1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90
91 #define MAX_IO_MSRS 256
92
93 /*
94 * Note, kvm_caps fields should *never* have default values, all fields must be
95 * recomputed from scratch during vendor module load, e.g. to account for a
96 * vendor module being reloaded with different module parameters.
97 */
98 struct kvm_caps kvm_caps __read_mostly;
99 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
100
101 struct kvm_host_values kvm_host __read_mostly;
102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
103
104 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
105
106 #define emul_to_vcpu(ctxt) \
107 ((struct kvm_vcpu *)(ctxt)->vcpu)
108
109 /* EFER defaults:
110 * - enable syscall per default because its emulated by KVM
111 * - enable LME and LMA per default on 64 bit KVM
112 */
113 #ifdef CONFIG_X86_64
114 static
115 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116 #else
117 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
118 #endif
119
120 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
121
122 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
123
124 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
125 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
126
127 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
128 static void process_nmi(struct kvm_vcpu *vcpu);
129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
130 static void store_regs(struct kvm_vcpu *vcpu);
131 static int sync_regs(struct kvm_vcpu *vcpu);
132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
133
134 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136
137 static DEFINE_MUTEX(vendor_module_lock);
138 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
139 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
140
141 struct kvm_x86_ops kvm_x86_ops __read_mostly;
142
143 #define KVM_X86_OP(func) \
144 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
145 *(((struct kvm_x86_ops *)0)->func));
146 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
147 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
148 #include <asm/kvm-x86-ops.h>
149 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
150 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
151
152 static bool __read_mostly ignore_msrs = 0;
153 module_param(ignore_msrs, bool, 0644);
154
155 bool __read_mostly report_ignored_msrs = true;
156 module_param(report_ignored_msrs, bool, 0644);
157 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
158
159 unsigned int min_timer_period_us = 200;
160 module_param(min_timer_period_us, uint, 0644);
161
162 static bool __read_mostly kvmclock_periodic_sync = true;
163 module_param(kvmclock_periodic_sync, bool, 0444);
164
165 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
166 static u32 __read_mostly tsc_tolerance_ppm = 250;
167 module_param(tsc_tolerance_ppm, uint, 0644);
168
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, 0444);
171 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
172
173 /*
174 * Flags to manipulate forced emulation behavior (any non-zero value will
175 * enable forced emulation).
176 */
177 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
178 static int __read_mostly force_emulation_prefix;
179 module_param(force_emulation_prefix, int, 0644);
180
181 int __read_mostly pi_inject_timer = -1;
182 module_param(pi_inject_timer, bint, 0644);
183
184 /* Enable/disable PMU virtualization */
185 bool __read_mostly enable_pmu = true;
186 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
187 module_param(enable_pmu, bool, 0444);
188
189 bool __read_mostly eager_page_split = true;
190 module_param(eager_page_split, bool, 0644);
191
192 /* Enable/disable SMT_RSB bug mitigation */
193 static bool __read_mostly mitigate_smt_rsb;
194 module_param(mitigate_smt_rsb, bool, 0444);
195
196 /*
197 * Restoring the host value for MSRs that are only consumed when running in
198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199 * returns to userspace, i.e. the kernel can run with the guest's value.
200 */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202
203 struct kvm_user_return_msrs {
204 struct user_return_notifier urn;
205 bool registered;
206 struct kvm_user_return_msr_values {
207 u64 host;
208 u64 curr;
209 } values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216
217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221
222 #define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
223 /*
224 * Note, KVM supports exposing PT to the guest, but does not support context
225 * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
226 * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
227 * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
228 */
229 #define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL)
230
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
233
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
236
237 bool __read_mostly enable_ipiv = true;
238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
239
240 bool __read_mostly enable_device_posted_irqs = true;
241 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
242
243 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
244 KVM_GENERIC_VM_STATS(),
245 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
246 STATS_DESC_COUNTER(VM, mmu_pte_write),
247 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
248 STATS_DESC_COUNTER(VM, mmu_flooded),
249 STATS_DESC_COUNTER(VM, mmu_recycled),
250 STATS_DESC_COUNTER(VM, mmu_cache_miss),
251 STATS_DESC_ICOUNTER(VM, mmu_unsync),
252 STATS_DESC_ICOUNTER(VM, pages_4k),
253 STATS_DESC_ICOUNTER(VM, pages_2m),
254 STATS_DESC_ICOUNTER(VM, pages_1g),
255 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
256 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
257 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
258 };
259
260 const struct kvm_stats_header kvm_vm_stats_header = {
261 .name_size = KVM_STATS_NAME_SIZE,
262 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
263 .id_offset = sizeof(struct kvm_stats_header),
264 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
265 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
266 sizeof(kvm_vm_stats_desc),
267 };
268
269 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
270 KVM_GENERIC_VCPU_STATS(),
271 STATS_DESC_COUNTER(VCPU, pf_taken),
272 STATS_DESC_COUNTER(VCPU, pf_fixed),
273 STATS_DESC_COUNTER(VCPU, pf_emulate),
274 STATS_DESC_COUNTER(VCPU, pf_spurious),
275 STATS_DESC_COUNTER(VCPU, pf_fast),
276 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
277 STATS_DESC_COUNTER(VCPU, pf_guest),
278 STATS_DESC_COUNTER(VCPU, tlb_flush),
279 STATS_DESC_COUNTER(VCPU, invlpg),
280 STATS_DESC_COUNTER(VCPU, exits),
281 STATS_DESC_COUNTER(VCPU, io_exits),
282 STATS_DESC_COUNTER(VCPU, mmio_exits),
283 STATS_DESC_COUNTER(VCPU, signal_exits),
284 STATS_DESC_COUNTER(VCPU, irq_window_exits),
285 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
286 STATS_DESC_COUNTER(VCPU, l1d_flush),
287 STATS_DESC_COUNTER(VCPU, halt_exits),
288 STATS_DESC_COUNTER(VCPU, request_irq_exits),
289 STATS_DESC_COUNTER(VCPU, irq_exits),
290 STATS_DESC_COUNTER(VCPU, host_state_reload),
291 STATS_DESC_COUNTER(VCPU, fpu_reload),
292 STATS_DESC_COUNTER(VCPU, insn_emulation),
293 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
294 STATS_DESC_COUNTER(VCPU, hypercalls),
295 STATS_DESC_COUNTER(VCPU, irq_injections),
296 STATS_DESC_COUNTER(VCPU, nmi_injections),
297 STATS_DESC_COUNTER(VCPU, req_event),
298 STATS_DESC_COUNTER(VCPU, nested_run),
299 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
300 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
301 STATS_DESC_COUNTER(VCPU, preemption_reported),
302 STATS_DESC_COUNTER(VCPU, preemption_other),
303 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
304 STATS_DESC_COUNTER(VCPU, notify_window_exits),
305 };
306
307 const struct kvm_stats_header kvm_vcpu_stats_header = {
308 .name_size = KVM_STATS_NAME_SIZE,
309 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
310 .id_offset = sizeof(struct kvm_stats_header),
311 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
312 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
313 sizeof(kvm_vcpu_stats_desc),
314 };
315
316 static struct kmem_cache *x86_emulator_cache;
317
318 /*
319 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
320 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
321 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
322 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
323 * MSRs that KVM emulates without strictly requiring host support.
324 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
325 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
326 * msrs_to_save and emulated_msrs.
327 */
328
329 static const u32 msrs_to_save_base[] = {
330 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
331 MSR_STAR,
332 #ifdef CONFIG_X86_64
333 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
334 #endif
335 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
336 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
337 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
338 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
339 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
340 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
341 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
342 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
343 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
344 MSR_IA32_UMWAIT_CONTROL,
345
346 MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
347
348 MSR_IA32_U_CET, MSR_IA32_S_CET,
349 MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
350 MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
351 };
352
353 static const u32 msrs_to_save_pmu[] = {
354 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
355 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
356 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
357 MSR_CORE_PERF_GLOBAL_CTRL,
358 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
359
360 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
361 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
362 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
363 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
364 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
365 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
366 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
367 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
368 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
369
370 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
371 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
372
373 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
374 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
375 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
376 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
377 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
378
379 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
380 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
381 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
382 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
383 };
384
385 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
386 ARRAY_SIZE(msrs_to_save_pmu)];
387 static unsigned num_msrs_to_save;
388
389 static const u32 emulated_msrs_all[] = {
390 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
391 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
392
393 #ifdef CONFIG_KVM_HYPERV
394 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
395 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
396 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
397 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
398 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
399 HV_X64_MSR_RESET,
400 HV_X64_MSR_VP_INDEX,
401 HV_X64_MSR_VP_RUNTIME,
402 HV_X64_MSR_SCONTROL,
403 HV_X64_MSR_STIMER0_CONFIG,
404 HV_X64_MSR_VP_ASSIST_PAGE,
405 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
406 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
407 HV_X64_MSR_SYNDBG_OPTIONS,
408 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
409 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
410 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
411 #endif
412
413 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
414 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
415
416 MSR_IA32_TSC_ADJUST,
417 MSR_IA32_TSC_DEADLINE,
418 MSR_IA32_ARCH_CAPABILITIES,
419 MSR_IA32_PERF_CAPABILITIES,
420 MSR_IA32_MISC_ENABLE,
421 MSR_IA32_MCG_STATUS,
422 MSR_IA32_MCG_CTL,
423 MSR_IA32_MCG_EXT_CTL,
424 MSR_IA32_SMBASE,
425 MSR_SMI_COUNT,
426 MSR_PLATFORM_INFO,
427 MSR_MISC_FEATURES_ENABLES,
428 MSR_AMD64_VIRT_SPEC_CTRL,
429 MSR_AMD64_TSC_RATIO,
430 MSR_IA32_POWER_CTL,
431 MSR_IA32_UCODE_REV,
432
433 /*
434 * KVM always supports the "true" VMX control MSRs, even if the host
435 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
436 * doesn't strictly require them to exist in the host (ignoring that
437 * KVM would refuse to load in the first place if the core set of MSRs
438 * aren't supported).
439 */
440 MSR_IA32_VMX_BASIC,
441 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
442 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
443 MSR_IA32_VMX_TRUE_EXIT_CTLS,
444 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
445 MSR_IA32_VMX_MISC,
446 MSR_IA32_VMX_CR0_FIXED0,
447 MSR_IA32_VMX_CR4_FIXED0,
448 MSR_IA32_VMX_VMCS_ENUM,
449 MSR_IA32_VMX_PROCBASED_CTLS2,
450 MSR_IA32_VMX_EPT_VPID_CAP,
451 MSR_IA32_VMX_VMFUNC,
452
453 MSR_K7_HWCR,
454 MSR_KVM_POLL_CONTROL,
455 };
456
457 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
458 static unsigned num_emulated_msrs;
459
460 /*
461 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
462 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
463 * feature MSRs, but are handled separately to allow expedited lookups.
464 */
465 static const u32 msr_based_features_all_except_vmx[] = {
466 MSR_AMD64_DE_CFG,
467 MSR_IA32_UCODE_REV,
468 MSR_IA32_ARCH_CAPABILITIES,
469 MSR_IA32_PERF_CAPABILITIES,
470 MSR_PLATFORM_INFO,
471 };
472
473 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
474 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
475 static unsigned int num_msr_based_features;
476
477 /*
478 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
479 * patch, are immutable once the vCPU model is defined.
480 */
kvm_is_immutable_feature_msr(u32 msr)481 static bool kvm_is_immutable_feature_msr(u32 msr)
482 {
483 int i;
484
485 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
486 return true;
487
488 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
489 if (msr == msr_based_features_all_except_vmx[i])
490 return msr != MSR_IA32_UCODE_REV;
491 }
492
493 return false;
494 }
495
kvm_is_advertised_msr(u32 msr_index)496 static bool kvm_is_advertised_msr(u32 msr_index)
497 {
498 unsigned int i;
499
500 for (i = 0; i < num_msrs_to_save; i++) {
501 if (msrs_to_save[i] == msr_index)
502 return true;
503 }
504
505 for (i = 0; i < num_emulated_msrs; i++) {
506 if (emulated_msrs[i] == msr_index)
507 return true;
508 }
509
510 return false;
511 }
512
513 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
514 bool host_initiated);
515
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)516 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
517 u64 *data, bool host_initiated,
518 enum kvm_msr_access rw,
519 msr_access_t msr_access_fn)
520 {
521 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
522 int ret;
523
524 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
525
526 /*
527 * Zero the data on read failures to avoid leaking stack data to the
528 * guest and/or userspace, e.g. if the failure is ignored below.
529 */
530 ret = msr_access_fn(vcpu, msr, data, host_initiated);
531 if (ret && rw == MSR_TYPE_R)
532 *data = 0;
533
534 if (ret != KVM_MSR_RET_UNSUPPORTED)
535 return ret;
536
537 /*
538 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
539 * advertises to userspace, even if an MSR isn't fully supported.
540 * Simply check that @data is '0', which covers both the write '0' case
541 * and all reads (in which case @data is zeroed on failure; see above).
542 */
543 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
544 return 0;
545
546 if (!ignore_msrs) {
547 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
548 op, msr, *data);
549 return ret;
550 }
551
552 if (report_ignored_msrs)
553 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
554
555 return 0;
556 }
557
kvm_alloc_emulator_cache(void)558 static struct kmem_cache *kvm_alloc_emulator_cache(void)
559 {
560 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
561 unsigned int size = sizeof(struct x86_emulate_ctxt);
562
563 return kmem_cache_create_usercopy("x86_emulator", size,
564 __alignof__(struct x86_emulate_ctxt),
565 SLAB_ACCOUNT, useroffset,
566 size - useroffset, NULL);
567 }
568
569 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
570
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)571 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
572 {
573 int i;
574 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
575 vcpu->arch.apf.gfns[i] = ~0;
576 }
577
kvm_on_user_return(struct user_return_notifier * urn)578 static void kvm_on_user_return(struct user_return_notifier *urn)
579 {
580 unsigned slot;
581 struct kvm_user_return_msrs *msrs
582 = container_of(urn, struct kvm_user_return_msrs, urn);
583 struct kvm_user_return_msr_values *values;
584 unsigned long flags;
585
586 /*
587 * Disabling irqs at this point since the following code could be
588 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
589 */
590 local_irq_save(flags);
591 if (msrs->registered) {
592 msrs->registered = false;
593 user_return_notifier_unregister(urn);
594 }
595 local_irq_restore(flags);
596 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
597 values = &msrs->values[slot];
598 if (values->host != values->curr) {
599 wrmsrq(kvm_uret_msrs_list[slot], values->host);
600 values->curr = values->host;
601 }
602 }
603 }
604
kvm_probe_user_return_msr(u32 msr)605 static int kvm_probe_user_return_msr(u32 msr)
606 {
607 u64 val;
608 int ret;
609
610 preempt_disable();
611 ret = rdmsrq_safe(msr, &val);
612 if (ret)
613 goto out;
614 ret = wrmsrq_safe(msr, val);
615 out:
616 preempt_enable();
617 return ret;
618 }
619
kvm_add_user_return_msr(u32 msr)620 int kvm_add_user_return_msr(u32 msr)
621 {
622 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
623
624 if (kvm_probe_user_return_msr(msr))
625 return -1;
626
627 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
628 return kvm_nr_uret_msrs++;
629 }
630 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
631
kvm_find_user_return_msr(u32 msr)632 int kvm_find_user_return_msr(u32 msr)
633 {
634 int i;
635
636 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
637 if (kvm_uret_msrs_list[i] == msr)
638 return i;
639 }
640 return -1;
641 }
642 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
643
kvm_user_return_msr_cpu_online(void)644 static void kvm_user_return_msr_cpu_online(void)
645 {
646 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
647 u64 value;
648 int i;
649
650 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
651 rdmsrq_safe(kvm_uret_msrs_list[i], &value);
652 msrs->values[i].host = value;
653 msrs->values[i].curr = value;
654 }
655 }
656
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)657 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
658 {
659 if (!msrs->registered) {
660 msrs->urn.on_user_return = kvm_on_user_return;
661 user_return_notifier_register(&msrs->urn);
662 msrs->registered = true;
663 }
664 }
665
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)666 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
667 {
668 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
669 int err;
670
671 value = (value & mask) | (msrs->values[slot].host & ~mask);
672 if (value == msrs->values[slot].curr)
673 return 0;
674 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
675 if (err)
676 return 1;
677
678 msrs->values[slot].curr = value;
679 kvm_user_return_register_notifier(msrs);
680 return 0;
681 }
682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
683
kvm_user_return_msr_update_cache(unsigned int slot,u64 value)684 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
685 {
686 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
687
688 msrs->values[slot].curr = value;
689 kvm_user_return_register_notifier(msrs);
690 }
691 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache);
692
kvm_get_user_return_msr(unsigned int slot)693 u64 kvm_get_user_return_msr(unsigned int slot)
694 {
695 return this_cpu_ptr(user_return_msrs)->values[slot].curr;
696 }
697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
698
drop_user_return_notifiers(void)699 static void drop_user_return_notifiers(void)
700 {
701 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
702
703 if (msrs->registered)
704 kvm_on_user_return(&msrs->urn);
705 }
706
707 /*
708 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
709 *
710 * Hardware virtualization extension instructions may fault if a reboot turns
711 * off virtualization while processes are running. Usually after catching the
712 * fault we just panic; during reboot instead the instruction is ignored.
713 */
kvm_spurious_fault(void)714 noinstr void kvm_spurious_fault(void)
715 {
716 /* Fault while not rebooting. We want the trace. */
717 BUG_ON(!kvm_rebooting);
718 }
719 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
720
721 #define EXCPT_BENIGN 0
722 #define EXCPT_CONTRIBUTORY 1
723 #define EXCPT_PF 2
724
exception_class(int vector)725 static int exception_class(int vector)
726 {
727 switch (vector) {
728 case PF_VECTOR:
729 return EXCPT_PF;
730 case DE_VECTOR:
731 case TS_VECTOR:
732 case NP_VECTOR:
733 case SS_VECTOR:
734 case GP_VECTOR:
735 return EXCPT_CONTRIBUTORY;
736 default:
737 break;
738 }
739 return EXCPT_BENIGN;
740 }
741
742 #define EXCPT_FAULT 0
743 #define EXCPT_TRAP 1
744 #define EXCPT_ABORT 2
745 #define EXCPT_INTERRUPT 3
746 #define EXCPT_DB 4
747
exception_type(int vector)748 static int exception_type(int vector)
749 {
750 unsigned int mask;
751
752 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
753 return EXCPT_INTERRUPT;
754
755 mask = 1 << vector;
756
757 /*
758 * #DBs can be trap-like or fault-like, the caller must check other CPU
759 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
760 */
761 if (mask & (1 << DB_VECTOR))
762 return EXCPT_DB;
763
764 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
765 return EXCPT_TRAP;
766
767 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
768 return EXCPT_ABORT;
769
770 /* Reserved exceptions will result in fault */
771 return EXCPT_FAULT;
772 }
773
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)774 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
775 struct kvm_queued_exception *ex)
776 {
777 if (!ex->has_payload)
778 return;
779
780 switch (ex->vector) {
781 case DB_VECTOR:
782 /*
783 * "Certain debug exceptions may clear bit 0-3. The
784 * remaining contents of the DR6 register are never
785 * cleared by the processor".
786 */
787 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
788 /*
789 * In order to reflect the #DB exception payload in guest
790 * dr6, three components need to be considered: active low
791 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
792 * DR6_BS and DR6_BT)
793 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
794 * In the target guest dr6:
795 * FIXED_1 bits should always be set.
796 * Active low bits should be cleared if 1-setting in payload.
797 * Active high bits should be set if 1-setting in payload.
798 *
799 * Note, the payload is compatible with the pending debug
800 * exceptions/exit qualification under VMX, that active_low bits
801 * are active high in payload.
802 * So they need to be flipped for DR6.
803 */
804 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
805 vcpu->arch.dr6 |= ex->payload;
806 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
807
808 /*
809 * The #DB payload is defined as compatible with the 'pending
810 * debug exceptions' field under VMX, not DR6. While bit 12 is
811 * defined in the 'pending debug exceptions' field (enabled
812 * breakpoint), it is reserved and must be zero in DR6.
813 */
814 vcpu->arch.dr6 &= ~BIT(12);
815 break;
816 case PF_VECTOR:
817 vcpu->arch.cr2 = ex->payload;
818 break;
819 }
820
821 ex->has_payload = false;
822 ex->payload = 0;
823 }
824 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
825
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)826 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
827 bool has_error_code, u32 error_code,
828 bool has_payload, unsigned long payload)
829 {
830 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
831
832 ex->vector = vector;
833 ex->injected = false;
834 ex->pending = true;
835 ex->has_error_code = has_error_code;
836 ex->error_code = error_code;
837 ex->has_payload = has_payload;
838 ex->payload = payload;
839 }
840
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)841 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
842 bool has_error, u32 error_code,
843 bool has_payload, unsigned long payload)
844 {
845 u32 prev_nr;
846 int class1, class2;
847
848 kvm_make_request(KVM_REQ_EVENT, vcpu);
849
850 /*
851 * If the exception is destined for L2, morph it to a VM-Exit if L1
852 * wants to intercept the exception.
853 */
854 if (is_guest_mode(vcpu) &&
855 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
856 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
857 has_payload, payload);
858 return;
859 }
860
861 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
862 queue:
863 vcpu->arch.exception.pending = true;
864 vcpu->arch.exception.injected = false;
865
866 vcpu->arch.exception.has_error_code = has_error;
867 vcpu->arch.exception.vector = nr;
868 vcpu->arch.exception.error_code = error_code;
869 vcpu->arch.exception.has_payload = has_payload;
870 vcpu->arch.exception.payload = payload;
871 if (!is_guest_mode(vcpu))
872 kvm_deliver_exception_payload(vcpu,
873 &vcpu->arch.exception);
874 return;
875 }
876
877 /* to check exception */
878 prev_nr = vcpu->arch.exception.vector;
879 if (prev_nr == DF_VECTOR) {
880 /* triple fault -> shutdown */
881 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
882 return;
883 }
884 class1 = exception_class(prev_nr);
885 class2 = exception_class(nr);
886 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
887 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
888 /*
889 * Synthesize #DF. Clear the previously injected or pending
890 * exception so as not to incorrectly trigger shutdown.
891 */
892 vcpu->arch.exception.injected = false;
893 vcpu->arch.exception.pending = false;
894
895 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
896 } else {
897 /* replace previous exception with a new one in a hope
898 that instruction re-execution will regenerate lost
899 exception */
900 goto queue;
901 }
902 }
903
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)904 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
905 {
906 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
907 }
908 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
909
910
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)911 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
912 unsigned long payload)
913 {
914 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
915 }
916 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
917
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)918 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
919 u32 error_code, unsigned long payload)
920 {
921 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
922 }
923
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)924 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
925 bool has_error_code, u32 error_code)
926 {
927
928 /*
929 * On VM-Entry, an exception can be pending if and only if event
930 * injection was blocked by nested_run_pending. In that case, however,
931 * vcpu_enter_guest() requests an immediate exit, and the guest
932 * shouldn't proceed far enough to need reinjection.
933 */
934 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
935
936 /*
937 * Do not check for interception when injecting an event for L2, as the
938 * exception was checked for intercept when it was original queued, and
939 * re-checking is incorrect if _L1_ injected the exception, in which
940 * case it's exempt from interception.
941 */
942 kvm_make_request(KVM_REQ_EVENT, vcpu);
943
944 vcpu->arch.exception.injected = true;
945 vcpu->arch.exception.has_error_code = has_error_code;
946 vcpu->arch.exception.vector = nr;
947 vcpu->arch.exception.error_code = error_code;
948 vcpu->arch.exception.has_payload = false;
949 vcpu->arch.exception.payload = 0;
950 }
951 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
952
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)953 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
954 {
955 if (err)
956 kvm_inject_gp(vcpu, 0);
957 else
958 return kvm_skip_emulated_instruction(vcpu);
959
960 return 1;
961 }
962 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
963
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)964 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
965 {
966 if (err) {
967 kvm_inject_gp(vcpu, 0);
968 return 1;
969 }
970
971 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
972 EMULTYPE_COMPLETE_USER_EXIT);
973 }
974
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)975 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
976 {
977 ++vcpu->stat.pf_guest;
978
979 /*
980 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
981 * whether or not L1 wants to intercept "regular" #PF.
982 */
983 if (is_guest_mode(vcpu) && fault->async_page_fault)
984 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
985 true, fault->error_code,
986 true, fault->address);
987 else
988 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
989 fault->address);
990 }
991
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)992 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
993 struct x86_exception *fault)
994 {
995 struct kvm_mmu *fault_mmu;
996 WARN_ON_ONCE(fault->vector != PF_VECTOR);
997
998 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
999 vcpu->arch.walk_mmu;
1000
1001 /*
1002 * Invalidate the TLB entry for the faulting address, if it exists,
1003 * else the access will fault indefinitely (and to emulate hardware).
1004 */
1005 if ((fault->error_code & PFERR_PRESENT_MASK) &&
1006 !(fault->error_code & PFERR_RSVD_MASK))
1007 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1008 KVM_MMU_ROOT_CURRENT);
1009
1010 fault_mmu->inject_page_fault(vcpu, fault);
1011 }
1012 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1013
kvm_inject_nmi(struct kvm_vcpu * vcpu)1014 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1015 {
1016 atomic_inc(&vcpu->arch.nmi_queued);
1017 kvm_make_request(KVM_REQ_NMI, vcpu);
1018 }
1019
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1020 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1021 {
1022 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1023 }
1024 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1025
1026 /*
1027 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1028 * a #GP and return false.
1029 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1030 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1031 {
1032 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1033 return true;
1034 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1035 return false;
1036 }
1037
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1038 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1039 {
1040 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1041 return true;
1042
1043 kvm_queue_exception(vcpu, UD_VECTOR);
1044 return false;
1045 }
1046 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1047
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1048 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1049 {
1050 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1051 }
1052
1053 /*
1054 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1055 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1056 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1059 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1060 gpa_t real_gpa;
1061 int i;
1062 int ret;
1063 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1064
1065 /*
1066 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1067 * to an L1 GPA.
1068 */
1069 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1070 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1071 if (real_gpa == INVALID_GPA)
1072 return 0;
1073
1074 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1075 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1076 cr3 & GENMASK(11, 5), sizeof(pdpte));
1077 if (ret < 0)
1078 return 0;
1079
1080 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1081 if ((pdpte[i] & PT_PRESENT_MASK) &&
1082 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1083 return 0;
1084 }
1085 }
1086
1087 /*
1088 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1089 * Shadow page roots need to be reconstructed instead.
1090 */
1091 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1092 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1093
1094 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1095 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1096 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1097 vcpu->arch.pdptrs_from_userspace = false;
1098
1099 return 1;
1100 }
1101 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1102
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1103 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1104 {
1105 #ifdef CONFIG_X86_64
1106 if (cr0 & 0xffffffff00000000UL)
1107 return false;
1108 #endif
1109
1110 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1111 return false;
1112
1113 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1114 return false;
1115
1116 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1117 }
1118
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1119 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1120 {
1121 /*
1122 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1123 * indirect shadow MMUs. If paging is disabled, no updates are needed
1124 * as there are no permission bits to emulate. If TDP is enabled, the
1125 * MMU's metadata needs to be updated, e.g. so that emulating guest
1126 * translations does the right thing, but there's no need to unload the
1127 * root as CR0.WP doesn't affect SPTEs.
1128 */
1129 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1130 if (!(cr0 & X86_CR0_PG))
1131 return;
1132
1133 if (tdp_enabled) {
1134 kvm_init_mmu(vcpu);
1135 return;
1136 }
1137 }
1138
1139 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1140 kvm_clear_async_pf_completion_queue(vcpu);
1141 kvm_async_pf_hash_reset(vcpu);
1142
1143 /*
1144 * Clearing CR0.PG is defined to flush the TLB from the guest's
1145 * perspective.
1146 */
1147 if (!(cr0 & X86_CR0_PG))
1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149 }
1150
1151 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1152 kvm_mmu_reset_context(vcpu);
1153 }
1154 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1155
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1157 {
1158 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1159
1160 if (!kvm_is_valid_cr0(vcpu, cr0))
1161 return 1;
1162
1163 cr0 |= X86_CR0_ET;
1164
1165 /* Write to CR0 reserved bits are ignored, even on Intel. */
1166 cr0 &= ~CR0_RESERVED_BITS;
1167
1168 #ifdef CONFIG_X86_64
1169 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1170 (cr0 & X86_CR0_PG)) {
1171 int cs_db, cs_l;
1172
1173 if (!is_pae(vcpu))
1174 return 1;
1175 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1176 if (cs_l)
1177 return 1;
1178 }
1179 #endif
1180 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1181 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1182 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1183 return 1;
1184
1185 if (!(cr0 & X86_CR0_PG) &&
1186 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1187 return 1;
1188
1189 if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1190 return 1;
1191
1192 kvm_x86_call(set_cr0)(vcpu, cr0);
1193
1194 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1199
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1200 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1201 {
1202 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1203 }
1204 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1205
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1206 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1207 {
1208 if (vcpu->arch.guest_state_protected)
1209 return;
1210
1211 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1212
1213 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1214 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1215
1216 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1217 vcpu->arch.ia32_xss != kvm_host.xss)
1218 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1219 }
1220
1221 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1222 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1223 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1224 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1225 wrpkru(vcpu->arch.pkru);
1226 }
1227 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state);
1228
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1229 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1230 {
1231 if (vcpu->arch.guest_state_protected)
1232 return;
1233
1234 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1235 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1236 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1237 vcpu->arch.pkru = rdpkru();
1238 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1239 wrpkru(vcpu->arch.host_pkru);
1240 }
1241
1242 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1243
1244 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1245 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1246
1247 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1248 vcpu->arch.ia32_xss != kvm_host.xss)
1249 wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1250 }
1251
1252 }
1253 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state);
1254
1255 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1256 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1257 {
1258 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1259 }
1260 #endif
1261
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1262 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1263 {
1264 u64 xcr0 = xcr;
1265 u64 old_xcr0 = vcpu->arch.xcr0;
1266 u64 valid_bits;
1267
1268 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1269 if (index != XCR_XFEATURE_ENABLED_MASK)
1270 return 1;
1271 if (!(xcr0 & XFEATURE_MASK_FP))
1272 return 1;
1273 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1274 return 1;
1275
1276 /*
1277 * Do not allow the guest to set bits that we do not support
1278 * saving. However, xcr0 bit 0 is always set, even if the
1279 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1280 */
1281 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1282 if (xcr0 & ~valid_bits)
1283 return 1;
1284
1285 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1286 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1287 return 1;
1288
1289 if (xcr0 & XFEATURE_MASK_AVX512) {
1290 if (!(xcr0 & XFEATURE_MASK_YMM))
1291 return 1;
1292 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1293 return 1;
1294 }
1295
1296 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1297 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1298 return 1;
1299
1300 vcpu->arch.xcr0 = xcr0;
1301
1302 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1303 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1304 return 0;
1305 }
1306 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1307
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1308 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1309 {
1310 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1311 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1312 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1313 kvm_inject_gp(vcpu, 0);
1314 return 1;
1315 }
1316
1317 return kvm_skip_emulated_instruction(vcpu);
1318 }
1319 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1320
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1321 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1322 {
1323 return __kvm_is_valid_cr4(vcpu, cr4) &&
1324 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1325 }
1326
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1327 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1328 {
1329 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1330 kvm_mmu_reset_context(vcpu);
1331
1332 /*
1333 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1334 * according to the SDM; however, stale prev_roots could be reused
1335 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1336 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1337 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1338 * so fall through.
1339 */
1340 if (!tdp_enabled &&
1341 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1342 kvm_mmu_unload(vcpu);
1343
1344 /*
1345 * The TLB has to be flushed for all PCIDs if any of the following
1346 * (architecturally required) changes happen:
1347 * - CR4.PCIDE is changed from 1 to 0
1348 * - CR4.PGE is toggled
1349 *
1350 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1351 */
1352 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1353 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1354 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1355
1356 /*
1357 * The TLB has to be flushed for the current PCID if any of the
1358 * following (architecturally required) changes happen:
1359 * - CR4.SMEP is changed from 0 to 1
1360 * - CR4.PAE is toggled
1361 */
1362 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1363 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1364 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1365
1366 }
1367 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1368
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1369 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1370 {
1371 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1372
1373 if (!kvm_is_valid_cr4(vcpu, cr4))
1374 return 1;
1375
1376 if (is_long_mode(vcpu)) {
1377 if (!(cr4 & X86_CR4_PAE))
1378 return 1;
1379 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1380 return 1;
1381 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1382 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1383 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1384 return 1;
1385
1386 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1387 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1388 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1389 return 1;
1390 }
1391
1392 if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1393 return 1;
1394
1395 kvm_x86_call(set_cr4)(vcpu, cr4);
1396
1397 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1402
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1403 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1404 {
1405 struct kvm_mmu *mmu = vcpu->arch.mmu;
1406 unsigned long roots_to_free = 0;
1407 int i;
1408
1409 /*
1410 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1411 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1412 * also via the emulator. KVM's TDP page tables are not in the scope of
1413 * the invalidation, but the guest's TLB entries need to be flushed as
1414 * the CPU may have cached entries in its TLB for the target PCID.
1415 */
1416 if (unlikely(tdp_enabled)) {
1417 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1418 return;
1419 }
1420
1421 /*
1422 * If neither the current CR3 nor any of the prev_roots use the given
1423 * PCID, then nothing needs to be done here because a resync will
1424 * happen anyway before switching to any other CR3.
1425 */
1426 if (kvm_get_active_pcid(vcpu) == pcid) {
1427 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1428 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1429 }
1430
1431 /*
1432 * If PCID is disabled, there is no need to free prev_roots even if the
1433 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1434 * with PCIDE=0.
1435 */
1436 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1437 return;
1438
1439 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1440 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1441 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1442
1443 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1444 }
1445
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1446 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1447 {
1448 bool skip_tlb_flush = false;
1449 unsigned long pcid = 0;
1450 #ifdef CONFIG_X86_64
1451 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1452 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1453 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1454 pcid = cr3 & X86_CR3_PCID_MASK;
1455 }
1456 #endif
1457
1458 /* PDPTRs are always reloaded for PAE paging. */
1459 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1460 goto handle_tlb_flush;
1461
1462 /*
1463 * Do not condition the GPA check on long mode, this helper is used to
1464 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1465 * the current vCPU mode is accurate.
1466 */
1467 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1468 return 1;
1469
1470 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1471 return 1;
1472
1473 if (cr3 != kvm_read_cr3(vcpu))
1474 kvm_mmu_new_pgd(vcpu, cr3);
1475
1476 vcpu->arch.cr3 = cr3;
1477 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1478 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1479
1480 handle_tlb_flush:
1481 /*
1482 * A load of CR3 that flushes the TLB flushes only the current PCID,
1483 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1484 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1485 * and it's impossible to use a non-zero PCID when PCID is disabled,
1486 * i.e. only PCID=0 can be relevant.
1487 */
1488 if (!skip_tlb_flush)
1489 kvm_invalidate_pcid(vcpu, pcid);
1490
1491 return 0;
1492 }
1493 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1494
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1495 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1496 {
1497 if (cr8 & CR8_RESERVED_BITS)
1498 return 1;
1499 if (lapic_in_kernel(vcpu))
1500 kvm_lapic_set_tpr(vcpu, cr8);
1501 else
1502 vcpu->arch.cr8 = cr8;
1503 return 0;
1504 }
1505 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1506
kvm_get_cr8(struct kvm_vcpu * vcpu)1507 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1508 {
1509 if (lapic_in_kernel(vcpu))
1510 return kvm_lapic_get_cr8(vcpu);
1511 else
1512 return vcpu->arch.cr8;
1513 }
1514 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1515
kvm_update_dr0123(struct kvm_vcpu * vcpu)1516 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1517 {
1518 int i;
1519
1520 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1521 for (i = 0; i < KVM_NR_DB_REGS; i++)
1522 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1523 }
1524 }
1525
kvm_update_dr7(struct kvm_vcpu * vcpu)1526 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1527 {
1528 unsigned long dr7;
1529
1530 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1531 dr7 = vcpu->arch.guest_debug_dr7;
1532 else
1533 dr7 = vcpu->arch.dr7;
1534 kvm_x86_call(set_dr7)(vcpu, dr7);
1535 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1536 if (dr7 & DR7_BP_EN_MASK)
1537 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1538 }
1539 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1540
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1541 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1542 {
1543 u64 fixed = DR6_FIXED_1;
1544
1545 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1546 fixed |= DR6_RTM;
1547
1548 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1549 fixed |= DR6_BUS_LOCK;
1550 return fixed;
1551 }
1552
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1553 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1554 {
1555 size_t size = ARRAY_SIZE(vcpu->arch.db);
1556
1557 switch (dr) {
1558 case 0 ... 3:
1559 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1560 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1561 vcpu->arch.eff_db[dr] = val;
1562 break;
1563 case 4:
1564 case 6:
1565 if (!kvm_dr6_valid(val))
1566 return 1; /* #GP */
1567 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1568 break;
1569 case 5:
1570 default: /* 7 */
1571 if (!kvm_dr7_valid(val))
1572 return 1; /* #GP */
1573 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1574 kvm_update_dr7(vcpu);
1575 break;
1576 }
1577
1578 return 0;
1579 }
1580 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1581
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1582 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1583 {
1584 size_t size = ARRAY_SIZE(vcpu->arch.db);
1585
1586 switch (dr) {
1587 case 0 ... 3:
1588 return vcpu->arch.db[array_index_nospec(dr, size)];
1589 case 4:
1590 case 6:
1591 return vcpu->arch.dr6;
1592 case 5:
1593 default: /* 7 */
1594 return vcpu->arch.dr7;
1595 }
1596 }
1597 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1598
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1599 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1600 {
1601 u32 pmc = kvm_rcx_read(vcpu);
1602 u64 data;
1603
1604 if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1605 kvm_inject_gp(vcpu, 0);
1606 return 1;
1607 }
1608
1609 kvm_rax_write(vcpu, (u32)data);
1610 kvm_rdx_write(vcpu, data >> 32);
1611 return kvm_skip_emulated_instruction(vcpu);
1612 }
1613 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1614
1615 /*
1616 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1617 * does not yet virtualize. These include:
1618 * 10 - MISC_PACKAGE_CTRLS
1619 * 11 - ENERGY_FILTERING_CTL
1620 * 12 - DOITM
1621 * 18 - FB_CLEAR_CTRL
1622 * 21 - XAPIC_DISABLE_STATUS
1623 * 23 - OVERCLOCKING_STATUS
1624 */
1625
1626 #define KVM_SUPPORTED_ARCH_CAP \
1627 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1628 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1629 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1630 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1631 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1632 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1633
kvm_get_arch_capabilities(void)1634 static u64 kvm_get_arch_capabilities(void)
1635 {
1636 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1637
1638 /*
1639 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1640 * the nested hypervisor runs with NX huge pages. If it is not,
1641 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1642 * L1 guests, so it need not worry about its own (L2) guests.
1643 */
1644 data |= ARCH_CAP_PSCHANGE_MC_NO;
1645
1646 /*
1647 * If we're doing cache flushes (either "always" or "cond")
1648 * we will do one whenever the guest does a vmlaunch/vmresume.
1649 * If an outer hypervisor is doing the cache flush for us
1650 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1651 * capability to the guest too, and if EPT is disabled we're not
1652 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1653 * require a nested hypervisor to do a flush of its own.
1654 */
1655 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1656 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1657
1658 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1659 data |= ARCH_CAP_RDCL_NO;
1660 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1661 data |= ARCH_CAP_SSB_NO;
1662 if (!boot_cpu_has_bug(X86_BUG_MDS))
1663 data |= ARCH_CAP_MDS_NO;
1664 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1665 data |= ARCH_CAP_RFDS_NO;
1666 if (!boot_cpu_has_bug(X86_BUG_ITS))
1667 data |= ARCH_CAP_ITS_NO;
1668
1669 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1670 /*
1671 * If RTM=0 because the kernel has disabled TSX, the host might
1672 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1673 * and therefore knows that there cannot be TAA) but keep
1674 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1675 * and we want to allow migrating those guests to tsx=off hosts.
1676 */
1677 data &= ~ARCH_CAP_TAA_NO;
1678 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1679 data |= ARCH_CAP_TAA_NO;
1680 } else {
1681 /*
1682 * Nothing to do here; we emulate TSX_CTRL if present on the
1683 * host so the guest can choose between disabling TSX or
1684 * using VERW to clear CPU buffers.
1685 */
1686 }
1687
1688 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1689 data |= ARCH_CAP_GDS_NO;
1690
1691 return data;
1692 }
1693
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1694 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1695 bool host_initiated)
1696 {
1697 WARN_ON_ONCE(!host_initiated);
1698
1699 switch (index) {
1700 case MSR_IA32_ARCH_CAPABILITIES:
1701 *data = kvm_get_arch_capabilities();
1702 break;
1703 case MSR_IA32_PERF_CAPABILITIES:
1704 *data = kvm_caps.supported_perf_cap;
1705 break;
1706 case MSR_PLATFORM_INFO:
1707 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1708 break;
1709 case MSR_IA32_UCODE_REV:
1710 rdmsrq_safe(index, data);
1711 break;
1712 default:
1713 return kvm_x86_call(get_feature_msr)(index, data);
1714 }
1715 return 0;
1716 }
1717
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1718 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1719 {
1720 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1721 kvm_get_feature_msr);
1722 }
1723
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1724 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1725 {
1726 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1727 return false;
1728
1729 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1730 return false;
1731
1732 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1733 return false;
1734
1735 if (efer & (EFER_LME | EFER_LMA) &&
1736 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1737 return false;
1738
1739 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1740 return false;
1741
1742 return true;
1743
1744 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1745 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1746 {
1747 if (efer & efer_reserved_bits)
1748 return false;
1749
1750 return __kvm_valid_efer(vcpu, efer);
1751 }
1752 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1753
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1754 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1755 {
1756 u64 old_efer = vcpu->arch.efer;
1757 u64 efer = msr_info->data;
1758 int r;
1759
1760 if (efer & efer_reserved_bits)
1761 return 1;
1762
1763 if (!msr_info->host_initiated) {
1764 if (!__kvm_valid_efer(vcpu, efer))
1765 return 1;
1766
1767 if (is_paging(vcpu) &&
1768 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1769 return 1;
1770 }
1771
1772 efer &= ~EFER_LMA;
1773 efer |= vcpu->arch.efer & EFER_LMA;
1774
1775 r = kvm_x86_call(set_efer)(vcpu, efer);
1776 if (r) {
1777 WARN_ON(r > 0);
1778 return r;
1779 }
1780
1781 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1782 kvm_mmu_reset_context(vcpu);
1783
1784 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1785 (efer & EFER_SVME))
1786 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1787
1788 return 0;
1789 }
1790
kvm_enable_efer_bits(u64 mask)1791 void kvm_enable_efer_bits(u64 mask)
1792 {
1793 efer_reserved_bits &= ~mask;
1794 }
1795 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1796
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1797 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1798 {
1799 struct kvm_x86_msr_filter *msr_filter;
1800 struct msr_bitmap_range *ranges;
1801 struct kvm *kvm = vcpu->kvm;
1802 bool allowed;
1803 int idx;
1804 u32 i;
1805
1806 /* x2APIC MSRs do not support filtering. */
1807 if (index >= 0x800 && index <= 0x8ff)
1808 return true;
1809
1810 idx = srcu_read_lock(&kvm->srcu);
1811
1812 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1813 if (!msr_filter) {
1814 allowed = true;
1815 goto out;
1816 }
1817
1818 allowed = msr_filter->default_allow;
1819 ranges = msr_filter->ranges;
1820
1821 for (i = 0; i < msr_filter->count; i++) {
1822 u32 start = ranges[i].base;
1823 u32 end = start + ranges[i].nmsrs;
1824 u32 flags = ranges[i].flags;
1825 unsigned long *bitmap = ranges[i].bitmap;
1826
1827 if ((index >= start) && (index < end) && (flags & type)) {
1828 allowed = test_bit(index - start, bitmap);
1829 break;
1830 }
1831 }
1832
1833 out:
1834 srcu_read_unlock(&kvm->srcu, idx);
1835
1836 return allowed;
1837 }
1838 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1839
1840 /*
1841 * Write @data into the MSR specified by @index. Select MSR specific fault
1842 * checks are bypassed if @host_initiated is %true.
1843 * Returns 0 on success, non-0 otherwise.
1844 * Assumes vcpu_load() was already called.
1845 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1846 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1847 bool host_initiated)
1848 {
1849 struct msr_data msr;
1850
1851 switch (index) {
1852 case MSR_FS_BASE:
1853 case MSR_GS_BASE:
1854 case MSR_KERNEL_GS_BASE:
1855 case MSR_CSTAR:
1856 case MSR_LSTAR:
1857 if (is_noncanonical_msr_address(data, vcpu))
1858 return 1;
1859 break;
1860 case MSR_IA32_SYSENTER_EIP:
1861 case MSR_IA32_SYSENTER_ESP:
1862 /*
1863 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1864 * non-canonical address is written on Intel but not on
1865 * AMD (which ignores the top 32-bits, because it does
1866 * not implement 64-bit SYSENTER).
1867 *
1868 * 64-bit code should hence be able to write a non-canonical
1869 * value on AMD. Making the address canonical ensures that
1870 * vmentry does not fail on Intel after writing a non-canonical
1871 * value, and that something deterministic happens if the guest
1872 * invokes 64-bit SYSENTER.
1873 */
1874 data = __canonical_address(data, max_host_virt_addr_bits());
1875 break;
1876 case MSR_TSC_AUX:
1877 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878 return 1;
1879
1880 if (!host_initiated &&
1881 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1882 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1883 return 1;
1884
1885 /*
1886 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1887 * incomplete and conflicting architectural behavior. Current
1888 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1889 * reserved and always read as zeros. Enforce Intel's reserved
1890 * bits check if the guest CPU is Intel compatible, otherwise
1891 * clear the bits. This ensures cross-vendor migration will
1892 * provide consistent behavior for the guest.
1893 */
1894 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1895 return 1;
1896
1897 data = (u32)data;
1898 break;
1899 case MSR_IA32_U_CET:
1900 case MSR_IA32_S_CET:
1901 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1902 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1903 return KVM_MSR_RET_UNSUPPORTED;
1904 if (!kvm_is_valid_u_s_cet(vcpu, data))
1905 return 1;
1906 break;
1907 case MSR_KVM_INTERNAL_GUEST_SSP:
1908 if (!host_initiated)
1909 return 1;
1910 fallthrough;
1911 /*
1912 * Note that the MSR emulation here is flawed when a vCPU
1913 * doesn't support the Intel 64 architecture. The expected
1914 * architectural behavior in this case is that the upper 32
1915 * bits do not exist and should always read '0'. However,
1916 * because the actual hardware on which the virtual CPU is
1917 * running does support Intel 64, XRSTORS/XSAVES in the
1918 * guest could observe behavior that violates the
1919 * architecture. Intercepting XRSTORS/XSAVES for this
1920 * special case isn't deemed worthwhile.
1921 */
1922 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1923 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1924 return KVM_MSR_RET_UNSUPPORTED;
1925 /*
1926 * MSR_IA32_INT_SSP_TAB is not present on processors that do
1927 * not support Intel 64 architecture.
1928 */
1929 if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1930 return KVM_MSR_RET_UNSUPPORTED;
1931 if (is_noncanonical_msr_address(data, vcpu))
1932 return 1;
1933 /* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1934 if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1935 return 1;
1936 break;
1937 }
1938
1939 msr.data = data;
1940 msr.index = index;
1941 msr.host_initiated = host_initiated;
1942
1943 return kvm_x86_call(set_msr)(vcpu, &msr);
1944 }
1945
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1946 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1947 bool host_initiated)
1948 {
1949 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1950 }
1951
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1952 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1953 u32 index, u64 data, bool host_initiated)
1954 {
1955 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1956 _kvm_set_msr);
1957 }
1958
1959 /*
1960 * Read the MSR specified by @index into @data. Select MSR specific fault
1961 * checks are bypassed if @host_initiated is %true.
1962 * Returns 0 on success, non-0 otherwise.
1963 * Assumes vcpu_load() was already called.
1964 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1965 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1966 bool host_initiated)
1967 {
1968 struct msr_data msr;
1969 int ret;
1970
1971 switch (index) {
1972 case MSR_TSC_AUX:
1973 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1974 return 1;
1975
1976 if (!host_initiated &&
1977 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1978 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1979 return 1;
1980 break;
1981 case MSR_IA32_U_CET:
1982 case MSR_IA32_S_CET:
1983 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1984 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1985 return KVM_MSR_RET_UNSUPPORTED;
1986 break;
1987 case MSR_KVM_INTERNAL_GUEST_SSP:
1988 if (!host_initiated)
1989 return 1;
1990 fallthrough;
1991 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1992 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1993 return KVM_MSR_RET_UNSUPPORTED;
1994 break;
1995 }
1996
1997 msr.index = index;
1998 msr.host_initiated = host_initiated;
1999
2000 ret = kvm_x86_call(get_msr)(vcpu, &msr);
2001 if (!ret)
2002 *data = msr.data;
2003 return ret;
2004 }
2005
kvm_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2006 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2007 {
2008 return __kvm_set_msr(vcpu, index, data, true);
2009 }
2010
kvm_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2011 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2012 {
2013 return __kvm_get_msr(vcpu, index, data, true);
2014 }
2015
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)2016 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2017 u32 index, u64 *data, bool host_initiated)
2018 {
2019 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2020 __kvm_get_msr);
2021 }
2022
__kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2023 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2024 {
2025 return kvm_get_msr_ignored_check(vcpu, index, data, false);
2026 }
2027 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2028
__kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2029 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2030 {
2031 return kvm_set_msr_ignored_check(vcpu, index, data, false);
2032 }
2033 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2034
kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2035 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2036 {
2037 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2038 return KVM_MSR_RET_FILTERED;
2039
2040 return __kvm_emulate_msr_read(vcpu, index, data);
2041 }
2042 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2043
kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2044 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2045 {
2046 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2047 return KVM_MSR_RET_FILTERED;
2048
2049 return __kvm_emulate_msr_write(vcpu, index, data);
2050 }
2051 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2052
2053
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)2054 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2055 {
2056 if (!vcpu->run->msr.error) {
2057 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2058 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2059 }
2060 }
2061
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2062 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2063 {
2064 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2065 }
2066
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2067 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2068 {
2069 complete_userspace_rdmsr(vcpu);
2070 return complete_emulated_msr_access(vcpu);
2071 }
2072
complete_fast_msr_access(struct kvm_vcpu * vcpu)2073 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2074 {
2075 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2076 }
2077
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2078 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2079 {
2080 complete_userspace_rdmsr(vcpu);
2081 return complete_fast_msr_access(vcpu);
2082 }
2083
complete_fast_rdmsr_imm(struct kvm_vcpu * vcpu)2084 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2085 {
2086 if (!vcpu->run->msr.error)
2087 kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2088 vcpu->run->msr.data);
2089
2090 return complete_fast_msr_access(vcpu);
2091 }
2092
kvm_msr_reason(int r)2093 static u64 kvm_msr_reason(int r)
2094 {
2095 switch (r) {
2096 case KVM_MSR_RET_UNSUPPORTED:
2097 return KVM_MSR_EXIT_REASON_UNKNOWN;
2098 case KVM_MSR_RET_FILTERED:
2099 return KVM_MSR_EXIT_REASON_FILTER;
2100 default:
2101 return KVM_MSR_EXIT_REASON_INVAL;
2102 }
2103 }
2104
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2105 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2106 u32 exit_reason, u64 data,
2107 int (*completion)(struct kvm_vcpu *vcpu),
2108 int r)
2109 {
2110 u64 msr_reason = kvm_msr_reason(r);
2111
2112 /* Check if the user wanted to know about this MSR fault */
2113 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2114 return 0;
2115
2116 vcpu->run->exit_reason = exit_reason;
2117 vcpu->run->msr.error = 0;
2118 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2119 vcpu->run->msr.reason = msr_reason;
2120 vcpu->run->msr.index = index;
2121 vcpu->run->msr.data = data;
2122 vcpu->arch.complete_userspace_io = completion;
2123
2124 return 1;
2125 }
2126
__kvm_emulate_rdmsr(struct kvm_vcpu * vcpu,u32 msr,int reg,int (* complete_rdmsr)(struct kvm_vcpu *))2127 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2128 int (*complete_rdmsr)(struct kvm_vcpu *))
2129 {
2130 u64 data;
2131 int r;
2132
2133 r = kvm_emulate_msr_read(vcpu, msr, &data);
2134
2135 if (!r) {
2136 trace_kvm_msr_read(msr, data);
2137
2138 if (reg < 0) {
2139 kvm_rax_write(vcpu, data & -1u);
2140 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2141 } else {
2142 kvm_register_write(vcpu, reg, data);
2143 }
2144 } else {
2145 /* MSR read failed? See if we should ask user space */
2146 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2147 complete_rdmsr, r))
2148 return 0;
2149 trace_kvm_msr_read_ex(msr);
2150 }
2151
2152 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2153 }
2154
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2155 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2156 {
2157 return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2158 complete_fast_rdmsr);
2159 }
2160 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2161
kvm_emulate_rdmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2162 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2163 {
2164 vcpu->arch.cui_rdmsr_imm_reg = reg;
2165
2166 return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2167 }
2168 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2169
__kvm_emulate_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2170 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2171 {
2172 int r;
2173
2174 r = kvm_emulate_msr_write(vcpu, msr, data);
2175 if (!r) {
2176 trace_kvm_msr_write(msr, data);
2177 } else {
2178 /* MSR write failed? See if we should ask user space */
2179 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2180 complete_fast_msr_access, r))
2181 return 0;
2182 /* Signal all other negative errors to userspace */
2183 if (r < 0)
2184 return r;
2185 trace_kvm_msr_write_ex(msr, data);
2186 }
2187
2188 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2189 }
2190
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2191 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2192 {
2193 return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2194 kvm_read_edx_eax(vcpu));
2195 }
2196 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2197
kvm_emulate_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2198 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2199 {
2200 return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2201 }
2202 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2203
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2204 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2205 {
2206 return kvm_skip_emulated_instruction(vcpu);
2207 }
2208
kvm_emulate_invd(struct kvm_vcpu * vcpu)2209 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2210 {
2211 /* Treat an INVD instruction as a NOP and just skip it. */
2212 return kvm_emulate_as_nop(vcpu);
2213 }
2214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2215
handle_fastpath_invd(struct kvm_vcpu * vcpu)2216 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2217 {
2218 if (!kvm_emulate_invd(vcpu))
2219 return EXIT_FASTPATH_EXIT_USERSPACE;
2220
2221 return EXIT_FASTPATH_REENTER_GUEST;
2222 }
2223 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2224
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2225 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2226 {
2227 kvm_queue_exception(vcpu, UD_VECTOR);
2228 return 1;
2229 }
2230 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2231
2232
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2233 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2234 {
2235 bool enabled;
2236
2237 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2238 goto emulate_as_nop;
2239
2240 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2241 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2242 else
2243 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2244
2245 if (!enabled)
2246 return kvm_handle_invalid_op(vcpu);
2247
2248 emulate_as_nop:
2249 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2250 return kvm_emulate_as_nop(vcpu);
2251 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2252 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2253 {
2254 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2255 }
2256 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2257
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2258 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2259 {
2260 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2261 }
2262 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2263
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2264 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2265 {
2266 xfer_to_guest_mode_prepare();
2267
2268 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2269 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2270 }
2271
__handle_fastpath_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2272 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2273 {
2274 switch (msr) {
2275 case APIC_BASE_MSR + (APIC_ICR >> 4):
2276 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2277 kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2278 return EXIT_FASTPATH_NONE;
2279 break;
2280 case MSR_IA32_TSC_DEADLINE:
2281 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2282 break;
2283 default:
2284 return EXIT_FASTPATH_NONE;
2285 }
2286
2287 trace_kvm_msr_write(msr, data);
2288
2289 if (!kvm_skip_emulated_instruction(vcpu))
2290 return EXIT_FASTPATH_EXIT_USERSPACE;
2291
2292 return EXIT_FASTPATH_REENTER_GUEST;
2293 }
2294
handle_fastpath_wrmsr(struct kvm_vcpu * vcpu)2295 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2296 {
2297 return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2298 kvm_read_edx_eax(vcpu));
2299 }
2300 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2301
handle_fastpath_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2302 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2303 {
2304 return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2305 }
2306 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2307
2308 /*
2309 * Adapt set_msr() to msr_io()'s calling convention
2310 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2311 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2312 {
2313 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2314 }
2315
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2316 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2317 {
2318 u64 val;
2319
2320 /*
2321 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2322 * not support modifying the guest vCPU model on the fly, e.g. changing
2323 * the nVMX capabilities while L2 is running is nonsensical. Allow
2324 * writes of the same value, e.g. to allow userspace to blindly stuff
2325 * all MSRs when emulating RESET.
2326 */
2327 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2328 (do_get_msr(vcpu, index, &val) || *data != val))
2329 return -EINVAL;
2330
2331 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2332 }
2333
2334 #ifdef CONFIG_X86_64
2335 struct pvclock_clock {
2336 int vclock_mode;
2337 u64 cycle_last;
2338 u64 mask;
2339 u32 mult;
2340 u32 shift;
2341 u64 base_cycles;
2342 u64 offset;
2343 };
2344
2345 struct pvclock_gtod_data {
2346 seqcount_t seq;
2347
2348 struct pvclock_clock clock; /* extract of a clocksource struct */
2349 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2350
2351 ktime_t offs_boot;
2352 u64 wall_time_sec;
2353 };
2354
2355 static struct pvclock_gtod_data pvclock_gtod_data;
2356
update_pvclock_gtod(struct timekeeper * tk)2357 static void update_pvclock_gtod(struct timekeeper *tk)
2358 {
2359 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2360
2361 write_seqcount_begin(&vdata->seq);
2362
2363 /* copy pvclock gtod data */
2364 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2365 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2366 vdata->clock.mask = tk->tkr_mono.mask;
2367 vdata->clock.mult = tk->tkr_mono.mult;
2368 vdata->clock.shift = tk->tkr_mono.shift;
2369 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2370 vdata->clock.offset = tk->tkr_mono.base;
2371
2372 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2373 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2374 vdata->raw_clock.mask = tk->tkr_raw.mask;
2375 vdata->raw_clock.mult = tk->tkr_raw.mult;
2376 vdata->raw_clock.shift = tk->tkr_raw.shift;
2377 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2378 vdata->raw_clock.offset = tk->tkr_raw.base;
2379
2380 vdata->wall_time_sec = tk->xtime_sec;
2381
2382 vdata->offs_boot = tk->offs_boot;
2383
2384 write_seqcount_end(&vdata->seq);
2385 }
2386
get_kvmclock_base_ns(void)2387 static s64 get_kvmclock_base_ns(void)
2388 {
2389 /* Count up from boot time, but with the frequency of the raw clock. */
2390 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2391 }
2392 #else
get_kvmclock_base_ns(void)2393 static s64 get_kvmclock_base_ns(void)
2394 {
2395 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2396 return ktime_get_boottime_ns();
2397 }
2398 #endif
2399
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2400 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2401 {
2402 int version;
2403 int r;
2404 struct pvclock_wall_clock wc;
2405 u32 wc_sec_hi;
2406 u64 wall_nsec;
2407
2408 if (!wall_clock)
2409 return;
2410
2411 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2412 if (r)
2413 return;
2414
2415 if (version & 1)
2416 ++version; /* first time write, random junk */
2417
2418 ++version;
2419
2420 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2421 return;
2422
2423 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2424
2425 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2426 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2427 wc.version = version;
2428
2429 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2430
2431 if (sec_hi_ofs) {
2432 wc_sec_hi = wall_nsec >> 32;
2433 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2434 &wc_sec_hi, sizeof(wc_sec_hi));
2435 }
2436
2437 version++;
2438 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2439 }
2440
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2441 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2442 bool old_msr, bool host_initiated)
2443 {
2444 struct kvm_arch *ka = &vcpu->kvm->arch;
2445
2446 if (vcpu->vcpu_id == 0 && !host_initiated) {
2447 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2448 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2449
2450 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2451 }
2452
2453 vcpu->arch.time = system_time;
2454 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2455
2456 /* we verify if the enable bit is set... */
2457 if (system_time & 1)
2458 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2459 sizeof(struct pvclock_vcpu_time_info));
2460 else
2461 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2462
2463 return;
2464 }
2465
div_frac(uint32_t dividend,uint32_t divisor)2466 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2467 {
2468 do_shl32_div32(dividend, divisor);
2469 return dividend;
2470 }
2471
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2472 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2473 s8 *pshift, u32 *pmultiplier)
2474 {
2475 uint64_t scaled64;
2476 int32_t shift = 0;
2477 uint64_t tps64;
2478 uint32_t tps32;
2479
2480 tps64 = base_hz;
2481 scaled64 = scaled_hz;
2482 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2483 tps64 >>= 1;
2484 shift--;
2485 }
2486
2487 tps32 = (uint32_t)tps64;
2488 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2489 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2490 scaled64 >>= 1;
2491 else
2492 tps32 <<= 1;
2493 shift++;
2494 }
2495
2496 *pshift = shift;
2497 *pmultiplier = div_frac(scaled64, tps32);
2498 }
2499
2500 #ifdef CONFIG_X86_64
2501 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2502 #endif
2503
2504 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2505 static unsigned long max_tsc_khz;
2506
adjust_tsc_khz(u32 khz,s32 ppm)2507 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2508 {
2509 u64 v = (u64)khz * (1000000 + ppm);
2510 do_div(v, 1000000);
2511 return v;
2512 }
2513
2514 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2515
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2516 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2517 {
2518 u64 ratio;
2519
2520 /* Guest TSC same frequency as host TSC? */
2521 if (!scale) {
2522 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2523 return 0;
2524 }
2525
2526 /* TSC scaling supported? */
2527 if (!kvm_caps.has_tsc_control) {
2528 if (user_tsc_khz > tsc_khz) {
2529 vcpu->arch.tsc_catchup = 1;
2530 vcpu->arch.tsc_always_catchup = 1;
2531 return 0;
2532 } else {
2533 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2534 return -1;
2535 }
2536 }
2537
2538 /* TSC scaling required - calculate ratio */
2539 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2540 user_tsc_khz, tsc_khz);
2541
2542 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2543 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2544 user_tsc_khz);
2545 return -1;
2546 }
2547
2548 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2549 return 0;
2550 }
2551
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2552 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2553 {
2554 u32 thresh_lo, thresh_hi;
2555 int use_scaling = 0;
2556
2557 /* tsc_khz can be zero if TSC calibration fails */
2558 if (user_tsc_khz == 0) {
2559 /* set tsc_scaling_ratio to a safe value */
2560 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2561 return -1;
2562 }
2563
2564 /* Compute a scale to convert nanoseconds in TSC cycles */
2565 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2566 &vcpu->arch.virtual_tsc_shift,
2567 &vcpu->arch.virtual_tsc_mult);
2568 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2569
2570 /*
2571 * Compute the variation in TSC rate which is acceptable
2572 * within the range of tolerance and decide if the
2573 * rate being applied is within that bounds of the hardware
2574 * rate. If so, no scaling or compensation need be done.
2575 */
2576 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2577 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2578 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2579 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2580 user_tsc_khz, thresh_lo, thresh_hi);
2581 use_scaling = 1;
2582 }
2583 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2584 }
2585
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2586 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2587 {
2588 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2589 vcpu->arch.virtual_tsc_mult,
2590 vcpu->arch.virtual_tsc_shift);
2591 tsc += vcpu->arch.this_tsc_write;
2592 return tsc;
2593 }
2594
2595 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2596 static inline bool gtod_is_based_on_tsc(int mode)
2597 {
2598 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2599 }
2600 #endif
2601
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2602 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2603 {
2604 #ifdef CONFIG_X86_64
2605 struct kvm_arch *ka = &vcpu->kvm->arch;
2606 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2607
2608 /*
2609 * To use the masterclock, the host clocksource must be based on TSC
2610 * and all vCPUs must have matching TSCs. Note, the count for matching
2611 * vCPUs doesn't include the reference vCPU, hence "+1".
2612 */
2613 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2614 atomic_read(&vcpu->kvm->online_vcpus)) &&
2615 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2616
2617 /*
2618 * Request a masterclock update if the masterclock needs to be toggled
2619 * on/off, or when starting a new generation and the masterclock is
2620 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2621 * taken _after_ the new generation is created).
2622 */
2623 if ((ka->use_master_clock && new_generation) ||
2624 (ka->use_master_clock != use_master_clock))
2625 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2626
2627 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2628 atomic_read(&vcpu->kvm->online_vcpus),
2629 ka->use_master_clock, gtod->clock.vclock_mode);
2630 #endif
2631 }
2632
2633 /*
2634 * Multiply tsc by a fixed point number represented by ratio.
2635 *
2636 * The most significant 64-N bits (mult) of ratio represent the
2637 * integral part of the fixed point number; the remaining N bits
2638 * (frac) represent the fractional part, ie. ratio represents a fixed
2639 * point number (mult + frac * 2^(-N)).
2640 *
2641 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2642 */
__scale_tsc(u64 ratio,u64 tsc)2643 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2644 {
2645 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2646 }
2647
kvm_scale_tsc(u64 tsc,u64 ratio)2648 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2649 {
2650 u64 _tsc = tsc;
2651
2652 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2653 _tsc = __scale_tsc(ratio, tsc);
2654
2655 return _tsc;
2656 }
2657
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2658 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2659 {
2660 u64 tsc;
2661
2662 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2663
2664 return target_tsc - tsc;
2665 }
2666
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2667 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2668 {
2669 return vcpu->arch.l1_tsc_offset +
2670 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2671 }
2672 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2673
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2674 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2675 {
2676 u64 nested_offset;
2677
2678 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2679 nested_offset = l1_offset;
2680 else
2681 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2682 kvm_caps.tsc_scaling_ratio_frac_bits);
2683
2684 nested_offset += l2_offset;
2685 return nested_offset;
2686 }
2687 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2688
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2689 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2690 {
2691 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2692 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2693 kvm_caps.tsc_scaling_ratio_frac_bits);
2694
2695 return l1_multiplier;
2696 }
2697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2698
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2699 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2700 {
2701 if (vcpu->arch.guest_tsc_protected)
2702 return;
2703
2704 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2705 vcpu->arch.l1_tsc_offset,
2706 l1_offset);
2707
2708 vcpu->arch.l1_tsc_offset = l1_offset;
2709
2710 /*
2711 * If we are here because L1 chose not to trap WRMSR to TSC then
2712 * according to the spec this should set L1's TSC (as opposed to
2713 * setting L1's offset for L2).
2714 */
2715 if (is_guest_mode(vcpu))
2716 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2717 l1_offset,
2718 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2719 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2720 else
2721 vcpu->arch.tsc_offset = l1_offset;
2722
2723 kvm_x86_call(write_tsc_offset)(vcpu);
2724 }
2725
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2726 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2727 {
2728 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2729
2730 /* Userspace is changing the multiplier while L2 is active */
2731 if (is_guest_mode(vcpu))
2732 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2733 l1_multiplier,
2734 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2735 else
2736 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2737
2738 if (kvm_caps.has_tsc_control)
2739 kvm_x86_call(write_tsc_multiplier)(vcpu);
2740 }
2741
kvm_check_tsc_unstable(void)2742 static inline bool kvm_check_tsc_unstable(void)
2743 {
2744 #ifdef CONFIG_X86_64
2745 /*
2746 * TSC is marked unstable when we're running on Hyper-V,
2747 * 'TSC page' clocksource is good.
2748 */
2749 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2750 return false;
2751 #endif
2752 return check_tsc_unstable();
2753 }
2754
2755 /*
2756 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2757 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2758 * participates in.
2759 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2760 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2761 u64 ns, bool matched, bool user_set_tsc)
2762 {
2763 struct kvm *kvm = vcpu->kvm;
2764
2765 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2766
2767 if (vcpu->arch.guest_tsc_protected)
2768 return;
2769
2770 if (user_set_tsc)
2771 vcpu->kvm->arch.user_set_tsc = true;
2772
2773 /*
2774 * We also track th most recent recorded KHZ, write and time to
2775 * allow the matching interval to be extended at each write.
2776 */
2777 kvm->arch.last_tsc_nsec = ns;
2778 kvm->arch.last_tsc_write = tsc;
2779 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2780 kvm->arch.last_tsc_offset = offset;
2781
2782 vcpu->arch.last_guest_tsc = tsc;
2783
2784 kvm_vcpu_write_tsc_offset(vcpu, offset);
2785
2786 if (!matched) {
2787 /*
2788 * We split periods of matched TSC writes into generations.
2789 * For each generation, we track the original measured
2790 * nanosecond time, offset, and write, so if TSCs are in
2791 * sync, we can match exact offset, and if not, we can match
2792 * exact software computation in compute_guest_tsc()
2793 *
2794 * These values are tracked in kvm->arch.cur_xxx variables.
2795 */
2796 kvm->arch.cur_tsc_generation++;
2797 kvm->arch.cur_tsc_nsec = ns;
2798 kvm->arch.cur_tsc_write = tsc;
2799 kvm->arch.cur_tsc_offset = offset;
2800 kvm->arch.nr_vcpus_matched_tsc = 0;
2801 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2802 kvm->arch.nr_vcpus_matched_tsc++;
2803 }
2804
2805 /* Keep track of which generation this VCPU has synchronized to */
2806 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2807 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2808 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2809
2810 kvm_track_tsc_matching(vcpu, !matched);
2811 }
2812
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2813 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2814 {
2815 u64 data = user_value ? *user_value : 0;
2816 struct kvm *kvm = vcpu->kvm;
2817 u64 offset, ns, elapsed;
2818 unsigned long flags;
2819 bool matched = false;
2820 bool synchronizing = false;
2821
2822 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2823 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2824 ns = get_kvmclock_base_ns();
2825 elapsed = ns - kvm->arch.last_tsc_nsec;
2826
2827 if (vcpu->arch.virtual_tsc_khz) {
2828 if (data == 0) {
2829 /*
2830 * Force synchronization when creating a vCPU, or when
2831 * userspace explicitly writes a zero value.
2832 */
2833 synchronizing = true;
2834 } else if (kvm->arch.user_set_tsc) {
2835 u64 tsc_exp = kvm->arch.last_tsc_write +
2836 nsec_to_cycles(vcpu, elapsed);
2837 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2838 /*
2839 * Here lies UAPI baggage: when a user-initiated TSC write has
2840 * a small delta (1 second) of virtual cycle time against the
2841 * previously set vCPU, we assume that they were intended to be
2842 * in sync and the delta was only due to the racy nature of the
2843 * legacy API.
2844 *
2845 * This trick falls down when restoring a guest which genuinely
2846 * has been running for less time than the 1 second of imprecision
2847 * which we allow for in the legacy API. In this case, the first
2848 * value written by userspace (on any vCPU) should not be subject
2849 * to this 'correction' to make it sync up with values that only
2850 * come from the kernel's default vCPU creation. Make the 1-second
2851 * slop hack only trigger if the user_set_tsc flag is already set.
2852 */
2853 synchronizing = data < tsc_exp + tsc_hz &&
2854 data + tsc_hz > tsc_exp;
2855 }
2856 }
2857
2858
2859 /*
2860 * For a reliable TSC, we can match TSC offsets, and for an unstable
2861 * TSC, we add elapsed time in this computation. We could let the
2862 * compensation code attempt to catch up if we fall behind, but
2863 * it's better to try to match offsets from the beginning.
2864 */
2865 if (synchronizing &&
2866 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2867 if (!kvm_check_tsc_unstable()) {
2868 offset = kvm->arch.cur_tsc_offset;
2869 } else {
2870 u64 delta = nsec_to_cycles(vcpu, elapsed);
2871 data += delta;
2872 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2873 }
2874 matched = true;
2875 }
2876
2877 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2878 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2879 }
2880
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2881 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2882 s64 adjustment)
2883 {
2884 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2885 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2886 }
2887
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2888 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2889 {
2890 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2891 WARN_ON(adjustment < 0);
2892 adjustment = kvm_scale_tsc((u64) adjustment,
2893 vcpu->arch.l1_tsc_scaling_ratio);
2894 adjust_tsc_offset_guest(vcpu, adjustment);
2895 }
2896
2897 #ifdef CONFIG_X86_64
2898
read_tsc(void)2899 static u64 read_tsc(void)
2900 {
2901 u64 ret = (u64)rdtsc_ordered();
2902 u64 last = pvclock_gtod_data.clock.cycle_last;
2903
2904 if (likely(ret >= last))
2905 return ret;
2906
2907 /*
2908 * GCC likes to generate cmov here, but this branch is extremely
2909 * predictable (it's just a function of time and the likely is
2910 * very likely) and there's a data dependence, so force GCC
2911 * to generate a branch instead. I don't barrier() because
2912 * we don't actually need a barrier, and if this function
2913 * ever gets inlined it will generate worse code.
2914 */
2915 asm volatile ("");
2916 return last;
2917 }
2918
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2919 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2920 int *mode)
2921 {
2922 u64 tsc_pg_val;
2923 long v;
2924
2925 switch (clock->vclock_mode) {
2926 case VDSO_CLOCKMODE_HVCLOCK:
2927 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2928 tsc_timestamp, &tsc_pg_val)) {
2929 /* TSC page valid */
2930 *mode = VDSO_CLOCKMODE_HVCLOCK;
2931 v = (tsc_pg_val - clock->cycle_last) &
2932 clock->mask;
2933 } else {
2934 /* TSC page invalid */
2935 *mode = VDSO_CLOCKMODE_NONE;
2936 }
2937 break;
2938 case VDSO_CLOCKMODE_TSC:
2939 *mode = VDSO_CLOCKMODE_TSC;
2940 *tsc_timestamp = read_tsc();
2941 v = (*tsc_timestamp - clock->cycle_last) &
2942 clock->mask;
2943 break;
2944 default:
2945 *mode = VDSO_CLOCKMODE_NONE;
2946 }
2947
2948 if (*mode == VDSO_CLOCKMODE_NONE)
2949 *tsc_timestamp = v = 0;
2950
2951 return v * clock->mult;
2952 }
2953
2954 /*
2955 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2956 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2957 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2958 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2959 {
2960 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2961 unsigned long seq;
2962 int mode;
2963 u64 ns;
2964
2965 do {
2966 seq = read_seqcount_begin(>od->seq);
2967 ns = gtod->raw_clock.base_cycles;
2968 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2969 ns >>= gtod->raw_clock.shift;
2970 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2971 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2972 *t = ns;
2973
2974 return mode;
2975 }
2976
2977 /*
2978 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2979 * no boot time offset.
2980 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2981 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2982 {
2983 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2984 unsigned long seq;
2985 int mode;
2986 u64 ns;
2987
2988 do {
2989 seq = read_seqcount_begin(>od->seq);
2990 ns = gtod->clock.base_cycles;
2991 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2992 ns >>= gtod->clock.shift;
2993 ns += ktime_to_ns(gtod->clock.offset);
2994 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2995 *t = ns;
2996
2997 return mode;
2998 }
2999
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)3000 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
3001 {
3002 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
3003 unsigned long seq;
3004 int mode;
3005 u64 ns;
3006
3007 do {
3008 seq = read_seqcount_begin(>od->seq);
3009 ts->tv_sec = gtod->wall_time_sec;
3010 ns = gtod->clock.base_cycles;
3011 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
3012 ns >>= gtod->clock.shift;
3013 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
3014
3015 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3016 ts->tv_nsec = ns;
3017
3018 return mode;
3019 }
3020
3021 /*
3022 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3023 * reports the TSC value from which it do so. Returns true if host is
3024 * using TSC based clocksource.
3025 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3026 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3027 {
3028 /* checked again under seqlock below */
3029 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3030 return false;
3031
3032 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3033 tsc_timestamp));
3034 }
3035
3036 /*
3037 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3038 * so. Returns true if host is using TSC based clocksource.
3039 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3040 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3041 {
3042 /* checked again under seqlock below */
3043 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3044 return false;
3045
3046 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3047 tsc_timestamp));
3048 }
3049
3050 /*
3051 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
3052 * so. Returns true if host is using TSC based clocksource.
3053 *
3054 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
3055 * for that.
3056 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)3057 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3058 u64 *tsc_timestamp)
3059 {
3060 /* checked again under seqlock below */
3061 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3062 return false;
3063
3064 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3065 }
3066 #endif
3067
3068 /*
3069 *
3070 * Assuming a stable TSC across physical CPUS, and a stable TSC
3071 * across virtual CPUs, the following condition is possible.
3072 * Each numbered line represents an event visible to both
3073 * CPUs at the next numbered event.
3074 *
3075 * "timespecX" represents host monotonic time. "tscX" represents
3076 * RDTSC value.
3077 *
3078 * VCPU0 on CPU0 | VCPU1 on CPU1
3079 *
3080 * 1. read timespec0,tsc0
3081 * 2. | timespec1 = timespec0 + N
3082 * | tsc1 = tsc0 + M
3083 * 3. transition to guest | transition to guest
3084 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
3085 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
3086 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3087 *
3088 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3089 *
3090 * - ret0 < ret1
3091 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3092 * ...
3093 * - 0 < N - M => M < N
3094 *
3095 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3096 * always the case (the difference between two distinct xtime instances
3097 * might be smaller then the difference between corresponding TSC reads,
3098 * when updating guest vcpus pvclock areas).
3099 *
3100 * To avoid that problem, do not allow visibility of distinct
3101 * system_timestamp/tsc_timestamp values simultaneously: use a master
3102 * copy of host monotonic time values. Update that master copy
3103 * in lockstep.
3104 *
3105 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3106 *
3107 */
3108
pvclock_update_vm_gtod_copy(struct kvm * kvm)3109 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3110 {
3111 #ifdef CONFIG_X86_64
3112 struct kvm_arch *ka = &kvm->arch;
3113 int vclock_mode;
3114 bool host_tsc_clocksource, vcpus_matched;
3115
3116 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3117 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3118 atomic_read(&kvm->online_vcpus));
3119
3120 /*
3121 * If the host uses TSC clock, then passthrough TSC as stable
3122 * to the guest.
3123 */
3124 host_tsc_clocksource = kvm_get_time_and_clockread(
3125 &ka->master_kernel_ns,
3126 &ka->master_cycle_now);
3127
3128 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3129 && !ka->backwards_tsc_observed
3130 && !ka->boot_vcpu_runs_old_kvmclock;
3131
3132 if (ka->use_master_clock)
3133 atomic_set(&kvm_guest_has_master_clock, 1);
3134
3135 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3136 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3137 vcpus_matched);
3138 #endif
3139 }
3140
kvm_make_mclock_inprogress_request(struct kvm * kvm)3141 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3142 {
3143 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3144 }
3145
__kvm_start_pvclock_update(struct kvm * kvm)3146 static void __kvm_start_pvclock_update(struct kvm *kvm)
3147 {
3148 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3149 write_seqcount_begin(&kvm->arch.pvclock_sc);
3150 }
3151
kvm_start_pvclock_update(struct kvm * kvm)3152 static void kvm_start_pvclock_update(struct kvm *kvm)
3153 {
3154 kvm_make_mclock_inprogress_request(kvm);
3155
3156 /* no guest entries from this point */
3157 __kvm_start_pvclock_update(kvm);
3158 }
3159
kvm_end_pvclock_update(struct kvm * kvm)3160 static void kvm_end_pvclock_update(struct kvm *kvm)
3161 {
3162 struct kvm_arch *ka = &kvm->arch;
3163 struct kvm_vcpu *vcpu;
3164 unsigned long i;
3165
3166 write_seqcount_end(&ka->pvclock_sc);
3167 raw_spin_unlock_irq(&ka->tsc_write_lock);
3168 kvm_for_each_vcpu(i, vcpu, kvm)
3169 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3170
3171 /* guest entries allowed */
3172 kvm_for_each_vcpu(i, vcpu, kvm)
3173 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3174 }
3175
kvm_update_masterclock(struct kvm * kvm)3176 static void kvm_update_masterclock(struct kvm *kvm)
3177 {
3178 kvm_hv_request_tsc_page_update(kvm);
3179 kvm_start_pvclock_update(kvm);
3180 pvclock_update_vm_gtod_copy(kvm);
3181 kvm_end_pvclock_update(kvm);
3182 }
3183
3184 /*
3185 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3186 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3187 * can change during boot even if the TSC is constant, as it's possible for KVM
3188 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3189 * notification when calibration completes, but practically speaking calibration
3190 * will complete before userspace is alive enough to create VMs.
3191 */
get_cpu_tsc_khz(void)3192 static unsigned long get_cpu_tsc_khz(void)
3193 {
3194 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3195 return tsc_khz;
3196 else
3197 return __this_cpu_read(cpu_tsc_khz);
3198 }
3199
3200 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3201 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3202 {
3203 struct kvm_arch *ka = &kvm->arch;
3204 struct pvclock_vcpu_time_info hv_clock;
3205
3206 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3207 get_cpu();
3208
3209 data->flags = 0;
3210 if (ka->use_master_clock &&
3211 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3212 #ifdef CONFIG_X86_64
3213 struct timespec64 ts;
3214
3215 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3216 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3217 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3218 } else
3219 #endif
3220 data->host_tsc = rdtsc();
3221
3222 data->flags |= KVM_CLOCK_TSC_STABLE;
3223 hv_clock.tsc_timestamp = ka->master_cycle_now;
3224 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3225 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3226 &hv_clock.tsc_shift,
3227 &hv_clock.tsc_to_system_mul);
3228 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3229 } else {
3230 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3231 }
3232
3233 put_cpu();
3234 }
3235
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3236 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3237 {
3238 struct kvm_arch *ka = &kvm->arch;
3239 unsigned seq;
3240
3241 do {
3242 seq = read_seqcount_begin(&ka->pvclock_sc);
3243 __get_kvmclock(kvm, data);
3244 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3245 }
3246
get_kvmclock_ns(struct kvm * kvm)3247 u64 get_kvmclock_ns(struct kvm *kvm)
3248 {
3249 struct kvm_clock_data data;
3250
3251 get_kvmclock(kvm, &data);
3252 return data.clock;
3253 }
3254
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3255 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3256 struct kvm_vcpu *vcpu,
3257 struct gfn_to_pfn_cache *gpc,
3258 unsigned int offset)
3259 {
3260 struct pvclock_vcpu_time_info *guest_hv_clock;
3261 struct pvclock_vcpu_time_info hv_clock;
3262 unsigned long flags;
3263
3264 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3265
3266 read_lock_irqsave(&gpc->lock, flags);
3267 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3268 read_unlock_irqrestore(&gpc->lock, flags);
3269
3270 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3271 return;
3272
3273 read_lock_irqsave(&gpc->lock, flags);
3274 }
3275
3276 guest_hv_clock = (void *)(gpc->khva + offset);
3277
3278 /*
3279 * This VCPU is paused, but it's legal for a guest to read another
3280 * VCPU's kvmclock, so we really have to follow the specification where
3281 * it says that version is odd if data is being modified, and even after
3282 * it is consistent.
3283 */
3284
3285 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3286 smp_wmb();
3287
3288 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3289 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3290
3291 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3292
3293 smp_wmb();
3294
3295 guest_hv_clock->version = ++hv_clock.version;
3296
3297 kvm_gpc_mark_dirty_in_slot(gpc);
3298 read_unlock_irqrestore(&gpc->lock, flags);
3299
3300 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3301 }
3302
kvm_guest_time_update(struct kvm_vcpu * v)3303 int kvm_guest_time_update(struct kvm_vcpu *v)
3304 {
3305 struct pvclock_vcpu_time_info hv_clock = {};
3306 unsigned long flags, tgt_tsc_khz;
3307 unsigned seq;
3308 struct kvm_vcpu_arch *vcpu = &v->arch;
3309 struct kvm_arch *ka = &v->kvm->arch;
3310 s64 kernel_ns;
3311 u64 tsc_timestamp, host_tsc;
3312 bool use_master_clock;
3313
3314 kernel_ns = 0;
3315 host_tsc = 0;
3316
3317 /*
3318 * If the host uses TSC clock, then passthrough TSC as stable
3319 * to the guest.
3320 */
3321 do {
3322 seq = read_seqcount_begin(&ka->pvclock_sc);
3323 use_master_clock = ka->use_master_clock;
3324 if (use_master_clock) {
3325 host_tsc = ka->master_cycle_now;
3326 kernel_ns = ka->master_kernel_ns;
3327 }
3328 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3329
3330 /* Keep irq disabled to prevent changes to the clock */
3331 local_irq_save(flags);
3332 tgt_tsc_khz = get_cpu_tsc_khz();
3333 if (unlikely(tgt_tsc_khz == 0)) {
3334 local_irq_restore(flags);
3335 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3336 return 1;
3337 }
3338 if (!use_master_clock) {
3339 host_tsc = rdtsc();
3340 kernel_ns = get_kvmclock_base_ns();
3341 }
3342
3343 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3344
3345 /*
3346 * We may have to catch up the TSC to match elapsed wall clock
3347 * time for two reasons, even if kvmclock is used.
3348 * 1) CPU could have been running below the maximum TSC rate
3349 * 2) Broken TSC compensation resets the base at each VCPU
3350 * entry to avoid unknown leaps of TSC even when running
3351 * again on the same CPU. This may cause apparent elapsed
3352 * time to disappear, and the guest to stand still or run
3353 * very slowly.
3354 */
3355 if (vcpu->tsc_catchup) {
3356 u64 tsc = compute_guest_tsc(v, kernel_ns);
3357 if (tsc > tsc_timestamp) {
3358 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3359 tsc_timestamp = tsc;
3360 }
3361 }
3362
3363 local_irq_restore(flags);
3364
3365 /* With all the info we got, fill in the values */
3366
3367 if (kvm_caps.has_tsc_control) {
3368 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3369 v->arch.l1_tsc_scaling_ratio);
3370 tgt_tsc_khz = tgt_tsc_khz ? : 1;
3371 }
3372
3373 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3374 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3375 &vcpu->pvclock_tsc_shift,
3376 &vcpu->pvclock_tsc_mul);
3377 vcpu->hw_tsc_khz = tgt_tsc_khz;
3378 }
3379
3380 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3381 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3382 hv_clock.tsc_timestamp = tsc_timestamp;
3383 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3384 vcpu->last_guest_tsc = tsc_timestamp;
3385
3386 /* If the host uses TSC clocksource, then it is stable */
3387 hv_clock.flags = 0;
3388 if (use_master_clock)
3389 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3390
3391 if (vcpu->pv_time.active) {
3392 /*
3393 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3394 * historic behavior is to only process the request if kvmclock
3395 * is active/enabled.
3396 */
3397 if (vcpu->pvclock_set_guest_stopped_request) {
3398 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3399 vcpu->pvclock_set_guest_stopped_request = false;
3400 }
3401 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3402
3403 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3404 }
3405
3406 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3407
3408 #ifdef CONFIG_KVM_XEN
3409 /*
3410 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3411 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3412 * This default behaviour led to bugs in some guest kernels which cause
3413 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3414 *
3415 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3416 */
3417 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3418 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3419
3420 if (vcpu->xen.vcpu_info_cache.active)
3421 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3422 offsetof(struct compat_vcpu_info, time));
3423 if (vcpu->xen.vcpu_time_info_cache.active)
3424 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3425 #endif
3426 return 0;
3427 }
3428
3429 /*
3430 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3431 * which it started (i.e. its epoch, when its kvmclock was zero).
3432 *
3433 * In fact those clocks are subtly different; wall clock frequency is
3434 * adjusted by NTP and has leap seconds, while the kvmclock is a
3435 * simple function of the TSC without any such adjustment.
3436 *
3437 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3438 * that and kvmclock, but even that would be subject to change over
3439 * time.
3440 *
3441 * Attempt to calculate the epoch at a given moment using the *same*
3442 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3443 * wallclock and kvmclock times, and subtracting one from the other.
3444 *
3445 * Fall back to using their values at slightly different moments by
3446 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3447 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3448 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3449 {
3450 #ifdef CONFIG_X86_64
3451 struct pvclock_vcpu_time_info hv_clock;
3452 struct kvm_arch *ka = &kvm->arch;
3453 unsigned long seq, local_tsc_khz;
3454 struct timespec64 ts;
3455 uint64_t host_tsc;
3456
3457 do {
3458 seq = read_seqcount_begin(&ka->pvclock_sc);
3459
3460 local_tsc_khz = 0;
3461 if (!ka->use_master_clock)
3462 break;
3463
3464 /*
3465 * The TSC read and the call to get_cpu_tsc_khz() must happen
3466 * on the same CPU.
3467 */
3468 get_cpu();
3469
3470 local_tsc_khz = get_cpu_tsc_khz();
3471
3472 if (local_tsc_khz &&
3473 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3474 local_tsc_khz = 0; /* Fall back to old method */
3475
3476 put_cpu();
3477
3478 /*
3479 * These values must be snapshotted within the seqcount loop.
3480 * After that, it's just mathematics which can happen on any
3481 * CPU at any time.
3482 */
3483 hv_clock.tsc_timestamp = ka->master_cycle_now;
3484 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3485
3486 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3487
3488 /*
3489 * If the conditions were right, and obtaining the wallclock+TSC was
3490 * successful, calculate the KVM clock at the corresponding time and
3491 * subtract one from the other to get the guest's epoch in nanoseconds
3492 * since 1970-01-01.
3493 */
3494 if (local_tsc_khz) {
3495 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3496 &hv_clock.tsc_shift,
3497 &hv_clock.tsc_to_system_mul);
3498 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3499 __pvclock_read_cycles(&hv_clock, host_tsc);
3500 }
3501 #endif
3502 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3503 }
3504
3505 /*
3506 * kvmclock updates which are isolated to a given vcpu, such as
3507 * vcpu->cpu migration, should not allow system_timestamp from
3508 * the rest of the vcpus to remain static. Otherwise ntp frequency
3509 * correction applies to one vcpu's system_timestamp but not
3510 * the others.
3511 *
3512 * So in those cases, request a kvmclock update for all vcpus.
3513 * We need to rate-limit these requests though, as they can
3514 * considerably slow guests that have a large number of vcpus.
3515 * The time for a remote vcpu to update its kvmclock is bound
3516 * by the delay we use to rate-limit the updates.
3517 */
3518
3519 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3520
kvmclock_update_fn(struct work_struct * work)3521 static void kvmclock_update_fn(struct work_struct *work)
3522 {
3523 unsigned long i;
3524 struct delayed_work *dwork = to_delayed_work(work);
3525 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3526 kvmclock_update_work);
3527 struct kvm *kvm = container_of(ka, struct kvm, arch);
3528 struct kvm_vcpu *vcpu;
3529
3530 kvm_for_each_vcpu(i, vcpu, kvm) {
3531 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3532 kvm_vcpu_kick(vcpu);
3533 }
3534 }
3535
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3536 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3537 {
3538 struct kvm *kvm = v->kvm;
3539
3540 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3541 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3542 KVMCLOCK_UPDATE_DELAY);
3543 }
3544
3545 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3546
kvmclock_sync_fn(struct work_struct * work)3547 static void kvmclock_sync_fn(struct work_struct *work)
3548 {
3549 struct delayed_work *dwork = to_delayed_work(work);
3550 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3551 kvmclock_sync_work);
3552 struct kvm *kvm = container_of(ka, struct kvm, arch);
3553
3554 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3555 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3556 KVMCLOCK_SYNC_PERIOD);
3557 }
3558
3559 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3560 static bool is_mci_control_msr(u32 msr)
3561 {
3562 return (msr & 3) == 0;
3563 }
is_mci_status_msr(u32 msr)3564 static bool is_mci_status_msr(u32 msr)
3565 {
3566 return (msr & 3) == 1;
3567 }
3568
3569 /*
3570 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3571 */
can_set_mci_status(struct kvm_vcpu * vcpu)3572 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3573 {
3574 /* McStatusWrEn enabled? */
3575 if (guest_cpuid_is_amd_compatible(vcpu))
3576 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3577
3578 return false;
3579 }
3580
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3581 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3582 {
3583 u64 mcg_cap = vcpu->arch.mcg_cap;
3584 unsigned bank_num = mcg_cap & 0xff;
3585 u32 msr = msr_info->index;
3586 u64 data = msr_info->data;
3587 u32 offset, last_msr;
3588
3589 switch (msr) {
3590 case MSR_IA32_MCG_STATUS:
3591 vcpu->arch.mcg_status = data;
3592 break;
3593 case MSR_IA32_MCG_CTL:
3594 if (!(mcg_cap & MCG_CTL_P) &&
3595 (data || !msr_info->host_initiated))
3596 return 1;
3597 if (data != 0 && data != ~(u64)0)
3598 return 1;
3599 vcpu->arch.mcg_ctl = data;
3600 break;
3601 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3602 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3603 if (msr > last_msr)
3604 return 1;
3605
3606 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3607 return 1;
3608 /* An attempt to write a 1 to a reserved bit raises #GP */
3609 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3610 return 1;
3611 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3612 last_msr + 1 - MSR_IA32_MC0_CTL2);
3613 vcpu->arch.mci_ctl2_banks[offset] = data;
3614 break;
3615 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3616 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3617 if (msr > last_msr)
3618 return 1;
3619
3620 /*
3621 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3622 * values are architecturally undefined. But, some Linux
3623 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3624 * issue on AMD K8s, allow bit 10 to be clear when setting all
3625 * other bits in order to avoid an uncaught #GP in the guest.
3626 *
3627 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3628 * single-bit ECC data errors.
3629 */
3630 if (is_mci_control_msr(msr) &&
3631 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3632 return 1;
3633
3634 /*
3635 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3636 * AMD-based CPUs allow non-zero values, but if and only if
3637 * HWCR[McStatusWrEn] is set.
3638 */
3639 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3640 data != 0 && !can_set_mci_status(vcpu))
3641 return 1;
3642
3643 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3644 last_msr + 1 - MSR_IA32_MC0_CTL);
3645 vcpu->arch.mce_banks[offset] = data;
3646 break;
3647 default:
3648 return 1;
3649 }
3650 return 0;
3651 }
3652
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3653 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3654 {
3655 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3656
3657 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3658 }
3659
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3660 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3661 {
3662 gpa_t gpa = data & ~0x3f;
3663
3664 /* Bits 4:5 are reserved, Should be zero */
3665 if (data & 0x30)
3666 return 1;
3667
3668 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3669 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3670 return 1;
3671
3672 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3673 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3674 return 1;
3675
3676 if (!lapic_in_kernel(vcpu))
3677 return data ? 1 : 0;
3678
3679 vcpu->arch.apf.msr_en_val = data;
3680
3681 if (!kvm_pv_async_pf_enabled(vcpu)) {
3682 kvm_clear_async_pf_completion_queue(vcpu);
3683 kvm_async_pf_hash_reset(vcpu);
3684 return 0;
3685 }
3686
3687 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3688 sizeof(u64)))
3689 return 1;
3690
3691 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3692 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3693
3694 kvm_async_pf_wakeup_all(vcpu);
3695
3696 return 0;
3697 }
3698
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3699 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3700 {
3701 /* Bits 8-63 are reserved */
3702 if (data >> 8)
3703 return 1;
3704
3705 if (!lapic_in_kernel(vcpu))
3706 return 1;
3707
3708 vcpu->arch.apf.msr_int_val = data;
3709
3710 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3711
3712 return 0;
3713 }
3714
kvmclock_reset(struct kvm_vcpu * vcpu)3715 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3716 {
3717 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3718 vcpu->arch.time = 0;
3719 }
3720
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3721 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3722 {
3723 ++vcpu->stat.tlb_flush;
3724 kvm_x86_call(flush_tlb_all)(vcpu);
3725
3726 /* Flushing all ASIDs flushes the current ASID... */
3727 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3728 }
3729
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3730 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3731 {
3732 ++vcpu->stat.tlb_flush;
3733
3734 if (!tdp_enabled) {
3735 /*
3736 * A TLB flush on behalf of the guest is equivalent to
3737 * INVPCID(all), toggling CR4.PGE, etc., which requires
3738 * a forced sync of the shadow page tables. Ensure all the
3739 * roots are synced and the guest TLB in hardware is clean.
3740 */
3741 kvm_mmu_sync_roots(vcpu);
3742 kvm_mmu_sync_prev_roots(vcpu);
3743 }
3744
3745 kvm_x86_call(flush_tlb_guest)(vcpu);
3746
3747 /*
3748 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3749 * grained flushing.
3750 */
3751 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3752 }
3753
3754
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3755 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3756 {
3757 ++vcpu->stat.tlb_flush;
3758 kvm_x86_call(flush_tlb_current)(vcpu);
3759 }
3760
3761 /*
3762 * Service "local" TLB flush requests, which are specific to the current MMU
3763 * context. In addition to the generic event handling in vcpu_enter_guest(),
3764 * TLB flushes that are targeted at an MMU context also need to be serviced
3765 * prior before nested VM-Enter/VM-Exit.
3766 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3767 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3768 {
3769 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3770 kvm_vcpu_flush_tlb_current(vcpu);
3771
3772 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3773 kvm_vcpu_flush_tlb_guest(vcpu);
3774 }
3775 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3776
record_steal_time(struct kvm_vcpu * vcpu)3777 static void record_steal_time(struct kvm_vcpu *vcpu)
3778 {
3779 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3780 struct kvm_steal_time __user *st;
3781 struct kvm_memslots *slots;
3782 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3783 u64 steal;
3784 u32 version;
3785
3786 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3787 kvm_xen_runstate_set_running(vcpu);
3788 return;
3789 }
3790
3791 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3792 return;
3793
3794 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3795 return;
3796
3797 slots = kvm_memslots(vcpu->kvm);
3798
3799 if (unlikely(slots->generation != ghc->generation ||
3800 gpa != ghc->gpa ||
3801 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3802 /* We rely on the fact that it fits in a single page. */
3803 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3804
3805 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3806 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3807 return;
3808 }
3809
3810 st = (struct kvm_steal_time __user *)ghc->hva;
3811 /*
3812 * Doing a TLB flush here, on the guest's behalf, can avoid
3813 * expensive IPIs.
3814 */
3815 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3816 u8 st_preempted = 0;
3817 int err = -EFAULT;
3818
3819 if (!user_access_begin(st, sizeof(*st)))
3820 return;
3821
3822 asm volatile("1: xchgb %0, %2\n"
3823 "xor %1, %1\n"
3824 "2:\n"
3825 _ASM_EXTABLE_UA(1b, 2b)
3826 : "+q" (st_preempted),
3827 "+&r" (err),
3828 "+m" (st->preempted));
3829 if (err)
3830 goto out;
3831
3832 user_access_end();
3833
3834 vcpu->arch.st.preempted = 0;
3835
3836 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3837 st_preempted & KVM_VCPU_FLUSH_TLB);
3838 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3839 kvm_vcpu_flush_tlb_guest(vcpu);
3840
3841 if (!user_access_begin(st, sizeof(*st)))
3842 goto dirty;
3843 } else {
3844 if (!user_access_begin(st, sizeof(*st)))
3845 return;
3846
3847 unsafe_put_user(0, &st->preempted, out);
3848 vcpu->arch.st.preempted = 0;
3849 }
3850
3851 unsafe_get_user(version, &st->version, out);
3852 if (version & 1)
3853 version += 1; /* first time write, random junk */
3854
3855 version += 1;
3856 unsafe_put_user(version, &st->version, out);
3857
3858 smp_wmb();
3859
3860 unsafe_get_user(steal, &st->steal, out);
3861 steal += current->sched_info.run_delay -
3862 vcpu->arch.st.last_steal;
3863 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3864 unsafe_put_user(steal, &st->steal, out);
3865
3866 version += 1;
3867 unsafe_put_user(version, &st->version, out);
3868
3869 out:
3870 user_access_end();
3871 dirty:
3872 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3873 }
3874
3875 /*
3876 * Returns true if the MSR in question is managed via XSTATE, i.e. is context
3877 * switched with the rest of guest FPU state. Note! S_CET is _not_ context
3878 * switched via XSTATE even though it _is_ saved/restored via XSAVES/XRSTORS.
3879 * Because S_CET is loaded on VM-Enter and VM-Exit via dedicated VMCS fields,
3880 * the value saved/restored via XSTATE is always the host's value. That detail
3881 * is _extremely_ important, as the guest's S_CET must _never_ be resident in
3882 * hardware while executing in the host. Loading guest values for U_CET and
3883 * PL[0-3]_SSP while executing in the kernel is safe, as U_CET is specific to
3884 * userspace, and PL[0-3]_SSP are only consumed when transitioning to lower
3885 * privilege levels, i.e. are effectively only consumed by userspace as well.
3886 */
is_xstate_managed_msr(struct kvm_vcpu * vcpu,u32 msr)3887 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3888 {
3889 if (!vcpu)
3890 return false;
3891
3892 switch (msr) {
3893 case MSR_IA32_U_CET:
3894 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3895 guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3896 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3897 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3898 default:
3899 return false;
3900 }
3901 }
3902
3903 /*
3904 * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3905 * MSR that is managed via XSTATE. Note, the caller is responsible for doing
3906 * the initial FPU load, this helper only ensures that guest state is resident
3907 * in hardware (the kernel can load its FPU state in IRQ context).
3908 */
kvm_access_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info,int access)3909 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3910 struct msr_data *msr_info,
3911 int access)
3912 {
3913 BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3914
3915 KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3916 KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3917
3918 kvm_fpu_get();
3919 if (access == MSR_TYPE_R)
3920 rdmsrq(msr_info->index, msr_info->data);
3921 else
3922 wrmsrq(msr_info->index, msr_info->data);
3923 kvm_fpu_put();
3924 }
3925
kvm_set_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3926 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3927 {
3928 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3929 }
3930
kvm_get_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3931 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3932 {
3933 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3934 }
3935
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3936 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3937 {
3938 u32 msr = msr_info->index;
3939 u64 data = msr_info->data;
3940
3941 /*
3942 * Do not allow host-initiated writes to trigger the Xen hypercall
3943 * page setup; it could incur locking paths which are not expected
3944 * if userspace sets the MSR in an unusual location.
3945 */
3946 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3947 !msr_info->host_initiated)
3948 return kvm_xen_write_hypercall_page(vcpu, data);
3949
3950 switch (msr) {
3951 case MSR_AMD64_NB_CFG:
3952 case MSR_IA32_UCODE_WRITE:
3953 case MSR_VM_HSAVE_PA:
3954 case MSR_AMD64_PATCH_LOADER:
3955 case MSR_AMD64_BU_CFG2:
3956 case MSR_AMD64_DC_CFG:
3957 case MSR_AMD64_TW_CFG:
3958 case MSR_F15H_EX_CFG:
3959 break;
3960
3961 case MSR_IA32_UCODE_REV:
3962 if (msr_info->host_initiated)
3963 vcpu->arch.microcode_version = data;
3964 break;
3965 case MSR_IA32_ARCH_CAPABILITIES:
3966 if (!msr_info->host_initiated ||
3967 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3968 return KVM_MSR_RET_UNSUPPORTED;
3969 vcpu->arch.arch_capabilities = data;
3970 break;
3971 case MSR_IA32_PERF_CAPABILITIES:
3972 if (!msr_info->host_initiated ||
3973 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3974 return KVM_MSR_RET_UNSUPPORTED;
3975
3976 if (data & ~kvm_caps.supported_perf_cap)
3977 return 1;
3978
3979 /*
3980 * Note, this is not just a performance optimization! KVM
3981 * disallows changing feature MSRs after the vCPU has run; PMU
3982 * refresh will bug the VM if called after the vCPU has run.
3983 */
3984 if (vcpu->arch.perf_capabilities == data)
3985 break;
3986
3987 vcpu->arch.perf_capabilities = data;
3988 kvm_pmu_refresh(vcpu);
3989 break;
3990 case MSR_IA32_PRED_CMD: {
3991 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3992
3993 if (!msr_info->host_initiated) {
3994 if ((!guest_has_pred_cmd_msr(vcpu)))
3995 return 1;
3996
3997 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3998 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3999 reserved_bits |= PRED_CMD_IBPB;
4000
4001 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
4002 reserved_bits |= PRED_CMD_SBPB;
4003 }
4004
4005 if (!boot_cpu_has(X86_FEATURE_IBPB))
4006 reserved_bits |= PRED_CMD_IBPB;
4007
4008 if (!boot_cpu_has(X86_FEATURE_SBPB))
4009 reserved_bits |= PRED_CMD_SBPB;
4010
4011 if (data & reserved_bits)
4012 return 1;
4013
4014 if (!data)
4015 break;
4016
4017 wrmsrq(MSR_IA32_PRED_CMD, data);
4018 break;
4019 }
4020 case MSR_IA32_FLUSH_CMD:
4021 if (!msr_info->host_initiated &&
4022 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
4023 return 1;
4024
4025 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
4026 return 1;
4027 if (!data)
4028 break;
4029
4030 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
4031 break;
4032 case MSR_EFER:
4033 return set_efer(vcpu, msr_info);
4034 case MSR_K7_HWCR:
4035 data &= ~(u64)0x40; /* ignore flush filter disable */
4036 data &= ~(u64)0x100; /* ignore ignne emulation enable */
4037 data &= ~(u64)0x8; /* ignore TLB cache disable */
4038
4039 /*
4040 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
4041 * through at least v6.6 whine if TscFreqSel is clear,
4042 * depending on F/M/S.
4043 */
4044 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4045 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4046 return 1;
4047 }
4048 vcpu->arch.msr_hwcr = data;
4049 break;
4050 case MSR_FAM10H_MMIO_CONF_BASE:
4051 if (data != 0) {
4052 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4053 return 1;
4054 }
4055 break;
4056 case MSR_IA32_CR_PAT:
4057 if (!kvm_pat_valid(data))
4058 return 1;
4059
4060 vcpu->arch.pat = data;
4061 break;
4062 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4063 case MSR_MTRRdefType:
4064 return kvm_mtrr_set_msr(vcpu, msr, data);
4065 case MSR_IA32_APICBASE:
4066 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4067 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4068 return kvm_x2apic_msr_write(vcpu, msr, data);
4069 case MSR_IA32_TSC_DEADLINE:
4070 kvm_set_lapic_tscdeadline_msr(vcpu, data);
4071 break;
4072 case MSR_IA32_TSC_ADJUST:
4073 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4074 if (!msr_info->host_initiated) {
4075 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4076 adjust_tsc_offset_guest(vcpu, adj);
4077 /* Before back to guest, tsc_timestamp must be adjusted
4078 * as well, otherwise guest's percpu pvclock time could jump.
4079 */
4080 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4081 }
4082 vcpu->arch.ia32_tsc_adjust_msr = data;
4083 }
4084 break;
4085 case MSR_IA32_MISC_ENABLE: {
4086 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4087
4088 if (!msr_info->host_initiated) {
4089 /* RO bits */
4090 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4091 return 1;
4092
4093 /* R bits, i.e. writes are ignored, but don't fault. */
4094 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4095 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4096 }
4097
4098 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4099 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
4100 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4101 return 1;
4102 vcpu->arch.ia32_misc_enable_msr = data;
4103 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4104 } else {
4105 vcpu->arch.ia32_misc_enable_msr = data;
4106 }
4107 break;
4108 }
4109 case MSR_IA32_SMBASE:
4110 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4111 return 1;
4112 vcpu->arch.smbase = data;
4113 break;
4114 case MSR_IA32_POWER_CTL:
4115 vcpu->arch.msr_ia32_power_ctl = data;
4116 break;
4117 case MSR_IA32_TSC:
4118 if (msr_info->host_initiated) {
4119 kvm_synchronize_tsc(vcpu, &data);
4120 } else if (!vcpu->arch.guest_tsc_protected) {
4121 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4122 adjust_tsc_offset_guest(vcpu, adj);
4123 vcpu->arch.ia32_tsc_adjust_msr += adj;
4124 }
4125 break;
4126 case MSR_IA32_XSS:
4127 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4128 return KVM_MSR_RET_UNSUPPORTED;
4129
4130 if (data & ~vcpu->arch.guest_supported_xss)
4131 return 1;
4132 if (vcpu->arch.ia32_xss == data)
4133 break;
4134 vcpu->arch.ia32_xss = data;
4135 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4136 break;
4137 case MSR_SMI_COUNT:
4138 if (!msr_info->host_initiated)
4139 return 1;
4140 vcpu->arch.smi_count = data;
4141 break;
4142 case MSR_KVM_WALL_CLOCK_NEW:
4143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4144 return 1;
4145
4146 vcpu->kvm->arch.wall_clock = data;
4147 kvm_write_wall_clock(vcpu->kvm, data, 0);
4148 break;
4149 case MSR_KVM_WALL_CLOCK:
4150 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4151 return 1;
4152
4153 vcpu->kvm->arch.wall_clock = data;
4154 kvm_write_wall_clock(vcpu->kvm, data, 0);
4155 break;
4156 case MSR_KVM_SYSTEM_TIME_NEW:
4157 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4158 return 1;
4159
4160 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4161 break;
4162 case MSR_KVM_SYSTEM_TIME:
4163 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4164 return 1;
4165
4166 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4167 break;
4168 case MSR_KVM_ASYNC_PF_EN:
4169 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4170 return 1;
4171
4172 if (kvm_pv_enable_async_pf(vcpu, data))
4173 return 1;
4174 break;
4175 case MSR_KVM_ASYNC_PF_INT:
4176 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4177 return 1;
4178
4179 if (kvm_pv_enable_async_pf_int(vcpu, data))
4180 return 1;
4181 break;
4182 case MSR_KVM_ASYNC_PF_ACK:
4183 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4184 return 1;
4185 if (data & 0x1) {
4186 vcpu->arch.apf.pageready_pending = false;
4187 kvm_check_async_pf_completion(vcpu);
4188 }
4189 break;
4190 case MSR_KVM_STEAL_TIME:
4191 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4192 return 1;
4193
4194 if (unlikely(!sched_info_on()))
4195 return 1;
4196
4197 if (data & KVM_STEAL_RESERVED_MASK)
4198 return 1;
4199
4200 vcpu->arch.st.msr_val = data;
4201
4202 if (!(data & KVM_MSR_ENABLED))
4203 break;
4204
4205 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4206
4207 break;
4208 case MSR_KVM_PV_EOI_EN:
4209 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4210 return 1;
4211
4212 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4213 return 1;
4214 break;
4215
4216 case MSR_KVM_POLL_CONTROL:
4217 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4218 return 1;
4219
4220 /* only enable bit supported */
4221 if (data & (-1ULL << 1))
4222 return 1;
4223
4224 vcpu->arch.msr_kvm_poll_control = data;
4225 break;
4226
4227 case MSR_IA32_MCG_CTL:
4228 case MSR_IA32_MCG_STATUS:
4229 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4230 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4231 return set_msr_mce(vcpu, msr_info);
4232
4233 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4234 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4235 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4236 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4237 if (kvm_pmu_is_valid_msr(vcpu, msr))
4238 return kvm_pmu_set_msr(vcpu, msr_info);
4239
4240 if (data)
4241 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4242 break;
4243 case MSR_K7_CLK_CTL:
4244 /*
4245 * Ignore all writes to this no longer documented MSR.
4246 * Writes are only relevant for old K7 processors,
4247 * all pre-dating SVM, but a recommended workaround from
4248 * AMD for these chips. It is possible to specify the
4249 * affected processor models on the command line, hence
4250 * the need to ignore the workaround.
4251 */
4252 break;
4253 #ifdef CONFIG_KVM_HYPERV
4254 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4255 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4256 case HV_X64_MSR_SYNDBG_OPTIONS:
4257 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4258 case HV_X64_MSR_CRASH_CTL:
4259 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4260 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4261 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4262 case HV_X64_MSR_TSC_EMULATION_STATUS:
4263 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4264 return kvm_hv_set_msr_common(vcpu, msr, data,
4265 msr_info->host_initiated);
4266 #endif
4267 case MSR_IA32_BBL_CR_CTL3:
4268 /* Drop writes to this legacy MSR -- see rdmsr
4269 * counterpart for further detail.
4270 */
4271 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4272 break;
4273 case MSR_AMD64_OSVW_ID_LENGTH:
4274 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4275 return 1;
4276 vcpu->arch.osvw.length = data;
4277 break;
4278 case MSR_AMD64_OSVW_STATUS:
4279 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4280 return 1;
4281 vcpu->arch.osvw.status = data;
4282 break;
4283 case MSR_PLATFORM_INFO:
4284 if (!msr_info->host_initiated)
4285 return 1;
4286 vcpu->arch.msr_platform_info = data;
4287 break;
4288 case MSR_MISC_FEATURES_ENABLES:
4289 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4290 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4291 !supports_cpuid_fault(vcpu)))
4292 return 1;
4293 vcpu->arch.msr_misc_features_enables = data;
4294 break;
4295 #ifdef CONFIG_X86_64
4296 case MSR_IA32_XFD:
4297 if (!msr_info->host_initiated &&
4298 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4299 return 1;
4300
4301 if (data & ~kvm_guest_supported_xfd(vcpu))
4302 return 1;
4303
4304 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4305 break;
4306 case MSR_IA32_XFD_ERR:
4307 if (!msr_info->host_initiated &&
4308 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4309 return 1;
4310
4311 if (data & ~kvm_guest_supported_xfd(vcpu))
4312 return 1;
4313
4314 vcpu->arch.guest_fpu.xfd_err = data;
4315 break;
4316 #endif
4317 case MSR_IA32_U_CET:
4318 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4319 kvm_set_xstate_msr(vcpu, msr_info);
4320 break;
4321 default:
4322 if (kvm_pmu_is_valid_msr(vcpu, msr))
4323 return kvm_pmu_set_msr(vcpu, msr_info);
4324
4325 return KVM_MSR_RET_UNSUPPORTED;
4326 }
4327 return 0;
4328 }
4329 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4330
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4331 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4332 {
4333 u64 data;
4334 u64 mcg_cap = vcpu->arch.mcg_cap;
4335 unsigned bank_num = mcg_cap & 0xff;
4336 u32 offset, last_msr;
4337
4338 switch (msr) {
4339 case MSR_IA32_P5_MC_ADDR:
4340 case MSR_IA32_P5_MC_TYPE:
4341 data = 0;
4342 break;
4343 case MSR_IA32_MCG_CAP:
4344 data = vcpu->arch.mcg_cap;
4345 break;
4346 case MSR_IA32_MCG_CTL:
4347 if (!(mcg_cap & MCG_CTL_P) && !host)
4348 return 1;
4349 data = vcpu->arch.mcg_ctl;
4350 break;
4351 case MSR_IA32_MCG_STATUS:
4352 data = vcpu->arch.mcg_status;
4353 break;
4354 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4355 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4356 if (msr > last_msr)
4357 return 1;
4358
4359 if (!(mcg_cap & MCG_CMCI_P) && !host)
4360 return 1;
4361 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4362 last_msr + 1 - MSR_IA32_MC0_CTL2);
4363 data = vcpu->arch.mci_ctl2_banks[offset];
4364 break;
4365 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4366 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4367 if (msr > last_msr)
4368 return 1;
4369
4370 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4371 last_msr + 1 - MSR_IA32_MC0_CTL);
4372 data = vcpu->arch.mce_banks[offset];
4373 break;
4374 default:
4375 return 1;
4376 }
4377 *pdata = data;
4378 return 0;
4379 }
4380
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4381 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4382 {
4383 switch (msr_info->index) {
4384 case MSR_IA32_PLATFORM_ID:
4385 case MSR_IA32_EBL_CR_POWERON:
4386 case MSR_IA32_LASTBRANCHFROMIP:
4387 case MSR_IA32_LASTBRANCHTOIP:
4388 case MSR_IA32_LASTINTFROMIP:
4389 case MSR_IA32_LASTINTTOIP:
4390 case MSR_AMD64_SYSCFG:
4391 case MSR_K8_TSEG_ADDR:
4392 case MSR_K8_TSEG_MASK:
4393 case MSR_VM_HSAVE_PA:
4394 case MSR_K8_INT_PENDING_MSG:
4395 case MSR_AMD64_NB_CFG:
4396 case MSR_FAM10H_MMIO_CONF_BASE:
4397 case MSR_AMD64_BU_CFG2:
4398 case MSR_IA32_PERF_CTL:
4399 case MSR_AMD64_DC_CFG:
4400 case MSR_AMD64_TW_CFG:
4401 case MSR_F15H_EX_CFG:
4402 /*
4403 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4404 * limit) MSRs. Just return 0, as we do not want to expose the host
4405 * data here. Do not conditionalize this on CPUID, as KVM does not do
4406 * so for existing CPU-specific MSRs.
4407 */
4408 case MSR_RAPL_POWER_UNIT:
4409 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4410 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4411 case MSR_PKG_ENERGY_STATUS: /* Total package */
4412 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4413 msr_info->data = 0;
4414 break;
4415 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4416 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4417 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4418 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4419 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4420 return kvm_pmu_get_msr(vcpu, msr_info);
4421 msr_info->data = 0;
4422 break;
4423 case MSR_IA32_UCODE_REV:
4424 msr_info->data = vcpu->arch.microcode_version;
4425 break;
4426 case MSR_IA32_ARCH_CAPABILITIES:
4427 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4428 return KVM_MSR_RET_UNSUPPORTED;
4429 msr_info->data = vcpu->arch.arch_capabilities;
4430 break;
4431 case MSR_IA32_PERF_CAPABILITIES:
4432 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4433 return KVM_MSR_RET_UNSUPPORTED;
4434 msr_info->data = vcpu->arch.perf_capabilities;
4435 break;
4436 case MSR_IA32_POWER_CTL:
4437 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4438 break;
4439 case MSR_IA32_TSC: {
4440 /*
4441 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4442 * even when not intercepted. AMD manual doesn't explicitly
4443 * state this but appears to behave the same.
4444 *
4445 * On userspace reads and writes, however, we unconditionally
4446 * return L1's TSC value to ensure backwards-compatible
4447 * behavior for migration.
4448 */
4449 u64 offset, ratio;
4450
4451 if (msr_info->host_initiated) {
4452 offset = vcpu->arch.l1_tsc_offset;
4453 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4454 } else {
4455 offset = vcpu->arch.tsc_offset;
4456 ratio = vcpu->arch.tsc_scaling_ratio;
4457 }
4458
4459 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4460 break;
4461 }
4462 case MSR_IA32_CR_PAT:
4463 msr_info->data = vcpu->arch.pat;
4464 break;
4465 case MSR_MTRRcap:
4466 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4467 case MSR_MTRRdefType:
4468 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4469 case 0xcd: /* fsb frequency */
4470 msr_info->data = 3;
4471 break;
4472 /*
4473 * MSR_EBC_FREQUENCY_ID
4474 * Conservative value valid for even the basic CPU models.
4475 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4476 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4477 * and 266MHz for model 3, or 4. Set Core Clock
4478 * Frequency to System Bus Frequency Ratio to 1 (bits
4479 * 31:24) even though these are only valid for CPU
4480 * models > 2, however guests may end up dividing or
4481 * multiplying by zero otherwise.
4482 */
4483 case MSR_EBC_FREQUENCY_ID:
4484 msr_info->data = 1 << 24;
4485 break;
4486 case MSR_IA32_APICBASE:
4487 msr_info->data = vcpu->arch.apic_base;
4488 break;
4489 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4490 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4491 case MSR_IA32_TSC_DEADLINE:
4492 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4493 break;
4494 case MSR_IA32_TSC_ADJUST:
4495 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4496 break;
4497 case MSR_IA32_MISC_ENABLE:
4498 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4499 break;
4500 case MSR_IA32_SMBASE:
4501 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4502 return 1;
4503 msr_info->data = vcpu->arch.smbase;
4504 break;
4505 case MSR_SMI_COUNT:
4506 msr_info->data = vcpu->arch.smi_count;
4507 break;
4508 case MSR_IA32_PERF_STATUS:
4509 /* TSC increment by tick */
4510 msr_info->data = 1000ULL;
4511 /* CPU multiplier */
4512 msr_info->data |= (((uint64_t)4ULL) << 40);
4513 break;
4514 case MSR_EFER:
4515 msr_info->data = vcpu->arch.efer;
4516 break;
4517 case MSR_KVM_WALL_CLOCK:
4518 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4519 return 1;
4520
4521 msr_info->data = vcpu->kvm->arch.wall_clock;
4522 break;
4523 case MSR_KVM_WALL_CLOCK_NEW:
4524 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4525 return 1;
4526
4527 msr_info->data = vcpu->kvm->arch.wall_clock;
4528 break;
4529 case MSR_KVM_SYSTEM_TIME:
4530 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4531 return 1;
4532
4533 msr_info->data = vcpu->arch.time;
4534 break;
4535 case MSR_KVM_SYSTEM_TIME_NEW:
4536 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4537 return 1;
4538
4539 msr_info->data = vcpu->arch.time;
4540 break;
4541 case MSR_KVM_ASYNC_PF_EN:
4542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4543 return 1;
4544
4545 msr_info->data = vcpu->arch.apf.msr_en_val;
4546 break;
4547 case MSR_KVM_ASYNC_PF_INT:
4548 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4549 return 1;
4550
4551 msr_info->data = vcpu->arch.apf.msr_int_val;
4552 break;
4553 case MSR_KVM_ASYNC_PF_ACK:
4554 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4555 return 1;
4556
4557 msr_info->data = 0;
4558 break;
4559 case MSR_KVM_STEAL_TIME:
4560 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4561 return 1;
4562
4563 msr_info->data = vcpu->arch.st.msr_val;
4564 break;
4565 case MSR_KVM_PV_EOI_EN:
4566 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4567 return 1;
4568
4569 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4570 break;
4571 case MSR_KVM_POLL_CONTROL:
4572 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4573 return 1;
4574
4575 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4576 break;
4577 case MSR_IA32_P5_MC_ADDR:
4578 case MSR_IA32_P5_MC_TYPE:
4579 case MSR_IA32_MCG_CAP:
4580 case MSR_IA32_MCG_CTL:
4581 case MSR_IA32_MCG_STATUS:
4582 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4583 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4584 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4585 msr_info->host_initiated);
4586 case MSR_IA32_XSS:
4587 if (!msr_info->host_initiated &&
4588 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4589 return 1;
4590 msr_info->data = vcpu->arch.ia32_xss;
4591 break;
4592 case MSR_K7_CLK_CTL:
4593 /*
4594 * Provide expected ramp-up count for K7. All other
4595 * are set to zero, indicating minimum divisors for
4596 * every field.
4597 *
4598 * This prevents guest kernels on AMD host with CPU
4599 * type 6, model 8 and higher from exploding due to
4600 * the rdmsr failing.
4601 */
4602 msr_info->data = 0x20000000;
4603 break;
4604 #ifdef CONFIG_KVM_HYPERV
4605 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4606 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4607 case HV_X64_MSR_SYNDBG_OPTIONS:
4608 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4609 case HV_X64_MSR_CRASH_CTL:
4610 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4611 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4612 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4613 case HV_X64_MSR_TSC_EMULATION_STATUS:
4614 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4615 return kvm_hv_get_msr_common(vcpu,
4616 msr_info->index, &msr_info->data,
4617 msr_info->host_initiated);
4618 #endif
4619 case MSR_IA32_BBL_CR_CTL3:
4620 /* This legacy MSR exists but isn't fully documented in current
4621 * silicon. It is however accessed by winxp in very narrow
4622 * scenarios where it sets bit #19, itself documented as
4623 * a "reserved" bit. Best effort attempt to source coherent
4624 * read data here should the balance of the register be
4625 * interpreted by the guest:
4626 *
4627 * L2 cache control register 3: 64GB range, 256KB size,
4628 * enabled, latency 0x1, configured
4629 */
4630 msr_info->data = 0xbe702111;
4631 break;
4632 case MSR_AMD64_OSVW_ID_LENGTH:
4633 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4634 return 1;
4635 msr_info->data = vcpu->arch.osvw.length;
4636 break;
4637 case MSR_AMD64_OSVW_STATUS:
4638 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4639 return 1;
4640 msr_info->data = vcpu->arch.osvw.status;
4641 break;
4642 case MSR_PLATFORM_INFO:
4643 if (!msr_info->host_initiated &&
4644 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4645 return 1;
4646 msr_info->data = vcpu->arch.msr_platform_info;
4647 break;
4648 case MSR_MISC_FEATURES_ENABLES:
4649 msr_info->data = vcpu->arch.msr_misc_features_enables;
4650 break;
4651 case MSR_K7_HWCR:
4652 msr_info->data = vcpu->arch.msr_hwcr;
4653 break;
4654 #ifdef CONFIG_X86_64
4655 case MSR_IA32_XFD:
4656 if (!msr_info->host_initiated &&
4657 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4658 return 1;
4659
4660 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4661 break;
4662 case MSR_IA32_XFD_ERR:
4663 if (!msr_info->host_initiated &&
4664 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4665 return 1;
4666
4667 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4668 break;
4669 #endif
4670 case MSR_IA32_U_CET:
4671 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4672 kvm_get_xstate_msr(vcpu, msr_info);
4673 break;
4674 default:
4675 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4676 return kvm_pmu_get_msr(vcpu, msr_info);
4677
4678 return KVM_MSR_RET_UNSUPPORTED;
4679 }
4680 return 0;
4681 }
4682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4683
4684 /*
4685 * Read or write a bunch of msrs. All parameters are kernel addresses.
4686 *
4687 * @return number of msrs set successfully.
4688 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4689 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4690 struct kvm_msr_entry *entries,
4691 int (*do_msr)(struct kvm_vcpu *vcpu,
4692 unsigned index, u64 *data))
4693 {
4694 bool fpu_loaded = false;
4695 int i;
4696
4697 for (i = 0; i < msrs->nmsrs; ++i) {
4698 /*
4699 * If userspace is accessing one or more XSTATE-managed MSRs,
4700 * temporarily load the guest's FPU state so that the guest's
4701 * MSR value(s) is resident in hardware and thus can be accessed
4702 * via RDMSR/WRMSR.
4703 */
4704 if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4705 kvm_load_guest_fpu(vcpu);
4706 fpu_loaded = true;
4707 }
4708 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4709 break;
4710 }
4711 if (fpu_loaded)
4712 kvm_put_guest_fpu(vcpu);
4713
4714 return i;
4715 }
4716
4717 /*
4718 * Read or write a bunch of msrs. Parameters are user addresses.
4719 *
4720 * @return number of msrs set successfully.
4721 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4722 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4723 int (*do_msr)(struct kvm_vcpu *vcpu,
4724 unsigned index, u64 *data),
4725 int writeback)
4726 {
4727 struct kvm_msrs msrs;
4728 struct kvm_msr_entry *entries;
4729 unsigned size;
4730 int r;
4731
4732 r = -EFAULT;
4733 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4734 goto out;
4735
4736 r = -E2BIG;
4737 if (msrs.nmsrs >= MAX_IO_MSRS)
4738 goto out;
4739
4740 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4741 entries = memdup_user(user_msrs->entries, size);
4742 if (IS_ERR(entries)) {
4743 r = PTR_ERR(entries);
4744 goto out;
4745 }
4746
4747 r = __msr_io(vcpu, &msrs, entries, do_msr);
4748
4749 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4750 r = -EFAULT;
4751
4752 kfree(entries);
4753 out:
4754 return r;
4755 }
4756
kvm_can_mwait_in_guest(void)4757 static inline bool kvm_can_mwait_in_guest(void)
4758 {
4759 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4760 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4761 boot_cpu_has(X86_FEATURE_ARAT);
4762 }
4763
kvm_get_allowed_disable_exits(void)4764 static u64 kvm_get_allowed_disable_exits(void)
4765 {
4766 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4767
4768 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4769 r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4770
4771 if (!mitigate_smt_rsb) {
4772 r |= KVM_X86_DISABLE_EXITS_HLT |
4773 KVM_X86_DISABLE_EXITS_CSTATE;
4774
4775 if (kvm_can_mwait_in_guest())
4776 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4777 }
4778 return r;
4779 }
4780
4781 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4782 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4783 struct kvm_cpuid2 __user *cpuid_arg)
4784 {
4785 struct kvm_cpuid2 cpuid;
4786 int r;
4787
4788 r = -EFAULT;
4789 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4790 return r;
4791
4792 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4793 if (r)
4794 return r;
4795
4796 r = -EFAULT;
4797 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4798 return r;
4799
4800 return 0;
4801 }
4802 #endif
4803
kvm_is_vm_type_supported(unsigned long type)4804 static bool kvm_is_vm_type_supported(unsigned long type)
4805 {
4806 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4807 }
4808
kvm_sync_valid_fields(struct kvm * kvm)4809 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4810 {
4811 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4812 }
4813
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4814 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4815 {
4816 int r = 0;
4817
4818 switch (ext) {
4819 case KVM_CAP_IRQCHIP:
4820 case KVM_CAP_HLT:
4821 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4822 case KVM_CAP_SET_TSS_ADDR:
4823 case KVM_CAP_EXT_CPUID:
4824 case KVM_CAP_EXT_EMUL_CPUID:
4825 case KVM_CAP_CLOCKSOURCE:
4826 #ifdef CONFIG_KVM_IOAPIC
4827 case KVM_CAP_PIT:
4828 case KVM_CAP_PIT2:
4829 case KVM_CAP_PIT_STATE2:
4830 case KVM_CAP_REINJECT_CONTROL:
4831 #endif
4832 case KVM_CAP_NOP_IO_DELAY:
4833 case KVM_CAP_MP_STATE:
4834 case KVM_CAP_SYNC_MMU:
4835 case KVM_CAP_USER_NMI:
4836 case KVM_CAP_IRQ_INJECT_STATUS:
4837 case KVM_CAP_IOEVENTFD:
4838 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4839
4840 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4841 case KVM_CAP_VCPU_EVENTS:
4842 #ifdef CONFIG_KVM_HYPERV
4843 case KVM_CAP_HYPERV:
4844 case KVM_CAP_HYPERV_VAPIC:
4845 case KVM_CAP_HYPERV_SPIN:
4846 case KVM_CAP_HYPERV_TIME:
4847 case KVM_CAP_HYPERV_SYNIC:
4848 case KVM_CAP_HYPERV_SYNIC2:
4849 case KVM_CAP_HYPERV_VP_INDEX:
4850 case KVM_CAP_HYPERV_EVENTFD:
4851 case KVM_CAP_HYPERV_TLBFLUSH:
4852 case KVM_CAP_HYPERV_SEND_IPI:
4853 case KVM_CAP_HYPERV_CPUID:
4854 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4855 case KVM_CAP_SYS_HYPERV_CPUID:
4856 #endif
4857 case KVM_CAP_PCI_SEGMENT:
4858 case KVM_CAP_DEBUGREGS:
4859 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4860 case KVM_CAP_XSAVE:
4861 case KVM_CAP_ASYNC_PF:
4862 case KVM_CAP_ASYNC_PF_INT:
4863 case KVM_CAP_GET_TSC_KHZ:
4864 case KVM_CAP_KVMCLOCK_CTRL:
4865 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4866 case KVM_CAP_TSC_DEADLINE_TIMER:
4867 case KVM_CAP_DISABLE_QUIRKS:
4868 case KVM_CAP_SET_BOOT_CPU_ID:
4869 case KVM_CAP_SPLIT_IRQCHIP:
4870 case KVM_CAP_IMMEDIATE_EXIT:
4871 case KVM_CAP_PMU_EVENT_FILTER:
4872 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4873 case KVM_CAP_GET_MSR_FEATURES:
4874 case KVM_CAP_MSR_PLATFORM_INFO:
4875 case KVM_CAP_EXCEPTION_PAYLOAD:
4876 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4877 case KVM_CAP_SET_GUEST_DEBUG:
4878 case KVM_CAP_LAST_CPU:
4879 case KVM_CAP_X86_USER_SPACE_MSR:
4880 case KVM_CAP_X86_MSR_FILTER:
4881 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4882 #ifdef CONFIG_X86_SGX_KVM
4883 case KVM_CAP_SGX_ATTRIBUTE:
4884 #endif
4885 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4886 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4887 case KVM_CAP_SREGS2:
4888 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4889 case KVM_CAP_VCPU_ATTRIBUTES:
4890 case KVM_CAP_SYS_ATTRIBUTES:
4891 case KVM_CAP_VAPIC:
4892 case KVM_CAP_ENABLE_CAP:
4893 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4894 case KVM_CAP_IRQFD_RESAMPLE:
4895 case KVM_CAP_MEMORY_FAULT_INFO:
4896 case KVM_CAP_X86_GUEST_MODE:
4897 case KVM_CAP_ONE_REG:
4898 r = 1;
4899 break;
4900 case KVM_CAP_PRE_FAULT_MEMORY:
4901 r = tdp_enabled;
4902 break;
4903 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4904 r = APIC_BUS_CYCLE_NS_DEFAULT;
4905 break;
4906 case KVM_CAP_EXIT_HYPERCALL:
4907 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4908 break;
4909 case KVM_CAP_SET_GUEST_DEBUG2:
4910 return KVM_GUESTDBG_VALID_MASK;
4911 #ifdef CONFIG_KVM_XEN
4912 case KVM_CAP_XEN_HVM:
4913 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4914 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4915 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4916 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4917 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4918 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4919 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4920 if (sched_info_on())
4921 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4922 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4923 break;
4924 #endif
4925 case KVM_CAP_SYNC_REGS:
4926 r = kvm_sync_valid_fields(kvm);
4927 break;
4928 case KVM_CAP_ADJUST_CLOCK:
4929 r = KVM_CLOCK_VALID_FLAGS;
4930 break;
4931 case KVM_CAP_X86_DISABLE_EXITS:
4932 r = kvm_get_allowed_disable_exits();
4933 break;
4934 case KVM_CAP_X86_SMM:
4935 if (!IS_ENABLED(CONFIG_KVM_SMM))
4936 break;
4937
4938 /* SMBASE is usually relocated above 1M on modern chipsets,
4939 * and SMM handlers might indeed rely on 4G segment limits,
4940 * so do not report SMM to be available if real mode is
4941 * emulated via vm86 mode. Still, do not go to great lengths
4942 * to avoid userspace's usage of the feature, because it is a
4943 * fringe case that is not enabled except via specific settings
4944 * of the module parameters.
4945 */
4946 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4947 break;
4948 case KVM_CAP_NR_VCPUS:
4949 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4950 break;
4951 case KVM_CAP_MAX_VCPUS:
4952 r = KVM_MAX_VCPUS;
4953 if (kvm)
4954 r = kvm->max_vcpus;
4955 break;
4956 case KVM_CAP_MAX_VCPU_ID:
4957 r = KVM_MAX_VCPU_IDS;
4958 break;
4959 case KVM_CAP_PV_MMU: /* obsolete */
4960 r = 0;
4961 break;
4962 case KVM_CAP_MCE:
4963 r = KVM_MAX_MCE_BANKS;
4964 break;
4965 case KVM_CAP_XCRS:
4966 r = boot_cpu_has(X86_FEATURE_XSAVE);
4967 break;
4968 case KVM_CAP_TSC_CONTROL:
4969 case KVM_CAP_VM_TSC_CONTROL:
4970 r = kvm_caps.has_tsc_control;
4971 break;
4972 case KVM_CAP_X2APIC_API:
4973 r = KVM_X2APIC_API_VALID_FLAGS;
4974 break;
4975 case KVM_CAP_NESTED_STATE:
4976 r = kvm_x86_ops.nested_ops->get_state ?
4977 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4978 break;
4979 #ifdef CONFIG_KVM_HYPERV
4980 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4981 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4982 break;
4983 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4984 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4985 break;
4986 #endif
4987 case KVM_CAP_SMALLER_MAXPHYADDR:
4988 r = (int) allow_smaller_maxphyaddr;
4989 break;
4990 case KVM_CAP_STEAL_TIME:
4991 r = sched_info_on();
4992 break;
4993 case KVM_CAP_X86_BUS_LOCK_EXIT:
4994 if (kvm_caps.has_bus_lock_exit)
4995 r = KVM_BUS_LOCK_DETECTION_OFF |
4996 KVM_BUS_LOCK_DETECTION_EXIT;
4997 else
4998 r = 0;
4999 break;
5000 case KVM_CAP_XSAVE2: {
5001 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
5002 if (r < sizeof(struct kvm_xsave))
5003 r = sizeof(struct kvm_xsave);
5004 break;
5005 }
5006 case KVM_CAP_PMU_CAPABILITY:
5007 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
5008 break;
5009 case KVM_CAP_DISABLE_QUIRKS2:
5010 r = kvm_caps.supported_quirks;
5011 break;
5012 case KVM_CAP_X86_NOTIFY_VMEXIT:
5013 r = kvm_caps.has_notify_vmexit;
5014 break;
5015 case KVM_CAP_VM_TYPES:
5016 r = kvm_caps.supported_vm_types;
5017 break;
5018 case KVM_CAP_READONLY_MEM:
5019 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
5020 break;
5021 default:
5022 break;
5023 }
5024 return r;
5025 }
5026
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)5027 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
5028 {
5029 if (attr->group) {
5030 if (kvm_x86_ops.dev_get_attr)
5031 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
5032 return -ENXIO;
5033 }
5034
5035 switch (attr->attr) {
5036 case KVM_X86_XCOMP_GUEST_SUPP:
5037 *val = kvm_caps.supported_xcr0;
5038 return 0;
5039 default:
5040 return -ENXIO;
5041 }
5042 }
5043
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)5044 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5045 {
5046 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5047 int r;
5048 u64 val;
5049
5050 r = __kvm_x86_dev_get_attr(attr, &val);
5051 if (r < 0)
5052 return r;
5053
5054 if (put_user(val, uaddr))
5055 return -EFAULT;
5056
5057 return 0;
5058 }
5059
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)5060 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5061 {
5062 u64 val;
5063
5064 return __kvm_x86_dev_get_attr(attr, &val);
5065 }
5066
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5067 long kvm_arch_dev_ioctl(struct file *filp,
5068 unsigned int ioctl, unsigned long arg)
5069 {
5070 void __user *argp = (void __user *)arg;
5071 long r;
5072
5073 switch (ioctl) {
5074 case KVM_GET_MSR_INDEX_LIST: {
5075 struct kvm_msr_list __user *user_msr_list = argp;
5076 struct kvm_msr_list msr_list;
5077 unsigned n;
5078
5079 r = -EFAULT;
5080 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5081 goto out;
5082 n = msr_list.nmsrs;
5083 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5084 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5085 goto out;
5086 r = -E2BIG;
5087 if (n < msr_list.nmsrs)
5088 goto out;
5089 r = -EFAULT;
5090 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5091 num_msrs_to_save * sizeof(u32)))
5092 goto out;
5093 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5094 &emulated_msrs,
5095 num_emulated_msrs * sizeof(u32)))
5096 goto out;
5097 r = 0;
5098 break;
5099 }
5100 case KVM_GET_SUPPORTED_CPUID:
5101 case KVM_GET_EMULATED_CPUID: {
5102 struct kvm_cpuid2 __user *cpuid_arg = argp;
5103 struct kvm_cpuid2 cpuid;
5104
5105 r = -EFAULT;
5106 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5107 goto out;
5108
5109 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5110 ioctl);
5111 if (r)
5112 goto out;
5113
5114 r = -EFAULT;
5115 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5116 goto out;
5117 r = 0;
5118 break;
5119 }
5120 case KVM_X86_GET_MCE_CAP_SUPPORTED:
5121 r = -EFAULT;
5122 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5123 sizeof(kvm_caps.supported_mce_cap)))
5124 goto out;
5125 r = 0;
5126 break;
5127 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5128 struct kvm_msr_list __user *user_msr_list = argp;
5129 struct kvm_msr_list msr_list;
5130 unsigned int n;
5131
5132 r = -EFAULT;
5133 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5134 goto out;
5135 n = msr_list.nmsrs;
5136 msr_list.nmsrs = num_msr_based_features;
5137 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5138 goto out;
5139 r = -E2BIG;
5140 if (n < msr_list.nmsrs)
5141 goto out;
5142 r = -EFAULT;
5143 if (copy_to_user(user_msr_list->indices, &msr_based_features,
5144 num_msr_based_features * sizeof(u32)))
5145 goto out;
5146 r = 0;
5147 break;
5148 }
5149 case KVM_GET_MSRS:
5150 r = msr_io(NULL, argp, do_get_feature_msr, 1);
5151 break;
5152 #ifdef CONFIG_KVM_HYPERV
5153 case KVM_GET_SUPPORTED_HV_CPUID:
5154 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5155 break;
5156 #endif
5157 case KVM_GET_DEVICE_ATTR: {
5158 struct kvm_device_attr attr;
5159 r = -EFAULT;
5160 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5161 break;
5162 r = kvm_x86_dev_get_attr(&attr);
5163 break;
5164 }
5165 case KVM_HAS_DEVICE_ATTR: {
5166 struct kvm_device_attr attr;
5167 r = -EFAULT;
5168 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5169 break;
5170 r = kvm_x86_dev_has_attr(&attr);
5171 break;
5172 }
5173 default:
5174 r = -EINVAL;
5175 break;
5176 }
5177 out:
5178 return r;
5179 }
5180
need_emulate_wbinvd(struct kvm_vcpu * vcpu)5181 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5182 {
5183 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5184 }
5185
5186 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5187
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5188 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5189 {
5190 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5191
5192 vcpu->arch.l1tf_flush_l1d = true;
5193
5194 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5195 pmu->need_cleanup = true;
5196 kvm_make_request(KVM_REQ_PMU, vcpu);
5197 }
5198
5199 /* Address WBINVD may be executed by guest */
5200 if (need_emulate_wbinvd(vcpu)) {
5201 if (kvm_x86_call(has_wbinvd_exit)())
5202 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5203 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5204 wbinvd_on_cpu(vcpu->cpu);
5205 }
5206
5207 kvm_x86_call(vcpu_load)(vcpu, cpu);
5208
5209 if (vcpu != per_cpu(last_vcpu, cpu)) {
5210 /*
5211 * Flush the branch predictor when switching vCPUs on the same
5212 * physical CPU, as each vCPU needs its own branch prediction
5213 * domain. No IBPB is needed when switching between L1 and L2
5214 * on the same vCPU unless IBRS is advertised to the vCPU; that
5215 * is handled on the nested VM-Exit path.
5216 */
5217 if (static_branch_likely(&switch_vcpu_ibpb))
5218 indirect_branch_prediction_barrier();
5219 per_cpu(last_vcpu, cpu) = vcpu;
5220 }
5221
5222 /* Save host pkru register if supported */
5223 vcpu->arch.host_pkru = read_pkru();
5224
5225 /* Apply any externally detected TSC adjustments (due to suspend) */
5226 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5227 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5228 vcpu->arch.tsc_offset_adjustment = 0;
5229 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5230 }
5231
5232 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5233 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5234 rdtsc() - vcpu->arch.last_host_tsc;
5235 if (tsc_delta < 0)
5236 mark_tsc_unstable("KVM discovered backwards TSC");
5237
5238 if (kvm_check_tsc_unstable()) {
5239 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5240 vcpu->arch.last_guest_tsc);
5241 kvm_vcpu_write_tsc_offset(vcpu, offset);
5242 if (!vcpu->arch.guest_tsc_protected)
5243 vcpu->arch.tsc_catchup = 1;
5244 }
5245
5246 if (kvm_lapic_hv_timer_in_use(vcpu))
5247 kvm_lapic_restart_hv_timer(vcpu);
5248
5249 /*
5250 * On a host with synchronized TSC, there is no need to update
5251 * kvmclock on vcpu->cpu migration
5252 */
5253 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5254 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5255 if (vcpu->cpu != cpu)
5256 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5257 vcpu->cpu = cpu;
5258 }
5259
5260 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5261 }
5262
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5263 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5264 {
5265 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5266 struct kvm_steal_time __user *st;
5267 struct kvm_memslots *slots;
5268 static const u8 preempted = KVM_VCPU_PREEMPTED;
5269 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5270
5271 /*
5272 * The vCPU can be marked preempted if and only if the VM-Exit was on
5273 * an instruction boundary and will not trigger guest emulation of any
5274 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5275 * when this is true, for example allowing the vCPU to be marked
5276 * preempted if and only if the VM-Exit was due to a host interrupt.
5277 */
5278 if (!vcpu->arch.at_instruction_boundary) {
5279 vcpu->stat.preemption_other++;
5280 return;
5281 }
5282
5283 vcpu->stat.preemption_reported++;
5284 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5285 return;
5286
5287 if (vcpu->arch.st.preempted)
5288 return;
5289
5290 /* This happens on process exit */
5291 if (unlikely(current->mm != vcpu->kvm->mm))
5292 return;
5293
5294 slots = kvm_memslots(vcpu->kvm);
5295
5296 if (unlikely(slots->generation != ghc->generation ||
5297 gpa != ghc->gpa ||
5298 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5299 return;
5300
5301 st = (struct kvm_steal_time __user *)ghc->hva;
5302 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5303
5304 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5305 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5306
5307 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5308 }
5309
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5310 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5311 {
5312 int idx;
5313
5314 if (vcpu->preempted) {
5315 /*
5316 * Assume protected guests are in-kernel. Inefficient yielding
5317 * due to false positives is preferable to never yielding due
5318 * to false negatives.
5319 */
5320 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5321 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5322
5323 /*
5324 * Take the srcu lock as memslots will be accessed to check the gfn
5325 * cache generation against the memslots generation.
5326 */
5327 idx = srcu_read_lock(&vcpu->kvm->srcu);
5328 if (kvm_xen_msr_enabled(vcpu->kvm))
5329 kvm_xen_runstate_set_preempted(vcpu);
5330 else
5331 kvm_steal_time_set_preempted(vcpu);
5332 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5333 }
5334
5335 kvm_x86_call(vcpu_put)(vcpu);
5336 vcpu->arch.last_host_tsc = rdtsc();
5337 }
5338
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5339 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5340 struct kvm_lapic_state *s)
5341 {
5342 if (vcpu->arch.apic->guest_apic_protected)
5343 return -EINVAL;
5344
5345 kvm_x86_call(sync_pir_to_irr)(vcpu);
5346
5347 return kvm_apic_get_state(vcpu, s);
5348 }
5349
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5350 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5351 struct kvm_lapic_state *s)
5352 {
5353 int r;
5354
5355 if (vcpu->arch.apic->guest_apic_protected)
5356 return -EINVAL;
5357
5358 r = kvm_apic_set_state(vcpu, s);
5359 if (r)
5360 return r;
5361 update_cr8_intercept(vcpu);
5362
5363 return 0;
5364 }
5365
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5366 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5367 {
5368 /*
5369 * We can accept userspace's request for interrupt injection
5370 * as long as we have a place to store the interrupt number.
5371 * The actual injection will happen when the CPU is able to
5372 * deliver the interrupt.
5373 */
5374 if (kvm_cpu_has_extint(vcpu))
5375 return false;
5376
5377 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5378 return (!lapic_in_kernel(vcpu) ||
5379 kvm_apic_accept_pic_intr(vcpu));
5380 }
5381
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5382 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5383 {
5384 /*
5385 * Do not cause an interrupt window exit if an exception
5386 * is pending or an event needs reinjection; userspace
5387 * might want to inject the interrupt manually using KVM_SET_REGS
5388 * or KVM_SET_SREGS. For that to work, we must be at an
5389 * instruction boundary and with no events half-injected.
5390 */
5391 return (kvm_arch_interrupt_allowed(vcpu) &&
5392 kvm_cpu_accept_dm_intr(vcpu) &&
5393 !kvm_event_needs_reinjection(vcpu) &&
5394 !kvm_is_exception_pending(vcpu));
5395 }
5396
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5397 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5398 struct kvm_interrupt *irq)
5399 {
5400 if (irq->irq >= KVM_NR_INTERRUPTS)
5401 return -EINVAL;
5402
5403 if (!irqchip_in_kernel(vcpu->kvm)) {
5404 kvm_queue_interrupt(vcpu, irq->irq, false);
5405 kvm_make_request(KVM_REQ_EVENT, vcpu);
5406 return 0;
5407 }
5408
5409 /*
5410 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5411 * fail for in-kernel 8259.
5412 */
5413 if (pic_in_kernel(vcpu->kvm))
5414 return -ENXIO;
5415
5416 if (vcpu->arch.pending_external_vector != -1)
5417 return -EEXIST;
5418
5419 vcpu->arch.pending_external_vector = irq->irq;
5420 kvm_make_request(KVM_REQ_EVENT, vcpu);
5421 return 0;
5422 }
5423
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5424 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5425 {
5426 kvm_inject_nmi(vcpu);
5427
5428 return 0;
5429 }
5430
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5431 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5432 struct kvm_tpr_access_ctl *tac)
5433 {
5434 if (tac->flags)
5435 return -EINVAL;
5436 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5437 return 0;
5438 }
5439
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5440 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5441 u64 mcg_cap)
5442 {
5443 int r;
5444 unsigned bank_num = mcg_cap & 0xff, bank;
5445
5446 r = -EINVAL;
5447 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5448 goto out;
5449 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5450 goto out;
5451 r = 0;
5452 vcpu->arch.mcg_cap = mcg_cap;
5453 /* Init IA32_MCG_CTL to all 1s */
5454 if (mcg_cap & MCG_CTL_P)
5455 vcpu->arch.mcg_ctl = ~(u64)0;
5456 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5457 for (bank = 0; bank < bank_num; bank++) {
5458 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5459 if (mcg_cap & MCG_CMCI_P)
5460 vcpu->arch.mci_ctl2_banks[bank] = 0;
5461 }
5462
5463 kvm_apic_after_set_mcg_cap(vcpu);
5464
5465 kvm_x86_call(setup_mce)(vcpu);
5466 out:
5467 return r;
5468 }
5469
5470 /*
5471 * Validate this is an UCNA (uncorrectable no action) error by checking the
5472 * MCG_STATUS and MCi_STATUS registers:
5473 * - none of the bits for Machine Check Exceptions are set
5474 * - both the VAL (valid) and UC (uncorrectable) bits are set
5475 * MCI_STATUS_PCC - Processor Context Corrupted
5476 * MCI_STATUS_S - Signaled as a Machine Check Exception
5477 * MCI_STATUS_AR - Software recoverable Action Required
5478 */
is_ucna(struct kvm_x86_mce * mce)5479 static bool is_ucna(struct kvm_x86_mce *mce)
5480 {
5481 return !mce->mcg_status &&
5482 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5483 (mce->status & MCI_STATUS_VAL) &&
5484 (mce->status & MCI_STATUS_UC);
5485 }
5486
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5487 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5488 {
5489 u64 mcg_cap = vcpu->arch.mcg_cap;
5490
5491 banks[1] = mce->status;
5492 banks[2] = mce->addr;
5493 banks[3] = mce->misc;
5494 vcpu->arch.mcg_status = mce->mcg_status;
5495
5496 if (!(mcg_cap & MCG_CMCI_P) ||
5497 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5498 return 0;
5499
5500 if (lapic_in_kernel(vcpu))
5501 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5502
5503 return 0;
5504 }
5505
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5506 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5507 struct kvm_x86_mce *mce)
5508 {
5509 u64 mcg_cap = vcpu->arch.mcg_cap;
5510 unsigned bank_num = mcg_cap & 0xff;
5511 u64 *banks = vcpu->arch.mce_banks;
5512
5513 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5514 return -EINVAL;
5515
5516 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5517
5518 if (is_ucna(mce))
5519 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5520
5521 /*
5522 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5523 * reporting is disabled
5524 */
5525 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5526 vcpu->arch.mcg_ctl != ~(u64)0)
5527 return 0;
5528 /*
5529 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5530 * reporting is disabled for the bank
5531 */
5532 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5533 return 0;
5534 if (mce->status & MCI_STATUS_UC) {
5535 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5536 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5538 return 0;
5539 }
5540 if (banks[1] & MCI_STATUS_VAL)
5541 mce->status |= MCI_STATUS_OVER;
5542 banks[2] = mce->addr;
5543 banks[3] = mce->misc;
5544 vcpu->arch.mcg_status = mce->mcg_status;
5545 banks[1] = mce->status;
5546 kvm_queue_exception(vcpu, MC_VECTOR);
5547 } else if (!(banks[1] & MCI_STATUS_VAL)
5548 || !(banks[1] & MCI_STATUS_UC)) {
5549 if (banks[1] & MCI_STATUS_VAL)
5550 mce->status |= MCI_STATUS_OVER;
5551 banks[2] = mce->addr;
5552 banks[3] = mce->misc;
5553 banks[1] = mce->status;
5554 } else
5555 banks[1] |= MCI_STATUS_OVER;
5556 return 0;
5557 }
5558
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5559 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5560 struct kvm_vcpu_events *events)
5561 {
5562 struct kvm_queued_exception *ex;
5563
5564 process_nmi(vcpu);
5565
5566 #ifdef CONFIG_KVM_SMM
5567 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5568 process_smi(vcpu);
5569 #endif
5570
5571 /*
5572 * KVM's ABI only allows for one exception to be migrated. Luckily,
5573 * the only time there can be two queued exceptions is if there's a
5574 * non-exiting _injected_ exception, and a pending exiting exception.
5575 * In that case, ignore the VM-Exiting exception as it's an extension
5576 * of the injected exception.
5577 */
5578 if (vcpu->arch.exception_vmexit.pending &&
5579 !vcpu->arch.exception.pending &&
5580 !vcpu->arch.exception.injected)
5581 ex = &vcpu->arch.exception_vmexit;
5582 else
5583 ex = &vcpu->arch.exception;
5584
5585 /*
5586 * In guest mode, payload delivery should be deferred if the exception
5587 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5588 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5589 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5590 * propagate the payload and so it cannot be safely deferred. Deliver
5591 * the payload if the capability hasn't been requested.
5592 */
5593 if (!vcpu->kvm->arch.exception_payload_enabled &&
5594 ex->pending && ex->has_payload)
5595 kvm_deliver_exception_payload(vcpu, ex);
5596
5597 memset(events, 0, sizeof(*events));
5598
5599 /*
5600 * The API doesn't provide the instruction length for software
5601 * exceptions, so don't report them. As long as the guest RIP
5602 * isn't advanced, we should expect to encounter the exception
5603 * again.
5604 */
5605 if (!kvm_exception_is_soft(ex->vector)) {
5606 events->exception.injected = ex->injected;
5607 events->exception.pending = ex->pending;
5608 /*
5609 * For ABI compatibility, deliberately conflate
5610 * pending and injected exceptions when
5611 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5612 */
5613 if (!vcpu->kvm->arch.exception_payload_enabled)
5614 events->exception.injected |= ex->pending;
5615 }
5616 events->exception.nr = ex->vector;
5617 events->exception.has_error_code = ex->has_error_code;
5618 events->exception.error_code = ex->error_code;
5619 events->exception_has_payload = ex->has_payload;
5620 events->exception_payload = ex->payload;
5621
5622 events->interrupt.injected =
5623 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5624 events->interrupt.nr = vcpu->arch.interrupt.nr;
5625 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5626
5627 events->nmi.injected = vcpu->arch.nmi_injected;
5628 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5629 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5630
5631 /* events->sipi_vector is never valid when reporting to user space */
5632
5633 #ifdef CONFIG_KVM_SMM
5634 events->smi.smm = is_smm(vcpu);
5635 events->smi.pending = vcpu->arch.smi_pending;
5636 events->smi.smm_inside_nmi =
5637 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5638 #endif
5639 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5640
5641 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5642 | KVM_VCPUEVENT_VALID_SHADOW
5643 | KVM_VCPUEVENT_VALID_SMM);
5644 if (vcpu->kvm->arch.exception_payload_enabled)
5645 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5646 if (vcpu->kvm->arch.triple_fault_event) {
5647 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5648 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5649 }
5650 }
5651
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5652 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5653 struct kvm_vcpu_events *events)
5654 {
5655 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5656 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5657 | KVM_VCPUEVENT_VALID_SHADOW
5658 | KVM_VCPUEVENT_VALID_SMM
5659 | KVM_VCPUEVENT_VALID_PAYLOAD
5660 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5661 return -EINVAL;
5662
5663 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5664 if (!vcpu->kvm->arch.exception_payload_enabled)
5665 return -EINVAL;
5666 if (events->exception.pending)
5667 events->exception.injected = 0;
5668 else
5669 events->exception_has_payload = 0;
5670 } else {
5671 events->exception.pending = 0;
5672 events->exception_has_payload = 0;
5673 }
5674
5675 if ((events->exception.injected || events->exception.pending) &&
5676 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5677 return -EINVAL;
5678
5679 process_nmi(vcpu);
5680
5681 /*
5682 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5683 * morph the exception to a VM-Exit if appropriate. Do this only for
5684 * pending exceptions, already-injected exceptions are not subject to
5685 * intercpetion. Note, userspace that conflates pending and injected
5686 * is hosed, and will incorrectly convert an injected exception into a
5687 * pending exception, which in turn may cause a spurious VM-Exit.
5688 */
5689 vcpu->arch.exception_from_userspace = events->exception.pending;
5690
5691 vcpu->arch.exception_vmexit.pending = false;
5692
5693 vcpu->arch.exception.injected = events->exception.injected;
5694 vcpu->arch.exception.pending = events->exception.pending;
5695 vcpu->arch.exception.vector = events->exception.nr;
5696 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5697 vcpu->arch.exception.error_code = events->exception.error_code;
5698 vcpu->arch.exception.has_payload = events->exception_has_payload;
5699 vcpu->arch.exception.payload = events->exception_payload;
5700
5701 vcpu->arch.interrupt.injected = events->interrupt.injected;
5702 vcpu->arch.interrupt.nr = events->interrupt.nr;
5703 vcpu->arch.interrupt.soft = events->interrupt.soft;
5704 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5705 kvm_x86_call(set_interrupt_shadow)(vcpu,
5706 events->interrupt.shadow);
5707
5708 vcpu->arch.nmi_injected = events->nmi.injected;
5709 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5710 vcpu->arch.nmi_pending = 0;
5711 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5712 if (events->nmi.pending)
5713 kvm_make_request(KVM_REQ_NMI, vcpu);
5714 }
5715 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5716
5717 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5718 lapic_in_kernel(vcpu))
5719 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5720
5721 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5722 #ifdef CONFIG_KVM_SMM
5723 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5724 kvm_leave_nested(vcpu);
5725 kvm_smm_changed(vcpu, events->smi.smm);
5726 }
5727
5728 vcpu->arch.smi_pending = events->smi.pending;
5729
5730 if (events->smi.smm) {
5731 if (events->smi.smm_inside_nmi)
5732 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5733 else
5734 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5735 }
5736
5737 #else
5738 if (events->smi.smm || events->smi.pending ||
5739 events->smi.smm_inside_nmi)
5740 return -EINVAL;
5741 #endif
5742
5743 if (lapic_in_kernel(vcpu)) {
5744 if (events->smi.latched_init)
5745 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5746 else
5747 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5748 }
5749 }
5750
5751 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5752 if (!vcpu->kvm->arch.triple_fault_event)
5753 return -EINVAL;
5754 if (events->triple_fault.pending)
5755 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5756 else
5757 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5758 }
5759
5760 kvm_make_request(KVM_REQ_EVENT, vcpu);
5761
5762 return 0;
5763 }
5764
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5765 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5766 struct kvm_debugregs *dbgregs)
5767 {
5768 unsigned int i;
5769
5770 if (vcpu->kvm->arch.has_protected_state &&
5771 vcpu->arch.guest_state_protected)
5772 return -EINVAL;
5773
5774 memset(dbgregs, 0, sizeof(*dbgregs));
5775
5776 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5777 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5778 dbgregs->db[i] = vcpu->arch.db[i];
5779
5780 dbgregs->dr6 = vcpu->arch.dr6;
5781 dbgregs->dr7 = vcpu->arch.dr7;
5782 return 0;
5783 }
5784
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5785 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5786 struct kvm_debugregs *dbgregs)
5787 {
5788 unsigned int i;
5789
5790 if (vcpu->kvm->arch.has_protected_state &&
5791 vcpu->arch.guest_state_protected)
5792 return -EINVAL;
5793
5794 if (dbgregs->flags)
5795 return -EINVAL;
5796
5797 if (!kvm_dr6_valid(dbgregs->dr6))
5798 return -EINVAL;
5799 if (!kvm_dr7_valid(dbgregs->dr7))
5800 return -EINVAL;
5801
5802 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5803 vcpu->arch.db[i] = dbgregs->db[i];
5804
5805 kvm_update_dr0123(vcpu);
5806 vcpu->arch.dr6 = dbgregs->dr6;
5807 vcpu->arch.dr7 = dbgregs->dr7;
5808 kvm_update_dr7(vcpu);
5809
5810 return 0;
5811 }
5812
5813
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5814 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5815 u8 *state, unsigned int size)
5816 {
5817 /*
5818 * Only copy state for features that are enabled for the guest. The
5819 * state itself isn't problematic, but setting bits in the header for
5820 * features that are supported in *this* host but not exposed to the
5821 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5822 * compatible host without the features that are NOT exposed to the
5823 * guest.
5824 *
5825 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5826 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5827 * supported by the host.
5828 */
5829 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5830 XFEATURE_MASK_FPSSE;
5831
5832 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5833 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5834
5835 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5836 supported_xcr0, vcpu->arch.pkru);
5837 return 0;
5838 }
5839
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5840 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5841 struct kvm_xsave *guest_xsave)
5842 {
5843 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5844 sizeof(guest_xsave->region));
5845 }
5846
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5847 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5848 struct kvm_xsave *guest_xsave)
5849 {
5850 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5851 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5852
5853 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5854 guest_xsave->region,
5855 kvm_caps.supported_xcr0,
5856 &vcpu->arch.pkru);
5857 }
5858
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5859 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5860 struct kvm_xcrs *guest_xcrs)
5861 {
5862 if (vcpu->kvm->arch.has_protected_state &&
5863 vcpu->arch.guest_state_protected)
5864 return -EINVAL;
5865
5866 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5867 guest_xcrs->nr_xcrs = 0;
5868 return 0;
5869 }
5870
5871 guest_xcrs->nr_xcrs = 1;
5872 guest_xcrs->flags = 0;
5873 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5874 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5875 return 0;
5876 }
5877
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5878 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5879 struct kvm_xcrs *guest_xcrs)
5880 {
5881 int i, r = 0;
5882
5883 if (vcpu->kvm->arch.has_protected_state &&
5884 vcpu->arch.guest_state_protected)
5885 return -EINVAL;
5886
5887 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5888 return -EINVAL;
5889
5890 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5891 return -EINVAL;
5892
5893 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5894 /* Only support XCR0 currently */
5895 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5896 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5897 guest_xcrs->xcrs[i].value);
5898 break;
5899 }
5900 if (r)
5901 r = -EINVAL;
5902 return r;
5903 }
5904
5905 /*
5906 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5907 * stopped by the hypervisor. This function will be called from the host only.
5908 * EINVAL is returned when the host attempts to set the flag for a guest that
5909 * does not support pv clocks.
5910 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5911 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5912 {
5913 if (!vcpu->arch.pv_time.active)
5914 return -EINVAL;
5915 vcpu->arch.pvclock_set_guest_stopped_request = true;
5916 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5917 return 0;
5918 }
5919
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5920 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5921 struct kvm_device_attr *attr)
5922 {
5923 int r;
5924
5925 switch (attr->attr) {
5926 case KVM_VCPU_TSC_OFFSET:
5927 r = 0;
5928 break;
5929 default:
5930 r = -ENXIO;
5931 }
5932
5933 return r;
5934 }
5935
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5936 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5937 struct kvm_device_attr *attr)
5938 {
5939 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5940 int r;
5941
5942 switch (attr->attr) {
5943 case KVM_VCPU_TSC_OFFSET:
5944 r = -EFAULT;
5945 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5946 break;
5947 r = 0;
5948 break;
5949 default:
5950 r = -ENXIO;
5951 }
5952
5953 return r;
5954 }
5955
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5956 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5957 struct kvm_device_attr *attr)
5958 {
5959 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5960 struct kvm *kvm = vcpu->kvm;
5961 int r;
5962
5963 switch (attr->attr) {
5964 case KVM_VCPU_TSC_OFFSET: {
5965 u64 offset, tsc, ns;
5966 unsigned long flags;
5967 bool matched;
5968
5969 r = -EFAULT;
5970 if (get_user(offset, uaddr))
5971 break;
5972
5973 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5974
5975 matched = (vcpu->arch.virtual_tsc_khz &&
5976 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5977 kvm->arch.last_tsc_offset == offset);
5978
5979 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5980 ns = get_kvmclock_base_ns();
5981
5982 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5983 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5984
5985 r = 0;
5986 break;
5987 }
5988 default:
5989 r = -ENXIO;
5990 }
5991
5992 return r;
5993 }
5994
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5995 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5996 unsigned int ioctl,
5997 void __user *argp)
5998 {
5999 struct kvm_device_attr attr;
6000 int r;
6001
6002 if (copy_from_user(&attr, argp, sizeof(attr)))
6003 return -EFAULT;
6004
6005 if (attr.group != KVM_VCPU_TSC_CTRL)
6006 return -ENXIO;
6007
6008 switch (ioctl) {
6009 case KVM_HAS_DEVICE_ATTR:
6010 r = kvm_arch_tsc_has_attr(vcpu, &attr);
6011 break;
6012 case KVM_GET_DEVICE_ATTR:
6013 r = kvm_arch_tsc_get_attr(vcpu, &attr);
6014 break;
6015 case KVM_SET_DEVICE_ATTR:
6016 r = kvm_arch_tsc_set_attr(vcpu, &attr);
6017 break;
6018 }
6019
6020 return r;
6021 }
6022
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)6023 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
6024 struct kvm_enable_cap *cap)
6025 {
6026 if (cap->flags)
6027 return -EINVAL;
6028
6029 switch (cap->cap) {
6030 #ifdef CONFIG_KVM_HYPERV
6031 case KVM_CAP_HYPERV_SYNIC2:
6032 if (cap->args[0])
6033 return -EINVAL;
6034 fallthrough;
6035
6036 case KVM_CAP_HYPERV_SYNIC:
6037 if (!irqchip_in_kernel(vcpu->kvm))
6038 return -EINVAL;
6039 return kvm_hv_activate_synic(vcpu, cap->cap ==
6040 KVM_CAP_HYPERV_SYNIC2);
6041 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6042 {
6043 int r;
6044 uint16_t vmcs_version;
6045 void __user *user_ptr;
6046
6047 if (!kvm_x86_ops.nested_ops->enable_evmcs)
6048 return -ENOTTY;
6049 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6050 if (!r) {
6051 user_ptr = (void __user *)(uintptr_t)cap->args[0];
6052 if (copy_to_user(user_ptr, &vmcs_version,
6053 sizeof(vmcs_version)))
6054 r = -EFAULT;
6055 }
6056 return r;
6057 }
6058 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6059 if (!kvm_x86_ops.enable_l2_tlb_flush)
6060 return -ENOTTY;
6061
6062 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6063
6064 case KVM_CAP_HYPERV_ENFORCE_CPUID:
6065 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6066 #endif
6067
6068 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6069 vcpu->arch.pv_cpuid.enforce = cap->args[0];
6070 return 0;
6071 default:
6072 return -EINVAL;
6073 }
6074 }
6075
6076 struct kvm_x86_reg_id {
6077 __u32 index;
6078 __u8 type;
6079 __u8 rsvd1;
6080 __u8 rsvd2:4;
6081 __u8 size:4;
6082 __u8 x86;
6083 };
6084
kvm_translate_kvm_reg(struct kvm_vcpu * vcpu,struct kvm_x86_reg_id * reg)6085 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6086 struct kvm_x86_reg_id *reg)
6087 {
6088 switch (reg->index) {
6089 case KVM_REG_GUEST_SSP:
6090 /*
6091 * FIXME: If host-initiated accesses are ever exempted from
6092 * ignore_msrs (in kvm_do_msr_access()), drop this manual check
6093 * and rely on KVM's standard checks to reject accesses to regs
6094 * that don't exist.
6095 */
6096 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6097 return -EINVAL;
6098
6099 reg->type = KVM_X86_REG_TYPE_MSR;
6100 reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6101 break;
6102 default:
6103 return -EINVAL;
6104 }
6105 return 0;
6106 }
6107
kvm_get_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6108 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6109 {
6110 u64 val;
6111
6112 if (do_get_msr(vcpu, msr, &val))
6113 return -EINVAL;
6114
6115 if (put_user(val, user_val))
6116 return -EFAULT;
6117
6118 return 0;
6119 }
6120
kvm_set_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6121 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6122 {
6123 u64 val;
6124
6125 if (get_user(val, user_val))
6126 return -EFAULT;
6127
6128 if (do_set_msr(vcpu, msr, &val))
6129 return -EINVAL;
6130
6131 return 0;
6132 }
6133
kvm_get_set_one_reg(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)6134 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6135 void __user *argp)
6136 {
6137 struct kvm_one_reg one_reg;
6138 struct kvm_x86_reg_id *reg;
6139 u64 __user *user_val;
6140 bool load_fpu;
6141 int r;
6142
6143 if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6144 return -EFAULT;
6145
6146 if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6147 return -EINVAL;
6148
6149 reg = (struct kvm_x86_reg_id *)&one_reg.id;
6150 if (reg->rsvd1 || reg->rsvd2)
6151 return -EINVAL;
6152
6153 if (reg->type == KVM_X86_REG_TYPE_KVM) {
6154 r = kvm_translate_kvm_reg(vcpu, reg);
6155 if (r)
6156 return r;
6157 }
6158
6159 if (reg->type != KVM_X86_REG_TYPE_MSR)
6160 return -EINVAL;
6161
6162 if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6163 return -EINVAL;
6164
6165 guard(srcu)(&vcpu->kvm->srcu);
6166
6167 load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6168 if (load_fpu)
6169 kvm_load_guest_fpu(vcpu);
6170
6171 user_val = u64_to_user_ptr(one_reg.addr);
6172 if (ioctl == KVM_GET_ONE_REG)
6173 r = kvm_get_one_msr(vcpu, reg->index, user_val);
6174 else
6175 r = kvm_set_one_msr(vcpu, reg->index, user_val);
6176
6177 if (load_fpu)
6178 kvm_put_guest_fpu(vcpu);
6179 return r;
6180 }
6181
kvm_get_reg_list(struct kvm_vcpu * vcpu,struct kvm_reg_list __user * user_list)6182 static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6183 struct kvm_reg_list __user *user_list)
6184 {
6185 u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6186 u64 user_nr_regs;
6187
6188 if (get_user(user_nr_regs, &user_list->n))
6189 return -EFAULT;
6190
6191 if (put_user(nr_regs, &user_list->n))
6192 return -EFAULT;
6193
6194 if (user_nr_regs < nr_regs)
6195 return -E2BIG;
6196
6197 if (nr_regs &&
6198 put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6199 return -EFAULT;
6200
6201 return 0;
6202 }
6203
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6204 long kvm_arch_vcpu_ioctl(struct file *filp,
6205 unsigned int ioctl, unsigned long arg)
6206 {
6207 struct kvm_vcpu *vcpu = filp->private_data;
6208 void __user *argp = (void __user *)arg;
6209 int r;
6210 union {
6211 struct kvm_sregs2 *sregs2;
6212 struct kvm_lapic_state *lapic;
6213 struct kvm_xsave *xsave;
6214 struct kvm_xcrs *xcrs;
6215 void *buffer;
6216 } u;
6217
6218 vcpu_load(vcpu);
6219
6220 u.buffer = NULL;
6221 switch (ioctl) {
6222 case KVM_GET_LAPIC: {
6223 r = -EINVAL;
6224 if (!lapic_in_kernel(vcpu))
6225 goto out;
6226 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6227
6228 r = -ENOMEM;
6229 if (!u.lapic)
6230 goto out;
6231 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6232 if (r)
6233 goto out;
6234 r = -EFAULT;
6235 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6236 goto out;
6237 r = 0;
6238 break;
6239 }
6240 case KVM_SET_LAPIC: {
6241 r = -EINVAL;
6242 if (!lapic_in_kernel(vcpu))
6243 goto out;
6244 u.lapic = memdup_user(argp, sizeof(*u.lapic));
6245 if (IS_ERR(u.lapic)) {
6246 r = PTR_ERR(u.lapic);
6247 goto out_nofree;
6248 }
6249
6250 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6251 break;
6252 }
6253 case KVM_INTERRUPT: {
6254 struct kvm_interrupt irq;
6255
6256 r = -EFAULT;
6257 if (copy_from_user(&irq, argp, sizeof(irq)))
6258 goto out;
6259 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6260 break;
6261 }
6262 case KVM_NMI: {
6263 r = kvm_vcpu_ioctl_nmi(vcpu);
6264 break;
6265 }
6266 case KVM_SMI: {
6267 r = kvm_inject_smi(vcpu);
6268 break;
6269 }
6270 case KVM_SET_CPUID: {
6271 struct kvm_cpuid __user *cpuid_arg = argp;
6272 struct kvm_cpuid cpuid;
6273
6274 r = -EFAULT;
6275 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6276 goto out;
6277 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6278 break;
6279 }
6280 case KVM_SET_CPUID2: {
6281 struct kvm_cpuid2 __user *cpuid_arg = argp;
6282 struct kvm_cpuid2 cpuid;
6283
6284 r = -EFAULT;
6285 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6286 goto out;
6287 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6288 cpuid_arg->entries);
6289 break;
6290 }
6291 case KVM_GET_CPUID2: {
6292 struct kvm_cpuid2 __user *cpuid_arg = argp;
6293 struct kvm_cpuid2 cpuid;
6294
6295 r = -EFAULT;
6296 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6297 goto out;
6298 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6299 cpuid_arg->entries);
6300 if (r)
6301 goto out;
6302 r = -EFAULT;
6303 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6304 goto out;
6305 r = 0;
6306 break;
6307 }
6308 case KVM_GET_MSRS: {
6309 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6310 r = msr_io(vcpu, argp, do_get_msr, 1);
6311 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6312 break;
6313 }
6314 case KVM_SET_MSRS: {
6315 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6316 r = msr_io(vcpu, argp, do_set_msr, 0);
6317 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6318 break;
6319 }
6320 case KVM_GET_ONE_REG:
6321 case KVM_SET_ONE_REG:
6322 r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6323 break;
6324 case KVM_GET_REG_LIST:
6325 r = kvm_get_reg_list(vcpu, argp);
6326 break;
6327 case KVM_TPR_ACCESS_REPORTING: {
6328 struct kvm_tpr_access_ctl tac;
6329
6330 r = -EFAULT;
6331 if (copy_from_user(&tac, argp, sizeof(tac)))
6332 goto out;
6333 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6334 if (r)
6335 goto out;
6336 r = -EFAULT;
6337 if (copy_to_user(argp, &tac, sizeof(tac)))
6338 goto out;
6339 r = 0;
6340 break;
6341 };
6342 case KVM_SET_VAPIC_ADDR: {
6343 struct kvm_vapic_addr va;
6344 int idx;
6345
6346 r = -EINVAL;
6347 if (!lapic_in_kernel(vcpu))
6348 goto out;
6349 r = -EFAULT;
6350 if (copy_from_user(&va, argp, sizeof(va)))
6351 goto out;
6352 idx = srcu_read_lock(&vcpu->kvm->srcu);
6353 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6354 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6355 break;
6356 }
6357 case KVM_X86_SETUP_MCE: {
6358 u64 mcg_cap;
6359
6360 r = -EFAULT;
6361 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6362 goto out;
6363 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6364 break;
6365 }
6366 case KVM_X86_SET_MCE: {
6367 struct kvm_x86_mce mce;
6368
6369 r = -EFAULT;
6370 if (copy_from_user(&mce, argp, sizeof(mce)))
6371 goto out;
6372 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6373 break;
6374 }
6375 case KVM_GET_VCPU_EVENTS: {
6376 struct kvm_vcpu_events events;
6377
6378 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6379
6380 r = -EFAULT;
6381 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6382 break;
6383 r = 0;
6384 break;
6385 }
6386 case KVM_SET_VCPU_EVENTS: {
6387 struct kvm_vcpu_events events;
6388
6389 r = -EFAULT;
6390 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6391 break;
6392
6393 kvm_vcpu_srcu_read_lock(vcpu);
6394 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6395 kvm_vcpu_srcu_read_unlock(vcpu);
6396 break;
6397 }
6398 case KVM_GET_DEBUGREGS: {
6399 struct kvm_debugregs dbgregs;
6400
6401 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6402 if (r < 0)
6403 break;
6404
6405 r = -EFAULT;
6406 if (copy_to_user(argp, &dbgregs,
6407 sizeof(struct kvm_debugregs)))
6408 break;
6409 r = 0;
6410 break;
6411 }
6412 case KVM_SET_DEBUGREGS: {
6413 struct kvm_debugregs dbgregs;
6414
6415 r = -EFAULT;
6416 if (copy_from_user(&dbgregs, argp,
6417 sizeof(struct kvm_debugregs)))
6418 break;
6419
6420 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6421 break;
6422 }
6423 case KVM_GET_XSAVE: {
6424 r = -EINVAL;
6425 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6426 break;
6427
6428 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6429 r = -ENOMEM;
6430 if (!u.xsave)
6431 break;
6432
6433 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6434 if (r < 0)
6435 break;
6436
6437 r = -EFAULT;
6438 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6439 break;
6440 r = 0;
6441 break;
6442 }
6443 case KVM_SET_XSAVE: {
6444 int size = vcpu->arch.guest_fpu.uabi_size;
6445
6446 u.xsave = memdup_user(argp, size);
6447 if (IS_ERR(u.xsave)) {
6448 r = PTR_ERR(u.xsave);
6449 goto out_nofree;
6450 }
6451
6452 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6453 break;
6454 }
6455
6456 case KVM_GET_XSAVE2: {
6457 int size = vcpu->arch.guest_fpu.uabi_size;
6458
6459 u.xsave = kzalloc(size, GFP_KERNEL);
6460 r = -ENOMEM;
6461 if (!u.xsave)
6462 break;
6463
6464 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6465 if (r < 0)
6466 break;
6467
6468 r = -EFAULT;
6469 if (copy_to_user(argp, u.xsave, size))
6470 break;
6471
6472 r = 0;
6473 break;
6474 }
6475
6476 case KVM_GET_XCRS: {
6477 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6478 r = -ENOMEM;
6479 if (!u.xcrs)
6480 break;
6481
6482 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6483 if (r < 0)
6484 break;
6485
6486 r = -EFAULT;
6487 if (copy_to_user(argp, u.xcrs,
6488 sizeof(struct kvm_xcrs)))
6489 break;
6490 r = 0;
6491 break;
6492 }
6493 case KVM_SET_XCRS: {
6494 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6495 if (IS_ERR(u.xcrs)) {
6496 r = PTR_ERR(u.xcrs);
6497 goto out_nofree;
6498 }
6499
6500 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6501 break;
6502 }
6503 case KVM_SET_TSC_KHZ: {
6504 u32 user_tsc_khz;
6505
6506 r = -EINVAL;
6507
6508 if (vcpu->arch.guest_tsc_protected)
6509 goto out;
6510
6511 user_tsc_khz = (u32)arg;
6512
6513 if (kvm_caps.has_tsc_control &&
6514 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6515 goto out;
6516
6517 if (user_tsc_khz == 0)
6518 user_tsc_khz = tsc_khz;
6519
6520 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6521 r = 0;
6522
6523 goto out;
6524 }
6525 case KVM_GET_TSC_KHZ: {
6526 r = vcpu->arch.virtual_tsc_khz;
6527 goto out;
6528 }
6529 case KVM_KVMCLOCK_CTRL: {
6530 r = kvm_set_guest_paused(vcpu);
6531 goto out;
6532 }
6533 case KVM_ENABLE_CAP: {
6534 struct kvm_enable_cap cap;
6535
6536 r = -EFAULT;
6537 if (copy_from_user(&cap, argp, sizeof(cap)))
6538 goto out;
6539 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6540 break;
6541 }
6542 case KVM_GET_NESTED_STATE: {
6543 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6544 u32 user_data_size;
6545
6546 r = -EINVAL;
6547 if (!kvm_x86_ops.nested_ops->get_state)
6548 break;
6549
6550 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6551 r = -EFAULT;
6552 if (get_user(user_data_size, &user_kvm_nested_state->size))
6553 break;
6554
6555 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6556 user_data_size);
6557 if (r < 0)
6558 break;
6559
6560 if (r > user_data_size) {
6561 if (put_user(r, &user_kvm_nested_state->size))
6562 r = -EFAULT;
6563 else
6564 r = -E2BIG;
6565 break;
6566 }
6567
6568 r = 0;
6569 break;
6570 }
6571 case KVM_SET_NESTED_STATE: {
6572 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6573 struct kvm_nested_state kvm_state;
6574 int idx;
6575
6576 r = -EINVAL;
6577 if (!kvm_x86_ops.nested_ops->set_state)
6578 break;
6579
6580 r = -EFAULT;
6581 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6582 break;
6583
6584 r = -EINVAL;
6585 if (kvm_state.size < sizeof(kvm_state))
6586 break;
6587
6588 if (kvm_state.flags &
6589 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6590 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6591 | KVM_STATE_NESTED_GIF_SET))
6592 break;
6593
6594 /* nested_run_pending implies guest_mode. */
6595 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6596 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6597 break;
6598
6599 idx = srcu_read_lock(&vcpu->kvm->srcu);
6600 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6601 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6602 break;
6603 }
6604 #ifdef CONFIG_KVM_HYPERV
6605 case KVM_GET_SUPPORTED_HV_CPUID:
6606 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6607 break;
6608 #endif
6609 #ifdef CONFIG_KVM_XEN
6610 case KVM_XEN_VCPU_GET_ATTR: {
6611 struct kvm_xen_vcpu_attr xva;
6612
6613 r = -EFAULT;
6614 if (copy_from_user(&xva, argp, sizeof(xva)))
6615 goto out;
6616 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6617 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6618 r = -EFAULT;
6619 break;
6620 }
6621 case KVM_XEN_VCPU_SET_ATTR: {
6622 struct kvm_xen_vcpu_attr xva;
6623
6624 r = -EFAULT;
6625 if (copy_from_user(&xva, argp, sizeof(xva)))
6626 goto out;
6627 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6628 break;
6629 }
6630 #endif
6631 case KVM_GET_SREGS2: {
6632 r = -EINVAL;
6633 if (vcpu->kvm->arch.has_protected_state &&
6634 vcpu->arch.guest_state_protected)
6635 goto out;
6636
6637 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6638 r = -ENOMEM;
6639 if (!u.sregs2)
6640 goto out;
6641 __get_sregs2(vcpu, u.sregs2);
6642 r = -EFAULT;
6643 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6644 goto out;
6645 r = 0;
6646 break;
6647 }
6648 case KVM_SET_SREGS2: {
6649 r = -EINVAL;
6650 if (vcpu->kvm->arch.has_protected_state &&
6651 vcpu->arch.guest_state_protected)
6652 goto out;
6653
6654 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6655 if (IS_ERR(u.sregs2)) {
6656 r = PTR_ERR(u.sregs2);
6657 u.sregs2 = NULL;
6658 goto out;
6659 }
6660 r = __set_sregs2(vcpu, u.sregs2);
6661 break;
6662 }
6663 case KVM_HAS_DEVICE_ATTR:
6664 case KVM_GET_DEVICE_ATTR:
6665 case KVM_SET_DEVICE_ATTR:
6666 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6667 break;
6668 case KVM_MEMORY_ENCRYPT_OP:
6669 r = -ENOTTY;
6670 if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6671 goto out;
6672 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6673 break;
6674 default:
6675 r = -EINVAL;
6676 }
6677 out:
6678 kfree(u.buffer);
6679 out_nofree:
6680 vcpu_put(vcpu);
6681 return r;
6682 }
6683
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6684 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6685 {
6686 return VM_FAULT_SIGBUS;
6687 }
6688
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6689 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6690 {
6691 int ret;
6692
6693 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6694 return -EINVAL;
6695 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6696 return ret;
6697 }
6698
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6699 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6700 u64 ident_addr)
6701 {
6702 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6703 }
6704
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6705 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6706 unsigned long kvm_nr_mmu_pages)
6707 {
6708 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6709 return -EINVAL;
6710
6711 mutex_lock(&kvm->slots_lock);
6712
6713 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6714 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6715
6716 mutex_unlock(&kvm->slots_lock);
6717 return 0;
6718 }
6719
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6720 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6721 {
6722
6723 /*
6724 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6725 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6726 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6727 * VM-Exit.
6728 */
6729 struct kvm_vcpu *vcpu;
6730 unsigned long i;
6731
6732 if (!kvm->arch.cpu_dirty_log_size)
6733 return;
6734
6735 kvm_for_each_vcpu(i, vcpu, kvm)
6736 kvm_vcpu_kick(vcpu);
6737 }
6738
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6739 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6740 struct kvm_enable_cap *cap)
6741 {
6742 int r;
6743
6744 if (cap->flags)
6745 return -EINVAL;
6746
6747 switch (cap->cap) {
6748 case KVM_CAP_DISABLE_QUIRKS2:
6749 r = -EINVAL;
6750 if (cap->args[0] & ~kvm_caps.supported_quirks)
6751 break;
6752 fallthrough;
6753 case KVM_CAP_DISABLE_QUIRKS:
6754 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6755 r = 0;
6756 break;
6757 case KVM_CAP_SPLIT_IRQCHIP: {
6758 mutex_lock(&kvm->lock);
6759 r = -EINVAL;
6760 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6761 goto split_irqchip_unlock;
6762 r = -EEXIST;
6763 if (irqchip_in_kernel(kvm))
6764 goto split_irqchip_unlock;
6765 if (kvm->created_vcpus)
6766 goto split_irqchip_unlock;
6767 /* Pairs with irqchip_in_kernel. */
6768 smp_wmb();
6769 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6770 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6771 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6772 r = 0;
6773 split_irqchip_unlock:
6774 mutex_unlock(&kvm->lock);
6775 break;
6776 }
6777 case KVM_CAP_X2APIC_API:
6778 r = -EINVAL;
6779 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6780 break;
6781
6782 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6783 kvm->arch.x2apic_format = true;
6784 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6785 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6786
6787 r = 0;
6788 break;
6789 case KVM_CAP_X86_DISABLE_EXITS:
6790 r = -EINVAL;
6791 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6792 break;
6793
6794 mutex_lock(&kvm->lock);
6795 if (kvm->created_vcpus)
6796 goto disable_exits_unlock;
6797
6798 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6799 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6800
6801 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6802 cpu_smt_possible() &&
6803 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6804 KVM_X86_DISABLE_EXITS_APERFMPERF)))
6805 pr_warn_once(SMT_RSB_MSG);
6806
6807 kvm_disable_exits(kvm, cap->args[0]);
6808 r = 0;
6809 disable_exits_unlock:
6810 mutex_unlock(&kvm->lock);
6811 break;
6812 case KVM_CAP_MSR_PLATFORM_INFO:
6813 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6814 r = 0;
6815 break;
6816 case KVM_CAP_EXCEPTION_PAYLOAD:
6817 kvm->arch.exception_payload_enabled = cap->args[0];
6818 r = 0;
6819 break;
6820 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6821 kvm->arch.triple_fault_event = cap->args[0];
6822 r = 0;
6823 break;
6824 case KVM_CAP_X86_USER_SPACE_MSR:
6825 r = -EINVAL;
6826 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6827 break;
6828 kvm->arch.user_space_msr_mask = cap->args[0];
6829 r = 0;
6830 break;
6831 case KVM_CAP_X86_BUS_LOCK_EXIT:
6832 r = -EINVAL;
6833 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6834 break;
6835
6836 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6837 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6838 break;
6839
6840 if (kvm_caps.has_bus_lock_exit &&
6841 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6842 kvm->arch.bus_lock_detection_enabled = true;
6843 r = 0;
6844 break;
6845 #ifdef CONFIG_X86_SGX_KVM
6846 case KVM_CAP_SGX_ATTRIBUTE: {
6847 unsigned long allowed_attributes = 0;
6848
6849 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6850 if (r)
6851 break;
6852
6853 /* KVM only supports the PROVISIONKEY privileged attribute. */
6854 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6855 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6856 kvm->arch.sgx_provisioning_allowed = true;
6857 else
6858 r = -EINVAL;
6859 break;
6860 }
6861 #endif
6862 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6863 r = -EINVAL;
6864 if (!kvm_x86_ops.vm_copy_enc_context_from)
6865 break;
6866
6867 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6868 break;
6869 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6870 r = -EINVAL;
6871 if (!kvm_x86_ops.vm_move_enc_context_from)
6872 break;
6873
6874 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6875 break;
6876 case KVM_CAP_EXIT_HYPERCALL:
6877 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6878 r = -EINVAL;
6879 break;
6880 }
6881 kvm->arch.hypercall_exit_enabled = cap->args[0];
6882 r = 0;
6883 break;
6884 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6885 r = -EINVAL;
6886 if (cap->args[0] & ~1)
6887 break;
6888 kvm->arch.exit_on_emulation_error = cap->args[0];
6889 r = 0;
6890 break;
6891 case KVM_CAP_PMU_CAPABILITY:
6892 r = -EINVAL;
6893 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6894 break;
6895
6896 mutex_lock(&kvm->lock);
6897 if (!kvm->created_vcpus) {
6898 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6899 r = 0;
6900 }
6901 mutex_unlock(&kvm->lock);
6902 break;
6903 case KVM_CAP_MAX_VCPU_ID:
6904 r = -EINVAL;
6905 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6906 break;
6907
6908 mutex_lock(&kvm->lock);
6909 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6910 ;
6911 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6912 r = 0;
6913 } else if (!kvm->arch.max_vcpu_ids) {
6914 kvm->arch.max_vcpu_ids = cap->args[0];
6915 r = 0;
6916 }
6917 mutex_unlock(&kvm->lock);
6918 break;
6919 case KVM_CAP_X86_NOTIFY_VMEXIT:
6920 r = -EINVAL;
6921 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6922 break;
6923 if (!kvm_caps.has_notify_vmexit)
6924 break;
6925 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6926 break;
6927 mutex_lock(&kvm->lock);
6928 if (!kvm->created_vcpus) {
6929 kvm->arch.notify_window = cap->args[0] >> 32;
6930 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6931 r = 0;
6932 }
6933 mutex_unlock(&kvm->lock);
6934 break;
6935 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6936 r = -EINVAL;
6937
6938 /*
6939 * Since the risk of disabling NX hugepages is a guest crashing
6940 * the system, ensure the userspace process has permission to
6941 * reboot the system.
6942 *
6943 * Note that unlike the reboot() syscall, the process must have
6944 * this capability in the root namespace because exposing
6945 * /dev/kvm into a container does not limit the scope of the
6946 * iTLB multihit bug to that container. In other words,
6947 * this must use capable(), not ns_capable().
6948 */
6949 if (!capable(CAP_SYS_BOOT)) {
6950 r = -EPERM;
6951 break;
6952 }
6953
6954 if (cap->args[0])
6955 break;
6956
6957 mutex_lock(&kvm->lock);
6958 if (!kvm->created_vcpus) {
6959 kvm->arch.disable_nx_huge_pages = true;
6960 r = 0;
6961 }
6962 mutex_unlock(&kvm->lock);
6963 break;
6964 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6965 u64 bus_cycle_ns = cap->args[0];
6966 u64 unused;
6967
6968 /*
6969 * Guard against overflow in tmict_to_ns(). 128 is the highest
6970 * divide value that can be programmed in APIC_TDCR.
6971 */
6972 r = -EINVAL;
6973 if (!bus_cycle_ns ||
6974 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6975 break;
6976
6977 r = 0;
6978 mutex_lock(&kvm->lock);
6979 if (!irqchip_in_kernel(kvm))
6980 r = -ENXIO;
6981 else if (kvm->created_vcpus)
6982 r = -EINVAL;
6983 else
6984 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6985 mutex_unlock(&kvm->lock);
6986 break;
6987 }
6988 default:
6989 r = -EINVAL;
6990 break;
6991 }
6992 return r;
6993 }
6994
kvm_alloc_msr_filter(bool default_allow)6995 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6996 {
6997 struct kvm_x86_msr_filter *msr_filter;
6998
6999 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
7000 if (!msr_filter)
7001 return NULL;
7002
7003 msr_filter->default_allow = default_allow;
7004 return msr_filter;
7005 }
7006
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)7007 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
7008 {
7009 u32 i;
7010
7011 if (!msr_filter)
7012 return;
7013
7014 for (i = 0; i < msr_filter->count; i++)
7015 kfree(msr_filter->ranges[i].bitmap);
7016
7017 kfree(msr_filter);
7018 }
7019
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)7020 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
7021 struct kvm_msr_filter_range *user_range)
7022 {
7023 unsigned long *bitmap;
7024 size_t bitmap_size;
7025
7026 if (!user_range->nmsrs)
7027 return 0;
7028
7029 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
7030 return -EINVAL;
7031
7032 if (!user_range->flags)
7033 return -EINVAL;
7034
7035 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7036 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7037 return -EINVAL;
7038
7039 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7040 if (IS_ERR(bitmap))
7041 return PTR_ERR(bitmap);
7042
7043 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7044 .flags = user_range->flags,
7045 .base = user_range->base,
7046 .nmsrs = user_range->nmsrs,
7047 .bitmap = bitmap,
7048 };
7049
7050 msr_filter->count++;
7051 return 0;
7052 }
7053
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)7054 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7055 struct kvm_msr_filter *filter)
7056 {
7057 struct kvm_x86_msr_filter *new_filter, *old_filter;
7058 bool default_allow;
7059 bool empty = true;
7060 int r;
7061 u32 i;
7062
7063 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7064 return -EINVAL;
7065
7066 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7067 empty &= !filter->ranges[i].nmsrs;
7068
7069 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7070 if (empty && !default_allow)
7071 return -EINVAL;
7072
7073 new_filter = kvm_alloc_msr_filter(default_allow);
7074 if (!new_filter)
7075 return -ENOMEM;
7076
7077 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7078 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7079 if (r) {
7080 kvm_free_msr_filter(new_filter);
7081 return r;
7082 }
7083 }
7084
7085 mutex_lock(&kvm->lock);
7086 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7087 mutex_is_locked(&kvm->lock));
7088 mutex_unlock(&kvm->lock);
7089 synchronize_srcu(&kvm->srcu);
7090
7091 kvm_free_msr_filter(old_filter);
7092
7093 /*
7094 * Recalc MSR intercepts as userspace may want to intercept accesses to
7095 * MSRs that KVM would otherwise pass through to the guest.
7096 */
7097 kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7098
7099 return 0;
7100 }
7101
7102 #ifdef CONFIG_KVM_COMPAT
7103 /* for KVM_X86_SET_MSR_FILTER */
7104 struct kvm_msr_filter_range_compat {
7105 __u32 flags;
7106 __u32 nmsrs;
7107 __u32 base;
7108 __u32 bitmap;
7109 };
7110
7111 struct kvm_msr_filter_compat {
7112 __u32 flags;
7113 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7114 };
7115
7116 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7117
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7118 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7119 unsigned long arg)
7120 {
7121 void __user *argp = (void __user *)arg;
7122 struct kvm *kvm = filp->private_data;
7123 long r = -ENOTTY;
7124
7125 switch (ioctl) {
7126 case KVM_X86_SET_MSR_FILTER_COMPAT: {
7127 struct kvm_msr_filter __user *user_msr_filter = argp;
7128 struct kvm_msr_filter_compat filter_compat;
7129 struct kvm_msr_filter filter;
7130 int i;
7131
7132 if (copy_from_user(&filter_compat, user_msr_filter,
7133 sizeof(filter_compat)))
7134 return -EFAULT;
7135
7136 filter.flags = filter_compat.flags;
7137 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7138 struct kvm_msr_filter_range_compat *cr;
7139
7140 cr = &filter_compat.ranges[i];
7141 filter.ranges[i] = (struct kvm_msr_filter_range) {
7142 .flags = cr->flags,
7143 .nmsrs = cr->nmsrs,
7144 .base = cr->base,
7145 .bitmap = (__u8 *)(ulong)cr->bitmap,
7146 };
7147 }
7148
7149 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7150 break;
7151 }
7152 }
7153
7154 return r;
7155 }
7156 #endif
7157
7158 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)7159 static int kvm_arch_suspend_notifier(struct kvm *kvm)
7160 {
7161 struct kvm_vcpu *vcpu;
7162 unsigned long i;
7163
7164 /*
7165 * Ignore the return, marking the guest paused only "fails" if the vCPU
7166 * isn't using kvmclock; continuing on is correct and desirable.
7167 */
7168 kvm_for_each_vcpu(i, vcpu, kvm)
7169 (void)kvm_set_guest_paused(vcpu);
7170
7171 return NOTIFY_DONE;
7172 }
7173
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)7174 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7175 {
7176 switch (state) {
7177 case PM_HIBERNATION_PREPARE:
7178 case PM_SUSPEND_PREPARE:
7179 return kvm_arch_suspend_notifier(kvm);
7180 }
7181
7182 return NOTIFY_DONE;
7183 }
7184 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7185
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7186 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7187 {
7188 struct kvm_clock_data data = { 0 };
7189
7190 get_kvmclock(kvm, &data);
7191 if (copy_to_user(argp, &data, sizeof(data)))
7192 return -EFAULT;
7193
7194 return 0;
7195 }
7196
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7197 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7198 {
7199 struct kvm_arch *ka = &kvm->arch;
7200 struct kvm_clock_data data;
7201 u64 now_raw_ns;
7202
7203 if (copy_from_user(&data, argp, sizeof(data)))
7204 return -EFAULT;
7205
7206 /*
7207 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7208 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7209 */
7210 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7211 return -EINVAL;
7212
7213 kvm_hv_request_tsc_page_update(kvm);
7214 kvm_start_pvclock_update(kvm);
7215 pvclock_update_vm_gtod_copy(kvm);
7216
7217 /*
7218 * This pairs with kvm_guest_time_update(): when masterclock is
7219 * in use, we use master_kernel_ns + kvmclock_offset to set
7220 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7221 * is slightly ahead) here we risk going negative on unsigned
7222 * 'system_time' when 'data.clock' is very small.
7223 */
7224 if (data.flags & KVM_CLOCK_REALTIME) {
7225 u64 now_real_ns = ktime_get_real_ns();
7226
7227 /*
7228 * Avoid stepping the kvmclock backwards.
7229 */
7230 if (now_real_ns > data.realtime)
7231 data.clock += now_real_ns - data.realtime;
7232 }
7233
7234 if (ka->use_master_clock)
7235 now_raw_ns = ka->master_kernel_ns;
7236 else
7237 now_raw_ns = get_kvmclock_base_ns();
7238 ka->kvmclock_offset = data.clock - now_raw_ns;
7239 kvm_end_pvclock_update(kvm);
7240 return 0;
7241 }
7242
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7243 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7244 {
7245 struct kvm *kvm = filp->private_data;
7246 void __user *argp = (void __user *)arg;
7247 int r = -ENOTTY;
7248
7249 #ifdef CONFIG_KVM_IOAPIC
7250 /*
7251 * This union makes it completely explicit to gcc-3.x
7252 * that these three variables' stack usage should be
7253 * combined, not added together.
7254 */
7255 union {
7256 struct kvm_pit_state ps;
7257 struct kvm_pit_state2 ps2;
7258 struct kvm_pit_config pit_config;
7259 } u;
7260 #endif
7261
7262 switch (ioctl) {
7263 case KVM_SET_TSS_ADDR:
7264 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7265 break;
7266 case KVM_SET_IDENTITY_MAP_ADDR: {
7267 u64 ident_addr;
7268
7269 mutex_lock(&kvm->lock);
7270 r = -EINVAL;
7271 if (kvm->created_vcpus)
7272 goto set_identity_unlock;
7273 r = -EFAULT;
7274 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7275 goto set_identity_unlock;
7276 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7277 set_identity_unlock:
7278 mutex_unlock(&kvm->lock);
7279 break;
7280 }
7281 case KVM_SET_NR_MMU_PAGES:
7282 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7283 break;
7284 #ifdef CONFIG_KVM_IOAPIC
7285 case KVM_CREATE_IRQCHIP: {
7286 mutex_lock(&kvm->lock);
7287
7288 r = -EEXIST;
7289 if (irqchip_in_kernel(kvm))
7290 goto create_irqchip_unlock;
7291
7292 /*
7293 * Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7294 * i.e. if KVM can't intercept EOIs and thus can't properly
7295 * emulate level-triggered interrupts.
7296 */
7297 r = -ENOTTY;
7298 if (kvm->arch.has_protected_eoi)
7299 goto create_irqchip_unlock;
7300
7301 r = -EINVAL;
7302 if (kvm->created_vcpus)
7303 goto create_irqchip_unlock;
7304
7305 r = kvm_pic_init(kvm);
7306 if (r)
7307 goto create_irqchip_unlock;
7308
7309 r = kvm_ioapic_init(kvm);
7310 if (r) {
7311 kvm_pic_destroy(kvm);
7312 goto create_irqchip_unlock;
7313 }
7314
7315 r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7316 if (r) {
7317 kvm_ioapic_destroy(kvm);
7318 kvm_pic_destroy(kvm);
7319 goto create_irqchip_unlock;
7320 }
7321 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7322 smp_wmb();
7323 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7324 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7325 create_irqchip_unlock:
7326 mutex_unlock(&kvm->lock);
7327 break;
7328 }
7329 case KVM_CREATE_PIT:
7330 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7331 goto create_pit;
7332 case KVM_CREATE_PIT2:
7333 r = -EFAULT;
7334 if (copy_from_user(&u.pit_config, argp,
7335 sizeof(struct kvm_pit_config)))
7336 goto out;
7337 create_pit:
7338 mutex_lock(&kvm->lock);
7339 r = -EEXIST;
7340 if (kvm->arch.vpit)
7341 goto create_pit_unlock;
7342 r = -ENOENT;
7343 if (!pic_in_kernel(kvm))
7344 goto create_pit_unlock;
7345 r = -ENOMEM;
7346 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7347 if (kvm->arch.vpit)
7348 r = 0;
7349 create_pit_unlock:
7350 mutex_unlock(&kvm->lock);
7351 break;
7352 case KVM_GET_IRQCHIP: {
7353 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7354 struct kvm_irqchip *chip;
7355
7356 chip = memdup_user(argp, sizeof(*chip));
7357 if (IS_ERR(chip)) {
7358 r = PTR_ERR(chip);
7359 goto out;
7360 }
7361
7362 r = -ENXIO;
7363 if (!irqchip_full(kvm))
7364 goto get_irqchip_out;
7365 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7366 if (r)
7367 goto get_irqchip_out;
7368 r = -EFAULT;
7369 if (copy_to_user(argp, chip, sizeof(*chip)))
7370 goto get_irqchip_out;
7371 r = 0;
7372 get_irqchip_out:
7373 kfree(chip);
7374 break;
7375 }
7376 case KVM_SET_IRQCHIP: {
7377 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7378 struct kvm_irqchip *chip;
7379
7380 chip = memdup_user(argp, sizeof(*chip));
7381 if (IS_ERR(chip)) {
7382 r = PTR_ERR(chip);
7383 goto out;
7384 }
7385
7386 r = -ENXIO;
7387 if (!irqchip_full(kvm))
7388 goto set_irqchip_out;
7389 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7390 set_irqchip_out:
7391 kfree(chip);
7392 break;
7393 }
7394 case KVM_GET_PIT: {
7395 r = -EFAULT;
7396 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7397 goto out;
7398 r = -ENXIO;
7399 if (!kvm->arch.vpit)
7400 goto out;
7401 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7402 if (r)
7403 goto out;
7404 r = -EFAULT;
7405 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7406 goto out;
7407 r = 0;
7408 break;
7409 }
7410 case KVM_SET_PIT: {
7411 r = -EFAULT;
7412 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7413 goto out;
7414 mutex_lock(&kvm->lock);
7415 r = -ENXIO;
7416 if (!kvm->arch.vpit)
7417 goto set_pit_out;
7418 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7419 set_pit_out:
7420 mutex_unlock(&kvm->lock);
7421 break;
7422 }
7423 case KVM_GET_PIT2: {
7424 r = -ENXIO;
7425 if (!kvm->arch.vpit)
7426 goto out;
7427 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7428 if (r)
7429 goto out;
7430 r = -EFAULT;
7431 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7432 goto out;
7433 r = 0;
7434 break;
7435 }
7436 case KVM_SET_PIT2: {
7437 r = -EFAULT;
7438 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7439 goto out;
7440 mutex_lock(&kvm->lock);
7441 r = -ENXIO;
7442 if (!kvm->arch.vpit)
7443 goto set_pit2_out;
7444 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7445 set_pit2_out:
7446 mutex_unlock(&kvm->lock);
7447 break;
7448 }
7449 case KVM_REINJECT_CONTROL: {
7450 struct kvm_reinject_control control;
7451 r = -EFAULT;
7452 if (copy_from_user(&control, argp, sizeof(control)))
7453 goto out;
7454 r = -ENXIO;
7455 if (!kvm->arch.vpit)
7456 goto out;
7457 r = kvm_vm_ioctl_reinject(kvm, &control);
7458 break;
7459 }
7460 #endif
7461 case KVM_SET_BOOT_CPU_ID:
7462 r = 0;
7463 mutex_lock(&kvm->lock);
7464 if (kvm->created_vcpus)
7465 r = -EBUSY;
7466 else if (arg > KVM_MAX_VCPU_IDS ||
7467 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7468 r = -EINVAL;
7469 else
7470 kvm->arch.bsp_vcpu_id = arg;
7471 mutex_unlock(&kvm->lock);
7472 break;
7473 #ifdef CONFIG_KVM_XEN
7474 case KVM_XEN_HVM_CONFIG: {
7475 struct kvm_xen_hvm_config xhc;
7476 r = -EFAULT;
7477 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7478 goto out;
7479 r = kvm_xen_hvm_config(kvm, &xhc);
7480 break;
7481 }
7482 case KVM_XEN_HVM_GET_ATTR: {
7483 struct kvm_xen_hvm_attr xha;
7484
7485 r = -EFAULT;
7486 if (copy_from_user(&xha, argp, sizeof(xha)))
7487 goto out;
7488 r = kvm_xen_hvm_get_attr(kvm, &xha);
7489 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7490 r = -EFAULT;
7491 break;
7492 }
7493 case KVM_XEN_HVM_SET_ATTR: {
7494 struct kvm_xen_hvm_attr xha;
7495
7496 r = -EFAULT;
7497 if (copy_from_user(&xha, argp, sizeof(xha)))
7498 goto out;
7499 r = kvm_xen_hvm_set_attr(kvm, &xha);
7500 break;
7501 }
7502 case KVM_XEN_HVM_EVTCHN_SEND: {
7503 struct kvm_irq_routing_xen_evtchn uxe;
7504
7505 r = -EFAULT;
7506 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7507 goto out;
7508 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7509 break;
7510 }
7511 #endif
7512 case KVM_SET_CLOCK:
7513 r = kvm_vm_ioctl_set_clock(kvm, argp);
7514 break;
7515 case KVM_GET_CLOCK:
7516 r = kvm_vm_ioctl_get_clock(kvm, argp);
7517 break;
7518 case KVM_SET_TSC_KHZ: {
7519 u32 user_tsc_khz;
7520
7521 r = -EINVAL;
7522 user_tsc_khz = (u32)arg;
7523
7524 if (kvm_caps.has_tsc_control &&
7525 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7526 goto out;
7527
7528 if (user_tsc_khz == 0)
7529 user_tsc_khz = tsc_khz;
7530
7531 mutex_lock(&kvm->lock);
7532 if (!kvm->created_vcpus) {
7533 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7534 r = 0;
7535 }
7536 mutex_unlock(&kvm->lock);
7537 goto out;
7538 }
7539 case KVM_GET_TSC_KHZ: {
7540 r = READ_ONCE(kvm->arch.default_tsc_khz);
7541 goto out;
7542 }
7543 case KVM_MEMORY_ENCRYPT_OP:
7544 r = -ENOTTY;
7545 if (!kvm_x86_ops.mem_enc_ioctl)
7546 goto out;
7547
7548 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7549 break;
7550 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7551 struct kvm_enc_region region;
7552
7553 r = -EFAULT;
7554 if (copy_from_user(®ion, argp, sizeof(region)))
7555 goto out;
7556
7557 r = -ENOTTY;
7558 if (!kvm_x86_ops.mem_enc_register_region)
7559 goto out;
7560
7561 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7562 break;
7563 }
7564 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7565 struct kvm_enc_region region;
7566
7567 r = -EFAULT;
7568 if (copy_from_user(®ion, argp, sizeof(region)))
7569 goto out;
7570
7571 r = -ENOTTY;
7572 if (!kvm_x86_ops.mem_enc_unregister_region)
7573 goto out;
7574
7575 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7576 break;
7577 }
7578 #ifdef CONFIG_KVM_HYPERV
7579 case KVM_HYPERV_EVENTFD: {
7580 struct kvm_hyperv_eventfd hvevfd;
7581
7582 r = -EFAULT;
7583 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7584 goto out;
7585 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7586 break;
7587 }
7588 #endif
7589 case KVM_SET_PMU_EVENT_FILTER:
7590 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7591 break;
7592 case KVM_X86_SET_MSR_FILTER: {
7593 struct kvm_msr_filter __user *user_msr_filter = argp;
7594 struct kvm_msr_filter filter;
7595
7596 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7597 return -EFAULT;
7598
7599 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7600 break;
7601 }
7602 default:
7603 r = -ENOTTY;
7604 }
7605 out:
7606 return r;
7607 }
7608
kvm_probe_feature_msr(u32 msr_index)7609 static void kvm_probe_feature_msr(u32 msr_index)
7610 {
7611 u64 data;
7612
7613 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7614 return;
7615
7616 msr_based_features[num_msr_based_features++] = msr_index;
7617 }
7618
kvm_probe_msr_to_save(u32 msr_index)7619 static void kvm_probe_msr_to_save(u32 msr_index)
7620 {
7621 u32 dummy[2];
7622
7623 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7624 return;
7625
7626 /*
7627 * Even MSRs that are valid in the host may not be exposed to guests in
7628 * some cases.
7629 */
7630 switch (msr_index) {
7631 case MSR_IA32_BNDCFGS:
7632 if (!kvm_mpx_supported())
7633 return;
7634 break;
7635 case MSR_TSC_AUX:
7636 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7637 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7638 return;
7639 break;
7640 case MSR_IA32_UMWAIT_CONTROL:
7641 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7642 return;
7643 break;
7644 case MSR_IA32_RTIT_CTL:
7645 case MSR_IA32_RTIT_STATUS:
7646 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7647 return;
7648 break;
7649 case MSR_IA32_RTIT_CR3_MATCH:
7650 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7651 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7652 return;
7653 break;
7654 case MSR_IA32_RTIT_OUTPUT_BASE:
7655 case MSR_IA32_RTIT_OUTPUT_MASK:
7656 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7657 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7658 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7659 return;
7660 break;
7661 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7662 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7663 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7664 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7665 return;
7666 break;
7667 case MSR_ARCH_PERFMON_PERFCTR0 ...
7668 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7669 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7670 kvm_pmu_cap.num_counters_gp)
7671 return;
7672 break;
7673 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7674 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7675 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7676 kvm_pmu_cap.num_counters_gp)
7677 return;
7678 break;
7679 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7680 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7681 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7682 kvm_pmu_cap.num_counters_fixed)
7683 return;
7684 break;
7685 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7686 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7687 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7688 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7689 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7690 return;
7691 break;
7692 case MSR_IA32_XFD:
7693 case MSR_IA32_XFD_ERR:
7694 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7695 return;
7696 break;
7697 case MSR_IA32_TSX_CTRL:
7698 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7699 return;
7700 break;
7701 case MSR_IA32_XSS:
7702 if (!kvm_caps.supported_xss)
7703 return;
7704 break;
7705 case MSR_IA32_U_CET:
7706 case MSR_IA32_S_CET:
7707 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7708 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7709 return;
7710 break;
7711 case MSR_IA32_INT_SSP_TAB:
7712 if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7713 return;
7714 fallthrough;
7715 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7716 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7717 return;
7718 break;
7719 default:
7720 break;
7721 }
7722
7723 msrs_to_save[num_msrs_to_save++] = msr_index;
7724 }
7725
kvm_init_msr_lists(void)7726 static void kvm_init_msr_lists(void)
7727 {
7728 unsigned i;
7729
7730 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7731 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7732
7733 num_msrs_to_save = 0;
7734 num_emulated_msrs = 0;
7735 num_msr_based_features = 0;
7736
7737 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7738 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7739
7740 if (enable_pmu) {
7741 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7742 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7743 }
7744
7745 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7746 if (!kvm_x86_call(has_emulated_msr)(NULL,
7747 emulated_msrs_all[i]))
7748 continue;
7749
7750 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7751 }
7752
7753 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7754 kvm_probe_feature_msr(i);
7755
7756 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7757 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7758 }
7759
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7760 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7761 const void *v)
7762 {
7763 int handled = 0;
7764 int n;
7765
7766 do {
7767 n = min(len, 8);
7768 if (!(lapic_in_kernel(vcpu) &&
7769 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7770 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7771 break;
7772 handled += n;
7773 addr += n;
7774 len -= n;
7775 v += n;
7776 } while (len);
7777
7778 return handled;
7779 }
7780
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7781 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7782 {
7783 int handled = 0;
7784 int n;
7785
7786 do {
7787 n = min(len, 8);
7788 if (!(lapic_in_kernel(vcpu) &&
7789 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7790 addr, n, v))
7791 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7792 break;
7793 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7794 handled += n;
7795 addr += n;
7796 len -= n;
7797 v += n;
7798 } while (len);
7799
7800 return handled;
7801 }
7802
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7803 void kvm_set_segment(struct kvm_vcpu *vcpu,
7804 struct kvm_segment *var, int seg)
7805 {
7806 kvm_x86_call(set_segment)(vcpu, var, seg);
7807 }
7808
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7809 void kvm_get_segment(struct kvm_vcpu *vcpu,
7810 struct kvm_segment *var, int seg)
7811 {
7812 kvm_x86_call(get_segment)(vcpu, var, seg);
7813 }
7814
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7815 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7816 struct x86_exception *exception)
7817 {
7818 struct kvm_mmu *mmu = vcpu->arch.mmu;
7819 gpa_t t_gpa;
7820
7821 BUG_ON(!mmu_is_nested(vcpu));
7822
7823 /* NPT walks are always user-walks */
7824 access |= PFERR_USER_MASK;
7825 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7826
7827 return t_gpa;
7828 }
7829
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7830 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7831 struct x86_exception *exception)
7832 {
7833 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7834
7835 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7836 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7837 }
7838 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7839
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7841 struct x86_exception *exception)
7842 {
7843 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7844
7845 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7846 access |= PFERR_WRITE_MASK;
7847 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7848 }
7849 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7850
7851 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7852 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7853 struct x86_exception *exception)
7854 {
7855 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7856
7857 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7858 }
7859
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7860 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7861 struct kvm_vcpu *vcpu, u64 access,
7862 struct x86_exception *exception)
7863 {
7864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7865 void *data = val;
7866 int r = X86EMUL_CONTINUE;
7867
7868 while (bytes) {
7869 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7870 unsigned offset = addr & (PAGE_SIZE-1);
7871 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7872 int ret;
7873
7874 if (gpa == INVALID_GPA)
7875 return X86EMUL_PROPAGATE_FAULT;
7876 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7877 offset, toread);
7878 if (ret < 0) {
7879 r = X86EMUL_IO_NEEDED;
7880 goto out;
7881 }
7882
7883 bytes -= toread;
7884 data += toread;
7885 addr += toread;
7886 }
7887 out:
7888 return r;
7889 }
7890
7891 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7892 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7893 gva_t addr, void *val, unsigned int bytes,
7894 struct x86_exception *exception)
7895 {
7896 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7897 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7898 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7899 unsigned offset;
7900 int ret;
7901
7902 /* Inline kvm_read_guest_virt_helper for speed. */
7903 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7904 exception);
7905 if (unlikely(gpa == INVALID_GPA))
7906 return X86EMUL_PROPAGATE_FAULT;
7907
7908 offset = addr & (PAGE_SIZE-1);
7909 if (WARN_ON(offset + bytes > PAGE_SIZE))
7910 bytes = (unsigned)PAGE_SIZE - offset;
7911 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7912 offset, bytes);
7913 if (unlikely(ret < 0))
7914 return X86EMUL_IO_NEEDED;
7915
7916 return X86EMUL_CONTINUE;
7917 }
7918
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7919 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7920 gva_t addr, void *val, unsigned int bytes,
7921 struct x86_exception *exception)
7922 {
7923 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7924
7925 /*
7926 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7927 * is returned, but our callers are not ready for that and they blindly
7928 * call kvm_inject_page_fault. Ensure that they at least do not leak
7929 * uninitialized kernel stack memory into cr2 and error code.
7930 */
7931 memset(exception, 0, sizeof(*exception));
7932 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7933 exception);
7934 }
7935 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7936
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7937 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7938 gva_t addr, void *val, unsigned int bytes,
7939 struct x86_exception *exception, bool system)
7940 {
7941 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7942 u64 access = 0;
7943
7944 if (system)
7945 access |= PFERR_IMPLICIT_ACCESS;
7946 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7947 access |= PFERR_USER_MASK;
7948
7949 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7950 }
7951
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7952 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7953 struct kvm_vcpu *vcpu, u64 access,
7954 struct x86_exception *exception)
7955 {
7956 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7957 void *data = val;
7958 int r = X86EMUL_CONTINUE;
7959
7960 while (bytes) {
7961 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7962 unsigned offset = addr & (PAGE_SIZE-1);
7963 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7964 int ret;
7965
7966 if (gpa == INVALID_GPA)
7967 return X86EMUL_PROPAGATE_FAULT;
7968 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7969 if (ret < 0) {
7970 r = X86EMUL_IO_NEEDED;
7971 goto out;
7972 }
7973
7974 bytes -= towrite;
7975 data += towrite;
7976 addr += towrite;
7977 }
7978 out:
7979 return r;
7980 }
7981
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7982 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7983 unsigned int bytes, struct x86_exception *exception,
7984 bool system)
7985 {
7986 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7987 u64 access = PFERR_WRITE_MASK;
7988
7989 if (system)
7990 access |= PFERR_IMPLICIT_ACCESS;
7991 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7992 access |= PFERR_USER_MASK;
7993
7994 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7995 access, exception);
7996 }
7997
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7998 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7999 unsigned int bytes, struct x86_exception *exception)
8000 {
8001 /* kvm_write_guest_virt_system can pull in tons of pages. */
8002 vcpu->arch.l1tf_flush_l1d = true;
8003
8004 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
8005 PFERR_WRITE_MASK, exception);
8006 }
8007 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
8008
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)8009 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
8010 void *insn, int insn_len)
8011 {
8012 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
8013 insn, insn_len);
8014 }
8015
handle_ud(struct kvm_vcpu * vcpu)8016 int handle_ud(struct kvm_vcpu *vcpu)
8017 {
8018 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8019 int fep_flags = READ_ONCE(force_emulation_prefix);
8020 int emul_type = EMULTYPE_TRAP_UD;
8021 char sig[5]; /* ud2; .ascii "kvm" */
8022 struct x86_exception e;
8023 int r;
8024
8025 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8026 if (r != X86EMUL_CONTINUE)
8027 return 1;
8028
8029 if (fep_flags &&
8030 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8031 sig, sizeof(sig), &e) == 0 &&
8032 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8033 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8034 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8035 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8036 emul_type = EMULTYPE_TRAP_UD_FORCED;
8037 }
8038
8039 return kvm_emulate_instruction(vcpu, emul_type);
8040 }
8041 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8042
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)8043 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8044 gpa_t gpa, bool write)
8045 {
8046 /* For APIC access vmexit */
8047 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8048 return 1;
8049
8050 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8051 trace_vcpu_match_mmio(gva, gpa, write, true);
8052 return 1;
8053 }
8054
8055 return 0;
8056 }
8057
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)8058 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8059 gpa_t *gpa, struct x86_exception *exception,
8060 bool write)
8061 {
8062 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8063 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8064 | (write ? PFERR_WRITE_MASK : 0);
8065
8066 /*
8067 * currently PKRU is only applied to ept enabled guest so
8068 * there is no pkey in EPT page table for L1 guest or EPT
8069 * shadow page table for L2 guest.
8070 */
8071 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8072 !permission_fault(vcpu, vcpu->arch.walk_mmu,
8073 vcpu->arch.mmio_access, 0, access))) {
8074 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8075 (gva & (PAGE_SIZE - 1));
8076 trace_vcpu_match_mmio(gva, *gpa, write, false);
8077 return 1;
8078 }
8079
8080 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8081
8082 if (*gpa == INVALID_GPA)
8083 return -1;
8084
8085 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8086 }
8087
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)8088 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8089 const void *val, int bytes)
8090 {
8091 int ret;
8092
8093 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8094 if (ret < 0)
8095 return 0;
8096 kvm_page_track_write(vcpu, gpa, val, bytes);
8097 return 1;
8098 }
8099
8100 struct read_write_emulator_ops {
8101 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8102 int bytes);
8103 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8104 void *val, int bytes);
8105 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8106 int bytes, void *val);
8107 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8108 void *val, int bytes);
8109 bool write;
8110 };
8111
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)8112 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8113 {
8114 if (vcpu->mmio_read_completed) {
8115 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8116 vcpu->mmio_fragments[0].gpa, val);
8117 vcpu->mmio_read_completed = 0;
8118 return 1;
8119 }
8120
8121 return 0;
8122 }
8123
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8124 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8125 void *val, int bytes)
8126 {
8127 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8128 }
8129
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8130 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8131 void *val, int bytes)
8132 {
8133 return emulator_write_phys(vcpu, gpa, val, bytes);
8134 }
8135
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)8136 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8137 {
8138 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8139 return vcpu_mmio_write(vcpu, gpa, bytes, val);
8140 }
8141
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8142 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8143 void *val, int bytes)
8144 {
8145 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8146 return X86EMUL_IO_NEEDED;
8147 }
8148
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8149 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8150 void *val, int bytes)
8151 {
8152 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8153
8154 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8155 return X86EMUL_CONTINUE;
8156 }
8157
8158 static const struct read_write_emulator_ops read_emultor = {
8159 .read_write_prepare = read_prepare,
8160 .read_write_emulate = read_emulate,
8161 .read_write_mmio = vcpu_mmio_read,
8162 .read_write_exit_mmio = read_exit_mmio,
8163 };
8164
8165 static const struct read_write_emulator_ops write_emultor = {
8166 .read_write_emulate = write_emulate,
8167 .read_write_mmio = write_mmio,
8168 .read_write_exit_mmio = write_exit_mmio,
8169 .write = true,
8170 };
8171
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)8172 static int emulator_read_write_onepage(unsigned long addr, void *val,
8173 unsigned int bytes,
8174 struct x86_exception *exception,
8175 struct kvm_vcpu *vcpu,
8176 const struct read_write_emulator_ops *ops)
8177 {
8178 gpa_t gpa;
8179 int handled, ret;
8180 bool write = ops->write;
8181 struct kvm_mmio_fragment *frag;
8182 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8183
8184 /*
8185 * If the exit was due to a NPF we may already have a GPA.
8186 * If the GPA is present, use it to avoid the GVA to GPA table walk.
8187 * Note, this cannot be used on string operations since string
8188 * operation using rep will only have the initial GPA from the NPF
8189 * occurred.
8190 */
8191 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8192 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8193 gpa = ctxt->gpa_val;
8194 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8195 } else {
8196 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8197 if (ret < 0)
8198 return X86EMUL_PROPAGATE_FAULT;
8199 }
8200
8201 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8202 return X86EMUL_CONTINUE;
8203
8204 /*
8205 * Is this MMIO handled locally?
8206 */
8207 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8208 if (handled == bytes)
8209 return X86EMUL_CONTINUE;
8210
8211 gpa += handled;
8212 bytes -= handled;
8213 val += handled;
8214
8215 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8216 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8217 frag->gpa = gpa;
8218 frag->data = val;
8219 frag->len = bytes;
8220 return X86EMUL_CONTINUE;
8221 }
8222
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8223 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8224 unsigned long addr,
8225 void *val, unsigned int bytes,
8226 struct x86_exception *exception,
8227 const struct read_write_emulator_ops *ops)
8228 {
8229 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8230 gpa_t gpa;
8231 int rc;
8232
8233 if (ops->read_write_prepare &&
8234 ops->read_write_prepare(vcpu, val, bytes))
8235 return X86EMUL_CONTINUE;
8236
8237 vcpu->mmio_nr_fragments = 0;
8238
8239 /* Crossing a page boundary? */
8240 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8241 int now;
8242
8243 now = -addr & ~PAGE_MASK;
8244 rc = emulator_read_write_onepage(addr, val, now, exception,
8245 vcpu, ops);
8246
8247 if (rc != X86EMUL_CONTINUE)
8248 return rc;
8249 addr += now;
8250 if (ctxt->mode != X86EMUL_MODE_PROT64)
8251 addr = (u32)addr;
8252 val += now;
8253 bytes -= now;
8254 }
8255
8256 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8257 vcpu, ops);
8258 if (rc != X86EMUL_CONTINUE)
8259 return rc;
8260
8261 if (!vcpu->mmio_nr_fragments)
8262 return X86EMUL_CONTINUE;
8263
8264 gpa = vcpu->mmio_fragments[0].gpa;
8265
8266 vcpu->mmio_needed = 1;
8267 vcpu->mmio_cur_fragment = 0;
8268
8269 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8270 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8271 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8272 vcpu->run->mmio.phys_addr = gpa;
8273
8274 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8275 }
8276
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8277 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8278 unsigned long addr,
8279 void *val,
8280 unsigned int bytes,
8281 struct x86_exception *exception)
8282 {
8283 return emulator_read_write(ctxt, addr, val, bytes,
8284 exception, &read_emultor);
8285 }
8286
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8287 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8288 unsigned long addr,
8289 const void *val,
8290 unsigned int bytes,
8291 struct x86_exception *exception)
8292 {
8293 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8294 exception, &write_emultor);
8295 }
8296
8297 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8298 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8299
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8300 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8301 unsigned long addr,
8302 const void *old,
8303 const void *new,
8304 unsigned int bytes,
8305 struct x86_exception *exception)
8306 {
8307 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8308 u64 page_line_mask;
8309 unsigned long hva;
8310 gpa_t gpa;
8311 int r;
8312
8313 /* guests cmpxchg8b have to be emulated atomically */
8314 if (bytes > 8 || (bytes & (bytes - 1)))
8315 goto emul_write;
8316
8317 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8318
8319 if (gpa == INVALID_GPA ||
8320 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8321 goto emul_write;
8322
8323 /*
8324 * Emulate the atomic as a straight write to avoid #AC if SLD is
8325 * enabled in the host and the access splits a cache line.
8326 */
8327 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8328 page_line_mask = ~(cache_line_size() - 1);
8329 else
8330 page_line_mask = PAGE_MASK;
8331
8332 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8333 goto emul_write;
8334
8335 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8336 if (kvm_is_error_hva(hva))
8337 goto emul_write;
8338
8339 hva += offset_in_page(gpa);
8340
8341 switch (bytes) {
8342 case 1:
8343 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8344 break;
8345 case 2:
8346 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8347 break;
8348 case 4:
8349 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8350 break;
8351 case 8:
8352 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8353 break;
8354 default:
8355 BUG();
8356 }
8357
8358 if (r < 0)
8359 return X86EMUL_UNHANDLEABLE;
8360
8361 /*
8362 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8363 * successful, as the old value is written back on failure. Note, for
8364 * live migration, this is unnecessarily conservative as CMPXCHG writes
8365 * back the original value and the access is atomic, but KVM's ABI is
8366 * that all writes are dirty logged, regardless of the value written.
8367 */
8368 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8369
8370 if (r)
8371 return X86EMUL_CMPXCHG_FAILED;
8372
8373 kvm_page_track_write(vcpu, gpa, new, bytes);
8374
8375 return X86EMUL_CONTINUE;
8376
8377 emul_write:
8378 pr_warn_once("emulating exchange as write\n");
8379
8380 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8381 }
8382
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8383 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8384 unsigned short port, void *data,
8385 unsigned int count, bool in)
8386 {
8387 unsigned i;
8388 int r;
8389
8390 WARN_ON_ONCE(vcpu->arch.pio.count);
8391 for (i = 0; i < count; i++) {
8392 if (in)
8393 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8394 else
8395 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8396
8397 if (r) {
8398 if (i == 0)
8399 goto userspace_io;
8400
8401 /*
8402 * Userspace must have unregistered the device while PIO
8403 * was running. Drop writes / read as 0.
8404 */
8405 if (in)
8406 memset(data, 0, size * (count - i));
8407 break;
8408 }
8409
8410 data += size;
8411 }
8412 return 1;
8413
8414 userspace_io:
8415 vcpu->arch.pio.port = port;
8416 vcpu->arch.pio.in = in;
8417 vcpu->arch.pio.count = count;
8418 vcpu->arch.pio.size = size;
8419
8420 if (in)
8421 memset(vcpu->arch.pio_data, 0, size * count);
8422 else
8423 memcpy(vcpu->arch.pio_data, data, size * count);
8424
8425 vcpu->run->exit_reason = KVM_EXIT_IO;
8426 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8427 vcpu->run->io.size = size;
8428 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8429 vcpu->run->io.count = count;
8430 vcpu->run->io.port = port;
8431 return 0;
8432 }
8433
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8434 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8435 unsigned short port, void *val, unsigned int count)
8436 {
8437 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8438 if (r)
8439 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8440
8441 return r;
8442 }
8443
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8444 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8445 {
8446 int size = vcpu->arch.pio.size;
8447 unsigned int count = vcpu->arch.pio.count;
8448 memcpy(val, vcpu->arch.pio_data, size * count);
8449 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8450 vcpu->arch.pio.count = 0;
8451 }
8452
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8453 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8454 int size, unsigned short port, void *val,
8455 unsigned int count)
8456 {
8457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8458 if (vcpu->arch.pio.count) {
8459 /*
8460 * Complete a previous iteration that required userspace I/O.
8461 * Note, @count isn't guaranteed to match pio.count as userspace
8462 * can modify ECX before rerunning the vCPU. Ignore any such
8463 * shenanigans as KVM doesn't support modifying the rep count,
8464 * and the emulator ensures @count doesn't overflow the buffer.
8465 */
8466 complete_emulator_pio_in(vcpu, val);
8467 return 1;
8468 }
8469
8470 return emulator_pio_in(vcpu, size, port, val, count);
8471 }
8472
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8473 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8474 unsigned short port, const void *val,
8475 unsigned int count)
8476 {
8477 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8478 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8479 }
8480
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8481 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8482 int size, unsigned short port,
8483 const void *val, unsigned int count)
8484 {
8485 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8486 }
8487
get_segment_base(struct kvm_vcpu * vcpu,int seg)8488 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8489 {
8490 return kvm_x86_call(get_segment_base)(vcpu, seg);
8491 }
8492
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8493 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8494 {
8495 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8496 }
8497
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8498 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8499 {
8500 if (!need_emulate_wbinvd(vcpu))
8501 return X86EMUL_CONTINUE;
8502
8503 if (kvm_x86_call(has_wbinvd_exit)()) {
8504 int cpu = get_cpu();
8505
8506 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8507 wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8508 put_cpu();
8509 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8510 } else
8511 wbinvd();
8512 return X86EMUL_CONTINUE;
8513 }
8514
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8515 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8516 {
8517 kvm_emulate_wbinvd_noskip(vcpu);
8518 return kvm_skip_emulated_instruction(vcpu);
8519 }
8520 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8521
8522
8523
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8524 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8525 {
8526 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8527 }
8528
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8529 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8530 {
8531 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8532 }
8533
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8534 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8535 unsigned long value)
8536 {
8537
8538 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8539 }
8540
mk_cr_64(u64 curr_cr,u32 new_val)8541 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8542 {
8543 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8544 }
8545
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8546 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8547 {
8548 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8549 unsigned long value;
8550
8551 switch (cr) {
8552 case 0:
8553 value = kvm_read_cr0(vcpu);
8554 break;
8555 case 2:
8556 value = vcpu->arch.cr2;
8557 break;
8558 case 3:
8559 value = kvm_read_cr3(vcpu);
8560 break;
8561 case 4:
8562 value = kvm_read_cr4(vcpu);
8563 break;
8564 case 8:
8565 value = kvm_get_cr8(vcpu);
8566 break;
8567 default:
8568 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8569 return 0;
8570 }
8571
8572 return value;
8573 }
8574
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8575 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8576 {
8577 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8578 int res = 0;
8579
8580 switch (cr) {
8581 case 0:
8582 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8583 break;
8584 case 2:
8585 vcpu->arch.cr2 = val;
8586 break;
8587 case 3:
8588 res = kvm_set_cr3(vcpu, val);
8589 break;
8590 case 4:
8591 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8592 break;
8593 case 8:
8594 res = kvm_set_cr8(vcpu, val);
8595 break;
8596 default:
8597 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8598 res = -1;
8599 }
8600
8601 return res;
8602 }
8603
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8604 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8605 {
8606 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8607 }
8608
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8609 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8610 {
8611 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8612 }
8613
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8614 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8615 {
8616 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8617 }
8618
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8619 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8620 {
8621 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8622 }
8623
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8624 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8625 {
8626 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8627 }
8628
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8629 static unsigned long emulator_get_cached_segment_base(
8630 struct x86_emulate_ctxt *ctxt, int seg)
8631 {
8632 return get_segment_base(emul_to_vcpu(ctxt), seg);
8633 }
8634
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8635 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8636 struct desc_struct *desc, u32 *base3,
8637 int seg)
8638 {
8639 struct kvm_segment var;
8640
8641 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8642 *selector = var.selector;
8643
8644 if (var.unusable) {
8645 memset(desc, 0, sizeof(*desc));
8646 if (base3)
8647 *base3 = 0;
8648 return false;
8649 }
8650
8651 if (var.g)
8652 var.limit >>= 12;
8653 set_desc_limit(desc, var.limit);
8654 set_desc_base(desc, (unsigned long)var.base);
8655 #ifdef CONFIG_X86_64
8656 if (base3)
8657 *base3 = var.base >> 32;
8658 #endif
8659 desc->type = var.type;
8660 desc->s = var.s;
8661 desc->dpl = var.dpl;
8662 desc->p = var.present;
8663 desc->avl = var.avl;
8664 desc->l = var.l;
8665 desc->d = var.db;
8666 desc->g = var.g;
8667
8668 return true;
8669 }
8670
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8671 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8672 struct desc_struct *desc, u32 base3,
8673 int seg)
8674 {
8675 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8676 struct kvm_segment var;
8677
8678 var.selector = selector;
8679 var.base = get_desc_base(desc);
8680 #ifdef CONFIG_X86_64
8681 var.base |= ((u64)base3) << 32;
8682 #endif
8683 var.limit = get_desc_limit(desc);
8684 if (desc->g)
8685 var.limit = (var.limit << 12) | 0xfff;
8686 var.type = desc->type;
8687 var.dpl = desc->dpl;
8688 var.db = desc->d;
8689 var.s = desc->s;
8690 var.l = desc->l;
8691 var.g = desc->g;
8692 var.avl = desc->avl;
8693 var.present = desc->p;
8694 var.unusable = !var.present;
8695 var.padding = 0;
8696
8697 kvm_set_segment(vcpu, &var, seg);
8698 return;
8699 }
8700
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8701 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8702 u32 msr_index, u64 *pdata)
8703 {
8704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8705 int r;
8706
8707 r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8708 if (r < 0)
8709 return X86EMUL_UNHANDLEABLE;
8710
8711 if (r) {
8712 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8713 complete_emulated_rdmsr, r))
8714 return X86EMUL_IO_NEEDED;
8715
8716 trace_kvm_msr_read_ex(msr_index);
8717 return X86EMUL_PROPAGATE_FAULT;
8718 }
8719
8720 trace_kvm_msr_read(msr_index, *pdata);
8721 return X86EMUL_CONTINUE;
8722 }
8723
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8724 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8725 u32 msr_index, u64 data)
8726 {
8727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8728 int r;
8729
8730 r = kvm_emulate_msr_write(vcpu, msr_index, data);
8731 if (r < 0)
8732 return X86EMUL_UNHANDLEABLE;
8733
8734 if (r) {
8735 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8736 complete_emulated_msr_access, r))
8737 return X86EMUL_IO_NEEDED;
8738
8739 trace_kvm_msr_write_ex(msr_index, data);
8740 return X86EMUL_PROPAGATE_FAULT;
8741 }
8742
8743 trace_kvm_msr_write(msr_index, data);
8744 return X86EMUL_CONTINUE;
8745 }
8746
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8747 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8748 u32 msr_index, u64 *pdata)
8749 {
8750 /*
8751 * Treat emulator accesses to the current shadow stack pointer as host-
8752 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8753 * and this API is used only for implicit accesses, i.e. not RDMSR, and
8754 * so the index is fully KVM-controlled.
8755 */
8756 if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8757 return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8758
8759 return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8760 }
8761
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8762 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8763 {
8764 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8765 }
8766
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8767 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8768 u32 pmc, u64 *pdata)
8769 {
8770 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8771 }
8772
emulator_halt(struct x86_emulate_ctxt * ctxt)8773 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8774 {
8775 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8776 }
8777
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8778 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8779 struct x86_instruction_info *info,
8780 enum x86_intercept_stage stage)
8781 {
8782 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8783 &ctxt->exception);
8784 }
8785
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8786 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8787 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8788 bool exact_only)
8789 {
8790 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8791 }
8792
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8793 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8794 {
8795 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8796 }
8797
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8798 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8799 {
8800 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8801 }
8802
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8803 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8804 {
8805 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8806 }
8807
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8808 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8809 {
8810 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8811 }
8812
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8813 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8814 {
8815 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8816 }
8817
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8818 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8819 {
8820 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8821 }
8822
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8823 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8824 {
8825 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8826 }
8827
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8828 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8829 {
8830 return is_smm(emul_to_vcpu(ctxt));
8831 }
8832
8833 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8834 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8835 {
8836 WARN_ON_ONCE(1);
8837 return X86EMUL_UNHANDLEABLE;
8838 }
8839 #endif
8840
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8841 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8842 {
8843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8844 }
8845
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8846 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8847 {
8848 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8849 }
8850
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8851 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8852 {
8853 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8854
8855 if (!kvm->vm_bugged)
8856 kvm_vm_bugged(kvm);
8857 }
8858
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8859 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8860 gva_t addr, unsigned int flags)
8861 {
8862 if (!kvm_x86_ops.get_untagged_addr)
8863 return addr;
8864
8865 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8866 addr, flags);
8867 }
8868
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8869 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8870 gva_t addr, unsigned int flags)
8871 {
8872 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8873 }
8874
8875 static const struct x86_emulate_ops emulate_ops = {
8876 .vm_bugged = emulator_vm_bugged,
8877 .read_gpr = emulator_read_gpr,
8878 .write_gpr = emulator_write_gpr,
8879 .read_std = emulator_read_std,
8880 .write_std = emulator_write_std,
8881 .fetch = kvm_fetch_guest_virt,
8882 .read_emulated = emulator_read_emulated,
8883 .write_emulated = emulator_write_emulated,
8884 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8885 .invlpg = emulator_invlpg,
8886 .pio_in_emulated = emulator_pio_in_emulated,
8887 .pio_out_emulated = emulator_pio_out_emulated,
8888 .get_segment = emulator_get_segment,
8889 .set_segment = emulator_set_segment,
8890 .get_cached_segment_base = emulator_get_cached_segment_base,
8891 .get_gdt = emulator_get_gdt,
8892 .get_idt = emulator_get_idt,
8893 .set_gdt = emulator_set_gdt,
8894 .set_idt = emulator_set_idt,
8895 .get_cr = emulator_get_cr,
8896 .set_cr = emulator_set_cr,
8897 .cpl = emulator_get_cpl,
8898 .get_dr = emulator_get_dr,
8899 .set_dr = emulator_set_dr,
8900 .set_msr_with_filter = emulator_set_msr_with_filter,
8901 .get_msr_with_filter = emulator_get_msr_with_filter,
8902 .get_msr = emulator_get_msr,
8903 .check_rdpmc_early = emulator_check_rdpmc_early,
8904 .read_pmc = emulator_read_pmc,
8905 .halt = emulator_halt,
8906 .wbinvd = emulator_wbinvd,
8907 .fix_hypercall = emulator_fix_hypercall,
8908 .intercept = emulator_intercept,
8909 .get_cpuid = emulator_get_cpuid,
8910 .guest_has_movbe = emulator_guest_has_movbe,
8911 .guest_has_fxsr = emulator_guest_has_fxsr,
8912 .guest_has_rdpid = emulator_guest_has_rdpid,
8913 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8914 .set_nmi_mask = emulator_set_nmi_mask,
8915 .is_smm = emulator_is_smm,
8916 .leave_smm = emulator_leave_smm,
8917 .triple_fault = emulator_triple_fault,
8918 .set_xcr = emulator_set_xcr,
8919 .get_untagged_addr = emulator_get_untagged_addr,
8920 .is_canonical_addr = emulator_is_canonical_addr,
8921 };
8922
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8923 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8924 {
8925 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8926 /*
8927 * an sti; sti; sequence only disable interrupts for the first
8928 * instruction. So, if the last instruction, be it emulated or
8929 * not, left the system with the INT_STI flag enabled, it
8930 * means that the last instruction is an sti. We should not
8931 * leave the flag on in this case. The same goes for mov ss
8932 */
8933 if (int_shadow & mask)
8934 mask = 0;
8935 if (unlikely(int_shadow || mask)) {
8936 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8937 if (!mask)
8938 kvm_make_request(KVM_REQ_EVENT, vcpu);
8939 }
8940 }
8941
inject_emulated_exception(struct kvm_vcpu * vcpu)8942 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8943 {
8944 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8945
8946 if (ctxt->exception.vector == PF_VECTOR)
8947 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8948 else if (ctxt->exception.error_code_valid)
8949 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8950 ctxt->exception.error_code);
8951 else
8952 kvm_queue_exception(vcpu, ctxt->exception.vector);
8953 }
8954
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8955 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8956 {
8957 struct x86_emulate_ctxt *ctxt;
8958
8959 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8960 if (!ctxt) {
8961 pr_err("failed to allocate vcpu's emulator\n");
8962 return NULL;
8963 }
8964
8965 ctxt->vcpu = vcpu;
8966 ctxt->ops = &emulate_ops;
8967 vcpu->arch.emulate_ctxt = ctxt;
8968
8969 return ctxt;
8970 }
8971
init_emulate_ctxt(struct kvm_vcpu * vcpu)8972 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8973 {
8974 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8975 int cs_db, cs_l;
8976
8977 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8978
8979 ctxt->gpa_available = false;
8980 ctxt->eflags = kvm_get_rflags(vcpu);
8981 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8982
8983 ctxt->eip = kvm_rip_read(vcpu);
8984 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8985 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8986 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8987 cs_db ? X86EMUL_MODE_PROT32 :
8988 X86EMUL_MODE_PROT16;
8989 ctxt->interruptibility = 0;
8990 ctxt->have_exception = false;
8991 ctxt->exception.vector = -1;
8992 ctxt->perm_ok = false;
8993
8994 init_decode_cache(ctxt);
8995 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8996 }
8997
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8998 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8999 {
9000 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9001 int ret;
9002
9003 init_emulate_ctxt(vcpu);
9004
9005 ctxt->op_bytes = 2;
9006 ctxt->ad_bytes = 2;
9007 ctxt->_eip = ctxt->eip + inc_eip;
9008 ret = emulate_int_real(ctxt, irq);
9009
9010 if (ret != X86EMUL_CONTINUE) {
9011 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9012 } else {
9013 ctxt->eip = ctxt->_eip;
9014 kvm_rip_write(vcpu, ctxt->eip);
9015 kvm_set_rflags(vcpu, ctxt->eflags);
9016 }
9017 }
9018 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9019
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)9020 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9021 u8 ndata, u8 *insn_bytes, u8 insn_size)
9022 {
9023 struct kvm_run *run = vcpu->run;
9024 u64 info[5];
9025 u8 info_start;
9026
9027 /*
9028 * Zero the whole array used to retrieve the exit info, as casting to
9029 * u32 for select entries will leave some chunks uninitialized.
9030 */
9031 memset(&info, 0, sizeof(info));
9032
9033 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9034 (u32 *)&info[3], (u32 *)&info[4]);
9035
9036 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9037 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9038
9039 /*
9040 * There's currently space for 13 entries, but 5 are used for the exit
9041 * reason and info. Restrict to 4 to reduce the maintenance burden
9042 * when expanding kvm_run.emulation_failure in the future.
9043 */
9044 if (WARN_ON_ONCE(ndata > 4))
9045 ndata = 4;
9046
9047 /* Always include the flags as a 'data' entry. */
9048 info_start = 1;
9049 run->emulation_failure.flags = 0;
9050
9051 if (insn_size) {
9052 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9053 sizeof(run->emulation_failure.insn_bytes) != 16));
9054 info_start += 2;
9055 run->emulation_failure.flags |=
9056 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9057 run->emulation_failure.insn_size = insn_size;
9058 memset(run->emulation_failure.insn_bytes, 0x90,
9059 sizeof(run->emulation_failure.insn_bytes));
9060 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9061 }
9062
9063 memcpy(&run->internal.data[info_start], info, sizeof(info));
9064 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9065 ndata * sizeof(data[0]));
9066
9067 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9068 }
9069
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)9070 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9071 {
9072 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9073
9074 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9075 ctxt->fetch.end - ctxt->fetch.data);
9076 }
9077
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)9078 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9079 u8 ndata)
9080 {
9081 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9082 }
9083 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9084
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)9085 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9086 {
9087 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9088 }
9089 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9090
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)9091 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9092 {
9093 u32 reason, intr_info, error_code;
9094 struct kvm_run *run = vcpu->run;
9095 u64 info1, info2;
9096 int ndata = 0;
9097
9098 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9099 &intr_info, &error_code);
9100
9101 run->internal.data[ndata++] = info2;
9102 run->internal.data[ndata++] = reason;
9103 run->internal.data[ndata++] = info1;
9104 run->internal.data[ndata++] = gpa;
9105 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9106
9107 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9108 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9109 run->internal.ndata = ndata;
9110 }
9111 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9112
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)9113 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9114 {
9115 struct kvm *kvm = vcpu->kvm;
9116
9117 ++vcpu->stat.insn_emulation_fail;
9118 trace_kvm_emulate_insn_failed(vcpu);
9119
9120 if (emulation_type & EMULTYPE_VMWARE_GP) {
9121 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9122 return 1;
9123 }
9124
9125 if (kvm->arch.exit_on_emulation_error ||
9126 (emulation_type & EMULTYPE_SKIP)) {
9127 prepare_emulation_ctxt_failure_exit(vcpu);
9128 return 0;
9129 }
9130
9131 kvm_queue_exception(vcpu, UD_VECTOR);
9132
9133 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9134 prepare_emulation_ctxt_failure_exit(vcpu);
9135 return 0;
9136 }
9137
9138 return 1;
9139 }
9140
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)9141 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9142 gpa_t cr2_or_gpa,
9143 int emulation_type)
9144 {
9145 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9146 return false;
9147
9148 /*
9149 * If the failed instruction faulted on an access to page tables that
9150 * are used to translate any part of the instruction, KVM can't resolve
9151 * the issue by unprotecting the gfn, as zapping the shadow page will
9152 * result in the instruction taking a !PRESENT page fault and thus put
9153 * the vCPU into an infinite loop of page faults. E.g. KVM will create
9154 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9155 * then zap the SPTE to unprotect the gfn, and then do it all over
9156 * again. Report the error to userspace.
9157 */
9158 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9159 return false;
9160
9161 /*
9162 * If emulation may have been triggered by a write to a shadowed page
9163 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9164 * guest to let the CPU re-execute the instruction in the hope that the
9165 * CPU can cleanly execute the instruction that KVM failed to emulate.
9166 */
9167 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9168
9169 /*
9170 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9171 * all SPTEs were already zapped by a different task. The alternative
9172 * is to report the error to userspace and likely terminate the guest,
9173 * and the last_retry_{eip,addr} checks will prevent retrying the page
9174 * fault indefinitely, i.e. there's nothing to lose by retrying.
9175 */
9176 return true;
9177 }
9178
9179 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9180 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9181
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)9182 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9183 unsigned long *db)
9184 {
9185 u32 dr6 = 0;
9186 int i;
9187 u32 enable, rwlen;
9188
9189 enable = dr7;
9190 rwlen = dr7 >> 16;
9191 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9192 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9193 dr6 |= (1 << i);
9194 return dr6;
9195 }
9196
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)9197 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9198 {
9199 struct kvm_run *kvm_run = vcpu->run;
9200
9201 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9202 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9203 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9204 kvm_run->debug.arch.exception = DB_VECTOR;
9205 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9206 return 0;
9207 }
9208 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9209 return 1;
9210 }
9211
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)9212 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9213 {
9214 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9215 int r;
9216
9217 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9218 if (unlikely(!r))
9219 return 0;
9220
9221 kvm_pmu_instruction_retired(vcpu);
9222
9223 /*
9224 * rflags is the old, "raw" value of the flags. The new value has
9225 * not been saved yet.
9226 *
9227 * This is correct even for TF set by the guest, because "the
9228 * processor will not generate this exception after the instruction
9229 * that sets the TF flag".
9230 */
9231 if (unlikely(rflags & X86_EFLAGS_TF))
9232 r = kvm_vcpu_do_singlestep(vcpu);
9233 return r;
9234 }
9235 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9236
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9237 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9238 {
9239 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9240 return true;
9241
9242 /*
9243 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9244 * active, but AMD compatible CPUs do not.
9245 */
9246 if (!guest_cpuid_is_intel_compatible(vcpu))
9247 return false;
9248
9249 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9250 }
9251
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9252 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9253 int emulation_type, int *r)
9254 {
9255 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9256
9257 /*
9258 * Do not check for code breakpoints if hardware has already done the
9259 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9260 * the instruction has passed all exception checks, and all intercepted
9261 * exceptions that trigger emulation have lower priority than code
9262 * breakpoints, i.e. the fact that the intercepted exception occurred
9263 * means any code breakpoints have already been serviced.
9264 *
9265 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9266 * hardware has checked the RIP of the magic prefix, but not the RIP of
9267 * the instruction being emulated. The intent of forced emulation is
9268 * to behave as if KVM intercepted the instruction without an exception
9269 * and without a prefix.
9270 */
9271 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9272 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9273 return false;
9274
9275 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9276 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9277 struct kvm_run *kvm_run = vcpu->run;
9278 unsigned long eip = kvm_get_linear_rip(vcpu);
9279 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9280 vcpu->arch.guest_debug_dr7,
9281 vcpu->arch.eff_db);
9282
9283 if (dr6 != 0) {
9284 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9285 kvm_run->debug.arch.pc = eip;
9286 kvm_run->debug.arch.exception = DB_VECTOR;
9287 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9288 *r = 0;
9289 return true;
9290 }
9291 }
9292
9293 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9294 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9295 unsigned long eip = kvm_get_linear_rip(vcpu);
9296 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9297 vcpu->arch.dr7,
9298 vcpu->arch.db);
9299
9300 if (dr6 != 0) {
9301 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9302 *r = 1;
9303 return true;
9304 }
9305 }
9306
9307 return false;
9308 }
9309
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9310 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9311 {
9312 switch (ctxt->opcode_len) {
9313 case 1:
9314 switch (ctxt->b) {
9315 case 0xe4: /* IN */
9316 case 0xe5:
9317 case 0xec:
9318 case 0xed:
9319 case 0xe6: /* OUT */
9320 case 0xe7:
9321 case 0xee:
9322 case 0xef:
9323 case 0x6c: /* INS */
9324 case 0x6d:
9325 case 0x6e: /* OUTS */
9326 case 0x6f:
9327 return true;
9328 }
9329 break;
9330 case 2:
9331 switch (ctxt->b) {
9332 case 0x33: /* RDPMC */
9333 return true;
9334 }
9335 break;
9336 }
9337
9338 return false;
9339 }
9340
9341 /*
9342 * Decode an instruction for emulation. The caller is responsible for handling
9343 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9344 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9345 * code breakpoints have higher priority and thus have already been done by
9346 * hardware.
9347 *
9348 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9349 * response to a machine check.
9350 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9351 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9352 void *insn, int insn_len)
9353 {
9354 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9355 int r;
9356
9357 init_emulate_ctxt(vcpu);
9358
9359 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9360
9361 trace_kvm_emulate_insn_start(vcpu);
9362 ++vcpu->stat.insn_emulation;
9363
9364 return r;
9365 }
9366 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9367
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9368 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9369 int emulation_type, void *insn, int insn_len)
9370 {
9371 int r;
9372 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9373 bool writeback = true;
9374
9375 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9376 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9377 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9378 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9379
9380 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9381 if (r != X86EMUL_CONTINUE) {
9382 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9383 return 1;
9384
9385 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9386 emulation_type))
9387 return 1;
9388
9389 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9390 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9391 return 0;
9392 }
9393
9394 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9395 return handle_emulation_failure(vcpu, emulation_type);
9396 }
9397
9398 vcpu->arch.l1tf_flush_l1d = true;
9399
9400 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9401 kvm_clear_exception_queue(vcpu);
9402
9403 /*
9404 * Return immediately if RIP hits a code breakpoint, such #DBs
9405 * are fault-like and are higher priority than any faults on
9406 * the code fetch itself.
9407 */
9408 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9409 return r;
9410
9411 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9412 insn, insn_len);
9413 if (r != EMULATION_OK) {
9414 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9415 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9416 kvm_queue_exception(vcpu, UD_VECTOR);
9417 return 1;
9418 }
9419 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9420 emulation_type))
9421 return 1;
9422
9423 if (ctxt->have_exception &&
9424 !(emulation_type & EMULTYPE_SKIP)) {
9425 /*
9426 * #UD should result in just EMULATION_FAILED, and trap-like
9427 * exception should not be encountered during decode.
9428 */
9429 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9430 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9431 inject_emulated_exception(vcpu);
9432 return 1;
9433 }
9434 return handle_emulation_failure(vcpu, emulation_type);
9435 }
9436 }
9437
9438 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9439 !is_vmware_backdoor_opcode(ctxt)) {
9440 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9441 return 1;
9442 }
9443
9444 /*
9445 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9446 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9447 * The caller is responsible for updating interruptibility state and
9448 * injecting single-step #DBs.
9449 */
9450 if (emulation_type & EMULTYPE_SKIP) {
9451 if (ctxt->mode != X86EMUL_MODE_PROT64)
9452 ctxt->eip = (u32)ctxt->_eip;
9453 else
9454 ctxt->eip = ctxt->_eip;
9455
9456 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9457 r = 1;
9458 goto writeback;
9459 }
9460
9461 kvm_rip_write(vcpu, ctxt->eip);
9462 if (ctxt->eflags & X86_EFLAGS_RF)
9463 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9464 return 1;
9465 }
9466
9467 /*
9468 * If emulation was caused by a write-protection #PF on a non-page_table
9469 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9470 * and retry the instruction, as the vCPU is likely no longer using the
9471 * gfn as a page table.
9472 */
9473 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9474 !x86_page_table_writing_insn(ctxt) &&
9475 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9476 return 1;
9477
9478 /* this is needed for vmware backdoor interface to work since it
9479 changes registers values during IO operation */
9480 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9481 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9482 emulator_invalidate_register_cache(ctxt);
9483 }
9484
9485 restart:
9486 if (emulation_type & EMULTYPE_PF) {
9487 /* Save the faulting GPA (cr2) in the address field */
9488 ctxt->exception.address = cr2_or_gpa;
9489
9490 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9491 if (vcpu->arch.mmu->root_role.direct) {
9492 ctxt->gpa_available = true;
9493 ctxt->gpa_val = cr2_or_gpa;
9494 }
9495 } else {
9496 /* Sanitize the address out of an abundance of paranoia. */
9497 ctxt->exception.address = 0;
9498 }
9499
9500 /*
9501 * Check L1's instruction intercepts when emulating instructions for
9502 * L2, unless KVM is re-emulating a previously decoded instruction,
9503 * e.g. to complete userspace I/O, in which case KVM has already
9504 * checked the intercepts.
9505 */
9506 r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9507 !(emulation_type & EMULTYPE_NO_DECODE));
9508
9509 if (r == EMULATION_INTERCEPTED)
9510 return 1;
9511
9512 if (r == EMULATION_FAILED) {
9513 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9514 emulation_type))
9515 return 1;
9516
9517 return handle_emulation_failure(vcpu, emulation_type);
9518 }
9519
9520 if (ctxt->have_exception) {
9521 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9522 vcpu->mmio_needed = false;
9523 r = 1;
9524 inject_emulated_exception(vcpu);
9525 } else if (vcpu->arch.pio.count) {
9526 if (!vcpu->arch.pio.in) {
9527 /* FIXME: return into emulator if single-stepping. */
9528 vcpu->arch.pio.count = 0;
9529 } else {
9530 writeback = false;
9531 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9532 }
9533 r = 0;
9534 } else if (vcpu->mmio_needed) {
9535 ++vcpu->stat.mmio_exits;
9536
9537 if (!vcpu->mmio_is_write)
9538 writeback = false;
9539 r = 0;
9540 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9541 } else if (vcpu->arch.complete_userspace_io) {
9542 writeback = false;
9543 r = 0;
9544 } else if (r == EMULATION_RESTART)
9545 goto restart;
9546 else
9547 r = 1;
9548
9549 writeback:
9550 if (writeback) {
9551 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9552 toggle_interruptibility(vcpu, ctxt->interruptibility);
9553 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9554
9555 /*
9556 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9557 * only supports code breakpoints and general detect #DB, both
9558 * of which are fault-like.
9559 */
9560 if (!ctxt->have_exception ||
9561 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9562 kvm_pmu_instruction_retired(vcpu);
9563 if (ctxt->is_branch)
9564 kvm_pmu_branch_retired(vcpu);
9565 kvm_rip_write(vcpu, ctxt->eip);
9566 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9567 r = kvm_vcpu_do_singlestep(vcpu);
9568 kvm_x86_call(update_emulated_instruction)(vcpu);
9569 __kvm_set_rflags(vcpu, ctxt->eflags);
9570 }
9571
9572 /*
9573 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9574 * do nothing, and it will be requested again as soon as
9575 * the shadow expires. But we still need to check here,
9576 * because POPF has no interrupt shadow.
9577 */
9578 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9579 kvm_make_request(KVM_REQ_EVENT, vcpu);
9580 } else
9581 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9582
9583 return r;
9584 }
9585
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9586 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9587 {
9588 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9589 }
9590 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9591
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9592 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9593 void *insn, int insn_len)
9594 {
9595 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9596 }
9597 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9598
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9599 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9600 {
9601 vcpu->arch.pio.count = 0;
9602 return 1;
9603 }
9604
complete_fast_pio_out(struct kvm_vcpu * vcpu)9605 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9606 {
9607 vcpu->arch.pio.count = 0;
9608
9609 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9610 return 1;
9611
9612 return kvm_skip_emulated_instruction(vcpu);
9613 }
9614
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9615 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9616 unsigned short port)
9617 {
9618 unsigned long val = kvm_rax_read(vcpu);
9619 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9620
9621 if (ret)
9622 return ret;
9623
9624 /*
9625 * Workaround userspace that relies on old KVM behavior of %rip being
9626 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9627 */
9628 if (port == 0x7e &&
9629 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9630 vcpu->arch.complete_userspace_io =
9631 complete_fast_pio_out_port_0x7e;
9632 kvm_skip_emulated_instruction(vcpu);
9633 } else {
9634 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9635 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9636 }
9637 return 0;
9638 }
9639
complete_fast_pio_in(struct kvm_vcpu * vcpu)9640 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9641 {
9642 unsigned long val;
9643
9644 /* We should only ever be called with arch.pio.count equal to 1 */
9645 BUG_ON(vcpu->arch.pio.count != 1);
9646
9647 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9648 vcpu->arch.pio.count = 0;
9649 return 1;
9650 }
9651
9652 /* For size less than 4 we merge, else we zero extend */
9653 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9654
9655 complete_emulator_pio_in(vcpu, &val);
9656 kvm_rax_write(vcpu, val);
9657
9658 return kvm_skip_emulated_instruction(vcpu);
9659 }
9660
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9661 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9662 unsigned short port)
9663 {
9664 unsigned long val;
9665 int ret;
9666
9667 /* For size less than 4 we merge, else we zero extend */
9668 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9669
9670 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9671 if (ret) {
9672 kvm_rax_write(vcpu, val);
9673 return ret;
9674 }
9675
9676 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9677 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9678
9679 return 0;
9680 }
9681
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9682 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9683 {
9684 int ret;
9685
9686 if (in)
9687 ret = kvm_fast_pio_in(vcpu, size, port);
9688 else
9689 ret = kvm_fast_pio_out(vcpu, size, port);
9690 return ret && kvm_skip_emulated_instruction(vcpu);
9691 }
9692 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9693
kvmclock_cpu_down_prep(unsigned int cpu)9694 static int kvmclock_cpu_down_prep(unsigned int cpu)
9695 {
9696 __this_cpu_write(cpu_tsc_khz, 0);
9697 return 0;
9698 }
9699
tsc_khz_changed(void * data)9700 static void tsc_khz_changed(void *data)
9701 {
9702 struct cpufreq_freqs *freq = data;
9703 unsigned long khz;
9704
9705 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9706
9707 if (data)
9708 khz = freq->new;
9709 else
9710 khz = cpufreq_quick_get(raw_smp_processor_id());
9711 if (!khz)
9712 khz = tsc_khz;
9713 __this_cpu_write(cpu_tsc_khz, khz);
9714 }
9715
9716 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9717 static void kvm_hyperv_tsc_notifier(void)
9718 {
9719 struct kvm *kvm;
9720 int cpu;
9721
9722 mutex_lock(&kvm_lock);
9723 list_for_each_entry(kvm, &vm_list, vm_list)
9724 kvm_make_mclock_inprogress_request(kvm);
9725
9726 /* no guest entries from this point */
9727 hyperv_stop_tsc_emulation();
9728
9729 /* TSC frequency always matches when on Hyper-V */
9730 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9731 for_each_present_cpu(cpu)
9732 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9733 }
9734 kvm_caps.max_guest_tsc_khz = tsc_khz;
9735
9736 list_for_each_entry(kvm, &vm_list, vm_list) {
9737 __kvm_start_pvclock_update(kvm);
9738 pvclock_update_vm_gtod_copy(kvm);
9739 kvm_end_pvclock_update(kvm);
9740 }
9741
9742 mutex_unlock(&kvm_lock);
9743 }
9744 #endif
9745
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9746 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9747 {
9748 struct kvm *kvm;
9749 struct kvm_vcpu *vcpu;
9750 int send_ipi = 0;
9751 unsigned long i;
9752
9753 /*
9754 * We allow guests to temporarily run on slowing clocks,
9755 * provided we notify them after, or to run on accelerating
9756 * clocks, provided we notify them before. Thus time never
9757 * goes backwards.
9758 *
9759 * However, we have a problem. We can't atomically update
9760 * the frequency of a given CPU from this function; it is
9761 * merely a notifier, which can be called from any CPU.
9762 * Changing the TSC frequency at arbitrary points in time
9763 * requires a recomputation of local variables related to
9764 * the TSC for each VCPU. We must flag these local variables
9765 * to be updated and be sure the update takes place with the
9766 * new frequency before any guests proceed.
9767 *
9768 * Unfortunately, the combination of hotplug CPU and frequency
9769 * change creates an intractable locking scenario; the order
9770 * of when these callouts happen is undefined with respect to
9771 * CPU hotplug, and they can race with each other. As such,
9772 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9773 * undefined; you can actually have a CPU frequency change take
9774 * place in between the computation of X and the setting of the
9775 * variable. To protect against this problem, all updates of
9776 * the per_cpu tsc_khz variable are done in an interrupt
9777 * protected IPI, and all callers wishing to update the value
9778 * must wait for a synchronous IPI to complete (which is trivial
9779 * if the caller is on the CPU already). This establishes the
9780 * necessary total order on variable updates.
9781 *
9782 * Note that because a guest time update may take place
9783 * anytime after the setting of the VCPU's request bit, the
9784 * correct TSC value must be set before the request. However,
9785 * to ensure the update actually makes it to any guest which
9786 * starts running in hardware virtualization between the set
9787 * and the acquisition of the spinlock, we must also ping the
9788 * CPU after setting the request bit.
9789 *
9790 */
9791
9792 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9793
9794 mutex_lock(&kvm_lock);
9795 list_for_each_entry(kvm, &vm_list, vm_list) {
9796 kvm_for_each_vcpu(i, vcpu, kvm) {
9797 if (vcpu->cpu != cpu)
9798 continue;
9799 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9800 if (vcpu->cpu != raw_smp_processor_id())
9801 send_ipi = 1;
9802 }
9803 }
9804 mutex_unlock(&kvm_lock);
9805
9806 if (freq->old < freq->new && send_ipi) {
9807 /*
9808 * We upscale the frequency. Must make the guest
9809 * doesn't see old kvmclock values while running with
9810 * the new frequency, otherwise we risk the guest sees
9811 * time go backwards.
9812 *
9813 * In case we update the frequency for another cpu
9814 * (which might be in guest context) send an interrupt
9815 * to kick the cpu out of guest context. Next time
9816 * guest context is entered kvmclock will be updated,
9817 * so the guest will not see stale values.
9818 */
9819 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9820 }
9821 }
9822
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9823 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9824 void *data)
9825 {
9826 struct cpufreq_freqs *freq = data;
9827 int cpu;
9828
9829 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9830 return 0;
9831 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9832 return 0;
9833
9834 for_each_cpu(cpu, freq->policy->cpus)
9835 __kvmclock_cpufreq_notifier(freq, cpu);
9836
9837 return 0;
9838 }
9839
9840 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9841 .notifier_call = kvmclock_cpufreq_notifier
9842 };
9843
kvmclock_cpu_online(unsigned int cpu)9844 static int kvmclock_cpu_online(unsigned int cpu)
9845 {
9846 tsc_khz_changed(NULL);
9847 return 0;
9848 }
9849
kvm_timer_init(void)9850 static void kvm_timer_init(void)
9851 {
9852 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9853 max_tsc_khz = tsc_khz;
9854
9855 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9856 struct cpufreq_policy *policy;
9857 int cpu;
9858
9859 cpu = get_cpu();
9860 policy = cpufreq_cpu_get(cpu);
9861 if (policy) {
9862 if (policy->cpuinfo.max_freq)
9863 max_tsc_khz = policy->cpuinfo.max_freq;
9864 cpufreq_cpu_put(policy);
9865 }
9866 put_cpu();
9867 }
9868 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9869 CPUFREQ_TRANSITION_NOTIFIER);
9870
9871 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9872 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9873 }
9874 }
9875
9876 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9877 static void pvclock_gtod_update_fn(struct work_struct *work)
9878 {
9879 struct kvm *kvm;
9880 struct kvm_vcpu *vcpu;
9881 unsigned long i;
9882
9883 mutex_lock(&kvm_lock);
9884 list_for_each_entry(kvm, &vm_list, vm_list)
9885 kvm_for_each_vcpu(i, vcpu, kvm)
9886 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9887 atomic_set(&kvm_guest_has_master_clock, 0);
9888 mutex_unlock(&kvm_lock);
9889 }
9890
9891 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9892
9893 /*
9894 * Indirection to move queue_work() out of the tk_core.seq write held
9895 * region to prevent possible deadlocks against time accessors which
9896 * are invoked with work related locks held.
9897 */
pvclock_irq_work_fn(struct irq_work * w)9898 static void pvclock_irq_work_fn(struct irq_work *w)
9899 {
9900 queue_work(system_long_wq, &pvclock_gtod_work);
9901 }
9902
9903 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9904
9905 /*
9906 * Notification about pvclock gtod data update.
9907 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9908 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9909 void *priv)
9910 {
9911 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9912 struct timekeeper *tk = priv;
9913
9914 update_pvclock_gtod(tk);
9915
9916 /*
9917 * Disable master clock if host does not trust, or does not use,
9918 * TSC based clocksource. Delegate queue_work() to irq_work as
9919 * this is invoked with tk_core.seq write held.
9920 */
9921 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9922 atomic_read(&kvm_guest_has_master_clock) != 0)
9923 irq_work_queue(&pvclock_irq_work);
9924 return 0;
9925 }
9926
9927 static struct notifier_block pvclock_gtod_notifier = {
9928 .notifier_call = pvclock_gtod_notify,
9929 };
9930 #endif
9931
kvm_ops_update(struct kvm_x86_init_ops * ops)9932 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9933 {
9934 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9935
9936 #define __KVM_X86_OP(func) \
9937 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9938 #define KVM_X86_OP(func) \
9939 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9940 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9941 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9942 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9943 (void *)__static_call_return0);
9944 #include <asm/kvm-x86-ops.h>
9945 #undef __KVM_X86_OP
9946
9947 kvm_pmu_ops_update(ops->pmu_ops);
9948 }
9949
kvm_x86_check_processor_compatibility(void)9950 static int kvm_x86_check_processor_compatibility(void)
9951 {
9952 int cpu = smp_processor_id();
9953 struct cpuinfo_x86 *c = &cpu_data(cpu);
9954
9955 /*
9956 * Compatibility checks are done when loading KVM and when enabling
9957 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9958 * compatible, i.e. KVM should never perform a compatibility check on
9959 * an offline CPU.
9960 */
9961 WARN_ON(!cpu_online(cpu));
9962
9963 if (__cr4_reserved_bits(cpu_has, c) !=
9964 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9965 return -EIO;
9966
9967 return kvm_x86_call(check_processor_compatibility)();
9968 }
9969
kvm_x86_check_cpu_compat(void * ret)9970 static void kvm_x86_check_cpu_compat(void *ret)
9971 {
9972 *(int *)ret = kvm_x86_check_processor_compatibility();
9973 }
9974
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9975 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9976 {
9977 u64 host_pat;
9978 int r, cpu;
9979
9980 guard(mutex)(&vendor_module_lock);
9981
9982 if (kvm_x86_ops.enable_virtualization_cpu) {
9983 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9984 return -EEXIST;
9985 }
9986
9987 /*
9988 * KVM explicitly assumes that the guest has an FPU and
9989 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9990 * vCPU's FPU state as a fxregs_state struct.
9991 */
9992 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9993 pr_err("inadequate fpu\n");
9994 return -EOPNOTSUPP;
9995 }
9996
9997 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9998 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9999 return -EOPNOTSUPP;
10000 }
10001
10002 /*
10003 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10004 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
10005 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
10006 * with an exception. PAT[0] is set to WB on RESET and also by the
10007 * kernel, i.e. failure indicates a kernel bug or broken firmware.
10008 */
10009 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10010 (host_pat & GENMASK(2, 0)) != 6) {
10011 pr_err("host PAT[0] is not WB\n");
10012 return -EIO;
10013 }
10014
10015 if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10016 rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10017 /*
10018 * Linux doesn't yet support supervisor shadow stacks (SSS), so
10019 * KVM doesn't save/restore the associated MSRs, i.e. KVM may
10020 * clobber the host values. Yell and refuse to load if SSS is
10021 * unexpectedly enabled, e.g. to avoid crashing the host.
10022 */
10023 if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10024 return -EIO;
10025 }
10026
10027 memset(&kvm_caps, 0, sizeof(kvm_caps));
10028
10029 x86_emulator_cache = kvm_alloc_emulator_cache();
10030 if (!x86_emulator_cache) {
10031 pr_err("failed to allocate cache for x86 emulator\n");
10032 return -ENOMEM;
10033 }
10034
10035 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
10036 if (!user_return_msrs) {
10037 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
10038 r = -ENOMEM;
10039 goto out_free_x86_emulator_cache;
10040 }
10041 kvm_nr_uret_msrs = 0;
10042
10043 r = kvm_mmu_vendor_module_init();
10044 if (r)
10045 goto out_free_percpu;
10046
10047 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10048 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10049
10050 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10051 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10052 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10053 }
10054
10055 if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10056 rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10057 kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10058 }
10059
10060 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10061 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10062
10063 rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10064
10065 kvm_init_pmu_capability(ops->pmu_ops);
10066
10067 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10068 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10069
10070 r = ops->hardware_setup();
10071 if (r != 0)
10072 goto out_mmu_exit;
10073
10074 enable_device_posted_irqs &= enable_apicv &&
10075 irq_remapping_cap(IRQ_POSTING_CAP);
10076
10077 kvm_ops_update(ops);
10078
10079 for_each_online_cpu(cpu) {
10080 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10081 if (r < 0)
10082 goto out_unwind_ops;
10083 }
10084
10085 /*
10086 * Point of no return! DO NOT add error paths below this point unless
10087 * absolutely necessary, as most operations from this point forward
10088 * require unwinding.
10089 */
10090 kvm_timer_init();
10091
10092 if (pi_inject_timer == -1)
10093 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10094 #ifdef CONFIG_X86_64
10095 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10096
10097 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10098 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10099 #endif
10100
10101 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10102
10103 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10104 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10105
10106 /* KVM always ignores guest PAT for shadow paging. */
10107 if (!tdp_enabled)
10108 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10109
10110 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10111 kvm_caps.supported_xss = 0;
10112
10113 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10114 !kvm_cpu_cap_has(X86_FEATURE_IBT))
10115 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10116
10117 if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10118 kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10119 kvm_cpu_cap_clear(X86_FEATURE_IBT);
10120 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10121 }
10122
10123 if (kvm_caps.has_tsc_control) {
10124 /*
10125 * Make sure the user can only configure tsc_khz values that
10126 * fit into a signed integer.
10127 * A min value is not calculated because it will always
10128 * be 1 on all machines.
10129 */
10130 u64 max = min(0x7fffffffULL,
10131 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10132 kvm_caps.max_guest_tsc_khz = max;
10133 }
10134 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10135 kvm_init_msr_lists();
10136 return 0;
10137
10138 out_unwind_ops:
10139 kvm_x86_ops.enable_virtualization_cpu = NULL;
10140 kvm_x86_call(hardware_unsetup)();
10141 out_mmu_exit:
10142 kvm_mmu_vendor_module_exit();
10143 out_free_percpu:
10144 free_percpu(user_return_msrs);
10145 out_free_x86_emulator_cache:
10146 kmem_cache_destroy(x86_emulator_cache);
10147 return r;
10148 }
10149 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10150
kvm_x86_vendor_exit(void)10151 void kvm_x86_vendor_exit(void)
10152 {
10153 kvm_unregister_perf_callbacks();
10154
10155 #ifdef CONFIG_X86_64
10156 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10157 clear_hv_tscchange_cb();
10158 #endif
10159 kvm_lapic_exit();
10160
10161 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10162 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10163 CPUFREQ_TRANSITION_NOTIFIER);
10164 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10165 }
10166 #ifdef CONFIG_X86_64
10167 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10168 irq_work_sync(&pvclock_irq_work);
10169 cancel_work_sync(&pvclock_gtod_work);
10170 #endif
10171 kvm_x86_call(hardware_unsetup)();
10172 kvm_mmu_vendor_module_exit();
10173 free_percpu(user_return_msrs);
10174 kmem_cache_destroy(x86_emulator_cache);
10175 #ifdef CONFIG_KVM_XEN
10176 static_key_deferred_flush(&kvm_xen_enabled);
10177 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10178 #endif
10179 mutex_lock(&vendor_module_lock);
10180 kvm_x86_ops.enable_virtualization_cpu = NULL;
10181 mutex_unlock(&vendor_module_lock);
10182 }
10183 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10184
10185 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)10186 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10187 unsigned long clock_type)
10188 {
10189 struct kvm_clock_pairing clock_pairing;
10190 struct timespec64 ts;
10191 u64 cycle;
10192 int ret;
10193
10194 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10195 return -KVM_EOPNOTSUPP;
10196
10197 /*
10198 * When tsc is in permanent catchup mode guests won't be able to use
10199 * pvclock_read_retry loop to get consistent view of pvclock
10200 */
10201 if (vcpu->arch.tsc_always_catchup)
10202 return -KVM_EOPNOTSUPP;
10203
10204 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10205 return -KVM_EOPNOTSUPP;
10206
10207 clock_pairing.sec = ts.tv_sec;
10208 clock_pairing.nsec = ts.tv_nsec;
10209 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10210 clock_pairing.flags = 0;
10211 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10212
10213 ret = 0;
10214 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10215 sizeof(struct kvm_clock_pairing)))
10216 ret = -KVM_EFAULT;
10217
10218 return ret;
10219 }
10220 #endif
10221
10222 /*
10223 * kvm_pv_kick_cpu_op: Kick a vcpu.
10224 *
10225 * @apicid - apicid of vcpu to be kicked.
10226 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)10227 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10228 {
10229 /*
10230 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10231 * common code, e.g. for tracing. Defer initialization to the compiler.
10232 */
10233 struct kvm_lapic_irq lapic_irq = {
10234 .delivery_mode = APIC_DM_REMRD,
10235 .dest_mode = APIC_DEST_PHYSICAL,
10236 .shorthand = APIC_DEST_NOSHORT,
10237 .dest_id = apicid,
10238 };
10239
10240 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10241 }
10242
kvm_apicv_activated(struct kvm * kvm)10243 bool kvm_apicv_activated(struct kvm *kvm)
10244 {
10245 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10246 }
10247 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10248
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10249 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10250 {
10251 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10252 ulong vcpu_reasons =
10253 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10254
10255 return (vm_reasons | vcpu_reasons) == 0;
10256 }
10257 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10258
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10259 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10260 enum kvm_apicv_inhibit reason, bool set)
10261 {
10262 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10263
10264 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10265
10266 if (set)
10267 __set_bit(reason, inhibits);
10268 else
10269 __clear_bit(reason, inhibits);
10270
10271 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10272 }
10273
kvm_apicv_init(struct kvm * kvm)10274 static void kvm_apicv_init(struct kvm *kvm)
10275 {
10276 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10277 APICV_INHIBIT_REASON_DISABLED;
10278
10279 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10280
10281 init_rwsem(&kvm->arch.apicv_update_lock);
10282 }
10283
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10284 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10285 {
10286 struct kvm_vcpu *target = NULL;
10287 struct kvm_apic_map *map;
10288
10289 vcpu->stat.directed_yield_attempted++;
10290
10291 if (single_task_running())
10292 goto no_yield;
10293
10294 rcu_read_lock();
10295 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10296
10297 if (likely(map) && dest_id <= map->max_apic_id) {
10298 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10299 if (map->phys_map[dest_id])
10300 target = map->phys_map[dest_id]->vcpu;
10301 }
10302
10303 rcu_read_unlock();
10304
10305 if (!target || !READ_ONCE(target->ready))
10306 goto no_yield;
10307
10308 /* Ignore requests to yield to self */
10309 if (vcpu == target)
10310 goto no_yield;
10311
10312 if (kvm_vcpu_yield_to(target) <= 0)
10313 goto no_yield;
10314
10315 vcpu->stat.directed_yield_successful++;
10316
10317 no_yield:
10318 return;
10319 }
10320
complete_hypercall_exit(struct kvm_vcpu * vcpu)10321 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10322 {
10323 u64 ret = vcpu->run->hypercall.ret;
10324
10325 if (!is_64_bit_hypercall(vcpu))
10326 ret = (u32)ret;
10327 kvm_rax_write(vcpu, ret);
10328 return kvm_skip_emulated_instruction(vcpu);
10329 }
10330
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10331 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10332 int (*complete_hypercall)(struct kvm_vcpu *))
10333 {
10334 unsigned long ret;
10335 unsigned long nr = kvm_rax_read(vcpu);
10336 unsigned long a0 = kvm_rbx_read(vcpu);
10337 unsigned long a1 = kvm_rcx_read(vcpu);
10338 unsigned long a2 = kvm_rdx_read(vcpu);
10339 unsigned long a3 = kvm_rsi_read(vcpu);
10340 int op_64_bit = is_64_bit_hypercall(vcpu);
10341
10342 ++vcpu->stat.hypercalls;
10343
10344 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10345
10346 if (!op_64_bit) {
10347 nr &= 0xFFFFFFFF;
10348 a0 &= 0xFFFFFFFF;
10349 a1 &= 0xFFFFFFFF;
10350 a2 &= 0xFFFFFFFF;
10351 a3 &= 0xFFFFFFFF;
10352 }
10353
10354 if (cpl) {
10355 ret = -KVM_EPERM;
10356 goto out;
10357 }
10358
10359 ret = -KVM_ENOSYS;
10360
10361 switch (nr) {
10362 case KVM_HC_VAPIC_POLL_IRQ:
10363 ret = 0;
10364 break;
10365 case KVM_HC_KICK_CPU:
10366 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10367 break;
10368
10369 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10370 kvm_sched_yield(vcpu, a1);
10371 ret = 0;
10372 break;
10373 #ifdef CONFIG_X86_64
10374 case KVM_HC_CLOCK_PAIRING:
10375 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10376 break;
10377 #endif
10378 case KVM_HC_SEND_IPI:
10379 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10380 break;
10381
10382 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10383 break;
10384 case KVM_HC_SCHED_YIELD:
10385 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10386 break;
10387
10388 kvm_sched_yield(vcpu, a0);
10389 ret = 0;
10390 break;
10391 case KVM_HC_MAP_GPA_RANGE: {
10392 u64 gpa = a0, npages = a1, attrs = a2;
10393
10394 ret = -KVM_ENOSYS;
10395 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10396 break;
10397
10398 if (!PAGE_ALIGNED(gpa) || !npages ||
10399 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10400 ret = -KVM_EINVAL;
10401 break;
10402 }
10403
10404 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10405 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10406 /*
10407 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10408 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10409 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10410 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10411 */
10412 vcpu->run->hypercall.ret = 0;
10413 vcpu->run->hypercall.args[0] = gpa;
10414 vcpu->run->hypercall.args[1] = npages;
10415 vcpu->run->hypercall.args[2] = attrs;
10416 vcpu->run->hypercall.flags = 0;
10417 if (op_64_bit)
10418 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10419
10420 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10421 vcpu->arch.complete_userspace_io = complete_hypercall;
10422 return 0;
10423 }
10424 default:
10425 ret = -KVM_ENOSYS;
10426 break;
10427 }
10428
10429 out:
10430 vcpu->run->hypercall.ret = ret;
10431 return 1;
10432 }
10433 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10434
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10435 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10436 {
10437 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10438 return kvm_xen_hypercall(vcpu);
10439
10440 if (kvm_hv_hypercall_enabled(vcpu))
10441 return kvm_hv_hypercall(vcpu);
10442
10443 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10444 complete_hypercall_exit);
10445 }
10446 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10447
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10448 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10449 {
10450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10451 char instruction[3];
10452 unsigned long rip = kvm_rip_read(vcpu);
10453
10454 /*
10455 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10456 * the pieces.
10457 */
10458 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10459 ctxt->exception.error_code_valid = false;
10460 ctxt->exception.vector = UD_VECTOR;
10461 ctxt->have_exception = true;
10462 return X86EMUL_PROPAGATE_FAULT;
10463 }
10464
10465 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10466
10467 return emulator_write_emulated(ctxt, rip, instruction, 3,
10468 &ctxt->exception);
10469 }
10470
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10471 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10472 {
10473 return vcpu->run->request_interrupt_window &&
10474 likely(!pic_in_kernel(vcpu->kvm));
10475 }
10476
10477 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10478 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10479 {
10480 struct kvm_run *kvm_run = vcpu->run;
10481
10482 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10483 kvm_run->cr8 = kvm_get_cr8(vcpu);
10484 kvm_run->apic_base = vcpu->arch.apic_base;
10485
10486 kvm_run->ready_for_interrupt_injection =
10487 pic_in_kernel(vcpu->kvm) ||
10488 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10489
10490 if (is_smm(vcpu))
10491 kvm_run->flags |= KVM_RUN_X86_SMM;
10492 if (is_guest_mode(vcpu))
10493 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10494 }
10495
update_cr8_intercept(struct kvm_vcpu * vcpu)10496 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10497 {
10498 int max_irr, tpr;
10499
10500 if (!kvm_x86_ops.update_cr8_intercept)
10501 return;
10502
10503 if (!lapic_in_kernel(vcpu))
10504 return;
10505
10506 if (vcpu->arch.apic->apicv_active)
10507 return;
10508
10509 if (!vcpu->arch.apic->vapic_addr)
10510 max_irr = kvm_lapic_find_highest_irr(vcpu);
10511 else
10512 max_irr = -1;
10513
10514 if (max_irr != -1)
10515 max_irr >>= 4;
10516
10517 tpr = kvm_lapic_get_cr8(vcpu);
10518
10519 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10520 }
10521
10522
kvm_check_nested_events(struct kvm_vcpu * vcpu)10523 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10524 {
10525 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10526 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10527 return 1;
10528 }
10529
10530 return kvm_x86_ops.nested_ops->check_events(vcpu);
10531 }
10532
kvm_inject_exception(struct kvm_vcpu * vcpu)10533 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10534 {
10535 /*
10536 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10537 * exceptions don't report error codes. The presence of an error code
10538 * is carried with the exception and only stripped when the exception
10539 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10540 * report an error code despite the CPU being in Real Mode.
10541 */
10542 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10543
10544 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10545 vcpu->arch.exception.has_error_code,
10546 vcpu->arch.exception.error_code,
10547 vcpu->arch.exception.injected);
10548
10549 kvm_x86_call(inject_exception)(vcpu);
10550 }
10551
10552 /*
10553 * Check for any event (interrupt or exception) that is ready to be injected,
10554 * and if there is at least one event, inject the event with the highest
10555 * priority. This handles both "pending" events, i.e. events that have never
10556 * been injected into the guest, and "injected" events, i.e. events that were
10557 * injected as part of a previous VM-Enter, but weren't successfully delivered
10558 * and need to be re-injected.
10559 *
10560 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10561 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10562 * be able to inject exceptions in the "middle" of an instruction, and so must
10563 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10564 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10565 * boundaries is necessary and correct.
10566 *
10567 * For simplicity, KVM uses a single path to inject all events (except events
10568 * that are injected directly from L1 to L2) and doesn't explicitly track
10569 * instruction boundaries for asynchronous events. However, because VM-Exits
10570 * that can occur during instruction execution typically result in KVM skipping
10571 * the instruction or injecting an exception, e.g. instruction and exception
10572 * intercepts, and because pending exceptions have higher priority than pending
10573 * interrupts, KVM still honors instruction boundaries in most scenarios.
10574 *
10575 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10576 * the instruction or inject an exception, then KVM can incorrecty inject a new
10577 * asynchronous event if the event became pending after the CPU fetched the
10578 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10579 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10580 * injected on the restarted instruction instead of being deferred until the
10581 * instruction completes.
10582 *
10583 * In practice, this virtualization hole is unlikely to be observed by the
10584 * guest, and even less likely to cause functional problems. To detect the
10585 * hole, the guest would have to trigger an event on a side effect of an early
10586 * phase of instruction execution, e.g. on the instruction fetch from memory.
10587 * And for it to be a functional problem, the guest would need to depend on the
10588 * ordering between that side effect, the instruction completing, _and_ the
10589 * delivery of the asynchronous event.
10590 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10591 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10592 bool *req_immediate_exit)
10593 {
10594 bool can_inject;
10595 int r;
10596
10597 /*
10598 * Process nested events first, as nested VM-Exit supersedes event
10599 * re-injection. If there's an event queued for re-injection, it will
10600 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10601 */
10602 if (is_guest_mode(vcpu))
10603 r = kvm_check_nested_events(vcpu);
10604 else
10605 r = 0;
10606
10607 /*
10608 * Re-inject exceptions and events *especially* if immediate entry+exit
10609 * to/from L2 is needed, as any event that has already been injected
10610 * into L2 needs to complete its lifecycle before injecting a new event.
10611 *
10612 * Don't re-inject an NMI or interrupt if there is a pending exception.
10613 * This collision arises if an exception occurred while vectoring the
10614 * injected event, KVM intercepted said exception, and KVM ultimately
10615 * determined the fault belongs to the guest and queues the exception
10616 * for injection back into the guest.
10617 *
10618 * "Injected" interrupts can also collide with pending exceptions if
10619 * userspace ignores the "ready for injection" flag and blindly queues
10620 * an interrupt. In that case, prioritizing the exception is correct,
10621 * as the exception "occurred" before the exit to userspace. Trap-like
10622 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10623 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10624 * priority, they're only generated (pended) during instruction
10625 * execution, and interrupts are recognized at instruction boundaries.
10626 * Thus a pending fault-like exception means the fault occurred on the
10627 * *previous* instruction and must be serviced prior to recognizing any
10628 * new events in order to fully complete the previous instruction.
10629 */
10630 if (vcpu->arch.exception.injected)
10631 kvm_inject_exception(vcpu);
10632 else if (kvm_is_exception_pending(vcpu))
10633 ; /* see above */
10634 else if (vcpu->arch.nmi_injected)
10635 kvm_x86_call(inject_nmi)(vcpu);
10636 else if (vcpu->arch.interrupt.injected)
10637 kvm_x86_call(inject_irq)(vcpu, true);
10638
10639 /*
10640 * Exceptions that morph to VM-Exits are handled above, and pending
10641 * exceptions on top of injected exceptions that do not VM-Exit should
10642 * either morph to #DF or, sadly, override the injected exception.
10643 */
10644 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10645 vcpu->arch.exception.pending);
10646
10647 /*
10648 * Bail if immediate entry+exit to/from the guest is needed to complete
10649 * nested VM-Enter or event re-injection so that a different pending
10650 * event can be serviced (or if KVM needs to exit to userspace).
10651 *
10652 * Otherwise, continue processing events even if VM-Exit occurred. The
10653 * VM-Exit will have cleared exceptions that were meant for L2, but
10654 * there may now be events that can be injected into L1.
10655 */
10656 if (r < 0)
10657 goto out;
10658
10659 /*
10660 * A pending exception VM-Exit should either result in nested VM-Exit
10661 * or force an immediate re-entry and exit to/from L2, and exception
10662 * VM-Exits cannot be injected (flag should _never_ be set).
10663 */
10664 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10665 vcpu->arch.exception_vmexit.pending);
10666
10667 /*
10668 * New events, other than exceptions, cannot be injected if KVM needs
10669 * to re-inject a previous event. See above comments on re-injecting
10670 * for why pending exceptions get priority.
10671 */
10672 can_inject = !kvm_event_needs_reinjection(vcpu);
10673
10674 if (vcpu->arch.exception.pending) {
10675 /*
10676 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10677 * value pushed on the stack. Trap-like exception and all #DBs
10678 * leave RF as-is (KVM follows Intel's behavior in this regard;
10679 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10680 *
10681 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10682 * describe the behavior of General Detect #DBs, which are
10683 * fault-like. They do _not_ set RF, a la code breakpoints.
10684 */
10685 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10686 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10687 X86_EFLAGS_RF);
10688
10689 if (vcpu->arch.exception.vector == DB_VECTOR) {
10690 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10691 if (vcpu->arch.dr7 & DR7_GD) {
10692 vcpu->arch.dr7 &= ~DR7_GD;
10693 kvm_update_dr7(vcpu);
10694 }
10695 }
10696
10697 kvm_inject_exception(vcpu);
10698
10699 vcpu->arch.exception.pending = false;
10700 vcpu->arch.exception.injected = true;
10701
10702 can_inject = false;
10703 }
10704
10705 /* Don't inject interrupts if the user asked to avoid doing so */
10706 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10707 return 0;
10708
10709 /*
10710 * Finally, inject interrupt events. If an event cannot be injected
10711 * due to architectural conditions (e.g. IF=0) a window-open exit
10712 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10713 * and can architecturally be injected, but we cannot do it right now:
10714 * an interrupt could have arrived just now and we have to inject it
10715 * as a vmexit, or there could already an event in the queue, which is
10716 * indicated by can_inject. In that case we request an immediate exit
10717 * in order to make progress and get back here for another iteration.
10718 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10719 */
10720 #ifdef CONFIG_KVM_SMM
10721 if (vcpu->arch.smi_pending) {
10722 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10723 -EBUSY;
10724 if (r < 0)
10725 goto out;
10726 if (r) {
10727 vcpu->arch.smi_pending = false;
10728 ++vcpu->arch.smi_count;
10729 enter_smm(vcpu);
10730 can_inject = false;
10731 } else
10732 kvm_x86_call(enable_smi_window)(vcpu);
10733 }
10734 #endif
10735
10736 if (vcpu->arch.nmi_pending) {
10737 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10738 -EBUSY;
10739 if (r < 0)
10740 goto out;
10741 if (r) {
10742 --vcpu->arch.nmi_pending;
10743 vcpu->arch.nmi_injected = true;
10744 kvm_x86_call(inject_nmi)(vcpu);
10745 can_inject = false;
10746 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10747 }
10748 if (vcpu->arch.nmi_pending)
10749 kvm_x86_call(enable_nmi_window)(vcpu);
10750 }
10751
10752 if (kvm_cpu_has_injectable_intr(vcpu)) {
10753 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10754 -EBUSY;
10755 if (r < 0)
10756 goto out;
10757 if (r) {
10758 int irq = kvm_cpu_get_interrupt(vcpu);
10759
10760 if (!WARN_ON_ONCE(irq == -1)) {
10761 kvm_queue_interrupt(vcpu, irq, false);
10762 kvm_x86_call(inject_irq)(vcpu, false);
10763 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10764 }
10765 }
10766 if (kvm_cpu_has_injectable_intr(vcpu))
10767 kvm_x86_call(enable_irq_window)(vcpu);
10768 }
10769
10770 if (is_guest_mode(vcpu) &&
10771 kvm_x86_ops.nested_ops->has_events &&
10772 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10773 *req_immediate_exit = true;
10774
10775 /*
10776 * KVM must never queue a new exception while injecting an event; KVM
10777 * is done emulating and should only propagate the to-be-injected event
10778 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10779 * infinite loop as KVM will bail from VM-Enter to inject the pending
10780 * exception and start the cycle all over.
10781 *
10782 * Exempt triple faults as they have special handling and won't put the
10783 * vCPU into an infinite loop. Triple fault can be queued when running
10784 * VMX without unrestricted guest, as that requires KVM to emulate Real
10785 * Mode events (see kvm_inject_realmode_interrupt()).
10786 */
10787 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10788 vcpu->arch.exception_vmexit.pending);
10789 return 0;
10790
10791 out:
10792 if (r == -EBUSY) {
10793 *req_immediate_exit = true;
10794 r = 0;
10795 }
10796 return r;
10797 }
10798
process_nmi(struct kvm_vcpu * vcpu)10799 static void process_nmi(struct kvm_vcpu *vcpu)
10800 {
10801 unsigned int limit;
10802
10803 /*
10804 * x86 is limited to one NMI pending, but because KVM can't react to
10805 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10806 * scheduled out, KVM needs to play nice with two queued NMIs showing
10807 * up at the same time. To handle this scenario, allow two NMIs to be
10808 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10809 * waiting for a previous NMI injection to complete (which effectively
10810 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10811 * will request an NMI window to handle the second NMI.
10812 */
10813 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10814 limit = 1;
10815 else
10816 limit = 2;
10817
10818 /*
10819 * Adjust the limit to account for pending virtual NMIs, which aren't
10820 * tracked in vcpu->arch.nmi_pending.
10821 */
10822 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10823 limit--;
10824
10825 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10826 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10827
10828 if (vcpu->arch.nmi_pending &&
10829 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10830 vcpu->arch.nmi_pending--;
10831
10832 if (vcpu->arch.nmi_pending)
10833 kvm_make_request(KVM_REQ_EVENT, vcpu);
10834 }
10835
10836 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10837 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10838 {
10839 return vcpu->arch.nmi_pending +
10840 kvm_x86_call(is_vnmi_pending)(vcpu);
10841 }
10842
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10843 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10844 unsigned long *vcpu_bitmap)
10845 {
10846 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10847 }
10848
kvm_make_scan_ioapic_request(struct kvm * kvm)10849 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10850 {
10851 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10852 }
10853
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10854 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10855 {
10856 struct kvm_lapic *apic = vcpu->arch.apic;
10857 bool activate;
10858
10859 if (!lapic_in_kernel(vcpu))
10860 return;
10861
10862 down_read(&vcpu->kvm->arch.apicv_update_lock);
10863 preempt_disable();
10864
10865 /* Do not activate APICV when APIC is disabled */
10866 activate = kvm_vcpu_apicv_activated(vcpu) &&
10867 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10868
10869 if (apic->apicv_active == activate)
10870 goto out;
10871
10872 apic->apicv_active = activate;
10873 kvm_apic_update_apicv(vcpu);
10874 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10875
10876 /*
10877 * When APICv gets disabled, we may still have injected interrupts
10878 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10879 * still active when the interrupt got accepted. Make sure
10880 * kvm_check_and_inject_events() is called to check for that.
10881 */
10882 if (!apic->apicv_active)
10883 kvm_make_request(KVM_REQ_EVENT, vcpu);
10884
10885 out:
10886 preempt_enable();
10887 up_read(&vcpu->kvm->arch.apicv_update_lock);
10888 }
10889 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10890
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10891 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10892 {
10893 if (!lapic_in_kernel(vcpu))
10894 return;
10895
10896 /*
10897 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10898 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10899 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10900 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10901 * this case so that KVM can use the AVIC doorbell to inject interrupts
10902 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10903 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10904 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10905 * access page is sticky.
10906 */
10907 if (apic_x2apic_mode(vcpu->arch.apic) &&
10908 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10909 kvm_inhibit_apic_access_page(vcpu);
10910
10911 __kvm_vcpu_update_apicv(vcpu);
10912 }
10913
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10914 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10915 enum kvm_apicv_inhibit reason, bool set)
10916 {
10917 unsigned long old, new;
10918
10919 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10920
10921 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10922 return;
10923
10924 old = new = kvm->arch.apicv_inhibit_reasons;
10925
10926 set_or_clear_apicv_inhibit(&new, reason, set);
10927
10928 if (!!old != !!new) {
10929 /*
10930 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10931 * false positives in the sanity check WARN in vcpu_enter_guest().
10932 * This task will wait for all vCPUs to ack the kick IRQ before
10933 * updating apicv_inhibit_reasons, and all other vCPUs will
10934 * block on acquiring apicv_update_lock so that vCPUs can't
10935 * redo vcpu_enter_guest() without seeing the new inhibit state.
10936 *
10937 * Note, holding apicv_update_lock and taking it in the read
10938 * side (handling the request) also prevents other vCPUs from
10939 * servicing the request with a stale apicv_inhibit_reasons.
10940 */
10941 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10942 kvm->arch.apicv_inhibit_reasons = new;
10943 if (new) {
10944 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10945 int idx = srcu_read_lock(&kvm->srcu);
10946
10947 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10948 srcu_read_unlock(&kvm->srcu, idx);
10949 }
10950 } else {
10951 kvm->arch.apicv_inhibit_reasons = new;
10952 }
10953 }
10954
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10955 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10956 enum kvm_apicv_inhibit reason, bool set)
10957 {
10958 if (!enable_apicv)
10959 return;
10960
10961 down_write(&kvm->arch.apicv_update_lock);
10962 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10963 up_write(&kvm->arch.apicv_update_lock);
10964 }
10965 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10966
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10967 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10968 {
10969 if (!kvm_apic_present(vcpu))
10970 return;
10971
10972 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10973 vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10974
10975 kvm_x86_call(sync_pir_to_irr)(vcpu);
10976
10977 if (irqchip_split(vcpu->kvm))
10978 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10979 #ifdef CONFIG_KVM_IOAPIC
10980 else if (ioapic_in_kernel(vcpu->kvm))
10981 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10982 #endif
10983
10984 if (is_guest_mode(vcpu))
10985 vcpu->arch.load_eoi_exitmap_pending = true;
10986 else
10987 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10988 }
10989
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10990 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10991 {
10992 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10993 return;
10994
10995 #ifdef CONFIG_KVM_HYPERV
10996 if (to_hv_vcpu(vcpu)) {
10997 u64 eoi_exit_bitmap[4];
10998
10999 bitmap_or((ulong *)eoi_exit_bitmap,
11000 vcpu->arch.ioapic_handled_vectors,
11001 to_hv_synic(vcpu)->vec_bitmap, 256);
11002 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11003 return;
11004 }
11005 #endif
11006 kvm_x86_call(load_eoi_exitmap)(
11007 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11008 }
11009
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)11010 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11011 {
11012 kvm_x86_call(guest_memory_reclaimed)(kvm);
11013 }
11014
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)11015 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11016 {
11017 if (!lapic_in_kernel(vcpu))
11018 return;
11019
11020 kvm_x86_call(set_apic_access_page_addr)(vcpu);
11021 }
11022
11023 /*
11024 * Called within kvm->srcu read side.
11025 * Returns 1 to let vcpu_run() continue the guest execution loop without
11026 * exiting to the userspace. Otherwise, the value will be returned to the
11027 * userspace.
11028 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)11029 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11030 {
11031 int r;
11032 bool req_int_win =
11033 dm_request_for_irq_injection(vcpu) &&
11034 kvm_cpu_accept_dm_intr(vcpu);
11035 fastpath_t exit_fastpath;
11036 u64 run_flags, debug_ctl;
11037
11038 bool req_immediate_exit = false;
11039
11040 if (kvm_request_pending(vcpu)) {
11041 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11042 r = -EIO;
11043 goto out;
11044 }
11045
11046 if (kvm_dirty_ring_check_request(vcpu)) {
11047 r = 0;
11048 goto out;
11049 }
11050
11051 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11052 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11053 r = 0;
11054 goto out;
11055 }
11056 }
11057 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11058 kvm_mmu_free_obsolete_roots(vcpu);
11059 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11060 __kvm_migrate_timers(vcpu);
11061 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11062 kvm_update_masterclock(vcpu->kvm);
11063 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11064 kvm_gen_kvmclock_update(vcpu);
11065 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11066 r = kvm_guest_time_update(vcpu);
11067 if (unlikely(r))
11068 goto out;
11069 }
11070 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11071 kvm_mmu_sync_roots(vcpu);
11072 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11073 kvm_mmu_load_pgd(vcpu);
11074
11075 /*
11076 * Note, the order matters here, as flushing "all" TLB entries
11077 * also flushes the "current" TLB entries, i.e. servicing the
11078 * flush "all" will clear any request to flush "current".
11079 */
11080 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11081 kvm_vcpu_flush_tlb_all(vcpu);
11082
11083 kvm_service_local_tlb_flush_requests(vcpu);
11084
11085 /*
11086 * Fall back to a "full" guest flush if Hyper-V's precise
11087 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
11088 * the flushes are considered "remote" and not "local" because
11089 * the requests can be initiated from other vCPUs.
11090 */
11091 #ifdef CONFIG_KVM_HYPERV
11092 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11093 kvm_hv_vcpu_flush_tlb(vcpu))
11094 kvm_vcpu_flush_tlb_guest(vcpu);
11095 #endif
11096
11097 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11098 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11099 r = 0;
11100 goto out;
11101 }
11102 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11103 if (is_guest_mode(vcpu))
11104 kvm_x86_ops.nested_ops->triple_fault(vcpu);
11105
11106 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11107 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11108 vcpu->mmio_needed = 0;
11109 r = 0;
11110 goto out;
11111 }
11112 }
11113 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11114 /* Page is swapped out. Do synthetic halt */
11115 vcpu->arch.apf.halted = true;
11116 r = 1;
11117 goto out;
11118 }
11119 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11120 record_steal_time(vcpu);
11121 if (kvm_check_request(KVM_REQ_PMU, vcpu))
11122 kvm_pmu_handle_event(vcpu);
11123 if (kvm_check_request(KVM_REQ_PMI, vcpu))
11124 kvm_pmu_deliver_pmi(vcpu);
11125 #ifdef CONFIG_KVM_SMM
11126 if (kvm_check_request(KVM_REQ_SMI, vcpu))
11127 process_smi(vcpu);
11128 #endif
11129 if (kvm_check_request(KVM_REQ_NMI, vcpu))
11130 process_nmi(vcpu);
11131 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11132 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11133 if (test_bit(vcpu->arch.pending_ioapic_eoi,
11134 vcpu->arch.ioapic_handled_vectors)) {
11135 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11136 vcpu->run->eoi.vector =
11137 vcpu->arch.pending_ioapic_eoi;
11138 r = 0;
11139 goto out;
11140 }
11141 }
11142 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11143 vcpu_scan_ioapic(vcpu);
11144 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11145 vcpu_load_eoi_exitmap(vcpu);
11146 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11147 kvm_vcpu_reload_apic_access_page(vcpu);
11148 #ifdef CONFIG_KVM_HYPERV
11149 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11150 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11151 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11152 vcpu->run->system_event.ndata = 0;
11153 r = 0;
11154 goto out;
11155 }
11156 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11157 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11158 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11159 vcpu->run->system_event.ndata = 0;
11160 r = 0;
11161 goto out;
11162 }
11163 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11164 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11165
11166 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11167 vcpu->run->hyperv = hv_vcpu->exit;
11168 r = 0;
11169 goto out;
11170 }
11171
11172 /*
11173 * KVM_REQ_HV_STIMER has to be processed after
11174 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11175 * depend on the guest clock being up-to-date
11176 */
11177 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11178 kvm_hv_process_stimers(vcpu);
11179 #endif
11180 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11181 kvm_vcpu_update_apicv(vcpu);
11182 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11183 kvm_check_async_pf_completion(vcpu);
11184
11185 if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11186 kvm_x86_call(recalc_intercepts)(vcpu);
11187
11188 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11189 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11190
11191 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11192 kvm_vcpu_reset(vcpu, true);
11193 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11194 r = 1;
11195 goto out;
11196 }
11197 }
11198 }
11199
11200 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11201 kvm_xen_has_interrupt(vcpu)) {
11202 ++vcpu->stat.req_event;
11203 r = kvm_apic_accept_events(vcpu);
11204 if (r < 0) {
11205 r = 0;
11206 goto out;
11207 }
11208 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11209 r = 1;
11210 goto out;
11211 }
11212
11213 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11214 if (r < 0) {
11215 r = 0;
11216 goto out;
11217 }
11218 if (req_int_win)
11219 kvm_x86_call(enable_irq_window)(vcpu);
11220
11221 if (kvm_lapic_enabled(vcpu)) {
11222 update_cr8_intercept(vcpu);
11223 kvm_lapic_sync_to_vapic(vcpu);
11224 }
11225 }
11226
11227 r = kvm_mmu_reload(vcpu);
11228 if (unlikely(r)) {
11229 goto cancel_injection;
11230 }
11231
11232 preempt_disable();
11233
11234 kvm_x86_call(prepare_switch_to_guest)(vcpu);
11235
11236 /*
11237 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
11238 * IPI are then delayed after guest entry, which ensures that they
11239 * result in virtual interrupt delivery.
11240 */
11241 local_irq_disable();
11242
11243 /* Store vcpu->apicv_active before vcpu->mode. */
11244 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11245
11246 kvm_vcpu_srcu_read_unlock(vcpu);
11247
11248 /*
11249 * 1) We should set ->mode before checking ->requests. Please see
11250 * the comment in kvm_vcpu_exiting_guest_mode().
11251 *
11252 * 2) For APICv, we should set ->mode before checking PID.ON. This
11253 * pairs with the memory barrier implicit in pi_test_and_set_on
11254 * (see vmx_deliver_posted_interrupt).
11255 *
11256 * 3) This also orders the write to mode from any reads to the page
11257 * tables done while the VCPU is running. Please see the comment
11258 * in kvm_flush_remote_tlbs.
11259 */
11260 smp_mb__after_srcu_read_unlock();
11261
11262 /*
11263 * Process pending posted interrupts to handle the case where the
11264 * notification IRQ arrived in the host, or was never sent (because the
11265 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
11266 * status, KVM doesn't update assigned devices when APICv is inhibited,
11267 * i.e. they can post interrupts even if APICv is temporarily disabled.
11268 */
11269 if (kvm_lapic_enabled(vcpu))
11270 kvm_x86_call(sync_pir_to_irr)(vcpu);
11271
11272 if (kvm_vcpu_exit_request(vcpu)) {
11273 vcpu->mode = OUTSIDE_GUEST_MODE;
11274 smp_wmb();
11275 local_irq_enable();
11276 preempt_enable();
11277 kvm_vcpu_srcu_read_lock(vcpu);
11278 r = 1;
11279 goto cancel_injection;
11280 }
11281
11282 run_flags = 0;
11283 if (req_immediate_exit) {
11284 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11285 kvm_make_request(KVM_REQ_EVENT, vcpu);
11286 }
11287
11288 fpregs_assert_state_consistent();
11289 if (test_thread_flag(TIF_NEED_FPU_LOAD))
11290 switch_fpu_return();
11291
11292 if (vcpu->arch.guest_fpu.xfd_err)
11293 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11294
11295 if (unlikely(vcpu->arch.switch_db_regs &&
11296 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11297 set_debugreg(DR7_FIXED_1, 7);
11298 set_debugreg(vcpu->arch.eff_db[0], 0);
11299 set_debugreg(vcpu->arch.eff_db[1], 1);
11300 set_debugreg(vcpu->arch.eff_db[2], 2);
11301 set_debugreg(vcpu->arch.eff_db[3], 3);
11302 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11303 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11304 run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11305 } else if (unlikely(hw_breakpoint_active())) {
11306 set_debugreg(DR7_FIXED_1, 7);
11307 }
11308
11309 /*
11310 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11311 * can be modified in IRQ context, e.g. via SMP function calls. Inform
11312 * vendor code if any host-owned bits were changed, e.g. so that the
11313 * value loaded into hardware while running the guest can be updated.
11314 */
11315 debug_ctl = get_debugctlmsr();
11316 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11317 !vcpu->arch.guest_state_protected)
11318 run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11319 vcpu->arch.host_debugctl = debug_ctl;
11320
11321 guest_timing_enter_irqoff();
11322
11323 for (;;) {
11324 /*
11325 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11326 * update must kick and wait for all vCPUs before toggling the
11327 * per-VM state, and responding vCPUs must wait for the update
11328 * to complete before servicing KVM_REQ_APICV_UPDATE.
11329 */
11330 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11331 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11332
11333 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11334 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11335 break;
11336
11337 if (kvm_lapic_enabled(vcpu))
11338 kvm_x86_call(sync_pir_to_irr)(vcpu);
11339
11340 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11341 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11342 break;
11343 }
11344
11345 run_flags = 0;
11346
11347 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11348 ++vcpu->stat.exits;
11349 }
11350
11351 /*
11352 * Do this here before restoring debug registers on the host. And
11353 * since we do this before handling the vmexit, a DR access vmexit
11354 * can (a) read the correct value of the debug registers, (b) set
11355 * KVM_DEBUGREG_WONT_EXIT again.
11356 */
11357 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11358 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11359 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11360 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11361 kvm_update_dr0123(vcpu);
11362 kvm_update_dr7(vcpu);
11363 }
11364
11365 /*
11366 * If the guest has used debug registers, at least dr7
11367 * will be disabled while returning to the host.
11368 * If we don't have active breakpoints in the host, we don't
11369 * care about the messed up debug address registers. But if
11370 * we have some of them active, restore the old state.
11371 */
11372 if (hw_breakpoint_active())
11373 hw_breakpoint_restore();
11374
11375 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11376 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11377
11378 vcpu->mode = OUTSIDE_GUEST_MODE;
11379 smp_wmb();
11380
11381 /*
11382 * Sync xfd before calling handle_exit_irqoff() which may
11383 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11384 * in #NM irqoff handler).
11385 */
11386 if (vcpu->arch.xfd_no_write_intercept)
11387 fpu_sync_guest_vmexit_xfd_state();
11388
11389 kvm_x86_call(handle_exit_irqoff)(vcpu);
11390
11391 if (vcpu->arch.guest_fpu.xfd_err)
11392 wrmsrq(MSR_IA32_XFD_ERR, 0);
11393
11394 /*
11395 * Mark this CPU as needing a branch predictor flush before running
11396 * userspace. Must be done before enabling preemption to ensure it gets
11397 * set for the CPU that actually ran the guest, and not the CPU that it
11398 * may migrate to.
11399 */
11400 if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11401 this_cpu_write(x86_ibpb_exit_to_user, true);
11402
11403 /*
11404 * Consume any pending interrupts, including the possible source of
11405 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11406 * An instruction is required after local_irq_enable() to fully unblock
11407 * interrupts on processors that implement an interrupt shadow, the
11408 * stat.exits increment will do nicely.
11409 */
11410 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11411 local_irq_enable();
11412 ++vcpu->stat.exits;
11413 local_irq_disable();
11414 kvm_after_interrupt(vcpu);
11415
11416 /*
11417 * Wait until after servicing IRQs to account guest time so that any
11418 * ticks that occurred while running the guest are properly accounted
11419 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11420 * of accounting via context tracking, but the loss of accuracy is
11421 * acceptable for all known use cases.
11422 */
11423 guest_timing_exit_irqoff();
11424
11425 local_irq_enable();
11426 preempt_enable();
11427
11428 kvm_vcpu_srcu_read_lock(vcpu);
11429
11430 /*
11431 * Call this to ensure WC buffers in guest are evicted after each VM
11432 * Exit, so that the evicted WC writes can be snooped across all cpus
11433 */
11434 smp_mb__after_srcu_read_lock();
11435
11436 /*
11437 * Profile KVM exit RIPs:
11438 */
11439 if (unlikely(prof_on == KVM_PROFILING &&
11440 !vcpu->arch.guest_state_protected)) {
11441 unsigned long rip = kvm_rip_read(vcpu);
11442 profile_hit(KVM_PROFILING, (void *)rip);
11443 }
11444
11445 if (unlikely(vcpu->arch.tsc_always_catchup))
11446 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11447
11448 if (vcpu->arch.apic_attention)
11449 kvm_lapic_sync_from_vapic(vcpu);
11450
11451 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11452 return 0;
11453
11454 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11455 return r;
11456
11457 cancel_injection:
11458 if (req_immediate_exit)
11459 kvm_make_request(KVM_REQ_EVENT, vcpu);
11460 kvm_x86_call(cancel_injection)(vcpu);
11461 if (unlikely(vcpu->arch.apic_attention))
11462 kvm_lapic_sync_from_vapic(vcpu);
11463 out:
11464 return r;
11465 }
11466
kvm_vcpu_running(struct kvm_vcpu * vcpu)11467 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11468 {
11469 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11470 !vcpu->arch.apf.halted);
11471 }
11472
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11473 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11474 {
11475 if (!list_empty_careful(&vcpu->async_pf.done))
11476 return true;
11477
11478 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11479 kvm_apic_init_sipi_allowed(vcpu))
11480 return true;
11481
11482 if (kvm_is_exception_pending(vcpu))
11483 return true;
11484
11485 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11486 (vcpu->arch.nmi_pending &&
11487 kvm_x86_call(nmi_allowed)(vcpu, false)))
11488 return true;
11489
11490 #ifdef CONFIG_KVM_SMM
11491 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11492 (vcpu->arch.smi_pending &&
11493 kvm_x86_call(smi_allowed)(vcpu, false)))
11494 return true;
11495 #endif
11496
11497 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11498 return true;
11499
11500 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11501 return true;
11502
11503 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11504 return true;
11505
11506 if (kvm_hv_has_stimer_pending(vcpu))
11507 return true;
11508
11509 if (is_guest_mode(vcpu) &&
11510 kvm_x86_ops.nested_ops->has_events &&
11511 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11512 return true;
11513
11514 if (kvm_xen_has_pending_events(vcpu))
11515 return true;
11516
11517 return false;
11518 }
11519 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11520
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11521 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11522 {
11523 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11524 kvm_vcpu_has_events(vcpu);
11525 }
11526
11527 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11528 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11529 {
11530 bool hv_timer;
11531
11532 if (!kvm_arch_vcpu_runnable(vcpu)) {
11533 /*
11534 * Switch to the software timer before halt-polling/blocking as
11535 * the guest's timer may be a break event for the vCPU, and the
11536 * hypervisor timer runs only when the CPU is in guest mode.
11537 * Switch before halt-polling so that KVM recognizes an expired
11538 * timer before blocking.
11539 */
11540 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11541 if (hv_timer)
11542 kvm_lapic_switch_to_sw_timer(vcpu);
11543
11544 kvm_vcpu_srcu_read_unlock(vcpu);
11545 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11546 kvm_vcpu_halt(vcpu);
11547 else
11548 kvm_vcpu_block(vcpu);
11549 kvm_vcpu_srcu_read_lock(vcpu);
11550
11551 if (hv_timer)
11552 kvm_lapic_switch_to_hv_timer(vcpu);
11553
11554 /*
11555 * If the vCPU is not runnable, a signal or another host event
11556 * of some kind is pending; service it without changing the
11557 * vCPU's activity state.
11558 */
11559 if (!kvm_arch_vcpu_runnable(vcpu))
11560 return 1;
11561 }
11562
11563 /*
11564 * Evaluate nested events before exiting the halted state. This allows
11565 * the halt state to be recorded properly in the VMCS12's activity
11566 * state field (AMD does not have a similar field and a VM-Exit always
11567 * causes a spurious wakeup from HLT).
11568 */
11569 if (is_guest_mode(vcpu)) {
11570 int r = kvm_check_nested_events(vcpu);
11571
11572 WARN_ON_ONCE(r == -EBUSY);
11573 if (r < 0)
11574 return 0;
11575 }
11576
11577 if (kvm_apic_accept_events(vcpu) < 0)
11578 return 0;
11579 switch(vcpu->arch.mp_state) {
11580 case KVM_MP_STATE_HALTED:
11581 case KVM_MP_STATE_AP_RESET_HOLD:
11582 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11583 fallthrough;
11584 case KVM_MP_STATE_RUNNABLE:
11585 vcpu->arch.apf.halted = false;
11586 break;
11587 case KVM_MP_STATE_INIT_RECEIVED:
11588 break;
11589 default:
11590 WARN_ON_ONCE(1);
11591 break;
11592 }
11593 return 1;
11594 }
11595
11596 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11597 static int vcpu_run(struct kvm_vcpu *vcpu)
11598 {
11599 int r;
11600
11601 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11602
11603 for (;;) {
11604 /*
11605 * If another guest vCPU requests a PV TLB flush in the middle
11606 * of instruction emulation, the rest of the emulation could
11607 * use a stale page translation. Assume that any code after
11608 * this point can start executing an instruction.
11609 */
11610 vcpu->arch.at_instruction_boundary = false;
11611 if (kvm_vcpu_running(vcpu)) {
11612 r = vcpu_enter_guest(vcpu);
11613 } else {
11614 r = vcpu_block(vcpu);
11615 }
11616
11617 if (r <= 0)
11618 break;
11619
11620 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11621 if (kvm_xen_has_pending_events(vcpu))
11622 kvm_xen_inject_pending_events(vcpu);
11623
11624 if (kvm_cpu_has_pending_timer(vcpu))
11625 kvm_inject_pending_timer_irqs(vcpu);
11626
11627 if (dm_request_for_irq_injection(vcpu) &&
11628 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11629 r = 0;
11630 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11631 ++vcpu->stat.request_irq_exits;
11632 break;
11633 }
11634
11635 if (__xfer_to_guest_mode_work_pending()) {
11636 kvm_vcpu_srcu_read_unlock(vcpu);
11637 r = kvm_xfer_to_guest_mode_handle_work(vcpu);
11638 kvm_vcpu_srcu_read_lock(vcpu);
11639 if (r)
11640 return r;
11641 }
11642 }
11643
11644 return r;
11645 }
11646
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11647 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11648 {
11649 /*
11650 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11651 * local APIC is in-kernel, the run loop will detect the non-runnable
11652 * state and halt the vCPU. Exit to userspace if the local APIC is
11653 * managed by userspace, in which case userspace is responsible for
11654 * handling wake events.
11655 */
11656 ++vcpu->stat.halt_exits;
11657 if (lapic_in_kernel(vcpu)) {
11658 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11659 state = KVM_MP_STATE_RUNNABLE;
11660 kvm_set_mp_state(vcpu, state);
11661 return 1;
11662 } else {
11663 vcpu->run->exit_reason = reason;
11664 return 0;
11665 }
11666 }
11667
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11668 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11669 {
11670 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11671 }
11672 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11673
kvm_emulate_halt(struct kvm_vcpu * vcpu)11674 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11675 {
11676 int ret = kvm_skip_emulated_instruction(vcpu);
11677 /*
11678 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11679 * KVM_EXIT_DEBUG here.
11680 */
11681 return kvm_emulate_halt_noskip(vcpu) && ret;
11682 }
11683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11684
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11685 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11686 {
11687 if (!kvm_emulate_halt(vcpu))
11688 return EXIT_FASTPATH_EXIT_USERSPACE;
11689
11690 if (kvm_vcpu_running(vcpu))
11691 return EXIT_FASTPATH_REENTER_GUEST;
11692
11693 return EXIT_FASTPATH_EXIT_HANDLED;
11694 }
11695 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11696
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11697 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11698 {
11699 int ret = kvm_skip_emulated_instruction(vcpu);
11700
11701 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11702 KVM_EXIT_AP_RESET_HOLD) && ret;
11703 }
11704 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11705
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11706 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11707 {
11708 return kvm_vcpu_apicv_active(vcpu) &&
11709 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11710 }
11711
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11712 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11713 {
11714 return vcpu->arch.preempted_in_kernel;
11715 }
11716
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11717 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11718 {
11719 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11720 return true;
11721
11722 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11723 #ifdef CONFIG_KVM_SMM
11724 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11725 #endif
11726 kvm_test_request(KVM_REQ_EVENT, vcpu))
11727 return true;
11728
11729 return kvm_arch_dy_has_pending_interrupt(vcpu);
11730 }
11731
complete_emulated_io(struct kvm_vcpu * vcpu)11732 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11733 {
11734 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11735 }
11736
complete_emulated_pio(struct kvm_vcpu * vcpu)11737 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11738 {
11739 BUG_ON(!vcpu->arch.pio.count);
11740
11741 return complete_emulated_io(vcpu);
11742 }
11743
11744 /*
11745 * Implements the following, as a state machine:
11746 *
11747 * read:
11748 * for each fragment
11749 * for each mmio piece in the fragment
11750 * write gpa, len
11751 * exit
11752 * copy data
11753 * execute insn
11754 *
11755 * write:
11756 * for each fragment
11757 * for each mmio piece in the fragment
11758 * write gpa, len
11759 * copy data
11760 * exit
11761 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11762 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11763 {
11764 struct kvm_run *run = vcpu->run;
11765 struct kvm_mmio_fragment *frag;
11766 unsigned len;
11767
11768 BUG_ON(!vcpu->mmio_needed);
11769
11770 /* Complete previous fragment */
11771 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11772 len = min(8u, frag->len);
11773 if (!vcpu->mmio_is_write)
11774 memcpy(frag->data, run->mmio.data, len);
11775
11776 if (frag->len <= 8) {
11777 /* Switch to the next fragment. */
11778 frag++;
11779 vcpu->mmio_cur_fragment++;
11780 } else {
11781 /* Go forward to the next mmio piece. */
11782 frag->data += len;
11783 frag->gpa += len;
11784 frag->len -= len;
11785 }
11786
11787 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11788 vcpu->mmio_needed = 0;
11789
11790 /* FIXME: return into emulator if single-stepping. */
11791 if (vcpu->mmio_is_write)
11792 return 1;
11793 vcpu->mmio_read_completed = 1;
11794 return complete_emulated_io(vcpu);
11795 }
11796
11797 run->exit_reason = KVM_EXIT_MMIO;
11798 run->mmio.phys_addr = frag->gpa;
11799 if (vcpu->mmio_is_write)
11800 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11801 run->mmio.len = min(8u, frag->len);
11802 run->mmio.is_write = vcpu->mmio_is_write;
11803 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11804 return 0;
11805 }
11806
11807 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11808 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11809 {
11810 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11811 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11812 trace_kvm_fpu(1);
11813 }
11814
11815 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11816 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11817 {
11818 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11819 ++vcpu->stat.fpu_reload;
11820 trace_kvm_fpu(0);
11821 }
11822
kvm_x86_vcpu_pre_run(struct kvm_vcpu * vcpu)11823 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11824 {
11825 /*
11826 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11827 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted
11828 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11829 * converted to INIT_RECEIVED.
11830 */
11831 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11832 return -EINVAL;
11833
11834 /*
11835 * Disallow running the vCPU if userspace forced it into an impossible
11836 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11837 */
11838 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11839 !kvm_apic_init_sipi_allowed(vcpu))
11840 return -EINVAL;
11841
11842 return kvm_x86_call(vcpu_pre_run)(vcpu);
11843 }
11844
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11845 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11846 {
11847 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11848 struct kvm_run *kvm_run = vcpu->run;
11849 u64 sync_valid_fields;
11850 int r;
11851
11852 r = kvm_mmu_post_init_vm(vcpu->kvm);
11853 if (r)
11854 return r;
11855
11856 vcpu_load(vcpu);
11857 kvm_sigset_activate(vcpu);
11858 kvm_run->flags = 0;
11859 kvm_load_guest_fpu(vcpu);
11860
11861 kvm_vcpu_srcu_read_lock(vcpu);
11862 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11863 if (!vcpu->wants_to_run) {
11864 r = -EINTR;
11865 goto out;
11866 }
11867
11868 /*
11869 * Don't bother switching APIC timer emulation from the
11870 * hypervisor timer to the software timer, the only way for the
11871 * APIC timer to be active is if userspace stuffed vCPU state,
11872 * i.e. put the vCPU into a nonsensical state. Only an INIT
11873 * will transition the vCPU out of UNINITIALIZED (without more
11874 * state stuffing from userspace), which will reset the local
11875 * APIC and thus cancel the timer or drop the IRQ (if the timer
11876 * already expired).
11877 */
11878 kvm_vcpu_srcu_read_unlock(vcpu);
11879 kvm_vcpu_block(vcpu);
11880 kvm_vcpu_srcu_read_lock(vcpu);
11881
11882 if (kvm_apic_accept_events(vcpu) < 0) {
11883 r = 0;
11884 goto out;
11885 }
11886 r = -EAGAIN;
11887 if (signal_pending(current)) {
11888 r = -EINTR;
11889 kvm_run->exit_reason = KVM_EXIT_INTR;
11890 ++vcpu->stat.signal_exits;
11891 }
11892 goto out;
11893 }
11894
11895 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11896 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11897 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11898 r = -EINVAL;
11899 goto out;
11900 }
11901
11902 if (kvm_run->kvm_dirty_regs) {
11903 r = sync_regs(vcpu);
11904 if (r != 0)
11905 goto out;
11906 }
11907
11908 /* re-sync apic's tpr */
11909 if (!lapic_in_kernel(vcpu)) {
11910 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11911 r = -EINVAL;
11912 goto out;
11913 }
11914 }
11915
11916 /*
11917 * If userspace set a pending exception and L2 is active, convert it to
11918 * a pending VM-Exit if L1 wants to intercept the exception.
11919 */
11920 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11921 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11922 ex->error_code)) {
11923 kvm_queue_exception_vmexit(vcpu, ex->vector,
11924 ex->has_error_code, ex->error_code,
11925 ex->has_payload, ex->payload);
11926 ex->injected = false;
11927 ex->pending = false;
11928 }
11929 vcpu->arch.exception_from_userspace = false;
11930
11931 if (unlikely(vcpu->arch.complete_userspace_io)) {
11932 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11933 vcpu->arch.complete_userspace_io = NULL;
11934 r = cui(vcpu);
11935 if (r <= 0)
11936 goto out;
11937 } else {
11938 WARN_ON_ONCE(vcpu->arch.pio.count);
11939 WARN_ON_ONCE(vcpu->mmio_needed);
11940 }
11941
11942 if (!vcpu->wants_to_run) {
11943 r = -EINTR;
11944 goto out;
11945 }
11946
11947 r = kvm_x86_vcpu_pre_run(vcpu);
11948 if (r <= 0)
11949 goto out;
11950
11951 r = vcpu_run(vcpu);
11952
11953 out:
11954 kvm_put_guest_fpu(vcpu);
11955 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11956 store_regs(vcpu);
11957 post_kvm_run_save(vcpu);
11958 kvm_vcpu_srcu_read_unlock(vcpu);
11959
11960 kvm_sigset_deactivate(vcpu);
11961 vcpu_put(vcpu);
11962 return r;
11963 }
11964
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11965 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11966 {
11967 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11968 /*
11969 * We are here if userspace calls get_regs() in the middle of
11970 * instruction emulation. Registers state needs to be copied
11971 * back from emulation context to vcpu. Userspace shouldn't do
11972 * that usually, but some bad designed PV devices (vmware
11973 * backdoor interface) need this to work
11974 */
11975 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11976 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11977 }
11978 regs->rax = kvm_rax_read(vcpu);
11979 regs->rbx = kvm_rbx_read(vcpu);
11980 regs->rcx = kvm_rcx_read(vcpu);
11981 regs->rdx = kvm_rdx_read(vcpu);
11982 regs->rsi = kvm_rsi_read(vcpu);
11983 regs->rdi = kvm_rdi_read(vcpu);
11984 regs->rsp = kvm_rsp_read(vcpu);
11985 regs->rbp = kvm_rbp_read(vcpu);
11986 #ifdef CONFIG_X86_64
11987 regs->r8 = kvm_r8_read(vcpu);
11988 regs->r9 = kvm_r9_read(vcpu);
11989 regs->r10 = kvm_r10_read(vcpu);
11990 regs->r11 = kvm_r11_read(vcpu);
11991 regs->r12 = kvm_r12_read(vcpu);
11992 regs->r13 = kvm_r13_read(vcpu);
11993 regs->r14 = kvm_r14_read(vcpu);
11994 regs->r15 = kvm_r15_read(vcpu);
11995 #endif
11996
11997 regs->rip = kvm_rip_read(vcpu);
11998 regs->rflags = kvm_get_rflags(vcpu);
11999 }
12000
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12001 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12002 {
12003 if (vcpu->kvm->arch.has_protected_state &&
12004 vcpu->arch.guest_state_protected)
12005 return -EINVAL;
12006
12007 vcpu_load(vcpu);
12008 __get_regs(vcpu, regs);
12009 vcpu_put(vcpu);
12010 return 0;
12011 }
12012
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12013 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12014 {
12015 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12016 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12017
12018 kvm_rax_write(vcpu, regs->rax);
12019 kvm_rbx_write(vcpu, regs->rbx);
12020 kvm_rcx_write(vcpu, regs->rcx);
12021 kvm_rdx_write(vcpu, regs->rdx);
12022 kvm_rsi_write(vcpu, regs->rsi);
12023 kvm_rdi_write(vcpu, regs->rdi);
12024 kvm_rsp_write(vcpu, regs->rsp);
12025 kvm_rbp_write(vcpu, regs->rbp);
12026 #ifdef CONFIG_X86_64
12027 kvm_r8_write(vcpu, regs->r8);
12028 kvm_r9_write(vcpu, regs->r9);
12029 kvm_r10_write(vcpu, regs->r10);
12030 kvm_r11_write(vcpu, regs->r11);
12031 kvm_r12_write(vcpu, regs->r12);
12032 kvm_r13_write(vcpu, regs->r13);
12033 kvm_r14_write(vcpu, regs->r14);
12034 kvm_r15_write(vcpu, regs->r15);
12035 #endif
12036
12037 kvm_rip_write(vcpu, regs->rip);
12038 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12039
12040 vcpu->arch.exception.pending = false;
12041 vcpu->arch.exception_vmexit.pending = false;
12042
12043 kvm_make_request(KVM_REQ_EVENT, vcpu);
12044 }
12045
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12046 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12047 {
12048 if (vcpu->kvm->arch.has_protected_state &&
12049 vcpu->arch.guest_state_protected)
12050 return -EINVAL;
12051
12052 vcpu_load(vcpu);
12053 __set_regs(vcpu, regs);
12054 vcpu_put(vcpu);
12055 return 0;
12056 }
12057
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12058 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12059 {
12060 struct desc_ptr dt;
12061
12062 if (vcpu->arch.guest_state_protected)
12063 goto skip_protected_regs;
12064
12065 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12066 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12067 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12068 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12069 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12070 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12071
12072 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12073 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12074
12075 kvm_x86_call(get_idt)(vcpu, &dt);
12076 sregs->idt.limit = dt.size;
12077 sregs->idt.base = dt.address;
12078 kvm_x86_call(get_gdt)(vcpu, &dt);
12079 sregs->gdt.limit = dt.size;
12080 sregs->gdt.base = dt.address;
12081
12082 sregs->cr2 = vcpu->arch.cr2;
12083 sregs->cr3 = kvm_read_cr3(vcpu);
12084
12085 skip_protected_regs:
12086 sregs->cr0 = kvm_read_cr0(vcpu);
12087 sregs->cr4 = kvm_read_cr4(vcpu);
12088 sregs->cr8 = kvm_get_cr8(vcpu);
12089 sregs->efer = vcpu->arch.efer;
12090 sregs->apic_base = vcpu->arch.apic_base;
12091 }
12092
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12093 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12094 {
12095 __get_sregs_common(vcpu, sregs);
12096
12097 if (vcpu->arch.guest_state_protected)
12098 return;
12099
12100 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12101 set_bit(vcpu->arch.interrupt.nr,
12102 (unsigned long *)sregs->interrupt_bitmap);
12103 }
12104
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12105 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12106 {
12107 int i;
12108
12109 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12110
12111 if (vcpu->arch.guest_state_protected)
12112 return;
12113
12114 if (is_pae_paging(vcpu)) {
12115 for (i = 0 ; i < 4 ; i++)
12116 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12117 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12118 }
12119 }
12120
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12121 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12122 struct kvm_sregs *sregs)
12123 {
12124 if (vcpu->kvm->arch.has_protected_state &&
12125 vcpu->arch.guest_state_protected)
12126 return -EINVAL;
12127
12128 vcpu_load(vcpu);
12129 __get_sregs(vcpu, sregs);
12130 vcpu_put(vcpu);
12131 return 0;
12132 }
12133
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12134 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12135 struct kvm_mp_state *mp_state)
12136 {
12137 int r;
12138
12139 vcpu_load(vcpu);
12140 if (kvm_mpx_supported())
12141 kvm_load_guest_fpu(vcpu);
12142
12143 kvm_vcpu_srcu_read_lock(vcpu);
12144
12145 r = kvm_apic_accept_events(vcpu);
12146 if (r < 0)
12147 goto out;
12148 r = 0;
12149
12150 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12151 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12152 vcpu->arch.pv.pv_unhalted)
12153 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12154 else
12155 mp_state->mp_state = vcpu->arch.mp_state;
12156
12157 out:
12158 kvm_vcpu_srcu_read_unlock(vcpu);
12159
12160 if (kvm_mpx_supported())
12161 kvm_put_guest_fpu(vcpu);
12162 vcpu_put(vcpu);
12163 return r;
12164 }
12165
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12166 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12167 struct kvm_mp_state *mp_state)
12168 {
12169 int ret = -EINVAL;
12170
12171 vcpu_load(vcpu);
12172
12173 switch (mp_state->mp_state) {
12174 case KVM_MP_STATE_UNINITIALIZED:
12175 case KVM_MP_STATE_HALTED:
12176 case KVM_MP_STATE_AP_RESET_HOLD:
12177 case KVM_MP_STATE_INIT_RECEIVED:
12178 case KVM_MP_STATE_SIPI_RECEIVED:
12179 if (!lapic_in_kernel(vcpu))
12180 goto out;
12181 break;
12182
12183 case KVM_MP_STATE_RUNNABLE:
12184 break;
12185
12186 default:
12187 goto out;
12188 }
12189
12190 /*
12191 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12192 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12193 * Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12194 */
12195 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12196 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12197 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12198 }
12199
12200 kvm_set_mp_state(vcpu, mp_state->mp_state);
12201 kvm_make_request(KVM_REQ_EVENT, vcpu);
12202
12203 ret = 0;
12204 out:
12205 vcpu_put(vcpu);
12206 return ret;
12207 }
12208
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)12209 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12210 int reason, bool has_error_code, u32 error_code)
12211 {
12212 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12213 int ret;
12214
12215 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12216 u64 u_cet, s_cet;
12217
12218 /*
12219 * Check both User and Supervisor on task switches as inter-
12220 * privilege level task switches are impacted by CET at both
12221 * the current privilege level and the new privilege level, and
12222 * that information is not known at this time. The expectation
12223 * is that the guest won't require emulation of task switches
12224 * while using IBT or Shadow Stacks.
12225 */
12226 if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12227 __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12228 goto unhandled_task_switch;
12229
12230 if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12231 goto unhandled_task_switch;
12232 }
12233
12234 init_emulate_ctxt(vcpu);
12235
12236 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12237 has_error_code, error_code);
12238
12239 /*
12240 * Report an error userspace if MMIO is needed, as KVM doesn't support
12241 * MMIO during a task switch (or any other complex operation).
12242 */
12243 if (ret || vcpu->mmio_needed)
12244 goto unhandled_task_switch;
12245
12246 kvm_rip_write(vcpu, ctxt->eip);
12247 kvm_set_rflags(vcpu, ctxt->eflags);
12248 return 1;
12249
12250 unhandled_task_switch:
12251 vcpu->mmio_needed = false;
12252 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12253 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12254 vcpu->run->internal.ndata = 0;
12255 return 0;
12256 }
12257 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12258
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12259 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12260 {
12261 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12262 /*
12263 * When EFER.LME and CR0.PG are set, the processor is in
12264 * 64-bit mode (though maybe in a 32-bit code segment).
12265 * CR4.PAE and EFER.LMA must be set.
12266 */
12267 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12268 return false;
12269 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12270 return false;
12271 } else {
12272 /*
12273 * Not in 64-bit mode: EFER.LMA is clear and the code
12274 * segment cannot be 64-bit.
12275 */
12276 if (sregs->efer & EFER_LMA || sregs->cs.l)
12277 return false;
12278 }
12279
12280 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12281 kvm_is_valid_cr0(vcpu, sregs->cr0);
12282 }
12283
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)12284 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12285 int *mmu_reset_needed, bool update_pdptrs)
12286 {
12287 int idx;
12288 struct desc_ptr dt;
12289
12290 if (!kvm_is_valid_sregs(vcpu, sregs))
12291 return -EINVAL;
12292
12293 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12294 return -EINVAL;
12295
12296 if (vcpu->arch.guest_state_protected)
12297 return 0;
12298
12299 dt.size = sregs->idt.limit;
12300 dt.address = sregs->idt.base;
12301 kvm_x86_call(set_idt)(vcpu, &dt);
12302 dt.size = sregs->gdt.limit;
12303 dt.address = sregs->gdt.base;
12304 kvm_x86_call(set_gdt)(vcpu, &dt);
12305
12306 vcpu->arch.cr2 = sregs->cr2;
12307 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12308 vcpu->arch.cr3 = sregs->cr3;
12309 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12310 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12311
12312 kvm_set_cr8(vcpu, sregs->cr8);
12313
12314 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12315 kvm_x86_call(set_efer)(vcpu, sregs->efer);
12316
12317 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12318 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12319
12320 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12321 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12322
12323 if (update_pdptrs) {
12324 idx = srcu_read_lock(&vcpu->kvm->srcu);
12325 if (is_pae_paging(vcpu)) {
12326 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12327 *mmu_reset_needed = 1;
12328 }
12329 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12330 }
12331
12332 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12333 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12334 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12335 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12336 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12337 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12338
12339 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12340 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12341
12342 update_cr8_intercept(vcpu);
12343
12344 /* Older userspace won't unhalt the vcpu on reset. */
12345 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12346 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12347 !is_protmode(vcpu))
12348 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12349
12350 return 0;
12351 }
12352
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12353 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12354 {
12355 int pending_vec, max_bits;
12356 int mmu_reset_needed = 0;
12357 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12358
12359 if (ret)
12360 return ret;
12361
12362 if (mmu_reset_needed) {
12363 kvm_mmu_reset_context(vcpu);
12364 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12365 }
12366
12367 max_bits = KVM_NR_INTERRUPTS;
12368 pending_vec = find_first_bit(
12369 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12370
12371 if (pending_vec < max_bits) {
12372 kvm_queue_interrupt(vcpu, pending_vec, false);
12373 pr_debug("Set back pending irq %d\n", pending_vec);
12374 kvm_make_request(KVM_REQ_EVENT, vcpu);
12375 }
12376 return 0;
12377 }
12378
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12379 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12380 {
12381 int mmu_reset_needed = 0;
12382 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12383 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12384 !(sregs2->efer & EFER_LMA);
12385 int i, ret;
12386
12387 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12388 return -EINVAL;
12389
12390 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12391 return -EINVAL;
12392
12393 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12394 &mmu_reset_needed, !valid_pdptrs);
12395 if (ret)
12396 return ret;
12397
12398 if (valid_pdptrs) {
12399 for (i = 0; i < 4 ; i++)
12400 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12401
12402 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12403 mmu_reset_needed = 1;
12404 vcpu->arch.pdptrs_from_userspace = true;
12405 }
12406 if (mmu_reset_needed) {
12407 kvm_mmu_reset_context(vcpu);
12408 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12409 }
12410 return 0;
12411 }
12412
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12413 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12414 struct kvm_sregs *sregs)
12415 {
12416 int ret;
12417
12418 if (vcpu->kvm->arch.has_protected_state &&
12419 vcpu->arch.guest_state_protected)
12420 return -EINVAL;
12421
12422 vcpu_load(vcpu);
12423 ret = __set_sregs(vcpu, sregs);
12424 vcpu_put(vcpu);
12425 return ret;
12426 }
12427
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12428 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12429 {
12430 bool set = false;
12431 struct kvm_vcpu *vcpu;
12432 unsigned long i;
12433
12434 if (!enable_apicv)
12435 return;
12436
12437 down_write(&kvm->arch.apicv_update_lock);
12438
12439 kvm_for_each_vcpu(i, vcpu, kvm) {
12440 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12441 set = true;
12442 break;
12443 }
12444 }
12445 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12446 up_write(&kvm->arch.apicv_update_lock);
12447 }
12448
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12449 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12450 struct kvm_guest_debug *dbg)
12451 {
12452 unsigned long rflags;
12453 int i, r;
12454
12455 if (vcpu->arch.guest_state_protected)
12456 return -EINVAL;
12457
12458 vcpu_load(vcpu);
12459
12460 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12461 r = -EBUSY;
12462 if (kvm_is_exception_pending(vcpu))
12463 goto out;
12464 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12465 kvm_queue_exception(vcpu, DB_VECTOR);
12466 else
12467 kvm_queue_exception(vcpu, BP_VECTOR);
12468 }
12469
12470 /*
12471 * Read rflags as long as potentially injected trace flags are still
12472 * filtered out.
12473 */
12474 rflags = kvm_get_rflags(vcpu);
12475
12476 vcpu->guest_debug = dbg->control;
12477 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12478 vcpu->guest_debug = 0;
12479
12480 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12481 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12482 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12483 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12484 } else {
12485 for (i = 0; i < KVM_NR_DB_REGS; i++)
12486 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12487 }
12488 kvm_update_dr7(vcpu);
12489
12490 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12491 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12492
12493 /*
12494 * Trigger an rflags update that will inject or remove the trace
12495 * flags.
12496 */
12497 kvm_set_rflags(vcpu, rflags);
12498
12499 kvm_x86_call(update_exception_bitmap)(vcpu);
12500
12501 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12502
12503 r = 0;
12504
12505 out:
12506 vcpu_put(vcpu);
12507 return r;
12508 }
12509
12510 /*
12511 * Translate a guest virtual address to a guest physical address.
12512 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12513 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12514 struct kvm_translation *tr)
12515 {
12516 unsigned long vaddr = tr->linear_address;
12517 gpa_t gpa;
12518 int idx;
12519
12520 vcpu_load(vcpu);
12521
12522 idx = srcu_read_lock(&vcpu->kvm->srcu);
12523 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12524 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12525 tr->physical_address = gpa;
12526 tr->valid = gpa != INVALID_GPA;
12527 tr->writeable = 1;
12528 tr->usermode = 0;
12529
12530 vcpu_put(vcpu);
12531 return 0;
12532 }
12533
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12534 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12535 {
12536 struct fxregs_state *fxsave;
12537
12538 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12539 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12540
12541 vcpu_load(vcpu);
12542
12543 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12544 memcpy(fpu->fpr, fxsave->st_space, 128);
12545 fpu->fcw = fxsave->cwd;
12546 fpu->fsw = fxsave->swd;
12547 fpu->ftwx = fxsave->twd;
12548 fpu->last_opcode = fxsave->fop;
12549 fpu->last_ip = fxsave->rip;
12550 fpu->last_dp = fxsave->rdp;
12551 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12552
12553 vcpu_put(vcpu);
12554 return 0;
12555 }
12556
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12557 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12558 {
12559 struct fxregs_state *fxsave;
12560
12561 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12562 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12563
12564 vcpu_load(vcpu);
12565
12566 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12567
12568 memcpy(fxsave->st_space, fpu->fpr, 128);
12569 fxsave->cwd = fpu->fcw;
12570 fxsave->swd = fpu->fsw;
12571 fxsave->twd = fpu->ftwx;
12572 fxsave->fop = fpu->last_opcode;
12573 fxsave->rip = fpu->last_ip;
12574 fxsave->rdp = fpu->last_dp;
12575 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12576
12577 vcpu_put(vcpu);
12578 return 0;
12579 }
12580
store_regs(struct kvm_vcpu * vcpu)12581 static void store_regs(struct kvm_vcpu *vcpu)
12582 {
12583 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12584
12585 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12586 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12587
12588 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12589 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12590
12591 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12592 kvm_vcpu_ioctl_x86_get_vcpu_events(
12593 vcpu, &vcpu->run->s.regs.events);
12594 }
12595
sync_regs(struct kvm_vcpu * vcpu)12596 static int sync_regs(struct kvm_vcpu *vcpu)
12597 {
12598 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12599 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12600 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12601 }
12602
12603 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12604 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12605
12606 if (__set_sregs(vcpu, &sregs))
12607 return -EINVAL;
12608
12609 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12610 }
12611
12612 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12613 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12614
12615 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12616 return -EINVAL;
12617
12618 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12619 }
12620
12621 return 0;
12622 }
12623
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12624 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12625 {
12626 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12627 pr_warn_once("SMP vm created on host with unstable TSC; "
12628 "guest TSC will not be reliable\n");
12629
12630 if (!kvm->arch.max_vcpu_ids)
12631 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12632
12633 if (id >= kvm->arch.max_vcpu_ids)
12634 return -EINVAL;
12635
12636 return kvm_x86_call(vcpu_precreate)(kvm);
12637 }
12638
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12639 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12640 {
12641 struct page *page;
12642 int r;
12643
12644 vcpu->arch.last_vmentry_cpu = -1;
12645 vcpu->arch.regs_avail = ~0;
12646 vcpu->arch.regs_dirty = ~0;
12647
12648 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12649
12650 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12651 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12652 else
12653 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12654
12655 r = kvm_mmu_create(vcpu);
12656 if (r < 0)
12657 return r;
12658
12659 r = kvm_create_lapic(vcpu);
12660 if (r < 0)
12661 goto fail_mmu_destroy;
12662
12663 r = -ENOMEM;
12664
12665 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12666 if (!page)
12667 goto fail_free_lapic;
12668 vcpu->arch.pio_data = page_address(page);
12669
12670 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12671 GFP_KERNEL_ACCOUNT);
12672 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12673 GFP_KERNEL_ACCOUNT);
12674 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12675 goto fail_free_mce_banks;
12676 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12677
12678 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12679 GFP_KERNEL_ACCOUNT))
12680 goto fail_free_mce_banks;
12681
12682 if (!alloc_emulate_ctxt(vcpu))
12683 goto free_wbinvd_dirty_mask;
12684
12685 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12686 pr_err("failed to allocate vcpu's fpu\n");
12687 goto free_emulate_ctxt;
12688 }
12689
12690 kvm_async_pf_hash_reset(vcpu);
12691
12692 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12693 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12694 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12695 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12696 }
12697 kvm_pmu_init(vcpu);
12698
12699 vcpu->arch.pending_external_vector = -1;
12700 vcpu->arch.preempted_in_kernel = false;
12701
12702 #if IS_ENABLED(CONFIG_HYPERV)
12703 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12704 #endif
12705
12706 r = kvm_x86_call(vcpu_create)(vcpu);
12707 if (r)
12708 goto free_guest_fpu;
12709
12710 kvm_xen_init_vcpu(vcpu);
12711 vcpu_load(vcpu);
12712 kvm_vcpu_after_set_cpuid(vcpu);
12713 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12714 kvm_vcpu_reset(vcpu, false);
12715 kvm_init_mmu(vcpu);
12716 vcpu_put(vcpu);
12717 return 0;
12718
12719 free_guest_fpu:
12720 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12721 free_emulate_ctxt:
12722 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12723 free_wbinvd_dirty_mask:
12724 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12725 fail_free_mce_banks:
12726 kfree(vcpu->arch.mce_banks);
12727 kfree(vcpu->arch.mci_ctl2_banks);
12728 free_page((unsigned long)vcpu->arch.pio_data);
12729 fail_free_lapic:
12730 kvm_free_lapic(vcpu);
12731 fail_mmu_destroy:
12732 kvm_mmu_destroy(vcpu);
12733 return r;
12734 }
12735
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12736 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12737 {
12738 struct kvm *kvm = vcpu->kvm;
12739
12740 if (mutex_lock_killable(&vcpu->mutex))
12741 return;
12742 vcpu_load(vcpu);
12743 kvm_synchronize_tsc(vcpu, NULL);
12744 vcpu_put(vcpu);
12745
12746 /* poll control enabled by default */
12747 vcpu->arch.msr_kvm_poll_control = 1;
12748
12749 mutex_unlock(&vcpu->mutex);
12750
12751 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12752 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12753 KVMCLOCK_SYNC_PERIOD);
12754 }
12755
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12756 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12757 {
12758 int idx, cpu;
12759
12760 kvm_clear_async_pf_completion_queue(vcpu);
12761 kvm_mmu_unload(vcpu);
12762
12763 kvmclock_reset(vcpu);
12764
12765 for_each_possible_cpu(cpu)
12766 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12767
12768 kvm_x86_call(vcpu_free)(vcpu);
12769
12770 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12771 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12772 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12773
12774 kvm_xen_destroy_vcpu(vcpu);
12775 kvm_hv_vcpu_uninit(vcpu);
12776 kvm_pmu_destroy(vcpu);
12777 kfree(vcpu->arch.mce_banks);
12778 kfree(vcpu->arch.mci_ctl2_banks);
12779 kvm_free_lapic(vcpu);
12780 idx = srcu_read_lock(&vcpu->kvm->srcu);
12781 kvm_mmu_destroy(vcpu);
12782 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12783 free_page((unsigned long)vcpu->arch.pio_data);
12784 kvfree(vcpu->arch.cpuid_entries);
12785 }
12786
kvm_xstate_reset(struct kvm_vcpu * vcpu,bool init_event)12787 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12788 {
12789 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12790 u64 xfeatures_mask;
12791 int i;
12792
12793 /*
12794 * Guest FPU state is zero allocated and so doesn't need to be manually
12795 * cleared on RESET, i.e. during vCPU creation.
12796 */
12797 if (!init_event || !fpstate)
12798 return;
12799
12800 /*
12801 * On INIT, only select XSTATE components are zeroed, most components
12802 * are unchanged. Currently, the only components that are zeroed and
12803 * supported by KVM are MPX and CET related.
12804 */
12805 xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12806 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12807 XFEATURE_MASK_CET_ALL);
12808 if (!xfeatures_mask)
12809 return;
12810
12811 BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12812
12813 /*
12814 * All paths that lead to INIT are required to load the guest's FPU
12815 * state (because most paths are buried in KVM_RUN).
12816 */
12817 kvm_put_guest_fpu(vcpu);
12818 for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12819 fpstate_clear_xstate_component(fpstate, i);
12820 kvm_load_guest_fpu(vcpu);
12821 }
12822
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12823 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12824 {
12825 struct kvm_cpuid_entry2 *cpuid_0x1;
12826 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12827 unsigned long new_cr0;
12828
12829 /*
12830 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12831 * to handle side effects. RESET emulation hits those flows and relies
12832 * on emulated/virtualized registers, including those that are loaded
12833 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12834 * to detect improper or missing initialization.
12835 */
12836 WARN_ON_ONCE(!init_event &&
12837 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12838
12839 /*
12840 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12841 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12842 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12843 * bits), i.e. virtualization is disabled.
12844 */
12845 if (is_guest_mode(vcpu))
12846 kvm_leave_nested(vcpu);
12847
12848 kvm_lapic_reset(vcpu, init_event);
12849
12850 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12851 vcpu->arch.hflags = 0;
12852
12853 vcpu->arch.smi_pending = 0;
12854 vcpu->arch.smi_count = 0;
12855 atomic_set(&vcpu->arch.nmi_queued, 0);
12856 vcpu->arch.nmi_pending = 0;
12857 vcpu->arch.nmi_injected = false;
12858 kvm_clear_interrupt_queue(vcpu);
12859 kvm_clear_exception_queue(vcpu);
12860
12861 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12862 kvm_update_dr0123(vcpu);
12863 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12864 vcpu->arch.dr7 = DR7_FIXED_1;
12865 kvm_update_dr7(vcpu);
12866
12867 vcpu->arch.cr2 = 0;
12868
12869 kvm_make_request(KVM_REQ_EVENT, vcpu);
12870 vcpu->arch.apf.msr_en_val = 0;
12871 vcpu->arch.apf.msr_int_val = 0;
12872 vcpu->arch.st.msr_val = 0;
12873
12874 kvmclock_reset(vcpu);
12875
12876 kvm_clear_async_pf_completion_queue(vcpu);
12877 kvm_async_pf_hash_reset(vcpu);
12878 vcpu->arch.apf.halted = false;
12879
12880 kvm_xstate_reset(vcpu, init_event);
12881
12882 if (!init_event) {
12883 vcpu->arch.smbase = 0x30000;
12884
12885 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12886
12887 vcpu->arch.msr_misc_features_enables = 0;
12888 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12889 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12890
12891 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12892 kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12893 }
12894
12895 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12896 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12897 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12898
12899 /*
12900 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12901 * if no CPUID match is found. Note, it's impossible to get a match at
12902 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12903 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12904 * on RESET. But, go through the motions in case that's ever remedied.
12905 */
12906 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12907 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12908
12909 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12910
12911 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12912 kvm_rip_write(vcpu, 0xfff0);
12913
12914 vcpu->arch.cr3 = 0;
12915 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12916
12917 /*
12918 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12919 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12920 * (or qualify) that with a footnote stating that CD/NW are preserved.
12921 */
12922 new_cr0 = X86_CR0_ET;
12923 if (init_event)
12924 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12925 else
12926 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12927
12928 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12929 kvm_x86_call(set_cr4)(vcpu, 0);
12930 kvm_x86_call(set_efer)(vcpu, 0);
12931 kvm_x86_call(update_exception_bitmap)(vcpu);
12932
12933 /*
12934 * On the standard CR0/CR4/EFER modification paths, there are several
12935 * complex conditions determining whether the MMU has to be reset and/or
12936 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12937 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12938 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12939 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12940 */
12941 if (old_cr0 & X86_CR0_PG) {
12942 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12943 kvm_mmu_reset_context(vcpu);
12944 }
12945
12946 /*
12947 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12948 * APM states the TLBs are untouched by INIT, but it also states that
12949 * the TLBs are flushed on "External initialization of the processor."
12950 * Flush the guest TLB regardless of vendor, there is no meaningful
12951 * benefit in relying on the guest to flush the TLB immediately after
12952 * INIT. A spurious TLB flush is benign and likely negligible from a
12953 * performance perspective.
12954 */
12955 if (init_event)
12956 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12957 }
12958 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
12959
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12960 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12961 {
12962 struct kvm_segment cs;
12963
12964 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12965 cs.selector = vector << 8;
12966 cs.base = vector << 12;
12967 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12968 kvm_rip_write(vcpu, 0);
12969 }
12970 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
12971
kvm_arch_enable_virtualization(void)12972 void kvm_arch_enable_virtualization(void)
12973 {
12974 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12975 }
12976
kvm_arch_disable_virtualization(void)12977 void kvm_arch_disable_virtualization(void)
12978 {
12979 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12980 }
12981
kvm_arch_enable_virtualization_cpu(void)12982 int kvm_arch_enable_virtualization_cpu(void)
12983 {
12984 struct kvm *kvm;
12985 struct kvm_vcpu *vcpu;
12986 unsigned long i;
12987 int ret;
12988 u64 local_tsc;
12989 u64 max_tsc = 0;
12990 bool stable, backwards_tsc = false;
12991
12992 kvm_user_return_msr_cpu_online();
12993
12994 ret = kvm_x86_check_processor_compatibility();
12995 if (ret)
12996 return ret;
12997
12998 ret = kvm_x86_call(enable_virtualization_cpu)();
12999 if (ret != 0)
13000 return ret;
13001
13002 local_tsc = rdtsc();
13003 stable = !kvm_check_tsc_unstable();
13004 list_for_each_entry(kvm, &vm_list, vm_list) {
13005 kvm_for_each_vcpu(i, vcpu, kvm) {
13006 if (!stable && vcpu->cpu == smp_processor_id())
13007 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13008 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13009 backwards_tsc = true;
13010 if (vcpu->arch.last_host_tsc > max_tsc)
13011 max_tsc = vcpu->arch.last_host_tsc;
13012 }
13013 }
13014 }
13015
13016 /*
13017 * Sometimes, even reliable TSCs go backwards. This happens on
13018 * platforms that reset TSC during suspend or hibernate actions, but
13019 * maintain synchronization. We must compensate. Fortunately, we can
13020 * detect that condition here, which happens early in CPU bringup,
13021 * before any KVM threads can be running. Unfortunately, we can't
13022 * bring the TSCs fully up to date with real time, as we aren't yet far
13023 * enough into CPU bringup that we know how much real time has actually
13024 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13025 * variables that haven't been updated yet.
13026 *
13027 * So we simply find the maximum observed TSC above, then record the
13028 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
13029 * the adjustment will be applied. Note that we accumulate
13030 * adjustments, in case multiple suspend cycles happen before some VCPU
13031 * gets a chance to run again. In the event that no KVM threads get a
13032 * chance to run, we will miss the entire elapsed period, as we'll have
13033 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13034 * loose cycle time. This isn't too big a deal, since the loss will be
13035 * uniform across all VCPUs (not to mention the scenario is extremely
13036 * unlikely). It is possible that a second hibernate recovery happens
13037 * much faster than a first, causing the observed TSC here to be
13038 * smaller; this would require additional padding adjustment, which is
13039 * why we set last_host_tsc to the local tsc observed here.
13040 *
13041 * N.B. - this code below runs only on platforms with reliable TSC,
13042 * as that is the only way backwards_tsc is set above. Also note
13043 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
13044 * have the same delta_cyc adjustment applied if backwards_tsc
13045 * is detected. Note further, this adjustment is only done once,
13046 * as we reset last_host_tsc on all VCPUs to stop this from being
13047 * called multiple times (one for each physical CPU bringup).
13048 *
13049 * Platforms with unreliable TSCs don't have to deal with this, they
13050 * will be compensated by the logic in vcpu_load, which sets the TSC to
13051 * catchup mode. This will catchup all VCPUs to real time, but cannot
13052 * guarantee that they stay in perfect synchronization.
13053 */
13054 if (backwards_tsc) {
13055 u64 delta_cyc = max_tsc - local_tsc;
13056 list_for_each_entry(kvm, &vm_list, vm_list) {
13057 kvm->arch.backwards_tsc_observed = true;
13058 kvm_for_each_vcpu(i, vcpu, kvm) {
13059 vcpu->arch.tsc_offset_adjustment += delta_cyc;
13060 vcpu->arch.last_host_tsc = local_tsc;
13061 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13062 }
13063
13064 /*
13065 * We have to disable TSC offset matching.. if you were
13066 * booting a VM while issuing an S4 host suspend....
13067 * you may have some problem. Solving this issue is
13068 * left as an exercise to the reader.
13069 */
13070 kvm->arch.last_tsc_nsec = 0;
13071 kvm->arch.last_tsc_write = 0;
13072 }
13073
13074 }
13075 return 0;
13076 }
13077
kvm_arch_disable_virtualization_cpu(void)13078 void kvm_arch_disable_virtualization_cpu(void)
13079 {
13080 kvm_x86_call(disable_virtualization_cpu)();
13081 drop_user_return_notifiers();
13082 }
13083
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)13084 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13085 {
13086 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13087 }
13088 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13089
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)13090 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13091 {
13092 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13093 }
13094
kvm_arch_free_vm(struct kvm * kvm)13095 void kvm_arch_free_vm(struct kvm *kvm)
13096 {
13097 #if IS_ENABLED(CONFIG_HYPERV)
13098 kfree(kvm->arch.hv_pa_pg);
13099 #endif
13100 __kvm_arch_free_vm(kvm);
13101 }
13102
13103
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)13104 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13105 {
13106 int ret;
13107 unsigned long flags;
13108
13109 if (!kvm_is_vm_type_supported(type))
13110 return -EINVAL;
13111
13112 kvm->arch.vm_type = type;
13113 kvm->arch.has_private_mem =
13114 (type == KVM_X86_SW_PROTECTED_VM);
13115 /* Decided by the vendor code for other VM types. */
13116 kvm->arch.pre_fault_allowed =
13117 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13118 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13119
13120 ret = kvm_page_track_init(kvm);
13121 if (ret)
13122 goto out;
13123
13124 ret = kvm_mmu_init_vm(kvm);
13125 if (ret)
13126 goto out_cleanup_page_track;
13127
13128 ret = kvm_x86_call(vm_init)(kvm);
13129 if (ret)
13130 goto out_uninit_mmu;
13131
13132 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13133
13134 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13135 mutex_init(&kvm->arch.apic_map_lock);
13136 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13137 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13138
13139 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13140 pvclock_update_vm_gtod_copy(kvm);
13141 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13142
13143 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13144 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13145 kvm->arch.guest_can_read_msr_platform_info = true;
13146 kvm->arch.enable_pmu = enable_pmu;
13147
13148 #if IS_ENABLED(CONFIG_HYPERV)
13149 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13150 kvm->arch.hv_root_tdp = INVALID_PAGE;
13151 #endif
13152
13153 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
13154 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
13155
13156 kvm_apicv_init(kvm);
13157 kvm_hv_init_vm(kvm);
13158 kvm_xen_init_vm(kvm);
13159
13160 if (ignore_msrs && !report_ignored_msrs) {
13161 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13162 "a supported configuration. Lying to the guest about the existence of MSRs\n"
13163 "may cause the guest operating system to hang or produce errors. If a guest\n"
13164 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
13165 }
13166
13167 once_init(&kvm->arch.nx_once);
13168 return 0;
13169
13170 out_uninit_mmu:
13171 kvm_mmu_uninit_vm(kvm);
13172 out_cleanup_page_track:
13173 kvm_page_track_cleanup(kvm);
13174 out:
13175 return ret;
13176 }
13177
13178 /**
13179 * __x86_set_memory_region: Setup KVM internal memory slot
13180 *
13181 * @kvm: the kvm pointer to the VM.
13182 * @id: the slot ID to setup.
13183 * @gpa: the GPA to install the slot (unused when @size == 0).
13184 * @size: the size of the slot. Set to zero to uninstall a slot.
13185 *
13186 * This function helps to setup a KVM internal memory slot. Specify
13187 * @size > 0 to install a new slot, while @size == 0 to uninstall a
13188 * slot. The return code can be one of the following:
13189 *
13190 * HVA: on success (uninstall will return a bogus HVA)
13191 * -errno: on error
13192 *
13193 * The caller should always use IS_ERR() to check the return value
13194 * before use. Note, the KVM internal memory slots are guaranteed to
13195 * remain valid and unchanged until the VM is destroyed, i.e., the
13196 * GPA->HVA translation will not change. However, the HVA is a user
13197 * address, i.e. its accessibility is not guaranteed, and must be
13198 * accessed via __copy_{to,from}_user().
13199 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)13200 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13201 u32 size)
13202 {
13203 int i, r;
13204 unsigned long hva, old_npages;
13205 struct kvm_memslots *slots = kvm_memslots(kvm);
13206 struct kvm_memory_slot *slot;
13207
13208 lockdep_assert_held(&kvm->slots_lock);
13209
13210 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13211 return ERR_PTR_USR(-EINVAL);
13212
13213 slot = id_to_memslot(slots, id);
13214 if (size) {
13215 if (slot && slot->npages)
13216 return ERR_PTR_USR(-EEXIST);
13217
13218 /*
13219 * MAP_SHARED to prevent internal slot pages from being moved
13220 * by fork()/COW.
13221 */
13222 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13223 MAP_SHARED | MAP_ANONYMOUS, 0);
13224 if (IS_ERR_VALUE(hva))
13225 return (void __user *)hva;
13226 } else {
13227 if (!slot || !slot->npages)
13228 return NULL;
13229
13230 old_npages = slot->npages;
13231 hva = slot->userspace_addr;
13232 }
13233
13234 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13235 struct kvm_userspace_memory_region2 m;
13236
13237 m.slot = id | (i << 16);
13238 m.flags = 0;
13239 m.guest_phys_addr = gpa;
13240 m.userspace_addr = hva;
13241 m.memory_size = size;
13242 r = kvm_set_internal_memslot(kvm, &m);
13243 if (r < 0)
13244 return ERR_PTR_USR(r);
13245 }
13246
13247 if (!size)
13248 vm_munmap(hva, old_npages * PAGE_SIZE);
13249
13250 return (void __user *)hva;
13251 }
13252 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13253
kvm_arch_pre_destroy_vm(struct kvm * kvm)13254 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13255 {
13256 /*
13257 * Stop all background workers and kthreads before destroying vCPUs, as
13258 * iterating over vCPUs in a different task while vCPUs are being freed
13259 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
13260 * be stopped before IRQ routing is freed.
13261 */
13262 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
13263 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
13264
13265 #ifdef CONFIG_KVM_IOAPIC
13266 kvm_free_pit(kvm);
13267 #endif
13268
13269 kvm_mmu_pre_destroy_vm(kvm);
13270 static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13271 }
13272
kvm_arch_destroy_vm(struct kvm * kvm)13273 void kvm_arch_destroy_vm(struct kvm *kvm)
13274 {
13275 if (current->mm == kvm->mm) {
13276 /*
13277 * Free memory regions allocated on behalf of userspace,
13278 * unless the memory map has changed due to process exit
13279 * or fd copying.
13280 */
13281 mutex_lock(&kvm->slots_lock);
13282 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13283 0, 0);
13284 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13285 0, 0);
13286 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13287 mutex_unlock(&kvm->slots_lock);
13288 }
13289 kvm_destroy_vcpus(kvm);
13290 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13291 #ifdef CONFIG_KVM_IOAPIC
13292 kvm_pic_destroy(kvm);
13293 kvm_ioapic_destroy(kvm);
13294 #endif
13295 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13296 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13297 kvm_mmu_uninit_vm(kvm);
13298 kvm_page_track_cleanup(kvm);
13299 kvm_xen_destroy_vm(kvm);
13300 kvm_hv_destroy_vm(kvm);
13301 kvm_x86_call(vm_destroy)(kvm);
13302 }
13303
memslot_rmap_free(struct kvm_memory_slot * slot)13304 static void memslot_rmap_free(struct kvm_memory_slot *slot)
13305 {
13306 int i;
13307
13308 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13309 vfree(slot->arch.rmap[i]);
13310 slot->arch.rmap[i] = NULL;
13311 }
13312 }
13313
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)13314 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13315 {
13316 int i;
13317
13318 memslot_rmap_free(slot);
13319
13320 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13321 vfree(slot->arch.lpage_info[i - 1]);
13322 slot->arch.lpage_info[i - 1] = NULL;
13323 }
13324
13325 kvm_page_track_free_memslot(slot);
13326 }
13327
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)13328 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13329 {
13330 const int sz = sizeof(*slot->arch.rmap[0]);
13331 int i;
13332
13333 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13334 int level = i + 1;
13335 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13336
13337 if (slot->arch.rmap[i])
13338 continue;
13339
13340 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13341 if (!slot->arch.rmap[i]) {
13342 memslot_rmap_free(slot);
13343 return -ENOMEM;
13344 }
13345 }
13346
13347 return 0;
13348 }
13349
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13350 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13351 struct kvm_memory_slot *slot)
13352 {
13353 unsigned long npages = slot->npages;
13354 int i, r;
13355
13356 /*
13357 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
13358 * old arrays will be freed by kvm_set_memory_region() if installing
13359 * the new memslot is successful.
13360 */
13361 memset(&slot->arch, 0, sizeof(slot->arch));
13362
13363 if (kvm_memslots_have_rmaps(kvm)) {
13364 r = memslot_rmap_alloc(slot, npages);
13365 if (r)
13366 return r;
13367 }
13368
13369 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13370 struct kvm_lpage_info *linfo;
13371 unsigned long ugfn;
13372 int lpages;
13373 int level = i + 1;
13374
13375 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13376
13377 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13378 if (!linfo)
13379 goto out_free;
13380
13381 slot->arch.lpage_info[i - 1] = linfo;
13382
13383 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13384 linfo[0].disallow_lpage = 1;
13385 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13386 linfo[lpages - 1].disallow_lpage = 1;
13387 ugfn = slot->userspace_addr >> PAGE_SHIFT;
13388 /*
13389 * If the gfn and userspace address are not aligned wrt each
13390 * other, disable large page support for this slot.
13391 */
13392 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13393 unsigned long j;
13394
13395 for (j = 0; j < lpages; ++j)
13396 linfo[j].disallow_lpage = 1;
13397 }
13398 }
13399
13400 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13401 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13402 #endif
13403
13404 if (kvm_page_track_create_memslot(kvm, slot, npages))
13405 goto out_free;
13406
13407 return 0;
13408
13409 out_free:
13410 memslot_rmap_free(slot);
13411
13412 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13413 vfree(slot->arch.lpage_info[i - 1]);
13414 slot->arch.lpage_info[i - 1] = NULL;
13415 }
13416 return -ENOMEM;
13417 }
13418
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13419 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13420 {
13421 struct kvm_vcpu *vcpu;
13422 unsigned long i;
13423
13424 /*
13425 * memslots->generation has been incremented.
13426 * mmio generation may have reached its maximum value.
13427 */
13428 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13429
13430 /* Force re-initialization of steal_time cache */
13431 kvm_for_each_vcpu(i, vcpu, kvm)
13432 kvm_vcpu_kick(vcpu);
13433 }
13434
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13435 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13436 const struct kvm_memory_slot *old,
13437 struct kvm_memory_slot *new,
13438 enum kvm_mr_change change)
13439 {
13440 /*
13441 * KVM doesn't support moving memslots when there are external page
13442 * trackers attached to the VM, i.e. if KVMGT is in use.
13443 */
13444 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13445 return -EINVAL;
13446
13447 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13448 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13449 return -EINVAL;
13450
13451 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13452 return -EINVAL;
13453
13454 return kvm_alloc_memslot_metadata(kvm, new);
13455 }
13456
13457 if (change == KVM_MR_FLAGS_ONLY)
13458 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13459 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13460 return -EIO;
13461
13462 return 0;
13463 }
13464
13465
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13466 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13467 {
13468 int nr_slots;
13469
13470 if (!kvm->arch.cpu_dirty_log_size)
13471 return;
13472
13473 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13474 if ((enable && nr_slots == 1) || !nr_slots)
13475 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13476 }
13477
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13478 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13479 struct kvm_memory_slot *old,
13480 const struct kvm_memory_slot *new,
13481 enum kvm_mr_change change)
13482 {
13483 u32 old_flags = old ? old->flags : 0;
13484 u32 new_flags = new ? new->flags : 0;
13485 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13486
13487 /*
13488 * Update CPU dirty logging if dirty logging is being toggled. This
13489 * applies to all operations.
13490 */
13491 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13492 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13493
13494 /*
13495 * Nothing more to do for RO slots (which can't be dirtied and can't be
13496 * made writable) or CREATE/MOVE/DELETE of a slot.
13497 *
13498 * For a memslot with dirty logging disabled:
13499 * CREATE: No dirty mappings will already exist.
13500 * MOVE/DELETE: The old mappings will already have been cleaned up by
13501 * kvm_arch_flush_shadow_memslot()
13502 *
13503 * For a memslot with dirty logging enabled:
13504 * CREATE: No shadow pages exist, thus nothing to write-protect
13505 * and no dirty bits to clear.
13506 * MOVE/DELETE: The old mappings will already have been cleaned up by
13507 * kvm_arch_flush_shadow_memslot().
13508 */
13509 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13510 return;
13511
13512 /*
13513 * READONLY and non-flags changes were filtered out above, and the only
13514 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13515 * logging isn't being toggled on or off.
13516 */
13517 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13518 return;
13519
13520 if (!log_dirty_pages) {
13521 /*
13522 * Recover huge page mappings in the slot now that dirty logging
13523 * is disabled, i.e. now that KVM does not have to track guest
13524 * writes at 4KiB granularity.
13525 *
13526 * Dirty logging might be disabled by userspace if an ongoing VM
13527 * live migration is cancelled and the VM must continue running
13528 * on the source.
13529 */
13530 kvm_mmu_recover_huge_pages(kvm, new);
13531 } else {
13532 /*
13533 * Initially-all-set does not require write protecting any page,
13534 * because they're all assumed to be dirty.
13535 */
13536 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13537 return;
13538
13539 if (READ_ONCE(eager_page_split))
13540 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13541
13542 if (kvm->arch.cpu_dirty_log_size) {
13543 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13544 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13545 } else {
13546 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13547 }
13548
13549 /*
13550 * Unconditionally flush the TLBs after enabling dirty logging.
13551 * A flush is almost always going to be necessary (see below),
13552 * and unconditionally flushing allows the helpers to omit
13553 * the subtly complex checks when removing write access.
13554 *
13555 * Do the flush outside of mmu_lock to reduce the amount of
13556 * time mmu_lock is held. Flushing after dropping mmu_lock is
13557 * safe as KVM only needs to guarantee the slot is fully
13558 * write-protected before returning to userspace, i.e. before
13559 * userspace can consume the dirty status.
13560 *
13561 * Flushing outside of mmu_lock requires KVM to be careful when
13562 * making decisions based on writable status of an SPTE, e.g. a
13563 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13564 *
13565 * Specifically, KVM also write-protects guest page tables to
13566 * monitor changes when using shadow paging, and must guarantee
13567 * no CPUs can write to those page before mmu_lock is dropped.
13568 * Because CPUs may have stale TLB entries at this point, a
13569 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13570 *
13571 * KVM also allows making SPTES writable outside of mmu_lock,
13572 * e.g. to allow dirty logging without taking mmu_lock.
13573 *
13574 * To handle these scenarios, KVM uses a separate software-only
13575 * bit (MMU-writable) to track if a SPTE is !writable due to
13576 * a guest page table being write-protected (KVM clears the
13577 * MMU-writable flag when write-protecting for shadow paging).
13578 *
13579 * The use of MMU-writable is also the primary motivation for
13580 * the unconditional flush. Because KVM must guarantee that a
13581 * CPU doesn't contain stale, writable TLB entries for a
13582 * !MMU-writable SPTE, KVM must flush if it encounters any
13583 * MMU-writable SPTE regardless of whether the actual hardware
13584 * writable bit was set. I.e. KVM is almost guaranteed to need
13585 * to flush, while unconditionally flushing allows the "remove
13586 * write access" helpers to ignore MMU-writable entirely.
13587 *
13588 * See is_writable_pte() for more details (the case involving
13589 * access-tracked SPTEs is particularly relevant).
13590 */
13591 kvm_flush_remote_tlbs_memslot(kvm, new);
13592 }
13593 }
13594
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13595 void kvm_arch_commit_memory_region(struct kvm *kvm,
13596 struct kvm_memory_slot *old,
13597 const struct kvm_memory_slot *new,
13598 enum kvm_mr_change change)
13599 {
13600 if (change == KVM_MR_DELETE)
13601 kvm_page_track_delete_slot(kvm, old);
13602
13603 if (!kvm->arch.n_requested_mmu_pages &&
13604 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13605 unsigned long nr_mmu_pages;
13606
13607 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13608 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13609 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13610 }
13611
13612 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13613
13614 /* Free the arrays associated with the old memslot. */
13615 if (change == KVM_MR_MOVE)
13616 kvm_arch_free_memslot(kvm, old);
13617 }
13618
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13619 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13620 {
13621 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13622
13623 if (vcpu->arch.guest_state_protected)
13624 return true;
13625
13626 return kvm_x86_call(get_cpl)(vcpu) == 0;
13627 }
13628
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13629 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13630 {
13631 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13632
13633 if (vcpu->arch.guest_state_protected)
13634 return 0;
13635
13636 return kvm_rip_read(vcpu);
13637 }
13638
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13639 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13640 {
13641 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13642 }
13643
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13644 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13645 {
13646 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13647 }
13648
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13649 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13650 {
13651 /* Can't read the RIP when guest state is protected, just return 0 */
13652 if (vcpu->arch.guest_state_protected)
13653 return 0;
13654
13655 if (is_64_bit_mode(vcpu))
13656 return kvm_rip_read(vcpu);
13657 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13658 kvm_rip_read(vcpu));
13659 }
13660 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13661
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13662 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13663 {
13664 return kvm_get_linear_rip(vcpu) == linear_rip;
13665 }
13666 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13667
kvm_get_rflags(struct kvm_vcpu * vcpu)13668 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13669 {
13670 unsigned long rflags;
13671
13672 rflags = kvm_x86_call(get_rflags)(vcpu);
13673 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13674 rflags &= ~X86_EFLAGS_TF;
13675 return rflags;
13676 }
13677 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13678
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13679 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13680 {
13681 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13682 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13683 rflags |= X86_EFLAGS_TF;
13684 kvm_x86_call(set_rflags)(vcpu, rflags);
13685 }
13686
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13687 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13688 {
13689 __kvm_set_rflags(vcpu, rflags);
13690 kvm_make_request(KVM_REQ_EVENT, vcpu);
13691 }
13692 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13693
kvm_async_pf_hash_fn(gfn_t gfn)13694 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13695 {
13696 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13697
13698 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13699 }
13700
kvm_async_pf_next_probe(u32 key)13701 static inline u32 kvm_async_pf_next_probe(u32 key)
13702 {
13703 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13704 }
13705
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13706 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13707 {
13708 u32 key = kvm_async_pf_hash_fn(gfn);
13709
13710 while (vcpu->arch.apf.gfns[key] != ~0)
13711 key = kvm_async_pf_next_probe(key);
13712
13713 vcpu->arch.apf.gfns[key] = gfn;
13714 }
13715
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13716 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13717 {
13718 int i;
13719 u32 key = kvm_async_pf_hash_fn(gfn);
13720
13721 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13722 (vcpu->arch.apf.gfns[key] != gfn &&
13723 vcpu->arch.apf.gfns[key] != ~0); i++)
13724 key = kvm_async_pf_next_probe(key);
13725
13726 return key;
13727 }
13728
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13729 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13730 {
13731 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13732 }
13733
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13734 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13735 {
13736 u32 i, j, k;
13737
13738 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13739
13740 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13741 return;
13742
13743 while (true) {
13744 vcpu->arch.apf.gfns[i] = ~0;
13745 do {
13746 j = kvm_async_pf_next_probe(j);
13747 if (vcpu->arch.apf.gfns[j] == ~0)
13748 return;
13749 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13750 /*
13751 * k lies cyclically in ]i,j]
13752 * | i.k.j |
13753 * |....j i.k.| or |.k..j i...|
13754 */
13755 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13756 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13757 i = j;
13758 }
13759 }
13760
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13761 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13762 {
13763 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13764
13765 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13766 sizeof(reason));
13767 }
13768
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13769 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13770 {
13771 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13772
13773 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13774 &token, offset, sizeof(token));
13775 }
13776
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13777 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13778 {
13779 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13780 u32 val;
13781
13782 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13783 &val, offset, sizeof(val)))
13784 return false;
13785
13786 return !val;
13787 }
13788
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13789 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13790 {
13791
13792 if (!kvm_pv_async_pf_enabled(vcpu))
13793 return false;
13794
13795 if (!vcpu->arch.apf.send_always &&
13796 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13797 return false;
13798
13799 if (is_guest_mode(vcpu)) {
13800 /*
13801 * L1 needs to opt into the special #PF vmexits that are
13802 * used to deliver async page faults.
13803 */
13804 return vcpu->arch.apf.delivery_as_pf_vmexit;
13805 } else {
13806 /*
13807 * Play it safe in case the guest temporarily disables paging.
13808 * The real mode IDT in particular is unlikely to have a #PF
13809 * exception setup.
13810 */
13811 return is_paging(vcpu);
13812 }
13813 }
13814
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13815 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13816 {
13817 if (unlikely(!lapic_in_kernel(vcpu) ||
13818 kvm_event_needs_reinjection(vcpu) ||
13819 kvm_is_exception_pending(vcpu)))
13820 return false;
13821
13822 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13823 return false;
13824
13825 /*
13826 * If interrupts are off we cannot even use an artificial
13827 * halt state.
13828 */
13829 return kvm_arch_interrupt_allowed(vcpu);
13830 }
13831
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13832 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13833 struct kvm_async_pf *work)
13834 {
13835 struct x86_exception fault;
13836
13837 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13838 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13839
13840 if (kvm_can_deliver_async_pf(vcpu) &&
13841 !apf_put_user_notpresent(vcpu)) {
13842 fault.vector = PF_VECTOR;
13843 fault.error_code_valid = true;
13844 fault.error_code = 0;
13845 fault.nested_page_fault = false;
13846 fault.address = work->arch.token;
13847 fault.async_page_fault = true;
13848 kvm_inject_page_fault(vcpu, &fault);
13849 return true;
13850 } else {
13851 /*
13852 * It is not possible to deliver a paravirtualized asynchronous
13853 * page fault, but putting the guest in an artificial halt state
13854 * can be beneficial nevertheless: if an interrupt arrives, we
13855 * can deliver it timely and perhaps the guest will schedule
13856 * another process. When the instruction that triggered a page
13857 * fault is retried, hopefully the page will be ready in the host.
13858 */
13859 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13860 return false;
13861 }
13862 }
13863
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13864 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13865 struct kvm_async_pf *work)
13866 {
13867 struct kvm_lapic_irq irq = {
13868 .delivery_mode = APIC_DM_FIXED,
13869 .vector = vcpu->arch.apf.vec
13870 };
13871
13872 if (work->wakeup_all)
13873 work->arch.token = ~0; /* broadcast wakeup */
13874 else
13875 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13876 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13877
13878 if ((work->wakeup_all || work->notpresent_injected) &&
13879 kvm_pv_async_pf_enabled(vcpu) &&
13880 !apf_put_user_ready(vcpu, work->arch.token)) {
13881 vcpu->arch.apf.pageready_pending = true;
13882 kvm_apic_set_irq(vcpu, &irq, NULL);
13883 }
13884
13885 vcpu->arch.apf.halted = false;
13886 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13887 }
13888
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13889 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13890 {
13891 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13892 if (!vcpu->arch.apf.pageready_pending)
13893 kvm_vcpu_kick(vcpu);
13894 }
13895
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13896 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13897 {
13898 if (!kvm_pv_async_pf_enabled(vcpu))
13899 return true;
13900 else
13901 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13902 }
13903
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13904 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13905 {
13906 /*
13907 * Non-coherent DMA assignment and de-assignment may affect whether or
13908 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13909 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13910 * (or last) non-coherent device is (un)registered to so that new SPTEs
13911 * with the correct "ignore guest PAT" setting are created.
13912 *
13913 * If KVM always honors guest PAT, however, there is nothing to do.
13914 */
13915 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13916 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13917 }
13918
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13919 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13920 {
13921 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13922 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13923 }
13924
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13925 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13926 {
13927 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13928 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13929 }
13930
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13931 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13932 {
13933 return atomic_read(&kvm->arch.noncoherent_dma_count);
13934 }
13935 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13936
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13937 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13938 {
13939 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13940 }
13941
13942 #ifdef CONFIG_KVM_GUEST_MEMFD
13943 /*
13944 * KVM doesn't yet support mmap() on guest_memfd for VMs with private memory
13945 * (the private vs. shared tracking needs to be moved into guest_memfd).
13946 */
kvm_arch_supports_gmem_mmap(struct kvm * kvm)13947 bool kvm_arch_supports_gmem_mmap(struct kvm *kvm)
13948 {
13949 return !kvm_arch_has_private_mem(kvm);
13950 }
13951
13952 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13953 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13954 {
13955 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13956 }
13957 #endif
13958
13959 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13960 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13961 {
13962 kvm_x86_call(gmem_invalidate)(start, end);
13963 }
13964 #endif
13965 #endif
13966
kvm_spec_ctrl_test_value(u64 value)13967 int kvm_spec_ctrl_test_value(u64 value)
13968 {
13969 /*
13970 * test that setting IA32_SPEC_CTRL to given value
13971 * is allowed by the host processor
13972 */
13973
13974 u64 saved_value;
13975 unsigned long flags;
13976 int ret = 0;
13977
13978 local_irq_save(flags);
13979
13980 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13981 ret = 1;
13982 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13983 ret = 1;
13984 else
13985 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13986
13987 local_irq_restore(flags);
13988
13989 return ret;
13990 }
13991 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
13992
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13993 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13994 {
13995 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13996 struct x86_exception fault;
13997 u64 access = error_code &
13998 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13999
14000 if (!(error_code & PFERR_PRESENT_MASK) ||
14001 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14002 /*
14003 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14004 * tables probably do not match the TLB. Just proceed
14005 * with the error code that the processor gave.
14006 */
14007 fault.vector = PF_VECTOR;
14008 fault.error_code_valid = true;
14009 fault.error_code = error_code;
14010 fault.nested_page_fault = false;
14011 fault.address = gva;
14012 fault.async_page_fault = false;
14013 }
14014 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14015 }
14016 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14017
14018 /*
14019 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14020 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14021 * indicates whether exit to userspace is needed.
14022 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)14023 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14024 struct x86_exception *e)
14025 {
14026 if (r == X86EMUL_PROPAGATE_FAULT) {
14027 if (KVM_BUG_ON(!e, vcpu->kvm))
14028 return -EIO;
14029
14030 kvm_inject_emulated_page_fault(vcpu, e);
14031 return 1;
14032 }
14033
14034 /*
14035 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14036 * while handling a VMX instruction KVM could've handled the request
14037 * correctly by exiting to userspace and performing I/O but there
14038 * doesn't seem to be a real use-case behind such requests, just return
14039 * KVM_EXIT_INTERNAL_ERROR for now.
14040 */
14041 kvm_prepare_emulation_failure_exit(vcpu);
14042
14043 return 0;
14044 }
14045 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14046
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)14047 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14048 {
14049 bool pcid_enabled;
14050 struct x86_exception e;
14051 struct {
14052 u64 pcid;
14053 u64 gla;
14054 } operand;
14055 int r;
14056
14057 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14058 if (r != X86EMUL_CONTINUE)
14059 return kvm_handle_memory_failure(vcpu, r, &e);
14060
14061 if (operand.pcid >> 12 != 0) {
14062 kvm_inject_gp(vcpu, 0);
14063 return 1;
14064 }
14065
14066 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14067
14068 switch (type) {
14069 case INVPCID_TYPE_INDIV_ADDR:
14070 /*
14071 * LAM doesn't apply to addresses that are inputs to TLB
14072 * invalidation.
14073 */
14074 if ((!pcid_enabled && (operand.pcid != 0)) ||
14075 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14076 kvm_inject_gp(vcpu, 0);
14077 return 1;
14078 }
14079 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14080 return kvm_skip_emulated_instruction(vcpu);
14081
14082 case INVPCID_TYPE_SINGLE_CTXT:
14083 if (!pcid_enabled && (operand.pcid != 0)) {
14084 kvm_inject_gp(vcpu, 0);
14085 return 1;
14086 }
14087
14088 kvm_invalidate_pcid(vcpu, operand.pcid);
14089 return kvm_skip_emulated_instruction(vcpu);
14090
14091 case INVPCID_TYPE_ALL_NON_GLOBAL:
14092 /*
14093 * Currently, KVM doesn't mark global entries in the shadow
14094 * page tables, so a non-global flush just degenerates to a
14095 * global flush. If needed, we could optimize this later by
14096 * keeping track of global entries in shadow page tables.
14097 */
14098
14099 fallthrough;
14100 case INVPCID_TYPE_ALL_INCL_GLOBAL:
14101 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14102 return kvm_skip_emulated_instruction(vcpu);
14103
14104 default:
14105 kvm_inject_gp(vcpu, 0);
14106 return 1;
14107 }
14108 }
14109 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14110
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)14111 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14112 {
14113 struct kvm_run *run = vcpu->run;
14114 struct kvm_mmio_fragment *frag;
14115 unsigned int len;
14116
14117 BUG_ON(!vcpu->mmio_needed);
14118
14119 /* Complete previous fragment */
14120 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14121 len = min(8u, frag->len);
14122 if (!vcpu->mmio_is_write)
14123 memcpy(frag->data, run->mmio.data, len);
14124
14125 if (frag->len <= 8) {
14126 /* Switch to the next fragment. */
14127 frag++;
14128 vcpu->mmio_cur_fragment++;
14129 } else {
14130 /* Go forward to the next mmio piece. */
14131 frag->data += len;
14132 frag->gpa += len;
14133 frag->len -= len;
14134 }
14135
14136 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14137 vcpu->mmio_needed = 0;
14138
14139 // VMG change, at this point, we're always done
14140 // RIP has already been advanced
14141 return 1;
14142 }
14143
14144 // More MMIO is needed
14145 run->mmio.phys_addr = frag->gpa;
14146 run->mmio.len = min(8u, frag->len);
14147 run->mmio.is_write = vcpu->mmio_is_write;
14148 if (run->mmio.is_write)
14149 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14150 run->exit_reason = KVM_EXIT_MMIO;
14151
14152 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14153
14154 return 0;
14155 }
14156
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14157 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14158 void *data)
14159 {
14160 int handled;
14161 struct kvm_mmio_fragment *frag;
14162
14163 if (!data)
14164 return -EINVAL;
14165
14166 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14167 if (handled == bytes)
14168 return 1;
14169
14170 bytes -= handled;
14171 gpa += handled;
14172 data += handled;
14173
14174 /*TODO: Check if need to increment number of frags */
14175 frag = vcpu->mmio_fragments;
14176 vcpu->mmio_nr_fragments = 1;
14177 frag->len = bytes;
14178 frag->gpa = gpa;
14179 frag->data = data;
14180
14181 vcpu->mmio_needed = 1;
14182 vcpu->mmio_cur_fragment = 0;
14183
14184 vcpu->run->mmio.phys_addr = gpa;
14185 vcpu->run->mmio.len = min(8u, frag->len);
14186 vcpu->run->mmio.is_write = 1;
14187 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14188 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14189
14190 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14191
14192 return 0;
14193 }
14194 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14195
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14196 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14197 void *data)
14198 {
14199 int handled;
14200 struct kvm_mmio_fragment *frag;
14201
14202 if (!data)
14203 return -EINVAL;
14204
14205 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14206 if (handled == bytes)
14207 return 1;
14208
14209 bytes -= handled;
14210 gpa += handled;
14211 data += handled;
14212
14213 /*TODO: Check if need to increment number of frags */
14214 frag = vcpu->mmio_fragments;
14215 vcpu->mmio_nr_fragments = 1;
14216 frag->len = bytes;
14217 frag->gpa = gpa;
14218 frag->data = data;
14219
14220 vcpu->mmio_needed = 1;
14221 vcpu->mmio_cur_fragment = 0;
14222
14223 vcpu->run->mmio.phys_addr = gpa;
14224 vcpu->run->mmio.len = min(8u, frag->len);
14225 vcpu->run->mmio.is_write = 0;
14226 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14227
14228 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14229
14230 return 0;
14231 }
14232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14233
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)14234 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14235 {
14236 vcpu->arch.sev_pio_count -= count;
14237 vcpu->arch.sev_pio_data += count * size;
14238 }
14239
14240 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14241 unsigned int port);
14242
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14243 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14244 {
14245 int size = vcpu->arch.pio.size;
14246 int port = vcpu->arch.pio.port;
14247
14248 vcpu->arch.pio.count = 0;
14249 if (vcpu->arch.sev_pio_count)
14250 return kvm_sev_es_outs(vcpu, size, port);
14251 return 1;
14252 }
14253
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14254 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14255 unsigned int port)
14256 {
14257 for (;;) {
14258 unsigned int count =
14259 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14260 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14261
14262 /* memcpy done already by emulator_pio_out. */
14263 advance_sev_es_emulated_pio(vcpu, count, size);
14264 if (!ret)
14265 break;
14266
14267 /* Emulation done by the kernel. */
14268 if (!vcpu->arch.sev_pio_count)
14269 return 1;
14270 }
14271
14272 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14273 return 0;
14274 }
14275
14276 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14277 unsigned int port);
14278
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14279 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14280 {
14281 unsigned count = vcpu->arch.pio.count;
14282 int size = vcpu->arch.pio.size;
14283 int port = vcpu->arch.pio.port;
14284
14285 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14286 advance_sev_es_emulated_pio(vcpu, count, size);
14287 if (vcpu->arch.sev_pio_count)
14288 return kvm_sev_es_ins(vcpu, size, port);
14289 return 1;
14290 }
14291
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14292 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14293 unsigned int port)
14294 {
14295 for (;;) {
14296 unsigned int count =
14297 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14298 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14299 break;
14300
14301 /* Emulation done by the kernel. */
14302 advance_sev_es_emulated_pio(vcpu, count, size);
14303 if (!vcpu->arch.sev_pio_count)
14304 return 1;
14305 }
14306
14307 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14308 return 0;
14309 }
14310
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14311 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14312 unsigned int port, void *data, unsigned int count,
14313 int in)
14314 {
14315 vcpu->arch.sev_pio_data = data;
14316 vcpu->arch.sev_pio_count = count;
14317 return in ? kvm_sev_es_ins(vcpu, size, port)
14318 : kvm_sev_es_outs(vcpu, size, port);
14319 }
14320 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14321
14322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14352
kvm_x86_init(void)14353 static int __init kvm_x86_init(void)
14354 {
14355 kvm_init_xstate_sizes();
14356
14357 kvm_mmu_x86_module_init();
14358 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14359 return 0;
14360 }
14361 module_init(kvm_x86_init);
14362
kvm_x86_exit(void)14363 static void __exit kvm_x86_exit(void)
14364 {
14365 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14366 }
14367 module_exit(kvm_x86_exit);
14368