1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12 #include <linux/compat.h>
13 #include <linux/compiler.h>
14 #include <linux/init.h>
15 #include <linux/jhash.h>
16 #include <linux/interrupt.h>
17 #include <linux/list.h>
18 #include <linux/memblock.h>
19 #include <linux/nospec.h>
20 #include <linux/posix-clock.h>
21 #include <linux/posix-timers.h>
22 #include <linux/prctl.h>
23 #include <linux/sched/task.h>
24 #include <linux/slab.h>
25 #include <linux/syscalls.h>
26 #include <linux/time.h>
27 #include <linux/time_namespace.h>
28 #include <linux/uaccess.h>
29
30 #include "timekeeping.h"
31 #include "posix-timers.h"
32
33 /*
34 * Timers are managed in a hash table for lockless lookup. The hash key is
35 * constructed from current::signal and the timer ID and the timer is
36 * matched against current::signal and the timer ID when walking the hash
37 * bucket list.
38 *
39 * This allows checkpoint/restore to reconstruct the exact timer IDs for
40 * a process.
41 */
42 struct timer_hash_bucket {
43 spinlock_t lock;
44 struct hlist_head head;
45 };
46
47 static struct {
48 struct timer_hash_bucket *buckets;
49 unsigned long mask;
50 struct kmem_cache *cache;
51 } __timer_data __ro_after_init __aligned(4*sizeof(long));
52
53 #define timer_buckets (__timer_data.buckets)
54 #define timer_hashmask (__timer_data.mask)
55 #define posix_timers_cache (__timer_data.cache)
56
57 static const struct k_clock * const posix_clocks[];
58 static const struct k_clock *clockid_to_kclock(const clockid_t id);
59 static const struct k_clock clock_realtime, clock_monotonic;
60
61 #define TIMER_ANY_ID INT_MIN
62
63 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
64 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
65 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
66 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
67 #endif
68
69 static struct k_itimer *__lock_timer(timer_t timer_id);
70
71 #define lock_timer(tid) \
72 ({ struct k_itimer *__timr; \
73 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid)); \
74 __timr; \
75 })
76
unlock_timer(struct k_itimer * timr)77 static inline void unlock_timer(struct k_itimer *timr)
78 {
79 if (likely((timr)))
80 spin_unlock_irq(&timr->it_lock);
81 }
82
83 #define scoped_timer_get_or_fail(_id) \
84 scoped_cond_guard(lock_timer, return -EINVAL, _id)
85
86 #define scoped_timer (scope)
87
88 DEFINE_CLASS(lock_timer, struct k_itimer *, unlock_timer(_T), __lock_timer(id), timer_t id);
89 DEFINE_CLASS_IS_COND_GUARD(lock_timer);
90
hash_bucket(struct signal_struct * sig,unsigned int nr)91 static struct timer_hash_bucket *hash_bucket(struct signal_struct *sig, unsigned int nr)
92 {
93 return &timer_buckets[jhash2((u32 *)&sig, sizeof(sig) / sizeof(u32), nr) & timer_hashmask];
94 }
95
posix_timer_by_id(timer_t id)96 static struct k_itimer *posix_timer_by_id(timer_t id)
97 {
98 struct signal_struct *sig = current->signal;
99 struct timer_hash_bucket *bucket = hash_bucket(sig, id);
100 struct k_itimer *timer;
101
102 hlist_for_each_entry_rcu(timer, &bucket->head, t_hash) {
103 /* timer->it_signal can be set concurrently */
104 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
105 return timer;
106 }
107 return NULL;
108 }
109
posix_sig_owner(const struct k_itimer * timer)110 static inline struct signal_struct *posix_sig_owner(const struct k_itimer *timer)
111 {
112 unsigned long val = (unsigned long)timer->it_signal;
113
114 /*
115 * Mask out bit 0, which acts as invalid marker to prevent
116 * posix_timer_by_id() detecting it as valid.
117 */
118 return (struct signal_struct *)(val & ~1UL);
119 }
120
posix_timer_hashed(struct timer_hash_bucket * bucket,struct signal_struct * sig,timer_t id)121 static bool posix_timer_hashed(struct timer_hash_bucket *bucket, struct signal_struct *sig,
122 timer_t id)
123 {
124 struct hlist_head *head = &bucket->head;
125 struct k_itimer *timer;
126
127 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&bucket->lock)) {
128 if ((posix_sig_owner(timer) == sig) && (timer->it_id == id))
129 return true;
130 }
131 return false;
132 }
133
posix_timer_add_at(struct k_itimer * timer,struct signal_struct * sig,unsigned int id)134 static bool posix_timer_add_at(struct k_itimer *timer, struct signal_struct *sig, unsigned int id)
135 {
136 struct timer_hash_bucket *bucket = hash_bucket(sig, id);
137
138 scoped_guard (spinlock, &bucket->lock) {
139 /*
140 * Validate under the lock as this could have raced against
141 * another thread ending up with the same ID, which is
142 * highly unlikely, but possible.
143 */
144 if (!posix_timer_hashed(bucket, sig, id)) {
145 /*
146 * Set the timer ID and the signal pointer to make
147 * it identifiable in the hash table. The signal
148 * pointer has bit 0 set to indicate that it is not
149 * yet fully initialized. posix_timer_hashed()
150 * masks this bit out, but the syscall lookup fails
151 * to match due to it being set. This guarantees
152 * that there can't be duplicate timer IDs handed
153 * out.
154 */
155 timer->it_id = (timer_t)id;
156 timer->it_signal = (struct signal_struct *)((unsigned long)sig | 1UL);
157 hlist_add_head_rcu(&timer->t_hash, &bucket->head);
158 return true;
159 }
160 }
161 return false;
162 }
163
posix_timer_add(struct k_itimer * timer,int req_id)164 static int posix_timer_add(struct k_itimer *timer, int req_id)
165 {
166 struct signal_struct *sig = current->signal;
167
168 if (unlikely(req_id != TIMER_ANY_ID)) {
169 if (!posix_timer_add_at(timer, sig, req_id))
170 return -EBUSY;
171
172 /*
173 * Move the ID counter past the requested ID, so that after
174 * switching back to normal mode the IDs are outside of the
175 * exact allocated region. That avoids ID collisions on the
176 * next regular timer_create() invocations.
177 */
178 atomic_set(&sig->next_posix_timer_id, req_id + 1);
179 return req_id;
180 }
181
182 for (unsigned int cnt = 0; cnt <= INT_MAX; cnt++) {
183 /* Get the next timer ID and clamp it to positive space */
184 unsigned int id = atomic_fetch_inc(&sig->next_posix_timer_id) & INT_MAX;
185
186 if (posix_timer_add_at(timer, sig, id))
187 return id;
188 cond_resched();
189 }
190 /* POSIX return code when no timer ID could be allocated */
191 return -EAGAIN;
192 }
193
posix_get_realtime_timespec(clockid_t which_clock,struct timespec64 * tp)194 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
195 {
196 ktime_get_real_ts64(tp);
197 return 0;
198 }
199
posix_get_realtime_ktime(clockid_t which_clock)200 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
201 {
202 return ktime_get_real();
203 }
204
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 const struct timespec64 *tp)
207 {
208 return do_sys_settimeofday64(tp, NULL);
209 }
210
posix_clock_realtime_adj(const clockid_t which_clock,struct __kernel_timex * t)211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct __kernel_timex *t)
213 {
214 return do_adjtimex(t);
215 }
216
posix_get_monotonic_timespec(clockid_t which_clock,struct timespec64 * tp)217 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
218 {
219 ktime_get_ts64(tp);
220 timens_add_monotonic(tp);
221 return 0;
222 }
223
posix_get_monotonic_ktime(clockid_t which_clock)224 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
225 {
226 return ktime_get();
227 }
228
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 ktime_get_raw_ts64(tp);
232 timens_add_monotonic(tp);
233 return 0;
234 }
235
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 ktime_get_coarse_real_ts64(tp);
239 return 0;
240 }
241
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 struct timespec64 *tp)
244 {
245 ktime_get_coarse_ts64(tp);
246 timens_add_monotonic(tp);
247 return 0;
248 }
249
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)250 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
251 {
252 *tp = ktime_to_timespec64(KTIME_LOW_RES);
253 return 0;
254 }
255
posix_get_boottime_timespec(const clockid_t which_clock,struct timespec64 * tp)256 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
257 {
258 ktime_get_boottime_ts64(tp);
259 timens_add_boottime(tp);
260 return 0;
261 }
262
posix_get_boottime_ktime(const clockid_t which_clock)263 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
264 {
265 return ktime_get_boottime();
266 }
267
posix_get_tai_timespec(clockid_t which_clock,struct timespec64 * tp)268 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
269 {
270 ktime_get_clocktai_ts64(tp);
271 return 0;
272 }
273
posix_get_tai_ktime(clockid_t which_clock)274 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
275 {
276 return ktime_get_clocktai();
277 }
278
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)279 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
280 {
281 tp->tv_sec = 0;
282 tp->tv_nsec = hrtimer_resolution;
283 return 0;
284 }
285
286 /*
287 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288 * are of type int. Clamp the overrun value to INT_MAX
289 */
timer_overrun_to_int(struct k_itimer * timr)290 static inline int timer_overrun_to_int(struct k_itimer *timr)
291 {
292 if (timr->it_overrun_last > (s64)INT_MAX)
293 return INT_MAX;
294
295 return (int)timr->it_overrun_last;
296 }
297
common_hrtimer_rearm(struct k_itimer * timr)298 static void common_hrtimer_rearm(struct k_itimer *timr)
299 {
300 struct hrtimer *timer = &timr->it.real.timer;
301
302 timr->it_overrun += hrtimer_forward_now(timer, timr->it_interval);
303 hrtimer_restart(timer);
304 }
305
__posixtimer_deliver_signal(struct kernel_siginfo * info,struct k_itimer * timr)306 static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
307 {
308 guard(spinlock)(&timr->it_lock);
309
310 /*
311 * Check if the timer is still alive or whether it got modified
312 * since the signal was queued. In either case, don't rearm and
313 * drop the signal.
314 */
315 if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!posixtimer_valid(timr)))
316 return false;
317
318 if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
319 return true;
320
321 timr->kclock->timer_rearm(timr);
322 timr->it_status = POSIX_TIMER_ARMED;
323 timr->it_overrun_last = timr->it_overrun;
324 timr->it_overrun = -1LL;
325 ++timr->it_signal_seq;
326 info->si_overrun = timer_overrun_to_int(timr);
327 return true;
328 }
329
330 /*
331 * This function is called from the signal delivery code. It decides
332 * whether the signal should be dropped and rearms interval timers. The
333 * timer can be unconditionally accessed as there is a reference held on
334 * it.
335 */
posixtimer_deliver_signal(struct kernel_siginfo * info,struct sigqueue * timer_sigq)336 bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
337 {
338 struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
339 bool ret;
340
341 /*
342 * Release siglock to ensure proper locking order versus
343 * timr::it_lock. Keep interrupts disabled.
344 */
345 spin_unlock(¤t->sighand->siglock);
346
347 ret = __posixtimer_deliver_signal(info, timr);
348
349 /* Drop the reference which was acquired when the signal was queued */
350 posixtimer_putref(timr);
351
352 spin_lock(¤t->sighand->siglock);
353 return ret;
354 }
355
posix_timer_queue_signal(struct k_itimer * timr)356 void posix_timer_queue_signal(struct k_itimer *timr)
357 {
358 lockdep_assert_held(&timr->it_lock);
359
360 if (!posixtimer_valid(timr))
361 return;
362
363 timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
364 posixtimer_send_sigqueue(timr);
365 }
366
367 /*
368 * This function gets called when a POSIX.1b interval timer expires from
369 * the HRTIMER interrupt (soft interrupt on RT kernels).
370 *
371 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
372 * based timers.
373 */
posix_timer_fn(struct hrtimer * timer)374 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
375 {
376 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
377
378 guard(spinlock_irqsave)(&timr->it_lock);
379 posix_timer_queue_signal(timr);
380 return HRTIMER_NORESTART;
381 }
382
posixtimer_create_prctl(unsigned long ctrl)383 long posixtimer_create_prctl(unsigned long ctrl)
384 {
385 switch (ctrl) {
386 case PR_TIMER_CREATE_RESTORE_IDS_OFF:
387 current->signal->timer_create_restore_ids = 0;
388 return 0;
389 case PR_TIMER_CREATE_RESTORE_IDS_ON:
390 current->signal->timer_create_restore_ids = 1;
391 return 0;
392 case PR_TIMER_CREATE_RESTORE_IDS_GET:
393 return current->signal->timer_create_restore_ids;
394 }
395 return -EINVAL;
396 }
397
good_sigevent(sigevent_t * event)398 static struct pid *good_sigevent(sigevent_t * event)
399 {
400 struct pid *pid = task_tgid(current);
401 struct task_struct *rtn;
402
403 switch (event->sigev_notify) {
404 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
405 pid = find_vpid(event->sigev_notify_thread_id);
406 rtn = pid_task(pid, PIDTYPE_PID);
407 if (!rtn || !same_thread_group(rtn, current))
408 return NULL;
409 fallthrough;
410 case SIGEV_SIGNAL:
411 case SIGEV_THREAD:
412 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
413 return NULL;
414 fallthrough;
415 case SIGEV_NONE:
416 return pid;
417 default:
418 return NULL;
419 }
420 }
421
alloc_posix_timer(void)422 static struct k_itimer *alloc_posix_timer(void)
423 {
424 struct k_itimer *tmr;
425
426 if (unlikely(!posix_timers_cache))
427 return NULL;
428
429 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
430 if (!tmr)
431 return tmr;
432
433 if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
434 kmem_cache_free(posix_timers_cache, tmr);
435 return NULL;
436 }
437 rcuref_init(&tmr->rcuref, 1);
438 return tmr;
439 }
440
posixtimer_free_timer(struct k_itimer * tmr)441 void posixtimer_free_timer(struct k_itimer *tmr)
442 {
443 put_pid(tmr->it_pid);
444 if (tmr->sigq.ucounts)
445 dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
446 kfree_rcu(tmr, rcu);
447 }
448
posix_timer_unhash_and_free(struct k_itimer * tmr)449 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
450 {
451 struct timer_hash_bucket *bucket = hash_bucket(posix_sig_owner(tmr), tmr->it_id);
452
453 scoped_guard (spinlock, &bucket->lock)
454 hlist_del_rcu(&tmr->t_hash);
455 posixtimer_putref(tmr);
456 }
457
common_timer_create(struct k_itimer * new_timer)458 static int common_timer_create(struct k_itimer *new_timer)
459 {
460 hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0);
461 return 0;
462 }
463
464 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)465 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
466 timer_t __user *created_timer_id)
467 {
468 const struct k_clock *kc = clockid_to_kclock(which_clock);
469 timer_t req_id = TIMER_ANY_ID;
470 struct k_itimer *new_timer;
471 int error, new_timer_id;
472
473 if (!kc)
474 return -EINVAL;
475 if (!kc->timer_create)
476 return -EOPNOTSUPP;
477
478 new_timer = alloc_posix_timer();
479 if (unlikely(!new_timer))
480 return -EAGAIN;
481
482 spin_lock_init(&new_timer->it_lock);
483
484 /* Special case for CRIU to restore timers with a given timer ID. */
485 if (unlikely(current->signal->timer_create_restore_ids)) {
486 if (copy_from_user(&req_id, created_timer_id, sizeof(req_id)))
487 return -EFAULT;
488 /* Valid IDs are 0..INT_MAX */
489 if ((unsigned int)req_id > INT_MAX)
490 return -EINVAL;
491 }
492
493 /*
494 * Add the timer to the hash table. The timer is not yet valid
495 * after insertion, but has a unique ID allocated.
496 */
497 new_timer_id = posix_timer_add(new_timer, req_id);
498 if (new_timer_id < 0) {
499 posixtimer_free_timer(new_timer);
500 return new_timer_id;
501 }
502
503 new_timer->it_clock = which_clock;
504 new_timer->kclock = kc;
505 new_timer->it_overrun = -1LL;
506
507 if (event) {
508 scoped_guard (rcu)
509 new_timer->it_pid = get_pid(good_sigevent(event));
510 if (!new_timer->it_pid) {
511 error = -EINVAL;
512 goto out;
513 }
514 new_timer->it_sigev_notify = event->sigev_notify;
515 new_timer->sigq.info.si_signo = event->sigev_signo;
516 new_timer->sigq.info.si_value = event->sigev_value;
517 } else {
518 new_timer->it_sigev_notify = SIGEV_SIGNAL;
519 new_timer->sigq.info.si_signo = SIGALRM;
520 new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
521 new_timer->it_pid = get_pid(task_tgid(current));
522 }
523
524 if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
525 new_timer->it_pid_type = PIDTYPE_PID;
526 else
527 new_timer->it_pid_type = PIDTYPE_TGID;
528
529 new_timer->sigq.info.si_tid = new_timer->it_id;
530 new_timer->sigq.info.si_code = SI_TIMER;
531
532 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
533 error = -EFAULT;
534 goto out;
535 }
536 /*
537 * After successful copy out, the timer ID is visible to user space
538 * now but not yet valid because new_timer::signal low order bit is 1.
539 *
540 * Complete the initialization with the clock specific create
541 * callback.
542 */
543 error = kc->timer_create(new_timer);
544 if (error)
545 goto out;
546
547 /*
548 * timer::it_lock ensures that __lock_timer() observes a fully
549 * initialized timer when it observes a valid timer::it_signal.
550 *
551 * sighand::siglock is required to protect signal::posix_timers.
552 */
553 scoped_guard (spinlock_irq, &new_timer->it_lock) {
554 guard(spinlock)(¤t->sighand->siglock);
555 /*
556 * new_timer::it_signal contains the signal pointer with
557 * bit 0 set, which makes it invalid for syscall operations.
558 * Store the unmodified signal pointer to make it valid.
559 */
560 WRITE_ONCE(new_timer->it_signal, current->signal);
561 hlist_add_head_rcu(&new_timer->list, ¤t->signal->posix_timers);
562 }
563 /*
564 * After unlocking @new_timer is subject to concurrent removal and
565 * cannot be touched anymore
566 */
567 return 0;
568 out:
569 posix_timer_unhash_and_free(new_timer);
570 return error;
571 }
572
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)573 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
574 struct sigevent __user *, timer_event_spec,
575 timer_t __user *, created_timer_id)
576 {
577 if (timer_event_spec) {
578 sigevent_t event;
579
580 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
581 return -EFAULT;
582 return do_timer_create(which_clock, &event, created_timer_id);
583 }
584 return do_timer_create(which_clock, NULL, created_timer_id);
585 }
586
587 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)588 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
589 struct compat_sigevent __user *, timer_event_spec,
590 timer_t __user *, created_timer_id)
591 {
592 if (timer_event_spec) {
593 sigevent_t event;
594
595 if (get_compat_sigevent(&event, timer_event_spec))
596 return -EFAULT;
597 return do_timer_create(which_clock, &event, created_timer_id);
598 }
599 return do_timer_create(which_clock, NULL, created_timer_id);
600 }
601 #endif
602
__lock_timer(timer_t timer_id)603 static struct k_itimer *__lock_timer(timer_t timer_id)
604 {
605 struct k_itimer *timr;
606
607 /*
608 * timer_t could be any type >= int and we want to make sure any
609 * @timer_id outside positive int range fails lookup.
610 */
611 if ((unsigned long long)timer_id > INT_MAX)
612 return NULL;
613
614 /*
615 * The hash lookup and the timers are RCU protected.
616 *
617 * Timers are added to the hash in invalid state where
618 * timr::it_signal is marked invalid. timer::it_signal is only set
619 * after the rest of the initialization succeeded.
620 *
621 * Timer destruction happens in steps:
622 * 1) Set timr::it_signal marked invalid with timr::it_lock held
623 * 2) Release timr::it_lock
624 * 3) Remove from the hash under hash_lock
625 * 4) Put the reference count.
626 *
627 * The reference count might not drop to zero if timr::sigq is
628 * queued. In that case the signal delivery or flush will put the
629 * last reference count.
630 *
631 * When the reference count reaches zero, the timer is scheduled
632 * for RCU removal after the grace period.
633 *
634 * Holding rcu_read_lock() across the lookup ensures that
635 * the timer cannot be freed.
636 *
637 * The lookup validates locklessly that timr::it_signal ==
638 * current::it_signal and timr::it_id == @timer_id. timr::it_id
639 * can't change, but timr::it_signal can become invalid during
640 * destruction, which makes the locked check fail.
641 */
642 guard(rcu)();
643 timr = posix_timer_by_id(timer_id);
644 if (timr) {
645 spin_lock_irq(&timr->it_lock);
646 /*
647 * Validate under timr::it_lock that timr::it_signal is
648 * still valid. Pairs with #1 above.
649 */
650 if (timr->it_signal == current->signal)
651 return timr;
652 spin_unlock_irq(&timr->it_lock);
653 }
654 return NULL;
655 }
656
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)657 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
658 {
659 struct hrtimer *timer = &timr->it.real.timer;
660
661 return __hrtimer_expires_remaining_adjusted(timer, now);
662 }
663
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)664 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
665 {
666 struct hrtimer *timer = &timr->it.real.timer;
667
668 return hrtimer_forward(timer, now, timr->it_interval);
669 }
670
671 /*
672 * Get the time remaining on a POSIX.1b interval timer.
673 *
674 * Two issues to handle here:
675 *
676 * 1) The timer has a requeue pending. The return value must appear as
677 * if the timer has been requeued right now.
678 *
679 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued
680 * into the hrtimer queue and therefore never expired. Emulate expiry
681 * here taking #1 into account.
682 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)683 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
684 {
685 const struct k_clock *kc = timr->kclock;
686 ktime_t now, remaining, iv;
687 bool sig_none;
688
689 sig_none = timr->it_sigev_notify == SIGEV_NONE;
690 iv = timr->it_interval;
691
692 /* interval timer ? */
693 if (iv) {
694 cur_setting->it_interval = ktime_to_timespec64(iv);
695 } else if (timr->it_status == POSIX_TIMER_DISARMED) {
696 /*
697 * SIGEV_NONE oneshot timers are never queued and therefore
698 * timr->it_status is always DISARMED. The check below
699 * vs. remaining time will handle this case.
700 *
701 * For all other timers there is nothing to update here, so
702 * return.
703 */
704 if (!sig_none)
705 return;
706 }
707
708 now = kc->clock_get_ktime(timr->it_clock);
709
710 /*
711 * If this is an interval timer and either has requeue pending or
712 * is a SIGEV_NONE timer move the expiry time forward by intervals,
713 * so expiry is > now.
714 */
715 if (iv && timr->it_status != POSIX_TIMER_ARMED)
716 timr->it_overrun += kc->timer_forward(timr, now);
717
718 remaining = kc->timer_remaining(timr, now);
719 /*
720 * As @now is retrieved before a possible timer_forward() and
721 * cannot be reevaluated by the compiler @remaining is based on the
722 * same @now value. Therefore @remaining is consistent vs. @now.
723 *
724 * Consequently all interval timers, i.e. @iv > 0, cannot have a
725 * remaining time <= 0 because timer_forward() guarantees to move
726 * them forward so that the next timer expiry is > @now.
727 */
728 if (remaining <= 0) {
729 /*
730 * A single shot SIGEV_NONE timer must return 0, when it is
731 * expired! Timers which have a real signal delivery mode
732 * must return a remaining time greater than 0 because the
733 * signal has not yet been delivered.
734 */
735 if (!sig_none)
736 cur_setting->it_value.tv_nsec = 1;
737 } else {
738 cur_setting->it_value = ktime_to_timespec64(remaining);
739 }
740 }
741
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)742 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
743 {
744 memset(setting, 0, sizeof(*setting));
745 scoped_timer_get_or_fail(timer_id)
746 scoped_timer->kclock->timer_get(scoped_timer, setting);
747 return 0;
748 }
749
750 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)751 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
752 struct __kernel_itimerspec __user *, setting)
753 {
754 struct itimerspec64 cur_setting;
755
756 int ret = do_timer_gettime(timer_id, &cur_setting);
757 if (!ret) {
758 if (put_itimerspec64(&cur_setting, setting))
759 ret = -EFAULT;
760 }
761 return ret;
762 }
763
764 #ifdef CONFIG_COMPAT_32BIT_TIME
765
SYSCALL_DEFINE2(timer_gettime32,timer_t,timer_id,struct old_itimerspec32 __user *,setting)766 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
767 struct old_itimerspec32 __user *, setting)
768 {
769 struct itimerspec64 cur_setting;
770
771 int ret = do_timer_gettime(timer_id, &cur_setting);
772 if (!ret) {
773 if (put_old_itimerspec32(&cur_setting, setting))
774 ret = -EFAULT;
775 }
776 return ret;
777 }
778
779 #endif
780
781 /**
782 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
783 * @timer_id: The timer ID which identifies the timer
784 *
785 * The "overrun count" of a timer is one plus the number of expiration
786 * intervals which have elapsed between the first expiry, which queues the
787 * signal and the actual signal delivery. On signal delivery the "overrun
788 * count" is calculated and cached, so it can be returned directly here.
789 *
790 * As this is relative to the last queued signal the returned overrun count
791 * is meaningless outside of the signal delivery path and even there it
792 * does not accurately reflect the current state when user space evaluates
793 * it.
794 *
795 * Returns:
796 * -EINVAL @timer_id is invalid
797 * 1..INT_MAX The number of overruns related to the last delivered signal
798 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)799 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
800 {
801 scoped_timer_get_or_fail(timer_id)
802 return timer_overrun_to_int(scoped_timer);
803 }
804
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)805 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
806 bool absolute, bool sigev_none)
807 {
808 struct hrtimer *timer = &timr->it.real.timer;
809 enum hrtimer_mode mode;
810
811 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
812 /*
813 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
814 * clock modifications, so they become CLOCK_MONOTONIC based under the
815 * hood. See hrtimer_setup(). Update timr->kclock, so the generic
816 * functions which use timr->kclock->clock_get_*() work.
817 *
818 * Note: it_clock stays unmodified, because the next timer_set() might
819 * use ABSTIME, so it needs to switch back.
820 */
821 if (timr->it_clock == CLOCK_REALTIME)
822 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
823
824 hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode);
825
826 if (!absolute)
827 expires = ktime_add_safe(expires, hrtimer_cb_get_time(timer));
828 hrtimer_set_expires(timer, expires);
829
830 if (!sigev_none)
831 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
832 }
833
common_hrtimer_try_to_cancel(struct k_itimer * timr)834 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
835 {
836 return hrtimer_try_to_cancel(&timr->it.real.timer);
837 }
838
common_timer_wait_running(struct k_itimer * timer)839 static void common_timer_wait_running(struct k_itimer *timer)
840 {
841 hrtimer_cancel_wait_running(&timer->it.real.timer);
842 }
843
844 /*
845 * On PREEMPT_RT this prevents priority inversion and a potential livelock
846 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
847 * executing a hrtimer callback.
848 *
849 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
850 * just results in a cpu_relax().
851 *
852 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
853 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
854 * prevents spinning on an eventually scheduled out task and a livelock
855 * when the task which tries to delete or disarm the timer has preempted
856 * the task which runs the expiry in task work context.
857 */
timer_wait_running(struct k_itimer * timer)858 static void timer_wait_running(struct k_itimer *timer)
859 {
860 /*
861 * kc->timer_wait_running() might drop RCU lock. So @timer
862 * cannot be touched anymore after the function returns!
863 */
864 timer->kclock->timer_wait_running(timer);
865 }
866
867 /*
868 * Set up the new interval and reset the signal delivery data
869 */
posix_timer_set_common(struct k_itimer * timer,struct itimerspec64 * new_setting)870 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
871 {
872 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
873 timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
874 else
875 timer->it_interval = 0;
876
877 /* Reset overrun accounting */
878 timer->it_overrun_last = 0;
879 timer->it_overrun = -1LL;
880 }
881
882 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)883 int common_timer_set(struct k_itimer *timr, int flags,
884 struct itimerspec64 *new_setting,
885 struct itimerspec64 *old_setting)
886 {
887 const struct k_clock *kc = timr->kclock;
888 bool sigev_none;
889 ktime_t expires;
890
891 if (old_setting)
892 common_timer_get(timr, old_setting);
893
894 /*
895 * Careful here. On SMP systems the timer expiry function could be
896 * active and spinning on timr->it_lock.
897 */
898 if (kc->timer_try_to_cancel(timr) < 0)
899 return TIMER_RETRY;
900
901 timr->it_status = POSIX_TIMER_DISARMED;
902 posix_timer_set_common(timr, new_setting);
903
904 /* Keep timer disarmed when it_value is zero */
905 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
906 return 0;
907
908 expires = timespec64_to_ktime(new_setting->it_value);
909 if (flags & TIMER_ABSTIME)
910 expires = timens_ktime_to_host(timr->it_clock, expires);
911 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
912
913 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
914 if (!sigev_none)
915 timr->it_status = POSIX_TIMER_ARMED;
916 return 0;
917 }
918
do_timer_settime(timer_t timer_id,int tmr_flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)919 static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64,
920 struct itimerspec64 *old_spec64)
921 {
922 if (!timespec64_valid(&new_spec64->it_interval) ||
923 !timespec64_valid(&new_spec64->it_value))
924 return -EINVAL;
925
926 if (old_spec64)
927 memset(old_spec64, 0, sizeof(*old_spec64));
928
929 for (; ; old_spec64 = NULL) {
930 struct k_itimer *timr;
931
932 scoped_timer_get_or_fail(timer_id) {
933 timr = scoped_timer;
934
935 if (old_spec64)
936 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
937
938 /* Prevent signal delivery and rearming. */
939 timr->it_signal_seq++;
940
941 int ret = timr->kclock->timer_set(timr, tmr_flags, new_spec64, old_spec64);
942 if (ret != TIMER_RETRY)
943 return ret;
944
945 /* Protect the timer from being freed when leaving the lock scope */
946 rcu_read_lock();
947 }
948 timer_wait_running(timr);
949 rcu_read_unlock();
950 }
951 }
952
953 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)954 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
955 const struct __kernel_itimerspec __user *, new_setting,
956 struct __kernel_itimerspec __user *, old_setting)
957 {
958 struct itimerspec64 new_spec, old_spec, *rtn;
959 int error = 0;
960
961 if (!new_setting)
962 return -EINVAL;
963
964 if (get_itimerspec64(&new_spec, new_setting))
965 return -EFAULT;
966
967 rtn = old_setting ? &old_spec : NULL;
968 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
969 if (!error && old_setting) {
970 if (put_itimerspec64(&old_spec, old_setting))
971 error = -EFAULT;
972 }
973 return error;
974 }
975
976 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32,timer_t,timer_id,int,flags,struct old_itimerspec32 __user *,new,struct old_itimerspec32 __user *,old)977 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
978 struct old_itimerspec32 __user *, new,
979 struct old_itimerspec32 __user *, old)
980 {
981 struct itimerspec64 new_spec, old_spec;
982 struct itimerspec64 *rtn = old ? &old_spec : NULL;
983 int error = 0;
984
985 if (!new)
986 return -EINVAL;
987 if (get_old_itimerspec32(&new_spec, new))
988 return -EFAULT;
989
990 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
991 if (!error && old) {
992 if (put_old_itimerspec32(&old_spec, old))
993 error = -EFAULT;
994 }
995 return error;
996 }
997 #endif
998
common_timer_del(struct k_itimer * timer)999 int common_timer_del(struct k_itimer *timer)
1000 {
1001 const struct k_clock *kc = timer->kclock;
1002
1003 if (kc->timer_try_to_cancel(timer) < 0)
1004 return TIMER_RETRY;
1005 timer->it_status = POSIX_TIMER_DISARMED;
1006 return 0;
1007 }
1008
1009 /*
1010 * If the deleted timer is on the ignored list, remove it and
1011 * drop the associated reference.
1012 */
posix_timer_cleanup_ignored(struct k_itimer * tmr)1013 static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
1014 {
1015 if (!hlist_unhashed(&tmr->ignored_list)) {
1016 hlist_del_init(&tmr->ignored_list);
1017 posixtimer_putref(tmr);
1018 }
1019 }
1020
posix_timer_delete(struct k_itimer * timer)1021 static void posix_timer_delete(struct k_itimer *timer)
1022 {
1023 /*
1024 * Invalidate the timer, remove it from the linked list and remove
1025 * it from the ignored list if pending.
1026 *
1027 * The invalidation must be written with siglock held so that the
1028 * signal code observes the invalidated timer::it_signal in
1029 * do_sigaction(), which prevents it from moving a pending signal
1030 * of a deleted timer to the ignore list.
1031 *
1032 * The invalidation also prevents signal queueing, signal delivery
1033 * and therefore rearming from the signal delivery path.
1034 *
1035 * A concurrent lookup can still find the timer in the hash, but it
1036 * will check timer::it_signal with timer::it_lock held and observe
1037 * bit 0 set, which invalidates it. That also prevents the timer ID
1038 * from being handed out before this timer is completely gone.
1039 */
1040 timer->it_signal_seq++;
1041
1042 scoped_guard (spinlock, ¤t->sighand->siglock) {
1043 unsigned long sig = (unsigned long)timer->it_signal | 1UL;
1044
1045 WRITE_ONCE(timer->it_signal, (struct signal_struct *)sig);
1046 hlist_del_rcu(&timer->list);
1047 posix_timer_cleanup_ignored(timer);
1048 }
1049
1050 while (timer->kclock->timer_del(timer) == TIMER_RETRY) {
1051 guard(rcu)();
1052 spin_unlock_irq(&timer->it_lock);
1053 timer_wait_running(timer);
1054 spin_lock_irq(&timer->it_lock);
1055 }
1056 }
1057
1058 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)1059 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1060 {
1061 struct k_itimer *timer;
1062
1063 scoped_timer_get_or_fail(timer_id) {
1064 timer = scoped_timer;
1065 posix_timer_delete(timer);
1066 }
1067 /* Remove it from the hash, which frees up the timer ID */
1068 posix_timer_unhash_and_free(timer);
1069 return 0;
1070 }
1071
1072 /*
1073 * Invoked from do_exit() when the last thread of a thread group exits.
1074 * At that point no other task can access the timers of the dying
1075 * task anymore.
1076 */
exit_itimers(struct task_struct * tsk)1077 void exit_itimers(struct task_struct *tsk)
1078 {
1079 struct hlist_head timers;
1080 struct hlist_node *next;
1081 struct k_itimer *timer;
1082
1083 /* Clear restore mode for exec() */
1084 tsk->signal->timer_create_restore_ids = 0;
1085
1086 if (hlist_empty(&tsk->signal->posix_timers))
1087 return;
1088
1089 /* Protect against concurrent read via /proc/$PID/timers */
1090 scoped_guard (spinlock_irq, &tsk->sighand->siglock)
1091 hlist_move_list(&tsk->signal->posix_timers, &timers);
1092
1093 /* The timers are not longer accessible via tsk::signal */
1094 hlist_for_each_entry_safe(timer, next, &timers, list) {
1095 scoped_guard (spinlock_irq, &timer->it_lock)
1096 posix_timer_delete(timer);
1097 posix_timer_unhash_and_free(timer);
1098 cond_resched();
1099 }
1100
1101 /*
1102 * There should be no timers on the ignored list. itimer_delete() has
1103 * mopped them up.
1104 */
1105 if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
1106 return;
1107
1108 hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
1109 while (!hlist_empty(&timers)) {
1110 posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
1111 ignored_list));
1112 }
1113 }
1114
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1115 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1116 const struct __kernel_timespec __user *, tp)
1117 {
1118 const struct k_clock *kc = clockid_to_kclock(which_clock);
1119 struct timespec64 new_tp;
1120
1121 if (!kc || !kc->clock_set)
1122 return -EINVAL;
1123
1124 if (get_timespec64(&new_tp, tp))
1125 return -EFAULT;
1126
1127 /*
1128 * Permission checks have to be done inside the clock specific
1129 * setter callback.
1130 */
1131 return kc->clock_set(which_clock, &new_tp);
1132 }
1133
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1134 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1135 struct __kernel_timespec __user *, tp)
1136 {
1137 const struct k_clock *kc = clockid_to_kclock(which_clock);
1138 struct timespec64 kernel_tp;
1139 int error;
1140
1141 if (!kc)
1142 return -EINVAL;
1143
1144 error = kc->clock_get_timespec(which_clock, &kernel_tp);
1145
1146 if (!error && put_timespec64(&kernel_tp, tp))
1147 error = -EFAULT;
1148
1149 return error;
1150 }
1151
do_clock_adjtime(const clockid_t which_clock,struct __kernel_timex * ktx)1152 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1153 {
1154 const struct k_clock *kc = clockid_to_kclock(which_clock);
1155
1156 if (!kc)
1157 return -EINVAL;
1158 if (!kc->clock_adj)
1159 return -EOPNOTSUPP;
1160
1161 return kc->clock_adj(which_clock, ktx);
1162 }
1163
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct __kernel_timex __user *,utx)1164 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1165 struct __kernel_timex __user *, utx)
1166 {
1167 struct __kernel_timex ktx;
1168 int err;
1169
1170 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1171 return -EFAULT;
1172
1173 err = do_clock_adjtime(which_clock, &ktx);
1174
1175 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1176 return -EFAULT;
1177
1178 return err;
1179 }
1180
1181 /**
1182 * sys_clock_getres - Get the resolution of a clock
1183 * @which_clock: The clock to get the resolution for
1184 * @tp: Pointer to a a user space timespec64 for storage
1185 *
1186 * POSIX defines:
1187 *
1188 * "The clock_getres() function shall return the resolution of any
1189 * clock. Clock resolutions are implementation-defined and cannot be set by
1190 * a process. If the argument res is not NULL, the resolution of the
1191 * specified clock shall be stored in the location pointed to by res. If
1192 * res is NULL, the clock resolution is not returned. If the time argument
1193 * of clock_settime() is not a multiple of res, then the value is truncated
1194 * to a multiple of res."
1195 *
1196 * Due to the various hardware constraints the real resolution can vary
1197 * wildly and even change during runtime when the underlying devices are
1198 * replaced. The kernel also can use hardware devices with different
1199 * resolutions for reading the time and for arming timers.
1200 *
1201 * The kernel therefore deviates from the POSIX spec in various aspects:
1202 *
1203 * 1) The resolution returned to user space
1204 *
1205 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1206 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1207 * the kernel differentiates only two cases:
1208 *
1209 * I) Low resolution mode:
1210 *
1211 * When high resolution timers are disabled at compile or runtime
1212 * the resolution returned is nanoseconds per tick, which represents
1213 * the precision at which timers expire.
1214 *
1215 * II) High resolution mode:
1216 *
1217 * When high resolution timers are enabled the resolution returned
1218 * is always one nanosecond independent of the actual resolution of
1219 * the underlying hardware devices.
1220 *
1221 * For CLOCK_*_ALARM the actual resolution depends on system
1222 * state. When system is running the resolution is the same as the
1223 * resolution of the other clocks. During suspend the actual
1224 * resolution is the resolution of the underlying RTC device which
1225 * might be way less precise than the clockevent device used during
1226 * running state.
1227 *
1228 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1229 * returned is always nanoseconds per tick.
1230 *
1231 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1232 * returned is always one nanosecond under the assumption that the
1233 * underlying scheduler clock has a better resolution than nanoseconds
1234 * per tick.
1235 *
1236 * For dynamic POSIX clocks (PTP devices) the resolution returned is
1237 * always one nanosecond.
1238 *
1239 * 2) Affect on sys_clock_settime()
1240 *
1241 * The kernel does not truncate the time which is handed in to
1242 * sys_clock_settime(). The kernel internal timekeeping is always using
1243 * nanoseconds precision independent of the clocksource device which is
1244 * used to read the time from. The resolution of that device only
1245 * affects the presicion of the time returned by sys_clock_gettime().
1246 *
1247 * Returns:
1248 * 0 Success. @tp contains the resolution
1249 * -EINVAL @which_clock is not a valid clock ID
1250 * -EFAULT Copying the resolution to @tp faulted
1251 * -ENODEV Dynamic POSIX clock is not backed by a device
1252 * -EOPNOTSUPP Dynamic POSIX clock does not support getres()
1253 */
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1254 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1255 struct __kernel_timespec __user *, tp)
1256 {
1257 const struct k_clock *kc = clockid_to_kclock(which_clock);
1258 struct timespec64 rtn_tp;
1259 int error;
1260
1261 if (!kc)
1262 return -EINVAL;
1263
1264 error = kc->clock_getres(which_clock, &rtn_tp);
1265
1266 if (!error && tp && put_timespec64(&rtn_tp, tp))
1267 error = -EFAULT;
1268
1269 return error;
1270 }
1271
1272 #ifdef CONFIG_COMPAT_32BIT_TIME
1273
SYSCALL_DEFINE2(clock_settime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1274 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1275 struct old_timespec32 __user *, tp)
1276 {
1277 const struct k_clock *kc = clockid_to_kclock(which_clock);
1278 struct timespec64 ts;
1279
1280 if (!kc || !kc->clock_set)
1281 return -EINVAL;
1282
1283 if (get_old_timespec32(&ts, tp))
1284 return -EFAULT;
1285
1286 return kc->clock_set(which_clock, &ts);
1287 }
1288
SYSCALL_DEFINE2(clock_gettime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1289 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1290 struct old_timespec32 __user *, tp)
1291 {
1292 const struct k_clock *kc = clockid_to_kclock(which_clock);
1293 struct timespec64 ts;
1294 int err;
1295
1296 if (!kc)
1297 return -EINVAL;
1298
1299 err = kc->clock_get_timespec(which_clock, &ts);
1300
1301 if (!err && put_old_timespec32(&ts, tp))
1302 err = -EFAULT;
1303
1304 return err;
1305 }
1306
SYSCALL_DEFINE2(clock_adjtime32,clockid_t,which_clock,struct old_timex32 __user *,utp)1307 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1308 struct old_timex32 __user *, utp)
1309 {
1310 struct __kernel_timex ktx;
1311 int err;
1312
1313 err = get_old_timex32(&ktx, utp);
1314 if (err)
1315 return err;
1316
1317 err = do_clock_adjtime(which_clock, &ktx);
1318
1319 if (err >= 0 && put_old_timex32(utp, &ktx))
1320 return -EFAULT;
1321
1322 return err;
1323 }
1324
SYSCALL_DEFINE2(clock_getres_time32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1325 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1326 struct old_timespec32 __user *, tp)
1327 {
1328 const struct k_clock *kc = clockid_to_kclock(which_clock);
1329 struct timespec64 ts;
1330 int err;
1331
1332 if (!kc)
1333 return -EINVAL;
1334
1335 err = kc->clock_getres(which_clock, &ts);
1336 if (!err && tp && put_old_timespec32(&ts, tp))
1337 return -EFAULT;
1338
1339 return err;
1340 }
1341
1342 #endif
1343
1344 /*
1345 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1346 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1347 static int common_nsleep(const clockid_t which_clock, int flags,
1348 const struct timespec64 *rqtp)
1349 {
1350 ktime_t texp = timespec64_to_ktime(*rqtp);
1351
1352 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1353 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1354 which_clock);
1355 }
1356
1357 /*
1358 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1359 *
1360 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1361 */
common_nsleep_timens(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1362 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1363 const struct timespec64 *rqtp)
1364 {
1365 ktime_t texp = timespec64_to_ktime(*rqtp);
1366
1367 if (flags & TIMER_ABSTIME)
1368 texp = timens_ktime_to_host(which_clock, texp);
1369
1370 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1371 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1372 which_clock);
1373 }
1374
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1375 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1376 const struct __kernel_timespec __user *, rqtp,
1377 struct __kernel_timespec __user *, rmtp)
1378 {
1379 const struct k_clock *kc = clockid_to_kclock(which_clock);
1380 struct timespec64 t;
1381
1382 if (!kc)
1383 return -EINVAL;
1384 if (!kc->nsleep)
1385 return -EOPNOTSUPP;
1386
1387 if (get_timespec64(&t, rqtp))
1388 return -EFAULT;
1389
1390 if (!timespec64_valid(&t))
1391 return -EINVAL;
1392 if (flags & TIMER_ABSTIME)
1393 rmtp = NULL;
1394 current->restart_block.fn = do_no_restart_syscall;
1395 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1396 current->restart_block.nanosleep.rmtp = rmtp;
1397
1398 return kc->nsleep(which_clock, flags, &t);
1399 }
1400
1401 #ifdef CONFIG_COMPAT_32BIT_TIME
1402
SYSCALL_DEFINE4(clock_nanosleep_time32,clockid_t,which_clock,int,flags,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)1403 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1404 struct old_timespec32 __user *, rqtp,
1405 struct old_timespec32 __user *, rmtp)
1406 {
1407 const struct k_clock *kc = clockid_to_kclock(which_clock);
1408 struct timespec64 t;
1409
1410 if (!kc)
1411 return -EINVAL;
1412 if (!kc->nsleep)
1413 return -EOPNOTSUPP;
1414
1415 if (get_old_timespec32(&t, rqtp))
1416 return -EFAULT;
1417
1418 if (!timespec64_valid(&t))
1419 return -EINVAL;
1420 if (flags & TIMER_ABSTIME)
1421 rmtp = NULL;
1422 current->restart_block.fn = do_no_restart_syscall;
1423 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1424 current->restart_block.nanosleep.compat_rmtp = rmtp;
1425
1426 return kc->nsleep(which_clock, flags, &t);
1427 }
1428
1429 #endif
1430
1431 static const struct k_clock clock_realtime = {
1432 .clock_getres = posix_get_hrtimer_res,
1433 .clock_get_timespec = posix_get_realtime_timespec,
1434 .clock_get_ktime = posix_get_realtime_ktime,
1435 .clock_set = posix_clock_realtime_set,
1436 .clock_adj = posix_clock_realtime_adj,
1437 .nsleep = common_nsleep,
1438 .timer_create = common_timer_create,
1439 .timer_set = common_timer_set,
1440 .timer_get = common_timer_get,
1441 .timer_del = common_timer_del,
1442 .timer_rearm = common_hrtimer_rearm,
1443 .timer_forward = common_hrtimer_forward,
1444 .timer_remaining = common_hrtimer_remaining,
1445 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1446 .timer_wait_running = common_timer_wait_running,
1447 .timer_arm = common_hrtimer_arm,
1448 };
1449
1450 static const struct k_clock clock_monotonic = {
1451 .clock_getres = posix_get_hrtimer_res,
1452 .clock_get_timespec = posix_get_monotonic_timespec,
1453 .clock_get_ktime = posix_get_monotonic_ktime,
1454 .nsleep = common_nsleep_timens,
1455 .timer_create = common_timer_create,
1456 .timer_set = common_timer_set,
1457 .timer_get = common_timer_get,
1458 .timer_del = common_timer_del,
1459 .timer_rearm = common_hrtimer_rearm,
1460 .timer_forward = common_hrtimer_forward,
1461 .timer_remaining = common_hrtimer_remaining,
1462 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1463 .timer_wait_running = common_timer_wait_running,
1464 .timer_arm = common_hrtimer_arm,
1465 };
1466
1467 static const struct k_clock clock_monotonic_raw = {
1468 .clock_getres = posix_get_hrtimer_res,
1469 .clock_get_timespec = posix_get_monotonic_raw,
1470 };
1471
1472 static const struct k_clock clock_realtime_coarse = {
1473 .clock_getres = posix_get_coarse_res,
1474 .clock_get_timespec = posix_get_realtime_coarse,
1475 };
1476
1477 static const struct k_clock clock_monotonic_coarse = {
1478 .clock_getres = posix_get_coarse_res,
1479 .clock_get_timespec = posix_get_monotonic_coarse,
1480 };
1481
1482 static const struct k_clock clock_tai = {
1483 .clock_getres = posix_get_hrtimer_res,
1484 .clock_get_ktime = posix_get_tai_ktime,
1485 .clock_get_timespec = posix_get_tai_timespec,
1486 .nsleep = common_nsleep,
1487 .timer_create = common_timer_create,
1488 .timer_set = common_timer_set,
1489 .timer_get = common_timer_get,
1490 .timer_del = common_timer_del,
1491 .timer_rearm = common_hrtimer_rearm,
1492 .timer_forward = common_hrtimer_forward,
1493 .timer_remaining = common_hrtimer_remaining,
1494 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1495 .timer_wait_running = common_timer_wait_running,
1496 .timer_arm = common_hrtimer_arm,
1497 };
1498
1499 static const struct k_clock clock_boottime = {
1500 .clock_getres = posix_get_hrtimer_res,
1501 .clock_get_ktime = posix_get_boottime_ktime,
1502 .clock_get_timespec = posix_get_boottime_timespec,
1503 .nsleep = common_nsleep_timens,
1504 .timer_create = common_timer_create,
1505 .timer_set = common_timer_set,
1506 .timer_get = common_timer_get,
1507 .timer_del = common_timer_del,
1508 .timer_rearm = common_hrtimer_rearm,
1509 .timer_forward = common_hrtimer_forward,
1510 .timer_remaining = common_hrtimer_remaining,
1511 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1512 .timer_wait_running = common_timer_wait_running,
1513 .timer_arm = common_hrtimer_arm,
1514 };
1515
1516 static const struct k_clock * const posix_clocks[] = {
1517 [CLOCK_REALTIME] = &clock_realtime,
1518 [CLOCK_MONOTONIC] = &clock_monotonic,
1519 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1520 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1521 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1522 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1523 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1524 [CLOCK_BOOTTIME] = &clock_boottime,
1525 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1526 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1527 [CLOCK_TAI] = &clock_tai,
1528 #ifdef CONFIG_POSIX_AUX_CLOCKS
1529 [CLOCK_AUX ... CLOCK_AUX_LAST] = &clock_aux,
1530 #endif
1531 };
1532
clockid_to_kclock(const clockid_t id)1533 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1534 {
1535 clockid_t idx = id;
1536
1537 if (id < 0) {
1538 return (id & CLOCKFD_MASK) == CLOCKFD ?
1539 &clock_posix_dynamic : &clock_posix_cpu;
1540 }
1541
1542 if (id >= ARRAY_SIZE(posix_clocks))
1543 return NULL;
1544
1545 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1546 }
1547
posixtimer_init(void)1548 static int __init posixtimer_init(void)
1549 {
1550 unsigned long i, size;
1551 unsigned int shift;
1552
1553 posix_timers_cache = kmem_cache_create("posix_timers_cache",
1554 sizeof(struct k_itimer),
1555 __alignof__(struct k_itimer),
1556 SLAB_ACCOUNT, NULL);
1557
1558 if (IS_ENABLED(CONFIG_BASE_SMALL))
1559 size = 512;
1560 else
1561 size = roundup_pow_of_two(512 * num_possible_cpus());
1562
1563 timer_buckets = alloc_large_system_hash("posixtimers", sizeof(*timer_buckets),
1564 size, 0, 0, &shift, NULL, size, size);
1565 size = 1UL << shift;
1566 timer_hashmask = size - 1;
1567
1568 for (i = 0; i < size; i++) {
1569 spin_lock_init(&timer_buckets[i].lock);
1570 INIT_HLIST_HEAD(&timer_buckets[i].head);
1571 }
1572 return 0;
1573 }
1574 core_initcall(posixtimer_init);
1575