1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * dir.c - Operations for configfs directories.
4 *
5 * Based on sysfs:
6 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
7 *
8 * configfs Copyright (C) 2005 Oracle. All rights reserved.
9 */
10
11 #undef DEBUG
12
13 #include <linux/fs.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19
20 #include <linux/configfs.h>
21 #include "configfs_internal.h"
22
23 /*
24 * Protects mutations of configfs_dirent linkage together with proper i_mutex
25 * Also protects mutations of symlinks linkage to target configfs_dirent
26 * Mutators of configfs_dirent linkage must *both* have the proper inode locked
27 * and configfs_dirent_lock locked, in that order.
28 * This allows one to safely traverse configfs_dirent trees and symlinks without
29 * having to lock inodes.
30 *
31 * Protects setting of CONFIGFS_USET_DROPPING: checking the flag
32 * unlocked is not reliable unless in detach_groups() called from
33 * rmdir()/unregister() and from configfs_attach_group()
34 */
35 DEFINE_SPINLOCK(configfs_dirent_lock);
36
37 /*
38 * All of link_obj/unlink_obj/link_group/unlink_group require that
39 * subsys->su_mutex is held.
40 * But parent configfs_subsystem is NULL when config_item is root.
41 * Use this mutex when config_item is root.
42 */
43 static DEFINE_MUTEX(configfs_subsystem_mutex);
44
configfs_d_iput(struct dentry * dentry,struct inode * inode)45 static void configfs_d_iput(struct dentry * dentry,
46 struct inode * inode)
47 {
48 struct configfs_dirent *sd = dentry->d_fsdata;
49
50 if (sd) {
51 /* Coordinate with configfs_readdir */
52 spin_lock(&configfs_dirent_lock);
53 /*
54 * Set sd->s_dentry to null only when this dentry is the one
55 * that is going to be killed. Otherwise configfs_d_iput may
56 * run just after configfs_lookup and set sd->s_dentry to
57 * NULL even it's still in use.
58 */
59 if (sd->s_dentry == dentry)
60 sd->s_dentry = NULL;
61
62 spin_unlock(&configfs_dirent_lock);
63 configfs_put(sd);
64 }
65 iput(inode);
66 }
67
68 const struct dentry_operations configfs_dentry_ops = {
69 .d_iput = configfs_d_iput,
70 };
71
72 #ifdef CONFIG_LOCKDEP
73
74 /*
75 * Helpers to make lockdep happy with our recursive locking of default groups'
76 * inodes (see configfs_attach_group() and configfs_detach_group()).
77 * We put default groups i_mutexes in separate classes according to their depth
78 * from the youngest non-default group ancestor.
79 *
80 * For a non-default group A having default groups A/B, A/C, and A/C/D, default
81 * groups A/B and A/C will have their inode's mutex in class
82 * default_group_class[0], and default group A/C/D will be in
83 * default_group_class[1].
84 *
85 * The lock classes are declared and assigned in inode.c, according to the
86 * s_depth value.
87 * The s_depth value is initialized to -1, adjusted to >= 0 when attaching
88 * default groups, and reset to -1 when all default groups are attached. During
89 * attachment, if configfs_create() sees s_depth > 0, the lock class of the new
90 * inode's mutex is set to default_group_class[s_depth - 1].
91 */
92
configfs_init_dirent_depth(struct configfs_dirent * sd)93 static void configfs_init_dirent_depth(struct configfs_dirent *sd)
94 {
95 sd->s_depth = -1;
96 }
97
configfs_set_dir_dirent_depth(struct configfs_dirent * parent_sd,struct configfs_dirent * sd)98 static void configfs_set_dir_dirent_depth(struct configfs_dirent *parent_sd,
99 struct configfs_dirent *sd)
100 {
101 int parent_depth = parent_sd->s_depth;
102
103 if (parent_depth >= 0)
104 sd->s_depth = parent_depth + 1;
105 }
106
107 static void
configfs_adjust_dir_dirent_depth_before_populate(struct configfs_dirent * sd)108 configfs_adjust_dir_dirent_depth_before_populate(struct configfs_dirent *sd)
109 {
110 /*
111 * item's i_mutex class is already setup, so s_depth is now only
112 * used to set new sub-directories s_depth, which is always done
113 * with item's i_mutex locked.
114 */
115 /*
116 * sd->s_depth == -1 iff we are a non default group.
117 * else (we are a default group) sd->s_depth > 0 (see
118 * create_dir()).
119 */
120 if (sd->s_depth == -1)
121 /*
122 * We are a non default group and we are going to create
123 * default groups.
124 */
125 sd->s_depth = 0;
126 }
127
128 static void
configfs_adjust_dir_dirent_depth_after_populate(struct configfs_dirent * sd)129 configfs_adjust_dir_dirent_depth_after_populate(struct configfs_dirent *sd)
130 {
131 /* We will not create default groups anymore. */
132 sd->s_depth = -1;
133 }
134
135 #else /* CONFIG_LOCKDEP */
136
configfs_init_dirent_depth(struct configfs_dirent * sd)137 static void configfs_init_dirent_depth(struct configfs_dirent *sd)
138 {
139 }
140
configfs_set_dir_dirent_depth(struct configfs_dirent * parent_sd,struct configfs_dirent * sd)141 static void configfs_set_dir_dirent_depth(struct configfs_dirent *parent_sd,
142 struct configfs_dirent *sd)
143 {
144 }
145
146 static void
configfs_adjust_dir_dirent_depth_before_populate(struct configfs_dirent * sd)147 configfs_adjust_dir_dirent_depth_before_populate(struct configfs_dirent *sd)
148 {
149 }
150
151 static void
configfs_adjust_dir_dirent_depth_after_populate(struct configfs_dirent * sd)152 configfs_adjust_dir_dirent_depth_after_populate(struct configfs_dirent *sd)
153 {
154 }
155
156 #endif /* CONFIG_LOCKDEP */
157
new_fragment(void)158 static struct configfs_fragment *new_fragment(void)
159 {
160 struct configfs_fragment *p;
161
162 p = kmalloc(sizeof(struct configfs_fragment), GFP_KERNEL);
163 if (p) {
164 atomic_set(&p->frag_count, 1);
165 init_rwsem(&p->frag_sem);
166 p->frag_dead = false;
167 }
168 return p;
169 }
170
put_fragment(struct configfs_fragment * frag)171 void put_fragment(struct configfs_fragment *frag)
172 {
173 if (frag && atomic_dec_and_test(&frag->frag_count))
174 kfree(frag);
175 }
176
get_fragment(struct configfs_fragment * frag)177 struct configfs_fragment *get_fragment(struct configfs_fragment *frag)
178 {
179 if (likely(frag))
180 atomic_inc(&frag->frag_count);
181 return frag;
182 }
183
184 /*
185 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
186 */
configfs_new_dirent(struct configfs_dirent * parent_sd,void * element,int type,struct configfs_fragment * frag)187 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent *parent_sd,
188 void *element, int type,
189 struct configfs_fragment *frag)
190 {
191 struct configfs_dirent * sd;
192
193 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
194 if (!sd)
195 return ERR_PTR(-ENOMEM);
196
197 atomic_set(&sd->s_count, 1);
198 INIT_LIST_HEAD(&sd->s_children);
199 sd->s_element = element;
200 sd->s_type = type;
201 configfs_init_dirent_depth(sd);
202 spin_lock(&configfs_dirent_lock);
203 if (parent_sd->s_type & CONFIGFS_USET_DROPPING) {
204 spin_unlock(&configfs_dirent_lock);
205 kmem_cache_free(configfs_dir_cachep, sd);
206 return ERR_PTR(-ENOENT);
207 }
208 sd->s_frag = get_fragment(frag);
209
210 /*
211 * configfs_lookup scans only for unpinned items. s_children is
212 * partitioned so that configfs_lookup can bail out early.
213 * CONFIGFS_PINNED and CONFIGFS_NOT_PINNED are not symmetrical. readdir
214 * cursors still need to be inserted at the front of the list.
215 */
216 if (sd->s_type & CONFIGFS_PINNED)
217 list_add_tail(&sd->s_sibling, &parent_sd->s_children);
218 else
219 list_add(&sd->s_sibling, &parent_sd->s_children);
220 spin_unlock(&configfs_dirent_lock);
221
222 return sd;
223 }
224
225 /*
226 *
227 * Return -EEXIST if there is already a configfs element with the same
228 * name for the same parent.
229 *
230 * called with parent inode's i_mutex held
231 */
configfs_dirent_exists(struct dentry * dentry)232 static int configfs_dirent_exists(struct dentry *dentry)
233 {
234 struct configfs_dirent *parent_sd = dentry->d_parent->d_fsdata;
235 const unsigned char *new = dentry->d_name.name;
236 struct configfs_dirent *sd;
237
238 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
239 if (sd->s_element) {
240 const unsigned char *existing = configfs_get_name(sd);
241 if (strcmp(existing, new))
242 continue;
243 else
244 return -EEXIST;
245 }
246 }
247
248 return 0;
249 }
250
251
configfs_make_dirent(struct configfs_dirent * parent_sd,struct dentry * dentry,void * element,umode_t mode,int type,struct configfs_fragment * frag)252 int configfs_make_dirent(struct configfs_dirent * parent_sd,
253 struct dentry * dentry, void * element,
254 umode_t mode, int type, struct configfs_fragment *frag)
255 {
256 struct configfs_dirent * sd;
257
258 sd = configfs_new_dirent(parent_sd, element, type, frag);
259 if (IS_ERR(sd))
260 return PTR_ERR(sd);
261
262 sd->s_mode = mode;
263 sd->s_dentry = dentry;
264 if (dentry)
265 dentry->d_fsdata = configfs_get(sd);
266
267 return 0;
268 }
269
configfs_remove_dirent(struct dentry * dentry)270 static void configfs_remove_dirent(struct dentry *dentry)
271 {
272 struct configfs_dirent *sd = dentry->d_fsdata;
273
274 if (!sd)
275 return;
276 spin_lock(&configfs_dirent_lock);
277 list_del_init(&sd->s_sibling);
278 spin_unlock(&configfs_dirent_lock);
279 configfs_put(sd);
280 }
281
282 /**
283 * configfs_create_dir - create a directory for an config_item.
284 * @item: config_itemwe're creating directory for.
285 * @dentry: config_item's dentry.
286 * @frag: config_item's fragment.
287 *
288 * Note: user-created entries won't be allowed under this new directory
289 * until it is validated by configfs_dir_set_ready()
290 */
291
configfs_create_dir(struct config_item * item,struct dentry * dentry,struct configfs_fragment * frag)292 static int configfs_create_dir(struct config_item *item, struct dentry *dentry,
293 struct configfs_fragment *frag)
294 {
295 int error;
296 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;
297 struct dentry *p = dentry->d_parent;
298 struct inode *inode;
299
300 BUG_ON(!item);
301
302 error = configfs_make_dirent(p->d_fsdata, dentry, item, mode,
303 CONFIGFS_DIR | CONFIGFS_USET_CREATING,
304 frag);
305 if (unlikely(error))
306 return error;
307
308 configfs_set_dir_dirent_depth(p->d_fsdata, dentry->d_fsdata);
309 inode = configfs_create(dentry, mode);
310 if (IS_ERR(inode))
311 goto out_remove;
312
313 inode->i_op = &configfs_dir_inode_operations;
314 inode->i_fop = &configfs_dir_operations;
315 /* directory inodes start off with i_nlink == 2 (for "." entry) */
316 inc_nlink(inode);
317 d_instantiate(dentry, inode);
318 /* already hashed */
319 dget(dentry); /* pin directory dentries in core */
320 inc_nlink(d_inode(p));
321 item->ci_dentry = dentry;
322 return 0;
323
324 out_remove:
325 configfs_put(dentry->d_fsdata);
326 configfs_remove_dirent(dentry);
327 return PTR_ERR(inode);
328 }
329
330 /*
331 * Allow userspace to create new entries under a new directory created with
332 * configfs_create_dir(), and under all of its chidlren directories recursively.
333 * @sd configfs_dirent of the new directory to validate
334 *
335 * Caller must hold configfs_dirent_lock.
336 */
configfs_dir_set_ready(struct configfs_dirent * sd)337 static void configfs_dir_set_ready(struct configfs_dirent *sd)
338 {
339 struct configfs_dirent *child_sd;
340
341 sd->s_type &= ~CONFIGFS_USET_CREATING;
342 list_for_each_entry(child_sd, &sd->s_children, s_sibling)
343 if (child_sd->s_type & CONFIGFS_USET_CREATING)
344 configfs_dir_set_ready(child_sd);
345 }
346
347 /*
348 * Check that a directory does not belong to a directory hierarchy being
349 * attached and not validated yet.
350 * @sd configfs_dirent of the directory to check
351 *
352 * @return non-zero iff the directory was validated
353 *
354 * Note: takes configfs_dirent_lock, so the result may change from false to true
355 * in two consecutive calls, but never from true to false.
356 */
configfs_dirent_is_ready(struct configfs_dirent * sd)357 int configfs_dirent_is_ready(struct configfs_dirent *sd)
358 {
359 int ret;
360
361 spin_lock(&configfs_dirent_lock);
362 ret = !(sd->s_type & CONFIGFS_USET_CREATING);
363 spin_unlock(&configfs_dirent_lock);
364
365 return ret;
366 }
367
configfs_create_link(struct configfs_dirent * target,struct dentry * parent,struct dentry * dentry,char * body)368 int configfs_create_link(struct configfs_dirent *target, struct dentry *parent,
369 struct dentry *dentry, char *body)
370 {
371 int err = 0;
372 umode_t mode = S_IFLNK | S_IRWXUGO;
373 struct configfs_dirent *p = parent->d_fsdata;
374 struct inode *inode;
375
376 err = configfs_make_dirent(p, dentry, target, mode, CONFIGFS_ITEM_LINK,
377 p->s_frag);
378 if (err)
379 return err;
380
381 inode = configfs_create(dentry, mode);
382 if (IS_ERR(inode))
383 goto out_remove;
384
385 inode->i_link = body;
386 inode->i_op = &configfs_symlink_inode_operations;
387 d_instantiate(dentry, inode);
388 dget(dentry); /* pin link dentries in core */
389 return 0;
390
391 out_remove:
392 configfs_put(dentry->d_fsdata);
393 configfs_remove_dirent(dentry);
394 return PTR_ERR(inode);
395 }
396
remove_dir(struct dentry * d)397 static void remove_dir(struct dentry * d)
398 {
399 struct dentry * parent = dget(d->d_parent);
400
401 configfs_remove_dirent(d);
402
403 if (d_really_is_positive(d)) {
404 if (likely(simple_empty(d))) {
405 __simple_rmdir(d_inode(parent),d);
406 dput(d);
407 } else {
408 pr_warn("remove_dir (%pd): attributes remain", d);
409 }
410 }
411
412 pr_debug(" o %pd removing done (%d)\n", d, d_count(d));
413
414 dput(parent);
415 }
416
417 /**
418 * configfs_remove_dir - remove an config_item's directory.
419 * @item: config_item we're removing.
420 *
421 * The only thing special about this is that we remove any files in
422 * the directory before we remove the directory, and we've inlined
423 * what used to be configfs_rmdir() below, instead of calling separately.
424 *
425 * Caller holds the mutex of the item's inode
426 */
427
configfs_remove_dir(struct config_item * item)428 static void configfs_remove_dir(struct config_item * item)
429 {
430 struct dentry * dentry = dget(item->ci_dentry);
431
432 if (!dentry)
433 return;
434
435 remove_dir(dentry);
436 /**
437 * Drop reference from dget() on entrance.
438 */
439 dput(dentry);
440 }
441
configfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)442 static struct dentry * configfs_lookup(struct inode *dir,
443 struct dentry *dentry,
444 unsigned int flags)
445 {
446 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
447 struct configfs_dirent * sd;
448 struct inode *inode = NULL;
449
450 if (dentry->d_name.len > NAME_MAX)
451 return ERR_PTR(-ENAMETOOLONG);
452
453 /*
454 * Fake invisibility if dir belongs to a group/default groups hierarchy
455 * being attached
456 *
457 * This forbids userspace to read/write attributes of items which may
458 * not complete their initialization, since the dentries of the
459 * attributes won't be instantiated.
460 */
461 if (!configfs_dirent_is_ready(parent_sd))
462 return ERR_PTR(-ENOENT);
463
464 spin_lock(&configfs_dirent_lock);
465 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
466
467 /*
468 * s_children is partitioned, see configfs_new_dirent. The first
469 * pinned item indicates we can stop scanning.
470 */
471 if (sd->s_type & CONFIGFS_PINNED)
472 break;
473
474 /*
475 * Note: CONFIGFS_PINNED and CONFIGFS_NOT_PINNED are asymmetric.
476 * there may be a readdir cursor in this list
477 */
478 if ((sd->s_type & CONFIGFS_NOT_PINNED) &&
479 !strcmp(configfs_get_name(sd), dentry->d_name.name)) {
480 struct configfs_attribute *attr = sd->s_element;
481 umode_t mode = (attr->ca_mode & S_IALLUGO) | S_IFREG;
482
483 dentry->d_fsdata = configfs_get(sd);
484 sd->s_dentry = dentry;
485 spin_unlock(&configfs_dirent_lock);
486
487 inode = configfs_create(dentry, mode);
488 if (IS_ERR(inode)) {
489 configfs_put(sd);
490 return ERR_CAST(inode);
491 }
492 if (sd->s_type & CONFIGFS_ITEM_BIN_ATTR) {
493 inode->i_size = 0;
494 inode->i_fop = &configfs_bin_file_operations;
495 } else {
496 inode->i_size = PAGE_SIZE;
497 inode->i_fop = &configfs_file_operations;
498 }
499 goto done;
500 }
501 }
502 spin_unlock(&configfs_dirent_lock);
503 done:
504 d_add(dentry, inode);
505 return NULL;
506 }
507
508 /*
509 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
510 * attributes and are removed by rmdir(). We recurse, setting
511 * CONFIGFS_USET_DROPPING on all children that are candidates for
512 * default detach.
513 * If there is an error, the caller will reset the flags via
514 * configfs_detach_rollback().
515 */
configfs_detach_prep(struct dentry * dentry,struct dentry ** wait)516 static int configfs_detach_prep(struct dentry *dentry, struct dentry **wait)
517 {
518 struct configfs_dirent *parent_sd = dentry->d_fsdata;
519 struct configfs_dirent *sd;
520 int ret;
521
522 /* Mark that we're trying to drop the group */
523 parent_sd->s_type |= CONFIGFS_USET_DROPPING;
524
525 ret = -EBUSY;
526 if (parent_sd->s_links)
527 goto out;
528
529 ret = 0;
530 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
531 if (!sd->s_element ||
532 (sd->s_type & CONFIGFS_NOT_PINNED))
533 continue;
534 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
535 /* Abort if racing with mkdir() */
536 if (sd->s_type & CONFIGFS_USET_IN_MKDIR) {
537 if (wait)
538 *wait= dget(sd->s_dentry);
539 return -EAGAIN;
540 }
541
542 /*
543 * Yup, recursive. If there's a problem, blame
544 * deep nesting of default_groups
545 */
546 ret = configfs_detach_prep(sd->s_dentry, wait);
547 if (!ret)
548 continue;
549 } else
550 ret = -ENOTEMPTY;
551
552 break;
553 }
554
555 out:
556 return ret;
557 }
558
559 /*
560 * Walk the tree, resetting CONFIGFS_USET_DROPPING wherever it was
561 * set.
562 */
configfs_detach_rollback(struct dentry * dentry)563 static void configfs_detach_rollback(struct dentry *dentry)
564 {
565 struct configfs_dirent *parent_sd = dentry->d_fsdata;
566 struct configfs_dirent *sd;
567
568 parent_sd->s_type &= ~CONFIGFS_USET_DROPPING;
569
570 list_for_each_entry(sd, &parent_sd->s_children, s_sibling)
571 if (sd->s_type & CONFIGFS_USET_DEFAULT)
572 configfs_detach_rollback(sd->s_dentry);
573 }
574
detach_attrs(struct config_item * item)575 static void detach_attrs(struct config_item * item)
576 {
577 struct dentry * dentry = dget(item->ci_dentry);
578 struct configfs_dirent * parent_sd;
579 struct configfs_dirent * sd, * tmp;
580
581 if (!dentry)
582 return;
583
584 pr_debug("configfs %s: dropping attrs for dir\n",
585 dentry->d_name.name);
586
587 parent_sd = dentry->d_fsdata;
588 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
589 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
590 continue;
591 spin_lock(&configfs_dirent_lock);
592 list_del_init(&sd->s_sibling);
593 spin_unlock(&configfs_dirent_lock);
594 configfs_drop_dentry(sd, dentry);
595 configfs_put(sd);
596 }
597
598 /**
599 * Drop reference from dget() on entrance.
600 */
601 dput(dentry);
602 }
603
populate_attrs(struct config_item * item)604 static int populate_attrs(struct config_item *item)
605 {
606 const struct config_item_type *t = item->ci_type;
607 const struct configfs_group_operations *ops;
608 struct configfs_attribute *attr;
609 struct configfs_bin_attribute *bin_attr;
610 int error = 0;
611 int i;
612
613 if (!t)
614 return -EINVAL;
615
616 ops = t->ct_group_ops;
617
618 if (t->ct_attrs) {
619 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
620 if (ops && ops->is_visible && !ops->is_visible(item, attr, i))
621 continue;
622
623 if ((error = configfs_create_file(item, attr)))
624 break;
625 }
626 }
627 if (!error && t->ct_bin_attrs) {
628 for (i = 0; (bin_attr = t->ct_bin_attrs[i]) != NULL; i++) {
629 if (ops && ops->is_bin_visible && !ops->is_bin_visible(item, bin_attr, i))
630 continue;
631
632 error = configfs_create_bin_file(item, bin_attr);
633 if (error)
634 break;
635 }
636 }
637
638 if (error)
639 detach_attrs(item);
640
641 return error;
642 }
643
644 static int configfs_attach_group(struct config_item *parent_item,
645 struct config_item *item,
646 struct dentry *dentry,
647 struct configfs_fragment *frag);
648 static void configfs_detach_group(struct config_item *item);
649
detach_groups(struct config_group * group)650 static void detach_groups(struct config_group *group)
651 {
652 struct dentry * dentry = dget(group->cg_item.ci_dentry);
653 struct dentry *child;
654 struct configfs_dirent *parent_sd;
655 struct configfs_dirent *sd, *tmp;
656
657 if (!dentry)
658 return;
659
660 parent_sd = dentry->d_fsdata;
661 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
662 if (!sd->s_element ||
663 !(sd->s_type & CONFIGFS_USET_DEFAULT))
664 continue;
665
666 child = sd->s_dentry;
667
668 inode_lock(d_inode(child));
669
670 configfs_detach_group(sd->s_element);
671 d_inode(child)->i_flags |= S_DEAD;
672 dont_mount(child);
673
674 inode_unlock(d_inode(child));
675
676 d_delete(child);
677 dput(child);
678 }
679
680 /**
681 * Drop reference from dget() on entrance.
682 */
683 dput(dentry);
684 }
685
686 /*
687 * This fakes mkdir(2) on a default_groups[] entry. It
688 * creates a dentry, attachs it, and then does fixup
689 * on the sd->s_type.
690 *
691 * We could, perhaps, tweak our parent's ->mkdir for a minute and
692 * try using vfs_mkdir. Just a thought.
693 */
create_default_group(struct config_group * parent_group,struct config_group * group,struct configfs_fragment * frag)694 static int create_default_group(struct config_group *parent_group,
695 struct config_group *group,
696 struct configfs_fragment *frag)
697 {
698 int ret;
699 struct configfs_dirent *sd;
700 /* We trust the caller holds a reference to parent */
701 struct dentry *child, *parent = parent_group->cg_item.ci_dentry;
702
703 if (!group->cg_item.ci_name)
704 group->cg_item.ci_name = group->cg_item.ci_namebuf;
705
706 ret = -ENOMEM;
707 child = d_alloc_name(parent, group->cg_item.ci_name);
708 if (child) {
709 d_add(child, NULL);
710
711 ret = configfs_attach_group(&parent_group->cg_item,
712 &group->cg_item, child, frag);
713 if (!ret) {
714 sd = child->d_fsdata;
715 sd->s_type |= CONFIGFS_USET_DEFAULT;
716 } else {
717 BUG_ON(d_inode(child));
718 d_drop(child);
719 dput(child);
720 }
721 }
722
723 return ret;
724 }
725
populate_groups(struct config_group * group,struct configfs_fragment * frag)726 static int populate_groups(struct config_group *group,
727 struct configfs_fragment *frag)
728 {
729 struct config_group *new_group;
730 int ret = 0;
731
732 list_for_each_entry(new_group, &group->default_groups, group_entry) {
733 ret = create_default_group(group, new_group, frag);
734 if (ret) {
735 detach_groups(group);
736 break;
737 }
738 }
739
740 return ret;
741 }
742
configfs_remove_default_groups(struct config_group * group)743 void configfs_remove_default_groups(struct config_group *group)
744 {
745 struct config_group *g, *n;
746
747 list_for_each_entry_safe(g, n, &group->default_groups, group_entry) {
748 list_del(&g->group_entry);
749 config_item_put(&g->cg_item);
750 }
751 }
752 EXPORT_SYMBOL(configfs_remove_default_groups);
753
754 /*
755 * All of link_obj/unlink_obj/link_group/unlink_group require that
756 * subsys->su_mutex is held.
757 */
758
unlink_obj(struct config_item * item)759 static void unlink_obj(struct config_item *item)
760 {
761 struct config_group *group;
762
763 group = item->ci_group;
764 if (group) {
765 list_del_init(&item->ci_entry);
766
767 item->ci_group = NULL;
768 item->ci_parent = NULL;
769
770 /* Drop the reference for ci_entry */
771 config_item_put(item);
772
773 /* Drop the reference for ci_parent */
774 config_group_put(group);
775 }
776 }
777
link_obj(struct config_item * parent_item,struct config_item * item)778 static void link_obj(struct config_item *parent_item, struct config_item *item)
779 {
780 /*
781 * Parent seems redundant with group, but it makes certain
782 * traversals much nicer.
783 */
784 item->ci_parent = parent_item;
785
786 /*
787 * We hold a reference on the parent for the child's ci_parent
788 * link.
789 */
790 item->ci_group = config_group_get(to_config_group(parent_item));
791 list_add_tail(&item->ci_entry, &item->ci_group->cg_children);
792
793 /*
794 * We hold a reference on the child for ci_entry on the parent's
795 * cg_children
796 */
797 config_item_get(item);
798 }
799
unlink_group(struct config_group * group)800 static void unlink_group(struct config_group *group)
801 {
802 struct config_group *new_group;
803
804 list_for_each_entry(new_group, &group->default_groups, group_entry)
805 unlink_group(new_group);
806
807 group->cg_subsys = NULL;
808 unlink_obj(&group->cg_item);
809 }
810
link_group(struct config_group * parent_group,struct config_group * group)811 static void link_group(struct config_group *parent_group, struct config_group *group)
812 {
813 struct config_group *new_group;
814 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */
815
816 link_obj(&parent_group->cg_item, &group->cg_item);
817
818 if (parent_group->cg_subsys)
819 subsys = parent_group->cg_subsys;
820 else if (configfs_is_root(&parent_group->cg_item))
821 subsys = to_configfs_subsystem(group);
822 else
823 BUG();
824 group->cg_subsys = subsys;
825
826 list_for_each_entry(new_group, &group->default_groups, group_entry)
827 link_group(group, new_group);
828 }
829
830 /*
831 * The goal is that configfs_attach_item() (and
832 * configfs_attach_group()) can be called from either the VFS or this
833 * module. That is, they assume that the items have been created,
834 * the dentry allocated, and the dcache is all ready to go.
835 *
836 * If they fail, they must clean up after themselves as if they
837 * had never been called. The caller (VFS or local function) will
838 * handle cleaning up the dcache bits.
839 *
840 * configfs_detach_group() and configfs_detach_item() behave similarly on
841 * the way out. They assume that the proper semaphores are held, they
842 * clean up the configfs items, and they expect their callers will
843 * handle the dcache bits.
844 */
configfs_attach_item(struct config_item * parent_item,struct config_item * item,struct dentry * dentry,struct configfs_fragment * frag)845 static int configfs_attach_item(struct config_item *parent_item,
846 struct config_item *item,
847 struct dentry *dentry,
848 struct configfs_fragment *frag)
849 {
850 int ret;
851
852 ret = configfs_create_dir(item, dentry, frag);
853 if (!ret) {
854 ret = populate_attrs(item);
855 if (ret) {
856 /*
857 * We are going to remove an inode and its dentry but
858 * the VFS may already have hit and used them. Thus,
859 * we must lock them as rmdir() would.
860 */
861 inode_lock(d_inode(dentry));
862 configfs_remove_dir(item);
863 d_inode(dentry)->i_flags |= S_DEAD;
864 dont_mount(dentry);
865 inode_unlock(d_inode(dentry));
866 d_delete(dentry);
867 }
868 }
869
870 return ret;
871 }
872
873 /* Caller holds the mutex of the item's inode */
configfs_detach_item(struct config_item * item)874 static void configfs_detach_item(struct config_item *item)
875 {
876 detach_attrs(item);
877 configfs_remove_dir(item);
878 }
879
configfs_attach_group(struct config_item * parent_item,struct config_item * item,struct dentry * dentry,struct configfs_fragment * frag)880 static int configfs_attach_group(struct config_item *parent_item,
881 struct config_item *item,
882 struct dentry *dentry,
883 struct configfs_fragment *frag)
884 {
885 int ret;
886 struct configfs_dirent *sd;
887
888 ret = configfs_attach_item(parent_item, item, dentry, frag);
889 if (!ret) {
890 sd = dentry->d_fsdata;
891 sd->s_type |= CONFIGFS_USET_DIR;
892
893 /*
894 * FYI, we're faking mkdir in populate_groups()
895 * We must lock the group's inode to avoid races with the VFS
896 * which can already hit the inode and try to add/remove entries
897 * under it.
898 *
899 * We must also lock the inode to remove it safely in case of
900 * error, as rmdir() would.
901 */
902 inode_lock_nested(d_inode(dentry), I_MUTEX_CHILD);
903 configfs_adjust_dir_dirent_depth_before_populate(sd);
904 ret = populate_groups(to_config_group(item), frag);
905 if (ret) {
906 configfs_detach_item(item);
907 d_inode(dentry)->i_flags |= S_DEAD;
908 dont_mount(dentry);
909 }
910 configfs_adjust_dir_dirent_depth_after_populate(sd);
911 inode_unlock(d_inode(dentry));
912 if (ret)
913 d_delete(dentry);
914 }
915
916 return ret;
917 }
918
919 /* Caller holds the mutex of the group's inode */
configfs_detach_group(struct config_item * item)920 static void configfs_detach_group(struct config_item *item)
921 {
922 detach_groups(to_config_group(item));
923 configfs_detach_item(item);
924 }
925
926 /*
927 * After the item has been detached from the filesystem view, we are
928 * ready to tear it out of the hierarchy. Notify the client before
929 * we do that so they can perform any cleanup that requires
930 * navigating the hierarchy. A client does not need to provide this
931 * callback. The subsystem semaphore MUST be held by the caller, and
932 * references must be valid for both items. It also assumes the
933 * caller has validated ci_type.
934 */
client_disconnect_notify(struct config_item * parent_item,struct config_item * item)935 static void client_disconnect_notify(struct config_item *parent_item,
936 struct config_item *item)
937 {
938 const struct config_item_type *type;
939
940 type = parent_item->ci_type;
941 BUG_ON(!type);
942
943 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
944 type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
945 item);
946 }
947
948 /*
949 * Drop the initial reference from make_item()/make_group()
950 * This function assumes that reference is held on item
951 * and that item holds a valid reference to the parent. Also, it
952 * assumes the caller has validated ci_type.
953 */
client_drop_item(struct config_item * parent_item,struct config_item * item)954 static void client_drop_item(struct config_item *parent_item,
955 struct config_item *item)
956 {
957 const struct config_item_type *type;
958
959 type = parent_item->ci_type;
960 BUG_ON(!type);
961
962 /*
963 * If ->drop_item() exists, it is responsible for the
964 * config_item_put().
965 */
966 if (type->ct_group_ops && type->ct_group_ops->drop_item)
967 type->ct_group_ops->drop_item(to_config_group(parent_item),
968 item);
969 else
970 config_item_put(item);
971 }
972
973 #ifdef DEBUG
configfs_dump_one(struct configfs_dirent * sd,int level)974 static void configfs_dump_one(struct configfs_dirent *sd, int level)
975 {
976 pr_info("%*s\"%s\":\n", level, " ", configfs_get_name(sd));
977
978 #define type_print(_type) if (sd->s_type & _type) pr_info("%*s %s\n", level, " ", #_type)
979 type_print(CONFIGFS_ROOT);
980 type_print(CONFIGFS_DIR);
981 type_print(CONFIGFS_ITEM_ATTR);
982 type_print(CONFIGFS_ITEM_LINK);
983 type_print(CONFIGFS_USET_DIR);
984 type_print(CONFIGFS_USET_DEFAULT);
985 type_print(CONFIGFS_USET_DROPPING);
986 #undef type_print
987 }
988
configfs_dump(struct configfs_dirent * sd,int level)989 static int configfs_dump(struct configfs_dirent *sd, int level)
990 {
991 struct configfs_dirent *child_sd;
992 int ret = 0;
993
994 configfs_dump_one(sd, level);
995
996 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
997 return 0;
998
999 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
1000 ret = configfs_dump(child_sd, level + 2);
1001 if (ret)
1002 break;
1003 }
1004
1005 return ret;
1006 }
1007 #endif
1008
1009
1010 /*
1011 * configfs_depend_item() and configfs_undepend_item()
1012 *
1013 * WARNING: Do not call these from a configfs callback!
1014 *
1015 * This describes these functions and their helpers.
1016 *
1017 * Allow another kernel system to depend on a config_item. If this
1018 * happens, the item cannot go away until the dependent can live without
1019 * it. The idea is to give client modules as simple an interface as
1020 * possible. When a system asks them to depend on an item, they just
1021 * call configfs_depend_item(). If the item is live and the client
1022 * driver is in good shape, we'll happily do the work for them.
1023 *
1024 * Why is the locking complex? Because configfs uses the VFS to handle
1025 * all locking, but this function is called outside the normal
1026 * VFS->configfs path. So it must take VFS locks to prevent the
1027 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is
1028 * why you can't call these functions underneath configfs callbacks.
1029 *
1030 * Note, btw, that this can be called at *any* time, even when a configfs
1031 * subsystem isn't registered, or when configfs is loading or unloading.
1032 * Just like configfs_register_subsystem(). So we take the same
1033 * precautions. We pin the filesystem. We lock configfs_dirent_lock.
1034 * If we can find the target item in the
1035 * configfs tree, it must be part of the subsystem tree as well, so we
1036 * do not need the subsystem semaphore. Holding configfs_dirent_lock helps
1037 * locking out mkdir() and rmdir(), who might be racing us.
1038 */
1039
1040 /*
1041 * configfs_depend_prep()
1042 *
1043 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
1044 * attributes. This is similar but not the same to configfs_detach_prep().
1045 * Note that configfs_detach_prep() expects the parent to be locked when it
1046 * is called, but we lock the parent *inside* configfs_depend_prep(). We
1047 * do that so we can unlock it if we find nothing.
1048 *
1049 * Here we do a depth-first search of the dentry hierarchy looking for
1050 * our object.
1051 * We deliberately ignore items tagged as dropping since they are virtually
1052 * dead, as well as items in the middle of attachment since they virtually
1053 * do not exist yet. This completes the locking out of racing mkdir() and
1054 * rmdir().
1055 * Note: subdirectories in the middle of attachment start with s_type =
1056 * CONFIGFS_DIR|CONFIGFS_USET_CREATING set by create_dir(). When
1057 * CONFIGFS_USET_CREATING is set, we ignore the item. The actual set of
1058 * s_type is in configfs_new_dirent(), which has configfs_dirent_lock.
1059 *
1060 * If the target is not found, -ENOENT is bubbled up.
1061 *
1062 * This adds a requirement that all config_items be unique!
1063 *
1064 * This is recursive. There isn't
1065 * much on the stack, though, so folks that need this function - be careful
1066 * about your stack! Patches will be accepted to make it iterative.
1067 */
configfs_depend_prep(struct dentry * origin,struct config_item * target)1068 static int configfs_depend_prep(struct dentry *origin,
1069 struct config_item *target)
1070 {
1071 struct configfs_dirent *child_sd, *sd;
1072 int ret = 0;
1073
1074 BUG_ON(!origin || !origin->d_fsdata);
1075 sd = origin->d_fsdata;
1076
1077 if (sd->s_element == target) /* Boo-yah */
1078 goto out;
1079
1080 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
1081 if ((child_sd->s_type & CONFIGFS_DIR) &&
1082 !(child_sd->s_type & CONFIGFS_USET_DROPPING) &&
1083 !(child_sd->s_type & CONFIGFS_USET_CREATING)) {
1084 ret = configfs_depend_prep(child_sd->s_dentry,
1085 target);
1086 if (!ret)
1087 goto out; /* Child path boo-yah */
1088 }
1089 }
1090
1091 /* We looped all our children and didn't find target */
1092 ret = -ENOENT;
1093
1094 out:
1095 return ret;
1096 }
1097
configfs_do_depend_item(struct dentry * subsys_dentry,struct config_item * target)1098 static int configfs_do_depend_item(struct dentry *subsys_dentry,
1099 struct config_item *target)
1100 {
1101 struct configfs_dirent *p;
1102 int ret;
1103
1104 spin_lock(&configfs_dirent_lock);
1105 /* Scan the tree, return 0 if found */
1106 ret = configfs_depend_prep(subsys_dentry, target);
1107 if (ret)
1108 goto out_unlock_dirent_lock;
1109
1110 /*
1111 * We are sure that the item is not about to be removed by rmdir(), and
1112 * not in the middle of attachment by mkdir().
1113 */
1114 p = target->ci_dentry->d_fsdata;
1115 p->s_dependent_count += 1;
1116
1117 out_unlock_dirent_lock:
1118 spin_unlock(&configfs_dirent_lock);
1119
1120 return ret;
1121 }
1122
1123 static inline struct configfs_dirent *
configfs_find_subsys_dentry(struct configfs_dirent * root_sd,struct config_item * subsys_item)1124 configfs_find_subsys_dentry(struct configfs_dirent *root_sd,
1125 struct config_item *subsys_item)
1126 {
1127 struct configfs_dirent *p;
1128 struct configfs_dirent *ret = NULL;
1129
1130 list_for_each_entry(p, &root_sd->s_children, s_sibling) {
1131 if (p->s_type & CONFIGFS_DIR &&
1132 p->s_element == subsys_item) {
1133 ret = p;
1134 break;
1135 }
1136 }
1137
1138 return ret;
1139 }
1140
1141
configfs_depend_item(struct configfs_subsystem * subsys,struct config_item * target)1142 int configfs_depend_item(struct configfs_subsystem *subsys,
1143 struct config_item *target)
1144 {
1145 int ret;
1146 struct configfs_dirent *subsys_sd;
1147 struct config_item *s_item = &subsys->su_group.cg_item;
1148 struct dentry *root;
1149
1150 /*
1151 * Pin the configfs filesystem. This means we can safely access
1152 * the root of the configfs filesystem.
1153 */
1154 root = configfs_pin_fs();
1155 if (IS_ERR(root))
1156 return PTR_ERR(root);
1157
1158 /*
1159 * Next, lock the root directory. We're going to check that the
1160 * subsystem is really registered, and so we need to lock out
1161 * configfs_[un]register_subsystem().
1162 */
1163 inode_lock(d_inode(root));
1164
1165 subsys_sd = configfs_find_subsys_dentry(root->d_fsdata, s_item);
1166 if (!subsys_sd) {
1167 ret = -ENOENT;
1168 goto out_unlock_fs;
1169 }
1170
1171 /* Ok, now we can trust subsys/s_item */
1172 ret = configfs_do_depend_item(subsys_sd->s_dentry, target);
1173
1174 out_unlock_fs:
1175 inode_unlock(d_inode(root));
1176
1177 /*
1178 * If we succeeded, the fs is pinned via other methods. If not,
1179 * we're done with it anyway. So release_fs() is always right.
1180 */
1181 configfs_release_fs();
1182
1183 return ret;
1184 }
1185 EXPORT_SYMBOL(configfs_depend_item);
1186
1187 /*
1188 * Release the dependent linkage. This is much simpler than
1189 * configfs_depend_item() because we know that the client driver is
1190 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
1191 */
configfs_undepend_item(struct config_item * target)1192 void configfs_undepend_item(struct config_item *target)
1193 {
1194 struct configfs_dirent *sd;
1195
1196 /*
1197 * Since we can trust everything is pinned, we just need
1198 * configfs_dirent_lock.
1199 */
1200 spin_lock(&configfs_dirent_lock);
1201
1202 sd = target->ci_dentry->d_fsdata;
1203 BUG_ON(sd->s_dependent_count < 1);
1204
1205 sd->s_dependent_count -= 1;
1206
1207 /*
1208 * After this unlock, we cannot trust the item to stay alive!
1209 * DO NOT REFERENCE item after this unlock.
1210 */
1211 spin_unlock(&configfs_dirent_lock);
1212 }
1213 EXPORT_SYMBOL(configfs_undepend_item);
1214
1215 /*
1216 * caller_subsys is a caller's subsystem not target's. This is used to
1217 * determine if we should lock root and check subsys or not. When we are
1218 * in the same subsystem as our target there is no need to do locking as
1219 * we know that subsys is valid and is not unregistered during this function
1220 * as we are called from callback of one of his children and VFS holds a lock
1221 * on some inode. Otherwise we have to lock our root to ensure that target's
1222 * subsystem it is not unregistered during this function.
1223 */
configfs_depend_item_unlocked(struct configfs_subsystem * caller_subsys,struct config_item * target)1224 int configfs_depend_item_unlocked(struct configfs_subsystem *caller_subsys,
1225 struct config_item *target)
1226 {
1227 struct configfs_subsystem *target_subsys;
1228 struct config_group *root, *parent;
1229 struct configfs_dirent *subsys_sd;
1230 int ret = -ENOENT;
1231
1232 /* Disallow this function for configfs root */
1233 if (configfs_is_root(target))
1234 return -EINVAL;
1235
1236 parent = target->ci_group;
1237 /*
1238 * This may happen when someone is trying to depend root
1239 * directory of some subsystem
1240 */
1241 if (configfs_is_root(&parent->cg_item)) {
1242 target_subsys = to_configfs_subsystem(to_config_group(target));
1243 root = parent;
1244 } else {
1245 target_subsys = parent->cg_subsys;
1246 /* Find a cofnigfs root as we may need it for locking */
1247 for (root = parent; !configfs_is_root(&root->cg_item);
1248 root = root->cg_item.ci_group)
1249 ;
1250 }
1251
1252 if (target_subsys != caller_subsys) {
1253 /*
1254 * We are in other configfs subsystem, so we have to do
1255 * additional locking to prevent other subsystem from being
1256 * unregistered
1257 */
1258 inode_lock(d_inode(root->cg_item.ci_dentry));
1259
1260 /*
1261 * As we are trying to depend item from other subsystem
1262 * we have to check if this subsystem is still registered
1263 */
1264 subsys_sd = configfs_find_subsys_dentry(
1265 root->cg_item.ci_dentry->d_fsdata,
1266 &target_subsys->su_group.cg_item);
1267 if (!subsys_sd)
1268 goto out_root_unlock;
1269 } else {
1270 subsys_sd = target_subsys->su_group.cg_item.ci_dentry->d_fsdata;
1271 }
1272
1273 /* Now we can execute core of depend item */
1274 ret = configfs_do_depend_item(subsys_sd->s_dentry, target);
1275
1276 if (target_subsys != caller_subsys)
1277 out_root_unlock:
1278 /*
1279 * We were called from subsystem other than our target so we
1280 * took some locks so now it's time to release them
1281 */
1282 inode_unlock(d_inode(root->cg_item.ci_dentry));
1283
1284 return ret;
1285 }
1286 EXPORT_SYMBOL(configfs_depend_item_unlocked);
1287
configfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1288 static struct dentry *configfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1289 struct dentry *dentry, umode_t mode)
1290 {
1291 int ret = 0;
1292 int module_got = 0;
1293 struct config_group *group = NULL;
1294 struct config_item *item = NULL;
1295 struct config_item *parent_item;
1296 struct configfs_subsystem *subsys;
1297 struct configfs_dirent *sd;
1298 const struct config_item_type *type;
1299 struct module *subsys_owner = NULL, *new_item_owner = NULL;
1300 struct configfs_fragment *frag;
1301 char *name;
1302
1303 sd = dentry->d_parent->d_fsdata;
1304
1305 /*
1306 * Fake invisibility if dir belongs to a group/default groups hierarchy
1307 * being attached
1308 */
1309 if (!configfs_dirent_is_ready(sd)) {
1310 ret = -ENOENT;
1311 goto out;
1312 }
1313
1314 if (!(sd->s_type & CONFIGFS_USET_DIR)) {
1315 ret = -EPERM;
1316 goto out;
1317 }
1318
1319 frag = new_fragment();
1320 if (!frag) {
1321 ret = -ENOMEM;
1322 goto out;
1323 }
1324
1325 /* Get a working ref for the duration of this function */
1326 parent_item = configfs_get_config_item(dentry->d_parent);
1327 type = parent_item->ci_type;
1328 subsys = to_config_group(parent_item)->cg_subsys;
1329 BUG_ON(!subsys);
1330
1331 if (!type || !type->ct_group_ops ||
1332 (!type->ct_group_ops->make_group &&
1333 !type->ct_group_ops->make_item)) {
1334 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */
1335 goto out_put;
1336 }
1337
1338 /*
1339 * The subsystem may belong to a different module than the item
1340 * being created. We don't want to safely pin the new item but
1341 * fail to pin the subsystem it sits under.
1342 */
1343 if (!subsys->su_group.cg_item.ci_type) {
1344 ret = -EINVAL;
1345 goto out_put;
1346 }
1347 subsys_owner = subsys->su_group.cg_item.ci_type->ct_owner;
1348 if (!try_module_get(subsys_owner)) {
1349 ret = -EINVAL;
1350 goto out_put;
1351 }
1352
1353 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
1354 if (!name) {
1355 ret = -ENOMEM;
1356 goto out_subsys_put;
1357 }
1358
1359 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);
1360
1361 mutex_lock(&subsys->su_mutex);
1362 if (type->ct_group_ops->make_group) {
1363 group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
1364 if (!group)
1365 group = ERR_PTR(-ENOMEM);
1366 if (!IS_ERR(group)) {
1367 link_group(to_config_group(parent_item), group);
1368 item = &group->cg_item;
1369 } else
1370 ret = PTR_ERR(group);
1371 } else {
1372 item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
1373 if (!item)
1374 item = ERR_PTR(-ENOMEM);
1375 if (!IS_ERR(item))
1376 link_obj(parent_item, item);
1377 else
1378 ret = PTR_ERR(item);
1379 }
1380 mutex_unlock(&subsys->su_mutex);
1381
1382 kfree(name);
1383 if (ret) {
1384 /*
1385 * If ret != 0, then link_obj() was never called.
1386 * There are no extra references to clean up.
1387 */
1388 goto out_subsys_put;
1389 }
1390
1391 /*
1392 * link_obj() has been called (via link_group() for groups).
1393 * From here on out, errors must clean that up.
1394 */
1395
1396 type = item->ci_type;
1397 if (!type) {
1398 ret = -EINVAL;
1399 goto out_unlink;
1400 }
1401
1402 new_item_owner = type->ct_owner;
1403 if (!try_module_get(new_item_owner)) {
1404 ret = -EINVAL;
1405 goto out_unlink;
1406 }
1407
1408 /*
1409 * I hate doing it this way, but if there is
1410 * an error, module_put() probably should
1411 * happen after any cleanup.
1412 */
1413 module_got = 1;
1414
1415 /*
1416 * Make racing rmdir() fail if it did not tag parent with
1417 * CONFIGFS_USET_DROPPING
1418 * Note: if CONFIGFS_USET_DROPPING is already set, attach_group() will
1419 * fail and let rmdir() terminate correctly
1420 */
1421 spin_lock(&configfs_dirent_lock);
1422 /* This will make configfs_detach_prep() fail */
1423 sd->s_type |= CONFIGFS_USET_IN_MKDIR;
1424 spin_unlock(&configfs_dirent_lock);
1425
1426 if (group)
1427 ret = configfs_attach_group(parent_item, item, dentry, frag);
1428 else
1429 ret = configfs_attach_item(parent_item, item, dentry, frag);
1430
1431 spin_lock(&configfs_dirent_lock);
1432 sd->s_type &= ~CONFIGFS_USET_IN_MKDIR;
1433 if (!ret)
1434 configfs_dir_set_ready(dentry->d_fsdata);
1435 spin_unlock(&configfs_dirent_lock);
1436
1437 out_unlink:
1438 if (ret) {
1439 /* Tear down everything we built up */
1440 mutex_lock(&subsys->su_mutex);
1441
1442 client_disconnect_notify(parent_item, item);
1443 if (group)
1444 unlink_group(group);
1445 else
1446 unlink_obj(item);
1447 client_drop_item(parent_item, item);
1448
1449 mutex_unlock(&subsys->su_mutex);
1450
1451 if (module_got)
1452 module_put(new_item_owner);
1453 }
1454
1455 out_subsys_put:
1456 if (ret)
1457 module_put(subsys_owner);
1458
1459 out_put:
1460 /*
1461 * link_obj()/link_group() took a reference from child->parent,
1462 * so the parent is safely pinned. We can drop our working
1463 * reference.
1464 */
1465 config_item_put(parent_item);
1466 put_fragment(frag);
1467
1468 out:
1469 return ERR_PTR(ret);
1470 }
1471
configfs_rmdir(struct inode * dir,struct dentry * dentry)1472 static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
1473 {
1474 struct config_item *parent_item;
1475 struct config_item *item;
1476 struct configfs_subsystem *subsys;
1477 struct configfs_dirent *sd;
1478 struct configfs_fragment *frag;
1479 struct module *subsys_owner = NULL, *dead_item_owner = NULL;
1480 int ret;
1481
1482 sd = dentry->d_fsdata;
1483 if (sd->s_type & CONFIGFS_USET_DEFAULT)
1484 return -EPERM;
1485
1486 /* Get a working ref until we have the child */
1487 parent_item = configfs_get_config_item(dentry->d_parent);
1488 subsys = to_config_group(parent_item)->cg_subsys;
1489 BUG_ON(!subsys);
1490
1491 if (!parent_item->ci_type) {
1492 config_item_put(parent_item);
1493 return -EINVAL;
1494 }
1495
1496 /* configfs_mkdir() shouldn't have allowed this */
1497 BUG_ON(!subsys->su_group.cg_item.ci_type);
1498 subsys_owner = subsys->su_group.cg_item.ci_type->ct_owner;
1499
1500 /*
1501 * Ensure that no racing symlink() will make detach_prep() fail while
1502 * the new link is temporarily attached
1503 */
1504 do {
1505 struct dentry *wait;
1506
1507 mutex_lock(&configfs_symlink_mutex);
1508 spin_lock(&configfs_dirent_lock);
1509 /*
1510 * Here's where we check for dependents. We're protected by
1511 * configfs_dirent_lock.
1512 * If no dependent, atomically tag the item as dropping.
1513 */
1514 ret = sd->s_dependent_count ? -EBUSY : 0;
1515 if (!ret) {
1516 ret = configfs_detach_prep(dentry, &wait);
1517 if (ret)
1518 configfs_detach_rollback(dentry);
1519 }
1520 spin_unlock(&configfs_dirent_lock);
1521 mutex_unlock(&configfs_symlink_mutex);
1522
1523 if (ret) {
1524 if (ret != -EAGAIN) {
1525 config_item_put(parent_item);
1526 return ret;
1527 }
1528
1529 /* Wait until the racing operation terminates */
1530 inode_lock(d_inode(wait));
1531 inode_unlock(d_inode(wait));
1532 dput(wait);
1533 }
1534 } while (ret == -EAGAIN);
1535
1536 frag = sd->s_frag;
1537 if (down_write_killable(&frag->frag_sem)) {
1538 spin_lock(&configfs_dirent_lock);
1539 configfs_detach_rollback(dentry);
1540 spin_unlock(&configfs_dirent_lock);
1541 config_item_put(parent_item);
1542 return -EINTR;
1543 }
1544 frag->frag_dead = true;
1545 up_write(&frag->frag_sem);
1546
1547 /* Get a working ref for the duration of this function */
1548 item = configfs_get_config_item(dentry);
1549
1550 /* Drop reference from above, item already holds one. */
1551 config_item_put(parent_item);
1552
1553 if (item->ci_type)
1554 dead_item_owner = item->ci_type->ct_owner;
1555
1556 if (sd->s_type & CONFIGFS_USET_DIR) {
1557 configfs_detach_group(item);
1558
1559 mutex_lock(&subsys->su_mutex);
1560 client_disconnect_notify(parent_item, item);
1561 unlink_group(to_config_group(item));
1562 } else {
1563 configfs_detach_item(item);
1564
1565 mutex_lock(&subsys->su_mutex);
1566 client_disconnect_notify(parent_item, item);
1567 unlink_obj(item);
1568 }
1569
1570 client_drop_item(parent_item, item);
1571 mutex_unlock(&subsys->su_mutex);
1572
1573 /* Drop our reference from above */
1574 config_item_put(item);
1575
1576 module_put(dead_item_owner);
1577 module_put(subsys_owner);
1578
1579 return 0;
1580 }
1581
1582 const struct inode_operations configfs_dir_inode_operations = {
1583 .mkdir = configfs_mkdir,
1584 .rmdir = configfs_rmdir,
1585 .symlink = configfs_symlink,
1586 .unlink = configfs_unlink,
1587 .lookup = configfs_lookup,
1588 .setattr = configfs_setattr,
1589 };
1590
1591 const struct inode_operations configfs_root_inode_operations = {
1592 .lookup = configfs_lookup,
1593 .setattr = configfs_setattr,
1594 };
1595
configfs_dir_open(struct inode * inode,struct file * file)1596 static int configfs_dir_open(struct inode *inode, struct file *file)
1597 {
1598 struct dentry * dentry = file->f_path.dentry;
1599 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1600 int err;
1601
1602 inode_lock(d_inode(dentry));
1603 /*
1604 * Fake invisibility if dir belongs to a group/default groups hierarchy
1605 * being attached
1606 */
1607 err = -ENOENT;
1608 if (configfs_dirent_is_ready(parent_sd)) {
1609 file->private_data = configfs_new_dirent(parent_sd, NULL, 0, NULL);
1610 err = PTR_ERR_OR_ZERO(file->private_data);
1611 }
1612 inode_unlock(d_inode(dentry));
1613
1614 return err;
1615 }
1616
configfs_dir_close(struct inode * inode,struct file * file)1617 static int configfs_dir_close(struct inode *inode, struct file *file)
1618 {
1619 struct dentry * dentry = file->f_path.dentry;
1620 struct configfs_dirent * cursor = file->private_data;
1621
1622 inode_lock(d_inode(dentry));
1623 spin_lock(&configfs_dirent_lock);
1624 list_del_init(&cursor->s_sibling);
1625 spin_unlock(&configfs_dirent_lock);
1626 inode_unlock(d_inode(dentry));
1627
1628 release_configfs_dirent(cursor);
1629
1630 return 0;
1631 }
1632
configfs_readdir(struct file * file,struct dir_context * ctx)1633 static int configfs_readdir(struct file *file, struct dir_context *ctx)
1634 {
1635 struct dentry *dentry = file->f_path.dentry;
1636 struct super_block *sb = dentry->d_sb;
1637 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1638 struct configfs_dirent *cursor = file->private_data;
1639 struct list_head *p, *q = &cursor->s_sibling;
1640 ino_t ino = 0;
1641
1642 if (!dir_emit_dots(file, ctx))
1643 return 0;
1644 spin_lock(&configfs_dirent_lock);
1645 if (ctx->pos == 2)
1646 list_move(q, &parent_sd->s_children);
1647 for (p = q->next; p != &parent_sd->s_children; p = p->next) {
1648 struct configfs_dirent *next;
1649 const char *name;
1650 int len;
1651 struct inode *inode = NULL;
1652
1653 next = list_entry(p, struct configfs_dirent, s_sibling);
1654 if (!next->s_element)
1655 continue;
1656
1657 /*
1658 * We'll have a dentry and an inode for
1659 * PINNED items and for open attribute
1660 * files. We lock here to prevent a race
1661 * with configfs_d_iput() clearing
1662 * s_dentry before calling iput().
1663 *
1664 * Why do we go to the trouble? If
1665 * someone has an attribute file open,
1666 * the inode number should match until
1667 * they close it. Beyond that, we don't
1668 * care.
1669 */
1670 dentry = next->s_dentry;
1671 if (dentry)
1672 inode = d_inode(dentry);
1673 if (inode)
1674 ino = inode->i_ino;
1675 spin_unlock(&configfs_dirent_lock);
1676 if (!inode)
1677 ino = iunique(sb, 2);
1678
1679 name = configfs_get_name(next);
1680 len = strlen(name);
1681
1682 if (!dir_emit(ctx, name, len, ino,
1683 fs_umode_to_dtype(next->s_mode)))
1684 return 0;
1685
1686 spin_lock(&configfs_dirent_lock);
1687 list_move(q, p);
1688 p = q;
1689 ctx->pos++;
1690 }
1691 spin_unlock(&configfs_dirent_lock);
1692 return 0;
1693 }
1694
configfs_dir_lseek(struct file * file,loff_t offset,int whence)1695 static loff_t configfs_dir_lseek(struct file *file, loff_t offset, int whence)
1696 {
1697 struct dentry * dentry = file->f_path.dentry;
1698
1699 switch (whence) {
1700 case 1:
1701 offset += file->f_pos;
1702 fallthrough;
1703 case 0:
1704 if (offset >= 0)
1705 break;
1706 fallthrough;
1707 default:
1708 return -EINVAL;
1709 }
1710 if (offset != file->f_pos) {
1711 file->f_pos = offset;
1712 if (file->f_pos >= 2) {
1713 struct configfs_dirent *sd = dentry->d_fsdata;
1714 struct configfs_dirent *cursor = file->private_data;
1715 struct list_head *p;
1716 loff_t n = file->f_pos - 2;
1717
1718 spin_lock(&configfs_dirent_lock);
1719 list_del(&cursor->s_sibling);
1720 p = sd->s_children.next;
1721 while (n && p != &sd->s_children) {
1722 struct configfs_dirent *next;
1723 next = list_entry(p, struct configfs_dirent,
1724 s_sibling);
1725 if (next->s_element)
1726 n--;
1727 p = p->next;
1728 }
1729 list_add_tail(&cursor->s_sibling, p);
1730 spin_unlock(&configfs_dirent_lock);
1731 }
1732 }
1733 return offset;
1734 }
1735
1736 const struct file_operations configfs_dir_operations = {
1737 .open = configfs_dir_open,
1738 .release = configfs_dir_close,
1739 .llseek = configfs_dir_lseek,
1740 .read = generic_read_dir,
1741 .iterate_shared = configfs_readdir,
1742 };
1743
1744 /**
1745 * configfs_register_group - creates a parent-child relation between two groups
1746 * @parent_group: parent group
1747 * @group: child group
1748 *
1749 * link groups, creates dentry for the child and attaches it to the
1750 * parent dentry.
1751 *
1752 * Return: 0 on success, negative errno code on error
1753 */
configfs_register_group(struct config_group * parent_group,struct config_group * group)1754 int configfs_register_group(struct config_group *parent_group,
1755 struct config_group *group)
1756 {
1757 struct configfs_subsystem *subsys = parent_group->cg_subsys;
1758 struct dentry *parent;
1759 struct configfs_fragment *frag;
1760 int ret;
1761
1762 frag = new_fragment();
1763 if (!frag)
1764 return -ENOMEM;
1765
1766 mutex_lock(&subsys->su_mutex);
1767 link_group(parent_group, group);
1768 mutex_unlock(&subsys->su_mutex);
1769
1770 parent = parent_group->cg_item.ci_dentry;
1771
1772 inode_lock_nested(d_inode(parent), I_MUTEX_PARENT);
1773 ret = create_default_group(parent_group, group, frag);
1774 if (ret)
1775 goto err_out;
1776
1777 spin_lock(&configfs_dirent_lock);
1778 configfs_dir_set_ready(group->cg_item.ci_dentry->d_fsdata);
1779 spin_unlock(&configfs_dirent_lock);
1780 inode_unlock(d_inode(parent));
1781 put_fragment(frag);
1782 return 0;
1783 err_out:
1784 inode_unlock(d_inode(parent));
1785 mutex_lock(&subsys->su_mutex);
1786 unlink_group(group);
1787 mutex_unlock(&subsys->su_mutex);
1788 put_fragment(frag);
1789 return ret;
1790 }
1791 EXPORT_SYMBOL(configfs_register_group);
1792
1793 /**
1794 * configfs_unregister_group() - unregisters a child group from its parent
1795 * @group: parent group to be unregistered
1796 *
1797 * Undoes configfs_register_group()
1798 */
configfs_unregister_group(struct config_group * group)1799 void configfs_unregister_group(struct config_group *group)
1800 {
1801 struct configfs_subsystem *subsys = group->cg_subsys;
1802 struct dentry *dentry = group->cg_item.ci_dentry;
1803 struct dentry *parent = group->cg_item.ci_parent->ci_dentry;
1804 struct configfs_dirent *sd = dentry->d_fsdata;
1805 struct configfs_fragment *frag = sd->s_frag;
1806
1807 down_write(&frag->frag_sem);
1808 frag->frag_dead = true;
1809 up_write(&frag->frag_sem);
1810
1811 inode_lock_nested(d_inode(parent), I_MUTEX_PARENT);
1812 spin_lock(&configfs_dirent_lock);
1813 configfs_detach_prep(dentry, NULL);
1814 spin_unlock(&configfs_dirent_lock);
1815
1816 configfs_detach_group(&group->cg_item);
1817 d_inode(dentry)->i_flags |= S_DEAD;
1818 dont_mount(dentry);
1819 d_drop(dentry);
1820 fsnotify_rmdir(d_inode(parent), dentry);
1821 inode_unlock(d_inode(parent));
1822
1823 dput(dentry);
1824
1825 mutex_lock(&subsys->su_mutex);
1826 unlink_group(group);
1827 mutex_unlock(&subsys->su_mutex);
1828 }
1829 EXPORT_SYMBOL(configfs_unregister_group);
1830
1831 /**
1832 * configfs_register_default_group() - allocates and registers a child group
1833 * @parent_group: parent group
1834 * @name: child group name
1835 * @item_type: child item type description
1836 *
1837 * boilerplate to allocate and register a child group with its parent. We need
1838 * kzalloc'ed memory because child's default_group is initially empty.
1839 *
1840 * Return: allocated config group or ERR_PTR() on error
1841 */
1842 struct config_group *
configfs_register_default_group(struct config_group * parent_group,const char * name,const struct config_item_type * item_type)1843 configfs_register_default_group(struct config_group *parent_group,
1844 const char *name,
1845 const struct config_item_type *item_type)
1846 {
1847 int ret;
1848 struct config_group *group;
1849
1850 group = kzalloc(sizeof(*group), GFP_KERNEL);
1851 if (!group)
1852 return ERR_PTR(-ENOMEM);
1853 config_group_init_type_name(group, name, item_type);
1854
1855 ret = configfs_register_group(parent_group, group);
1856 if (ret) {
1857 kfree(group);
1858 return ERR_PTR(ret);
1859 }
1860 return group;
1861 }
1862 EXPORT_SYMBOL(configfs_register_default_group);
1863
1864 /**
1865 * configfs_unregister_default_group() - unregisters and frees a child group
1866 * @group: the group to act on
1867 */
configfs_unregister_default_group(struct config_group * group)1868 void configfs_unregister_default_group(struct config_group *group)
1869 {
1870 configfs_unregister_group(group);
1871 kfree(group);
1872 }
1873 EXPORT_SYMBOL(configfs_unregister_default_group);
1874
configfs_register_subsystem(struct configfs_subsystem * subsys)1875 int configfs_register_subsystem(struct configfs_subsystem *subsys)
1876 {
1877 int err;
1878 struct config_group *group = &subsys->su_group;
1879 struct dentry *dentry;
1880 struct dentry *root;
1881 struct configfs_dirent *sd;
1882 struct configfs_fragment *frag;
1883
1884 frag = new_fragment();
1885 if (!frag)
1886 return -ENOMEM;
1887
1888 root = configfs_pin_fs();
1889 if (IS_ERR(root)) {
1890 put_fragment(frag);
1891 return PTR_ERR(root);
1892 }
1893
1894 if (!group->cg_item.ci_name)
1895 group->cg_item.ci_name = group->cg_item.ci_namebuf;
1896
1897 sd = root->d_fsdata;
1898 mutex_lock(&configfs_subsystem_mutex);
1899 link_group(to_config_group(sd->s_element), group);
1900 mutex_unlock(&configfs_subsystem_mutex);
1901
1902 inode_lock_nested(d_inode(root), I_MUTEX_PARENT);
1903
1904 err = -ENOMEM;
1905 dentry = d_alloc_name(root, group->cg_item.ci_name);
1906 if (dentry) {
1907 d_add(dentry, NULL);
1908
1909 err = configfs_dirent_exists(dentry);
1910 if (!err)
1911 err = configfs_attach_group(sd->s_element,
1912 &group->cg_item,
1913 dentry, frag);
1914 if (err) {
1915 BUG_ON(d_inode(dentry));
1916 d_drop(dentry);
1917 dput(dentry);
1918 } else {
1919 spin_lock(&configfs_dirent_lock);
1920 configfs_dir_set_ready(dentry->d_fsdata);
1921 spin_unlock(&configfs_dirent_lock);
1922 }
1923 }
1924
1925 inode_unlock(d_inode(root));
1926
1927 if (err) {
1928 mutex_lock(&configfs_subsystem_mutex);
1929 unlink_group(group);
1930 mutex_unlock(&configfs_subsystem_mutex);
1931 configfs_release_fs();
1932 }
1933 put_fragment(frag);
1934
1935 return err;
1936 }
1937
configfs_unregister_subsystem(struct configfs_subsystem * subsys)1938 void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
1939 {
1940 struct config_group *group = &subsys->su_group;
1941 struct dentry *dentry = group->cg_item.ci_dentry;
1942 struct dentry *root = dentry->d_sb->s_root;
1943 struct configfs_dirent *sd = dentry->d_fsdata;
1944 struct configfs_fragment *frag = sd->s_frag;
1945
1946 if (dentry->d_parent != root) {
1947 pr_err("Tried to unregister non-subsystem!\n");
1948 return;
1949 }
1950
1951 down_write(&frag->frag_sem);
1952 frag->frag_dead = true;
1953 up_write(&frag->frag_sem);
1954
1955 inode_lock_nested(d_inode(root),
1956 I_MUTEX_PARENT);
1957 inode_lock_nested(d_inode(dentry), I_MUTEX_CHILD);
1958 mutex_lock(&configfs_symlink_mutex);
1959 spin_lock(&configfs_dirent_lock);
1960 if (configfs_detach_prep(dentry, NULL)) {
1961 pr_err("Tried to unregister non-empty subsystem!\n");
1962 }
1963 spin_unlock(&configfs_dirent_lock);
1964 mutex_unlock(&configfs_symlink_mutex);
1965 configfs_detach_group(&group->cg_item);
1966 d_inode(dentry)->i_flags |= S_DEAD;
1967 dont_mount(dentry);
1968 inode_unlock(d_inode(dentry));
1969
1970 d_drop(dentry);
1971 fsnotify_rmdir(d_inode(root), dentry);
1972
1973 inode_unlock(d_inode(root));
1974
1975 dput(dentry);
1976
1977 mutex_lock(&configfs_subsystem_mutex);
1978 unlink_group(group);
1979 mutex_unlock(&configfs_subsystem_mutex);
1980 configfs_release_fs();
1981 }
1982
1983 EXPORT_SYMBOL(configfs_register_subsystem);
1984 EXPORT_SYMBOL(configfs_unregister_subsystem);
1985