulator_do_disable(struct regulator_dev *rdev)
2955 {
2956 int ret;
2957
2958 trace_regulator_disable(rdev_get_name(rdev));
2959
2960 if (rdev->ena_pin) {
2961 if (rdev->ena_gpio_state) {
2962 ret = regulator_ena_gpio_ctrl(rdev, false);
2963 if (ret < 0)
2964 return ret;
2965 rdev->ena_gpio_state = 0;
2966 }
2967
2968 } else if (rdev->desc->ops->disable) {
2969 ret = rdev->desc->ops->disable(rdev);
2970 if (ret != 0)
2971 return ret;
2972 }
2973
2974 if (rdev->desc->off_on_delay)
2975 rdev->last_off = ktime_get_boottime();
2976
2977 trace_regulator_disable_complete(rdev_get_name(rdev));
2978
2979 return 0;
2980 }
2981
2982 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2983 static int _regulator_disable(struct regulator *regulator)
2984 {
2985 struct regulator_dev *rdev = regulator->rdev;
2986 int ret = 0;
2987
2988 lockdep_assert_held_once(&rdev->mutex.base);
2989
2990 if (WARN(regulator->enable_count == 0,
2991 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2992 return -EIO;
2993
2994 if (regulator->enable_count == 1) {
2995 /* disabling last enable_count from this regulator */
2996 /* are we the last user and permitted to disable ? */
2997 if (rdev->use_count == 1 &&
2998 (rdev->constraints && !rdev->constraints->always_on)) {
2999
3000 /* we are last user */
3001 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3002 ret = _notifier_call_chain(rdev,
3003 REGULATOR_EVENT_PRE_DISABLE,
3004 NULL);
3005 if (ret & NOTIFY_STOP_MASK)
3006 return -EINVAL;
3007
3008 ret = _regulator_do_disable(rdev);
3009 if (ret < 0) {
3010 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3011 _notifier_call_chain(rdev,
3012 REGULATOR_EVENT_ABORT_DISABLE,
3013 NULL);
3014 return ret;
3015 }
3016 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3017 NULL);
3018 }
3019
3020 rdev->use_count = 0;
3021 } else if (rdev->use_count > 1) {
3022 rdev->use_count--;
3023 }
3024 }
3025
3026 if (ret == 0)
3027 ret = _regulator_handle_consumer_disable(regulator);
3028
3029 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3030 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3031
3032 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3033 ret = _regulator_disable(rdev->supply);
3034
3035 return ret;
3036 }
3037
3038 /**
3039 * regulator_disable - disable regulator output
3040 * @regulator: regulator source
3041 *
3042 * Disable the regulator output voltage or current. Calls to
3043 * regulator_enable() must be balanced with calls to
3044 * regulator_disable().
3045 *
3046 * NOTE: this will only disable the regulator output if no other consumer
3047 * devices have it enabled, the regulator device supports disabling and
3048 * machine constraints permit this operation.
3049 *
3050 * Return: 0 on success or a negative error number on failure.
3051 */
regulator_disable(struct regulator * regulator)3052 int regulator_disable(struct regulator *regulator)
3053 {
3054 struct regulator_dev *rdev = regulator->rdev;
3055 struct ww_acquire_ctx ww_ctx;
3056 int ret;
3057
3058 regulator_lock_dependent(rdev, &ww_ctx);
3059 ret = _regulator_disable(regulator);
3060 regulator_unlock_dependent(rdev, &ww_ctx);
3061
3062 return ret;
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_disable);
3065
3066 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3067 static int _regulator_force_disable(struct regulator_dev *rdev)
3068 {
3069 int ret = 0;
3070
3071 lockdep_assert_held_once(&rdev->mutex.base);
3072
3073 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3074 REGULATOR_EVENT_PRE_DISABLE, NULL);
3075 if (ret & NOTIFY_STOP_MASK)
3076 return -EINVAL;
3077
3078 ret = _regulator_do_disable(rdev);
3079 if (ret < 0) {
3080 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3081 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3082 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3083 return ret;
3084 }
3085
3086 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3087 REGULATOR_EVENT_DISABLE, NULL);
3088
3089 return 0;
3090 }
3091
3092 /**
3093 * regulator_force_disable - force disable regulator output
3094 * @regulator: regulator source
3095 *
3096 * Forcibly disable the regulator output voltage or current.
3097 * NOTE: this *will* disable the regulator output even if other consumer
3098 * devices have it enabled. This should be used for situations when device
3099 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3100 *
3101 * Return: 0 on success or a negative error number on failure.
3102 */
regulator_force_disable(struct regulator * regulator)3103 int regulator_force_disable(struct regulator *regulator)
3104 {
3105 struct regulator_dev *rdev = regulator->rdev;
3106 struct ww_acquire_ctx ww_ctx;
3107 int ret;
3108
3109 regulator_lock_dependent(rdev, &ww_ctx);
3110
3111 ret = _regulator_force_disable(regulator->rdev);
3112
3113 if (rdev->coupling_desc.n_coupled > 1)
3114 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3115
3116 if (regulator->uA_load) {
3117 regulator->uA_load = 0;
3118 ret = drms_uA_update(rdev);
3119 }
3120
3121 if (rdev->use_count != 0 && rdev->supply)
3122 _regulator_disable(rdev->supply);
3123
3124 regulator_unlock_dependent(rdev, &ww_ctx);
3125
3126 return ret;
3127 }
3128 EXPORT_SYMBOL_GPL(regulator_force_disable);
3129
regulator_disable_work(struct work_struct * work)3130 static void regulator_disable_work(struct work_struct *work)
3131 {
3132 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3133 disable_work.work);
3134 struct ww_acquire_ctx ww_ctx;
3135 int count, i, ret;
3136 struct regulator *regulator;
3137 int total_count = 0;
3138
3139 regulator_lock_dependent(rdev, &ww_ctx);
3140
3141 /*
3142 * Workqueue functions queue the new work instance while the previous
3143 * work instance is being processed. Cancel the queued work instance
3144 * as the work instance under processing does the job of the queued
3145 * work instance.
3146 */
3147 cancel_delayed_work(&rdev->disable_work);
3148
3149 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3150 count = regulator->deferred_disables;
3151
3152 if (!count)
3153 continue;
3154
3155 total_count += count;
3156 regulator->deferred_disables = 0;
3157
3158 for (i = 0; i < count; i++) {
3159 ret = _regulator_disable(regulator);
3160 if (ret != 0)
3161 rdev_err(rdev, "Deferred disable failed: %pe\n",
3162 ERR_PTR(ret));
3163 }
3164 }
3165 WARN_ON(!total_count);
3166
3167 if (rdev->coupling_desc.n_coupled > 1)
3168 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3169
3170 regulator_unlock_dependent(rdev, &ww_ctx);
3171 }
3172
3173 /**
3174 * regulator_disable_deferred - disable regulator output with delay
3175 * @regulator: regulator source
3176 * @ms: milliseconds until the regulator is disabled
3177 *
3178 * Execute regulator_disable() on the regulator after a delay. This
3179 * is intended for use with devices that require some time to quiesce.
3180 *
3181 * NOTE: this will only disable the regulator output if no other consumer
3182 * devices have it enabled, the regulator device supports disabling and
3183 * machine constraints permit this operation.
3184 *
3185 * Return: 0 on success or a negative error number on failure.
3186 */
regulator_disable_deferred(struct regulator * regulator,int ms)3187 int regulator_disable_deferred(struct regulator *regulator, int ms)
3188 {
3189 struct regulator_dev *rdev = regulator->rdev;
3190
3191 if (!ms)
3192 return regulator_disable(regulator);
3193
3194 regulator_lock(rdev);
3195 regulator->deferred_disables++;
3196 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3197 msecs_to_jiffies(ms));
3198 regulator_unlock(rdev);
3199
3200 return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3203
_regulator_is_enabled(struct regulator_dev * rdev)3204 static int _regulator_is_enabled(struct regulator_dev *rdev)
3205 {
3206 /* A GPIO control always takes precedence */
3207 if (rdev->ena_pin)
3208 return rdev->ena_gpio_state;
3209
3210 /* If we don't know then assume that the regulator is always on */
3211 if (!rdev->desc->ops->is_enabled)
3212 return 1;
3213
3214 return rdev->desc->ops->is_enabled(rdev);
3215 }
3216
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3217 static int _regulator_list_voltage(struct regulator_dev *rdev,
3218 unsigned selector, int lock)
3219 {
3220 const struct regulator_ops *ops = rdev->desc->ops;
3221 int ret;
3222
3223 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3224 return rdev->desc->fixed_uV;
3225
3226 if (ops->list_voltage) {
3227 if (selector >= rdev->desc->n_voltages)
3228 return -EINVAL;
3229 if (selector < rdev->desc->linear_min_sel)
3230 return 0;
3231 if (lock)
3232 regulator_lock(rdev);
3233 ret = ops->list_voltage(rdev, selector);
3234 if (lock)
3235 regulator_unlock(rdev);
3236 } else if (rdev->is_switch && rdev->supply) {
3237 ret = _regulator_list_voltage(rdev->supply->rdev,
3238 selector, lock);
3239 } else {
3240 return -EINVAL;
3241 }
3242
3243 if (ret > 0) {
3244 if (ret < rdev->constraints->min_uV)
3245 ret = 0;
3246 else if (ret > rdev->constraints->max_uV)
3247 ret = 0;
3248 }
3249
3250 return ret;
3251 }
3252
3253 /**
3254 * regulator_is_enabled - is the regulator output enabled
3255 * @regulator: regulator source
3256 *
3257 * Note that the device backing this regulator handle can have multiple
3258 * users, so it might be enabled even if regulator_enable() was never
3259 * called for this particular source.
3260 *
3261 * Return: Positive if the regulator driver backing the source/client
3262 * has requested that the device be enabled, zero if it hasn't,
3263 * else a negative error number.
3264 */
regulator_is_enabled(struct regulator * regulator)3265 int regulator_is_enabled(struct regulator *regulator)
3266 {
3267 int ret;
3268
3269 if (regulator->always_on)
3270 return 1;
3271
3272 regulator_lock(regulator->rdev);
3273 ret = _regulator_is_enabled(regulator->rdev);
3274 regulator_unlock(regulator->rdev);
3275
3276 return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3279
3280 /**
3281 * regulator_count_voltages - count regulator_list_voltage() selectors
3282 * @regulator: regulator source
3283 *
3284 * Return: Number of selectors for @regulator, or negative error number.
3285 *
3286 * Selectors are numbered starting at zero, and typically correspond to
3287 * bitfields in hardware registers.
3288 */
regulator_count_voltages(struct regulator * regulator)3289 int regulator_count_voltages(struct regulator *regulator)
3290 {
3291 struct regulator_dev *rdev = regulator->rdev;
3292
3293 if (rdev->desc->n_voltages)
3294 return rdev->desc->n_voltages;
3295
3296 if (!rdev->is_switch || !rdev->supply)
3297 return -EINVAL;
3298
3299 return regulator_count_voltages(rdev->supply);
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3302
3303 /**
3304 * regulator_list_voltage - enumerate supported voltages
3305 * @regulator: regulator source
3306 * @selector: identify voltage to list
3307 * Context: can sleep
3308 *
3309 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3310 * 0 if @selector can't be used on this system, or a negative error
3311 * number on failure.
3312 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3313 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3314 {
3315 return _regulator_list_voltage(regulator->rdev, selector, 1);
3316 }
3317 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3318
3319 /**
3320 * regulator_get_regmap - get the regulator's register map
3321 * @regulator: regulator source
3322 *
3323 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3324 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3325 */
regulator_get_regmap(struct regulator * regulator)3326 struct regmap *regulator_get_regmap(struct regulator *regulator)
3327 {
3328 struct regmap *map = regulator->rdev->regmap;
3329
3330 return map ? map : ERR_PTR(-EOPNOTSUPP);
3331 }
3332 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3333
3334 /**
3335 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3336 * @regulator: regulator source
3337 * @vsel_reg: voltage selector register, output parameter
3338 * @vsel_mask: mask for voltage selector bitfield, output parameter
3339 *
3340 * Returns the hardware register offset and bitmask used for setting the
3341 * regulator voltage. This might be useful when configuring voltage-scaling
3342 * hardware or firmware that can make I2C requests behind the kernel's back,
3343 * for example.
3344 *
3345 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3346 * voltage selectors.
3347 *
3348 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3349 * and 0 is returned, otherwise a negative error number is returned.
3350 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3351 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3352 unsigned *vsel_reg,
3353 unsigned *vsel_mask)
3354 {
3355 struct regulator_dev *rdev = regulator->rdev;
3356 const struct regulator_ops *ops = rdev->desc->ops;
3357
3358 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3359 return -EOPNOTSUPP;
3360
3361 *vsel_reg = rdev->desc->vsel_reg;
3362 *vsel_mask = rdev->desc->vsel_mask;
3363
3364 return 0;
3365 }
3366 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3367
3368 /**
3369 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3370 * @regulator: regulator source
3371 * @selector: identify voltage to list
3372 *
3373 * Converts the selector to a hardware-specific voltage selector that can be
3374 * directly written to the regulator registers. The address of the voltage
3375 * register can be determined by calling @regulator_get_hardware_vsel_register.
3376 *
3377 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3378 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3379 * selectors.
3380 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3381 int regulator_list_hardware_vsel(struct regulator *regulator,
3382 unsigned selector)
3383 {
3384 struct regulator_dev *rdev = regulator->rdev;
3385 const struct regulator_ops *ops = rdev->desc->ops;
3386
3387 if (selector >= rdev->desc->n_voltages)
3388 return -EINVAL;
3389 if (selector < rdev->desc->linear_min_sel)
3390 return 0;
3391 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3392 return -EOPNOTSUPP;
3393
3394 return selector;
3395 }
3396 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3397
3398 /**
3399 * regulator_hardware_enable - access the HW for enable/disable regulator
3400 * @regulator: regulator source
3401 * @enable: true for enable, false for disable
3402 *
3403 * Request that the regulator be enabled/disabled with the regulator output at
3404 * the predefined voltage or current value.
3405 *
3406 * Return: 0 on success or a negative error number on failure.
3407 */
regulator_hardware_enable(struct regulator * regulator,bool enable)3408 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3409 {
3410 struct regulator_dev *rdev = regulator->rdev;
3411 const struct regulator_ops *ops = rdev->desc->ops;
3412 int ret = -EOPNOTSUPP;
3413
3414 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3415 return ret;
3416
3417 if (enable)
3418 ret = ops->enable(rdev);
3419 else
3420 ret = ops->disable(rdev);
3421
3422 return ret;
3423 }
3424 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3425
3426 /**
3427 * regulator_get_linear_step - return the voltage step size between VSEL values
3428 * @regulator: regulator source
3429 *
3430 * Return: The voltage step size between VSEL values for linear regulators,
3431 * or 0 if the regulator isn't a linear regulator.
3432 */
regulator_get_linear_step(struct regulator * regulator)3433 unsigned int regulator_get_linear_step(struct regulator *regulator)
3434 {
3435 struct regulator_dev *rdev = regulator->rdev;
3436
3437 return rdev->desc->uV_step;
3438 }
3439 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3440
3441 /**
3442 * regulator_is_supported_voltage - check if a voltage range can be supported
3443 *
3444 * @regulator: Regulator to check.
3445 * @min_uV: Minimum required voltage in uV.
3446 * @max_uV: Maximum required voltage in uV.
3447 *
3448 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3449 * number if @regulator's voltage can't be changed and voltage readback
3450 * failed.
3451 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3452 int regulator_is_supported_voltage(struct regulator *regulator,
3453 int min_uV, int max_uV)
3454 {
3455 struct regulator_dev *rdev = regulator->rdev;
3456 int i, voltages, ret;
3457
3458 /* If we can't change voltage check the current voltage */
3459 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3460 ret = regulator_get_voltage(regulator);
3461 if (ret >= 0)
3462 return min_uV <= ret && ret <= max_uV;
3463 else
3464 return ret;
3465 }
3466
3467 /* Any voltage within constrains range is fine? */
3468 if (rdev->desc->continuous_voltage_range)
3469 return min_uV >= rdev->constraints->min_uV &&
3470 max_uV <= rdev->constraints->max_uV;
3471
3472 ret = regulator_count_voltages(regulator);
3473 if (ret < 0)
3474 return 0;
3475 voltages = ret;
3476
3477 for (i = 0; i < voltages; i++) {
3478 ret = regulator_list_voltage(regulator, i);
3479
3480 if (ret >= min_uV && ret <= max_uV)
3481 return 1;
3482 }
3483
3484 return 0;
3485 }
3486 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3487
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3488 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3489 int max_uV)
3490 {
3491 const struct regulator_desc *desc = rdev->desc;
3492
3493 if (desc->ops->map_voltage)
3494 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3495
3496 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3497 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3498
3499 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3500 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3501
3502 if (desc->ops->list_voltage ==
3503 regulator_list_voltage_pickable_linear_range)
3504 return regulator_map_voltage_pickable_linear_range(rdev,
3505 min_uV, max_uV);
3506
3507 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3508 }
3509
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3510 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3511 int min_uV, int max_uV,
3512 unsigned *selector)
3513 {
3514 struct pre_voltage_change_data data;
3515 int ret;
3516
3517 data.old_uV = regulator_get_voltage_rdev(rdev);
3518 data.min_uV = min_uV;
3519 data.max_uV = max_uV;
3520 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3521 &data);
3522 if (ret & NOTIFY_STOP_MASK)
3523 return -EINVAL;
3524
3525 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3526 if (ret >= 0)
3527 return ret;
3528
3529 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3530 (void *)data.old_uV);
3531
3532 return ret;
3533 }
3534
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3535 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3536 int uV, unsigned selector)
3537 {
3538 struct pre_voltage_change_data data;
3539 int ret;
3540
3541 data.old_uV = regulator_get_voltage_rdev(rdev);
3542 data.min_uV = uV;
3543 data.max_uV = uV;
3544 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3545 &data);
3546 if (ret & NOTIFY_STOP_MASK)
3547 return -EINVAL;
3548
3549 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3550 if (ret >= 0)
3551 return ret;
3552
3553 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3554 (void *)data.old_uV);
3555
3556 return ret;
3557 }
3558
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3559 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3560 int uV, int new_selector)
3561 {
3562 const struct regulator_ops *ops = rdev->desc->ops;
3563 int diff, old_sel, curr_sel, ret;
3564
3565 /* Stepping is only needed if the regulator is enabled. */
3566 if (!_regulator_is_enabled(rdev))
3567 goto final_set;
3568
3569 if (!ops->get_voltage_sel)
3570 return -EINVAL;
3571
3572 old_sel = ops->get_voltage_sel(rdev);
3573 if (old_sel < 0)
3574 return old_sel;
3575
3576 diff = new_selector - old_sel;
3577 if (diff == 0)
3578 return 0; /* No change needed. */
3579
3580 if (diff > 0) {
3581 /* Stepping up. */
3582 for (curr_sel = old_sel + rdev->desc->vsel_step;
3583 curr_sel < new_selector;
3584 curr_sel += rdev->desc->vsel_step) {
3585 /*
3586 * Call the callback directly instead of using
3587 * _regulator_call_set_voltage_sel() as we don't
3588 * want to notify anyone yet. Same in the branch
3589 * below.
3590 */
3591 ret = ops->set_voltage_sel(rdev, curr_sel);
3592 if (ret)
3593 goto try_revert;
3594 }
3595 } else {
3596 /* Stepping down. */
3597 for (curr_sel = old_sel - rdev->desc->vsel_step;
3598 curr_sel > new_selector;
3599 curr_sel -= rdev->desc->vsel_step) {
3600 ret = ops->set_voltage_sel(rdev, curr_sel);
3601 if (ret)
3602 goto try_revert;
3603 }
3604 }
3605
3606 final_set:
3607 /* The final selector will trigger the notifiers. */
3608 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3609
3610 try_revert:
3611 /*
3612 * At least try to return to the previous voltage if setting a new
3613 * one failed.
3614 */
3615 (void)ops->set_voltage_sel(rdev, old_sel);
3616 return ret;
3617 }
3618
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3619 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3620 int old_uV, int new_uV)
3621 {
3622 unsigned int ramp_delay = 0;
3623
3624 if (rdev->constraints->ramp_delay)
3625 ramp_delay = rdev->constraints->ramp_delay;
3626 else if (rdev->desc->ramp_delay)
3627 ramp_delay = rdev->desc->ramp_delay;
3628 else if (rdev->constraints->settling_time)
3629 return rdev->constraints->settling_time;
3630 else if (rdev->constraints->settling_time_up &&
3631 (new_uV > old_uV))
3632 return rdev->constraints->settling_time_up;
3633 else if (rdev->constraints->settling_time_down &&
3634 (new_uV < old_uV))
3635 return rdev->constraints->settling_time_down;
3636
3637 if (ramp_delay == 0)
3638 return 0;
3639
3640 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3641 }
3642
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3643 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3644 int min_uV, int max_uV)
3645 {
3646 int ret;
3647 int delay = 0;
3648 int best_val = 0;
3649 unsigned int selector;
3650 int old_selector = -1;
3651 const struct regulator_ops *ops = rdev->desc->ops;
3652 int old_uV = regulator_get_voltage_rdev(rdev);
3653
3654 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3655
3656 min_uV += rdev->constraints->uV_offset;
3657 max_uV += rdev->constraints->uV_offset;
3658
3659 /*
3660 * If we can't obtain the old selector there is not enough
3661 * info to call set_voltage_time_sel().
3662 */
3663 if (_regulator_is_enabled(rdev) &&
3664 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3665 old_selector = ops->get_voltage_sel(rdev);
3666 if (old_selector < 0)
3667 return old_selector;
3668 }
3669
3670 if (ops->set_voltage) {
3671 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3672 &selector);
3673
3674 if (ret >= 0) {
3675 if (ops->list_voltage)
3676 best_val = ops->list_voltage(rdev,
3677 selector);
3678 else
3679 best_val = regulator_get_voltage_rdev(rdev);
3680 }
3681
3682 } else if (ops->set_voltage_sel) {
3683 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3684 if (ret >= 0) {
3685 best_val = ops->list_voltage(rdev, ret);
3686 if (min_uV <= best_val && max_uV >= best_val) {
3687 selector = ret;
3688 if (old_selector == selector)
3689 ret = 0;
3690 else if (rdev->desc->vsel_step)
3691 ret = _regulator_set_voltage_sel_step(
3692 rdev, best_val, selector);
3693 else
3694 ret = _regulator_call_set_voltage_sel(
3695 rdev, best_val, selector);
3696 } else {
3697 ret = -EINVAL;
3698 }
3699 }
3700 } else {
3701 ret = -EINVAL;
3702 }
3703
3704 if (ret)
3705 goto out;
3706
3707 if (ops->set_voltage_time_sel) {
3708 /*
3709 * Call set_voltage_time_sel if successfully obtained
3710 * old_selector
3711 */
3712 if (old_selector >= 0 && old_selector != selector)
3713 delay = ops->set_voltage_time_sel(rdev, old_selector,
3714 selector);
3715 } else {
3716 if (old_uV != best_val) {
3717 if (ops->set_voltage_time)
3718 delay = ops->set_voltage_time(rdev, old_uV,
3719 best_val);
3720 else
3721 delay = _regulator_set_voltage_time(rdev,
3722 old_uV,
3723 best_val);
3724 }
3725 }
3726
3727 if (delay < 0) {
3728 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3729 delay = 0;
3730 }
3731
3732 /* Insert any necessary delays */
3733 _regulator_delay_helper(delay);
3734
3735 if (best_val >= 0) {
3736 unsigned long data = best_val;
3737
3738 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3739 (void *)data);
3740 }
3741
3742 out:
3743 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3744
3745 return ret;
3746 }
3747
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3748 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3749 int min_uV, int max_uV, suspend_state_t state)
3750 {
3751 struct regulator_state *rstate;
3752 int uV, sel;
3753
3754 rstate = regulator_get_suspend_state(rdev, state);
3755 if (rstate == NULL)
3756 return -EINVAL;
3757
3758 if (min_uV < rstate->min_uV)
3759 min_uV = rstate->min_uV;
3760 if (max_uV > rstate->max_uV)
3761 max_uV = rstate->max_uV;
3762
3763 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3764 if (sel < 0)
3765 return sel;
3766
3767 uV = rdev->desc->ops->list_voltage(rdev, sel);
3768 if (uV >= min_uV && uV <= max_uV)
3769 rstate->uV = uV;
3770
3771 return 0;
3772 }
3773
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3774 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3775 int min_uV, int max_uV,
3776 suspend_state_t state)
3777 {
3778 struct regulator_dev *rdev = regulator->rdev;
3779 struct regulator_voltage *voltage = ®ulator->voltage[state];
3780 int ret = 0;
3781 int old_min_uV, old_max_uV;
3782 int current_uV;
3783
3784 /* If we're setting the same range as last time the change
3785 * should be a noop (some cpufreq implementations use the same
3786 * voltage for multiple frequencies, for example).
3787 */
3788 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3789 goto out;
3790
3791 /* If we're trying to set a range that overlaps the current voltage,
3792 * return successfully even though the regulator does not support
3793 * changing the voltage.
3794 */
3795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3796 current_uV = regulator_get_voltage_rdev(rdev);
3797 if (min_uV <= current_uV && current_uV <= max_uV) {
3798 voltage->min_uV = min_uV;
3799 voltage->max_uV = max_uV;
3800 goto out;
3801 }
3802 }
3803
3804 /* sanity check */
3805 if (!rdev->desc->ops->set_voltage &&
3806 !rdev->desc->ops->set_voltage_sel) {
3807 ret = -EINVAL;
3808 goto out;
3809 }
3810
3811 /* constraints check */
3812 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3813 if (ret < 0)
3814 goto out;
3815
3816 /* restore original values in case of error */
3817 old_min_uV = voltage->min_uV;
3818 old_max_uV = voltage->max_uV;
3819 voltage->min_uV = min_uV;
3820 voltage->max_uV = max_uV;
3821
3822 /* for not coupled regulators this will just set the voltage */
3823 ret = regulator_balance_voltage(rdev, state);
3824 if (ret < 0) {
3825 voltage->min_uV = old_min_uV;
3826 voltage->max_uV = old_max_uV;
3827 }
3828
3829 out:
3830 return ret;
3831 }
3832
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3833 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3834 int max_uV, suspend_state_t state)
3835 {
3836 int best_supply_uV = 0;
3837 int supply_change_uV = 0;
3838 int ret;
3839
3840 if (rdev->supply &&
3841 regulator_ops_is_valid(rdev->supply->rdev,
3842 REGULATOR_CHANGE_VOLTAGE) &&
3843 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3844 rdev->desc->ops->get_voltage_sel))) {
3845 int current_supply_uV;
3846 int selector;
3847
3848 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3849 if (selector < 0) {
3850 ret = selector;
3851 goto out;
3852 }
3853
3854 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3855 if (best_supply_uV < 0) {
3856 ret = best_supply_uV;
3857 goto out;
3858 }
3859
3860 best_supply_uV += rdev->desc->min_dropout_uV;
3861
3862 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3863 if (current_supply_uV < 0) {
3864 ret = current_supply_uV;
3865 goto out;
3866 }
3867
3868 supply_change_uV = best_supply_uV - current_supply_uV;
3869 }
3870
3871 if (supply_change_uV > 0) {
3872 ret = regulator_set_voltage_unlocked(rdev->supply,
3873 best_supply_uV, INT_MAX, state);
3874 if (ret) {
3875 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3876 ERR_PTR(ret));
3877 goto out;
3878 }
3879 }
3880
3881 if (state == PM_SUSPEND_ON)
3882 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3883 else
3884 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3885 max_uV, state);
3886 if (ret < 0)
3887 goto out;
3888
3889 if (supply_change_uV < 0) {
3890 ret = regulator_set_voltage_unlocked(rdev->supply,
3891 best_supply_uV, INT_MAX, state);
3892 if (ret)
3893 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3894 ERR_PTR(ret));
3895 /* No need to fail here */
3896 ret = 0;
3897 }
3898
3899 out:
3900 return ret;
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3903
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3904 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3905 int *current_uV, int *min_uV)
3906 {
3907 struct regulation_constraints *constraints = rdev->constraints;
3908
3909 /* Limit voltage change only if necessary */
3910 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3911 return 1;
3912
3913 if (*current_uV < 0) {
3914 *current_uV = regulator_get_voltage_rdev(rdev);
3915
3916 if (*current_uV < 0)
3917 return *current_uV;
3918 }
3919
3920 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3921 return 1;
3922
3923 /* Clamp target voltage within the given step */
3924 if (*current_uV < *min_uV)
3925 *min_uV = min(*current_uV + constraints->max_uV_step,
3926 *min_uV);
3927 else
3928 *min_uV = max(*current_uV - constraints->max_uV_step,
3929 *min_uV);
3930
3931 return 0;
3932 }
3933
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3934 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3935 int *current_uV,
3936 int *min_uV, int *max_uV,
3937 suspend_state_t state,
3938 int n_coupled)
3939 {
3940 struct coupling_desc *c_desc = &rdev->coupling_desc;
3941 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3942 struct regulation_constraints *constraints = rdev->constraints;
3943 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3944 int max_current_uV = 0, min_current_uV = INT_MAX;
3945 int highest_min_uV = 0, target_uV, possible_uV;
3946 int i, ret, max_spread;
3947 bool done;
3948
3949 *current_uV = -1;
3950
3951 /*
3952 * If there are no coupled regulators, simply set the voltage
3953 * demanded by consumers.
3954 */
3955 if (n_coupled == 1) {
3956 /*
3957 * If consumers don't provide any demands, set voltage
3958 * to min_uV
3959 */
3960 desired_min_uV = constraints->min_uV;
3961 desired_max_uV = constraints->max_uV;
3962
3963 ret = regulator_check_consumers(rdev,
3964 &desired_min_uV,
3965 &desired_max_uV, state);
3966 if (ret < 0)
3967 return ret;
3968
3969 done = true;
3970
3971 goto finish;
3972 }
3973
3974 /* Find highest min desired voltage */
3975 for (i = 0; i < n_coupled; i++) {
3976 int tmp_min = 0;
3977 int tmp_max = INT_MAX;
3978
3979 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3980
3981 ret = regulator_check_consumers(c_rdevs[i],
3982 &tmp_min,
3983 &tmp_max, state);
3984 if (ret < 0)
3985 return ret;
3986
3987 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3988 if (ret < 0)
3989 return ret;
3990
3991 highest_min_uV = max(highest_min_uV, tmp_min);
3992
3993 if (i == 0) {
3994 desired_min_uV = tmp_min;
3995 desired_max_uV = tmp_max;
3996 }
3997 }
3998
3999 max_spread = constraints->max_spread[0];
4000
4001 /*
4002 * Let target_uV be equal to the desired one if possible.
4003 * If not, set it to minimum voltage, allowed by other coupled
4004 * regulators.
4005 */
4006 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4007
4008 /*
4009 * Find min and max voltages, which currently aren't violating
4010 * max_spread.
4011 */
4012 for (i = 1; i < n_coupled; i++) {
4013 int tmp_act;
4014
4015 if (!_regulator_is_enabled(c_rdevs[i]))
4016 continue;
4017
4018 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4019 if (tmp_act < 0)
4020 return tmp_act;
4021
4022 min_current_uV = min(tmp_act, min_current_uV);
4023 max_current_uV = max(tmp_act, max_current_uV);
4024 }
4025
4026 /* There aren't any other regulators enabled */
4027 if (max_current_uV == 0) {
4028 possible_uV = target_uV;
4029 } else {
4030 /*
4031 * Correct target voltage, so as it currently isn't
4032 * violating max_spread
4033 */
4034 possible_uV = max(target_uV, max_current_uV - max_spread);
4035 possible_uV = min(possible_uV, min_current_uV + max_spread);
4036 }
4037
4038 if (possible_uV > desired_max_uV)
4039 return -EINVAL;
4040
4041 done = (possible_uV == target_uV);
4042 desired_min_uV = possible_uV;
4043
4044 finish:
4045 /* Apply max_uV_step constraint if necessary */
4046 if (state == PM_SUSPEND_ON) {
4047 ret = regulator_limit_voltage_step(rdev, current_uV,
4048 &desired_min_uV);
4049 if (ret < 0)
4050 return ret;
4051
4052 if (ret == 0)
4053 done = false;
4054 }
4055
4056 /* Set current_uV if wasn't done earlier in the code and if necessary */
4057 if (n_coupled > 1 && *current_uV == -1) {
4058
4059 if (_regulator_is_enabled(rdev)) {
4060 ret = regulator_get_voltage_rdev(rdev);
4061 if (ret < 0)
4062 return ret;
4063
4064 *current_uV = ret;
4065 } else {
4066 *current_uV = desired_min_uV;
4067 }
4068 }
4069
4070 *min_uV = desired_min_uV;
4071 *max_uV = desired_max_uV;
4072
4073 return done;
4074 }
4075
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4076 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4077 suspend_state_t state, bool skip_coupled)
4078 {
4079 struct regulator_dev **c_rdevs;
4080 struct regulator_dev *best_rdev;
4081 struct coupling_desc *c_desc = &rdev->coupling_desc;
4082 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4083 unsigned int delta, best_delta;
4084 unsigned long c_rdev_done = 0;
4085 bool best_c_rdev_done;
4086
4087 c_rdevs = c_desc->coupled_rdevs;
4088 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4089
4090 /*
4091 * Find the best possible voltage change on each loop. Leave the loop
4092 * if there isn't any possible change.
4093 */
4094 do {
4095 best_c_rdev_done = false;
4096 best_delta = 0;
4097 best_min_uV = 0;
4098 best_max_uV = 0;
4099 best_c_rdev = 0;
4100 best_rdev = NULL;
4101
4102 /*
4103 * Find highest difference between optimal voltage
4104 * and current voltage.
4105 */
4106 for (i = 0; i < n_coupled; i++) {
4107 /*
4108 * optimal_uV is the best voltage that can be set for
4109 * i-th regulator at the moment without violating
4110 * max_spread constraint in order to balance
4111 * the coupled voltages.
4112 */
4113 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4114
4115 if (test_bit(i, &c_rdev_done))
4116 continue;
4117
4118 ret = regulator_get_optimal_voltage(c_rdevs[i],
4119 ¤t_uV,
4120 &optimal_uV,
4121 &optimal_max_uV,
4122 state, n_coupled);
4123 if (ret < 0)
4124 goto out;
4125
4126 delta = abs(optimal_uV - current_uV);
4127
4128 if (delta && best_delta <= delta) {
4129 best_c_rdev_done = ret;
4130 best_delta = delta;
4131 best_rdev = c_rdevs[i];
4132 best_min_uV = optimal_uV;
4133 best_max_uV = optimal_max_uV;
4134 best_c_rdev = i;
4135 }
4136 }
4137
4138 /* Nothing to change, return successfully */
4139 if (!best_rdev) {
4140 ret = 0;
4141 goto out;
4142 }
4143
4144 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4145 best_max_uV, state);
4146
4147 if (ret < 0)
4148 goto out;
4149
4150 if (best_c_rdev_done)
4151 set_bit(best_c_rdev, &c_rdev_done);
4152
4153 } while (n_coupled > 1);
4154
4155 out:
4156 return ret;
4157 }
4158
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4159 static int regulator_balance_voltage(struct regulator_dev *rdev,
4160 suspend_state_t state)
4161 {
4162 struct coupling_desc *c_desc = &rdev->coupling_desc;
4163 struct regulator_coupler *coupler = c_desc->coupler;
4164 bool skip_coupled = false;
4165
4166 /*
4167 * If system is in a state other than PM_SUSPEND_ON, don't check
4168 * other coupled regulators.
4169 */
4170 if (state != PM_SUSPEND_ON)
4171 skip_coupled = true;
4172
4173 if (c_desc->n_resolved < c_desc->n_coupled) {
4174 rdev_err(rdev, "Not all coupled regulators registered\n");
4175 return -EPERM;
4176 }
4177
4178 /* Invoke custom balancer for customized couplers */
4179 if (coupler && coupler->balance_voltage)
4180 return coupler->balance_voltage(coupler, rdev, state);
4181
4182 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4183 }
4184
4185 /**
4186 * regulator_set_voltage - set regulator output voltage
4187 * @regulator: regulator source
4188 * @min_uV: Minimum required voltage in uV
4189 * @max_uV: Maximum acceptable voltage in uV
4190 *
4191 * Sets a voltage regulator to the desired output voltage. This can be set
4192 * during any regulator state. IOW, regulator can be disabled or enabled.
4193 *
4194 * If the regulator is enabled then the voltage will change to the new value
4195 * immediately otherwise if the regulator is disabled the regulator will
4196 * output at the new voltage when enabled.
4197 *
4198 * NOTE: If the regulator is shared between several devices then the lowest
4199 * request voltage that meets the system constraints will be used.
4200 * Regulator system constraints must be set for this regulator before
4201 * calling this function otherwise this call will fail.
4202 *
4203 * Return: 0 on success or a negative error number on failure.
4204 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4205 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4206 {
4207 struct ww_acquire_ctx ww_ctx;
4208 int ret;
4209
4210 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4211
4212 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4213 PM_SUSPEND_ON);
4214
4215 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4216
4217 return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4220
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4221 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4222 suspend_state_t state, bool en)
4223 {
4224 struct regulator_state *rstate;
4225
4226 rstate = regulator_get_suspend_state(rdev, state);
4227 if (rstate == NULL)
4228 return -EINVAL;
4229
4230 if (!rstate->changeable)
4231 return -EPERM;
4232
4233 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4234
4235 return 0;
4236 }
4237
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4238 int regulator_suspend_enable(struct regulator_dev *rdev,
4239 suspend_state_t state)
4240 {
4241 return regulator_suspend_toggle(rdev, state, true);
4242 }
4243 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4244
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4245 int regulator_suspend_disable(struct regulator_dev *rdev,
4246 suspend_state_t state)
4247 {
4248 struct regulator *regulator;
4249 struct regulator_voltage *voltage;
4250
4251 /*
4252 * if any consumer wants this regulator device keeping on in
4253 * suspend states, don't set it as disabled.
4254 */
4255 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4256 voltage = ®ulator->voltage[state];
4257 if (voltage->min_uV || voltage->max_uV)
4258 return 0;
4259 }
4260
4261 return regulator_suspend_toggle(rdev, state, false);
4262 }
4263 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4264
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4265 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4266 int min_uV, int max_uV,
4267 suspend_state_t state)
4268 {
4269 struct regulator_dev *rdev = regulator->rdev;
4270 struct regulator_state *rstate;
4271
4272 rstate = regulator_get_suspend_state(rdev, state);
4273 if (rstate == NULL)
4274 return -EINVAL;
4275
4276 if (rstate->min_uV == rstate->max_uV) {
4277 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4278 return -EPERM;
4279 }
4280
4281 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4282 }
4283
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4284 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4285 int max_uV, suspend_state_t state)
4286 {
4287 struct ww_acquire_ctx ww_ctx;
4288 int ret;
4289
4290 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4291 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4292 return -EINVAL;
4293
4294 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4295
4296 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4297 max_uV, state);
4298
4299 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4300
4301 return ret;
4302 }
4303 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4304
4305 /**
4306 * regulator_set_voltage_time - get raise/fall time
4307 * @regulator: regulator source
4308 * @old_uV: starting voltage in microvolts
4309 * @new_uV: target voltage in microvolts
4310 *
4311 * Provided with the starting and ending voltage, this function attempts to
4312 * calculate the time in microseconds required to rise or fall to this new
4313 * voltage.
4314 *
4315 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4316 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4317 int regulator_set_voltage_time(struct regulator *regulator,
4318 int old_uV, int new_uV)
4319 {
4320 struct regulator_dev *rdev = regulator->rdev;
4321 const struct regulator_ops *ops = rdev->desc->ops;
4322 int old_sel = -1;
4323 int new_sel = -1;
4324 int voltage;
4325 int i;
4326
4327 if (ops->set_voltage_time)
4328 return ops->set_voltage_time(rdev, old_uV, new_uV);
4329 else if (!ops->set_voltage_time_sel)
4330 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4331
4332 /* Currently requires operations to do this */
4333 if (!ops->list_voltage || !rdev->desc->n_voltages)
4334 return -EINVAL;
4335
4336 for (i = 0; i < rdev->desc->n_voltages; i++) {
4337 /* We only look for exact voltage matches here */
4338 if (i < rdev->desc->linear_min_sel)
4339 continue;
4340
4341 if (old_sel >= 0 && new_sel >= 0)
4342 break;
4343
4344 voltage = regulator_list_voltage(regulator, i);
4345 if (voltage < 0)
4346 return -EINVAL;
4347 if (voltage == 0)
4348 continue;
4349 if (voltage == old_uV)
4350 old_sel = i;
4351 if (voltage == new_uV)
4352 new_sel = i;
4353 }
4354
4355 if (old_sel < 0 || new_sel < 0)
4356 return -EINVAL;
4357
4358 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4359 }
4360 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4361
4362 /**
4363 * regulator_set_voltage_time_sel - get raise/fall time
4364 * @rdev: regulator source device
4365 * @old_selector: selector for starting voltage
4366 * @new_selector: selector for target voltage
4367 *
4368 * Provided with the starting and target voltage selectors, this function
4369 * returns time in microseconds required to rise or fall to this new voltage
4370 *
4371 * Drivers providing ramp_delay in regulation_constraints can use this as their
4372 * set_voltage_time_sel() operation.
4373 *
4374 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4375 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4376 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4377 unsigned int old_selector,
4378 unsigned int new_selector)
4379 {
4380 int old_volt, new_volt;
4381
4382 /* sanity check */
4383 if (!rdev->desc->ops->list_voltage)
4384 return -EINVAL;
4385
4386 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4387 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4388
4389 if (rdev->desc->ops->set_voltage_time)
4390 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4391 new_volt);
4392 else
4393 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4394 }
4395 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4396
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4397 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4398 {
4399 int ret;
4400
4401 regulator_lock(rdev);
4402
4403 if (!rdev->desc->ops->set_voltage &&
4404 !rdev->desc->ops->set_voltage_sel) {
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408
4409 /* balance only, if regulator is coupled */
4410 if (rdev->coupling_desc.n_coupled > 1)
4411 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4412 else
4413 ret = -EOPNOTSUPP;
4414
4415 out:
4416 regulator_unlock(rdev);
4417 return ret;
4418 }
4419
4420 /**
4421 * regulator_sync_voltage - re-apply last regulator output voltage
4422 * @regulator: regulator source
4423 *
4424 * Re-apply the last configured voltage. This is intended to be used
4425 * where some external control source the consumer is cooperating with
4426 * has caused the configured voltage to change.
4427 *
4428 * Return: 0 on success or a negative error number on failure.
4429 */
regulator_sync_voltage(struct regulator * regulator)4430 int regulator_sync_voltage(struct regulator *regulator)
4431 {
4432 struct regulator_dev *rdev = regulator->rdev;
4433 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4434 int ret, min_uV, max_uV;
4435
4436 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4437 return 0;
4438
4439 regulator_lock(rdev);
4440
4441 if (!rdev->desc->ops->set_voltage &&
4442 !rdev->desc->ops->set_voltage_sel) {
4443 ret = -EINVAL;
4444 goto out;
4445 }
4446
4447 /* This is only going to work if we've had a voltage configured. */
4448 if (!voltage->min_uV && !voltage->max_uV) {
4449 ret = -EINVAL;
4450 goto out;
4451 }
4452
4453 min_uV = voltage->min_uV;
4454 max_uV = voltage->max_uV;
4455
4456 /* This should be a paranoia check... */
4457 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4458 if (ret < 0)
4459 goto out;
4460
4461 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4462 if (ret < 0)
4463 goto out;
4464
4465 /* balance only, if regulator is coupled */
4466 if (rdev->coupling_desc.n_coupled > 1)
4467 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4468 else
4469 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4470
4471 out:
4472 regulator_unlock(rdev);
4473 return ret;
4474 }
4475 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4476
regulator_get_voltage_rdev(struct regulator_dev * rdev)4477 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4478 {
4479 int sel, ret;
4480 bool bypassed;
4481
4482 if (rdev->desc->ops->get_bypass) {
4483 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4484 if (ret < 0)
4485 return ret;
4486 if (bypassed) {
4487 /* if bypassed the regulator must have a supply */
4488 if (!rdev->supply) {
4489 rdev_err(rdev,
4490 "bypassed regulator has no supply!\n");
4491 return -EPROBE_DEFER;
4492 }
4493
4494 return regulator_get_voltage_rdev(rdev->supply->rdev);
4495 }
4496 }
4497
4498 if (rdev->desc->ops->get_voltage_sel) {
4499 sel = rdev->desc->ops->get_voltage_sel(rdev);
4500 if (sel < 0)
4501 return sel;
4502 ret = rdev->desc->ops->list_voltage(rdev, sel);
4503 } else if (rdev->desc->ops->get_voltage) {
4504 ret = rdev->desc->ops->get_voltage(rdev);
4505 } else if (rdev->desc->ops->list_voltage) {
4506 ret = rdev->desc->ops->list_voltage(rdev, 0);
4507 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4508 ret = rdev->desc->fixed_uV;
4509 } else if (rdev->supply) {
4510 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4511 } else if (rdev->supply_name) {
4512 return -EPROBE_DEFER;
4513 } else {
4514 return -EINVAL;
4515 }
4516
4517 if (ret < 0)
4518 return ret;
4519 return ret - rdev->constraints->uV_offset;
4520 }
4521 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4522
4523 /**
4524 * regulator_get_voltage - get regulator output voltage
4525 * @regulator: regulator source
4526 *
4527 * Return: Current regulator voltage in uV, or a negative error number on failure.
4528 *
4529 * NOTE: If the regulator is disabled it will return the voltage value. This
4530 * function should not be used to determine regulator state.
4531 */
regulator_get_voltage(struct regulator * regulator)4532 int regulator_get_voltage(struct regulator *regulator)
4533 {
4534 struct ww_acquire_ctx ww_ctx;
4535 int ret;
4536
4537 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4538 ret = regulator_get_voltage_rdev(regulator->rdev);
4539 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4540
4541 return ret;
4542 }
4543 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4544
4545 /**
4546 * regulator_set_current_limit - set regulator output current limit
4547 * @regulator: regulator source
4548 * @min_uA: Minimum supported current in uA
4549 * @max_uA: Maximum supported current in uA
4550 *
4551 * Sets current sink to the desired output current. This can be set during
4552 * any regulator state. IOW, regulator can be disabled or enabled.
4553 *
4554 * If the regulator is enabled then the current will change to the new value
4555 * immediately otherwise if the regulator is disabled the regulator will
4556 * output at the new current when enabled.
4557 *
4558 * NOTE: Regulator system constraints must be set for this regulator before
4559 * calling this function otherwise this call will fail.
4560 *
4561 * Return: 0 on success or a negative error number on failure.
4562 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4563 int regulator_set_current_limit(struct regulator *regulator,
4564 int min_uA, int max_uA)
4565 {
4566 struct regulator_dev *rdev = regulator->rdev;
4567 int ret;
4568
4569 regulator_lock(rdev);
4570
4571 /* sanity check */
4572 if (!rdev->desc->ops->set_current_limit) {
4573 ret = -EINVAL;
4574 goto out;
4575 }
4576
4577 /* constraints check */
4578 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4579 if (ret < 0)
4580 goto out;
4581
4582 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4583 out:
4584 regulator_unlock(rdev);
4585 return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4588
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4589 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4590 {
4591 /* sanity check */
4592 if (!rdev->desc->ops->get_current_limit)
4593 return -EINVAL;
4594
4595 return rdev->desc->ops->get_current_limit(rdev);
4596 }
4597
_regulator_get_current_limit(struct regulator_dev * rdev)4598 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4599 {
4600 int ret;
4601
4602 regulator_lock(rdev);
4603 ret = _regulator_get_current_limit_unlocked(rdev);
4604 regulator_unlock(rdev);
4605
4606 return ret;
4607 }
4608
4609 /**
4610 * regulator_get_current_limit - get regulator output current
4611 * @regulator: regulator source
4612 *
4613 * Return: Current supplied by the specified current sink in uA,
4614 * or a negative error number on failure.
4615 *
4616 * NOTE: If the regulator is disabled it will return the current value. This
4617 * function should not be used to determine regulator state.
4618 */
regulator_get_current_limit(struct regulator * regulator)4619 int regulator_get_current_limit(struct regulator *regulator)
4620 {
4621 return _regulator_get_current_limit(regulator->rdev);
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4624
4625 /**
4626 * regulator_set_mode - set regulator operating mode
4627 * @regulator: regulator source
4628 * @mode: operating mode - one of the REGULATOR_MODE constants
4629 *
4630 * Set regulator operating mode to increase regulator efficiency or improve
4631 * regulation performance.
4632 *
4633 * NOTE: Regulator system constraints must be set for this regulator before
4634 * calling this function otherwise this call will fail.
4635 *
4636 * Return: 0 on success or a negative error number on failure.
4637 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4638 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4639 {
4640 struct regulator_dev *rdev = regulator->rdev;
4641 int ret;
4642 int regulator_curr_mode;
4643
4644 regulator_lock(rdev);
4645
4646 /* sanity check */
4647 if (!rdev->desc->ops->set_mode) {
4648 ret = -EINVAL;
4649 goto out;
4650 }
4651
4652 /* return if the same mode is requested */
4653 if (rdev->desc->ops->get_mode) {
4654 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4655 if (regulator_curr_mode == mode) {
4656 ret = 0;
4657 goto out;
4658 }
4659 }
4660
4661 /* constraints check */
4662 ret = regulator_mode_constrain(rdev, &mode);
4663 if (ret < 0)
4664 goto out;
4665
4666 ret = rdev->desc->ops->set_mode(rdev, mode);
4667 out:
4668 regulator_unlock(rdev);
4669 return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(regulator_set_mode);
4672
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4673 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4674 {
4675 /* sanity check */
4676 if (!rdev->desc->ops->get_mode)
4677 return -EINVAL;
4678
4679 return rdev->desc->ops->get_mode(rdev);
4680 }
4681
_regulator_get_mode(struct regulator_dev * rdev)4682 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4683 {
4684 int ret;
4685
4686 regulator_lock(rdev);
4687 ret = _regulator_get_mode_unlocked(rdev);
4688 regulator_unlock(rdev);
4689
4690 return ret;
4691 }
4692
4693 /**
4694 * regulator_get_mode - get regulator operating mode
4695 * @regulator: regulator source
4696 *
4697 * Get the current regulator operating mode.
4698 *
4699 * Return: Current operating mode as %REGULATOR_MODE_* values,
4700 * or a negative error number on failure.
4701 */
regulator_get_mode(struct regulator * regulator)4702 unsigned int regulator_get_mode(struct regulator *regulator)
4703 {
4704 return _regulator_get_mode(regulator->rdev);
4705 }
4706 EXPORT_SYMBOL_GPL(regulator_get_mode);
4707
rdev_get_cached_err_flags(struct regulator_dev * rdev)4708 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4709 {
4710 int ret = 0;
4711
4712 if (rdev->use_cached_err) {
4713 spin_lock(&rdev->err_lock);
4714 ret = rdev->cached_err;
4715 spin_unlock(&rdev->err_lock);
4716 }
4717 return ret;
4718 }
4719
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4720 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4721 unsigned int *flags)
4722 {
4723 int cached_flags, ret = 0;
4724
4725 regulator_lock(rdev);
4726
4727 cached_flags = rdev_get_cached_err_flags(rdev);
4728
4729 if (rdev->desc->ops->get_error_flags)
4730 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4731 else if (!rdev->use_cached_err)
4732 ret = -EINVAL;
4733
4734 *flags |= cached_flags;
4735
4736 regulator_unlock(rdev);
4737
4738 return ret;
4739 }
4740
4741 /**
4742 * regulator_get_error_flags - get regulator error information
4743 * @regulator: regulator source
4744 * @flags: pointer to store error flags
4745 *
4746 * Get the current regulator error information.
4747 *
4748 * Return: 0 on success or a negative error number on failure.
4749 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4750 int regulator_get_error_flags(struct regulator *regulator,
4751 unsigned int *flags)
4752 {
4753 return _regulator_get_error_flags(regulator->rdev, flags);
4754 }
4755 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4756
4757 /**
4758 * regulator_set_load - set regulator load
4759 * @regulator: regulator source
4760 * @uA_load: load current
4761 *
4762 * Notifies the regulator core of a new device load. This is then used by
4763 * DRMS (if enabled by constraints) to set the most efficient regulator
4764 * operating mode for the new regulator loading.
4765 *
4766 * Consumer devices notify their supply regulator of the maximum power
4767 * they will require (can be taken from device datasheet in the power
4768 * consumption tables) when they change operational status and hence power
4769 * state. Examples of operational state changes that can affect power
4770 * consumption are :-
4771 *
4772 * o Device is opened / closed.
4773 * o Device I/O is about to begin or has just finished.
4774 * o Device is idling in between work.
4775 *
4776 * This information is also exported via sysfs to userspace.
4777 *
4778 * DRMS will sum the total requested load on the regulator and change
4779 * to the most efficient operating mode if platform constraints allow.
4780 *
4781 * NOTE: when a regulator consumer requests to have a regulator
4782 * disabled then any load that consumer requested no longer counts
4783 * toward the total requested load. If the regulator is re-enabled
4784 * then the previously requested load will start counting again.
4785 *
4786 * If a regulator is an always-on regulator then an individual consumer's
4787 * load will still be removed if that consumer is fully disabled.
4788 *
4789 * Return: 0 on success or a negative error number on failure.
4790 */
regulator_set_load(struct regulator * regulator,int uA_load)4791 int regulator_set_load(struct regulator *regulator, int uA_load)
4792 {
4793 struct regulator_dev *rdev = regulator->rdev;
4794 int old_uA_load;
4795 int ret = 0;
4796
4797 regulator_lock(rdev);
4798 old_uA_load = regulator->uA_load;
4799 regulator->uA_load = uA_load;
4800 if (regulator->enable_count && old_uA_load != uA_load) {
4801 ret = drms_uA_update(rdev);
4802 if (ret < 0)
4803 regulator->uA_load = old_uA_load;
4804 }
4805 regulator_unlock(rdev);
4806
4807 return ret;
4808 }
4809 EXPORT_SYMBOL_GPL(regulator_set_load);
4810
4811 /**
4812 * regulator_allow_bypass - allow the regulator to go into bypass mode
4813 *
4814 * @regulator: Regulator to configure
4815 * @enable: enable or disable bypass mode
4816 *
4817 * Allow the regulator to go into bypass mode if all other consumers
4818 * for the regulator also enable bypass mode and the machine
4819 * constraints allow this. Bypass mode means that the regulator is
4820 * simply passing the input directly to the output with no regulation.
4821 *
4822 * Return: 0 on success or if changing bypass is not possible, or
4823 * a negative error number on failure.
4824 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4825 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4826 {
4827 struct regulator_dev *rdev = regulator->rdev;
4828 const char *name = rdev_get_name(rdev);
4829 int ret = 0;
4830
4831 if (!rdev->desc->ops->set_bypass)
4832 return 0;
4833
4834 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4835 return 0;
4836
4837 regulator_lock(rdev);
4838
4839 if (enable && !regulator->bypass) {
4840 rdev->bypass_count++;
4841
4842 if (rdev->bypass_count == rdev->open_count) {
4843 trace_regulator_bypass_enable(name);
4844
4845 ret = rdev->desc->ops->set_bypass(rdev, enable);
4846 if (ret != 0)
4847 rdev->bypass_count--;
4848 else
4849 trace_regulator_bypass_enable_complete(name);
4850 }
4851
4852 } else if (!enable && regulator->bypass) {
4853 rdev->bypass_count--;
4854
4855 if (rdev->bypass_count != rdev->open_count) {
4856 trace_regulator_bypass_disable(name);
4857
4858 ret = rdev->desc->ops->set_bypass(rdev, enable);
4859 if (ret != 0)
4860 rdev->bypass_count++;
4861 else
4862 trace_regulator_bypass_disable_complete(name);
4863 }
4864 }
4865
4866 if (ret == 0)
4867 regulator->bypass = enable;
4868
4869 regulator_unlock(rdev);
4870
4871 return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4874
4875 /**
4876 * regulator_register_notifier - register regulator event notifier
4877 * @regulator: regulator source
4878 * @nb: notifier block
4879 *
4880 * Register notifier block to receive regulator events.
4881 *
4882 * Return: 0 on success or a negative error number on failure.
4883 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4884 int regulator_register_notifier(struct regulator *regulator,
4885 struct notifier_block *nb)
4886 {
4887 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4888 nb);
4889 }
4890 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4891
4892 /**
4893 * regulator_unregister_notifier - unregister regulator event notifier
4894 * @regulator: regulator source
4895 * @nb: notifier block
4896 *
4897 * Unregister regulator event notifier block.
4898 *
4899 * Return: 0 on success or a negative error number on failure.
4900 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4901 int regulator_unregister_notifier(struct regulator *regulator,
4902 struct notifier_block *nb)
4903 {
4904 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4905 nb);
4906 }
4907 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4908
4909 /* notify regulator consumers and downstream regulator consumers.
4910 * Note mutex must be held by caller.
4911 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4912 static int _notifier_call_chain(struct regulator_dev *rdev,
4913 unsigned long event, void *data)
4914 {
4915 /* call rdev chain first */
4916 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4917
4918 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4919 struct device *parent = rdev->dev.parent;
4920 const char *rname = rdev_get_name(rdev);
4921 char name[32];
4922
4923 /* Avoid duplicate debugfs directory names */
4924 if (parent && rname == rdev->desc->name) {
4925 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4926 rname);
4927 rname = name;
4928 }
4929 reg_generate_netlink_event(rname, event);
4930 }
4931
4932 return ret;
4933 }
4934
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4935 int _regulator_bulk_get(struct device *dev, int num_consumers,
4936 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4937 {
4938 int i;
4939 int ret;
4940
4941 for (i = 0; i < num_consumers; i++)
4942 consumers[i].consumer = NULL;
4943
4944 for (i = 0; i < num_consumers; i++) {
4945 consumers[i].consumer = _regulator_get(dev,
4946 consumers[i].supply, get_type);
4947 if (IS_ERR(consumers[i].consumer)) {
4948 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4949 "Failed to get supply '%s'",
4950 consumers[i].supply);
4951 consumers[i].consumer = NULL;
4952 goto err;
4953 }
4954
4955 if (consumers[i].init_load_uA > 0) {
4956 ret = regulator_set_load(consumers[i].consumer,
4957 consumers[i].init_load_uA);
4958 if (ret) {
4959 i++;
4960 goto err;
4961 }
4962 }
4963 }
4964
4965 return 0;
4966
4967 err:
4968 while (--i >= 0)
4969 regulator_put(consumers[i].consumer);
4970
4971 return ret;
4972 }
4973
4974 /**
4975 * regulator_bulk_get - get multiple regulator consumers
4976 *
4977 * @dev: Device to supply
4978 * @num_consumers: Number of consumers to register
4979 * @consumers: Configuration of consumers; clients are stored here.
4980 *
4981 * This helper function allows drivers to get several regulator
4982 * consumers in one operation. If any of the regulators cannot be
4983 * acquired then any regulators that were allocated will be freed
4984 * before returning to the caller.
4985 *
4986 * Return: 0 on success or a negative error number on failure.
4987 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4988 int regulator_bulk_get(struct device *dev, int num_consumers,
4989 struct regulator_bulk_data *consumers)
4990 {
4991 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4992 }
4993 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4994
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4995 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4996 {
4997 struct regulator_bulk_data *bulk = data;
4998
4999 bulk->ret = regulator_enable(bulk->consumer);
5000 }
5001
5002 /**
5003 * regulator_bulk_enable - enable multiple regulator consumers
5004 *
5005 * @num_consumers: Number of consumers
5006 * @consumers: Consumer data; clients are stored here.
5007 *
5008 * This convenience API allows consumers to enable multiple regulator
5009 * clients in a single API call. If any consumers cannot be enabled
5010 * then any others that were enabled will be disabled again prior to
5011 * return.
5012 *
5013 * Return: 0 on success or a negative error number on failure.
5014 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5015 int regulator_bulk_enable(int num_consumers,
5016 struct regulator_bulk_data *consumers)
5017 {
5018 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5019 int i;
5020 int ret = 0;
5021
5022 for (i = 0; i < num_consumers; i++) {
5023 async_schedule_domain(regulator_bulk_enable_async,
5024 &consumers[i], &async_domain);
5025 }
5026
5027 async_synchronize_full_domain(&async_domain);
5028
5029 /* If any consumer failed we need to unwind any that succeeded */
5030 for (i = 0; i < num_consumers; i++) {
5031 if (consumers[i].ret != 0) {
5032 ret = consumers[i].ret;
5033 goto err;
5034 }
5035 }
5036
5037 return 0;
5038
5039 err:
5040 for (i = 0; i < num_consumers; i++) {
5041 if (consumers[i].ret < 0)
5042 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5043 ERR_PTR(consumers[i].ret));
5044 else
5045 regulator_disable(consumers[i].consumer);
5046 }
5047
5048 return ret;
5049 }
5050 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5051
5052 /**
5053 * regulator_bulk_disable - disable multiple regulator consumers
5054 *
5055 * @num_consumers: Number of consumers
5056 * @consumers: Consumer data; clients are stored here.
5057 *
5058 * This convenience API allows consumers to disable multiple regulator
5059 * clients in a single API call. If any consumers cannot be disabled
5060 * then any others that were disabled will be enabled again prior to
5061 * return.
5062 *
5063 * Return: 0 on success or a negative error number on failure.
5064 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5065 int regulator_bulk_disable(int num_consumers,
5066 struct regulator_bulk_data *consumers)
5067 {
5068 int i;
5069 int ret, r;
5070
5071 for (i = num_consumers - 1; i >= 0; --i) {
5072 ret = regulator_disable(consumers[i].consumer);
5073 if (ret != 0)
5074 goto err;
5075 }
5076
5077 return 0;
5078
5079 err:
5080 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5081 for (++i; i < num_consumers; ++i) {
5082 r = regulator_enable(consumers[i].consumer);
5083 if (r != 0)
5084 pr_err("Failed to re-enable %s: %pe\n",
5085 consumers[i].supply, ERR_PTR(r));
5086 }
5087
5088 return ret;
5089 }
5090 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5091
5092 /**
5093 * regulator_bulk_force_disable - force disable multiple regulator consumers
5094 *
5095 * @num_consumers: Number of consumers
5096 * @consumers: Consumer data; clients are stored here.
5097 *
5098 * This convenience API allows consumers to forcibly disable multiple regulator
5099 * clients in a single API call.
5100 * NOTE: This should be used for situations when device damage will
5101 * likely occur if the regulators are not disabled (e.g. over temp).
5102 * Although regulator_force_disable function call for some consumers can
5103 * return error numbers, the function is called for all consumers.
5104 *
5105 * Return: 0 on success or a negative error number on failure.
5106 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5107 int regulator_bulk_force_disable(int num_consumers,
5108 struct regulator_bulk_data *consumers)
5109 {
5110 int i;
5111 int ret = 0;
5112
5113 for (i = 0; i < num_consumers; i++) {
5114 consumers[i].ret =
5115 regulator_force_disable(consumers[i].consumer);
5116
5117 /* Store first error for reporting */
5118 if (consumers[i].ret && !ret)
5119 ret = consumers[i].ret;
5120 }
5121
5122 return ret;
5123 }
5124 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5125
5126 /**
5127 * regulator_bulk_free - free multiple regulator consumers
5128 *
5129 * @num_consumers: Number of consumers
5130 * @consumers: Consumer data; clients are stored here.
5131 *
5132 * This convenience API allows consumers to free multiple regulator
5133 * clients in a single API call.
5134 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5135 void regulator_bulk_free(int num_consumers,
5136 struct regulator_bulk_data *consumers)
5137 {
5138 int i;
5139
5140 for (i = 0; i < num_consumers; i++) {
5141 regulator_put(consumers[i].consumer);
5142 consumers[i].consumer = NULL;
5143 }
5144 }
5145 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5146
5147 /**
5148 * regulator_handle_critical - Handle events for system-critical regulators.
5149 * @rdev: The regulator device.
5150 * @event: The event being handled.
5151 *
5152 * This function handles critical events such as under-voltage, over-current,
5153 * and unknown errors for regulators deemed system-critical. On detecting such
5154 * events, it triggers a hardware protection shutdown with a defined timeout.
5155 */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5156 static void regulator_handle_critical(struct regulator_dev *rdev,
5157 unsigned long event)
5158 {
5159 const char *reason = NULL;
5160
5161 if (!rdev->constraints->system_critical)
5162 return;
5163
5164 switch (event) {
5165 case REGULATOR_EVENT_UNDER_VOLTAGE:
5166 reason = "System critical regulator: voltage drop detected";
5167 break;
5168 case REGULATOR_EVENT_OVER_CURRENT:
5169 reason = "System critical regulator: over-current detected";
5170 break;
5171 case REGULATOR_EVENT_FAIL:
5172 reason = "System critical regulator: unknown error";
5173 }
5174
5175 if (!reason)
5176 return;
5177
5178 hw_protection_shutdown(reason,
5179 rdev->constraints->uv_less_critical_window_ms);
5180 }
5181
5182 /**
5183 * regulator_notifier_call_chain - call regulator event notifier
5184 * @rdev: regulator source
5185 * @event: notifier block
5186 * @data: callback-specific data.
5187 *
5188 * Called by regulator drivers to notify clients a regulator event has
5189 * occurred.
5190 *
5191 * Return: %NOTIFY_DONE.
5192 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5193 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5194 unsigned long event, void *data)
5195 {
5196 regulator_handle_critical(rdev, event);
5197
5198 _notifier_call_chain(rdev, event, data);
5199 return NOTIFY_DONE;
5200
5201 }
5202 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5203
5204 /**
5205 * regulator_mode_to_status - convert a regulator mode into a status
5206 *
5207 * @mode: Mode to convert
5208 *
5209 * Convert a regulator mode into a status.
5210 *
5211 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5212 */
regulator_mode_to_status(unsigned int mode)5213 int regulator_mode_to_status(unsigned int mode)
5214 {
5215 switch (mode) {
5216 case REGULATOR_MODE_FAST:
5217 return REGULATOR_STATUS_FAST;
5218 case REGULATOR_MODE_NORMAL:
5219 return REGULATOR_STATUS_NORMAL;
5220 case REGULATOR_MODE_IDLE:
5221 return REGULATOR_STATUS_IDLE;
5222 case REGULATOR_MODE_STANDBY:
5223 return REGULATOR_STATUS_STANDBY;
5224 default:
5225 return REGULATOR_STATUS_UNDEFINED;
5226 }
5227 }
5228 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5229
5230 static struct attribute *regulator_dev_attrs[] = {
5231 &dev_attr_name.attr,
5232 &dev_attr_num_users.attr,
5233 &dev_attr_type.attr,
5234 &dev_attr_microvolts.attr,
5235 &dev_attr_microamps.attr,
5236 &dev_attr_opmode.attr,
5237 &dev_attr_state.attr,
5238 &dev_attr_status.attr,
5239 &dev_attr_bypass.attr,
5240 &dev_attr_requested_microamps.attr,
5241 &dev_attr_min_microvolts.attr,
5242 &dev_attr_max_microvolts.attr,
5243 &dev_attr_min_microamps.attr,
5244 &dev_attr_max_microamps.attr,
5245 &dev_attr_under_voltage.attr,
5246 &dev_attr_over_current.attr,
5247 &dev_attr_regulation_out.attr,
5248 &dev_attr_fail.attr,
5249 &dev_attr_over_temp.attr,
5250 &dev_attr_under_voltage_warn.attr,
5251 &dev_attr_over_current_warn.attr,
5252 &dev_attr_over_voltage_warn.attr,
5253 &dev_attr_over_temp_warn.attr,
5254 &dev_attr_suspend_standby_state.attr,
5255 &dev_attr_suspend_mem_state.attr,
5256 &dev_attr_suspend_disk_state.attr,
5257 &dev_attr_suspend_standby_microvolts.attr,
5258 &dev_attr_suspend_mem_microvolts.attr,
5259 &dev_attr_suspend_disk_microvolts.attr,
5260 &dev_attr_suspend_standby_mode.attr,
5261 &dev_attr_suspend_mem_mode.attr,
5262 &dev_attr_suspend_disk_mode.attr,
5263 NULL
5264 };
5265
5266 /*
5267 * To avoid cluttering sysfs (and memory) with useless state, only
5268 * create attributes that can be meaningfully displayed.
5269 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5270 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5271 struct attribute *attr, int idx)
5272 {
5273 struct device *dev = kobj_to_dev(kobj);
5274 struct regulator_dev *rdev = dev_to_rdev(dev);
5275 const struct regulator_ops *ops = rdev->desc->ops;
5276 umode_t mode = attr->mode;
5277
5278 /* these three are always present */
5279 if (attr == &dev_attr_name.attr ||
5280 attr == &dev_attr_num_users.attr ||
5281 attr == &dev_attr_type.attr)
5282 return mode;
5283
5284 /* some attributes need specific methods to be displayed */
5285 if (attr == &dev_attr_microvolts.attr) {
5286 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5287 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5288 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5289 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5290 return mode;
5291 return 0;
5292 }
5293
5294 if (attr == &dev_attr_microamps.attr)
5295 return ops->get_current_limit ? mode : 0;
5296
5297 if (attr == &dev_attr_opmode.attr)
5298 return ops->get_mode ? mode : 0;
5299
5300 if (attr == &dev_attr_state.attr)
5301 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5302
5303 if (attr == &dev_attr_status.attr)
5304 return ops->get_status ? mode : 0;
5305
5306 if (attr == &dev_attr_bypass.attr)
5307 return ops->get_bypass ? mode : 0;
5308
5309 if (attr == &dev_attr_under_voltage.attr ||
5310 attr == &dev_attr_over_current.attr ||
5311 attr == &dev_attr_regulation_out.attr ||
5312 attr == &dev_attr_fail.attr ||
5313 attr == &dev_attr_over_temp.attr ||
5314 attr == &dev_attr_under_voltage_warn.attr ||
5315 attr == &dev_attr_over_current_warn.attr ||
5316 attr == &dev_attr_over_voltage_warn.attr ||
5317 attr == &dev_attr_over_temp_warn.attr)
5318 return ops->get_error_flags ? mode : 0;
5319
5320 /* constraints need specific supporting methods */
5321 if (attr == &dev_attr_min_microvolts.attr ||
5322 attr == &dev_attr_max_microvolts.attr)
5323 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5324
5325 if (attr == &dev_attr_min_microamps.attr ||
5326 attr == &dev_attr_max_microamps.attr)
5327 return ops->set_current_limit ? mode : 0;
5328
5329 if (attr == &dev_attr_suspend_standby_state.attr ||
5330 attr == &dev_attr_suspend_mem_state.attr ||
5331 attr == &dev_attr_suspend_disk_state.attr)
5332 return mode;
5333
5334 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5335 attr == &dev_attr_suspend_mem_microvolts.attr ||
5336 attr == &dev_attr_suspend_disk_microvolts.attr)
5337 return ops->set_suspend_voltage ? mode : 0;
5338
5339 if (attr == &dev_attr_suspend_standby_mode.attr ||
5340 attr == &dev_attr_suspend_mem_mode.attr ||
5341 attr == &dev_attr_suspend_disk_mode.attr)
5342 return ops->set_suspend_mode ? mode : 0;
5343
5344 return mode;
5345 }
5346
5347 static const struct attribute_group regulator_dev_group = {
5348 .attrs = regulator_dev_attrs,
5349 .is_visible = regulator_attr_is_visible,
5350 };
5351
5352 static const struct attribute_group *regulator_dev_groups[] = {
5353 ®ulator_dev_group,
5354 NULL
5355 };
5356
regulator_dev_release(struct device * dev)5357 static void regulator_dev_release(struct device *dev)
5358 {
5359 struct regulator_dev *rdev = dev_get_drvdata(dev);
5360
5361 debugfs_remove_recursive(rdev->debugfs);
5362 kfree(rdev->constraints);
5363 of_node_put(rdev->dev.of_node);
5364 kfree(rdev);
5365 }
5366
rdev_init_debugfs(struct regulator_dev * rdev)5367 static void rdev_init_debugfs(struct regulator_dev *rdev)
5368 {
5369 struct device *parent = rdev->dev.parent;
5370 const char *rname = rdev_get_name(rdev);
5371 char name[NAME_MAX];
5372
5373 /* Avoid duplicate debugfs directory names */
5374 if (parent && rname == rdev->desc->name) {
5375 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5376 rname);
5377 rname = name;
5378 }
5379
5380 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5381 if (IS_ERR(rdev->debugfs))
5382 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5383
5384 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5385 &rdev->use_count);
5386 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5387 &rdev->open_count);
5388 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5389 &rdev->bypass_count);
5390 }
5391
regulator_register_resolve_supply(struct device * dev,void * data)5392 static int regulator_register_resolve_supply(struct device *dev, void *data)
5393 {
5394 struct regulator_dev *rdev = dev_to_rdev(dev);
5395
5396 if (regulator_resolve_supply(rdev))
5397 rdev_dbg(rdev, "unable to resolve supply\n");
5398
5399 return 0;
5400 }
5401
regulator_coupler_register(struct regulator_coupler * coupler)5402 int regulator_coupler_register(struct regulator_coupler *coupler)
5403 {
5404 mutex_lock(®ulator_list_mutex);
5405 list_add_tail(&coupler->list, ®ulator_coupler_list);
5406 mutex_unlock(®ulator_list_mutex);
5407
5408 return 0;
5409 }
5410
5411 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5412 regulator_find_coupler(struct regulator_dev *rdev)
5413 {
5414 struct regulator_coupler *coupler;
5415 int err;
5416
5417 /*
5418 * Note that regulators are appended to the list and the generic
5419 * coupler is registered first, hence it will be attached at last
5420 * if nobody cared.
5421 */
5422 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5423 err = coupler->attach_regulator(coupler, rdev);
5424 if (!err) {
5425 if (!coupler->balance_voltage &&
5426 rdev->coupling_desc.n_coupled > 2)
5427 goto err_unsupported;
5428
5429 return coupler;
5430 }
5431
5432 if (err < 0)
5433 return ERR_PTR(err);
5434
5435 if (err == 1)
5436 continue;
5437
5438 break;
5439 }
5440
5441 return ERR_PTR(-EINVAL);
5442
5443 err_unsupported:
5444 if (coupler->detach_regulator)
5445 coupler->detach_regulator(coupler, rdev);
5446
5447 rdev_err(rdev,
5448 "Voltage balancing for multiple regulator couples is unimplemented\n");
5449
5450 return ERR_PTR(-EPERM);
5451 }
5452
regulator_resolve_coupling(struct regulator_dev * rdev)5453 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5454 {
5455 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5456 struct coupling_desc *c_desc = &rdev->coupling_desc;
5457 int n_coupled = c_desc->n_coupled;
5458 struct regulator_dev *c_rdev;
5459 int i;
5460
5461 for (i = 1; i < n_coupled; i++) {
5462 /* already resolved */
5463 if (c_desc->coupled_rdevs[i])
5464 continue;
5465
5466 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5467
5468 if (!c_rdev)
5469 continue;
5470
5471 if (c_rdev->coupling_desc.coupler != coupler) {
5472 rdev_err(rdev, "coupler mismatch with %s\n",
5473 rdev_get_name(c_rdev));
5474 return;
5475 }
5476
5477 c_desc->coupled_rdevs[i] = c_rdev;
5478 c_desc->n_resolved++;
5479
5480 regulator_resolve_coupling(c_rdev);
5481 }
5482 }
5483
regulator_remove_coupling(struct regulator_dev * rdev)5484 static void regulator_remove_coupling(struct regulator_dev *rdev)
5485 {
5486 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5487 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5488 struct regulator_dev *__c_rdev, *c_rdev;
5489 unsigned int __n_coupled, n_coupled;
5490 int i, k;
5491 int err;
5492
5493 n_coupled = c_desc->n_coupled;
5494
5495 for (i = 1; i < n_coupled; i++) {
5496 c_rdev = c_desc->coupled_rdevs[i];
5497
5498 if (!c_rdev)
5499 continue;
5500
5501 regulator_lock(c_rdev);
5502
5503 __c_desc = &c_rdev->coupling_desc;
5504 __n_coupled = __c_desc->n_coupled;
5505
5506 for (k = 1; k < __n_coupled; k++) {
5507 __c_rdev = __c_desc->coupled_rdevs[k];
5508
5509 if (__c_rdev == rdev) {
5510 __c_desc->coupled_rdevs[k] = NULL;
5511 __c_desc->n_resolved--;
5512 break;
5513 }
5514 }
5515
5516 regulator_unlock(c_rdev);
5517
5518 c_desc->coupled_rdevs[i] = NULL;
5519 c_desc->n_resolved--;
5520 }
5521
5522 if (coupler && coupler->detach_regulator) {
5523 err = coupler->detach_regulator(coupler, rdev);
5524 if (err)
5525 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5526 ERR_PTR(err));
5527 }
5528
5529 kfree(rdev->coupling_desc.coupled_rdevs);
5530 rdev->coupling_desc.coupled_rdevs = NULL;
5531 }
5532
regulator_init_coupling(struct regulator_dev * rdev)5533 static int regulator_init_coupling(struct regulator_dev *rdev)
5534 {
5535 struct regulator_dev **coupled;
5536 int err, n_phandles;
5537
5538 if (!IS_ENABLED(CONFIG_OF))
5539 n_phandles = 0;
5540 else
5541 n_phandles = of_get_n_coupled(rdev);
5542
5543 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5544 if (!coupled)
5545 return -ENOMEM;
5546
5547 rdev->coupling_desc.coupled_rdevs = coupled;
5548
5549 /*
5550 * Every regulator should always have coupling descriptor filled with
5551 * at least pointer to itself.
5552 */
5553 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5554 rdev->coupling_desc.n_coupled = n_phandles + 1;
5555 rdev->coupling_desc.n_resolved++;
5556
5557 /* regulator isn't coupled */
5558 if (n_phandles == 0)
5559 return 0;
5560
5561 if (!of_check_coupling_data(rdev))
5562 return -EPERM;
5563
5564 mutex_lock(®ulator_list_mutex);
5565 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5566 mutex_unlock(®ulator_list_mutex);
5567
5568 if (IS_ERR(rdev->coupling_desc.coupler)) {
5569 err = PTR_ERR(rdev->coupling_desc.coupler);
5570 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5571 return err;
5572 }
5573
5574 return 0;
5575 }
5576
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5577 static int generic_coupler_attach(struct regulator_coupler *coupler,
5578 struct regulator_dev *rdev)
5579 {
5580 if (rdev->coupling_desc.n_coupled > 2) {
5581 rdev_err(rdev,
5582 "Voltage balancing for multiple regulator couples is unimplemented\n");
5583 return -EPERM;
5584 }
5585
5586 if (!rdev->constraints->always_on) {
5587 rdev_err(rdev,
5588 "Coupling of a non always-on regulator is unimplemented\n");
5589 return -ENOTSUPP;
5590 }
5591
5592 return 0;
5593 }
5594
5595 static struct regulator_coupler generic_regulator_coupler = {
5596 .attach_regulator = generic_coupler_attach,
5597 };
5598
5599 /**
5600 * regulator_register - register regulator
5601 * @dev: the device that drive the regulator
5602 * @regulator_desc: regulator to register
5603 * @cfg: runtime configuration for regulator
5604 *
5605 * Called by regulator drivers to register a regulator.
5606 *
5607 * Return: Pointer to a valid &struct regulator_dev on success or
5608 * an ERR_PTR() encoded negative error number on failure.
5609 */
5610 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5611 regulator_register(struct device *dev,
5612 const struct regulator_desc *regulator_desc,
5613 const struct regulator_config *cfg)
5614 {
5615 const struct regulator_init_data *init_data;
5616 struct regulator_config *config = NULL;
5617 static atomic_t regulator_no = ATOMIC_INIT(-1);
5618 struct regulator_dev *rdev;
5619 bool dangling_cfg_gpiod = false;
5620 bool dangling_of_gpiod = false;
5621 int ret, i;
5622 bool resolved_early = false;
5623
5624 if (cfg == NULL)
5625 return ERR_PTR(-EINVAL);
5626 if (cfg->ena_gpiod)
5627 dangling_cfg_gpiod = true;
5628 if (regulator_desc == NULL) {
5629 ret = -EINVAL;
5630 goto rinse;
5631 }
5632
5633 WARN_ON(!dev || !cfg->dev);
5634
5635 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5636 ret = -EINVAL;
5637 goto rinse;
5638 }
5639
5640 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5641 regulator_desc->type != REGULATOR_CURRENT) {
5642 ret = -EINVAL;
5643 goto rinse;
5644 }
5645
5646 /* Only one of each should be implemented */
5647 WARN_ON(regulator_desc->ops->get_voltage &&
5648 regulator_desc->ops->get_voltage_sel);
5649 WARN_ON(regulator_desc->ops->set_voltage &&
5650 regulator_desc->ops->set_voltage_sel);
5651
5652 /* If we're using selectors we must implement list_voltage. */
5653 if (regulator_desc->ops->get_voltage_sel &&
5654 !regulator_desc->ops->list_voltage) {
5655 ret = -EINVAL;
5656 goto rinse;
5657 }
5658 if (regulator_desc->ops->set_voltage_sel &&
5659 !regulator_desc->ops->list_voltage) {
5660 ret = -EINVAL;
5661 goto rinse;
5662 }
5663
5664 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5665 if (rdev == NULL) {
5666 ret = -ENOMEM;
5667 goto rinse;
5668 }
5669 device_initialize(&rdev->dev);
5670 dev_set_drvdata(&rdev->dev, rdev);
5671 rdev->dev.class = ®ulator_class;
5672 spin_lock_init(&rdev->err_lock);
5673
5674 /*
5675 * Duplicate the config so the driver could override it after
5676 * parsing init data.
5677 */
5678 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5679 if (config == NULL) {
5680 ret = -ENOMEM;
5681 goto clean;
5682 }
5683
5684 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5685 &rdev->dev.of_node);
5686
5687 /*
5688 * Sometimes not all resources are probed already so we need to take
5689 * that into account. This happens most the time if the ena_gpiod comes
5690 * from a gpio extender or something else.
5691 */
5692 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5693 ret = -EPROBE_DEFER;
5694 goto clean;
5695 }
5696
5697 /*
5698 * We need to keep track of any GPIO descriptor coming from the
5699 * device tree until we have handled it over to the core. If the
5700 * config that was passed in to this function DOES NOT contain
5701 * a descriptor, and the config after this call DOES contain
5702 * a descriptor, we definitely got one from parsing the device
5703 * tree.
5704 */
5705 if (!cfg->ena_gpiod && config->ena_gpiod)
5706 dangling_of_gpiod = true;
5707 if (!init_data) {
5708 init_data = config->init_data;
5709 rdev->dev.of_node = of_node_get(config->of_node);
5710 }
5711
5712 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5713 rdev->reg_data = config->driver_data;
5714 rdev->owner = regulator_desc->owner;
5715 rdev->desc = regulator_desc;
5716 if (config->regmap)
5717 rdev->regmap = config->regmap;
5718 else if (dev_get_regmap(dev, NULL))
5719 rdev->regmap = dev_get_regmap(dev, NULL);
5720 else if (dev->parent)
5721 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5722 INIT_LIST_HEAD(&rdev->consumer_list);
5723 INIT_LIST_HEAD(&rdev->list);
5724 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5725 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5726
5727 if (init_data && init_data->supply_regulator)
5728 rdev->supply_name = init_data->supply_regulator;
5729 else if (regulator_desc->supply_name)
5730 rdev->supply_name = regulator_desc->supply_name;
5731
5732 /* register with sysfs */
5733 rdev->dev.parent = config->dev;
5734 dev_set_name(&rdev->dev, "regulator.%lu",
5735 (unsigned long) atomic_inc_return(®ulator_no));
5736
5737 /* set regulator constraints */
5738 if (init_data)
5739 rdev->constraints = kmemdup(&init_data->constraints,
5740 sizeof(*rdev->constraints),
5741 GFP_KERNEL);
5742 else
5743 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5744 GFP_KERNEL);
5745 if (!rdev->constraints) {
5746 ret = -ENOMEM;
5747 goto wash;
5748 }
5749
5750 if ((rdev->supply_name && !rdev->supply) &&
5751 (rdev->constraints->always_on ||
5752 rdev->constraints->boot_on)) {
5753 ret = regulator_resolve_supply(rdev);
5754 if (ret)
5755 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5756 ERR_PTR(ret));
5757
5758 resolved_early = true;
5759 }
5760
5761 /* perform any regulator specific init */
5762 if (init_data && init_data->regulator_init) {
5763 ret = init_data->regulator_init(rdev->reg_data);
5764 if (ret < 0)
5765 goto wash;
5766 }
5767
5768 if (config->ena_gpiod) {
5769 ret = regulator_ena_gpio_request(rdev, config);
5770 if (ret != 0) {
5771 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5772 ERR_PTR(ret));
5773 goto wash;
5774 }
5775 /* The regulator core took over the GPIO descriptor */
5776 dangling_cfg_gpiod = false;
5777 dangling_of_gpiod = false;
5778 }
5779
5780 ret = set_machine_constraints(rdev);
5781 if (ret == -EPROBE_DEFER && !resolved_early) {
5782 /* Regulator might be in bypass mode and so needs its supply
5783 * to set the constraints
5784 */
5785 /* FIXME: this currently triggers a chicken-and-egg problem
5786 * when creating -SUPPLY symlink in sysfs to a regulator
5787 * that is just being created
5788 */
5789 rdev_dbg(rdev, "will resolve supply early: %s\n",
5790 rdev->supply_name);
5791 ret = regulator_resolve_supply(rdev);
5792 if (!ret)
5793 ret = set_machine_constraints(rdev);
5794 else
5795 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5796 ERR_PTR(ret));
5797 }
5798 if (ret < 0)
5799 goto wash;
5800
5801 ret = regulator_init_coupling(rdev);
5802 if (ret < 0)
5803 goto wash;
5804
5805 /* add consumers devices */
5806 if (init_data) {
5807 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5808 ret = set_consumer_device_supply(rdev,
5809 init_data->consumer_supplies[i].dev_name,
5810 init_data->consumer_supplies[i].supply);
5811 if (ret < 0) {
5812 dev_err(dev, "Failed to set supply %s\n",
5813 init_data->consumer_supplies[i].supply);
5814 goto unset_supplies;
5815 }
5816 }
5817 }
5818
5819 if (!rdev->desc->ops->get_voltage &&
5820 !rdev->desc->ops->list_voltage &&
5821 !rdev->desc->fixed_uV)
5822 rdev->is_switch = true;
5823
5824 ret = device_add(&rdev->dev);
5825 if (ret != 0)
5826 goto unset_supplies;
5827
5828 rdev_init_debugfs(rdev);
5829
5830 /* try to resolve regulators coupling since a new one was registered */
5831 mutex_lock(®ulator_list_mutex);
5832 regulator_resolve_coupling(rdev);
5833 mutex_unlock(®ulator_list_mutex);
5834
5835 /* try to resolve regulators supply since a new one was registered */
5836 class_for_each_device(®ulator_class, NULL, NULL,
5837 regulator_register_resolve_supply);
5838 kfree(config);
5839 return rdev;
5840
5841 unset_supplies:
5842 mutex_lock(®ulator_list_mutex);
5843 unset_regulator_supplies(rdev);
5844 regulator_remove_coupling(rdev);
5845 mutex_unlock(®ulator_list_mutex);
5846 wash:
5847 regulator_put(rdev->supply);
5848 kfree(rdev->coupling_desc.coupled_rdevs);
5849 mutex_lock(®ulator_list_mutex);
5850 regulator_ena_gpio_free(rdev);
5851 mutex_unlock(®ulator_list_mutex);
5852 clean:
5853 if (dangling_of_gpiod)
5854 gpiod_put(config->ena_gpiod);
5855 kfree(config);
5856 put_device(&rdev->dev);
5857 rinse:
5858 if (dangling_cfg_gpiod)
5859 gpiod_put(cfg->ena_gpiod);
5860 return ERR_PTR(ret);
5861 }
5862 EXPORT_SYMBOL_GPL(regulator_register);
5863
5864 /**
5865 * regulator_unregister - unregister regulator
5866 * @rdev: regulator to unregister
5867 *
5868 * Called by regulator drivers to unregister a regulator.
5869 */
regulator_unregister(struct regulator_dev * rdev)5870 void regulator_unregister(struct regulator_dev *rdev)
5871 {
5872 if (rdev == NULL)
5873 return;
5874
5875 if (rdev->supply) {
5876 while (rdev->use_count--)
5877 regulator_disable(rdev->supply);
5878 regulator_put(rdev->supply);
5879 }
5880
5881 flush_work(&rdev->disable_work.work);
5882
5883 mutex_lock(®ulator_list_mutex);
5884
5885 WARN_ON(rdev->open_count);
5886 regulator_remove_coupling(rdev);
5887 unset_regulator_supplies(rdev);
5888 list_del(&rdev->list);
5889 regulator_ena_gpio_free(rdev);
5890 device_unregister(&rdev->dev);
5891
5892 mutex_unlock(®ulator_list_mutex);
5893 }
5894 EXPORT_SYMBOL_GPL(regulator_unregister);
5895
5896 #ifdef CONFIG_SUSPEND
5897 /**
5898 * regulator_suspend - prepare regulators for system wide suspend
5899 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5900 *
5901 * Configure each regulator with it's suspend operating parameters for state.
5902 *
5903 * Return: 0 on success or a negative error number on failure.
5904 */
regulator_suspend(struct device * dev)5905 static int regulator_suspend(struct device *dev)
5906 {
5907 struct regulator_dev *rdev = dev_to_rdev(dev);
5908 suspend_state_t state = pm_suspend_target_state;
5909 int ret;
5910 const struct regulator_state *rstate;
5911
5912 rstate = regulator_get_suspend_state_check(rdev, state);
5913 if (!rstate)
5914 return 0;
5915
5916 regulator_lock(rdev);
5917 ret = __suspend_set_state(rdev, rstate);
5918 regulator_unlock(rdev);
5919
5920 return ret;
5921 }
5922
regulator_resume(struct device * dev)5923 static int regulator_resume(struct device *dev)
5924 {
5925 suspend_state_t state = pm_suspend_target_state;
5926 struct regulator_dev *rdev = dev_to_rdev(dev);
5927 struct regulator_state *rstate;
5928 int ret = 0;
5929
5930 rstate = regulator_get_suspend_state(rdev, state);
5931 if (rstate == NULL)
5932 return 0;
5933
5934 /* Avoid grabbing the lock if we don't need to */
5935 if (!rdev->desc->ops->resume)
5936 return 0;
5937
5938 regulator_lock(rdev);
5939
5940 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5941 rstate->enabled == DISABLE_IN_SUSPEND)
5942 ret = rdev->desc->ops->resume(rdev);
5943
5944 regulator_unlock(rdev);
5945
5946 return ret;
5947 }
5948 #else /* !CONFIG_SUSPEND */
5949
5950 #define regulator_suspend NULL
5951 #define regulator_resume NULL
5952
5953 #endif /* !CONFIG_SUSPEND */
5954
5955 #ifdef CONFIG_PM
5956 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5957 .suspend = regulator_suspend,
5958 .resume = regulator_resume,
5959 };
5960 #endif
5961
5962 const struct class regulator_class = {
5963 .name = "regulator",
5964 .dev_release = regulator_dev_release,
5965 .dev_groups = regulator_dev_groups,
5966 #ifdef CONFIG_PM
5967 .pm = ®ulator_pm_ops,
5968 #endif
5969 };
5970 /**
5971 * regulator_has_full_constraints - the system has fully specified constraints
5972 *
5973 * Calling this function will cause the regulator API to disable all
5974 * regulators which have a zero use count and don't have an always_on
5975 * constraint in a late_initcall.
5976 *
5977 * The intention is that this will become the default behaviour in a
5978 * future kernel release so users are encouraged to use this facility
5979 * now.
5980 */
regulator_has_full_constraints(void)5981 void regulator_has_full_constraints(void)
5982 {
5983 has_full_constraints = 1;
5984 }
5985 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5986
5987 /**
5988 * rdev_get_drvdata - get rdev regulator driver data
5989 * @rdev: regulator
5990 *
5991 * Get rdev regulator driver private data. This call can be used in the
5992 * regulator driver context.
5993 *
5994 * Return: Pointer to regulator driver private data.
5995 */
rdev_get_drvdata(struct regulator_dev * rdev)5996 void *rdev_get_drvdata(struct regulator_dev *rdev)
5997 {
5998 return rdev->reg_data;
5999 }
6000 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6001
6002 /**
6003 * regulator_get_drvdata - get regulator driver data
6004 * @regulator: regulator
6005 *
6006 * Get regulator driver private data. This call can be used in the consumer
6007 * driver context when non API regulator specific functions need to be called.
6008 *
6009 * Return: Pointer to regulator driver private data.
6010 */
regulator_get_drvdata(struct regulator * regulator)6011 void *regulator_get_drvdata(struct regulator *regulator)
6012 {
6013 return regulator->rdev->reg_data;
6014 }
6015 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6016
6017 /**
6018 * regulator_set_drvdata - set regulator driver data
6019 * @regulator: regulator
6020 * @data: data
6021 */
regulator_set_drvdata(struct regulator * regulator,void * data)6022 void regulator_set_drvdata(struct regulator *regulator, void *data)
6023 {
6024 regulator->rdev->reg_data = data;
6025 }
6026 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6027
6028 /**
6029 * rdev_get_id - get regulator ID
6030 * @rdev: regulator
6031 *
6032 * Return: Regulator ID for @rdev.
6033 */
rdev_get_id(struct regulator_dev * rdev)6034 int rdev_get_id(struct regulator_dev *rdev)
6035 {
6036 return rdev->desc->id;
6037 }
6038 EXPORT_SYMBOL_GPL(rdev_get_id);
6039
rdev_get_dev(struct regulator_dev * rdev)6040 struct device *rdev_get_dev(struct regulator_dev *rdev)
6041 {
6042 return &rdev->dev;
6043 }
6044 EXPORT_SYMBOL_GPL(rdev_get_dev);
6045
rdev_get_regmap(struct regulator_dev * rdev)6046 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6047 {
6048 return rdev->regmap;
6049 }
6050 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6051
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6052 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6053 {
6054 return reg_init_data->driver_data;
6055 }
6056 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6057
6058 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6059 static int supply_map_show(struct seq_file *sf, void *data)
6060 {
6061 struct regulator_map *map;
6062
6063 list_for_each_entry(map, ®ulator_map_list, list) {
6064 seq_printf(sf, "%s -> %s.%s\n",
6065 rdev_get_name(map->regulator), map->dev_name,
6066 map->supply);
6067 }
6068
6069 return 0;
6070 }
6071 DEFINE_SHOW_ATTRIBUTE(supply_map);
6072
6073 struct summary_data {
6074 struct seq_file *s;
6075 struct regulator_dev *parent;
6076 int level;
6077 };
6078
6079 static void regulator_summary_show_subtree(struct seq_file *s,
6080 struct regulator_dev *rdev,
6081 int level);
6082
regulator_summary_show_children(struct device * dev,void * data)6083 static int regulator_summary_show_children(struct device *dev, void *data)
6084 {
6085 struct regulator_dev *rdev = dev_to_rdev(dev);
6086 struct summary_data *summary_data = data;
6087
6088 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6089 regulator_summary_show_subtree(summary_data->s, rdev,
6090 summary_data->level + 1);
6091
6092 return 0;
6093 }
6094
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6095 static void regulator_summary_show_subtree(struct seq_file *s,
6096 struct regulator_dev *rdev,
6097 int level)
6098 {
6099 struct regulation_constraints *c;
6100 struct regulator *consumer;
6101 struct summary_data summary_data;
6102 unsigned int opmode;
6103
6104 if (!rdev)
6105 return;
6106
6107 opmode = _regulator_get_mode_unlocked(rdev);
6108 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6109 level * 3 + 1, "",
6110 30 - level * 3, rdev_get_name(rdev),
6111 rdev->use_count, rdev->open_count, rdev->bypass_count,
6112 regulator_opmode_to_str(opmode));
6113
6114 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6115 seq_printf(s, "%5dmA ",
6116 _regulator_get_current_limit_unlocked(rdev) / 1000);
6117
6118 c = rdev->constraints;
6119 if (c) {
6120 switch (rdev->desc->type) {
6121 case REGULATOR_VOLTAGE:
6122 seq_printf(s, "%5dmV %5dmV ",
6123 c->min_uV / 1000, c->max_uV / 1000);
6124 break;
6125 case REGULATOR_CURRENT:
6126 seq_printf(s, "%5dmA %5dmA ",
6127 c->min_uA / 1000, c->max_uA / 1000);
6128 break;
6129 }
6130 }
6131
6132 seq_puts(s, "\n");
6133
6134 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6135 if (consumer->dev && consumer->dev->class == ®ulator_class)
6136 continue;
6137
6138 seq_printf(s, "%*s%-*s ",
6139 (level + 1) * 3 + 1, "",
6140 30 - (level + 1) * 3,
6141 consumer->supply_name ? consumer->supply_name :
6142 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6143
6144 switch (rdev->desc->type) {
6145 case REGULATOR_VOLTAGE:
6146 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6147 consumer->enable_count,
6148 consumer->uA_load / 1000,
6149 consumer->uA_load && !consumer->enable_count ?
6150 '*' : ' ',
6151 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6152 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6153 break;
6154 case REGULATOR_CURRENT:
6155 break;
6156 }
6157
6158 seq_puts(s, "\n");
6159 }
6160
6161 summary_data.s = s;
6162 summary_data.level = level;
6163 summary_data.parent = rdev;
6164
6165 class_for_each_device(®ulator_class, NULL, &summary_data,
6166 regulator_summary_show_children);
6167 }
6168
6169 struct summary_lock_data {
6170 struct ww_acquire_ctx *ww_ctx;
6171 struct regulator_dev **new_contended_rdev;
6172 struct regulator_dev **old_contended_rdev;
6173 };
6174
regulator_summary_lock_one(struct device * dev,void * data)6175 static int regulator_summary_lock_one(struct device *dev, void *data)
6176 {
6177 struct regulator_dev *rdev = dev_to_rdev(dev);
6178 struct summary_lock_data *lock_data = data;
6179 int ret = 0;
6180
6181 if (rdev != *lock_data->old_contended_rdev) {
6182 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6183
6184 if (ret == -EDEADLK)
6185 *lock_data->new_contended_rdev = rdev;
6186 else
6187 WARN_ON_ONCE(ret);
6188 } else {
6189 *lock_data->old_contended_rdev = NULL;
6190 }
6191
6192 return ret;
6193 }
6194
regulator_summary_unlock_one(struct device * dev,void * data)6195 static int regulator_summary_unlock_one(struct device *dev, void *data)
6196 {
6197 struct regulator_dev *rdev = dev_to_rdev(dev);
6198 struct summary_lock_data *lock_data = data;
6199
6200 if (lock_data) {
6201 if (rdev == *lock_data->new_contended_rdev)
6202 return -EDEADLK;
6203 }
6204
6205 regulator_unlock(rdev);
6206
6207 return 0;
6208 }
6209
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6210 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6211 struct regulator_dev **new_contended_rdev,
6212 struct regulator_dev **old_contended_rdev)
6213 {
6214 struct summary_lock_data lock_data;
6215 int ret;
6216
6217 lock_data.ww_ctx = ww_ctx;
6218 lock_data.new_contended_rdev = new_contended_rdev;
6219 lock_data.old_contended_rdev = old_contended_rdev;
6220
6221 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6222 regulator_summary_lock_one);
6223 if (ret)
6224 class_for_each_device(®ulator_class, NULL, &lock_data,
6225 regulator_summary_unlock_one);
6226
6227 return ret;
6228 }
6229
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6230 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6231 {
6232 struct regulator_dev *new_contended_rdev = NULL;
6233 struct regulator_dev *old_contended_rdev = NULL;
6234 int err;
6235
6236 mutex_lock(®ulator_list_mutex);
6237
6238 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6239
6240 do {
6241 if (new_contended_rdev) {
6242 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6243 old_contended_rdev = new_contended_rdev;
6244 old_contended_rdev->ref_cnt++;
6245 old_contended_rdev->mutex_owner = current;
6246 }
6247
6248 err = regulator_summary_lock_all(ww_ctx,
6249 &new_contended_rdev,
6250 &old_contended_rdev);
6251
6252 if (old_contended_rdev)
6253 regulator_unlock(old_contended_rdev);
6254
6255 } while (err == -EDEADLK);
6256
6257 ww_acquire_done(ww_ctx);
6258 }
6259
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6260 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6261 {
6262 class_for_each_device(®ulator_class, NULL, NULL,
6263 regulator_summary_unlock_one);
6264 ww_acquire_fini(ww_ctx);
6265
6266 mutex_unlock(®ulator_list_mutex);
6267 }
6268
regulator_summary_show_roots(struct device * dev,void * data)6269 static int regulator_summary_show_roots(struct device *dev, void *data)
6270 {
6271 struct regulator_dev *rdev = dev_to_rdev(dev);
6272 struct seq_file *s = data;
6273
6274 if (!rdev->supply)
6275 regulator_summary_show_subtree(s, rdev, 0);
6276
6277 return 0;
6278 }
6279
regulator_summary_show(struct seq_file * s,void * data)6280 static int regulator_summary_show(struct seq_file *s, void *data)
6281 {
6282 struct ww_acquire_ctx ww_ctx;
6283
6284 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6285 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6286
6287 regulator_summary_lock(&ww_ctx);
6288
6289 class_for_each_device(®ulator_class, NULL, s,
6290 regulator_summary_show_roots);
6291
6292 regulator_summary_unlock(&ww_ctx);
6293
6294 return 0;
6295 }
6296 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6297 #endif /* CONFIG_DEBUG_FS */
6298
regulator_init(void)6299 static int __init regulator_init(void)
6300 {
6301 int ret;
6302
6303 ret = class_register(®ulator_class);
6304
6305 debugfs_root = debugfs_create_dir("regulator", NULL);
6306 if (IS_ERR(debugfs_root))
6307 pr_debug("regulator: Failed to create debugfs directory\n");
6308
6309 #ifdef CONFIG_DEBUG_FS
6310 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6311 &supply_map_fops);
6312
6313 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6314 NULL, ®ulator_summary_fops);
6315 #endif
6316 regulator_dummy_init();
6317
6318 regulator_coupler_register(&generic_regulator_coupler);
6319
6320 return ret;
6321 }
6322
6323 /* init early to allow our consumers to complete system booting */
6324 core_initcall(regulator_init);
6325
regulator_late_cleanup(struct device * dev,void * data)6326 static int regulator_late_cleanup(struct device *dev, void *data)
6327 {
6328 struct regulator_dev *rdev = dev_to_rdev(dev);
6329 struct regulation_constraints *c = rdev->constraints;
6330 int ret;
6331
6332 if (c && c->always_on)
6333 return 0;
6334
6335 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6336 return 0;
6337
6338 regulator_lock(rdev);
6339
6340 if (rdev->use_count)
6341 goto unlock;
6342
6343 /* If reading the status failed, assume that it's off. */
6344 if (_regulator_is_enabled(rdev) <= 0)
6345 goto unlock;
6346
6347 if (have_full_constraints()) {
6348 /* We log since this may kill the system if it goes
6349 * wrong.
6350 */
6351 rdev_info(rdev, "disabling\n");
6352 ret = _regulator_do_disable(rdev);
6353 if (ret != 0)
6354 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6355 } else {
6356 /* The intention is that in future we will
6357 * assume that full constraints are provided
6358 * so warn even if we aren't going to do
6359 * anything here.
6360 */
6361 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6362 }
6363
6364 unlock:
6365 regulator_unlock(rdev);
6366
6367 return 0;
6368 }
6369
6370 static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6371 static int __init regulator_ignore_unused_setup(char *__unused)
6372 {
6373 regulator_ignore_unused = true;
6374 return 1;
6375 }
6376 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6377
regulator_init_complete_work_function(struct work_struct * work)6378 static void regulator_init_complete_work_function(struct work_struct *work)
6379 {
6380 /*
6381 * Regulators may had failed to resolve their input supplies
6382 * when were registered, either because the input supply was
6383 * not registered yet or because its parent device was not
6384 * bound yet. So attempt to resolve the input supplies for
6385 * pending regulators before trying to disable unused ones.
6386 */
6387 class_for_each_device(®ulator_class, NULL, NULL,
6388 regulator_register_resolve_supply);
6389
6390 /*
6391 * For debugging purposes, it may be useful to prevent unused
6392 * regulators from being disabled.
6393 */
6394 if (regulator_ignore_unused) {
6395 pr_warn("regulator: Not disabling unused regulators\n");
6396 return;
6397 }
6398
6399 /* If we have a full configuration then disable any regulators
6400 * we have permission to change the status for and which are
6401 * not in use or always_on. This is effectively the default
6402 * for DT and ACPI as they have full constraints.
6403 */
6404 class_for_each_device(®ulator_class, NULL, NULL,
6405 regulator_late_cleanup);
6406 }
6407
6408 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6409 regulator_init_complete_work_function);
6410
regulator_init_complete(void)6411 static int __init regulator_init_complete(void)
6412 {
6413 /*
6414 * Since DT doesn't provide an idiomatic mechanism for
6415 * enabling full constraints and since it's much more natural
6416 * with DT to provide them just assume that a DT enabled
6417 * system has full constraints.
6418 */
6419 if (of_have_populated_dt())
6420 has_full_constraints = true;
6421
6422 /*
6423 * We punt completion for an arbitrary amount of time since
6424 * systems like distros will load many drivers from userspace
6425 * so consumers might not always be ready yet, this is
6426 * particularly an issue with laptops where this might bounce
6427 * the display off then on. Ideally we'd get a notification
6428 * from userspace when this happens but we don't so just wait
6429 * a bit and hope we waited long enough. It'd be better if
6430 * we'd only do this on systems that need it, and a kernel
6431 * command line option might be useful.
6432 */
6433 schedule_delayed_work(®ulator_init_complete_work,
6434 msecs_to_jiffies(30000));
6435
6436 return 0;
6437 }
6438 late_initcall_sync(regulator_init_complete);
6439