1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27
28 #include <asm/byteorder.h>
29
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 ((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 if (t->is_split_transaction)
42 return del_timer(&t->split_timeout_timer);
43 else
44 return 1;
45 }
46
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 u32 response_tstamp)
49 {
50 struct fw_transaction *t = NULL, *iter;
51
52 scoped_guard(spinlock_irqsave, &card->lock) {
53 list_for_each_entry(iter, &card->transaction_list, link) {
54 if (iter == transaction) {
55 if (try_cancel_split_timeout(iter)) {
56 list_del_init(&iter->link);
57 card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 t = iter;
59 }
60 break;
61 }
62 }
63 }
64
65 if (!t)
66 return -ENOENT;
67
68 if (!t->with_tstamp) {
69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 } else {
71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 t->callback_data);
73 }
74
75 return 0;
76 }
77
78 /*
79 * Only valid for transactions that are potentially pending (ie have
80 * been sent).
81 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)82 int fw_cancel_transaction(struct fw_card *card,
83 struct fw_transaction *transaction)
84 {
85 u32 tstamp;
86
87 /*
88 * Cancel the packet transmission if it's still queued. That
89 * will call the packet transmission callback which cancels
90 * the transaction.
91 */
92
93 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 return 0;
95
96 /*
97 * If the request packet has already been sent, we need to see
98 * if the transaction is still pending and remove it in that case.
99 */
100
101 if (transaction->packet.ack == 0) {
102 // The timestamp is reused since it was just read now.
103 tstamp = transaction->packet.timestamp;
104 } else {
105 u32 curr_cycle_time = 0;
106
107 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 }
110
111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112 }
113 EXPORT_SYMBOL(fw_cancel_transaction);
114
split_transaction_timeout_callback(struct timer_list * timer)115 static void split_transaction_timeout_callback(struct timer_list *timer)
116 {
117 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
118 struct fw_card *card = t->card;
119
120 scoped_guard(spinlock_irqsave, &card->lock) {
121 if (list_empty(&t->link))
122 return;
123 list_del(&t->link);
124 card->tlabel_mask &= ~(1ULL << t->tlabel);
125 }
126
127 if (!t->with_tstamp) {
128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 } else {
130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 t->split_timeout_cycle, NULL, 0, t->callback_data);
132 }
133 }
134
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)135 static void start_split_transaction_timeout(struct fw_transaction *t,
136 struct fw_card *card)
137 {
138 guard(spinlock_irqsave)(&card->lock);
139
140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 return;
142
143 t->is_split_transaction = true;
144 mod_timer(&t->split_timeout_timer,
145 jiffies + card->split_timeout_jiffies);
146 }
147
148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)150 static void transmit_complete_callback(struct fw_packet *packet,
151 struct fw_card *card, int status)
152 {
153 struct fw_transaction *t =
154 container_of(packet, struct fw_transaction, packet);
155
156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 packet->speed, status, packet->timestamp);
158
159 switch (status) {
160 case ACK_COMPLETE:
161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 break;
163 case ACK_PENDING:
164 {
165 t->split_timeout_cycle =
166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 start_split_transaction_timeout(t, card);
168 break;
169 }
170 case ACK_BUSY_X:
171 case ACK_BUSY_A:
172 case ACK_BUSY_B:
173 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 break;
175 case ACK_DATA_ERROR:
176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 break;
178 case ACK_TYPE_ERROR:
179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 break;
181 default:
182 /*
183 * In this case the ack is really a juju specific
184 * rcode, so just forward that to the callback.
185 */
186 close_transaction(t, card, status, packet->timestamp);
187 break;
188 }
189 }
190
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 int destination_id, int source_id, int generation, int speed,
193 unsigned long long offset, void *payload, size_t length)
194 {
195 int ext_tcode;
196
197 if (tcode == TCODE_STREAM_DATA) {
198 // The value of destination_id argument should include tag, channel, and sy fields
199 // as isochronous packet header has.
200 packet->header[0] = destination_id;
201 isoc_header_set_data_length(packet->header, length);
202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 packet->header_length = 4;
204 packet->payload = payload;
205 packet->payload_length = length;
206
207 goto common;
208 }
209
210 if (tcode > 0x10) {
211 ext_tcode = tcode & ~0x10;
212 tcode = TCODE_LOCK_REQUEST;
213 } else
214 ext_tcode = 0;
215
216 async_header_set_retry(packet->header, RETRY_X);
217 async_header_set_tlabel(packet->header, tlabel);
218 async_header_set_tcode(packet->header, tcode);
219 async_header_set_destination(packet->header, destination_id);
220 async_header_set_source(packet->header, source_id);
221 async_header_set_offset(packet->header, offset);
222
223 switch (tcode) {
224 case TCODE_WRITE_QUADLET_REQUEST:
225 async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 packet->header_length = 16;
227 packet->payload_length = 0;
228 break;
229
230 case TCODE_LOCK_REQUEST:
231 case TCODE_WRITE_BLOCK_REQUEST:
232 async_header_set_data_length(packet->header, length);
233 async_header_set_extended_tcode(packet->header, ext_tcode);
234 packet->header_length = 16;
235 packet->payload = payload;
236 packet->payload_length = length;
237 break;
238
239 case TCODE_READ_QUADLET_REQUEST:
240 packet->header_length = 12;
241 packet->payload_length = 0;
242 break;
243
244 case TCODE_READ_BLOCK_REQUEST:
245 async_header_set_data_length(packet->header, length);
246 async_header_set_extended_tcode(packet->header, ext_tcode);
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 default:
252 WARN(1, "wrong tcode %d\n", tcode);
253 }
254 common:
255 packet->speed = speed;
256 packet->generation = generation;
257 packet->ack = 0;
258 packet->payload_mapped = false;
259 }
260
allocate_tlabel(struct fw_card * card)261 static int allocate_tlabel(struct fw_card *card)
262 {
263 int tlabel;
264
265 tlabel = card->current_tlabel;
266 while (card->tlabel_mask & (1ULL << tlabel)) {
267 tlabel = (tlabel + 1) & 0x3f;
268 if (tlabel == card->current_tlabel)
269 return -EBUSY;
270 }
271
272 card->current_tlabel = (tlabel + 1) & 0x3f;
273 card->tlabel_mask |= 1ULL << tlabel;
274
275 return tlabel;
276 }
277
278 /**
279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
280 * subaction with or without time stamp.
281 * @card: interface to send the request at
282 * @t: transaction instance to which the request belongs
283 * @tcode: transaction code
284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
285 * @generation: bus generation in which request and response are valid
286 * @speed: transmission speed
287 * @offset: 48bit wide offset into destination's address space
288 * @payload: data payload for the request subaction
289 * @length: length of the payload, in bytes
290 * @callback: union of two functions whether to receive time stamp or not for response
291 * subaction.
292 * @with_tstamp: Whether to receive time stamp or not for response subaction.
293 * @callback_data: data to be passed to the transaction completion callback
294 *
295 * Submit a request packet into the asynchronous request transmission queue.
296 * Can be called from atomic context. If you prefer a blocking API, use
297 * fw_run_transaction() in a context that can sleep.
298 *
299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301 *
302 * Make sure that the value in @destination_id is not older than the one in
303 * @generation. Otherwise the request is in danger to be sent to a wrong node.
304 *
305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307 * It will contain tag, channel, and sy data instead of a node ID then.
308 *
309 * The payload buffer at @data is going to be DMA-mapped except in case of
310 * @length <= 8 or of local (loopback) requests. Hence make sure that the
311 * buffer complies with the restrictions of the streaming DMA mapping API.
312 * @payload must not be freed before the @callback is called.
313 *
314 * In case of request types without payload, @data is NULL and @length is 0.
315 *
316 * After the transaction is completed successfully or unsuccessfully, the
317 * @callback will be called. Among its parameters is the response code which
318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322 * generation, or missing ACK respectively.
323 *
324 * Note some timing corner cases: fw_send_request() may complete much earlier
325 * than when the request packet actually hits the wire. On the other hand,
326 * transaction completion and hence execution of @callback may happen even
327 * before fw_send_request() returns.
328 */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 int destination_id, int generation, int speed, unsigned long long offset,
331 void *payload, size_t length, union fw_transaction_callback callback,
332 bool with_tstamp, void *callback_data)
333 {
334 unsigned long flags;
335 int tlabel;
336
337 /*
338 * Allocate tlabel from the bitmap and put the transaction on
339 * the list while holding the card spinlock.
340 */
341
342 spin_lock_irqsave(&card->lock, flags);
343
344 tlabel = allocate_tlabel(card);
345 if (tlabel < 0) {
346 spin_unlock_irqrestore(&card->lock, flags);
347 if (!with_tstamp) {
348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 } else {
350 // Timestamping on behalf of hardware.
351 u32 curr_cycle_time = 0;
352 u32 tstamp;
353
354 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356
357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 callback_data);
359 }
360 return;
361 }
362
363 t->node_id = destination_id;
364 t->tlabel = tlabel;
365 t->card = card;
366 t->is_split_transaction = false;
367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 t->callback = callback;
369 t->with_tstamp = with_tstamp;
370 t->callback_data = callback_data;
371
372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 speed, offset, payload, length);
374 t->packet.callback = transmit_complete_callback;
375
376 list_add_tail(&t->link, &card->transaction_list);
377
378 spin_unlock_irqrestore(&card->lock, flags);
379
380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 t->packet.header, payload,
382 tcode_is_read_request(tcode) ? 0 : length / 4);
383
384 card->driver->send_request(card, &t->packet);
385 }
386 EXPORT_SYMBOL_GPL(__fw_send_request);
387
388 struct transaction_callback_data {
389 struct completion done;
390 void *payload;
391 int rcode;
392 };
393
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)394 static void transaction_callback(struct fw_card *card, int rcode,
395 void *payload, size_t length, void *data)
396 {
397 struct transaction_callback_data *d = data;
398
399 if (rcode == RCODE_COMPLETE)
400 memcpy(d->payload, payload, length);
401 d->rcode = rcode;
402 complete(&d->done);
403 }
404
405 /**
406 * fw_run_transaction() - send request and sleep until transaction is completed
407 * @card: card interface for this request
408 * @tcode: transaction code
409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
410 * @generation: bus generation in which request and response are valid
411 * @speed: transmission speed
412 * @offset: 48bit wide offset into destination's address space
413 * @payload: data payload for the request subaction
414 * @length: length of the payload, in bytes
415 *
416 * Returns the RCODE. See fw_send_request() for parameter documentation.
417 * Unlike fw_send_request(), @data points to the payload of the request or/and
418 * to the payload of the response. DMA mapping restrictions apply to outbound
419 * request payloads of >= 8 bytes but not to inbound response payloads.
420 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 int generation, int speed, unsigned long long offset,
423 void *payload, size_t length)
424 {
425 struct transaction_callback_data d;
426 struct fw_transaction t;
427
428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 init_completion(&d.done);
430 d.payload = payload;
431 fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 offset, payload, length, transaction_callback, &d);
433 wait_for_completion(&d.done);
434 destroy_timer_on_stack(&t.split_timeout_timer);
435
436 return d.rcode;
437 }
438 EXPORT_SYMBOL(fw_run_transaction);
439
440 static DEFINE_MUTEX(phy_config_mutex);
441 static DECLARE_COMPLETION(phy_config_done);
442
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)443 static void transmit_phy_packet_callback(struct fw_packet *packet,
444 struct fw_card *card, int status)
445 {
446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 packet->timestamp);
448 complete(&phy_config_done);
449 }
450
451 static struct fw_packet phy_config_packet = {
452 .header_length = 12,
453 .payload_length = 0,
454 .speed = SCODE_100,
455 .callback = transmit_phy_packet_callback,
456 };
457
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)458 void fw_send_phy_config(struct fw_card *card,
459 int node_id, int generation, int gap_count)
460 {
461 long timeout = DIV_ROUND_UP(HZ, 10);
462 u32 data = 0;
463
464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465
466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 phy_packet_phy_config_set_root_id(&data, node_id);
468 phy_packet_phy_config_set_force_root_node(&data, true);
469 }
470
471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 gap_count = card->driver->read_phy_reg(card, 1);
473 if (gap_count < 0)
474 return;
475
476 gap_count &= 63;
477 if (gap_count == 63)
478 return;
479 }
480 phy_packet_phy_config_set_gap_count(&data, gap_count);
481 phy_packet_phy_config_set_gap_count_optimization(&data, true);
482
483 guard(mutex)(&phy_config_mutex);
484
485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 phy_config_packet.header[1] = data;
487 phy_config_packet.header[2] = ~data;
488 phy_config_packet.generation = generation;
489 reinit_completion(&phy_config_done);
490
491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 phy_config_packet.generation, phy_config_packet.header[1],
493 phy_config_packet.header[2]);
494
495 card->driver->send_request(card, &phy_config_packet);
496 wait_for_completion_timeout(&phy_config_done, timeout);
497 }
498
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)499 static struct fw_address_handler *lookup_overlapping_address_handler(
500 struct list_head *list, unsigned long long offset, size_t length)
501 {
502 struct fw_address_handler *handler;
503
504 list_for_each_entry_rcu(handler, list, link) {
505 if (handler->offset < offset + length &&
506 offset < handler->offset + handler->length)
507 return handler;
508 }
509
510 return NULL;
511 }
512
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)513 static bool is_enclosing_handler(struct fw_address_handler *handler,
514 unsigned long long offset, size_t length)
515 {
516 return handler->offset <= offset &&
517 offset + length <= handler->offset + handler->length;
518 }
519
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)520 static struct fw_address_handler *lookup_enclosing_address_handler(
521 struct list_head *list, unsigned long long offset, size_t length)
522 {
523 struct fw_address_handler *handler;
524
525 list_for_each_entry_rcu(handler, list, link) {
526 if (is_enclosing_handler(handler, offset, length))
527 return handler;
528 }
529
530 return NULL;
531 }
532
533 static DEFINE_SPINLOCK(address_handler_list_lock);
534 static LIST_HEAD(address_handler_list);
535
536 const struct fw_address_region fw_high_memory_region =
537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538 EXPORT_SYMBOL(fw_high_memory_region);
539
540 static const struct fw_address_region low_memory_region =
541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542
543 #if 0
544 const struct fw_address_region fw_private_region =
545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
546 const struct fw_address_region fw_csr_region =
547 { .start = CSR_REGISTER_BASE,
548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
549 const struct fw_address_region fw_unit_space_region =
550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551 #endif /* 0 */
552
553 /**
554 * fw_core_add_address_handler() - register for incoming requests
555 * @handler: callback
556 * @region: region in the IEEE 1212 node space address range
557 *
558 * region->start, ->end, and handler->length have to be quadlet-aligned.
559 *
560 * When a request is received that falls within the specified address range,
561 * the specified callback is invoked. The parameters passed to the callback
562 * give the details of the particular request.
563 *
564 * To be called in process context.
565 * Return value: 0 on success, non-zero otherwise.
566 *
567 * The start offset of the handler's address region is determined by
568 * fw_core_add_address_handler() and is returned in handler->offset.
569 *
570 * Address allocations are exclusive, except for the FCP registers.
571 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)572 int fw_core_add_address_handler(struct fw_address_handler *handler,
573 const struct fw_address_region *region)
574 {
575 struct fw_address_handler *other;
576 int ret = -EBUSY;
577
578 if (region->start & 0xffff000000000003ULL ||
579 region->start >= region->end ||
580 region->end > 0x0001000000000000ULL ||
581 handler->length & 3 ||
582 handler->length == 0)
583 return -EINVAL;
584
585 guard(spinlock)(&address_handler_list_lock);
586
587 handler->offset = region->start;
588 while (handler->offset + handler->length <= region->end) {
589 if (is_in_fcp_region(handler->offset, handler->length))
590 other = NULL;
591 else
592 other = lookup_overlapping_address_handler
593 (&address_handler_list,
594 handler->offset, handler->length);
595 if (other != NULL) {
596 handler->offset += other->length;
597 } else {
598 list_add_tail_rcu(&handler->link, &address_handler_list);
599 ret = 0;
600 break;
601 }
602 }
603
604 return ret;
605 }
606 EXPORT_SYMBOL(fw_core_add_address_handler);
607
608 /**
609 * fw_core_remove_address_handler() - unregister an address handler
610 * @handler: callback
611 *
612 * To be called in process context.
613 *
614 * When fw_core_remove_address_handler() returns, @handler->callback() is
615 * guaranteed to not run on any CPU anymore.
616 */
fw_core_remove_address_handler(struct fw_address_handler * handler)617 void fw_core_remove_address_handler(struct fw_address_handler *handler)
618 {
619 scoped_guard(spinlock, &address_handler_list_lock)
620 list_del_rcu(&handler->link);
621
622 synchronize_rcu();
623 }
624 EXPORT_SYMBOL(fw_core_remove_address_handler);
625
626 struct fw_request {
627 struct kref kref;
628 struct fw_packet response;
629 u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
630 int ack;
631 u32 timestamp;
632 u32 length;
633 u32 data[];
634 };
635
fw_request_get(struct fw_request * request)636 void fw_request_get(struct fw_request *request)
637 {
638 kref_get(&request->kref);
639 }
640
release_request(struct kref * kref)641 static void release_request(struct kref *kref)
642 {
643 struct fw_request *request = container_of(kref, struct fw_request, kref);
644
645 kfree(request);
646 }
647
fw_request_put(struct fw_request * request)648 void fw_request_put(struct fw_request *request)
649 {
650 kref_put(&request->kref, release_request);
651 }
652
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)653 static void free_response_callback(struct fw_packet *packet,
654 struct fw_card *card, int status)
655 {
656 struct fw_request *request = container_of(packet, struct fw_request, response);
657
658 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
659 packet->speed, status, packet->timestamp);
660
661 // Decrease the reference count since not at in-flight.
662 fw_request_put(request);
663
664 // Decrease the reference count to release the object.
665 fw_request_put(request);
666 }
667
fw_get_response_length(struct fw_request * r)668 int fw_get_response_length(struct fw_request *r)
669 {
670 int tcode, ext_tcode, data_length;
671
672 tcode = async_header_get_tcode(r->request_header);
673
674 switch (tcode) {
675 case TCODE_WRITE_QUADLET_REQUEST:
676 case TCODE_WRITE_BLOCK_REQUEST:
677 return 0;
678
679 case TCODE_READ_QUADLET_REQUEST:
680 return 4;
681
682 case TCODE_READ_BLOCK_REQUEST:
683 data_length = async_header_get_data_length(r->request_header);
684 return data_length;
685
686 case TCODE_LOCK_REQUEST:
687 ext_tcode = async_header_get_extended_tcode(r->request_header);
688 data_length = async_header_get_data_length(r->request_header);
689 switch (ext_tcode) {
690 case EXTCODE_FETCH_ADD:
691 case EXTCODE_LITTLE_ADD:
692 return data_length;
693 default:
694 return data_length / 2;
695 }
696
697 default:
698 WARN(1, "wrong tcode %d\n", tcode);
699 return 0;
700 }
701 }
702
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)703 void fw_fill_response(struct fw_packet *response, u32 *request_header,
704 int rcode, void *payload, size_t length)
705 {
706 int tcode, tlabel, extended_tcode, source, destination;
707
708 tcode = async_header_get_tcode(request_header);
709 tlabel = async_header_get_tlabel(request_header);
710 source = async_header_get_destination(request_header); // Exchange.
711 destination = async_header_get_source(request_header); // Exchange.
712 extended_tcode = async_header_get_extended_tcode(request_header);
713
714 async_header_set_retry(response->header, RETRY_1);
715 async_header_set_tlabel(response->header, tlabel);
716 async_header_set_destination(response->header, destination);
717 async_header_set_source(response->header, source);
718 async_header_set_rcode(response->header, rcode);
719 response->header[2] = 0; // The field is reserved.
720
721 switch (tcode) {
722 case TCODE_WRITE_QUADLET_REQUEST:
723 case TCODE_WRITE_BLOCK_REQUEST:
724 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
725 response->header_length = 12;
726 response->payload_length = 0;
727 break;
728
729 case TCODE_READ_QUADLET_REQUEST:
730 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
731 if (payload != NULL)
732 async_header_set_quadlet_data(response->header, *(u32 *)payload);
733 else
734 async_header_set_quadlet_data(response->header, 0);
735 response->header_length = 16;
736 response->payload_length = 0;
737 break;
738
739 case TCODE_READ_BLOCK_REQUEST:
740 case TCODE_LOCK_REQUEST:
741 async_header_set_tcode(response->header, tcode + 2);
742 async_header_set_data_length(response->header, length);
743 async_header_set_extended_tcode(response->header, extended_tcode);
744 response->header_length = 16;
745 response->payload = payload;
746 response->payload_length = length;
747 break;
748
749 default:
750 WARN(1, "wrong tcode %d\n", tcode);
751 }
752
753 response->payload_mapped = false;
754 }
755 EXPORT_SYMBOL(fw_fill_response);
756
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)757 static u32 compute_split_timeout_timestamp(struct fw_card *card,
758 u32 request_timestamp)
759 {
760 unsigned int cycles;
761 u32 timestamp;
762
763 cycles = card->split_timeout_cycles;
764 cycles += request_timestamp & 0x1fff;
765
766 timestamp = request_timestamp & ~0x1fff;
767 timestamp += (cycles / 8000) << 13;
768 timestamp |= cycles % 8000;
769
770 return timestamp;
771 }
772
allocate_request(struct fw_card * card,struct fw_packet * p)773 static struct fw_request *allocate_request(struct fw_card *card,
774 struct fw_packet *p)
775 {
776 struct fw_request *request;
777 u32 *data, length;
778 int request_tcode;
779
780 request_tcode = async_header_get_tcode(p->header);
781 switch (request_tcode) {
782 case TCODE_WRITE_QUADLET_REQUEST:
783 data = &p->header[3];
784 length = 4;
785 break;
786
787 case TCODE_WRITE_BLOCK_REQUEST:
788 case TCODE_LOCK_REQUEST:
789 data = p->payload;
790 length = async_header_get_data_length(p->header);
791 break;
792
793 case TCODE_READ_QUADLET_REQUEST:
794 data = NULL;
795 length = 4;
796 break;
797
798 case TCODE_READ_BLOCK_REQUEST:
799 data = NULL;
800 length = async_header_get_data_length(p->header);
801 break;
802
803 default:
804 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
805 p->header[0], p->header[1], p->header[2]);
806 return NULL;
807 }
808
809 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
810 if (request == NULL)
811 return NULL;
812 kref_init(&request->kref);
813
814 request->response.speed = p->speed;
815 request->response.timestamp =
816 compute_split_timeout_timestamp(card, p->timestamp);
817 request->response.generation = p->generation;
818 request->response.ack = 0;
819 request->response.callback = free_response_callback;
820 request->ack = p->ack;
821 request->timestamp = p->timestamp;
822 request->length = length;
823 if (data)
824 memcpy(request->data, data, length);
825
826 memcpy(request->request_header, p->header, sizeof(p->header));
827
828 return request;
829 }
830
831 /**
832 * fw_send_response: - send response packet for asynchronous transaction.
833 * @card: interface to send the response at.
834 * @request: firewire request data for the transaction.
835 * @rcode: response code to send.
836 *
837 * Submit a response packet into the asynchronous response transmission queue. The @request
838 * is going to be released when the transmission successfully finishes later.
839 */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)840 void fw_send_response(struct fw_card *card,
841 struct fw_request *request, int rcode)
842 {
843 u32 *data = NULL;
844 unsigned int data_length = 0;
845
846 /* unified transaction or broadcast transaction: don't respond */
847 if (request->ack != ACK_PENDING ||
848 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
849 fw_request_put(request);
850 return;
851 }
852
853 if (rcode == RCODE_COMPLETE) {
854 data = request->data;
855 data_length = fw_get_response_length(request);
856 }
857
858 fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
859
860 // Increase the reference count so that the object is kept during in-flight.
861 fw_request_get(request);
862
863 trace_async_response_outbound_initiate((uintptr_t)request, card->index,
864 request->response.generation, request->response.speed,
865 request->response.header, data,
866 data ? data_length / 4 : 0);
867
868 card->driver->send_response(card, &request->response);
869 }
870 EXPORT_SYMBOL(fw_send_response);
871
872 /**
873 * fw_get_request_speed() - returns speed at which the @request was received
874 * @request: firewire request data
875 */
fw_get_request_speed(struct fw_request * request)876 int fw_get_request_speed(struct fw_request *request)
877 {
878 return request->response.speed;
879 }
880 EXPORT_SYMBOL(fw_get_request_speed);
881
882 /**
883 * fw_request_get_timestamp: Get timestamp of the request.
884 * @request: The opaque pointer to request structure.
885 *
886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
888 * field of isochronous cycle time register.
889 *
890 * Returns: timestamp of the request.
891 */
fw_request_get_timestamp(const struct fw_request * request)892 u32 fw_request_get_timestamp(const struct fw_request *request)
893 {
894 return request->timestamp;
895 }
896 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
897
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)898 static void handle_exclusive_region_request(struct fw_card *card,
899 struct fw_packet *p,
900 struct fw_request *request,
901 unsigned long long offset)
902 {
903 struct fw_address_handler *handler;
904 int tcode, destination, source;
905
906 destination = async_header_get_destination(p->header);
907 source = async_header_get_source(p->header);
908 tcode = async_header_get_tcode(p->header);
909 if (tcode == TCODE_LOCK_REQUEST)
910 tcode = 0x10 + async_header_get_extended_tcode(p->header);
911
912 scoped_guard(rcu) {
913 handler = lookup_enclosing_address_handler(&address_handler_list, offset,
914 request->length);
915 if (handler)
916 handler->address_callback(card, request, tcode, destination, source,
917 p->generation, offset, request->data,
918 request->length, handler->callback_data);
919 }
920
921 if (!handler)
922 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
923 }
924
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)925 static void handle_fcp_region_request(struct fw_card *card,
926 struct fw_packet *p,
927 struct fw_request *request,
928 unsigned long long offset)
929 {
930 struct fw_address_handler *handler;
931 int tcode, destination, source;
932
933 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
934 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
935 request->length > 0x200) {
936 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
937
938 return;
939 }
940
941 tcode = async_header_get_tcode(p->header);
942 destination = async_header_get_destination(p->header);
943 source = async_header_get_source(p->header);
944
945 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
946 tcode != TCODE_WRITE_BLOCK_REQUEST) {
947 fw_send_response(card, request, RCODE_TYPE_ERROR);
948
949 return;
950 }
951
952 scoped_guard(rcu) {
953 list_for_each_entry_rcu(handler, &address_handler_list, link) {
954 if (is_enclosing_handler(handler, offset, request->length))
955 handler->address_callback(card, request, tcode, destination, source,
956 p->generation, offset, request->data,
957 request->length, handler->callback_data);
958 }
959 }
960
961 fw_send_response(card, request, RCODE_COMPLETE);
962 }
963
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)964 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
965 {
966 struct fw_request *request;
967 unsigned long long offset;
968 unsigned int tcode;
969
970 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
971 return;
972
973 tcode = async_header_get_tcode(p->header);
974 if (tcode_is_link_internal(tcode)) {
975 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
976 p->header[1], p->header[2]);
977 fw_cdev_handle_phy_packet(card, p);
978 return;
979 }
980
981 request = allocate_request(card, p);
982 if (request == NULL) {
983 /* FIXME: send statically allocated busy packet. */
984 return;
985 }
986
987 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
988 p->ack, p->timestamp, p->header, request->data,
989 tcode_is_read_request(tcode) ? 0 : request->length / 4);
990
991 offset = async_header_get_offset(p->header);
992
993 if (!is_in_fcp_region(offset, request->length))
994 handle_exclusive_region_request(card, p, request, offset);
995 else
996 handle_fcp_region_request(card, p, request, offset);
997
998 }
999 EXPORT_SYMBOL(fw_core_handle_request);
1000
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1001 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002 {
1003 struct fw_transaction *t = NULL, *iter;
1004 u32 *data;
1005 size_t data_length;
1006 int tcode, tlabel, source, rcode;
1007
1008 tcode = async_header_get_tcode(p->header);
1009 tlabel = async_header_get_tlabel(p->header);
1010 source = async_header_get_source(p->header);
1011 rcode = async_header_get_rcode(p->header);
1012
1013 // FIXME: sanity check packet, is length correct, does tcodes
1014 // and addresses match to the transaction request queried later.
1015 //
1016 // For the tracepoints event, let us decode the header here against the concern.
1017
1018 switch (tcode) {
1019 case TCODE_READ_QUADLET_RESPONSE:
1020 data = (u32 *) &p->header[3];
1021 data_length = 4;
1022 break;
1023
1024 case TCODE_WRITE_RESPONSE:
1025 data = NULL;
1026 data_length = 0;
1027 break;
1028
1029 case TCODE_READ_BLOCK_RESPONSE:
1030 case TCODE_LOCK_RESPONSE:
1031 data = p->payload;
1032 data_length = async_header_get_data_length(p->header);
1033 break;
1034
1035 default:
1036 /* Should never happen, this is just to shut up gcc. */
1037 data = NULL;
1038 data_length = 0;
1039 break;
1040 }
1041
1042 scoped_guard(spinlock_irqsave, &card->lock) {
1043 list_for_each_entry(iter, &card->transaction_list, link) {
1044 if (iter->node_id == source && iter->tlabel == tlabel) {
1045 if (try_cancel_split_timeout(iter)) {
1046 list_del_init(&iter->link);
1047 card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048 t = iter;
1049 }
1050 break;
1051 }
1052 }
1053 }
1054
1055 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056 p->timestamp, p->header, data, data_length / 4);
1057
1058 if (!t) {
1059 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060 source, tlabel);
1061 return;
1062 }
1063
1064 /*
1065 * The response handler may be executed while the request handler
1066 * is still pending. Cancel the request handler.
1067 */
1068 card->driver->cancel_packet(card, &t->packet);
1069
1070 if (!t->with_tstamp) {
1071 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072 } else {
1073 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074 data_length, t->callback_data);
1075 }
1076 }
1077 EXPORT_SYMBOL(fw_core_handle_response);
1078
1079 /**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
fw_rcode_string(int rcode)1083 const char *fw_rcode_string(int rcode)
1084 {
1085 static const char *const names[] = {
1086 [RCODE_COMPLETE] = "no error",
1087 [RCODE_CONFLICT_ERROR] = "conflict error",
1088 [RCODE_DATA_ERROR] = "data error",
1089 [RCODE_TYPE_ERROR] = "type error",
1090 [RCODE_ADDRESS_ERROR] = "address error",
1091 [RCODE_SEND_ERROR] = "send error",
1092 [RCODE_CANCELLED] = "timeout",
1093 [RCODE_BUSY] = "busy",
1094 [RCODE_GENERATION] = "bus reset",
1095 [RCODE_NO_ACK] = "no ack",
1096 };
1097
1098 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099 return names[rcode];
1100 else
1101 return "unknown";
1102 }
1103 EXPORT_SYMBOL(fw_rcode_string);
1104
1105 static const struct fw_address_region topology_map_region =
1106 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1109 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110 int tcode, int destination, int source, int generation,
1111 unsigned long long offset, void *payload, size_t length,
1112 void *callback_data)
1113 {
1114 int start;
1115
1116 if (!tcode_is_read_request(tcode)) {
1117 fw_send_response(card, request, RCODE_TYPE_ERROR);
1118 return;
1119 }
1120
1121 if ((offset & 3) > 0 || (length & 3) > 0) {
1122 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123 return;
1124 }
1125
1126 start = (offset - topology_map_region.start) / 4;
1127 memcpy(payload, &card->topology_map[start], length);
1128
1129 fw_send_response(card, request, RCODE_COMPLETE);
1130 }
1131
1132 static struct fw_address_handler topology_map = {
1133 .length = 0x400,
1134 .address_callback = handle_topology_map,
1135 };
1136
1137 static const struct fw_address_region registers_region =
1138 { .start = CSR_REGISTER_BASE,
1139 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
update_split_timeout(struct fw_card * card)1141 static void update_split_timeout(struct fw_card *card)
1142 {
1143 unsigned int cycles;
1144
1145 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148 cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150 card->split_timeout_cycles = cycles;
1151 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152 }
1153
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1154 static void handle_registers(struct fw_card *card, struct fw_request *request,
1155 int tcode, int destination, int source, int generation,
1156 unsigned long long offset, void *payload, size_t length,
1157 void *callback_data)
1158 {
1159 int reg = offset & ~CSR_REGISTER_BASE;
1160 __be32 *data = payload;
1161 int rcode = RCODE_COMPLETE;
1162
1163 switch (reg) {
1164 case CSR_PRIORITY_BUDGET:
1165 if (!card->priority_budget_implemented) {
1166 rcode = RCODE_ADDRESS_ERROR;
1167 break;
1168 }
1169 fallthrough;
1170
1171 case CSR_NODE_IDS:
1172 /*
1173 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175 */
1176 fallthrough;
1177
1178 case CSR_STATE_CLEAR:
1179 case CSR_STATE_SET:
1180 case CSR_CYCLE_TIME:
1181 case CSR_BUS_TIME:
1182 case CSR_BUSY_TIMEOUT:
1183 if (tcode == TCODE_READ_QUADLET_REQUEST)
1184 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1185 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187 else
1188 rcode = RCODE_TYPE_ERROR;
1189 break;
1190
1191 case CSR_RESET_START:
1192 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193 card->driver->write_csr(card, CSR_STATE_CLEAR,
1194 CSR_STATE_BIT_ABDICATE);
1195 else
1196 rcode = RCODE_TYPE_ERROR;
1197 break;
1198
1199 case CSR_SPLIT_TIMEOUT_HI:
1200 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201 *data = cpu_to_be32(card->split_timeout_hi);
1202 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203 guard(spinlock_irqsave)(&card->lock);
1204
1205 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206 update_split_timeout(card);
1207 } else {
1208 rcode = RCODE_TYPE_ERROR;
1209 }
1210 break;
1211
1212 case CSR_SPLIT_TIMEOUT_LO:
1213 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214 *data = cpu_to_be32(card->split_timeout_lo);
1215 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216 guard(spinlock_irqsave)(&card->lock);
1217
1218 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219 update_split_timeout(card);
1220 } else {
1221 rcode = RCODE_TYPE_ERROR;
1222 }
1223 break;
1224
1225 case CSR_MAINT_UTILITY:
1226 if (tcode == TCODE_READ_QUADLET_REQUEST)
1227 *data = card->maint_utility_register;
1228 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229 card->maint_utility_register = *data;
1230 else
1231 rcode = RCODE_TYPE_ERROR;
1232 break;
1233
1234 case CSR_BROADCAST_CHANNEL:
1235 if (tcode == TCODE_READ_QUADLET_REQUEST)
1236 *data = cpu_to_be32(card->broadcast_channel);
1237 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238 card->broadcast_channel =
1239 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240 BROADCAST_CHANNEL_INITIAL;
1241 else
1242 rcode = RCODE_TYPE_ERROR;
1243 break;
1244
1245 case CSR_BUS_MANAGER_ID:
1246 case CSR_BANDWIDTH_AVAILABLE:
1247 case CSR_CHANNELS_AVAILABLE_HI:
1248 case CSR_CHANNELS_AVAILABLE_LO:
1249 /*
1250 * FIXME: these are handled by the OHCI hardware and
1251 * the stack never sees these request. If we add
1252 * support for a new type of controller that doesn't
1253 * handle this in hardware we need to deal with these
1254 * transactions.
1255 */
1256 BUG();
1257 break;
1258
1259 default:
1260 rcode = RCODE_ADDRESS_ERROR;
1261 break;
1262 }
1263
1264 fw_send_response(card, request, rcode);
1265 }
1266
1267 static struct fw_address_handler registers = {
1268 .length = 0x400,
1269 .address_callback = handle_registers,
1270 };
1271
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1272 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273 int tcode, int destination, int source, int generation,
1274 unsigned long long offset, void *payload, size_t length,
1275 void *callback_data)
1276 {
1277 /*
1278 * This catches requests not handled by the physical DMA unit,
1279 * i.e., wrong transaction types or unauthorized source nodes.
1280 */
1281 fw_send_response(card, request, RCODE_TYPE_ERROR);
1282 }
1283
1284 static struct fw_address_handler low_memory = {
1285 .length = FW_MAX_PHYSICAL_RANGE,
1286 .address_callback = handle_low_memory,
1287 };
1288
1289 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291 MODULE_LICENSE("GPL");
1292
1293 static const u32 vendor_textual_descriptor[] = {
1294 /* textual descriptor leaf () */
1295 0x00060000,
1296 0x00000000,
1297 0x00000000,
1298 0x4c696e75, /* L i n u */
1299 0x78204669, /* x F i */
1300 0x72657769, /* r e w i */
1301 0x72650000, /* r e */
1302 };
1303
1304 static const u32 model_textual_descriptor[] = {
1305 /* model descriptor leaf () */
1306 0x00030000,
1307 0x00000000,
1308 0x00000000,
1309 0x4a756a75, /* J u j u */
1310 };
1311
1312 static struct fw_descriptor vendor_id_descriptor = {
1313 .length = ARRAY_SIZE(vendor_textual_descriptor),
1314 .immediate = 0x03001f11,
1315 .key = 0x81000000,
1316 .data = vendor_textual_descriptor,
1317 };
1318
1319 static struct fw_descriptor model_id_descriptor = {
1320 .length = ARRAY_SIZE(model_textual_descriptor),
1321 .immediate = 0x17023901,
1322 .key = 0x81000000,
1323 .data = model_textual_descriptor,
1324 };
1325
fw_core_init(void)1326 static int __init fw_core_init(void)
1327 {
1328 int ret;
1329
1330 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331 if (!fw_workqueue)
1332 return -ENOMEM;
1333
1334 ret = bus_register(&fw_bus_type);
1335 if (ret < 0) {
1336 destroy_workqueue(fw_workqueue);
1337 return ret;
1338 }
1339
1340 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341 if (fw_cdev_major < 0) {
1342 bus_unregister(&fw_bus_type);
1343 destroy_workqueue(fw_workqueue);
1344 return fw_cdev_major;
1345 }
1346
1347 fw_core_add_address_handler(&topology_map, &topology_map_region);
1348 fw_core_add_address_handler(®isters, ®isters_region);
1349 fw_core_add_address_handler(&low_memory, &low_memory_region);
1350 fw_core_add_descriptor(&vendor_id_descriptor);
1351 fw_core_add_descriptor(&model_id_descriptor);
1352
1353 return 0;
1354 }
1355
fw_core_cleanup(void)1356 static void __exit fw_core_cleanup(void)
1357 {
1358 unregister_chrdev(fw_cdev_major, "firewire");
1359 bus_unregister(&fw_bus_type);
1360 destroy_workqueue(fw_workqueue);
1361 xa_destroy(&fw_device_xa);
1362 }
1363
1364 module_init(fw_core_init);
1365 module_exit(fw_core_cleanup);
1366