1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include <linux/cpuset.h> 27 #include "internal.h" 28 29 #ifdef CONFIG_COMPACTION 30 /* 31 * Fragmentation score check interval for proactive compaction purposes. 32 */ 33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 34 35 static inline void count_compact_event(enum vm_event_item item) 36 { 37 count_vm_event(item); 38 } 39 40 static inline void count_compact_events(enum vm_event_item item, long delta) 41 { 42 count_vm_events(item, delta); 43 } 44 45 /* 46 * order == -1 is expected when compacting proactively via 47 * 1. /proc/sys/vm/compact_memory 48 * 2. /sys/devices/system/node/nodex/compact 49 * 3. /proc/sys/vm/compaction_proactiveness 50 */ 51 static inline bool is_via_compact_memory(int order) 52 { 53 return order == -1; 54 } 55 56 #else 57 #define count_compact_event(item) do { } while (0) 58 #define count_compact_events(item, delta) do { } while (0) 59 static inline bool is_via_compact_memory(int order) { return false; } 60 #endif 61 62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/compaction.h> 66 67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 69 70 /* 71 * Page order with-respect-to which proactive compaction 72 * calculates external fragmentation, which is used as 73 * the "fragmentation score" of a node/zone. 74 */ 75 #if defined CONFIG_TRANSPARENT_HUGEPAGE 76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 77 #elif defined CONFIG_HUGETLBFS 78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 79 #else 80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 81 #endif 82 83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags) 84 { 85 post_alloc_hook(page, order, __GFP_MOVABLE); 86 set_page_refcounted(page); 87 return page; 88 } 89 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__)) 90 91 static unsigned long release_free_list(struct list_head *freepages) 92 { 93 int order; 94 unsigned long high_pfn = 0; 95 96 for (order = 0; order < NR_PAGE_ORDERS; order++) { 97 struct page *page, *next; 98 99 list_for_each_entry_safe(page, next, &freepages[order], lru) { 100 unsigned long pfn = page_to_pfn(page); 101 102 list_del(&page->lru); 103 /* 104 * Convert free pages into post allocation pages, so 105 * that we can free them via __free_page. 106 */ 107 mark_allocated(page, order, __GFP_MOVABLE); 108 __free_pages(page, order); 109 if (pfn > high_pfn) 110 high_pfn = pfn; 111 } 112 } 113 return high_pfn; 114 } 115 116 #ifdef CONFIG_COMPACTION 117 118 /* Do not skip compaction more than 64 times */ 119 #define COMPACT_MAX_DEFER_SHIFT 6 120 121 /* 122 * Compaction is deferred when compaction fails to result in a page 123 * allocation success. 1 << compact_defer_shift, compactions are skipped up 124 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 125 */ 126 static void defer_compaction(struct zone *zone, int order) 127 { 128 zone->compact_considered = 0; 129 zone->compact_defer_shift++; 130 131 if (order < zone->compact_order_failed) 132 zone->compact_order_failed = order; 133 134 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 135 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 136 137 trace_mm_compaction_defer_compaction(zone, order); 138 } 139 140 /* Returns true if compaction should be skipped this time */ 141 static bool compaction_deferred(struct zone *zone, int order) 142 { 143 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 144 145 if (order < zone->compact_order_failed) 146 return false; 147 148 /* Avoid possible overflow */ 149 if (++zone->compact_considered >= defer_limit) { 150 zone->compact_considered = defer_limit; 151 return false; 152 } 153 154 trace_mm_compaction_deferred(zone, order); 155 156 return true; 157 } 158 159 /* 160 * Update defer tracking counters after successful compaction of given order, 161 * which means an allocation either succeeded (alloc_success == true) or is 162 * expected to succeed. 163 */ 164 void compaction_defer_reset(struct zone *zone, int order, 165 bool alloc_success) 166 { 167 if (alloc_success) { 168 zone->compact_considered = 0; 169 zone->compact_defer_shift = 0; 170 } 171 if (order >= zone->compact_order_failed) 172 zone->compact_order_failed = order + 1; 173 174 trace_mm_compaction_defer_reset(zone, order); 175 } 176 177 /* Returns true if restarting compaction after many failures */ 178 static bool compaction_restarting(struct zone *zone, int order) 179 { 180 if (order < zone->compact_order_failed) 181 return false; 182 183 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 184 zone->compact_considered >= 1UL << zone->compact_defer_shift; 185 } 186 187 /* Returns true if the pageblock should be scanned for pages to isolate. */ 188 static inline bool isolation_suitable(struct compact_control *cc, 189 struct page *page) 190 { 191 if (cc->ignore_skip_hint) 192 return true; 193 194 return !get_pageblock_skip(page); 195 } 196 197 static void reset_cached_positions(struct zone *zone) 198 { 199 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 200 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 201 zone->compact_cached_free_pfn = 202 pageblock_start_pfn(zone_end_pfn(zone) - 1); 203 } 204 205 #ifdef CONFIG_SPARSEMEM 206 /* 207 * If the PFN falls into an offline section, return the start PFN of the 208 * next online section. If the PFN falls into an online section or if 209 * there is no next online section, return 0. 210 */ 211 static unsigned long skip_offline_sections(unsigned long start_pfn) 212 { 213 unsigned long start_nr = pfn_to_section_nr(start_pfn); 214 215 if (online_section_nr(start_nr)) 216 return 0; 217 218 while (++start_nr <= __highest_present_section_nr) { 219 if (online_section_nr(start_nr)) 220 return section_nr_to_pfn(start_nr); 221 } 222 223 return 0; 224 } 225 226 /* 227 * If the PFN falls into an offline section, return the end PFN of the 228 * next online section in reverse. If the PFN falls into an online section 229 * or if there is no next online section in reverse, return 0. 230 */ 231 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 232 { 233 unsigned long start_nr = pfn_to_section_nr(start_pfn); 234 235 if (!start_nr || online_section_nr(start_nr)) 236 return 0; 237 238 while (start_nr-- > 0) { 239 if (online_section_nr(start_nr)) 240 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 241 } 242 243 return 0; 244 } 245 #else 246 static unsigned long skip_offline_sections(unsigned long start_pfn) 247 { 248 return 0; 249 } 250 251 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 252 { 253 return 0; 254 } 255 #endif 256 257 /* 258 * Compound pages of >= pageblock_order should consistently be skipped until 259 * released. It is always pointless to compact pages of such order (if they are 260 * migratable), and the pageblocks they occupy cannot contain any free pages. 261 */ 262 static bool pageblock_skip_persistent(struct page *page) 263 { 264 if (!PageCompound(page)) 265 return false; 266 267 page = compound_head(page); 268 269 if (compound_order(page) >= pageblock_order) 270 return true; 271 272 return false; 273 } 274 275 static bool 276 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 277 bool check_target) 278 { 279 struct page *page = pfn_to_online_page(pfn); 280 struct page *block_page; 281 struct page *end_page; 282 unsigned long block_pfn; 283 284 if (!page) 285 return false; 286 if (zone != page_zone(page)) 287 return false; 288 if (pageblock_skip_persistent(page)) 289 return false; 290 291 /* 292 * If skip is already cleared do no further checking once the 293 * restart points have been set. 294 */ 295 if (check_source && check_target && !get_pageblock_skip(page)) 296 return true; 297 298 /* 299 * If clearing skip for the target scanner, do not select a 300 * non-movable pageblock as the starting point. 301 */ 302 if (!check_source && check_target && 303 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 304 return false; 305 306 /* Ensure the start of the pageblock or zone is online and valid */ 307 block_pfn = pageblock_start_pfn(pfn); 308 block_pfn = max(block_pfn, zone->zone_start_pfn); 309 block_page = pfn_to_online_page(block_pfn); 310 if (block_page) { 311 page = block_page; 312 pfn = block_pfn; 313 } 314 315 /* Ensure the end of the pageblock or zone is online and valid */ 316 block_pfn = pageblock_end_pfn(pfn) - 1; 317 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 318 end_page = pfn_to_online_page(block_pfn); 319 if (!end_page) 320 return false; 321 322 /* 323 * Only clear the hint if a sample indicates there is either a 324 * free page or an LRU page in the block. One or other condition 325 * is necessary for the block to be a migration source/target. 326 */ 327 do { 328 if (check_source && PageLRU(page)) { 329 clear_pageblock_skip(page); 330 return true; 331 } 332 333 if (check_target && PageBuddy(page)) { 334 clear_pageblock_skip(page); 335 return true; 336 } 337 338 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 339 } while (page <= end_page); 340 341 return false; 342 } 343 344 /* 345 * This function is called to clear all cached information on pageblocks that 346 * should be skipped for page isolation when the migrate and free page scanner 347 * meet. 348 */ 349 static void __reset_isolation_suitable(struct zone *zone) 350 { 351 unsigned long migrate_pfn = zone->zone_start_pfn; 352 unsigned long free_pfn = zone_end_pfn(zone) - 1; 353 unsigned long reset_migrate = free_pfn; 354 unsigned long reset_free = migrate_pfn; 355 bool source_set = false; 356 bool free_set = false; 357 358 /* Only flush if a full compaction finished recently */ 359 if (!zone->compact_blockskip_flush) 360 return; 361 362 zone->compact_blockskip_flush = false; 363 364 /* 365 * Walk the zone and update pageblock skip information. Source looks 366 * for PageLRU while target looks for PageBuddy. When the scanner 367 * is found, both PageBuddy and PageLRU are checked as the pageblock 368 * is suitable as both source and target. 369 */ 370 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 371 free_pfn -= pageblock_nr_pages) { 372 cond_resched(); 373 374 /* Update the migrate PFN */ 375 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 376 migrate_pfn < reset_migrate) { 377 source_set = true; 378 reset_migrate = migrate_pfn; 379 zone->compact_init_migrate_pfn = reset_migrate; 380 zone->compact_cached_migrate_pfn[0] = reset_migrate; 381 zone->compact_cached_migrate_pfn[1] = reset_migrate; 382 } 383 384 /* Update the free PFN */ 385 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 386 free_pfn > reset_free) { 387 free_set = true; 388 reset_free = free_pfn; 389 zone->compact_init_free_pfn = reset_free; 390 zone->compact_cached_free_pfn = reset_free; 391 } 392 } 393 394 /* Leave no distance if no suitable block was reset */ 395 if (reset_migrate >= reset_free) { 396 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 397 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 398 zone->compact_cached_free_pfn = free_pfn; 399 } 400 } 401 402 void reset_isolation_suitable(pg_data_t *pgdat) 403 { 404 int zoneid; 405 406 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 407 struct zone *zone = &pgdat->node_zones[zoneid]; 408 if (!populated_zone(zone)) 409 continue; 410 411 __reset_isolation_suitable(zone); 412 } 413 } 414 415 /* 416 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 417 * locks are not required for read/writers. Returns true if it was already set. 418 */ 419 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 420 { 421 bool skip; 422 423 /* Do not update if skip hint is being ignored */ 424 if (cc->ignore_skip_hint) 425 return false; 426 427 skip = get_pageblock_skip(page); 428 if (!skip && !cc->no_set_skip_hint) 429 set_pageblock_skip(page); 430 431 return skip; 432 } 433 434 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 435 { 436 struct zone *zone = cc->zone; 437 438 /* Set for isolation rather than compaction */ 439 if (cc->no_set_skip_hint) 440 return; 441 442 pfn = pageblock_end_pfn(pfn); 443 444 /* Update where async and sync compaction should restart */ 445 if (pfn > zone->compact_cached_migrate_pfn[0]) 446 zone->compact_cached_migrate_pfn[0] = pfn; 447 if (cc->mode != MIGRATE_ASYNC && 448 pfn > zone->compact_cached_migrate_pfn[1]) 449 zone->compact_cached_migrate_pfn[1] = pfn; 450 } 451 452 /* 453 * If no pages were isolated then mark this pageblock to be skipped in the 454 * future. The information is later cleared by __reset_isolation_suitable(). 455 */ 456 static void update_pageblock_skip(struct compact_control *cc, 457 struct page *page, unsigned long pfn) 458 { 459 struct zone *zone = cc->zone; 460 461 if (cc->no_set_skip_hint) 462 return; 463 464 set_pageblock_skip(page); 465 466 if (pfn < zone->compact_cached_free_pfn) 467 zone->compact_cached_free_pfn = pfn; 468 } 469 #else 470 static inline bool isolation_suitable(struct compact_control *cc, 471 struct page *page) 472 { 473 return true; 474 } 475 476 static inline bool pageblock_skip_persistent(struct page *page) 477 { 478 return false; 479 } 480 481 static inline void update_pageblock_skip(struct compact_control *cc, 482 struct page *page, unsigned long pfn) 483 { 484 } 485 486 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 487 { 488 } 489 490 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 491 { 492 return false; 493 } 494 #endif /* CONFIG_COMPACTION */ 495 496 /* 497 * Compaction requires the taking of some coarse locks that are potentially 498 * very heavily contended. For async compaction, trylock and record if the 499 * lock is contended. The lock will still be acquired but compaction will 500 * abort when the current block is finished regardless of success rate. 501 * Sync compaction acquires the lock. 502 * 503 * Always returns true which makes it easier to track lock state in callers. 504 */ 505 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 506 struct compact_control *cc) 507 __acquires(lock) 508 { 509 /* Track if the lock is contended in async mode */ 510 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 511 if (spin_trylock_irqsave(lock, *flags)) 512 return true; 513 514 cc->contended = true; 515 } 516 517 spin_lock_irqsave(lock, *flags); 518 return true; 519 } 520 521 /* 522 * Compaction requires the taking of some coarse locks that are potentially 523 * very heavily contended. The lock should be periodically unlocked to avoid 524 * having disabled IRQs for a long time, even when there is nobody waiting on 525 * the lock. It might also be that allowing the IRQs will result in 526 * need_resched() becoming true. If scheduling is needed, compaction schedules. 527 * Either compaction type will also abort if a fatal signal is pending. 528 * In either case if the lock was locked, it is dropped and not regained. 529 * 530 * Returns true if compaction should abort due to fatal signal pending. 531 * Returns false when compaction can continue. 532 */ 533 static bool compact_unlock_should_abort(spinlock_t *lock, 534 unsigned long flags, bool *locked, struct compact_control *cc) 535 { 536 if (*locked) { 537 spin_unlock_irqrestore(lock, flags); 538 *locked = false; 539 } 540 541 if (fatal_signal_pending(current)) { 542 cc->contended = true; 543 return true; 544 } 545 546 cond_resched(); 547 548 return false; 549 } 550 551 /* 552 * Isolate free pages onto a private freelist. If @strict is true, will abort 553 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 554 * (even though it may still end up isolating some pages). 555 */ 556 static unsigned long isolate_freepages_block(struct compact_control *cc, 557 unsigned long *start_pfn, 558 unsigned long end_pfn, 559 struct list_head *freelist, 560 unsigned int stride, 561 bool strict) 562 { 563 int nr_scanned = 0, total_isolated = 0; 564 struct page *page; 565 unsigned long flags = 0; 566 bool locked = false; 567 unsigned long blockpfn = *start_pfn; 568 unsigned int order; 569 570 /* Strict mode is for isolation, speed is secondary */ 571 if (strict) 572 stride = 1; 573 574 page = pfn_to_page(blockpfn); 575 576 /* Isolate free pages. */ 577 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 578 int isolated; 579 580 /* 581 * Periodically drop the lock (if held) regardless of its 582 * contention, to give chance to IRQs. Abort if fatal signal 583 * pending. 584 */ 585 if (!(blockpfn % COMPACT_CLUSTER_MAX) 586 && compact_unlock_should_abort(&cc->zone->lock, flags, 587 &locked, cc)) 588 break; 589 590 nr_scanned++; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if ((order <= MAX_PAGE_ORDER) && 602 (blockpfn + (1UL << order) <= end_pfn)) { 603 blockpfn += (1UL << order) - 1; 604 page += (1UL << order) - 1; 605 nr_scanned += (1UL << order) - 1; 606 } 607 608 goto isolate_fail; 609 } 610 611 if (!PageBuddy(page)) 612 goto isolate_fail; 613 614 /* If we already hold the lock, we can skip some rechecking. */ 615 if (!locked) { 616 locked = compact_lock_irqsave(&cc->zone->lock, 617 &flags, cc); 618 619 /* Recheck this is a buddy page under lock */ 620 if (!PageBuddy(page)) 621 goto isolate_fail; 622 } 623 624 /* Found a free page, will break it into order-0 pages */ 625 order = buddy_order(page); 626 isolated = __isolate_free_page(page, order); 627 if (!isolated) 628 break; 629 set_page_private(page, order); 630 631 nr_scanned += isolated - 1; 632 total_isolated += isolated; 633 cc->nr_freepages += isolated; 634 list_add_tail(&page->lru, &freelist[order]); 635 636 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 637 blockpfn += isolated; 638 break; 639 } 640 /* Advance to the end of split page */ 641 blockpfn += isolated - 1; 642 page += isolated - 1; 643 continue; 644 645 isolate_fail: 646 if (strict) 647 break; 648 649 } 650 651 if (locked) 652 spin_unlock_irqrestore(&cc->zone->lock, flags); 653 654 /* 655 * Be careful to not go outside of the pageblock. 656 */ 657 if (unlikely(blockpfn > end_pfn)) 658 blockpfn = end_pfn; 659 660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 661 nr_scanned, total_isolated); 662 663 /* Record how far we have got within the block */ 664 *start_pfn = blockpfn; 665 666 /* 667 * If strict isolation is requested by CMA then check that all the 668 * pages requested were isolated. If there were any failures, 0 is 669 * returned and CMA will fail. 670 */ 671 if (strict && blockpfn < end_pfn) 672 total_isolated = 0; 673 674 cc->total_free_scanned += nr_scanned; 675 if (total_isolated) 676 count_compact_events(COMPACTISOLATED, total_isolated); 677 return total_isolated; 678 } 679 680 /** 681 * isolate_freepages_range() - isolate free pages. 682 * @cc: Compaction control structure. 683 * @start_pfn: The first PFN to start isolating. 684 * @end_pfn: The one-past-last PFN. 685 * 686 * Non-free pages, invalid PFNs, or zone boundaries within the 687 * [start_pfn, end_pfn) range are considered errors, cause function to 688 * undo its actions and return zero. cc->freepages[] are empty. 689 * 690 * Otherwise, function returns one-past-the-last PFN of isolated page 691 * (which may be greater then end_pfn if end fell in a middle of 692 * a free page). cc->freepages[] contain free pages isolated. 693 */ 694 unsigned long 695 isolate_freepages_range(struct compact_control *cc, 696 unsigned long start_pfn, unsigned long end_pfn) 697 { 698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 699 int order; 700 701 for (order = 0; order < NR_PAGE_ORDERS; order++) 702 INIT_LIST_HEAD(&cc->freepages[order]); 703 704 pfn = start_pfn; 705 block_start_pfn = pageblock_start_pfn(pfn); 706 if (block_start_pfn < cc->zone->zone_start_pfn) 707 block_start_pfn = cc->zone->zone_start_pfn; 708 block_end_pfn = pageblock_end_pfn(pfn); 709 710 for (; pfn < end_pfn; pfn += isolated, 711 block_start_pfn = block_end_pfn, 712 block_end_pfn += pageblock_nr_pages) { 713 /* Protect pfn from changing by isolate_freepages_block */ 714 unsigned long isolate_start_pfn = pfn; 715 716 /* 717 * pfn could pass the block_end_pfn if isolated freepage 718 * is more than pageblock order. In this case, we adjust 719 * scanning range to right one. 720 */ 721 if (pfn >= block_end_pfn) { 722 block_start_pfn = pageblock_start_pfn(pfn); 723 block_end_pfn = pageblock_end_pfn(pfn); 724 } 725 726 block_end_pfn = min(block_end_pfn, end_pfn); 727 728 if (!pageblock_pfn_to_page(block_start_pfn, 729 block_end_pfn, cc->zone)) 730 break; 731 732 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 733 block_end_pfn, cc->freepages, 0, true); 734 735 /* 736 * In strict mode, isolate_freepages_block() returns 0 if 737 * there are any holes in the block (ie. invalid PFNs or 738 * non-free pages). 739 */ 740 if (!isolated) 741 break; 742 743 /* 744 * If we managed to isolate pages, it is always (1 << n) * 745 * pageblock_nr_pages for some non-negative n. (Max order 746 * page may span two pageblocks). 747 */ 748 } 749 750 if (pfn < end_pfn) { 751 /* Loop terminated early, cleanup. */ 752 release_free_list(cc->freepages); 753 return 0; 754 } 755 756 /* We don't use freelists for anything. */ 757 return pfn; 758 } 759 760 /* Similar to reclaim, but different enough that they don't share logic */ 761 static bool too_many_isolated(struct compact_control *cc) 762 { 763 pg_data_t *pgdat = cc->zone->zone_pgdat; 764 bool too_many; 765 766 unsigned long active, inactive, isolated; 767 768 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 769 node_page_state(pgdat, NR_INACTIVE_ANON); 770 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 771 node_page_state(pgdat, NR_ACTIVE_ANON); 772 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 773 node_page_state(pgdat, NR_ISOLATED_ANON); 774 775 /* 776 * Allow GFP_NOFS to isolate past the limit set for regular 777 * compaction runs. This prevents an ABBA deadlock when other 778 * compactors have already isolated to the limit, but are 779 * blocked on filesystem locks held by the GFP_NOFS thread. 780 */ 781 if (cc->gfp_mask & __GFP_FS) { 782 inactive >>= 3; 783 active >>= 3; 784 } 785 786 too_many = isolated > (inactive + active) / 2; 787 if (!too_many) 788 wake_throttle_isolated(pgdat); 789 790 return too_many; 791 } 792 793 /** 794 * skip_isolation_on_order() - determine when to skip folio isolation based on 795 * folio order and compaction target order 796 * @order: to-be-isolated folio order 797 * @target_order: compaction target order 798 * 799 * This avoids unnecessary folio isolations during compaction. 800 */ 801 static bool skip_isolation_on_order(int order, int target_order) 802 { 803 /* 804 * Unless we are performing global compaction (i.e., 805 * is_via_compact_memory), skip any folios that are larger than the 806 * target order: we wouldn't be here if we'd have a free folio with 807 * the desired target_order, so migrating this folio would likely fail 808 * later. 809 */ 810 if (!is_via_compact_memory(target_order) && order >= target_order) 811 return true; 812 /* 813 * We limit memory compaction to pageblocks and won't try 814 * creating free blocks of memory that are larger than that. 815 */ 816 return order >= pageblock_order; 817 } 818 819 /** 820 * isolate_migratepages_block() - isolate all migrate-able pages within 821 * a single pageblock 822 * @cc: Compaction control structure. 823 * @low_pfn: The first PFN to isolate 824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 825 * @mode: Isolation mode to be used. 826 * 827 * Isolate all pages that can be migrated from the range specified by 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 830 * -ENOMEM in case we could not allocate a page, or 0. 831 * cc->migrate_pfn will contain the next pfn to scan. 832 * 833 * The pages are isolated on cc->migratepages list (not required to be empty), 834 * and cc->nr_migratepages is updated accordingly. 835 */ 836 static int 837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 838 unsigned long end_pfn, isolate_mode_t mode) 839 { 840 pg_data_t *pgdat = cc->zone->zone_pgdat; 841 unsigned long nr_scanned = 0, nr_isolated = 0; 842 struct lruvec *lruvec; 843 unsigned long flags = 0; 844 struct lruvec *locked = NULL; 845 struct folio *folio = NULL; 846 struct page *page = NULL, *valid_page = NULL; 847 struct address_space *mapping; 848 unsigned long start_pfn = low_pfn; 849 bool skip_on_failure = false; 850 unsigned long next_skip_pfn = 0; 851 bool skip_updated = false; 852 int ret = 0; 853 854 cc->migrate_pfn = low_pfn; 855 856 /* 857 * Ensure that there are not too many pages isolated from the LRU 858 * list by either parallel reclaimers or compaction. If there are, 859 * delay for some time until fewer pages are isolated 860 */ 861 while (unlikely(too_many_isolated(cc))) { 862 /* stop isolation if there are still pages not migrated */ 863 if (cc->nr_migratepages) 864 return -EAGAIN; 865 866 /* async migration should just abort */ 867 if (cc->mode == MIGRATE_ASYNC) 868 return -EAGAIN; 869 870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 871 872 if (fatal_signal_pending(current)) 873 return -EINTR; 874 } 875 876 cond_resched(); 877 878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 879 skip_on_failure = true; 880 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 881 } 882 883 /* Time to isolate some pages for migration */ 884 for (; low_pfn < end_pfn; low_pfn++) { 885 bool is_dirty, is_unevictable; 886 887 if (skip_on_failure && low_pfn >= next_skip_pfn) { 888 /* 889 * We have isolated all migration candidates in the 890 * previous order-aligned block, and did not skip it due 891 * to failure. We should migrate the pages now and 892 * hopefully succeed compaction. 893 */ 894 if (nr_isolated) 895 break; 896 897 /* 898 * We failed to isolate in the previous order-aligned 899 * block. Set the new boundary to the end of the 900 * current block. Note we can't simply increase 901 * next_skip_pfn by 1 << order, as low_pfn might have 902 * been incremented by a higher number due to skipping 903 * a compound or a high-order buddy page in the 904 * previous loop iteration. 905 */ 906 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 907 } 908 909 /* 910 * Periodically drop the lock (if held) regardless of its 911 * contention, to give chance to IRQs. Abort completely if 912 * a fatal signal is pending. 913 */ 914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 915 if (locked) { 916 unlock_page_lruvec_irqrestore(locked, flags); 917 locked = NULL; 918 } 919 920 if (fatal_signal_pending(current)) { 921 cc->contended = true; 922 ret = -EINTR; 923 924 goto fatal_pending; 925 } 926 927 cond_resched(); 928 } 929 930 nr_scanned++; 931 932 page = pfn_to_page(low_pfn); 933 934 /* 935 * Check if the pageblock has already been marked skipped. 936 * Only the first PFN is checked as the caller isolates 937 * COMPACT_CLUSTER_MAX at a time so the second call must 938 * not falsely conclude that the block should be skipped. 939 */ 940 if (!valid_page && (pageblock_aligned(low_pfn) || 941 low_pfn == cc->zone->zone_start_pfn)) { 942 if (!isolation_suitable(cc, page)) { 943 low_pfn = end_pfn; 944 folio = NULL; 945 goto isolate_abort; 946 } 947 valid_page = page; 948 } 949 950 if (PageHuge(page)) { 951 const unsigned int order = compound_order(page); 952 /* 953 * skip hugetlbfs if we are not compacting for pages 954 * bigger than its order. THPs and other compound pages 955 * are handled below. 956 */ 957 if (!cc->alloc_contig) { 958 959 if (order <= MAX_PAGE_ORDER) { 960 low_pfn += (1UL << order) - 1; 961 nr_scanned += (1UL << order) - 1; 962 } 963 goto isolate_fail; 964 } 965 /* for alloc_contig case */ 966 if (locked) { 967 unlock_page_lruvec_irqrestore(locked, flags); 968 locked = NULL; 969 } 970 971 folio = page_folio(page); 972 ret = isolate_or_dissolve_huge_folio(folio, &cc->migratepages); 973 974 /* 975 * Fail isolation in case isolate_or_dissolve_huge_folio() 976 * reports an error. In case of -ENOMEM, abort right away. 977 */ 978 if (ret < 0) { 979 /* Do not report -EBUSY down the chain */ 980 if (ret == -EBUSY) 981 ret = 0; 982 low_pfn += (1UL << order) - 1; 983 nr_scanned += (1UL << order) - 1; 984 goto isolate_fail; 985 } 986 987 if (folio_test_hugetlb(folio)) { 988 /* 989 * Hugepage was successfully isolated and placed 990 * on the cc->migratepages list. 991 */ 992 low_pfn += folio_nr_pages(folio) - 1; 993 goto isolate_success_no_list; 994 } 995 996 /* 997 * Ok, the hugepage was dissolved. Now these pages are 998 * Buddy and cannot be re-allocated because they are 999 * isolated. Fall-through as the check below handles 1000 * Buddy pages. 1001 */ 1002 } 1003 1004 /* 1005 * Skip if free. We read page order here without zone lock 1006 * which is generally unsafe, but the race window is small and 1007 * the worst thing that can happen is that we skip some 1008 * potential isolation targets. 1009 */ 1010 if (PageBuddy(page)) { 1011 unsigned long freepage_order = buddy_order_unsafe(page); 1012 1013 /* 1014 * Without lock, we cannot be sure that what we got is 1015 * a valid page order. Consider only values in the 1016 * valid order range to prevent low_pfn overflow. 1017 */ 1018 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1019 low_pfn += (1UL << freepage_order) - 1; 1020 nr_scanned += (1UL << freepage_order) - 1; 1021 } 1022 continue; 1023 } 1024 1025 /* 1026 * Regardless of being on LRU, compound pages such as THP 1027 * (hugetlbfs is handled above) are not to be compacted unless 1028 * we are attempting an allocation larger than the compound 1029 * page size. We can potentially save a lot of iterations if we 1030 * skip them at once. The check is racy, but we can consider 1031 * only valid values and the only danger is skipping too much. 1032 */ 1033 if (PageCompound(page) && !cc->alloc_contig) { 1034 const unsigned int order = compound_order(page); 1035 1036 /* Skip based on page order and compaction target order. */ 1037 if (skip_isolation_on_order(order, cc->order)) { 1038 if (order <= MAX_PAGE_ORDER) { 1039 low_pfn += (1UL << order) - 1; 1040 nr_scanned += (1UL << order) - 1; 1041 } 1042 goto isolate_fail; 1043 } 1044 } 1045 1046 /* 1047 * Check may be lockless but that's ok as we recheck later. 1048 * It's possible to migrate LRU and non-lru movable pages. 1049 * Skip any other type of page 1050 */ 1051 if (!PageLRU(page)) { 1052 /* Isolation code will deal with any races. */ 1053 if (unlikely(page_has_movable_ops(page)) && 1054 !PageMovableOpsIsolated(page)) { 1055 if (locked) { 1056 unlock_page_lruvec_irqrestore(locked, flags); 1057 locked = NULL; 1058 } 1059 1060 if (isolate_movable_ops_page(page, mode)) { 1061 folio = page_folio(page); 1062 goto isolate_success; 1063 } 1064 } 1065 1066 goto isolate_fail; 1067 } 1068 1069 /* 1070 * Be careful not to clear PageLRU until after we're 1071 * sure the page is not being freed elsewhere -- the 1072 * page release code relies on it. 1073 */ 1074 folio = folio_get_nontail_page(page); 1075 if (unlikely(!folio)) 1076 goto isolate_fail; 1077 1078 /* 1079 * Migration will fail if an anonymous page is pinned in memory, 1080 * so avoid taking lru_lock and isolating it unnecessarily in an 1081 * admittedly racy check. 1082 */ 1083 mapping = folio_mapping(folio); 1084 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1085 goto isolate_fail_put; 1086 1087 /* 1088 * Only allow to migrate anonymous pages in GFP_NOFS context 1089 * because those do not depend on fs locks. 1090 */ 1091 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1092 goto isolate_fail_put; 1093 1094 /* Only take pages on LRU: a check now makes later tests safe */ 1095 if (!folio_test_lru(folio)) 1096 goto isolate_fail_put; 1097 1098 is_unevictable = folio_test_unevictable(folio); 1099 1100 /* Compaction might skip unevictable pages but CMA takes them */ 1101 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1102 goto isolate_fail_put; 1103 1104 /* 1105 * To minimise LRU disruption, the caller can indicate with 1106 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1107 * it will be able to migrate without blocking - clean pages 1108 * for the most part. PageWriteback would require blocking. 1109 */ 1110 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1111 goto isolate_fail_put; 1112 1113 is_dirty = folio_test_dirty(folio); 1114 1115 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1116 (mapping && is_unevictable)) { 1117 bool migrate_dirty = true; 1118 bool is_inaccessible; 1119 1120 /* 1121 * Only folios without mappings or that have 1122 * a ->migrate_folio callback are possible to migrate 1123 * without blocking. 1124 * 1125 * Folios from inaccessible mappings are not migratable. 1126 * 1127 * However, we can be racing with truncation, which can 1128 * free the mapping that we need to check. Truncation 1129 * holds the folio lock until after the folio is removed 1130 * from the page so holding it ourselves is sufficient. 1131 * 1132 * To avoid locking the folio just to check inaccessible, 1133 * assume every inaccessible folio is also unevictable, 1134 * which is a cheaper test. If our assumption goes 1135 * wrong, it's not a correctness bug, just potentially 1136 * wasted cycles. 1137 */ 1138 if (!folio_trylock(folio)) 1139 goto isolate_fail_put; 1140 1141 mapping = folio_mapping(folio); 1142 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1143 migrate_dirty = !mapping || 1144 mapping->a_ops->migrate_folio; 1145 } 1146 is_inaccessible = mapping && mapping_inaccessible(mapping); 1147 folio_unlock(folio); 1148 if (!migrate_dirty || is_inaccessible) 1149 goto isolate_fail_put; 1150 } 1151 1152 /* Try isolate the folio */ 1153 if (!folio_test_clear_lru(folio)) 1154 goto isolate_fail_put; 1155 1156 lruvec = folio_lruvec(folio); 1157 1158 /* If we already hold the lock, we can skip some rechecking */ 1159 if (lruvec != locked) { 1160 if (locked) 1161 unlock_page_lruvec_irqrestore(locked, flags); 1162 1163 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1164 locked = lruvec; 1165 1166 lruvec_memcg_debug(lruvec, folio); 1167 1168 /* 1169 * Try get exclusive access under lock. If marked for 1170 * skip, the scan is aborted unless the current context 1171 * is a rescan to reach the end of the pageblock. 1172 */ 1173 if (!skip_updated && valid_page) { 1174 skip_updated = true; 1175 if (test_and_set_skip(cc, valid_page) && 1176 !cc->finish_pageblock) { 1177 low_pfn = end_pfn; 1178 goto isolate_abort; 1179 } 1180 } 1181 1182 /* 1183 * Check LRU folio order under the lock 1184 */ 1185 if (unlikely(skip_isolation_on_order(folio_order(folio), 1186 cc->order) && 1187 !cc->alloc_contig)) { 1188 low_pfn += folio_nr_pages(folio) - 1; 1189 nr_scanned += folio_nr_pages(folio) - 1; 1190 folio_set_lru(folio); 1191 goto isolate_fail_put; 1192 } 1193 } 1194 1195 /* The folio is taken off the LRU */ 1196 if (folio_test_large(folio)) 1197 low_pfn += folio_nr_pages(folio) - 1; 1198 1199 /* Successfully isolated */ 1200 lruvec_del_folio(lruvec, folio); 1201 node_stat_mod_folio(folio, 1202 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1203 folio_nr_pages(folio)); 1204 1205 isolate_success: 1206 list_add(&folio->lru, &cc->migratepages); 1207 isolate_success_no_list: 1208 cc->nr_migratepages += folio_nr_pages(folio); 1209 nr_isolated += folio_nr_pages(folio); 1210 nr_scanned += folio_nr_pages(folio) - 1; 1211 1212 /* 1213 * Avoid isolating too much unless this block is being 1214 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1215 * or a lock is contended. For contention, isolate quickly to 1216 * potentially remove one source of contention. 1217 */ 1218 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1219 !cc->finish_pageblock && !cc->contended) { 1220 ++low_pfn; 1221 break; 1222 } 1223 1224 continue; 1225 1226 isolate_fail_put: 1227 /* Avoid potential deadlock in freeing page under lru_lock */ 1228 if (locked) { 1229 unlock_page_lruvec_irqrestore(locked, flags); 1230 locked = NULL; 1231 } 1232 folio_put(folio); 1233 1234 isolate_fail: 1235 if (!skip_on_failure && ret != -ENOMEM) 1236 continue; 1237 1238 /* 1239 * We have isolated some pages, but then failed. Release them 1240 * instead of migrating, as we cannot form the cc->order buddy 1241 * page anyway. 1242 */ 1243 if (nr_isolated) { 1244 if (locked) { 1245 unlock_page_lruvec_irqrestore(locked, flags); 1246 locked = NULL; 1247 } 1248 putback_movable_pages(&cc->migratepages); 1249 cc->nr_migratepages = 0; 1250 nr_isolated = 0; 1251 } 1252 1253 if (low_pfn < next_skip_pfn) { 1254 low_pfn = next_skip_pfn - 1; 1255 /* 1256 * The check near the loop beginning would have updated 1257 * next_skip_pfn too, but this is a bit simpler. 1258 */ 1259 next_skip_pfn += 1UL << cc->order; 1260 } 1261 1262 if (ret == -ENOMEM) 1263 break; 1264 } 1265 1266 /* 1267 * The PageBuddy() check could have potentially brought us outside 1268 * the range to be scanned. 1269 */ 1270 if (unlikely(low_pfn > end_pfn)) 1271 low_pfn = end_pfn; 1272 1273 folio = NULL; 1274 1275 isolate_abort: 1276 if (locked) 1277 unlock_page_lruvec_irqrestore(locked, flags); 1278 if (folio) { 1279 folio_set_lru(folio); 1280 folio_put(folio); 1281 } 1282 1283 /* 1284 * Update the cached scanner pfn once the pageblock has been scanned. 1285 * Pages will either be migrated in which case there is no point 1286 * scanning in the near future or migration failed in which case the 1287 * failure reason may persist. The block is marked for skipping if 1288 * there were no pages isolated in the block or if the block is 1289 * rescanned twice in a row. 1290 */ 1291 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1292 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1293 set_pageblock_skip(valid_page); 1294 update_cached_migrate(cc, low_pfn); 1295 } 1296 1297 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1298 nr_scanned, nr_isolated); 1299 1300 fatal_pending: 1301 cc->total_migrate_scanned += nr_scanned; 1302 if (nr_isolated) 1303 count_compact_events(COMPACTISOLATED, nr_isolated); 1304 1305 cc->migrate_pfn = low_pfn; 1306 1307 return ret; 1308 } 1309 1310 /** 1311 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1312 * @cc: Compaction control structure. 1313 * @start_pfn: The first PFN to start isolating. 1314 * @end_pfn: The one-past-last PFN. 1315 * 1316 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1317 * in case we could not allocate a page, or 0. 1318 */ 1319 int 1320 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1321 unsigned long end_pfn) 1322 { 1323 unsigned long pfn, block_start_pfn, block_end_pfn; 1324 int ret = 0; 1325 1326 /* Scan block by block. First and last block may be incomplete */ 1327 pfn = start_pfn; 1328 block_start_pfn = pageblock_start_pfn(pfn); 1329 if (block_start_pfn < cc->zone->zone_start_pfn) 1330 block_start_pfn = cc->zone->zone_start_pfn; 1331 block_end_pfn = pageblock_end_pfn(pfn); 1332 1333 for (; pfn < end_pfn; pfn = block_end_pfn, 1334 block_start_pfn = block_end_pfn, 1335 block_end_pfn += pageblock_nr_pages) { 1336 1337 block_end_pfn = min(block_end_pfn, end_pfn); 1338 1339 if (!pageblock_pfn_to_page(block_start_pfn, 1340 block_end_pfn, cc->zone)) 1341 continue; 1342 1343 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1344 ISOLATE_UNEVICTABLE); 1345 1346 if (ret) 1347 break; 1348 1349 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1350 break; 1351 } 1352 1353 return ret; 1354 } 1355 1356 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1357 #ifdef CONFIG_COMPACTION 1358 1359 static bool suitable_migration_source(struct compact_control *cc, 1360 struct page *page) 1361 { 1362 int block_mt; 1363 1364 if (pageblock_skip_persistent(page)) 1365 return false; 1366 1367 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1368 return true; 1369 1370 block_mt = get_pageblock_migratetype(page); 1371 1372 if (cc->migratetype == MIGRATE_MOVABLE) 1373 return is_migrate_movable(block_mt); 1374 else 1375 return block_mt == cc->migratetype; 1376 } 1377 1378 /* Returns true if the page is within a block suitable for migration to */ 1379 static bool suitable_migration_target(struct compact_control *cc, 1380 struct page *page) 1381 { 1382 /* If the page is a large free page, then disallow migration */ 1383 if (PageBuddy(page)) { 1384 int order = cc->order > 0 ? cc->order : pageblock_order; 1385 1386 /* 1387 * We are checking page_order without zone->lock taken. But 1388 * the only small danger is that we skip a potentially suitable 1389 * pageblock, so it's not worth to check order for valid range. 1390 */ 1391 if (buddy_order_unsafe(page) >= order) 1392 return false; 1393 } 1394 1395 if (cc->ignore_block_suitable) 1396 return true; 1397 1398 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1399 if (is_migrate_movable(get_pageblock_migratetype(page))) 1400 return true; 1401 1402 /* Otherwise skip the block */ 1403 return false; 1404 } 1405 1406 static inline unsigned int 1407 freelist_scan_limit(struct compact_control *cc) 1408 { 1409 unsigned short shift = BITS_PER_LONG - 1; 1410 1411 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1412 } 1413 1414 /* 1415 * Test whether the free scanner has reached the same or lower pageblock than 1416 * the migration scanner, and compaction should thus terminate. 1417 */ 1418 static inline bool compact_scanners_met(struct compact_control *cc) 1419 { 1420 return (cc->free_pfn >> pageblock_order) 1421 <= (cc->migrate_pfn >> pageblock_order); 1422 } 1423 1424 /* 1425 * Used when scanning for a suitable migration target which scans freelists 1426 * in reverse. Reorders the list such as the unscanned pages are scanned 1427 * first on the next iteration of the free scanner 1428 */ 1429 static void 1430 move_freelist_head(struct list_head *freelist, struct page *freepage) 1431 { 1432 LIST_HEAD(sublist); 1433 1434 if (!list_is_first(&freepage->buddy_list, freelist)) { 1435 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1436 list_splice_tail(&sublist, freelist); 1437 } 1438 } 1439 1440 /* 1441 * Similar to move_freelist_head except used by the migration scanner 1442 * when scanning forward. It's possible for these list operations to 1443 * move against each other if they search the free list exactly in 1444 * lockstep. 1445 */ 1446 static void 1447 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1448 { 1449 LIST_HEAD(sublist); 1450 1451 if (!list_is_last(&freepage->buddy_list, freelist)) { 1452 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1453 list_splice_tail(&sublist, freelist); 1454 } 1455 } 1456 1457 static void 1458 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1459 { 1460 unsigned long start_pfn, end_pfn; 1461 struct page *page; 1462 1463 /* Do not search around if there are enough pages already */ 1464 if (cc->nr_freepages >= cc->nr_migratepages) 1465 return; 1466 1467 /* Minimise scanning during async compaction */ 1468 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1469 return; 1470 1471 /* Pageblock boundaries */ 1472 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1473 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1474 1475 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1476 if (!page) 1477 return; 1478 1479 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false); 1480 1481 /* Skip this pageblock in the future as it's full or nearly full */ 1482 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1483 set_pageblock_skip(page); 1484 } 1485 1486 /* Search orders in round-robin fashion */ 1487 static int next_search_order(struct compact_control *cc, int order) 1488 { 1489 order--; 1490 if (order < 0) 1491 order = cc->order - 1; 1492 1493 /* Search wrapped around? */ 1494 if (order == cc->search_order) { 1495 cc->search_order--; 1496 if (cc->search_order < 0) 1497 cc->search_order = cc->order - 1; 1498 return -1; 1499 } 1500 1501 return order; 1502 } 1503 1504 static void fast_isolate_freepages(struct compact_control *cc) 1505 { 1506 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1507 unsigned int nr_scanned = 0, total_isolated = 0; 1508 unsigned long low_pfn, min_pfn, highest = 0; 1509 unsigned long nr_isolated = 0; 1510 unsigned long distance; 1511 struct page *page = NULL; 1512 bool scan_start = false; 1513 int order; 1514 1515 /* Full compaction passes in a negative order */ 1516 if (cc->order <= 0) 1517 return; 1518 1519 /* 1520 * If starting the scan, use a deeper search and use the highest 1521 * PFN found if a suitable one is not found. 1522 */ 1523 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1524 limit = pageblock_nr_pages >> 1; 1525 scan_start = true; 1526 } 1527 1528 /* 1529 * Preferred point is in the top quarter of the scan space but take 1530 * a pfn from the top half if the search is problematic. 1531 */ 1532 distance = (cc->free_pfn - cc->migrate_pfn); 1533 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1534 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1535 1536 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1537 low_pfn = min_pfn; 1538 1539 /* 1540 * Search starts from the last successful isolation order or the next 1541 * order to search after a previous failure 1542 */ 1543 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1544 1545 for (order = cc->search_order; 1546 !page && order >= 0; 1547 order = next_search_order(cc, order)) { 1548 struct free_area *area = &cc->zone->free_area[order]; 1549 struct list_head *freelist; 1550 struct page *freepage; 1551 unsigned long flags; 1552 unsigned int order_scanned = 0; 1553 unsigned long high_pfn = 0; 1554 1555 if (!area->nr_free) 1556 continue; 1557 1558 spin_lock_irqsave(&cc->zone->lock, flags); 1559 freelist = &area->free_list[MIGRATE_MOVABLE]; 1560 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1561 unsigned long pfn; 1562 1563 order_scanned++; 1564 nr_scanned++; 1565 pfn = page_to_pfn(freepage); 1566 1567 if (pfn >= highest) 1568 highest = max(pageblock_start_pfn(pfn), 1569 cc->zone->zone_start_pfn); 1570 1571 if (pfn >= low_pfn) { 1572 cc->fast_search_fail = 0; 1573 cc->search_order = order; 1574 page = freepage; 1575 break; 1576 } 1577 1578 if (pfn >= min_pfn && pfn > high_pfn) { 1579 high_pfn = pfn; 1580 1581 /* Shorten the scan if a candidate is found */ 1582 limit >>= 1; 1583 } 1584 1585 if (order_scanned >= limit) 1586 break; 1587 } 1588 1589 /* Use a maximum candidate pfn if a preferred one was not found */ 1590 if (!page && high_pfn) { 1591 page = pfn_to_page(high_pfn); 1592 1593 /* Update freepage for the list reorder below */ 1594 freepage = page; 1595 } 1596 1597 /* Reorder to so a future search skips recent pages */ 1598 move_freelist_head(freelist, freepage); 1599 1600 /* Isolate the page if available */ 1601 if (page) { 1602 if (__isolate_free_page(page, order)) { 1603 set_page_private(page, order); 1604 nr_isolated = 1 << order; 1605 nr_scanned += nr_isolated - 1; 1606 total_isolated += nr_isolated; 1607 cc->nr_freepages += nr_isolated; 1608 list_add_tail(&page->lru, &cc->freepages[order]); 1609 count_compact_events(COMPACTISOLATED, nr_isolated); 1610 } else { 1611 /* If isolation fails, abort the search */ 1612 order = cc->search_order + 1; 1613 page = NULL; 1614 } 1615 } 1616 1617 spin_unlock_irqrestore(&cc->zone->lock, flags); 1618 1619 /* Skip fast search if enough freepages isolated */ 1620 if (cc->nr_freepages >= cc->nr_migratepages) 1621 break; 1622 1623 /* 1624 * Smaller scan on next order so the total scan is related 1625 * to freelist_scan_limit. 1626 */ 1627 if (order_scanned >= limit) 1628 limit = max(1U, limit >> 1); 1629 } 1630 1631 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1632 nr_scanned, total_isolated); 1633 1634 if (!page) { 1635 cc->fast_search_fail++; 1636 if (scan_start) { 1637 /* 1638 * Use the highest PFN found above min. If one was 1639 * not found, be pessimistic for direct compaction 1640 * and use the min mark. 1641 */ 1642 if (highest >= min_pfn) { 1643 page = pfn_to_page(highest); 1644 cc->free_pfn = highest; 1645 } else { 1646 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1647 page = pageblock_pfn_to_page(min_pfn, 1648 min(pageblock_end_pfn(min_pfn), 1649 zone_end_pfn(cc->zone)), 1650 cc->zone); 1651 if (page && !suitable_migration_target(cc, page)) 1652 page = NULL; 1653 1654 cc->free_pfn = min_pfn; 1655 } 1656 } 1657 } 1658 } 1659 1660 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1661 highest -= pageblock_nr_pages; 1662 cc->zone->compact_cached_free_pfn = highest; 1663 } 1664 1665 cc->total_free_scanned += nr_scanned; 1666 if (!page) 1667 return; 1668 1669 low_pfn = page_to_pfn(page); 1670 fast_isolate_around(cc, low_pfn); 1671 } 1672 1673 /* 1674 * Based on information in the current compact_control, find blocks 1675 * suitable for isolating free pages from and then isolate them. 1676 */ 1677 static void isolate_freepages(struct compact_control *cc) 1678 { 1679 struct zone *zone = cc->zone; 1680 struct page *page; 1681 unsigned long block_start_pfn; /* start of current pageblock */ 1682 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1683 unsigned long block_end_pfn; /* end of current pageblock */ 1684 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1685 unsigned int stride; 1686 1687 /* Try a small search of the free lists for a candidate */ 1688 fast_isolate_freepages(cc); 1689 if (cc->nr_freepages) 1690 return; 1691 1692 /* 1693 * Initialise the free scanner. The starting point is where we last 1694 * successfully isolated from, zone-cached value, or the end of the 1695 * zone when isolating for the first time. For looping we also need 1696 * this pfn aligned down to the pageblock boundary, because we do 1697 * block_start_pfn -= pageblock_nr_pages in the for loop. 1698 * For ending point, take care when isolating in last pageblock of a 1699 * zone which ends in the middle of a pageblock. 1700 * The low boundary is the end of the pageblock the migration scanner 1701 * is using. 1702 */ 1703 isolate_start_pfn = cc->free_pfn; 1704 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1705 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1706 zone_end_pfn(zone)); 1707 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1708 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1709 1710 /* 1711 * Isolate free pages until enough are available to migrate the 1712 * pages on cc->migratepages. We stop searching if the migrate 1713 * and free page scanners meet or enough free pages are isolated. 1714 */ 1715 for (; block_start_pfn >= low_pfn; 1716 block_end_pfn = block_start_pfn, 1717 block_start_pfn -= pageblock_nr_pages, 1718 isolate_start_pfn = block_start_pfn) { 1719 unsigned long nr_isolated; 1720 1721 /* 1722 * This can iterate a massively long zone without finding any 1723 * suitable migration targets, so periodically check resched. 1724 */ 1725 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1726 cond_resched(); 1727 1728 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1729 zone); 1730 if (!page) { 1731 unsigned long next_pfn; 1732 1733 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1734 if (next_pfn) 1735 block_start_pfn = max(next_pfn, low_pfn); 1736 1737 continue; 1738 } 1739 1740 /* Check the block is suitable for migration */ 1741 if (!suitable_migration_target(cc, page)) 1742 continue; 1743 1744 /* If isolation recently failed, do not retry */ 1745 if (!isolation_suitable(cc, page)) 1746 continue; 1747 1748 /* Found a block suitable for isolating free pages from. */ 1749 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1750 block_end_pfn, cc->freepages, stride, false); 1751 1752 /* Update the skip hint if the full pageblock was scanned */ 1753 if (isolate_start_pfn == block_end_pfn) 1754 update_pageblock_skip(cc, page, block_start_pfn - 1755 pageblock_nr_pages); 1756 1757 /* Are enough freepages isolated? */ 1758 if (cc->nr_freepages >= cc->nr_migratepages) { 1759 if (isolate_start_pfn >= block_end_pfn) { 1760 /* 1761 * Restart at previous pageblock if more 1762 * freepages can be isolated next time. 1763 */ 1764 isolate_start_pfn = 1765 block_start_pfn - pageblock_nr_pages; 1766 } 1767 break; 1768 } else if (isolate_start_pfn < block_end_pfn) { 1769 /* 1770 * If isolation failed early, do not continue 1771 * needlessly. 1772 */ 1773 break; 1774 } 1775 1776 /* Adjust stride depending on isolation */ 1777 if (nr_isolated) { 1778 stride = 1; 1779 continue; 1780 } 1781 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1782 } 1783 1784 /* 1785 * Record where the free scanner will restart next time. Either we 1786 * broke from the loop and set isolate_start_pfn based on the last 1787 * call to isolate_freepages_block(), or we met the migration scanner 1788 * and the loop terminated due to isolate_start_pfn < low_pfn 1789 */ 1790 cc->free_pfn = isolate_start_pfn; 1791 } 1792 1793 /* 1794 * This is a migrate-callback that "allocates" freepages by taking pages 1795 * from the isolated freelists in the block we are migrating to. 1796 */ 1797 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data) 1798 { 1799 struct compact_control *cc = (struct compact_control *)data; 1800 struct folio *dst; 1801 int order = folio_order(src); 1802 bool has_isolated_pages = false; 1803 int start_order; 1804 struct page *freepage; 1805 unsigned long size; 1806 1807 again: 1808 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++) 1809 if (!list_empty(&cc->freepages[start_order])) 1810 break; 1811 1812 /* no free pages in the list */ 1813 if (start_order == NR_PAGE_ORDERS) { 1814 if (has_isolated_pages) 1815 return NULL; 1816 isolate_freepages(cc); 1817 has_isolated_pages = true; 1818 goto again; 1819 } 1820 1821 freepage = list_first_entry(&cc->freepages[start_order], struct page, 1822 lru); 1823 size = 1 << start_order; 1824 1825 list_del(&freepage->lru); 1826 1827 while (start_order > order) { 1828 start_order--; 1829 size >>= 1; 1830 1831 list_add(&freepage[size].lru, &cc->freepages[start_order]); 1832 set_page_private(&freepage[size], start_order); 1833 } 1834 dst = (struct folio *)freepage; 1835 1836 post_alloc_hook(&dst->page, order, __GFP_MOVABLE); 1837 set_page_refcounted(&dst->page); 1838 if (order) 1839 prep_compound_page(&dst->page, order); 1840 cc->nr_freepages -= 1 << order; 1841 cc->nr_migratepages -= 1 << order; 1842 return page_rmappable_folio(&dst->page); 1843 } 1844 1845 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1846 { 1847 return alloc_hooks(compaction_alloc_noprof(src, data)); 1848 } 1849 1850 /* 1851 * This is a migrate-callback that "frees" freepages back to the isolated 1852 * freelist. All pages on the freelist are from the same zone, so there is no 1853 * special handling needed for NUMA. 1854 */ 1855 static void compaction_free(struct folio *dst, unsigned long data) 1856 { 1857 struct compact_control *cc = (struct compact_control *)data; 1858 int order = folio_order(dst); 1859 struct page *page = &dst->page; 1860 1861 if (folio_put_testzero(dst)) { 1862 free_pages_prepare(page, order); 1863 list_add(&dst->lru, &cc->freepages[order]); 1864 cc->nr_freepages += 1 << order; 1865 } 1866 cc->nr_migratepages += 1 << order; 1867 /* 1868 * someone else has referenced the page, we cannot take it back to our 1869 * free list. 1870 */ 1871 } 1872 1873 /* possible outcome of isolate_migratepages */ 1874 typedef enum { 1875 ISOLATE_ABORT, /* Abort compaction now */ 1876 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1877 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1878 } isolate_migrate_t; 1879 1880 /* 1881 * Allow userspace to control policy on scanning the unevictable LRU for 1882 * compactable pages. 1883 */ 1884 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1885 /* 1886 * Tunable for proactive compaction. It determines how 1887 * aggressively the kernel should compact memory in the 1888 * background. It takes values in the range [0, 100]. 1889 */ 1890 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1891 static int sysctl_extfrag_threshold = 500; 1892 static int __read_mostly sysctl_compact_memory; 1893 1894 static inline void 1895 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1896 { 1897 if (cc->fast_start_pfn == ULONG_MAX) 1898 return; 1899 1900 if (!cc->fast_start_pfn) 1901 cc->fast_start_pfn = pfn; 1902 1903 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1904 } 1905 1906 static inline unsigned long 1907 reinit_migrate_pfn(struct compact_control *cc) 1908 { 1909 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1910 return cc->migrate_pfn; 1911 1912 cc->migrate_pfn = cc->fast_start_pfn; 1913 cc->fast_start_pfn = ULONG_MAX; 1914 1915 return cc->migrate_pfn; 1916 } 1917 1918 /* 1919 * Briefly search the free lists for a migration source that already has 1920 * some free pages to reduce the number of pages that need migration 1921 * before a pageblock is free. 1922 */ 1923 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1924 { 1925 unsigned int limit = freelist_scan_limit(cc); 1926 unsigned int nr_scanned = 0; 1927 unsigned long distance; 1928 unsigned long pfn = cc->migrate_pfn; 1929 unsigned long high_pfn; 1930 int order; 1931 bool found_block = false; 1932 1933 /* Skip hints are relied on to avoid repeats on the fast search */ 1934 if (cc->ignore_skip_hint) 1935 return pfn; 1936 1937 /* 1938 * If the pageblock should be finished then do not select a different 1939 * pageblock. 1940 */ 1941 if (cc->finish_pageblock) 1942 return pfn; 1943 1944 /* 1945 * If the migrate_pfn is not at the start of a zone or the start 1946 * of a pageblock then assume this is a continuation of a previous 1947 * scan restarted due to COMPACT_CLUSTER_MAX. 1948 */ 1949 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1950 return pfn; 1951 1952 /* 1953 * For smaller orders, just linearly scan as the number of pages 1954 * to migrate should be relatively small and does not necessarily 1955 * justify freeing up a large block for a small allocation. 1956 */ 1957 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1958 return pfn; 1959 1960 /* 1961 * Only allow kcompactd and direct requests for movable pages to 1962 * quickly clear out a MOVABLE pageblock for allocation. This 1963 * reduces the risk that a large movable pageblock is freed for 1964 * an unmovable/reclaimable small allocation. 1965 */ 1966 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1967 return pfn; 1968 1969 /* 1970 * When starting the migration scanner, pick any pageblock within the 1971 * first half of the search space. Otherwise try and pick a pageblock 1972 * within the first eighth to reduce the chances that a migration 1973 * target later becomes a source. 1974 */ 1975 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1976 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1977 distance >>= 2; 1978 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1979 1980 for (order = cc->order - 1; 1981 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1982 order--) { 1983 struct free_area *area = &cc->zone->free_area[order]; 1984 struct list_head *freelist; 1985 unsigned long flags; 1986 struct page *freepage; 1987 1988 if (!area->nr_free) 1989 continue; 1990 1991 spin_lock_irqsave(&cc->zone->lock, flags); 1992 freelist = &area->free_list[MIGRATE_MOVABLE]; 1993 list_for_each_entry(freepage, freelist, buddy_list) { 1994 unsigned long free_pfn; 1995 1996 if (nr_scanned++ >= limit) { 1997 move_freelist_tail(freelist, freepage); 1998 break; 1999 } 2000 2001 free_pfn = page_to_pfn(freepage); 2002 if (free_pfn < high_pfn) { 2003 /* 2004 * Avoid if skipped recently. Ideally it would 2005 * move to the tail but even safe iteration of 2006 * the list assumes an entry is deleted, not 2007 * reordered. 2008 */ 2009 if (get_pageblock_skip(freepage)) 2010 continue; 2011 2012 /* Reorder to so a future search skips recent pages */ 2013 move_freelist_tail(freelist, freepage); 2014 2015 update_fast_start_pfn(cc, free_pfn); 2016 pfn = pageblock_start_pfn(free_pfn); 2017 if (pfn < cc->zone->zone_start_pfn) 2018 pfn = cc->zone->zone_start_pfn; 2019 cc->fast_search_fail = 0; 2020 found_block = true; 2021 break; 2022 } 2023 } 2024 spin_unlock_irqrestore(&cc->zone->lock, flags); 2025 } 2026 2027 cc->total_migrate_scanned += nr_scanned; 2028 2029 /* 2030 * If fast scanning failed then use a cached entry for a page block 2031 * that had free pages as the basis for starting a linear scan. 2032 */ 2033 if (!found_block) { 2034 cc->fast_search_fail++; 2035 pfn = reinit_migrate_pfn(cc); 2036 } 2037 return pfn; 2038 } 2039 2040 /* 2041 * Isolate all pages that can be migrated from the first suitable block, 2042 * starting at the block pointed to by the migrate scanner pfn within 2043 * compact_control. 2044 */ 2045 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 2046 { 2047 unsigned long block_start_pfn; 2048 unsigned long block_end_pfn; 2049 unsigned long low_pfn; 2050 struct page *page; 2051 const isolate_mode_t isolate_mode = 2052 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 2053 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 2054 bool fast_find_block; 2055 2056 /* 2057 * Start at where we last stopped, or beginning of the zone as 2058 * initialized by compact_zone(). The first failure will use 2059 * the lowest PFN as the starting point for linear scanning. 2060 */ 2061 low_pfn = fast_find_migrateblock(cc); 2062 block_start_pfn = pageblock_start_pfn(low_pfn); 2063 if (block_start_pfn < cc->zone->zone_start_pfn) 2064 block_start_pfn = cc->zone->zone_start_pfn; 2065 2066 /* 2067 * fast_find_migrateblock() has already ensured the pageblock is not 2068 * set with a skipped flag, so to avoid the isolation_suitable check 2069 * below again, check whether the fast search was successful. 2070 */ 2071 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2072 2073 /* Only scan within a pageblock boundary */ 2074 block_end_pfn = pageblock_end_pfn(low_pfn); 2075 2076 /* 2077 * Iterate over whole pageblocks until we find the first suitable. 2078 * Do not cross the free scanner. 2079 */ 2080 for (; block_end_pfn <= cc->free_pfn; 2081 fast_find_block = false, 2082 cc->migrate_pfn = low_pfn = block_end_pfn, 2083 block_start_pfn = block_end_pfn, 2084 block_end_pfn += pageblock_nr_pages) { 2085 2086 /* 2087 * This can potentially iterate a massively long zone with 2088 * many pageblocks unsuitable, so periodically check if we 2089 * need to schedule. 2090 */ 2091 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2092 cond_resched(); 2093 2094 page = pageblock_pfn_to_page(block_start_pfn, 2095 block_end_pfn, cc->zone); 2096 if (!page) { 2097 unsigned long next_pfn; 2098 2099 next_pfn = skip_offline_sections(block_start_pfn); 2100 if (next_pfn) 2101 block_end_pfn = min(next_pfn, cc->free_pfn); 2102 continue; 2103 } 2104 2105 /* 2106 * If isolation recently failed, do not retry. Only check the 2107 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2108 * to be visited multiple times. Assume skip was checked 2109 * before making it "skip" so other compaction instances do 2110 * not scan the same block. 2111 */ 2112 if ((pageblock_aligned(low_pfn) || 2113 low_pfn == cc->zone->zone_start_pfn) && 2114 !fast_find_block && !isolation_suitable(cc, page)) 2115 continue; 2116 2117 /* 2118 * For async direct compaction, only scan the pageblocks of the 2119 * same migratetype without huge pages. Async direct compaction 2120 * is optimistic to see if the minimum amount of work satisfies 2121 * the allocation. The cached PFN is updated as it's possible 2122 * that all remaining blocks between source and target are 2123 * unsuitable and the compaction scanners fail to meet. 2124 */ 2125 if (!suitable_migration_source(cc, page)) { 2126 update_cached_migrate(cc, block_end_pfn); 2127 continue; 2128 } 2129 2130 /* Perform the isolation */ 2131 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2132 isolate_mode)) 2133 return ISOLATE_ABORT; 2134 2135 /* 2136 * Either we isolated something and proceed with migration. Or 2137 * we failed and compact_zone should decide if we should 2138 * continue or not. 2139 */ 2140 break; 2141 } 2142 2143 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2144 } 2145 2146 /* 2147 * Determine whether kswapd is (or recently was!) running on this node. 2148 * 2149 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2150 * zero it. 2151 */ 2152 static bool kswapd_is_running(pg_data_t *pgdat) 2153 { 2154 bool running; 2155 2156 pgdat_kswapd_lock(pgdat); 2157 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2158 pgdat_kswapd_unlock(pgdat); 2159 2160 return running; 2161 } 2162 2163 /* 2164 * A zone's fragmentation score is the external fragmentation wrt to the 2165 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2166 */ 2167 static unsigned int fragmentation_score_zone(struct zone *zone) 2168 { 2169 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2170 } 2171 2172 /* 2173 * A weighted zone's fragmentation score is the external fragmentation 2174 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2175 * returns a value in the range [0, 100]. 2176 * 2177 * The scaling factor ensures that proactive compaction focuses on larger 2178 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2179 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2180 * and thus never exceeds the high threshold for proactive compaction. 2181 */ 2182 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2183 { 2184 unsigned long score; 2185 2186 score = zone->present_pages * fragmentation_score_zone(zone); 2187 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2188 } 2189 2190 /* 2191 * The per-node proactive (background) compaction process is started by its 2192 * corresponding kcompactd thread when the node's fragmentation score 2193 * exceeds the high threshold. The compaction process remains active till 2194 * the node's score falls below the low threshold, or one of the back-off 2195 * conditions is met. 2196 */ 2197 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2198 { 2199 unsigned int score = 0; 2200 int zoneid; 2201 2202 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2203 struct zone *zone; 2204 2205 zone = &pgdat->node_zones[zoneid]; 2206 if (!populated_zone(zone)) 2207 continue; 2208 score += fragmentation_score_zone_weighted(zone); 2209 } 2210 2211 return score; 2212 } 2213 2214 static unsigned int fragmentation_score_wmark(bool low) 2215 { 2216 unsigned int wmark_low, leeway; 2217 2218 wmark_low = 100U - sysctl_compaction_proactiveness; 2219 leeway = min(10U, wmark_low / 2); 2220 return low ? wmark_low : min(wmark_low + leeway, 100U); 2221 } 2222 2223 static bool should_proactive_compact_node(pg_data_t *pgdat) 2224 { 2225 int wmark_high; 2226 2227 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2228 return false; 2229 2230 wmark_high = fragmentation_score_wmark(false); 2231 return fragmentation_score_node(pgdat) > wmark_high; 2232 } 2233 2234 static enum compact_result __compact_finished(struct compact_control *cc) 2235 { 2236 unsigned int order; 2237 const int migratetype = cc->migratetype; 2238 int ret; 2239 2240 /* Compaction run completes if the migrate and free scanner meet */ 2241 if (compact_scanners_met(cc)) { 2242 /* Let the next compaction start anew. */ 2243 reset_cached_positions(cc->zone); 2244 2245 /* 2246 * Mark that the PG_migrate_skip information should be cleared 2247 * by kswapd when it goes to sleep. kcompactd does not set the 2248 * flag itself as the decision to be clear should be directly 2249 * based on an allocation request. 2250 */ 2251 if (cc->direct_compaction) 2252 cc->zone->compact_blockskip_flush = true; 2253 2254 if (cc->whole_zone) 2255 return COMPACT_COMPLETE; 2256 else 2257 return COMPACT_PARTIAL_SKIPPED; 2258 } 2259 2260 if (cc->proactive_compaction) { 2261 int score, wmark_low; 2262 pg_data_t *pgdat; 2263 2264 pgdat = cc->zone->zone_pgdat; 2265 if (kswapd_is_running(pgdat)) 2266 return COMPACT_PARTIAL_SKIPPED; 2267 2268 score = fragmentation_score_zone(cc->zone); 2269 wmark_low = fragmentation_score_wmark(true); 2270 2271 if (score > wmark_low) 2272 ret = COMPACT_CONTINUE; 2273 else 2274 ret = COMPACT_SUCCESS; 2275 2276 goto out; 2277 } 2278 2279 if (is_via_compact_memory(cc->order)) 2280 return COMPACT_CONTINUE; 2281 2282 /* 2283 * Always finish scanning a pageblock to reduce the possibility of 2284 * fallbacks in the future. This is particularly important when 2285 * migration source is unmovable/reclaimable but it's not worth 2286 * special casing. 2287 */ 2288 if (!pageblock_aligned(cc->migrate_pfn)) 2289 return COMPACT_CONTINUE; 2290 2291 /* 2292 * When defrag_mode is enabled, make kcompactd target 2293 * watermarks in whole pageblocks. Because they can be stolen 2294 * without polluting, no further fallback checks are needed. 2295 */ 2296 if (defrag_mode && !cc->direct_compaction) { 2297 if (__zone_watermark_ok(cc->zone, cc->order, 2298 high_wmark_pages(cc->zone), 2299 cc->highest_zoneidx, cc->alloc_flags, 2300 zone_page_state(cc->zone, 2301 NR_FREE_PAGES_BLOCKS))) 2302 return COMPACT_SUCCESS; 2303 2304 return COMPACT_CONTINUE; 2305 } 2306 2307 /* Direct compactor: Is a suitable page free? */ 2308 ret = COMPACT_NO_SUITABLE_PAGE; 2309 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2310 struct free_area *area = &cc->zone->free_area[order]; 2311 2312 /* Job done if page is free of the right migratetype */ 2313 if (!free_area_empty(area, migratetype)) 2314 return COMPACT_SUCCESS; 2315 2316 #ifdef CONFIG_CMA 2317 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2318 if (migratetype == MIGRATE_MOVABLE && 2319 !free_area_empty(area, MIGRATE_CMA)) 2320 return COMPACT_SUCCESS; 2321 #endif 2322 /* 2323 * Job done if allocation would steal freepages from 2324 * other migratetype buddy lists. 2325 */ 2326 if (find_suitable_fallback(area, order, migratetype, true) >= 0) 2327 /* 2328 * Movable pages are OK in any pageblock. If we are 2329 * stealing for a non-movable allocation, make sure 2330 * we finish compacting the current pageblock first 2331 * (which is assured by the above migrate_pfn align 2332 * check) so it is as free as possible and we won't 2333 * have to steal another one soon. 2334 */ 2335 return COMPACT_SUCCESS; 2336 } 2337 2338 out: 2339 if (cc->contended || fatal_signal_pending(current)) 2340 ret = COMPACT_CONTENDED; 2341 2342 return ret; 2343 } 2344 2345 static enum compact_result compact_finished(struct compact_control *cc) 2346 { 2347 int ret; 2348 2349 ret = __compact_finished(cc); 2350 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2351 if (ret == COMPACT_NO_SUITABLE_PAGE) 2352 ret = COMPACT_CONTINUE; 2353 2354 return ret; 2355 } 2356 2357 static bool __compaction_suitable(struct zone *zone, int order, 2358 unsigned long watermark, int highest_zoneidx, 2359 unsigned long free_pages) 2360 { 2361 /* 2362 * Watermarks for order-0 must be met for compaction to be able to 2363 * isolate free pages for migration targets. This means that the 2364 * watermark have to match, or be more pessimistic than the check in 2365 * __isolate_free_page(). 2366 * 2367 * For costly orders, we require a higher watermark for compaction to 2368 * proceed to increase its chances. 2369 * 2370 * We use the direct compactor's highest_zoneidx to skip over zones 2371 * where lowmem reserves would prevent allocation even if compaction 2372 * succeeds. 2373 * 2374 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2375 * suitable migration targets. 2376 */ 2377 watermark += compact_gap(order); 2378 if (order > PAGE_ALLOC_COSTLY_ORDER) 2379 watermark += low_wmark_pages(zone) - min_wmark_pages(zone); 2380 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2381 ALLOC_CMA, free_pages); 2382 } 2383 2384 /* 2385 * compaction_suitable: Is this suitable to run compaction on this zone now? 2386 */ 2387 bool compaction_suitable(struct zone *zone, int order, unsigned long watermark, 2388 int highest_zoneidx) 2389 { 2390 enum compact_result compact_result; 2391 bool suitable; 2392 2393 suitable = __compaction_suitable(zone, order, watermark, highest_zoneidx, 2394 zone_page_state(zone, NR_FREE_PAGES)); 2395 /* 2396 * fragmentation index determines if allocation failures are due to 2397 * low memory or external fragmentation 2398 * 2399 * index of -1000 would imply allocations might succeed depending on 2400 * watermarks, but we already failed the high-order watermark check 2401 * index towards 0 implies failure is due to lack of memory 2402 * index towards 1000 implies failure is due to fragmentation 2403 * 2404 * Only compact if a failure would be due to fragmentation. Also 2405 * ignore fragindex for non-costly orders where the alternative to 2406 * a successful reclaim/compaction is OOM. Fragindex and the 2407 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2408 * excessive compaction for costly orders, but it should not be at the 2409 * expense of system stability. 2410 */ 2411 if (suitable) { 2412 compact_result = COMPACT_CONTINUE; 2413 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2414 int fragindex = fragmentation_index(zone, order); 2415 2416 if (fragindex >= 0 && 2417 fragindex <= sysctl_extfrag_threshold) { 2418 suitable = false; 2419 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2420 } 2421 } 2422 } else { 2423 compact_result = COMPACT_SKIPPED; 2424 } 2425 2426 trace_mm_compaction_suitable(zone, order, compact_result); 2427 2428 return suitable; 2429 } 2430 2431 /* Used by direct reclaimers */ 2432 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2433 int alloc_flags) 2434 { 2435 struct zone *zone; 2436 struct zoneref *z; 2437 2438 /* 2439 * Make sure at least one zone would pass __compaction_suitable if we continue 2440 * retrying the reclaim. 2441 */ 2442 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2443 ac->highest_zoneidx, ac->nodemask) { 2444 unsigned long available; 2445 2446 /* 2447 * Do not consider all the reclaimable memory because we do not 2448 * want to trash just for a single high order allocation which 2449 * is even not guaranteed to appear even if __compaction_suitable 2450 * is happy about the watermark check. 2451 */ 2452 available = zone_reclaimable_pages(zone) / order; 2453 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2454 if (__compaction_suitable(zone, order, min_wmark_pages(zone), 2455 ac->highest_zoneidx, available)) 2456 return true; 2457 } 2458 2459 return false; 2460 } 2461 2462 /* 2463 * Should we do compaction for target allocation order. 2464 * Return COMPACT_SUCCESS if allocation for target order can be already 2465 * satisfied 2466 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2467 * Return COMPACT_CONTINUE if compaction for target order should be ran 2468 */ 2469 static enum compact_result 2470 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2471 int highest_zoneidx, unsigned int alloc_flags, 2472 bool async, bool kcompactd) 2473 { 2474 unsigned long free_pages; 2475 unsigned long watermark; 2476 2477 if (kcompactd && defrag_mode) 2478 free_pages = zone_page_state(zone, NR_FREE_PAGES_BLOCKS); 2479 else 2480 free_pages = zone_page_state(zone, NR_FREE_PAGES); 2481 2482 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2483 if (__zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2484 alloc_flags, free_pages)) 2485 return COMPACT_SUCCESS; 2486 2487 /* 2488 * For unmovable allocations (without ALLOC_CMA), check if there is enough 2489 * free memory in the non-CMA pageblocks. Otherwise compaction could form 2490 * the high-order page in CMA pageblocks, which would not help the 2491 * allocation to succeed. However, limit the check to costly order async 2492 * compaction (such as opportunistic THP attempts) because there is the 2493 * possibility that compaction would migrate pages from non-CMA to CMA 2494 * pageblock. 2495 */ 2496 if (order > PAGE_ALLOC_COSTLY_ORDER && async && 2497 !(alloc_flags & ALLOC_CMA)) { 2498 if (!__zone_watermark_ok(zone, 0, watermark + compact_gap(order), 2499 highest_zoneidx, 0, 2500 zone_page_state(zone, NR_FREE_PAGES))) 2501 return COMPACT_SKIPPED; 2502 } 2503 2504 if (!compaction_suitable(zone, order, watermark, highest_zoneidx)) 2505 return COMPACT_SKIPPED; 2506 2507 return COMPACT_CONTINUE; 2508 } 2509 2510 static enum compact_result 2511 compact_zone(struct compact_control *cc, struct capture_control *capc) 2512 { 2513 enum compact_result ret; 2514 unsigned long start_pfn = cc->zone->zone_start_pfn; 2515 unsigned long end_pfn = zone_end_pfn(cc->zone); 2516 unsigned long last_migrated_pfn; 2517 const bool sync = cc->mode != MIGRATE_ASYNC; 2518 bool update_cached; 2519 unsigned int nr_succeeded = 0, nr_migratepages; 2520 int order; 2521 2522 /* 2523 * These counters track activities during zone compaction. Initialize 2524 * them before compacting a new zone. 2525 */ 2526 cc->total_migrate_scanned = 0; 2527 cc->total_free_scanned = 0; 2528 cc->nr_migratepages = 0; 2529 cc->nr_freepages = 0; 2530 for (order = 0; order < NR_PAGE_ORDERS; order++) 2531 INIT_LIST_HEAD(&cc->freepages[order]); 2532 INIT_LIST_HEAD(&cc->migratepages); 2533 2534 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2535 2536 if (!is_via_compact_memory(cc->order)) { 2537 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2538 cc->highest_zoneidx, 2539 cc->alloc_flags, 2540 cc->mode == MIGRATE_ASYNC, 2541 !cc->direct_compaction); 2542 if (ret != COMPACT_CONTINUE) 2543 return ret; 2544 } 2545 2546 /* 2547 * Clear pageblock skip if there were failures recently and compaction 2548 * is about to be retried after being deferred. 2549 */ 2550 if (compaction_restarting(cc->zone, cc->order)) 2551 __reset_isolation_suitable(cc->zone); 2552 2553 /* 2554 * Setup to move all movable pages to the end of the zone. Used cached 2555 * information on where the scanners should start (unless we explicitly 2556 * want to compact the whole zone), but check that it is initialised 2557 * by ensuring the values are within zone boundaries. 2558 */ 2559 cc->fast_start_pfn = 0; 2560 if (cc->whole_zone) { 2561 cc->migrate_pfn = start_pfn; 2562 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2563 } else { 2564 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2565 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2566 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2567 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2568 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2569 } 2570 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2571 cc->migrate_pfn = start_pfn; 2572 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2573 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2574 } 2575 2576 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2577 cc->whole_zone = true; 2578 } 2579 2580 last_migrated_pfn = 0; 2581 2582 /* 2583 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2584 * the basis that some migrations will fail in ASYNC mode. However, 2585 * if the cached PFNs match and pageblocks are skipped due to having 2586 * no isolation candidates, then the sync state does not matter. 2587 * Until a pageblock with isolation candidates is found, keep the 2588 * cached PFNs in sync to avoid revisiting the same blocks. 2589 */ 2590 update_cached = !sync && 2591 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2592 2593 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2594 2595 /* lru_add_drain_all could be expensive with involving other CPUs */ 2596 lru_add_drain(); 2597 2598 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2599 int err; 2600 unsigned long iteration_start_pfn = cc->migrate_pfn; 2601 2602 /* 2603 * Avoid multiple rescans of the same pageblock which can 2604 * happen if a page cannot be isolated (dirty/writeback in 2605 * async mode) or if the migrated pages are being allocated 2606 * before the pageblock is cleared. The first rescan will 2607 * capture the entire pageblock for migration. If it fails, 2608 * it'll be marked skip and scanning will proceed as normal. 2609 */ 2610 cc->finish_pageblock = false; 2611 if (pageblock_start_pfn(last_migrated_pfn) == 2612 pageblock_start_pfn(iteration_start_pfn)) { 2613 cc->finish_pageblock = true; 2614 } 2615 2616 rescan: 2617 switch (isolate_migratepages(cc)) { 2618 case ISOLATE_ABORT: 2619 ret = COMPACT_CONTENDED; 2620 putback_movable_pages(&cc->migratepages); 2621 cc->nr_migratepages = 0; 2622 goto out; 2623 case ISOLATE_NONE: 2624 if (update_cached) { 2625 cc->zone->compact_cached_migrate_pfn[1] = 2626 cc->zone->compact_cached_migrate_pfn[0]; 2627 } 2628 2629 /* 2630 * We haven't isolated and migrated anything, but 2631 * there might still be unflushed migrations from 2632 * previous cc->order aligned block. 2633 */ 2634 goto check_drain; 2635 case ISOLATE_SUCCESS: 2636 update_cached = false; 2637 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2638 pageblock_start_pfn(cc->migrate_pfn - 1)); 2639 } 2640 2641 /* 2642 * Record the number of pages to migrate since the 2643 * compaction_alloc/free() will update cc->nr_migratepages 2644 * properly. 2645 */ 2646 nr_migratepages = cc->nr_migratepages; 2647 err = migrate_pages(&cc->migratepages, compaction_alloc, 2648 compaction_free, (unsigned long)cc, cc->mode, 2649 MR_COMPACTION, &nr_succeeded); 2650 2651 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded); 2652 2653 /* All pages were either migrated or will be released */ 2654 cc->nr_migratepages = 0; 2655 if (err) { 2656 putback_movable_pages(&cc->migratepages); 2657 /* 2658 * migrate_pages() may return -ENOMEM when scanners meet 2659 * and we want compact_finished() to detect it 2660 */ 2661 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2662 ret = COMPACT_CONTENDED; 2663 goto out; 2664 } 2665 /* 2666 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2667 * within the pageblock_order-aligned block and 2668 * fast_find_migrateblock may be used then scan the 2669 * remainder of the pageblock. This will mark the 2670 * pageblock "skip" to avoid rescanning in the near 2671 * future. This will isolate more pages than necessary 2672 * for the request but avoid loops due to 2673 * fast_find_migrateblock revisiting blocks that were 2674 * recently partially scanned. 2675 */ 2676 if (!pageblock_aligned(cc->migrate_pfn) && 2677 !cc->ignore_skip_hint && !cc->finish_pageblock && 2678 (cc->mode < MIGRATE_SYNC)) { 2679 cc->finish_pageblock = true; 2680 2681 /* 2682 * Draining pcplists does not help THP if 2683 * any page failed to migrate. Even after 2684 * drain, the pageblock will not be free. 2685 */ 2686 if (cc->order == COMPACTION_HPAGE_ORDER) 2687 last_migrated_pfn = 0; 2688 2689 goto rescan; 2690 } 2691 } 2692 2693 /* Stop if a page has been captured */ 2694 if (capc && capc->page) { 2695 ret = COMPACT_SUCCESS; 2696 break; 2697 } 2698 2699 check_drain: 2700 /* 2701 * Has the migration scanner moved away from the previous 2702 * cc->order aligned block where we migrated from? If yes, 2703 * flush the pages that were freed, so that they can merge and 2704 * compact_finished() can detect immediately if allocation 2705 * would succeed. 2706 */ 2707 if (cc->order > 0 && last_migrated_pfn) { 2708 unsigned long current_block_start = 2709 block_start_pfn(cc->migrate_pfn, cc->order); 2710 2711 if (last_migrated_pfn < current_block_start) { 2712 lru_add_drain_cpu_zone(cc->zone); 2713 /* No more flushing until we migrate again */ 2714 last_migrated_pfn = 0; 2715 } 2716 } 2717 } 2718 2719 out: 2720 /* 2721 * Release free pages and update where the free scanner should restart, 2722 * so we don't leave any returned pages behind in the next attempt. 2723 */ 2724 if (cc->nr_freepages > 0) { 2725 unsigned long free_pfn = release_free_list(cc->freepages); 2726 2727 cc->nr_freepages = 0; 2728 VM_BUG_ON(free_pfn == 0); 2729 /* The cached pfn is always the first in a pageblock */ 2730 free_pfn = pageblock_start_pfn(free_pfn); 2731 /* 2732 * Only go back, not forward. The cached pfn might have been 2733 * already reset to zone end in compact_finished() 2734 */ 2735 if (free_pfn > cc->zone->compact_cached_free_pfn) 2736 cc->zone->compact_cached_free_pfn = free_pfn; 2737 } 2738 2739 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2740 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2741 2742 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2743 2744 VM_BUG_ON(!list_empty(&cc->migratepages)); 2745 2746 return ret; 2747 } 2748 2749 static enum compact_result compact_zone_order(struct zone *zone, int order, 2750 gfp_t gfp_mask, enum compact_priority prio, 2751 unsigned int alloc_flags, int highest_zoneidx, 2752 struct page **capture) 2753 { 2754 enum compact_result ret; 2755 struct compact_control cc = { 2756 .order = order, 2757 .search_order = order, 2758 .gfp_mask = gfp_mask, 2759 .zone = zone, 2760 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2761 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2762 .alloc_flags = alloc_flags, 2763 .highest_zoneidx = highest_zoneidx, 2764 .direct_compaction = true, 2765 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2766 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2767 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2768 }; 2769 struct capture_control capc = { 2770 .cc = &cc, 2771 .page = NULL, 2772 }; 2773 2774 /* 2775 * Make sure the structs are really initialized before we expose the 2776 * capture control, in case we are interrupted and the interrupt handler 2777 * frees a page. 2778 */ 2779 barrier(); 2780 WRITE_ONCE(current->capture_control, &capc); 2781 2782 ret = compact_zone(&cc, &capc); 2783 2784 /* 2785 * Make sure we hide capture control first before we read the captured 2786 * page pointer, otherwise an interrupt could free and capture a page 2787 * and we would leak it. 2788 */ 2789 WRITE_ONCE(current->capture_control, NULL); 2790 *capture = READ_ONCE(capc.page); 2791 /* 2792 * Technically, it is also possible that compaction is skipped but 2793 * the page is still captured out of luck(IRQ came and freed the page). 2794 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2795 * the COMPACT[STALL|FAIL] when compaction is skipped. 2796 */ 2797 if (*capture) 2798 ret = COMPACT_SUCCESS; 2799 2800 return ret; 2801 } 2802 2803 /** 2804 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2805 * @gfp_mask: The GFP mask of the current allocation 2806 * @order: The order of the current allocation 2807 * @alloc_flags: The allocation flags of the current allocation 2808 * @ac: The context of current allocation 2809 * @prio: Determines how hard direct compaction should try to succeed 2810 * @capture: Pointer to free page created by compaction will be stored here 2811 * 2812 * This is the main entry point for direct page compaction. 2813 */ 2814 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2815 unsigned int alloc_flags, const struct alloc_context *ac, 2816 enum compact_priority prio, struct page **capture) 2817 { 2818 struct zoneref *z; 2819 struct zone *zone; 2820 enum compact_result rc = COMPACT_SKIPPED; 2821 2822 if (!gfp_compaction_allowed(gfp_mask)) 2823 return COMPACT_SKIPPED; 2824 2825 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2826 2827 /* Compact each zone in the list */ 2828 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2829 ac->highest_zoneidx, ac->nodemask) { 2830 enum compact_result status; 2831 2832 if (cpusets_enabled() && 2833 (alloc_flags & ALLOC_CPUSET) && 2834 !__cpuset_zone_allowed(zone, gfp_mask)) 2835 continue; 2836 2837 if (prio > MIN_COMPACT_PRIORITY 2838 && compaction_deferred(zone, order)) { 2839 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2840 continue; 2841 } 2842 2843 status = compact_zone_order(zone, order, gfp_mask, prio, 2844 alloc_flags, ac->highest_zoneidx, capture); 2845 rc = max(status, rc); 2846 2847 /* The allocation should succeed, stop compacting */ 2848 if (status == COMPACT_SUCCESS) { 2849 /* 2850 * We think the allocation will succeed in this zone, 2851 * but it is not certain, hence the false. The caller 2852 * will repeat this with true if allocation indeed 2853 * succeeds in this zone. 2854 */ 2855 compaction_defer_reset(zone, order, false); 2856 2857 break; 2858 } 2859 2860 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2861 status == COMPACT_PARTIAL_SKIPPED)) 2862 /* 2863 * We think that allocation won't succeed in this zone 2864 * so we defer compaction there. If it ends up 2865 * succeeding after all, it will be reset. 2866 */ 2867 defer_compaction(zone, order); 2868 2869 /* 2870 * We might have stopped compacting due to need_resched() in 2871 * async compaction, or due to a fatal signal detected. In that 2872 * case do not try further zones 2873 */ 2874 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2875 || fatal_signal_pending(current)) 2876 break; 2877 } 2878 2879 return rc; 2880 } 2881 2882 /* 2883 * compact_node() - compact all zones within a node 2884 * @pgdat: The node page data 2885 * @proactive: Whether the compaction is proactive 2886 * 2887 * For proactive compaction, compact till each zone's fragmentation score 2888 * reaches within proactive compaction thresholds (as determined by the 2889 * proactiveness tunable), it is possible that the function returns before 2890 * reaching score targets due to various back-off conditions, such as, 2891 * contention on per-node or per-zone locks. 2892 */ 2893 static int compact_node(pg_data_t *pgdat, bool proactive) 2894 { 2895 int zoneid; 2896 struct zone *zone; 2897 struct compact_control cc = { 2898 .order = -1, 2899 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC, 2900 .ignore_skip_hint = true, 2901 .whole_zone = true, 2902 .gfp_mask = GFP_KERNEL, 2903 .proactive_compaction = proactive, 2904 }; 2905 2906 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2907 zone = &pgdat->node_zones[zoneid]; 2908 if (!populated_zone(zone)) 2909 continue; 2910 2911 if (fatal_signal_pending(current)) 2912 return -EINTR; 2913 2914 cc.zone = zone; 2915 2916 compact_zone(&cc, NULL); 2917 2918 if (proactive) { 2919 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2920 cc.total_migrate_scanned); 2921 count_compact_events(KCOMPACTD_FREE_SCANNED, 2922 cc.total_free_scanned); 2923 } 2924 } 2925 2926 return 0; 2927 } 2928 2929 /* Compact all zones of all nodes in the system */ 2930 static int compact_nodes(void) 2931 { 2932 int ret, nid; 2933 2934 /* Flush pending updates to the LRU lists */ 2935 lru_add_drain_all(); 2936 2937 for_each_online_node(nid) { 2938 ret = compact_node(NODE_DATA(nid), false); 2939 if (ret) 2940 return ret; 2941 } 2942 2943 return 0; 2944 } 2945 2946 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write, 2947 void *buffer, size_t *length, loff_t *ppos) 2948 { 2949 int rc, nid; 2950 2951 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2952 if (rc) 2953 return rc; 2954 2955 if (write && sysctl_compaction_proactiveness) { 2956 for_each_online_node(nid) { 2957 pg_data_t *pgdat = NODE_DATA(nid); 2958 2959 if (pgdat->proactive_compact_trigger) 2960 continue; 2961 2962 pgdat->proactive_compact_trigger = true; 2963 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2964 pgdat->nr_zones - 1); 2965 wake_up_interruptible(&pgdat->kcompactd_wait); 2966 } 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * This is the entry point for compacting all nodes via 2974 * /proc/sys/vm/compact_memory 2975 */ 2976 static int sysctl_compaction_handler(const struct ctl_table *table, int write, 2977 void *buffer, size_t *length, loff_t *ppos) 2978 { 2979 int ret; 2980 2981 ret = proc_dointvec(table, write, buffer, length, ppos); 2982 if (ret) 2983 return ret; 2984 2985 if (sysctl_compact_memory != 1) 2986 return -EINVAL; 2987 2988 if (write) 2989 ret = compact_nodes(); 2990 2991 return ret; 2992 } 2993 2994 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2995 static ssize_t compact_store(struct device *dev, 2996 struct device_attribute *attr, 2997 const char *buf, size_t count) 2998 { 2999 int nid = dev->id; 3000 3001 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 3002 /* Flush pending updates to the LRU lists */ 3003 lru_add_drain_all(); 3004 3005 compact_node(NODE_DATA(nid), false); 3006 } 3007 3008 return count; 3009 } 3010 static DEVICE_ATTR_WO(compact); 3011 3012 int compaction_register_node(struct node *node) 3013 { 3014 return device_create_file(&node->dev, &dev_attr_compact); 3015 } 3016 3017 void compaction_unregister_node(struct node *node) 3018 { 3019 device_remove_file(&node->dev, &dev_attr_compact); 3020 } 3021 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 3022 3023 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 3024 { 3025 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 3026 pgdat->proactive_compact_trigger; 3027 } 3028 3029 static bool kcompactd_node_suitable(pg_data_t *pgdat) 3030 { 3031 int zoneid; 3032 struct zone *zone; 3033 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 3034 enum compact_result ret; 3035 unsigned int alloc_flags = defrag_mode ? 3036 ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN; 3037 3038 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 3039 zone = &pgdat->node_zones[zoneid]; 3040 3041 if (!populated_zone(zone)) 3042 continue; 3043 3044 ret = compaction_suit_allocation_order(zone, 3045 pgdat->kcompactd_max_order, 3046 highest_zoneidx, alloc_flags, 3047 false, true); 3048 if (ret == COMPACT_CONTINUE) 3049 return true; 3050 } 3051 3052 return false; 3053 } 3054 3055 static void kcompactd_do_work(pg_data_t *pgdat) 3056 { 3057 /* 3058 * With no special task, compact all zones so that a page of requested 3059 * order is allocatable. 3060 */ 3061 int zoneid; 3062 struct zone *zone; 3063 struct compact_control cc = { 3064 .order = pgdat->kcompactd_max_order, 3065 .search_order = pgdat->kcompactd_max_order, 3066 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 3067 .mode = MIGRATE_SYNC_LIGHT, 3068 .ignore_skip_hint = false, 3069 .gfp_mask = GFP_KERNEL, 3070 .alloc_flags = defrag_mode ? ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN, 3071 }; 3072 enum compact_result ret; 3073 3074 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 3075 cc.highest_zoneidx); 3076 count_compact_event(KCOMPACTD_WAKE); 3077 3078 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 3079 int status; 3080 3081 zone = &pgdat->node_zones[zoneid]; 3082 if (!populated_zone(zone)) 3083 continue; 3084 3085 if (compaction_deferred(zone, cc.order)) 3086 continue; 3087 3088 ret = compaction_suit_allocation_order(zone, 3089 cc.order, zoneid, cc.alloc_flags, 3090 false, true); 3091 if (ret != COMPACT_CONTINUE) 3092 continue; 3093 3094 if (kthread_should_stop()) 3095 return; 3096 3097 cc.zone = zone; 3098 status = compact_zone(&cc, NULL); 3099 3100 if (status == COMPACT_SUCCESS) { 3101 compaction_defer_reset(zone, cc.order, false); 3102 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3103 /* 3104 * Buddy pages may become stranded on pcps that could 3105 * otherwise coalesce on the zone's free area for 3106 * order >= cc.order. This is ratelimited by the 3107 * upcoming deferral. 3108 */ 3109 drain_all_pages(zone); 3110 3111 /* 3112 * We use sync migration mode here, so we defer like 3113 * sync direct compaction does. 3114 */ 3115 defer_compaction(zone, cc.order); 3116 } 3117 3118 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3119 cc.total_migrate_scanned); 3120 count_compact_events(KCOMPACTD_FREE_SCANNED, 3121 cc.total_free_scanned); 3122 } 3123 3124 /* 3125 * Regardless of success, we are done until woken up next. But remember 3126 * the requested order/highest_zoneidx in case it was higher/tighter 3127 * than our current ones 3128 */ 3129 if (pgdat->kcompactd_max_order <= cc.order) 3130 pgdat->kcompactd_max_order = 0; 3131 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3132 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3133 } 3134 3135 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3136 { 3137 if (!order) 3138 return; 3139 3140 if (pgdat->kcompactd_max_order < order) 3141 pgdat->kcompactd_max_order = order; 3142 3143 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3144 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3145 3146 /* 3147 * Pairs with implicit barrier in wait_event_freezable() 3148 * such that wakeups are not missed. 3149 */ 3150 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3151 return; 3152 3153 if (!kcompactd_node_suitable(pgdat)) 3154 return; 3155 3156 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3157 highest_zoneidx); 3158 wake_up_interruptible(&pgdat->kcompactd_wait); 3159 } 3160 3161 /* 3162 * The background compaction daemon, started as a kernel thread 3163 * from the init process. 3164 */ 3165 static int kcompactd(void *p) 3166 { 3167 pg_data_t *pgdat = (pg_data_t *)p; 3168 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3169 long timeout = default_timeout; 3170 3171 current->flags |= PF_KCOMPACTD; 3172 set_freezable(); 3173 3174 pgdat->kcompactd_max_order = 0; 3175 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3176 3177 while (!kthread_should_stop()) { 3178 unsigned long pflags; 3179 3180 /* 3181 * Avoid the unnecessary wakeup for proactive compaction 3182 * when it is disabled. 3183 */ 3184 if (!sysctl_compaction_proactiveness) 3185 timeout = MAX_SCHEDULE_TIMEOUT; 3186 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3187 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3188 kcompactd_work_requested(pgdat), timeout) && 3189 !pgdat->proactive_compact_trigger) { 3190 3191 psi_memstall_enter(&pflags); 3192 kcompactd_do_work(pgdat); 3193 psi_memstall_leave(&pflags); 3194 /* 3195 * Reset the timeout value. The defer timeout from 3196 * proactive compaction is lost here but that is fine 3197 * as the condition of the zone changing substantionally 3198 * then carrying on with the previous defer interval is 3199 * not useful. 3200 */ 3201 timeout = default_timeout; 3202 continue; 3203 } 3204 3205 /* 3206 * Start the proactive work with default timeout. Based 3207 * on the fragmentation score, this timeout is updated. 3208 */ 3209 timeout = default_timeout; 3210 if (should_proactive_compact_node(pgdat)) { 3211 unsigned int prev_score, score; 3212 3213 prev_score = fragmentation_score_node(pgdat); 3214 compact_node(pgdat, true); 3215 score = fragmentation_score_node(pgdat); 3216 /* 3217 * Defer proactive compaction if the fragmentation 3218 * score did not go down i.e. no progress made. 3219 */ 3220 if (unlikely(score >= prev_score)) 3221 timeout = 3222 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3223 } 3224 if (unlikely(pgdat->proactive_compact_trigger)) 3225 pgdat->proactive_compact_trigger = false; 3226 } 3227 3228 current->flags &= ~PF_KCOMPACTD; 3229 3230 return 0; 3231 } 3232 3233 /* 3234 * This kcompactd start function will be called by init and node-hot-add. 3235 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3236 */ 3237 void __meminit kcompactd_run(int nid) 3238 { 3239 pg_data_t *pgdat = NODE_DATA(nid); 3240 3241 if (pgdat->kcompactd) 3242 return; 3243 3244 pgdat->kcompactd = kthread_create_on_node(kcompactd, pgdat, nid, "kcompactd%d", nid); 3245 if (IS_ERR(pgdat->kcompactd)) { 3246 pr_err("Failed to start kcompactd on node %d\n", nid); 3247 pgdat->kcompactd = NULL; 3248 } else { 3249 wake_up_process(pgdat->kcompactd); 3250 } 3251 } 3252 3253 /* 3254 * Called by memory hotplug when all memory in a node is offlined. Caller must 3255 * be holding mem_hotplug_begin/done(). 3256 */ 3257 void __meminit kcompactd_stop(int nid) 3258 { 3259 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3260 3261 if (kcompactd) { 3262 kthread_stop(kcompactd); 3263 NODE_DATA(nid)->kcompactd = NULL; 3264 } 3265 } 3266 3267 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table, 3268 int write, void *buffer, size_t *lenp, loff_t *ppos) 3269 { 3270 int ret, old; 3271 3272 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3273 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3274 3275 old = *(int *)table->data; 3276 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3277 if (ret) 3278 return ret; 3279 if (old != *(int *)table->data) 3280 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3281 table->procname, current->comm, 3282 task_pid_nr(current)); 3283 return ret; 3284 } 3285 3286 static const struct ctl_table vm_compaction[] = { 3287 { 3288 .procname = "compact_memory", 3289 .data = &sysctl_compact_memory, 3290 .maxlen = sizeof(int), 3291 .mode = 0200, 3292 .proc_handler = sysctl_compaction_handler, 3293 }, 3294 { 3295 .procname = "compaction_proactiveness", 3296 .data = &sysctl_compaction_proactiveness, 3297 .maxlen = sizeof(sysctl_compaction_proactiveness), 3298 .mode = 0644, 3299 .proc_handler = compaction_proactiveness_sysctl_handler, 3300 .extra1 = SYSCTL_ZERO, 3301 .extra2 = SYSCTL_ONE_HUNDRED, 3302 }, 3303 { 3304 .procname = "extfrag_threshold", 3305 .data = &sysctl_extfrag_threshold, 3306 .maxlen = sizeof(int), 3307 .mode = 0644, 3308 .proc_handler = proc_dointvec_minmax, 3309 .extra1 = SYSCTL_ZERO, 3310 .extra2 = SYSCTL_ONE_THOUSAND, 3311 }, 3312 { 3313 .procname = "compact_unevictable_allowed", 3314 .data = &sysctl_compact_unevictable_allowed, 3315 .maxlen = sizeof(int), 3316 .mode = 0644, 3317 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3318 .extra1 = SYSCTL_ZERO, 3319 .extra2 = SYSCTL_ONE, 3320 }, 3321 }; 3322 3323 static int __init kcompactd_init(void) 3324 { 3325 int nid; 3326 3327 for_each_node_state(nid, N_MEMORY) 3328 kcompactd_run(nid); 3329 register_sysctl_init("vm", vm_compaction); 3330 return 0; 3331 } 3332 subsys_initcall(kcompactd_init) 3333 3334 #endif /* CONFIG_COMPACTION */ 3335