xref: /linux/mm/compaction.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
28 
29 #ifdef CONFIG_COMPACTION
30 /*
31  * Fragmentation score check interval for proactive compaction purposes.
32  */
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
34 
35 static inline void count_compact_event(enum vm_event_item item)
36 {
37 	count_vm_event(item);
38 }
39 
40 static inline void count_compact_events(enum vm_event_item item, long delta)
41 {
42 	count_vm_events(item, delta);
43 }
44 
45 /*
46  * order == -1 is expected when compacting proactively via
47  * 1. /proc/sys/vm/compact_memory
48  * 2. /sys/devices/system/node/nodex/compact
49  * 3. /proc/sys/vm/compaction_proactiveness
50  */
51 static inline bool is_via_compact_memory(int order)
52 {
53 	return order == -1;
54 }
55 
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
61 
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
66 
67 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
69 
70 /*
71  * Page order with-respect-to which proactive compaction
72  * calculates external fragmentation, which is used as
73  * the "fragmentation score" of a node/zone.
74  */
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
79 #else
80 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
81 #endif
82 
83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
84 {
85 	post_alloc_hook(page, order, __GFP_MOVABLE);
86 	set_page_refcounted(page);
87 	return page;
88 }
89 #define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90 
91 static unsigned long release_free_list(struct list_head *freepages)
92 {
93 	int order;
94 	unsigned long high_pfn = 0;
95 
96 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
97 		struct page *page, *next;
98 
99 		list_for_each_entry_safe(page, next, &freepages[order], lru) {
100 			unsigned long pfn = page_to_pfn(page);
101 
102 			list_del(&page->lru);
103 			/*
104 			 * Convert free pages into post allocation pages, so
105 			 * that we can free them via __free_page.
106 			 */
107 			mark_allocated(page, order, __GFP_MOVABLE);
108 			__free_pages(page, order);
109 			if (pfn > high_pfn)
110 				high_pfn = pfn;
111 		}
112 	}
113 	return high_pfn;
114 }
115 
116 #ifdef CONFIG_COMPACTION
117 
118 /* Do not skip compaction more than 64 times */
119 #define COMPACT_MAX_DEFER_SHIFT 6
120 
121 /*
122  * Compaction is deferred when compaction fails to result in a page
123  * allocation success. 1 << compact_defer_shift, compactions are skipped up
124  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
125  */
126 static void defer_compaction(struct zone *zone, int order)
127 {
128 	zone->compact_considered = 0;
129 	zone->compact_defer_shift++;
130 
131 	if (order < zone->compact_order_failed)
132 		zone->compact_order_failed = order;
133 
134 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
135 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
136 
137 	trace_mm_compaction_defer_compaction(zone, order);
138 }
139 
140 /* Returns true if compaction should be skipped this time */
141 static bool compaction_deferred(struct zone *zone, int order)
142 {
143 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
144 
145 	if (order < zone->compact_order_failed)
146 		return false;
147 
148 	/* Avoid possible overflow */
149 	if (++zone->compact_considered >= defer_limit) {
150 		zone->compact_considered = defer_limit;
151 		return false;
152 	}
153 
154 	trace_mm_compaction_deferred(zone, order);
155 
156 	return true;
157 }
158 
159 /*
160  * Update defer tracking counters after successful compaction of given order,
161  * which means an allocation either succeeded (alloc_success == true) or is
162  * expected to succeed.
163  */
164 void compaction_defer_reset(struct zone *zone, int order,
165 		bool alloc_success)
166 {
167 	if (alloc_success) {
168 		zone->compact_considered = 0;
169 		zone->compact_defer_shift = 0;
170 	}
171 	if (order >= zone->compact_order_failed)
172 		zone->compact_order_failed = order + 1;
173 
174 	trace_mm_compaction_defer_reset(zone, order);
175 }
176 
177 /* Returns true if restarting compaction after many failures */
178 static bool compaction_restarting(struct zone *zone, int order)
179 {
180 	if (order < zone->compact_order_failed)
181 		return false;
182 
183 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
184 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
185 }
186 
187 /* Returns true if the pageblock should be scanned for pages to isolate. */
188 static inline bool isolation_suitable(struct compact_control *cc,
189 					struct page *page)
190 {
191 	if (cc->ignore_skip_hint)
192 		return true;
193 
194 	return !get_pageblock_skip(page);
195 }
196 
197 static void reset_cached_positions(struct zone *zone)
198 {
199 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
200 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
201 	zone->compact_cached_free_pfn =
202 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
203 }
204 
205 #ifdef CONFIG_SPARSEMEM
206 /*
207  * If the PFN falls into an offline section, return the start PFN of the
208  * next online section. If the PFN falls into an online section or if
209  * there is no next online section, return 0.
210  */
211 static unsigned long skip_offline_sections(unsigned long start_pfn)
212 {
213 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
214 
215 	if (online_section_nr(start_nr))
216 		return 0;
217 
218 	while (++start_nr <= __highest_present_section_nr) {
219 		if (online_section_nr(start_nr))
220 			return section_nr_to_pfn(start_nr);
221 	}
222 
223 	return 0;
224 }
225 
226 /*
227  * If the PFN falls into an offline section, return the end PFN of the
228  * next online section in reverse. If the PFN falls into an online section
229  * or if there is no next online section in reverse, return 0.
230  */
231 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
232 {
233 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
234 
235 	if (!start_nr || online_section_nr(start_nr))
236 		return 0;
237 
238 	while (start_nr-- > 0) {
239 		if (online_section_nr(start_nr))
240 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
241 	}
242 
243 	return 0;
244 }
245 #else
246 static unsigned long skip_offline_sections(unsigned long start_pfn)
247 {
248 	return 0;
249 }
250 
251 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
252 {
253 	return 0;
254 }
255 #endif
256 
257 /*
258  * Compound pages of >= pageblock_order should consistently be skipped until
259  * released. It is always pointless to compact pages of such order (if they are
260  * migratable), and the pageblocks they occupy cannot contain any free pages.
261  */
262 static bool pageblock_skip_persistent(struct page *page)
263 {
264 	if (!PageCompound(page))
265 		return false;
266 
267 	page = compound_head(page);
268 
269 	if (compound_order(page) >= pageblock_order)
270 		return true;
271 
272 	return false;
273 }
274 
275 static bool
276 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
277 							bool check_target)
278 {
279 	struct page *page = pfn_to_online_page(pfn);
280 	struct page *block_page;
281 	struct page *end_page;
282 	unsigned long block_pfn;
283 
284 	if (!page)
285 		return false;
286 	if (zone != page_zone(page))
287 		return false;
288 	if (pageblock_skip_persistent(page))
289 		return false;
290 
291 	/*
292 	 * If skip is already cleared do no further checking once the
293 	 * restart points have been set.
294 	 */
295 	if (check_source && check_target && !get_pageblock_skip(page))
296 		return true;
297 
298 	/*
299 	 * If clearing skip for the target scanner, do not select a
300 	 * non-movable pageblock as the starting point.
301 	 */
302 	if (!check_source && check_target &&
303 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
304 		return false;
305 
306 	/* Ensure the start of the pageblock or zone is online and valid */
307 	block_pfn = pageblock_start_pfn(pfn);
308 	block_pfn = max(block_pfn, zone->zone_start_pfn);
309 	block_page = pfn_to_online_page(block_pfn);
310 	if (block_page) {
311 		page = block_page;
312 		pfn = block_pfn;
313 	}
314 
315 	/* Ensure the end of the pageblock or zone is online and valid */
316 	block_pfn = pageblock_end_pfn(pfn) - 1;
317 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
318 	end_page = pfn_to_online_page(block_pfn);
319 	if (!end_page)
320 		return false;
321 
322 	/*
323 	 * Only clear the hint if a sample indicates there is either a
324 	 * free page or an LRU page in the block. One or other condition
325 	 * is necessary for the block to be a migration source/target.
326 	 */
327 	do {
328 		if (check_source && PageLRU(page)) {
329 			clear_pageblock_skip(page);
330 			return true;
331 		}
332 
333 		if (check_target && PageBuddy(page)) {
334 			clear_pageblock_skip(page);
335 			return true;
336 		}
337 
338 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
339 	} while (page <= end_page);
340 
341 	return false;
342 }
343 
344 /*
345  * This function is called to clear all cached information on pageblocks that
346  * should be skipped for page isolation when the migrate and free page scanner
347  * meet.
348  */
349 static void __reset_isolation_suitable(struct zone *zone)
350 {
351 	unsigned long migrate_pfn = zone->zone_start_pfn;
352 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
353 	unsigned long reset_migrate = free_pfn;
354 	unsigned long reset_free = migrate_pfn;
355 	bool source_set = false;
356 	bool free_set = false;
357 
358 	/* Only flush if a full compaction finished recently */
359 	if (!zone->compact_blockskip_flush)
360 		return;
361 
362 	zone->compact_blockskip_flush = false;
363 
364 	/*
365 	 * Walk the zone and update pageblock skip information. Source looks
366 	 * for PageLRU while target looks for PageBuddy. When the scanner
367 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
368 	 * is suitable as both source and target.
369 	 */
370 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
371 					free_pfn -= pageblock_nr_pages) {
372 		cond_resched();
373 
374 		/* Update the migrate PFN */
375 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
376 		    migrate_pfn < reset_migrate) {
377 			source_set = true;
378 			reset_migrate = migrate_pfn;
379 			zone->compact_init_migrate_pfn = reset_migrate;
380 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
381 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
382 		}
383 
384 		/* Update the free PFN */
385 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
386 		    free_pfn > reset_free) {
387 			free_set = true;
388 			reset_free = free_pfn;
389 			zone->compact_init_free_pfn = reset_free;
390 			zone->compact_cached_free_pfn = reset_free;
391 		}
392 	}
393 
394 	/* Leave no distance if no suitable block was reset */
395 	if (reset_migrate >= reset_free) {
396 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
397 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
398 		zone->compact_cached_free_pfn = free_pfn;
399 	}
400 }
401 
402 void reset_isolation_suitable(pg_data_t *pgdat)
403 {
404 	int zoneid;
405 
406 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
407 		struct zone *zone = &pgdat->node_zones[zoneid];
408 		if (!populated_zone(zone))
409 			continue;
410 
411 		__reset_isolation_suitable(zone);
412 	}
413 }
414 
415 /*
416  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
417  * locks are not required for read/writers. Returns true if it was already set.
418  */
419 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
420 {
421 	bool skip;
422 
423 	/* Do not update if skip hint is being ignored */
424 	if (cc->ignore_skip_hint)
425 		return false;
426 
427 	skip = get_pageblock_skip(page);
428 	if (!skip && !cc->no_set_skip_hint)
429 		set_pageblock_skip(page);
430 
431 	return skip;
432 }
433 
434 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
435 {
436 	struct zone *zone = cc->zone;
437 
438 	/* Set for isolation rather than compaction */
439 	if (cc->no_set_skip_hint)
440 		return;
441 
442 	pfn = pageblock_end_pfn(pfn);
443 
444 	/* Update where async and sync compaction should restart */
445 	if (pfn > zone->compact_cached_migrate_pfn[0])
446 		zone->compact_cached_migrate_pfn[0] = pfn;
447 	if (cc->mode != MIGRATE_ASYNC &&
448 	    pfn > zone->compact_cached_migrate_pfn[1])
449 		zone->compact_cached_migrate_pfn[1] = pfn;
450 }
451 
452 /*
453  * If no pages were isolated then mark this pageblock to be skipped in the
454  * future. The information is later cleared by __reset_isolation_suitable().
455  */
456 static void update_pageblock_skip(struct compact_control *cc,
457 			struct page *page, unsigned long pfn)
458 {
459 	struct zone *zone = cc->zone;
460 
461 	if (cc->no_set_skip_hint)
462 		return;
463 
464 	set_pageblock_skip(page);
465 
466 	if (pfn < zone->compact_cached_free_pfn)
467 		zone->compact_cached_free_pfn = pfn;
468 }
469 #else
470 static inline bool isolation_suitable(struct compact_control *cc,
471 					struct page *page)
472 {
473 	return true;
474 }
475 
476 static inline bool pageblock_skip_persistent(struct page *page)
477 {
478 	return false;
479 }
480 
481 static inline void update_pageblock_skip(struct compact_control *cc,
482 			struct page *page, unsigned long pfn)
483 {
484 }
485 
486 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
487 {
488 }
489 
490 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
491 {
492 	return false;
493 }
494 #endif /* CONFIG_COMPACTION */
495 
496 /*
497  * Compaction requires the taking of some coarse locks that are potentially
498  * very heavily contended. For async compaction, trylock and record if the
499  * lock is contended. The lock will still be acquired but compaction will
500  * abort when the current block is finished regardless of success rate.
501  * Sync compaction acquires the lock.
502  *
503  * Always returns true which makes it easier to track lock state in callers.
504  */
505 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
506 						struct compact_control *cc)
507 	__acquires(lock)
508 {
509 	/* Track if the lock is contended in async mode */
510 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
511 		if (spin_trylock_irqsave(lock, *flags))
512 			return true;
513 
514 		cc->contended = true;
515 	}
516 
517 	spin_lock_irqsave(lock, *flags);
518 	return true;
519 }
520 
521 /*
522  * Compaction requires the taking of some coarse locks that are potentially
523  * very heavily contended. The lock should be periodically unlocked to avoid
524  * having disabled IRQs for a long time, even when there is nobody waiting on
525  * the lock. It might also be that allowing the IRQs will result in
526  * need_resched() becoming true. If scheduling is needed, compaction schedules.
527  * Either compaction type will also abort if a fatal signal is pending.
528  * In either case if the lock was locked, it is dropped and not regained.
529  *
530  * Returns true if compaction should abort due to fatal signal pending.
531  * Returns false when compaction can continue.
532  */
533 static bool compact_unlock_should_abort(spinlock_t *lock,
534 		unsigned long flags, bool *locked, struct compact_control *cc)
535 {
536 	if (*locked) {
537 		spin_unlock_irqrestore(lock, flags);
538 		*locked = false;
539 	}
540 
541 	if (fatal_signal_pending(current)) {
542 		cc->contended = true;
543 		return true;
544 	}
545 
546 	cond_resched();
547 
548 	return false;
549 }
550 
551 /*
552  * Isolate free pages onto a private freelist. If @strict is true, will abort
553  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
554  * (even though it may still end up isolating some pages).
555  */
556 static unsigned long isolate_freepages_block(struct compact_control *cc,
557 				unsigned long *start_pfn,
558 				unsigned long end_pfn,
559 				struct list_head *freelist,
560 				unsigned int stride,
561 				bool strict)
562 {
563 	int nr_scanned = 0, total_isolated = 0;
564 	struct page *page;
565 	unsigned long flags = 0;
566 	bool locked = false;
567 	unsigned long blockpfn = *start_pfn;
568 	unsigned int order;
569 
570 	/* Strict mode is for isolation, speed is secondary */
571 	if (strict)
572 		stride = 1;
573 
574 	page = pfn_to_page(blockpfn);
575 
576 	/* Isolate free pages. */
577 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
578 		int isolated;
579 
580 		/*
581 		 * Periodically drop the lock (if held) regardless of its
582 		 * contention, to give chance to IRQs. Abort if fatal signal
583 		 * pending.
584 		 */
585 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
586 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
587 								&locked, cc))
588 			break;
589 
590 		nr_scanned++;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if ((order <= MAX_PAGE_ORDER) &&
602 			    (blockpfn + (1UL << order) <= end_pfn)) {
603 				blockpfn += (1UL << order) - 1;
604 				page += (1UL << order) - 1;
605 				nr_scanned += (1UL << order) - 1;
606 			}
607 
608 			goto isolate_fail;
609 		}
610 
611 		if (!PageBuddy(page))
612 			goto isolate_fail;
613 
614 		/* If we already hold the lock, we can skip some rechecking. */
615 		if (!locked) {
616 			locked = compact_lock_irqsave(&cc->zone->lock,
617 								&flags, cc);
618 
619 			/* Recheck this is a buddy page under lock */
620 			if (!PageBuddy(page))
621 				goto isolate_fail;
622 		}
623 
624 		/* Found a free page, will break it into order-0 pages */
625 		order = buddy_order(page);
626 		isolated = __isolate_free_page(page, order);
627 		if (!isolated)
628 			break;
629 		set_page_private(page, order);
630 
631 		nr_scanned += isolated - 1;
632 		total_isolated += isolated;
633 		cc->nr_freepages += isolated;
634 		list_add_tail(&page->lru, &freelist[order]);
635 
636 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
637 			blockpfn += isolated;
638 			break;
639 		}
640 		/* Advance to the end of split page */
641 		blockpfn += isolated - 1;
642 		page += isolated - 1;
643 		continue;
644 
645 isolate_fail:
646 		if (strict)
647 			break;
648 
649 	}
650 
651 	if (locked)
652 		spin_unlock_irqrestore(&cc->zone->lock, flags);
653 
654 	/*
655 	 * Be careful to not go outside of the pageblock.
656 	 */
657 	if (unlikely(blockpfn > end_pfn))
658 		blockpfn = end_pfn;
659 
660 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 					nr_scanned, total_isolated);
662 
663 	/* Record how far we have got within the block */
664 	*start_pfn = blockpfn;
665 
666 	/*
667 	 * If strict isolation is requested by CMA then check that all the
668 	 * pages requested were isolated. If there were any failures, 0 is
669 	 * returned and CMA will fail.
670 	 */
671 	if (strict && blockpfn < end_pfn)
672 		total_isolated = 0;
673 
674 	cc->total_free_scanned += nr_scanned;
675 	if (total_isolated)
676 		count_compact_events(COMPACTISOLATED, total_isolated);
677 	return total_isolated;
678 }
679 
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero. cc->freepages[] are empty.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page). cc->freepages[] contain free pages isolated.
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696 			unsigned long start_pfn, unsigned long end_pfn)
697 {
698 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699 	int order;
700 
701 	for (order = 0; order < NR_PAGE_ORDERS; order++)
702 		INIT_LIST_HEAD(&cc->freepages[order]);
703 
704 	pfn = start_pfn;
705 	block_start_pfn = pageblock_start_pfn(pfn);
706 	if (block_start_pfn < cc->zone->zone_start_pfn)
707 		block_start_pfn = cc->zone->zone_start_pfn;
708 	block_end_pfn = pageblock_end_pfn(pfn);
709 
710 	for (; pfn < end_pfn; pfn += isolated,
711 				block_start_pfn = block_end_pfn,
712 				block_end_pfn += pageblock_nr_pages) {
713 		/* Protect pfn from changing by isolate_freepages_block */
714 		unsigned long isolate_start_pfn = pfn;
715 
716 		/*
717 		 * pfn could pass the block_end_pfn if isolated freepage
718 		 * is more than pageblock order. In this case, we adjust
719 		 * scanning range to right one.
720 		 */
721 		if (pfn >= block_end_pfn) {
722 			block_start_pfn = pageblock_start_pfn(pfn);
723 			block_end_pfn = pageblock_end_pfn(pfn);
724 		}
725 
726 		block_end_pfn = min(block_end_pfn, end_pfn);
727 
728 		if (!pageblock_pfn_to_page(block_start_pfn,
729 					block_end_pfn, cc->zone))
730 			break;
731 
732 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733 					block_end_pfn, cc->freepages, 0, true);
734 
735 		/*
736 		 * In strict mode, isolate_freepages_block() returns 0 if
737 		 * there are any holes in the block (ie. invalid PFNs or
738 		 * non-free pages).
739 		 */
740 		if (!isolated)
741 			break;
742 
743 		/*
744 		 * If we managed to isolate pages, it is always (1 << n) *
745 		 * pageblock_nr_pages for some non-negative n.  (Max order
746 		 * page may span two pageblocks).
747 		 */
748 	}
749 
750 	if (pfn < end_pfn) {
751 		/* Loop terminated early, cleanup. */
752 		release_free_list(cc->freepages);
753 		return 0;
754 	}
755 
756 	/* We don't use freelists for anything. */
757 	return pfn;
758 }
759 
760 /* Similar to reclaim, but different enough that they don't share logic */
761 static bool too_many_isolated(struct compact_control *cc)
762 {
763 	pg_data_t *pgdat = cc->zone->zone_pgdat;
764 	bool too_many;
765 
766 	unsigned long active, inactive, isolated;
767 
768 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769 			node_page_state(pgdat, NR_INACTIVE_ANON);
770 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771 			node_page_state(pgdat, NR_ACTIVE_ANON);
772 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773 			node_page_state(pgdat, NR_ISOLATED_ANON);
774 
775 	/*
776 	 * Allow GFP_NOFS to isolate past the limit set for regular
777 	 * compaction runs. This prevents an ABBA deadlock when other
778 	 * compactors have already isolated to the limit, but are
779 	 * blocked on filesystem locks held by the GFP_NOFS thread.
780 	 */
781 	if (cc->gfp_mask & __GFP_FS) {
782 		inactive >>= 3;
783 		active >>= 3;
784 	}
785 
786 	too_many = isolated > (inactive + active) / 2;
787 	if (!too_many)
788 		wake_throttle_isolated(pgdat);
789 
790 	return too_many;
791 }
792 
793 /**
794  * skip_isolation_on_order() - determine when to skip folio isolation based on
795  *			       folio order and compaction target order
796  * @order:		to-be-isolated folio order
797  * @target_order:	compaction target order
798  *
799  * This avoids unnecessary folio isolations during compaction.
800  */
801 static bool skip_isolation_on_order(int order, int target_order)
802 {
803 	/*
804 	 * Unless we are performing global compaction (i.e.,
805 	 * is_via_compact_memory), skip any folios that are larger than the
806 	 * target order: we wouldn't be here if we'd have a free folio with
807 	 * the desired target_order, so migrating this folio would likely fail
808 	 * later.
809 	 */
810 	if (!is_via_compact_memory(target_order) && order >= target_order)
811 		return true;
812 	/*
813 	 * We limit memory compaction to pageblocks and won't try
814 	 * creating free blocks of memory that are larger than that.
815 	 */
816 	return order >= pageblock_order;
817 }
818 
819 /**
820  * isolate_migratepages_block() - isolate all migrate-able pages within
821  *				  a single pageblock
822  * @cc:		Compaction control structure.
823  * @low_pfn:	The first PFN to isolate
824  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
825  * @mode:	Isolation mode to be used.
826  *
827  * Isolate all pages that can be migrated from the range specified by
828  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830  * -ENOMEM in case we could not allocate a page, or 0.
831  * cc->migrate_pfn will contain the next pfn to scan.
832  *
833  * The pages are isolated on cc->migratepages list (not required to be empty),
834  * and cc->nr_migratepages is updated accordingly.
835  */
836 static int
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 			unsigned long end_pfn, isolate_mode_t mode)
839 {
840 	pg_data_t *pgdat = cc->zone->zone_pgdat;
841 	unsigned long nr_scanned = 0, nr_isolated = 0;
842 	struct lruvec *lruvec;
843 	unsigned long flags = 0;
844 	struct lruvec *locked = NULL;
845 	struct folio *folio = NULL;
846 	struct page *page = NULL, *valid_page = NULL;
847 	struct address_space *mapping;
848 	unsigned long start_pfn = low_pfn;
849 	bool skip_on_failure = false;
850 	unsigned long next_skip_pfn = 0;
851 	bool skip_updated = false;
852 	int ret = 0;
853 
854 	cc->migrate_pfn = low_pfn;
855 
856 	/*
857 	 * Ensure that there are not too many pages isolated from the LRU
858 	 * list by either parallel reclaimers or compaction. If there are,
859 	 * delay for some time until fewer pages are isolated
860 	 */
861 	while (unlikely(too_many_isolated(cc))) {
862 		/* stop isolation if there are still pages not migrated */
863 		if (cc->nr_migratepages)
864 			return -EAGAIN;
865 
866 		/* async migration should just abort */
867 		if (cc->mode == MIGRATE_ASYNC)
868 			return -EAGAIN;
869 
870 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871 
872 		if (fatal_signal_pending(current))
873 			return -EINTR;
874 	}
875 
876 	cond_resched();
877 
878 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 		skip_on_failure = true;
880 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 	}
882 
883 	/* Time to isolate some pages for migration */
884 	for (; low_pfn < end_pfn; low_pfn++) {
885 		bool is_dirty, is_unevictable;
886 
887 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 			/*
889 			 * We have isolated all migration candidates in the
890 			 * previous order-aligned block, and did not skip it due
891 			 * to failure. We should migrate the pages now and
892 			 * hopefully succeed compaction.
893 			 */
894 			if (nr_isolated)
895 				break;
896 
897 			/*
898 			 * We failed to isolate in the previous order-aligned
899 			 * block. Set the new boundary to the end of the
900 			 * current block. Note we can't simply increase
901 			 * next_skip_pfn by 1 << order, as low_pfn might have
902 			 * been incremented by a higher number due to skipping
903 			 * a compound or a high-order buddy page in the
904 			 * previous loop iteration.
905 			 */
906 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 		}
908 
909 		/*
910 		 * Periodically drop the lock (if held) regardless of its
911 		 * contention, to give chance to IRQs. Abort completely if
912 		 * a fatal signal is pending.
913 		 */
914 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 			if (locked) {
916 				unlock_page_lruvec_irqrestore(locked, flags);
917 				locked = NULL;
918 			}
919 
920 			if (fatal_signal_pending(current)) {
921 				cc->contended = true;
922 				ret = -EINTR;
923 
924 				goto fatal_pending;
925 			}
926 
927 			cond_resched();
928 		}
929 
930 		nr_scanned++;
931 
932 		page = pfn_to_page(low_pfn);
933 
934 		/*
935 		 * Check if the pageblock has already been marked skipped.
936 		 * Only the first PFN is checked as the caller isolates
937 		 * COMPACT_CLUSTER_MAX at a time so the second call must
938 		 * not falsely conclude that the block should be skipped.
939 		 */
940 		if (!valid_page && (pageblock_aligned(low_pfn) ||
941 				    low_pfn == cc->zone->zone_start_pfn)) {
942 			if (!isolation_suitable(cc, page)) {
943 				low_pfn = end_pfn;
944 				folio = NULL;
945 				goto isolate_abort;
946 			}
947 			valid_page = page;
948 		}
949 
950 		if (PageHuge(page)) {
951 			const unsigned int order = compound_order(page);
952 			/*
953 			 * skip hugetlbfs if we are not compacting for pages
954 			 * bigger than its order. THPs and other compound pages
955 			 * are handled below.
956 			 */
957 			if (!cc->alloc_contig) {
958 
959 				if (order <= MAX_PAGE_ORDER) {
960 					low_pfn += (1UL << order) - 1;
961 					nr_scanned += (1UL << order) - 1;
962 				}
963 				goto isolate_fail;
964 			}
965 			/* for alloc_contig case */
966 			if (locked) {
967 				unlock_page_lruvec_irqrestore(locked, flags);
968 				locked = NULL;
969 			}
970 
971 			folio = page_folio(page);
972 			ret = isolate_or_dissolve_huge_folio(folio, &cc->migratepages);
973 
974 			/*
975 			 * Fail isolation in case isolate_or_dissolve_huge_folio()
976 			 * reports an error. In case of -ENOMEM, abort right away.
977 			 */
978 			if (ret < 0) {
979 				 /* Do not report -EBUSY down the chain */
980 				if (ret == -EBUSY)
981 					ret = 0;
982 				low_pfn += (1UL << order) - 1;
983 				nr_scanned += (1UL << order) - 1;
984 				goto isolate_fail;
985 			}
986 
987 			if (folio_test_hugetlb(folio)) {
988 				/*
989 				 * Hugepage was successfully isolated and placed
990 				 * on the cc->migratepages list.
991 				 */
992 				low_pfn += folio_nr_pages(folio) - 1;
993 				goto isolate_success_no_list;
994 			}
995 
996 			/*
997 			 * Ok, the hugepage was dissolved. Now these pages are
998 			 * Buddy and cannot be re-allocated because they are
999 			 * isolated. Fall-through as the check below handles
1000 			 * Buddy pages.
1001 			 */
1002 		}
1003 
1004 		/*
1005 		 * Skip if free. We read page order here without zone lock
1006 		 * which is generally unsafe, but the race window is small and
1007 		 * the worst thing that can happen is that we skip some
1008 		 * potential isolation targets.
1009 		 */
1010 		if (PageBuddy(page)) {
1011 			unsigned long freepage_order = buddy_order_unsafe(page);
1012 
1013 			/*
1014 			 * Without lock, we cannot be sure that what we got is
1015 			 * a valid page order. Consider only values in the
1016 			 * valid order range to prevent low_pfn overflow.
1017 			 */
1018 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1019 				low_pfn += (1UL << freepage_order) - 1;
1020 				nr_scanned += (1UL << freepage_order) - 1;
1021 			}
1022 			continue;
1023 		}
1024 
1025 		/*
1026 		 * Regardless of being on LRU, compound pages such as THP
1027 		 * (hugetlbfs is handled above) are not to be compacted unless
1028 		 * we are attempting an allocation larger than the compound
1029 		 * page size. We can potentially save a lot of iterations if we
1030 		 * skip them at once. The check is racy, but we can consider
1031 		 * only valid values and the only danger is skipping too much.
1032 		 */
1033 		if (PageCompound(page) && !cc->alloc_contig) {
1034 			const unsigned int order = compound_order(page);
1035 
1036 			/* Skip based on page order and compaction target order. */
1037 			if (skip_isolation_on_order(order, cc->order)) {
1038 				if (order <= MAX_PAGE_ORDER) {
1039 					low_pfn += (1UL << order) - 1;
1040 					nr_scanned += (1UL << order) - 1;
1041 				}
1042 				goto isolate_fail;
1043 			}
1044 		}
1045 
1046 		/*
1047 		 * Check may be lockless but that's ok as we recheck later.
1048 		 * It's possible to migrate LRU and non-lru movable pages.
1049 		 * Skip any other type of page
1050 		 */
1051 		if (!PageLRU(page)) {
1052 			/* Isolation code will deal with any races. */
1053 			if (unlikely(page_has_movable_ops(page)) &&
1054 			    !PageMovableOpsIsolated(page)) {
1055 				if (locked) {
1056 					unlock_page_lruvec_irqrestore(locked, flags);
1057 					locked = NULL;
1058 				}
1059 
1060 				if (isolate_movable_ops_page(page, mode)) {
1061 					folio = page_folio(page);
1062 					goto isolate_success;
1063 				}
1064 			}
1065 
1066 			goto isolate_fail;
1067 		}
1068 
1069 		/*
1070 		 * Be careful not to clear PageLRU until after we're
1071 		 * sure the page is not being freed elsewhere -- the
1072 		 * page release code relies on it.
1073 		 */
1074 		folio = folio_get_nontail_page(page);
1075 		if (unlikely(!folio))
1076 			goto isolate_fail;
1077 
1078 		/*
1079 		 * Migration will fail if an anonymous page is pinned in memory,
1080 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1081 		 * admittedly racy check.
1082 		 */
1083 		mapping = folio_mapping(folio);
1084 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1085 			goto isolate_fail_put;
1086 
1087 		/*
1088 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1089 		 * because those do not depend on fs locks.
1090 		 */
1091 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1092 			goto isolate_fail_put;
1093 
1094 		/* Only take pages on LRU: a check now makes later tests safe */
1095 		if (!folio_test_lru(folio))
1096 			goto isolate_fail_put;
1097 
1098 		is_unevictable = folio_test_unevictable(folio);
1099 
1100 		/* Compaction might skip unevictable pages but CMA takes them */
1101 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1102 			goto isolate_fail_put;
1103 
1104 		/*
1105 		 * To minimise LRU disruption, the caller can indicate with
1106 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1107 		 * it will be able to migrate without blocking - clean pages
1108 		 * for the most part.  PageWriteback would require blocking.
1109 		 */
1110 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1111 			goto isolate_fail_put;
1112 
1113 		is_dirty = folio_test_dirty(folio);
1114 
1115 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1116 		    (mapping && is_unevictable)) {
1117 			bool migrate_dirty = true;
1118 			bool is_inaccessible;
1119 
1120 			/*
1121 			 * Only folios without mappings or that have
1122 			 * a ->migrate_folio callback are possible to migrate
1123 			 * without blocking.
1124 			 *
1125 			 * Folios from inaccessible mappings are not migratable.
1126 			 *
1127 			 * However, we can be racing with truncation, which can
1128 			 * free the mapping that we need to check. Truncation
1129 			 * holds the folio lock until after the folio is removed
1130 			 * from the page so holding it ourselves is sufficient.
1131 			 *
1132 			 * To avoid locking the folio just to check inaccessible,
1133 			 * assume every inaccessible folio is also unevictable,
1134 			 * which is a cheaper test.  If our assumption goes
1135 			 * wrong, it's not a correctness bug, just potentially
1136 			 * wasted cycles.
1137 			 */
1138 			if (!folio_trylock(folio))
1139 				goto isolate_fail_put;
1140 
1141 			mapping = folio_mapping(folio);
1142 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1143 				migrate_dirty = !mapping ||
1144 						mapping->a_ops->migrate_folio;
1145 			}
1146 			is_inaccessible = mapping && mapping_inaccessible(mapping);
1147 			folio_unlock(folio);
1148 			if (!migrate_dirty || is_inaccessible)
1149 				goto isolate_fail_put;
1150 		}
1151 
1152 		/* Try isolate the folio */
1153 		if (!folio_test_clear_lru(folio))
1154 			goto isolate_fail_put;
1155 
1156 		lruvec = folio_lruvec(folio);
1157 
1158 		/* If we already hold the lock, we can skip some rechecking */
1159 		if (lruvec != locked) {
1160 			if (locked)
1161 				unlock_page_lruvec_irqrestore(locked, flags);
1162 
1163 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1164 			locked = lruvec;
1165 
1166 			lruvec_memcg_debug(lruvec, folio);
1167 
1168 			/*
1169 			 * Try get exclusive access under lock. If marked for
1170 			 * skip, the scan is aborted unless the current context
1171 			 * is a rescan to reach the end of the pageblock.
1172 			 */
1173 			if (!skip_updated && valid_page) {
1174 				skip_updated = true;
1175 				if (test_and_set_skip(cc, valid_page) &&
1176 				    !cc->finish_pageblock) {
1177 					low_pfn = end_pfn;
1178 					goto isolate_abort;
1179 				}
1180 			}
1181 
1182 			/*
1183 			 * Check LRU folio order under the lock
1184 			 */
1185 			if (unlikely(skip_isolation_on_order(folio_order(folio),
1186 							     cc->order) &&
1187 				     !cc->alloc_contig)) {
1188 				low_pfn += folio_nr_pages(folio) - 1;
1189 				nr_scanned += folio_nr_pages(folio) - 1;
1190 				folio_set_lru(folio);
1191 				goto isolate_fail_put;
1192 			}
1193 		}
1194 
1195 		/* The folio is taken off the LRU */
1196 		if (folio_test_large(folio))
1197 			low_pfn += folio_nr_pages(folio) - 1;
1198 
1199 		/* Successfully isolated */
1200 		lruvec_del_folio(lruvec, folio);
1201 		node_stat_mod_folio(folio,
1202 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1203 				folio_nr_pages(folio));
1204 
1205 isolate_success:
1206 		list_add(&folio->lru, &cc->migratepages);
1207 isolate_success_no_list:
1208 		cc->nr_migratepages += folio_nr_pages(folio);
1209 		nr_isolated += folio_nr_pages(folio);
1210 		nr_scanned += folio_nr_pages(folio) - 1;
1211 
1212 		/*
1213 		 * Avoid isolating too much unless this block is being
1214 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1215 		 * or a lock is contended. For contention, isolate quickly to
1216 		 * potentially remove one source of contention.
1217 		 */
1218 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1219 		    !cc->finish_pageblock && !cc->contended) {
1220 			++low_pfn;
1221 			break;
1222 		}
1223 
1224 		continue;
1225 
1226 isolate_fail_put:
1227 		/* Avoid potential deadlock in freeing page under lru_lock */
1228 		if (locked) {
1229 			unlock_page_lruvec_irqrestore(locked, flags);
1230 			locked = NULL;
1231 		}
1232 		folio_put(folio);
1233 
1234 isolate_fail:
1235 		if (!skip_on_failure && ret != -ENOMEM)
1236 			continue;
1237 
1238 		/*
1239 		 * We have isolated some pages, but then failed. Release them
1240 		 * instead of migrating, as we cannot form the cc->order buddy
1241 		 * page anyway.
1242 		 */
1243 		if (nr_isolated) {
1244 			if (locked) {
1245 				unlock_page_lruvec_irqrestore(locked, flags);
1246 				locked = NULL;
1247 			}
1248 			putback_movable_pages(&cc->migratepages);
1249 			cc->nr_migratepages = 0;
1250 			nr_isolated = 0;
1251 		}
1252 
1253 		if (low_pfn < next_skip_pfn) {
1254 			low_pfn = next_skip_pfn - 1;
1255 			/*
1256 			 * The check near the loop beginning would have updated
1257 			 * next_skip_pfn too, but this is a bit simpler.
1258 			 */
1259 			next_skip_pfn += 1UL << cc->order;
1260 		}
1261 
1262 		if (ret == -ENOMEM)
1263 			break;
1264 	}
1265 
1266 	/*
1267 	 * The PageBuddy() check could have potentially brought us outside
1268 	 * the range to be scanned.
1269 	 */
1270 	if (unlikely(low_pfn > end_pfn))
1271 		low_pfn = end_pfn;
1272 
1273 	folio = NULL;
1274 
1275 isolate_abort:
1276 	if (locked)
1277 		unlock_page_lruvec_irqrestore(locked, flags);
1278 	if (folio) {
1279 		folio_set_lru(folio);
1280 		folio_put(folio);
1281 	}
1282 
1283 	/*
1284 	 * Update the cached scanner pfn once the pageblock has been scanned.
1285 	 * Pages will either be migrated in which case there is no point
1286 	 * scanning in the near future or migration failed in which case the
1287 	 * failure reason may persist. The block is marked for skipping if
1288 	 * there were no pages isolated in the block or if the block is
1289 	 * rescanned twice in a row.
1290 	 */
1291 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1292 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1293 			set_pageblock_skip(valid_page);
1294 		update_cached_migrate(cc, low_pfn);
1295 	}
1296 
1297 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1298 						nr_scanned, nr_isolated);
1299 
1300 fatal_pending:
1301 	cc->total_migrate_scanned += nr_scanned;
1302 	if (nr_isolated)
1303 		count_compact_events(COMPACTISOLATED, nr_isolated);
1304 
1305 	cc->migrate_pfn = low_pfn;
1306 
1307 	return ret;
1308 }
1309 
1310 /**
1311  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1312  * @cc:        Compaction control structure.
1313  * @start_pfn: The first PFN to start isolating.
1314  * @end_pfn:   The one-past-last PFN.
1315  *
1316  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1317  * in case we could not allocate a page, or 0.
1318  */
1319 int
1320 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1321 							unsigned long end_pfn)
1322 {
1323 	unsigned long pfn, block_start_pfn, block_end_pfn;
1324 	int ret = 0;
1325 
1326 	/* Scan block by block. First and last block may be incomplete */
1327 	pfn = start_pfn;
1328 	block_start_pfn = pageblock_start_pfn(pfn);
1329 	if (block_start_pfn < cc->zone->zone_start_pfn)
1330 		block_start_pfn = cc->zone->zone_start_pfn;
1331 	block_end_pfn = pageblock_end_pfn(pfn);
1332 
1333 	for (; pfn < end_pfn; pfn = block_end_pfn,
1334 				block_start_pfn = block_end_pfn,
1335 				block_end_pfn += pageblock_nr_pages) {
1336 
1337 		block_end_pfn = min(block_end_pfn, end_pfn);
1338 
1339 		if (!pageblock_pfn_to_page(block_start_pfn,
1340 					block_end_pfn, cc->zone))
1341 			continue;
1342 
1343 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1344 						 ISOLATE_UNEVICTABLE);
1345 
1346 		if (ret)
1347 			break;
1348 
1349 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1350 			break;
1351 	}
1352 
1353 	return ret;
1354 }
1355 
1356 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1357 #ifdef CONFIG_COMPACTION
1358 
1359 static bool suitable_migration_source(struct compact_control *cc,
1360 							struct page *page)
1361 {
1362 	int block_mt;
1363 
1364 	if (pageblock_skip_persistent(page))
1365 		return false;
1366 
1367 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1368 		return true;
1369 
1370 	block_mt = get_pageblock_migratetype(page);
1371 
1372 	if (cc->migratetype == MIGRATE_MOVABLE)
1373 		return is_migrate_movable(block_mt);
1374 	else
1375 		return block_mt == cc->migratetype;
1376 }
1377 
1378 /* Returns true if the page is within a block suitable for migration to */
1379 static bool suitable_migration_target(struct compact_control *cc,
1380 							struct page *page)
1381 {
1382 	/* If the page is a large free page, then disallow migration */
1383 	if (PageBuddy(page)) {
1384 		int order = cc->order > 0 ? cc->order : pageblock_order;
1385 
1386 		/*
1387 		 * We are checking page_order without zone->lock taken. But
1388 		 * the only small danger is that we skip a potentially suitable
1389 		 * pageblock, so it's not worth to check order for valid range.
1390 		 */
1391 		if (buddy_order_unsafe(page) >= order)
1392 			return false;
1393 	}
1394 
1395 	if (cc->ignore_block_suitable)
1396 		return true;
1397 
1398 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1399 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1400 		return true;
1401 
1402 	/* Otherwise skip the block */
1403 	return false;
1404 }
1405 
1406 static inline unsigned int
1407 freelist_scan_limit(struct compact_control *cc)
1408 {
1409 	unsigned short shift = BITS_PER_LONG - 1;
1410 
1411 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1412 }
1413 
1414 /*
1415  * Test whether the free scanner has reached the same or lower pageblock than
1416  * the migration scanner, and compaction should thus terminate.
1417  */
1418 static inline bool compact_scanners_met(struct compact_control *cc)
1419 {
1420 	return (cc->free_pfn >> pageblock_order)
1421 		<= (cc->migrate_pfn >> pageblock_order);
1422 }
1423 
1424 /*
1425  * Used when scanning for a suitable migration target which scans freelists
1426  * in reverse. Reorders the list such as the unscanned pages are scanned
1427  * first on the next iteration of the free scanner
1428  */
1429 static void
1430 move_freelist_head(struct list_head *freelist, struct page *freepage)
1431 {
1432 	LIST_HEAD(sublist);
1433 
1434 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1435 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1436 		list_splice_tail(&sublist, freelist);
1437 	}
1438 }
1439 
1440 /*
1441  * Similar to move_freelist_head except used by the migration scanner
1442  * when scanning forward. It's possible for these list operations to
1443  * move against each other if they search the free list exactly in
1444  * lockstep.
1445  */
1446 static void
1447 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1448 {
1449 	LIST_HEAD(sublist);
1450 
1451 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1452 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1453 		list_splice_tail(&sublist, freelist);
1454 	}
1455 }
1456 
1457 static void
1458 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1459 {
1460 	unsigned long start_pfn, end_pfn;
1461 	struct page *page;
1462 
1463 	/* Do not search around if there are enough pages already */
1464 	if (cc->nr_freepages >= cc->nr_migratepages)
1465 		return;
1466 
1467 	/* Minimise scanning during async compaction */
1468 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1469 		return;
1470 
1471 	/* Pageblock boundaries */
1472 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1473 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1474 
1475 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1476 	if (!page)
1477 		return;
1478 
1479 	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1480 
1481 	/* Skip this pageblock in the future as it's full or nearly full */
1482 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1483 		set_pageblock_skip(page);
1484 }
1485 
1486 /* Search orders in round-robin fashion */
1487 static int next_search_order(struct compact_control *cc, int order)
1488 {
1489 	order--;
1490 	if (order < 0)
1491 		order = cc->order - 1;
1492 
1493 	/* Search wrapped around? */
1494 	if (order == cc->search_order) {
1495 		cc->search_order--;
1496 		if (cc->search_order < 0)
1497 			cc->search_order = cc->order - 1;
1498 		return -1;
1499 	}
1500 
1501 	return order;
1502 }
1503 
1504 static void fast_isolate_freepages(struct compact_control *cc)
1505 {
1506 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1507 	unsigned int nr_scanned = 0, total_isolated = 0;
1508 	unsigned long low_pfn, min_pfn, highest = 0;
1509 	unsigned long nr_isolated = 0;
1510 	unsigned long distance;
1511 	struct page *page = NULL;
1512 	bool scan_start = false;
1513 	int order;
1514 
1515 	/* Full compaction passes in a negative order */
1516 	if (cc->order <= 0)
1517 		return;
1518 
1519 	/*
1520 	 * If starting the scan, use a deeper search and use the highest
1521 	 * PFN found if a suitable one is not found.
1522 	 */
1523 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1524 		limit = pageblock_nr_pages >> 1;
1525 		scan_start = true;
1526 	}
1527 
1528 	/*
1529 	 * Preferred point is in the top quarter of the scan space but take
1530 	 * a pfn from the top half if the search is problematic.
1531 	 */
1532 	distance = (cc->free_pfn - cc->migrate_pfn);
1533 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1534 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1535 
1536 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1537 		low_pfn = min_pfn;
1538 
1539 	/*
1540 	 * Search starts from the last successful isolation order or the next
1541 	 * order to search after a previous failure
1542 	 */
1543 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1544 
1545 	for (order = cc->search_order;
1546 	     !page && order >= 0;
1547 	     order = next_search_order(cc, order)) {
1548 		struct free_area *area = &cc->zone->free_area[order];
1549 		struct list_head *freelist;
1550 		struct page *freepage;
1551 		unsigned long flags;
1552 		unsigned int order_scanned = 0;
1553 		unsigned long high_pfn = 0;
1554 
1555 		if (!area->nr_free)
1556 			continue;
1557 
1558 		spin_lock_irqsave(&cc->zone->lock, flags);
1559 		freelist = &area->free_list[MIGRATE_MOVABLE];
1560 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1561 			unsigned long pfn;
1562 
1563 			order_scanned++;
1564 			nr_scanned++;
1565 			pfn = page_to_pfn(freepage);
1566 
1567 			if (pfn >= highest)
1568 				highest = max(pageblock_start_pfn(pfn),
1569 					      cc->zone->zone_start_pfn);
1570 
1571 			if (pfn >= low_pfn) {
1572 				cc->fast_search_fail = 0;
1573 				cc->search_order = order;
1574 				page = freepage;
1575 				break;
1576 			}
1577 
1578 			if (pfn >= min_pfn && pfn > high_pfn) {
1579 				high_pfn = pfn;
1580 
1581 				/* Shorten the scan if a candidate is found */
1582 				limit >>= 1;
1583 			}
1584 
1585 			if (order_scanned >= limit)
1586 				break;
1587 		}
1588 
1589 		/* Use a maximum candidate pfn if a preferred one was not found */
1590 		if (!page && high_pfn) {
1591 			page = pfn_to_page(high_pfn);
1592 
1593 			/* Update freepage for the list reorder below */
1594 			freepage = page;
1595 		}
1596 
1597 		/* Reorder to so a future search skips recent pages */
1598 		move_freelist_head(freelist, freepage);
1599 
1600 		/* Isolate the page if available */
1601 		if (page) {
1602 			if (__isolate_free_page(page, order)) {
1603 				set_page_private(page, order);
1604 				nr_isolated = 1 << order;
1605 				nr_scanned += nr_isolated - 1;
1606 				total_isolated += nr_isolated;
1607 				cc->nr_freepages += nr_isolated;
1608 				list_add_tail(&page->lru, &cc->freepages[order]);
1609 				count_compact_events(COMPACTISOLATED, nr_isolated);
1610 			} else {
1611 				/* If isolation fails, abort the search */
1612 				order = cc->search_order + 1;
1613 				page = NULL;
1614 			}
1615 		}
1616 
1617 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1618 
1619 		/* Skip fast search if enough freepages isolated */
1620 		if (cc->nr_freepages >= cc->nr_migratepages)
1621 			break;
1622 
1623 		/*
1624 		 * Smaller scan on next order so the total scan is related
1625 		 * to freelist_scan_limit.
1626 		 */
1627 		if (order_scanned >= limit)
1628 			limit = max(1U, limit >> 1);
1629 	}
1630 
1631 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1632 						   nr_scanned, total_isolated);
1633 
1634 	if (!page) {
1635 		cc->fast_search_fail++;
1636 		if (scan_start) {
1637 			/*
1638 			 * Use the highest PFN found above min. If one was
1639 			 * not found, be pessimistic for direct compaction
1640 			 * and use the min mark.
1641 			 */
1642 			if (highest >= min_pfn) {
1643 				page = pfn_to_page(highest);
1644 				cc->free_pfn = highest;
1645 			} else {
1646 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1647 					page = pageblock_pfn_to_page(min_pfn,
1648 						min(pageblock_end_pfn(min_pfn),
1649 						    zone_end_pfn(cc->zone)),
1650 						cc->zone);
1651 					if (page && !suitable_migration_target(cc, page))
1652 						page = NULL;
1653 
1654 					cc->free_pfn = min_pfn;
1655 				}
1656 			}
1657 		}
1658 	}
1659 
1660 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1661 		highest -= pageblock_nr_pages;
1662 		cc->zone->compact_cached_free_pfn = highest;
1663 	}
1664 
1665 	cc->total_free_scanned += nr_scanned;
1666 	if (!page)
1667 		return;
1668 
1669 	low_pfn = page_to_pfn(page);
1670 	fast_isolate_around(cc, low_pfn);
1671 }
1672 
1673 /*
1674  * Based on information in the current compact_control, find blocks
1675  * suitable for isolating free pages from and then isolate them.
1676  */
1677 static void isolate_freepages(struct compact_control *cc)
1678 {
1679 	struct zone *zone = cc->zone;
1680 	struct page *page;
1681 	unsigned long block_start_pfn;	/* start of current pageblock */
1682 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1683 	unsigned long block_end_pfn;	/* end of current pageblock */
1684 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1685 	unsigned int stride;
1686 
1687 	/* Try a small search of the free lists for a candidate */
1688 	fast_isolate_freepages(cc);
1689 	if (cc->nr_freepages)
1690 		return;
1691 
1692 	/*
1693 	 * Initialise the free scanner. The starting point is where we last
1694 	 * successfully isolated from, zone-cached value, or the end of the
1695 	 * zone when isolating for the first time. For looping we also need
1696 	 * this pfn aligned down to the pageblock boundary, because we do
1697 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1698 	 * For ending point, take care when isolating in last pageblock of a
1699 	 * zone which ends in the middle of a pageblock.
1700 	 * The low boundary is the end of the pageblock the migration scanner
1701 	 * is using.
1702 	 */
1703 	isolate_start_pfn = cc->free_pfn;
1704 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1705 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1706 						zone_end_pfn(zone));
1707 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1708 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1709 
1710 	/*
1711 	 * Isolate free pages until enough are available to migrate the
1712 	 * pages on cc->migratepages. We stop searching if the migrate
1713 	 * and free page scanners meet or enough free pages are isolated.
1714 	 */
1715 	for (; block_start_pfn >= low_pfn;
1716 				block_end_pfn = block_start_pfn,
1717 				block_start_pfn -= pageblock_nr_pages,
1718 				isolate_start_pfn = block_start_pfn) {
1719 		unsigned long nr_isolated;
1720 
1721 		/*
1722 		 * This can iterate a massively long zone without finding any
1723 		 * suitable migration targets, so periodically check resched.
1724 		 */
1725 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1726 			cond_resched();
1727 
1728 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1729 									zone);
1730 		if (!page) {
1731 			unsigned long next_pfn;
1732 
1733 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1734 			if (next_pfn)
1735 				block_start_pfn = max(next_pfn, low_pfn);
1736 
1737 			continue;
1738 		}
1739 
1740 		/* Check the block is suitable for migration */
1741 		if (!suitable_migration_target(cc, page))
1742 			continue;
1743 
1744 		/* If isolation recently failed, do not retry */
1745 		if (!isolation_suitable(cc, page))
1746 			continue;
1747 
1748 		/* Found a block suitable for isolating free pages from. */
1749 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1750 					block_end_pfn, cc->freepages, stride, false);
1751 
1752 		/* Update the skip hint if the full pageblock was scanned */
1753 		if (isolate_start_pfn == block_end_pfn)
1754 			update_pageblock_skip(cc, page, block_start_pfn -
1755 					      pageblock_nr_pages);
1756 
1757 		/* Are enough freepages isolated? */
1758 		if (cc->nr_freepages >= cc->nr_migratepages) {
1759 			if (isolate_start_pfn >= block_end_pfn) {
1760 				/*
1761 				 * Restart at previous pageblock if more
1762 				 * freepages can be isolated next time.
1763 				 */
1764 				isolate_start_pfn =
1765 					block_start_pfn - pageblock_nr_pages;
1766 			}
1767 			break;
1768 		} else if (isolate_start_pfn < block_end_pfn) {
1769 			/*
1770 			 * If isolation failed early, do not continue
1771 			 * needlessly.
1772 			 */
1773 			break;
1774 		}
1775 
1776 		/* Adjust stride depending on isolation */
1777 		if (nr_isolated) {
1778 			stride = 1;
1779 			continue;
1780 		}
1781 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1782 	}
1783 
1784 	/*
1785 	 * Record where the free scanner will restart next time. Either we
1786 	 * broke from the loop and set isolate_start_pfn based on the last
1787 	 * call to isolate_freepages_block(), or we met the migration scanner
1788 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1789 	 */
1790 	cc->free_pfn = isolate_start_pfn;
1791 }
1792 
1793 /*
1794  * This is a migrate-callback that "allocates" freepages by taking pages
1795  * from the isolated freelists in the block we are migrating to.
1796  */
1797 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1798 {
1799 	struct compact_control *cc = (struct compact_control *)data;
1800 	struct folio *dst;
1801 	int order = folio_order(src);
1802 	bool has_isolated_pages = false;
1803 	int start_order;
1804 	struct page *freepage;
1805 	unsigned long size;
1806 
1807 again:
1808 	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1809 		if (!list_empty(&cc->freepages[start_order]))
1810 			break;
1811 
1812 	/* no free pages in the list */
1813 	if (start_order == NR_PAGE_ORDERS) {
1814 		if (has_isolated_pages)
1815 			return NULL;
1816 		isolate_freepages(cc);
1817 		has_isolated_pages = true;
1818 		goto again;
1819 	}
1820 
1821 	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1822 				lru);
1823 	size = 1 << start_order;
1824 
1825 	list_del(&freepage->lru);
1826 
1827 	while (start_order > order) {
1828 		start_order--;
1829 		size >>= 1;
1830 
1831 		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1832 		set_page_private(&freepage[size], start_order);
1833 	}
1834 	dst = (struct folio *)freepage;
1835 
1836 	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1837 	set_page_refcounted(&dst->page);
1838 	if (order)
1839 		prep_compound_page(&dst->page, order);
1840 	cc->nr_freepages -= 1 << order;
1841 	cc->nr_migratepages -= 1 << order;
1842 	return page_rmappable_folio(&dst->page);
1843 }
1844 
1845 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1846 {
1847 	return alloc_hooks(compaction_alloc_noprof(src, data));
1848 }
1849 
1850 /*
1851  * This is a migrate-callback that "frees" freepages back to the isolated
1852  * freelist.  All pages on the freelist are from the same zone, so there is no
1853  * special handling needed for NUMA.
1854  */
1855 static void compaction_free(struct folio *dst, unsigned long data)
1856 {
1857 	struct compact_control *cc = (struct compact_control *)data;
1858 	int order = folio_order(dst);
1859 	struct page *page = &dst->page;
1860 
1861 	if (folio_put_testzero(dst)) {
1862 		free_pages_prepare(page, order);
1863 		list_add(&dst->lru, &cc->freepages[order]);
1864 		cc->nr_freepages += 1 << order;
1865 	}
1866 	cc->nr_migratepages += 1 << order;
1867 	/*
1868 	 * someone else has referenced the page, we cannot take it back to our
1869 	 * free list.
1870 	 */
1871 }
1872 
1873 /* possible outcome of isolate_migratepages */
1874 typedef enum {
1875 	ISOLATE_ABORT,		/* Abort compaction now */
1876 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1877 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1878 } isolate_migrate_t;
1879 
1880 /*
1881  * Allow userspace to control policy on scanning the unevictable LRU for
1882  * compactable pages.
1883  */
1884 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1885 /*
1886  * Tunable for proactive compaction. It determines how
1887  * aggressively the kernel should compact memory in the
1888  * background. It takes values in the range [0, 100].
1889  */
1890 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1891 static int sysctl_extfrag_threshold = 500;
1892 static int __read_mostly sysctl_compact_memory;
1893 
1894 static inline void
1895 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1896 {
1897 	if (cc->fast_start_pfn == ULONG_MAX)
1898 		return;
1899 
1900 	if (!cc->fast_start_pfn)
1901 		cc->fast_start_pfn = pfn;
1902 
1903 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1904 }
1905 
1906 static inline unsigned long
1907 reinit_migrate_pfn(struct compact_control *cc)
1908 {
1909 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1910 		return cc->migrate_pfn;
1911 
1912 	cc->migrate_pfn = cc->fast_start_pfn;
1913 	cc->fast_start_pfn = ULONG_MAX;
1914 
1915 	return cc->migrate_pfn;
1916 }
1917 
1918 /*
1919  * Briefly search the free lists for a migration source that already has
1920  * some free pages to reduce the number of pages that need migration
1921  * before a pageblock is free.
1922  */
1923 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1924 {
1925 	unsigned int limit = freelist_scan_limit(cc);
1926 	unsigned int nr_scanned = 0;
1927 	unsigned long distance;
1928 	unsigned long pfn = cc->migrate_pfn;
1929 	unsigned long high_pfn;
1930 	int order;
1931 	bool found_block = false;
1932 
1933 	/* Skip hints are relied on to avoid repeats on the fast search */
1934 	if (cc->ignore_skip_hint)
1935 		return pfn;
1936 
1937 	/*
1938 	 * If the pageblock should be finished then do not select a different
1939 	 * pageblock.
1940 	 */
1941 	if (cc->finish_pageblock)
1942 		return pfn;
1943 
1944 	/*
1945 	 * If the migrate_pfn is not at the start of a zone or the start
1946 	 * of a pageblock then assume this is a continuation of a previous
1947 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1948 	 */
1949 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1950 		return pfn;
1951 
1952 	/*
1953 	 * For smaller orders, just linearly scan as the number of pages
1954 	 * to migrate should be relatively small and does not necessarily
1955 	 * justify freeing up a large block for a small allocation.
1956 	 */
1957 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1958 		return pfn;
1959 
1960 	/*
1961 	 * Only allow kcompactd and direct requests for movable pages to
1962 	 * quickly clear out a MOVABLE pageblock for allocation. This
1963 	 * reduces the risk that a large movable pageblock is freed for
1964 	 * an unmovable/reclaimable small allocation.
1965 	 */
1966 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1967 		return pfn;
1968 
1969 	/*
1970 	 * When starting the migration scanner, pick any pageblock within the
1971 	 * first half of the search space. Otherwise try and pick a pageblock
1972 	 * within the first eighth to reduce the chances that a migration
1973 	 * target later becomes a source.
1974 	 */
1975 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1976 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1977 		distance >>= 2;
1978 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1979 
1980 	for (order = cc->order - 1;
1981 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1982 	     order--) {
1983 		struct free_area *area = &cc->zone->free_area[order];
1984 		struct list_head *freelist;
1985 		unsigned long flags;
1986 		struct page *freepage;
1987 
1988 		if (!area->nr_free)
1989 			continue;
1990 
1991 		spin_lock_irqsave(&cc->zone->lock, flags);
1992 		freelist = &area->free_list[MIGRATE_MOVABLE];
1993 		list_for_each_entry(freepage, freelist, buddy_list) {
1994 			unsigned long free_pfn;
1995 
1996 			if (nr_scanned++ >= limit) {
1997 				move_freelist_tail(freelist, freepage);
1998 				break;
1999 			}
2000 
2001 			free_pfn = page_to_pfn(freepage);
2002 			if (free_pfn < high_pfn) {
2003 				/*
2004 				 * Avoid if skipped recently. Ideally it would
2005 				 * move to the tail but even safe iteration of
2006 				 * the list assumes an entry is deleted, not
2007 				 * reordered.
2008 				 */
2009 				if (get_pageblock_skip(freepage))
2010 					continue;
2011 
2012 				/* Reorder to so a future search skips recent pages */
2013 				move_freelist_tail(freelist, freepage);
2014 
2015 				update_fast_start_pfn(cc, free_pfn);
2016 				pfn = pageblock_start_pfn(free_pfn);
2017 				if (pfn < cc->zone->zone_start_pfn)
2018 					pfn = cc->zone->zone_start_pfn;
2019 				cc->fast_search_fail = 0;
2020 				found_block = true;
2021 				break;
2022 			}
2023 		}
2024 		spin_unlock_irqrestore(&cc->zone->lock, flags);
2025 	}
2026 
2027 	cc->total_migrate_scanned += nr_scanned;
2028 
2029 	/*
2030 	 * If fast scanning failed then use a cached entry for a page block
2031 	 * that had free pages as the basis for starting a linear scan.
2032 	 */
2033 	if (!found_block) {
2034 		cc->fast_search_fail++;
2035 		pfn = reinit_migrate_pfn(cc);
2036 	}
2037 	return pfn;
2038 }
2039 
2040 /*
2041  * Isolate all pages that can be migrated from the first suitable block,
2042  * starting at the block pointed to by the migrate scanner pfn within
2043  * compact_control.
2044  */
2045 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2046 {
2047 	unsigned long block_start_pfn;
2048 	unsigned long block_end_pfn;
2049 	unsigned long low_pfn;
2050 	struct page *page;
2051 	const isolate_mode_t isolate_mode =
2052 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2053 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2054 	bool fast_find_block;
2055 
2056 	/*
2057 	 * Start at where we last stopped, or beginning of the zone as
2058 	 * initialized by compact_zone(). The first failure will use
2059 	 * the lowest PFN as the starting point for linear scanning.
2060 	 */
2061 	low_pfn = fast_find_migrateblock(cc);
2062 	block_start_pfn = pageblock_start_pfn(low_pfn);
2063 	if (block_start_pfn < cc->zone->zone_start_pfn)
2064 		block_start_pfn = cc->zone->zone_start_pfn;
2065 
2066 	/*
2067 	 * fast_find_migrateblock() has already ensured the pageblock is not
2068 	 * set with a skipped flag, so to avoid the isolation_suitable check
2069 	 * below again, check whether the fast search was successful.
2070 	 */
2071 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2072 
2073 	/* Only scan within a pageblock boundary */
2074 	block_end_pfn = pageblock_end_pfn(low_pfn);
2075 
2076 	/*
2077 	 * Iterate over whole pageblocks until we find the first suitable.
2078 	 * Do not cross the free scanner.
2079 	 */
2080 	for (; block_end_pfn <= cc->free_pfn;
2081 			fast_find_block = false,
2082 			cc->migrate_pfn = low_pfn = block_end_pfn,
2083 			block_start_pfn = block_end_pfn,
2084 			block_end_pfn += pageblock_nr_pages) {
2085 
2086 		/*
2087 		 * This can potentially iterate a massively long zone with
2088 		 * many pageblocks unsuitable, so periodically check if we
2089 		 * need to schedule.
2090 		 */
2091 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2092 			cond_resched();
2093 
2094 		page = pageblock_pfn_to_page(block_start_pfn,
2095 						block_end_pfn, cc->zone);
2096 		if (!page) {
2097 			unsigned long next_pfn;
2098 
2099 			next_pfn = skip_offline_sections(block_start_pfn);
2100 			if (next_pfn)
2101 				block_end_pfn = min(next_pfn, cc->free_pfn);
2102 			continue;
2103 		}
2104 
2105 		/*
2106 		 * If isolation recently failed, do not retry. Only check the
2107 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2108 		 * to be visited multiple times. Assume skip was checked
2109 		 * before making it "skip" so other compaction instances do
2110 		 * not scan the same block.
2111 		 */
2112 		if ((pageblock_aligned(low_pfn) ||
2113 		     low_pfn == cc->zone->zone_start_pfn) &&
2114 		    !fast_find_block && !isolation_suitable(cc, page))
2115 			continue;
2116 
2117 		/*
2118 		 * For async direct compaction, only scan the pageblocks of the
2119 		 * same migratetype without huge pages. Async direct compaction
2120 		 * is optimistic to see if the minimum amount of work satisfies
2121 		 * the allocation. The cached PFN is updated as it's possible
2122 		 * that all remaining blocks between source and target are
2123 		 * unsuitable and the compaction scanners fail to meet.
2124 		 */
2125 		if (!suitable_migration_source(cc, page)) {
2126 			update_cached_migrate(cc, block_end_pfn);
2127 			continue;
2128 		}
2129 
2130 		/* Perform the isolation */
2131 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2132 						isolate_mode))
2133 			return ISOLATE_ABORT;
2134 
2135 		/*
2136 		 * Either we isolated something and proceed with migration. Or
2137 		 * we failed and compact_zone should decide if we should
2138 		 * continue or not.
2139 		 */
2140 		break;
2141 	}
2142 
2143 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2144 }
2145 
2146 /*
2147  * Determine whether kswapd is (or recently was!) running on this node.
2148  *
2149  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2150  * zero it.
2151  */
2152 static bool kswapd_is_running(pg_data_t *pgdat)
2153 {
2154 	bool running;
2155 
2156 	pgdat_kswapd_lock(pgdat);
2157 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2158 	pgdat_kswapd_unlock(pgdat);
2159 
2160 	return running;
2161 }
2162 
2163 /*
2164  * A zone's fragmentation score is the external fragmentation wrt to the
2165  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2166  */
2167 static unsigned int fragmentation_score_zone(struct zone *zone)
2168 {
2169 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2170 }
2171 
2172 /*
2173  * A weighted zone's fragmentation score is the external fragmentation
2174  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2175  * returns a value in the range [0, 100].
2176  *
2177  * The scaling factor ensures that proactive compaction focuses on larger
2178  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2179  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2180  * and thus never exceeds the high threshold for proactive compaction.
2181  */
2182 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2183 {
2184 	unsigned long score;
2185 
2186 	score = zone->present_pages * fragmentation_score_zone(zone);
2187 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2188 }
2189 
2190 /*
2191  * The per-node proactive (background) compaction process is started by its
2192  * corresponding kcompactd thread when the node's fragmentation score
2193  * exceeds the high threshold. The compaction process remains active till
2194  * the node's score falls below the low threshold, or one of the back-off
2195  * conditions is met.
2196  */
2197 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2198 {
2199 	unsigned int score = 0;
2200 	int zoneid;
2201 
2202 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2203 		struct zone *zone;
2204 
2205 		zone = &pgdat->node_zones[zoneid];
2206 		if (!populated_zone(zone))
2207 			continue;
2208 		score += fragmentation_score_zone_weighted(zone);
2209 	}
2210 
2211 	return score;
2212 }
2213 
2214 static unsigned int fragmentation_score_wmark(bool low)
2215 {
2216 	unsigned int wmark_low, leeway;
2217 
2218 	wmark_low = 100U - sysctl_compaction_proactiveness;
2219 	leeway = min(10U, wmark_low / 2);
2220 	return low ? wmark_low : min(wmark_low + leeway, 100U);
2221 }
2222 
2223 static bool should_proactive_compact_node(pg_data_t *pgdat)
2224 {
2225 	int wmark_high;
2226 
2227 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2228 		return false;
2229 
2230 	wmark_high = fragmentation_score_wmark(false);
2231 	return fragmentation_score_node(pgdat) > wmark_high;
2232 }
2233 
2234 static enum compact_result __compact_finished(struct compact_control *cc)
2235 {
2236 	unsigned int order;
2237 	const int migratetype = cc->migratetype;
2238 	int ret;
2239 
2240 	/* Compaction run completes if the migrate and free scanner meet */
2241 	if (compact_scanners_met(cc)) {
2242 		/* Let the next compaction start anew. */
2243 		reset_cached_positions(cc->zone);
2244 
2245 		/*
2246 		 * Mark that the PG_migrate_skip information should be cleared
2247 		 * by kswapd when it goes to sleep. kcompactd does not set the
2248 		 * flag itself as the decision to be clear should be directly
2249 		 * based on an allocation request.
2250 		 */
2251 		if (cc->direct_compaction)
2252 			cc->zone->compact_blockskip_flush = true;
2253 
2254 		if (cc->whole_zone)
2255 			return COMPACT_COMPLETE;
2256 		else
2257 			return COMPACT_PARTIAL_SKIPPED;
2258 	}
2259 
2260 	if (cc->proactive_compaction) {
2261 		int score, wmark_low;
2262 		pg_data_t *pgdat;
2263 
2264 		pgdat = cc->zone->zone_pgdat;
2265 		if (kswapd_is_running(pgdat))
2266 			return COMPACT_PARTIAL_SKIPPED;
2267 
2268 		score = fragmentation_score_zone(cc->zone);
2269 		wmark_low = fragmentation_score_wmark(true);
2270 
2271 		if (score > wmark_low)
2272 			ret = COMPACT_CONTINUE;
2273 		else
2274 			ret = COMPACT_SUCCESS;
2275 
2276 		goto out;
2277 	}
2278 
2279 	if (is_via_compact_memory(cc->order))
2280 		return COMPACT_CONTINUE;
2281 
2282 	/*
2283 	 * Always finish scanning a pageblock to reduce the possibility of
2284 	 * fallbacks in the future. This is particularly important when
2285 	 * migration source is unmovable/reclaimable but it's not worth
2286 	 * special casing.
2287 	 */
2288 	if (!pageblock_aligned(cc->migrate_pfn))
2289 		return COMPACT_CONTINUE;
2290 
2291 	/*
2292 	 * When defrag_mode is enabled, make kcompactd target
2293 	 * watermarks in whole pageblocks. Because they can be stolen
2294 	 * without polluting, no further fallback checks are needed.
2295 	 */
2296 	if (defrag_mode && !cc->direct_compaction) {
2297 		if (__zone_watermark_ok(cc->zone, cc->order,
2298 					high_wmark_pages(cc->zone),
2299 					cc->highest_zoneidx, cc->alloc_flags,
2300 					zone_page_state(cc->zone,
2301 							NR_FREE_PAGES_BLOCKS)))
2302 			return COMPACT_SUCCESS;
2303 
2304 		return COMPACT_CONTINUE;
2305 	}
2306 
2307 	/* Direct compactor: Is a suitable page free? */
2308 	ret = COMPACT_NO_SUITABLE_PAGE;
2309 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2310 		struct free_area *area = &cc->zone->free_area[order];
2311 
2312 		/* Job done if page is free of the right migratetype */
2313 		if (!free_area_empty(area, migratetype))
2314 			return COMPACT_SUCCESS;
2315 
2316 #ifdef CONFIG_CMA
2317 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2318 		if (migratetype == MIGRATE_MOVABLE &&
2319 			!free_area_empty(area, MIGRATE_CMA))
2320 			return COMPACT_SUCCESS;
2321 #endif
2322 		/*
2323 		 * Job done if allocation would steal freepages from
2324 		 * other migratetype buddy lists.
2325 		 */
2326 		if (find_suitable_fallback(area, order, migratetype, true) >= 0)
2327 			/*
2328 			 * Movable pages are OK in any pageblock. If we are
2329 			 * stealing for a non-movable allocation, make sure
2330 			 * we finish compacting the current pageblock first
2331 			 * (which is assured by the above migrate_pfn align
2332 			 * check) so it is as free as possible and we won't
2333 			 * have to steal another one soon.
2334 			 */
2335 			return COMPACT_SUCCESS;
2336 	}
2337 
2338 out:
2339 	if (cc->contended || fatal_signal_pending(current))
2340 		ret = COMPACT_CONTENDED;
2341 
2342 	return ret;
2343 }
2344 
2345 static enum compact_result compact_finished(struct compact_control *cc)
2346 {
2347 	int ret;
2348 
2349 	ret = __compact_finished(cc);
2350 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2351 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2352 		ret = COMPACT_CONTINUE;
2353 
2354 	return ret;
2355 }
2356 
2357 static bool __compaction_suitable(struct zone *zone, int order,
2358 				  unsigned long watermark, int highest_zoneidx,
2359 				  unsigned long free_pages)
2360 {
2361 	/*
2362 	 * Watermarks for order-0 must be met for compaction to be able to
2363 	 * isolate free pages for migration targets. This means that the
2364 	 * watermark have to match, or be more pessimistic than the check in
2365 	 * __isolate_free_page().
2366 	 *
2367 	 * For costly orders, we require a higher watermark for compaction to
2368 	 * proceed to increase its chances.
2369 	 *
2370 	 * We use the direct compactor's highest_zoneidx to skip over zones
2371 	 * where lowmem reserves would prevent allocation even if compaction
2372 	 * succeeds.
2373 	 *
2374 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2375 	 * suitable migration targets.
2376 	 */
2377 	watermark += compact_gap(order);
2378 	if (order > PAGE_ALLOC_COSTLY_ORDER)
2379 		watermark += low_wmark_pages(zone) - min_wmark_pages(zone);
2380 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2381 				   ALLOC_CMA, free_pages);
2382 }
2383 
2384 /*
2385  * compaction_suitable: Is this suitable to run compaction on this zone now?
2386  */
2387 bool compaction_suitable(struct zone *zone, int order, unsigned long watermark,
2388 			 int highest_zoneidx)
2389 {
2390 	enum compact_result compact_result;
2391 	bool suitable;
2392 
2393 	suitable = __compaction_suitable(zone, order, watermark, highest_zoneidx,
2394 					 zone_page_state(zone, NR_FREE_PAGES));
2395 	/*
2396 	 * fragmentation index determines if allocation failures are due to
2397 	 * low memory or external fragmentation
2398 	 *
2399 	 * index of -1000 would imply allocations might succeed depending on
2400 	 * watermarks, but we already failed the high-order watermark check
2401 	 * index towards 0 implies failure is due to lack of memory
2402 	 * index towards 1000 implies failure is due to fragmentation
2403 	 *
2404 	 * Only compact if a failure would be due to fragmentation. Also
2405 	 * ignore fragindex for non-costly orders where the alternative to
2406 	 * a successful reclaim/compaction is OOM. Fragindex and the
2407 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2408 	 * excessive compaction for costly orders, but it should not be at the
2409 	 * expense of system stability.
2410 	 */
2411 	if (suitable) {
2412 		compact_result = COMPACT_CONTINUE;
2413 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2414 			int fragindex = fragmentation_index(zone, order);
2415 
2416 			if (fragindex >= 0 &&
2417 			    fragindex <= sysctl_extfrag_threshold) {
2418 				suitable = false;
2419 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2420 			}
2421 		}
2422 	} else {
2423 		compact_result = COMPACT_SKIPPED;
2424 	}
2425 
2426 	trace_mm_compaction_suitable(zone, order, compact_result);
2427 
2428 	return suitable;
2429 }
2430 
2431 /* Used by direct reclaimers */
2432 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2433 		int alloc_flags)
2434 {
2435 	struct zone *zone;
2436 	struct zoneref *z;
2437 
2438 	/*
2439 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2440 	 * retrying the reclaim.
2441 	 */
2442 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2443 				ac->highest_zoneidx, ac->nodemask) {
2444 		unsigned long available;
2445 
2446 		/*
2447 		 * Do not consider all the reclaimable memory because we do not
2448 		 * want to trash just for a single high order allocation which
2449 		 * is even not guaranteed to appear even if __compaction_suitable
2450 		 * is happy about the watermark check.
2451 		 */
2452 		available = zone_reclaimable_pages(zone) / order;
2453 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2454 		if (__compaction_suitable(zone, order, min_wmark_pages(zone),
2455 					  ac->highest_zoneidx, available))
2456 			return true;
2457 	}
2458 
2459 	return false;
2460 }
2461 
2462 /*
2463  * Should we do compaction for target allocation order.
2464  * Return COMPACT_SUCCESS if allocation for target order can be already
2465  * satisfied
2466  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2467  * Return COMPACT_CONTINUE if compaction for target order should be ran
2468  */
2469 static enum compact_result
2470 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2471 				 int highest_zoneidx, unsigned int alloc_flags,
2472 				 bool async, bool kcompactd)
2473 {
2474 	unsigned long free_pages;
2475 	unsigned long watermark;
2476 
2477 	if (kcompactd && defrag_mode)
2478 		free_pages = zone_page_state(zone, NR_FREE_PAGES_BLOCKS);
2479 	else
2480 		free_pages = zone_page_state(zone, NR_FREE_PAGES);
2481 
2482 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2483 	if (__zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2484 				alloc_flags, free_pages))
2485 		return COMPACT_SUCCESS;
2486 
2487 	/*
2488 	 * For unmovable allocations (without ALLOC_CMA), check if there is enough
2489 	 * free memory in the non-CMA pageblocks. Otherwise compaction could form
2490 	 * the high-order page in CMA pageblocks, which would not help the
2491 	 * allocation to succeed. However, limit the check to costly order async
2492 	 * compaction (such as opportunistic THP attempts) because there is the
2493 	 * possibility that compaction would migrate pages from non-CMA to CMA
2494 	 * pageblock.
2495 	 */
2496 	if (order > PAGE_ALLOC_COSTLY_ORDER && async &&
2497 	    !(alloc_flags & ALLOC_CMA)) {
2498 		if (!__zone_watermark_ok(zone, 0, watermark + compact_gap(order),
2499 					 highest_zoneidx, 0,
2500 					 zone_page_state(zone, NR_FREE_PAGES)))
2501 			return COMPACT_SKIPPED;
2502 	}
2503 
2504 	if (!compaction_suitable(zone, order, watermark, highest_zoneidx))
2505 		return COMPACT_SKIPPED;
2506 
2507 	return COMPACT_CONTINUE;
2508 }
2509 
2510 static enum compact_result
2511 compact_zone(struct compact_control *cc, struct capture_control *capc)
2512 {
2513 	enum compact_result ret;
2514 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2515 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2516 	unsigned long last_migrated_pfn;
2517 	const bool sync = cc->mode != MIGRATE_ASYNC;
2518 	bool update_cached;
2519 	unsigned int nr_succeeded = 0, nr_migratepages;
2520 	int order;
2521 
2522 	/*
2523 	 * These counters track activities during zone compaction.  Initialize
2524 	 * them before compacting a new zone.
2525 	 */
2526 	cc->total_migrate_scanned = 0;
2527 	cc->total_free_scanned = 0;
2528 	cc->nr_migratepages = 0;
2529 	cc->nr_freepages = 0;
2530 	for (order = 0; order < NR_PAGE_ORDERS; order++)
2531 		INIT_LIST_HEAD(&cc->freepages[order]);
2532 	INIT_LIST_HEAD(&cc->migratepages);
2533 
2534 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2535 
2536 	if (!is_via_compact_memory(cc->order)) {
2537 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2538 						       cc->highest_zoneidx,
2539 						       cc->alloc_flags,
2540 						       cc->mode == MIGRATE_ASYNC,
2541 						       !cc->direct_compaction);
2542 		if (ret != COMPACT_CONTINUE)
2543 			return ret;
2544 	}
2545 
2546 	/*
2547 	 * Clear pageblock skip if there were failures recently and compaction
2548 	 * is about to be retried after being deferred.
2549 	 */
2550 	if (compaction_restarting(cc->zone, cc->order))
2551 		__reset_isolation_suitable(cc->zone);
2552 
2553 	/*
2554 	 * Setup to move all movable pages to the end of the zone. Used cached
2555 	 * information on where the scanners should start (unless we explicitly
2556 	 * want to compact the whole zone), but check that it is initialised
2557 	 * by ensuring the values are within zone boundaries.
2558 	 */
2559 	cc->fast_start_pfn = 0;
2560 	if (cc->whole_zone) {
2561 		cc->migrate_pfn = start_pfn;
2562 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2563 	} else {
2564 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2565 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2566 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2567 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2568 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2569 		}
2570 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2571 			cc->migrate_pfn = start_pfn;
2572 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2573 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2574 		}
2575 
2576 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2577 			cc->whole_zone = true;
2578 	}
2579 
2580 	last_migrated_pfn = 0;
2581 
2582 	/*
2583 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2584 	 * the basis that some migrations will fail in ASYNC mode. However,
2585 	 * if the cached PFNs match and pageblocks are skipped due to having
2586 	 * no isolation candidates, then the sync state does not matter.
2587 	 * Until a pageblock with isolation candidates is found, keep the
2588 	 * cached PFNs in sync to avoid revisiting the same blocks.
2589 	 */
2590 	update_cached = !sync &&
2591 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2592 
2593 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2594 
2595 	/* lru_add_drain_all could be expensive with involving other CPUs */
2596 	lru_add_drain();
2597 
2598 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2599 		int err;
2600 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2601 
2602 		/*
2603 		 * Avoid multiple rescans of the same pageblock which can
2604 		 * happen if a page cannot be isolated (dirty/writeback in
2605 		 * async mode) or if the migrated pages are being allocated
2606 		 * before the pageblock is cleared.  The first rescan will
2607 		 * capture the entire pageblock for migration. If it fails,
2608 		 * it'll be marked skip and scanning will proceed as normal.
2609 		 */
2610 		cc->finish_pageblock = false;
2611 		if (pageblock_start_pfn(last_migrated_pfn) ==
2612 		    pageblock_start_pfn(iteration_start_pfn)) {
2613 			cc->finish_pageblock = true;
2614 		}
2615 
2616 rescan:
2617 		switch (isolate_migratepages(cc)) {
2618 		case ISOLATE_ABORT:
2619 			ret = COMPACT_CONTENDED;
2620 			putback_movable_pages(&cc->migratepages);
2621 			cc->nr_migratepages = 0;
2622 			goto out;
2623 		case ISOLATE_NONE:
2624 			if (update_cached) {
2625 				cc->zone->compact_cached_migrate_pfn[1] =
2626 					cc->zone->compact_cached_migrate_pfn[0];
2627 			}
2628 
2629 			/*
2630 			 * We haven't isolated and migrated anything, but
2631 			 * there might still be unflushed migrations from
2632 			 * previous cc->order aligned block.
2633 			 */
2634 			goto check_drain;
2635 		case ISOLATE_SUCCESS:
2636 			update_cached = false;
2637 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2638 				pageblock_start_pfn(cc->migrate_pfn - 1));
2639 		}
2640 
2641 		/*
2642 		 * Record the number of pages to migrate since the
2643 		 * compaction_alloc/free() will update cc->nr_migratepages
2644 		 * properly.
2645 		 */
2646 		nr_migratepages = cc->nr_migratepages;
2647 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2648 				compaction_free, (unsigned long)cc, cc->mode,
2649 				MR_COMPACTION, &nr_succeeded);
2650 
2651 		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2652 
2653 		/* All pages were either migrated or will be released */
2654 		cc->nr_migratepages = 0;
2655 		if (err) {
2656 			putback_movable_pages(&cc->migratepages);
2657 			/*
2658 			 * migrate_pages() may return -ENOMEM when scanners meet
2659 			 * and we want compact_finished() to detect it
2660 			 */
2661 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2662 				ret = COMPACT_CONTENDED;
2663 				goto out;
2664 			}
2665 			/*
2666 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2667 			 * within the pageblock_order-aligned block and
2668 			 * fast_find_migrateblock may be used then scan the
2669 			 * remainder of the pageblock. This will mark the
2670 			 * pageblock "skip" to avoid rescanning in the near
2671 			 * future. This will isolate more pages than necessary
2672 			 * for the request but avoid loops due to
2673 			 * fast_find_migrateblock revisiting blocks that were
2674 			 * recently partially scanned.
2675 			 */
2676 			if (!pageblock_aligned(cc->migrate_pfn) &&
2677 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2678 			    (cc->mode < MIGRATE_SYNC)) {
2679 				cc->finish_pageblock = true;
2680 
2681 				/*
2682 				 * Draining pcplists does not help THP if
2683 				 * any page failed to migrate. Even after
2684 				 * drain, the pageblock will not be free.
2685 				 */
2686 				if (cc->order == COMPACTION_HPAGE_ORDER)
2687 					last_migrated_pfn = 0;
2688 
2689 				goto rescan;
2690 			}
2691 		}
2692 
2693 		/* Stop if a page has been captured */
2694 		if (capc && capc->page) {
2695 			ret = COMPACT_SUCCESS;
2696 			break;
2697 		}
2698 
2699 check_drain:
2700 		/*
2701 		 * Has the migration scanner moved away from the previous
2702 		 * cc->order aligned block where we migrated from? If yes,
2703 		 * flush the pages that were freed, so that they can merge and
2704 		 * compact_finished() can detect immediately if allocation
2705 		 * would succeed.
2706 		 */
2707 		if (cc->order > 0 && last_migrated_pfn) {
2708 			unsigned long current_block_start =
2709 				block_start_pfn(cc->migrate_pfn, cc->order);
2710 
2711 			if (last_migrated_pfn < current_block_start) {
2712 				lru_add_drain_cpu_zone(cc->zone);
2713 				/* No more flushing until we migrate again */
2714 				last_migrated_pfn = 0;
2715 			}
2716 		}
2717 	}
2718 
2719 out:
2720 	/*
2721 	 * Release free pages and update where the free scanner should restart,
2722 	 * so we don't leave any returned pages behind in the next attempt.
2723 	 */
2724 	if (cc->nr_freepages > 0) {
2725 		unsigned long free_pfn = release_free_list(cc->freepages);
2726 
2727 		cc->nr_freepages = 0;
2728 		VM_BUG_ON(free_pfn == 0);
2729 		/* The cached pfn is always the first in a pageblock */
2730 		free_pfn = pageblock_start_pfn(free_pfn);
2731 		/*
2732 		 * Only go back, not forward. The cached pfn might have been
2733 		 * already reset to zone end in compact_finished()
2734 		 */
2735 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2736 			cc->zone->compact_cached_free_pfn = free_pfn;
2737 	}
2738 
2739 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2740 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2741 
2742 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2743 
2744 	VM_BUG_ON(!list_empty(&cc->migratepages));
2745 
2746 	return ret;
2747 }
2748 
2749 static enum compact_result compact_zone_order(struct zone *zone, int order,
2750 		gfp_t gfp_mask, enum compact_priority prio,
2751 		unsigned int alloc_flags, int highest_zoneidx,
2752 		struct page **capture)
2753 {
2754 	enum compact_result ret;
2755 	struct compact_control cc = {
2756 		.order = order,
2757 		.search_order = order,
2758 		.gfp_mask = gfp_mask,
2759 		.zone = zone,
2760 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2761 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2762 		.alloc_flags = alloc_flags,
2763 		.highest_zoneidx = highest_zoneidx,
2764 		.direct_compaction = true,
2765 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2766 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2767 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2768 	};
2769 	struct capture_control capc = {
2770 		.cc = &cc,
2771 		.page = NULL,
2772 	};
2773 
2774 	/*
2775 	 * Make sure the structs are really initialized before we expose the
2776 	 * capture control, in case we are interrupted and the interrupt handler
2777 	 * frees a page.
2778 	 */
2779 	barrier();
2780 	WRITE_ONCE(current->capture_control, &capc);
2781 
2782 	ret = compact_zone(&cc, &capc);
2783 
2784 	/*
2785 	 * Make sure we hide capture control first before we read the captured
2786 	 * page pointer, otherwise an interrupt could free and capture a page
2787 	 * and we would leak it.
2788 	 */
2789 	WRITE_ONCE(current->capture_control, NULL);
2790 	*capture = READ_ONCE(capc.page);
2791 	/*
2792 	 * Technically, it is also possible that compaction is skipped but
2793 	 * the page is still captured out of luck(IRQ came and freed the page).
2794 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2795 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2796 	 */
2797 	if (*capture)
2798 		ret = COMPACT_SUCCESS;
2799 
2800 	return ret;
2801 }
2802 
2803 /**
2804  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2805  * @gfp_mask: The GFP mask of the current allocation
2806  * @order: The order of the current allocation
2807  * @alloc_flags: The allocation flags of the current allocation
2808  * @ac: The context of current allocation
2809  * @prio: Determines how hard direct compaction should try to succeed
2810  * @capture: Pointer to free page created by compaction will be stored here
2811  *
2812  * This is the main entry point for direct page compaction.
2813  */
2814 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2815 		unsigned int alloc_flags, const struct alloc_context *ac,
2816 		enum compact_priority prio, struct page **capture)
2817 {
2818 	struct zoneref *z;
2819 	struct zone *zone;
2820 	enum compact_result rc = COMPACT_SKIPPED;
2821 
2822 	if (!gfp_compaction_allowed(gfp_mask))
2823 		return COMPACT_SKIPPED;
2824 
2825 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2826 
2827 	/* Compact each zone in the list */
2828 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2829 					ac->highest_zoneidx, ac->nodemask) {
2830 		enum compact_result status;
2831 
2832 		if (cpusets_enabled() &&
2833 			(alloc_flags & ALLOC_CPUSET) &&
2834 			!__cpuset_zone_allowed(zone, gfp_mask))
2835 				continue;
2836 
2837 		if (prio > MIN_COMPACT_PRIORITY
2838 					&& compaction_deferred(zone, order)) {
2839 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2840 			continue;
2841 		}
2842 
2843 		status = compact_zone_order(zone, order, gfp_mask, prio,
2844 				alloc_flags, ac->highest_zoneidx, capture);
2845 		rc = max(status, rc);
2846 
2847 		/* The allocation should succeed, stop compacting */
2848 		if (status == COMPACT_SUCCESS) {
2849 			/*
2850 			 * We think the allocation will succeed in this zone,
2851 			 * but it is not certain, hence the false. The caller
2852 			 * will repeat this with true if allocation indeed
2853 			 * succeeds in this zone.
2854 			 */
2855 			compaction_defer_reset(zone, order, false);
2856 
2857 			break;
2858 		}
2859 
2860 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2861 					status == COMPACT_PARTIAL_SKIPPED))
2862 			/*
2863 			 * We think that allocation won't succeed in this zone
2864 			 * so we defer compaction there. If it ends up
2865 			 * succeeding after all, it will be reset.
2866 			 */
2867 			defer_compaction(zone, order);
2868 
2869 		/*
2870 		 * We might have stopped compacting due to need_resched() in
2871 		 * async compaction, or due to a fatal signal detected. In that
2872 		 * case do not try further zones
2873 		 */
2874 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2875 					|| fatal_signal_pending(current))
2876 			break;
2877 	}
2878 
2879 	return rc;
2880 }
2881 
2882 /*
2883  * compact_node() - compact all zones within a node
2884  * @pgdat: The node page data
2885  * @proactive: Whether the compaction is proactive
2886  *
2887  * For proactive compaction, compact till each zone's fragmentation score
2888  * reaches within proactive compaction thresholds (as determined by the
2889  * proactiveness tunable), it is possible that the function returns before
2890  * reaching score targets due to various back-off conditions, such as,
2891  * contention on per-node or per-zone locks.
2892  */
2893 static int compact_node(pg_data_t *pgdat, bool proactive)
2894 {
2895 	int zoneid;
2896 	struct zone *zone;
2897 	struct compact_control cc = {
2898 		.order = -1,
2899 		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2900 		.ignore_skip_hint = true,
2901 		.whole_zone = true,
2902 		.gfp_mask = GFP_KERNEL,
2903 		.proactive_compaction = proactive,
2904 	};
2905 
2906 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2907 		zone = &pgdat->node_zones[zoneid];
2908 		if (!populated_zone(zone))
2909 			continue;
2910 
2911 		if (fatal_signal_pending(current))
2912 			return -EINTR;
2913 
2914 		cc.zone = zone;
2915 
2916 		compact_zone(&cc, NULL);
2917 
2918 		if (proactive) {
2919 			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2920 					     cc.total_migrate_scanned);
2921 			count_compact_events(KCOMPACTD_FREE_SCANNED,
2922 					     cc.total_free_scanned);
2923 		}
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 /* Compact all zones of all nodes in the system */
2930 static int compact_nodes(void)
2931 {
2932 	int ret, nid;
2933 
2934 	/* Flush pending updates to the LRU lists */
2935 	lru_add_drain_all();
2936 
2937 	for_each_online_node(nid) {
2938 		ret = compact_node(NODE_DATA(nid), false);
2939 		if (ret)
2940 			return ret;
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2947 		void *buffer, size_t *length, loff_t *ppos)
2948 {
2949 	int rc, nid;
2950 
2951 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2952 	if (rc)
2953 		return rc;
2954 
2955 	if (write && sysctl_compaction_proactiveness) {
2956 		for_each_online_node(nid) {
2957 			pg_data_t *pgdat = NODE_DATA(nid);
2958 
2959 			if (pgdat->proactive_compact_trigger)
2960 				continue;
2961 
2962 			pgdat->proactive_compact_trigger = true;
2963 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2964 							     pgdat->nr_zones - 1);
2965 			wake_up_interruptible(&pgdat->kcompactd_wait);
2966 		}
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /*
2973  * This is the entry point for compacting all nodes via
2974  * /proc/sys/vm/compact_memory
2975  */
2976 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2977 			void *buffer, size_t *length, loff_t *ppos)
2978 {
2979 	int ret;
2980 
2981 	ret = proc_dointvec(table, write, buffer, length, ppos);
2982 	if (ret)
2983 		return ret;
2984 
2985 	if (sysctl_compact_memory != 1)
2986 		return -EINVAL;
2987 
2988 	if (write)
2989 		ret = compact_nodes();
2990 
2991 	return ret;
2992 }
2993 
2994 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2995 static ssize_t compact_store(struct device *dev,
2996 			     struct device_attribute *attr,
2997 			     const char *buf, size_t count)
2998 {
2999 	int nid = dev->id;
3000 
3001 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3002 		/* Flush pending updates to the LRU lists */
3003 		lru_add_drain_all();
3004 
3005 		compact_node(NODE_DATA(nid), false);
3006 	}
3007 
3008 	return count;
3009 }
3010 static DEVICE_ATTR_WO(compact);
3011 
3012 int compaction_register_node(struct node *node)
3013 {
3014 	return device_create_file(&node->dev, &dev_attr_compact);
3015 }
3016 
3017 void compaction_unregister_node(struct node *node)
3018 {
3019 	device_remove_file(&node->dev, &dev_attr_compact);
3020 }
3021 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3022 
3023 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3024 {
3025 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3026 		pgdat->proactive_compact_trigger;
3027 }
3028 
3029 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3030 {
3031 	int zoneid;
3032 	struct zone *zone;
3033 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3034 	enum compact_result ret;
3035 	unsigned int alloc_flags = defrag_mode ?
3036 		ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN;
3037 
3038 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3039 		zone = &pgdat->node_zones[zoneid];
3040 
3041 		if (!populated_zone(zone))
3042 			continue;
3043 
3044 		ret = compaction_suit_allocation_order(zone,
3045 				pgdat->kcompactd_max_order,
3046 				highest_zoneidx, alloc_flags,
3047 				false, true);
3048 		if (ret == COMPACT_CONTINUE)
3049 			return true;
3050 	}
3051 
3052 	return false;
3053 }
3054 
3055 static void kcompactd_do_work(pg_data_t *pgdat)
3056 {
3057 	/*
3058 	 * With no special task, compact all zones so that a page of requested
3059 	 * order is allocatable.
3060 	 */
3061 	int zoneid;
3062 	struct zone *zone;
3063 	struct compact_control cc = {
3064 		.order = pgdat->kcompactd_max_order,
3065 		.search_order = pgdat->kcompactd_max_order,
3066 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3067 		.mode = MIGRATE_SYNC_LIGHT,
3068 		.ignore_skip_hint = false,
3069 		.gfp_mask = GFP_KERNEL,
3070 		.alloc_flags = defrag_mode ? ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN,
3071 	};
3072 	enum compact_result ret;
3073 
3074 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3075 							cc.highest_zoneidx);
3076 	count_compact_event(KCOMPACTD_WAKE);
3077 
3078 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3079 		int status;
3080 
3081 		zone = &pgdat->node_zones[zoneid];
3082 		if (!populated_zone(zone))
3083 			continue;
3084 
3085 		if (compaction_deferred(zone, cc.order))
3086 			continue;
3087 
3088 		ret = compaction_suit_allocation_order(zone,
3089 				cc.order, zoneid, cc.alloc_flags,
3090 				false, true);
3091 		if (ret != COMPACT_CONTINUE)
3092 			continue;
3093 
3094 		if (kthread_should_stop())
3095 			return;
3096 
3097 		cc.zone = zone;
3098 		status = compact_zone(&cc, NULL);
3099 
3100 		if (status == COMPACT_SUCCESS) {
3101 			compaction_defer_reset(zone, cc.order, false);
3102 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3103 			/*
3104 			 * Buddy pages may become stranded on pcps that could
3105 			 * otherwise coalesce on the zone's free area for
3106 			 * order >= cc.order.  This is ratelimited by the
3107 			 * upcoming deferral.
3108 			 */
3109 			drain_all_pages(zone);
3110 
3111 			/*
3112 			 * We use sync migration mode here, so we defer like
3113 			 * sync direct compaction does.
3114 			 */
3115 			defer_compaction(zone, cc.order);
3116 		}
3117 
3118 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3119 				     cc.total_migrate_scanned);
3120 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3121 				     cc.total_free_scanned);
3122 	}
3123 
3124 	/*
3125 	 * Regardless of success, we are done until woken up next. But remember
3126 	 * the requested order/highest_zoneidx in case it was higher/tighter
3127 	 * than our current ones
3128 	 */
3129 	if (pgdat->kcompactd_max_order <= cc.order)
3130 		pgdat->kcompactd_max_order = 0;
3131 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3132 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3133 }
3134 
3135 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3136 {
3137 	if (!order)
3138 		return;
3139 
3140 	if (pgdat->kcompactd_max_order < order)
3141 		pgdat->kcompactd_max_order = order;
3142 
3143 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3144 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3145 
3146 	/*
3147 	 * Pairs with implicit barrier in wait_event_freezable()
3148 	 * such that wakeups are not missed.
3149 	 */
3150 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3151 		return;
3152 
3153 	if (!kcompactd_node_suitable(pgdat))
3154 		return;
3155 
3156 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3157 							highest_zoneidx);
3158 	wake_up_interruptible(&pgdat->kcompactd_wait);
3159 }
3160 
3161 /*
3162  * The background compaction daemon, started as a kernel thread
3163  * from the init process.
3164  */
3165 static int kcompactd(void *p)
3166 {
3167 	pg_data_t *pgdat = (pg_data_t *)p;
3168 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3169 	long timeout = default_timeout;
3170 
3171 	current->flags |= PF_KCOMPACTD;
3172 	set_freezable();
3173 
3174 	pgdat->kcompactd_max_order = 0;
3175 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3176 
3177 	while (!kthread_should_stop()) {
3178 		unsigned long pflags;
3179 
3180 		/*
3181 		 * Avoid the unnecessary wakeup for proactive compaction
3182 		 * when it is disabled.
3183 		 */
3184 		if (!sysctl_compaction_proactiveness)
3185 			timeout = MAX_SCHEDULE_TIMEOUT;
3186 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3187 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3188 			kcompactd_work_requested(pgdat), timeout) &&
3189 			!pgdat->proactive_compact_trigger) {
3190 
3191 			psi_memstall_enter(&pflags);
3192 			kcompactd_do_work(pgdat);
3193 			psi_memstall_leave(&pflags);
3194 			/*
3195 			 * Reset the timeout value. The defer timeout from
3196 			 * proactive compaction is lost here but that is fine
3197 			 * as the condition of the zone changing substantionally
3198 			 * then carrying on with the previous defer interval is
3199 			 * not useful.
3200 			 */
3201 			timeout = default_timeout;
3202 			continue;
3203 		}
3204 
3205 		/*
3206 		 * Start the proactive work with default timeout. Based
3207 		 * on the fragmentation score, this timeout is updated.
3208 		 */
3209 		timeout = default_timeout;
3210 		if (should_proactive_compact_node(pgdat)) {
3211 			unsigned int prev_score, score;
3212 
3213 			prev_score = fragmentation_score_node(pgdat);
3214 			compact_node(pgdat, true);
3215 			score = fragmentation_score_node(pgdat);
3216 			/*
3217 			 * Defer proactive compaction if the fragmentation
3218 			 * score did not go down i.e. no progress made.
3219 			 */
3220 			if (unlikely(score >= prev_score))
3221 				timeout =
3222 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3223 		}
3224 		if (unlikely(pgdat->proactive_compact_trigger))
3225 			pgdat->proactive_compact_trigger = false;
3226 	}
3227 
3228 	current->flags &= ~PF_KCOMPACTD;
3229 
3230 	return 0;
3231 }
3232 
3233 /*
3234  * This kcompactd start function will be called by init and node-hot-add.
3235  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3236  */
3237 void __meminit kcompactd_run(int nid)
3238 {
3239 	pg_data_t *pgdat = NODE_DATA(nid);
3240 
3241 	if (pgdat->kcompactd)
3242 		return;
3243 
3244 	pgdat->kcompactd = kthread_create_on_node(kcompactd, pgdat, nid, "kcompactd%d", nid);
3245 	if (IS_ERR(pgdat->kcompactd)) {
3246 		pr_err("Failed to start kcompactd on node %d\n", nid);
3247 		pgdat->kcompactd = NULL;
3248 	} else {
3249 		wake_up_process(pgdat->kcompactd);
3250 	}
3251 }
3252 
3253 /*
3254  * Called by memory hotplug when all memory in a node is offlined. Caller must
3255  * be holding mem_hotplug_begin/done().
3256  */
3257 void __meminit kcompactd_stop(int nid)
3258 {
3259 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3260 
3261 	if (kcompactd) {
3262 		kthread_stop(kcompactd);
3263 		NODE_DATA(nid)->kcompactd = NULL;
3264 	}
3265 }
3266 
3267 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3268 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3269 {
3270 	int ret, old;
3271 
3272 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3273 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3274 
3275 	old = *(int *)table->data;
3276 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3277 	if (ret)
3278 		return ret;
3279 	if (old != *(int *)table->data)
3280 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3281 			     table->procname, current->comm,
3282 			     task_pid_nr(current));
3283 	return ret;
3284 }
3285 
3286 static const struct ctl_table vm_compaction[] = {
3287 	{
3288 		.procname	= "compact_memory",
3289 		.data		= &sysctl_compact_memory,
3290 		.maxlen		= sizeof(int),
3291 		.mode		= 0200,
3292 		.proc_handler	= sysctl_compaction_handler,
3293 	},
3294 	{
3295 		.procname	= "compaction_proactiveness",
3296 		.data		= &sysctl_compaction_proactiveness,
3297 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3298 		.mode		= 0644,
3299 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3300 		.extra1		= SYSCTL_ZERO,
3301 		.extra2		= SYSCTL_ONE_HUNDRED,
3302 	},
3303 	{
3304 		.procname	= "extfrag_threshold",
3305 		.data		= &sysctl_extfrag_threshold,
3306 		.maxlen		= sizeof(int),
3307 		.mode		= 0644,
3308 		.proc_handler	= proc_dointvec_minmax,
3309 		.extra1		= SYSCTL_ZERO,
3310 		.extra2		= SYSCTL_ONE_THOUSAND,
3311 	},
3312 	{
3313 		.procname	= "compact_unevictable_allowed",
3314 		.data		= &sysctl_compact_unevictable_allowed,
3315 		.maxlen		= sizeof(int),
3316 		.mode		= 0644,
3317 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3318 		.extra1		= SYSCTL_ZERO,
3319 		.extra2		= SYSCTL_ONE,
3320 	},
3321 };
3322 
3323 static int __init kcompactd_init(void)
3324 {
3325 	int nid;
3326 
3327 	for_each_node_state(nid, N_MEMORY)
3328 		kcompactd_run(nid);
3329 	register_sysctl_init("vm", vm_compaction);
3330 	return 0;
3331 }
3332 subsys_initcall(kcompactd_init)
3333 
3334 #endif /* CONFIG_COMPACTION */
3335