xref: /linux/mm/memory-failure.c (revision bcb6058a4b4596f12065276faeb9363dc4887ea9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/memory-failure.h>
42 #include <linux/page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/slab.h>
54 #include <linux/leafops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/pagewalk.h>
62 #include <linux/shmem_fs.h>
63 #include <linux/sysctl.h>
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/memory-failure.h>
67 
68 #include "swap.h"
69 #include "internal.h"
70 
71 static int sysctl_memory_failure_early_kill __read_mostly;
72 
73 static int sysctl_memory_failure_recovery __read_mostly = 1;
74 
75 static int sysctl_enable_soft_offline __read_mostly = 1;
76 
77 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
78 
79 static bool hw_memory_failure __read_mostly = false;
80 
81 static DEFINE_MUTEX(mf_mutex);
82 
num_poisoned_pages_inc(unsigned long pfn)83 void num_poisoned_pages_inc(unsigned long pfn)
84 {
85 	atomic_long_inc(&num_poisoned_pages);
86 	memblk_nr_poison_inc(pfn);
87 }
88 
num_poisoned_pages_sub(unsigned long pfn,long i)89 void num_poisoned_pages_sub(unsigned long pfn, long i)
90 {
91 	atomic_long_sub(i, &num_poisoned_pages);
92 	if (pfn != -1UL)
93 		memblk_nr_poison_sub(pfn, i);
94 }
95 
96 /**
97  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
98  * @_name: name of the file in the per NUMA sysfs directory.
99  */
100 #define MF_ATTR_RO(_name)					\
101 static ssize_t _name##_show(struct device *dev,			\
102 			    struct device_attribute *attr,	\
103 			    char *buf)				\
104 {								\
105 	struct memory_failure_stats *mf_stats =			\
106 		&NODE_DATA(dev->id)->mf_stats;			\
107 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
108 }								\
109 static DEVICE_ATTR_RO(_name)
110 
111 MF_ATTR_RO(total);
112 MF_ATTR_RO(ignored);
113 MF_ATTR_RO(failed);
114 MF_ATTR_RO(delayed);
115 MF_ATTR_RO(recovered);
116 
117 static struct attribute *memory_failure_attr[] = {
118 	&dev_attr_total.attr,
119 	&dev_attr_ignored.attr,
120 	&dev_attr_failed.attr,
121 	&dev_attr_delayed.attr,
122 	&dev_attr_recovered.attr,
123 	NULL,
124 };
125 
126 const struct attribute_group memory_failure_attr_group = {
127 	.name = "memory_failure",
128 	.attrs = memory_failure_attr,
129 };
130 
131 static const struct ctl_table memory_failure_table[] = {
132 	{
133 		.procname	= "memory_failure_early_kill",
134 		.data		= &sysctl_memory_failure_early_kill,
135 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
136 		.mode		= 0644,
137 		.proc_handler	= proc_dointvec_minmax,
138 		.extra1		= SYSCTL_ZERO,
139 		.extra2		= SYSCTL_ONE,
140 	},
141 	{
142 		.procname	= "memory_failure_recovery",
143 		.data		= &sysctl_memory_failure_recovery,
144 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
145 		.mode		= 0644,
146 		.proc_handler	= proc_dointvec_minmax,
147 		.extra1		= SYSCTL_ZERO,
148 		.extra2		= SYSCTL_ONE,
149 	},
150 	{
151 		.procname	= "enable_soft_offline",
152 		.data		= &sysctl_enable_soft_offline,
153 		.maxlen		= sizeof(sysctl_enable_soft_offline),
154 		.mode		= 0644,
155 		.proc_handler	= proc_dointvec_minmax,
156 		.extra1		= SYSCTL_ZERO,
157 		.extra2		= SYSCTL_ONE,
158 	}
159 };
160 
161 static struct rb_root_cached pfn_space_itree = RB_ROOT_CACHED;
162 
163 static DEFINE_MUTEX(pfn_space_lock);
164 
165 /*
166  * Return values:
167  *   1:   the page is dissolved (if needed) and taken off from buddy,
168  *   0:   the page is dissolved (if needed) and not taken off from buddy,
169  *   < 0: failed to dissolve.
170  */
__page_handle_poison(struct page * page)171 static int __page_handle_poison(struct page *page)
172 {
173 	int ret;
174 
175 	/*
176 	 * zone_pcp_disable() can't be used here. It will
177 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
178 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
179 	 * optimization is enabled. This will break current lock dependency
180 	 * chain and leads to deadlock.
181 	 * Disabling pcp before dissolving the page was a deterministic
182 	 * approach because we made sure that those pages cannot end up in any
183 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
184 	 * but nothing guarantees that those pages do not get back to a PCP
185 	 * queue if we need to refill those.
186 	 */
187 	ret = dissolve_free_hugetlb_folio(page_folio(page));
188 	if (!ret) {
189 		drain_all_pages(page_zone(page));
190 		ret = take_page_off_buddy(page);
191 	}
192 
193 	return ret;
194 }
195 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)196 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
197 {
198 	if (hugepage_or_freepage) {
199 		/*
200 		 * Doing this check for free pages is also fine since
201 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
202 		 */
203 		if (__page_handle_poison(page) <= 0)
204 			/*
205 			 * We could fail to take off the target page from buddy
206 			 * for example due to racy page allocation, but that's
207 			 * acceptable because soft-offlined page is not broken
208 			 * and if someone really want to use it, they should
209 			 * take it.
210 			 */
211 			return false;
212 	}
213 
214 	SetPageHWPoison(page);
215 	if (release)
216 		put_page(page);
217 	page_ref_inc(page);
218 	num_poisoned_pages_inc(page_to_pfn(page));
219 
220 	return true;
221 }
222 
223 static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly;
224 
hwpoison_filter_register(hwpoison_filter_func_t * filter)225 void hwpoison_filter_register(hwpoison_filter_func_t *filter)
226 {
227 	rcu_assign_pointer(hwpoison_filter_func, filter);
228 }
229 EXPORT_SYMBOL_GPL(hwpoison_filter_register);
230 
hwpoison_filter_unregister(void)231 void hwpoison_filter_unregister(void)
232 {
233 	RCU_INIT_POINTER(hwpoison_filter_func, NULL);
234 	synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(hwpoison_filter_unregister);
237 
hwpoison_filter(struct page * p)238 static int hwpoison_filter(struct page *p)
239 {
240 	int ret = 0;
241 	hwpoison_filter_func_t *filter;
242 
243 	rcu_read_lock();
244 	filter = rcu_dereference(hwpoison_filter_func);
245 	if (filter)
246 		ret = filter(p);
247 	rcu_read_unlock();
248 
249 	return ret;
250 }
251 
252 /*
253  * Kill all processes that have a poisoned page mapped and then isolate
254  * the page.
255  *
256  * General strategy:
257  * Find all processes having the page mapped and kill them.
258  * But we keep a page reference around so that the page is not
259  * actually freed yet.
260  * Then stash the page away
261  *
262  * There's no convenient way to get back to mapped processes
263  * from the VMAs. So do a brute-force search over all
264  * running processes.
265  *
266  * Remember that machine checks are not common (or rather
267  * if they are common you have other problems), so this shouldn't
268  * be a performance issue.
269  *
270  * Also there are some races possible while we get from the
271  * error detection to actually handle it.
272  */
273 
274 struct to_kill {
275 	struct list_head nd;
276 	struct task_struct *tsk;
277 	unsigned long addr;
278 	short size_shift;
279 };
280 
281 /*
282  * Send all the processes who have the page mapped a signal.
283  * ``action optional'' if they are not immediately affected by the error
284  * ``action required'' if error happened in current execution context
285  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)286 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
287 {
288 	struct task_struct *t = tk->tsk;
289 	short addr_lsb = tk->size_shift;
290 	int ret = 0;
291 
292 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
293 			pfn, t->comm, task_pid_nr(t));
294 
295 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
296 		ret = force_sig_mceerr(BUS_MCEERR_AR,
297 				 (void __user *)tk->addr, addr_lsb);
298 	else
299 		/*
300 		 * Signal other processes sharing the page if they have
301 		 * PF_MCE_EARLY set.
302 		 * Don't use force here, it's convenient if the signal
303 		 * can be temporarily blocked.
304 		 */
305 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
306 				      addr_lsb, t);
307 	if (ret < 0)
308 		pr_info("Error sending signal to %s:%d: %d\n",
309 			t->comm, task_pid_nr(t), ret);
310 	return ret;
311 }
312 
313 /*
314  * Unknown page type encountered. Try to check whether it can turn PageLRU by
315  * lru_add_drain_all.
316  */
shake_folio(struct folio * folio)317 void shake_folio(struct folio *folio)
318 {
319 	if (folio_test_hugetlb(folio))
320 		return;
321 	/*
322 	 * TODO: Could shrink slab caches here if a lightweight range-based
323 	 * shrinker will be available.
324 	 */
325 	if (folio_test_slab(folio))
326 		return;
327 
328 	lru_add_drain_all();
329 }
330 EXPORT_SYMBOL_GPL(shake_folio);
331 
shake_page(struct page * page)332 static void shake_page(struct page *page)
333 {
334 	shake_folio(page_folio(page));
335 }
336 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)337 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
338 		unsigned long address)
339 {
340 	unsigned long ret = 0;
341 	pgd_t *pgd;
342 	p4d_t *p4d;
343 	pud_t *pud;
344 	pmd_t *pmd;
345 	pte_t *pte;
346 	pte_t ptent;
347 
348 	VM_BUG_ON_VMA(address == -EFAULT, vma);
349 	pgd = pgd_offset(vma->vm_mm, address);
350 	if (!pgd_present(*pgd))
351 		return 0;
352 	p4d = p4d_offset(pgd, address);
353 	if (!p4d_present(*p4d))
354 		return 0;
355 	pud = pud_offset(p4d, address);
356 	if (!pud_present(*pud))
357 		return 0;
358 	if (pud_trans_huge(*pud))
359 		return PUD_SHIFT;
360 	pmd = pmd_offset(pud, address);
361 	if (!pmd_present(*pmd))
362 		return 0;
363 	if (pmd_trans_huge(*pmd))
364 		return PMD_SHIFT;
365 	pte = pte_offset_map(pmd, address);
366 	if (!pte)
367 		return 0;
368 	ptent = ptep_get(pte);
369 	if (pte_present(ptent))
370 		ret = PAGE_SHIFT;
371 	pte_unmap(pte);
372 	return ret;
373 }
374 
375 /*
376  * Failure handling: if we can't find or can't kill a process there's
377  * not much we can do.	We just print a message and ignore otherwise.
378  */
379 
380 /*
381  * Schedule a process for later kill.
382  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
383  */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)384 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
385 			  struct vm_area_struct *vma, struct list_head *to_kill,
386 			  unsigned long addr)
387 {
388 	struct to_kill *tk;
389 
390 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
391 	if (!tk) {
392 		pr_err("Out of memory while machine check handling\n");
393 		return;
394 	}
395 
396 	tk->addr = addr;
397 	if (is_zone_device_page(p))
398 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
399 	else
400 		tk->size_shift = folio_shift(page_folio(p));
401 
402 	/*
403 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
404 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
405 	 * so "tk->size_shift == 0" effectively checks no mapping on
406 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
407 	 * to a process' address space, it's possible not all N VMAs
408 	 * contain mappings for the page, but at least one VMA does.
409 	 * Only deliver SIGBUS with payload derived from the VMA that
410 	 * has a mapping for the page.
411 	 */
412 	if (tk->addr == -EFAULT) {
413 		pr_info("Unable to find user space address %lx in %s\n",
414 			page_to_pfn(p), tsk->comm);
415 	} else if (tk->size_shift == 0) {
416 		kfree(tk);
417 		return;
418 	}
419 
420 	get_task_struct(tsk);
421 	tk->tsk = tsk;
422 	list_add_tail(&tk->nd, to_kill);
423 }
424 
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)425 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
426 		struct vm_area_struct *vma, struct list_head *to_kill,
427 		unsigned long addr)
428 {
429 	if (addr == -EFAULT)
430 		return;
431 	__add_to_kill(tsk, p, vma, to_kill, addr);
432 }
433 
434 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)435 static bool task_in_to_kill_list(struct list_head *to_kill,
436 				 struct task_struct *tsk)
437 {
438 	struct to_kill *tk, *next;
439 
440 	list_for_each_entry_safe(tk, next, to_kill, nd) {
441 		if (tk->tsk == tsk)
442 			return true;
443 	}
444 
445 	return false;
446 }
447 
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
449 		     struct vm_area_struct *vma, struct list_head *to_kill,
450 		     unsigned long addr)
451 {
452 	if (!task_in_to_kill_list(to_kill, tsk))
453 		__add_to_kill(tsk, p, vma, to_kill, addr);
454 }
455 #endif
456 /*
457  * Kill the processes that have been collected earlier.
458  *
459  * Only do anything when FORCEKILL is set, otherwise just free the
460  * list (this is used for clean pages which do not need killing)
461  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)462 static void kill_procs(struct list_head *to_kill, int forcekill,
463 		unsigned long pfn, int flags)
464 {
465 	struct to_kill *tk, *next;
466 
467 	list_for_each_entry_safe(tk, next, to_kill, nd) {
468 		if (forcekill) {
469 			if (tk->addr == -EFAULT) {
470 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
471 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
472 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
473 						 tk->tsk, PIDTYPE_PID);
474 			}
475 
476 			/*
477 			 * In theory the process could have mapped
478 			 * something else on the address in-between. We could
479 			 * check for that, but we need to tell the
480 			 * process anyways.
481 			 */
482 			else if (kill_proc(tk, pfn, flags) < 0)
483 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
484 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
485 		}
486 		list_del(&tk->nd);
487 		put_task_struct(tk->tsk);
488 		kfree(tk);
489 	}
490 }
491 
492 /*
493  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
494  * on behalf of the thread group. Return task_struct of the (first found)
495  * dedicated thread if found, and return NULL otherwise.
496  *
497  * We already hold rcu lock in the caller, so we don't have to call
498  * rcu_read_lock/unlock() in this function.
499  */
find_early_kill_thread(struct task_struct * tsk)500 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
501 {
502 	struct task_struct *t;
503 
504 	for_each_thread(tsk, t) {
505 		if (t->flags & PF_MCE_PROCESS) {
506 			if (t->flags & PF_MCE_EARLY)
507 				return t;
508 		} else {
509 			if (sysctl_memory_failure_early_kill)
510 				return t;
511 		}
512 	}
513 	return NULL;
514 }
515 
516 /*
517  * Determine whether a given process is "early kill" process which expects
518  * to be signaled when some page under the process is hwpoisoned.
519  * Return task_struct of the dedicated thread (main thread unless explicitly
520  * specified) if the process is "early kill" and otherwise returns NULL.
521  *
522  * Note that the above is true for Action Optional case. For Action Required
523  * case, it's only meaningful to the current thread which need to be signaled
524  * with SIGBUS, this error is Action Optional for other non current
525  * processes sharing the same error page,if the process is "early kill", the
526  * task_struct of the dedicated thread will also be returned.
527  */
task_early_kill(struct task_struct * tsk,int force_early)528 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
529 {
530 	if (!tsk->mm)
531 		return NULL;
532 	/*
533 	 * Comparing ->mm here because current task might represent
534 	 * a subthread, while tsk always points to the main thread.
535 	 */
536 	if (force_early && tsk->mm == current->mm)
537 		return current;
538 
539 	return find_early_kill_thread(tsk);
540 }
541 
542 /*
543  * Collect processes when the error hit an anonymous page.
544  */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)545 static void collect_procs_anon(const struct folio *folio,
546 		const struct page *page, struct list_head *to_kill,
547 		int force_early)
548 {
549 	struct task_struct *tsk;
550 	struct anon_vma *av;
551 	pgoff_t pgoff;
552 
553 	av = folio_lock_anon_vma_read(folio, NULL);
554 	if (av == NULL)	/* Not actually mapped anymore */
555 		return;
556 
557 	pgoff = page_pgoff(folio, page);
558 	rcu_read_lock();
559 	for_each_process(tsk) {
560 		struct vm_area_struct *vma;
561 		struct anon_vma_chain *vmac;
562 		struct task_struct *t = task_early_kill(tsk, force_early);
563 		unsigned long addr;
564 
565 		if (!t)
566 			continue;
567 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
568 					       pgoff, pgoff) {
569 			vma = vmac->vma;
570 			if (vma->vm_mm != t->mm)
571 				continue;
572 			addr = page_mapped_in_vma(page, vma);
573 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
574 		}
575 	}
576 	rcu_read_unlock();
577 	anon_vma_unlock_read(av);
578 }
579 
580 /*
581  * Collect processes when the error hit a file mapped page.
582  */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)583 static void collect_procs_file(const struct folio *folio,
584 		const struct page *page, struct list_head *to_kill,
585 		int force_early)
586 {
587 	struct vm_area_struct *vma;
588 	struct task_struct *tsk;
589 	struct address_space *mapping = folio->mapping;
590 	pgoff_t pgoff;
591 
592 	i_mmap_lock_read(mapping);
593 	rcu_read_lock();
594 	pgoff = page_pgoff(folio, page);
595 	for_each_process(tsk) {
596 		struct task_struct *t = task_early_kill(tsk, force_early);
597 		unsigned long addr;
598 
599 		if (!t)
600 			continue;
601 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
602 				      pgoff) {
603 			/*
604 			 * Send early kill signal to tasks where a vma covers
605 			 * the page but the corrupted page is not necessarily
606 			 * mapped in its pte.
607 			 * Assume applications who requested early kill want
608 			 * to be informed of all such data corruptions.
609 			 */
610 			if (vma->vm_mm != t->mm)
611 				continue;
612 			addr = page_address_in_vma(folio, page, vma);
613 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
614 		}
615 	}
616 	rcu_read_unlock();
617 	i_mmap_unlock_read(mapping);
618 }
619 
620 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)621 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
622 			      struct vm_area_struct *vma,
623 			      struct list_head *to_kill, pgoff_t pgoff)
624 {
625 	unsigned long addr = vma_address(vma, pgoff, 1);
626 	__add_to_kill(tsk, p, vma, to_kill, addr);
627 }
628 
629 /*
630  * Collect processes when the error hit a fsdax page.
631  */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)632 static void collect_procs_fsdax(const struct page *page,
633 		struct address_space *mapping, pgoff_t pgoff,
634 		struct list_head *to_kill, bool pre_remove)
635 {
636 	struct vm_area_struct *vma;
637 	struct task_struct *tsk;
638 
639 	i_mmap_lock_read(mapping);
640 	rcu_read_lock();
641 	for_each_process(tsk) {
642 		struct task_struct *t = tsk;
643 
644 		/*
645 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
646 		 * the current may not be the one accessing the fsdax page.
647 		 * Otherwise, search for the current task.
648 		 */
649 		if (!pre_remove)
650 			t = task_early_kill(tsk, true);
651 		if (!t)
652 			continue;
653 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
654 			if (vma->vm_mm == t->mm)
655 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
656 		}
657 	}
658 	rcu_read_unlock();
659 	i_mmap_unlock_read(mapping);
660 }
661 #endif /* CONFIG_FS_DAX */
662 
663 /*
664  * Collect the processes who have the corrupted page mapped to kill.
665  */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)666 static void collect_procs(const struct folio *folio, const struct page *page,
667 		struct list_head *tokill, int force_early)
668 {
669 	if (!folio->mapping)
670 		return;
671 	if (unlikely(folio_test_ksm(folio)))
672 		collect_procs_ksm(folio, page, tokill, force_early);
673 	else if (folio_test_anon(folio))
674 		collect_procs_anon(folio, page, tokill, force_early);
675 	else
676 		collect_procs_file(folio, page, tokill, force_early);
677 }
678 
679 struct hwpoison_walk {
680 	struct to_kill tk;
681 	unsigned long pfn;
682 	int flags;
683 };
684 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)685 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
686 {
687 	tk->addr = addr;
688 	tk->size_shift = shift;
689 }
690 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)691 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
692 				unsigned long poisoned_pfn, struct to_kill *tk)
693 {
694 	unsigned long pfn = 0;
695 	unsigned long hwpoison_vaddr;
696 	unsigned long mask;
697 
698 	if (pte_present(pte)) {
699 		pfn = pte_pfn(pte);
700 	} else {
701 		const softleaf_t entry = softleaf_from_pte(pte);
702 
703 		if (softleaf_is_hwpoison(entry))
704 			pfn = softleaf_to_pfn(entry);
705 	}
706 
707 	mask = ~((1UL << (shift - PAGE_SHIFT)) - 1);
708 	if (!pfn || pfn != (poisoned_pfn & mask))
709 		return 0;
710 
711 	hwpoison_vaddr = addr + ((poisoned_pfn - pfn) << PAGE_SHIFT);
712 	set_to_kill(tk, hwpoison_vaddr, shift);
713 	return 1;
714 }
715 
716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)717 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
718 				      struct hwpoison_walk *hwp)
719 {
720 	pmd_t pmd = *pmdp;
721 	unsigned long pfn;
722 	unsigned long hwpoison_vaddr;
723 
724 	if (!pmd_present(pmd))
725 		return 0;
726 	pfn = pmd_pfn(pmd);
727 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
728 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
729 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
730 		return 1;
731 	}
732 	return 0;
733 }
734 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)735 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
736 				      struct hwpoison_walk *hwp)
737 {
738 	return 0;
739 }
740 #endif
741 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)742 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
743 			      unsigned long end, struct mm_walk *walk)
744 {
745 	struct hwpoison_walk *hwp = walk->private;
746 	int ret = 0;
747 	pte_t *ptep, *mapped_pte;
748 	spinlock_t *ptl;
749 
750 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
751 	if (ptl) {
752 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
753 		spin_unlock(ptl);
754 		goto out;
755 	}
756 
757 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
758 						addr, &ptl);
759 	if (!ptep)
760 		goto out;
761 
762 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
763 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
764 					     hwp->pfn, &hwp->tk);
765 		if (ret == 1)
766 			break;
767 	}
768 	pte_unmap_unlock(mapped_pte, ptl);
769 out:
770 	cond_resched();
771 	return ret;
772 }
773 
774 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)775 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
776 			    unsigned long addr, unsigned long end,
777 			    struct mm_walk *walk)
778 {
779 	struct hwpoison_walk *hwp = walk->private;
780 	struct hstate *h = hstate_vma(walk->vma);
781 	spinlock_t *ptl;
782 	pte_t pte;
783 	int ret;
784 
785 	ptl = huge_pte_lock(h, walk->mm, ptep);
786 	pte = huge_ptep_get(walk->mm, addr, ptep);
787 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
788 					hwp->pfn, &hwp->tk);
789 	spin_unlock(ptl);
790 	return ret;
791 }
792 #else
793 #define hwpoison_hugetlb_range	NULL
794 #endif
795 
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)796 static int hwpoison_test_walk(unsigned long start, unsigned long end,
797 			     struct mm_walk *walk)
798 {
799 	/* We also want to consider pages mapped into VM_PFNMAP. */
800 	return 0;
801 }
802 
803 static const struct mm_walk_ops hwpoison_walk_ops = {
804 	.pmd_entry = hwpoison_pte_range,
805 	.hugetlb_entry = hwpoison_hugetlb_range,
806 	.test_walk = hwpoison_test_walk,
807 	.walk_lock = PGWALK_RDLOCK,
808 };
809 
810 /*
811  * Sends SIGBUS to the current process with error info.
812  *
813  * This function is intended to handle "Action Required" MCEs on already
814  * hardware poisoned pages. They could happen, for example, when
815  * memory_failure() failed to unmap the error page at the first call, or
816  * when multiple local machine checks happened on different CPUs.
817  *
818  * MCE handler currently has no easy access to the error virtual address,
819  * so this function walks page table to find it. The returned virtual address
820  * is proper in most cases, but it could be wrong when the application
821  * process has multiple entries mapping the error page.
822  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)823 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
824 				  int flags)
825 {
826 	int ret;
827 	struct hwpoison_walk priv = {
828 		.pfn = pfn,
829 	};
830 	priv.tk.tsk = p;
831 
832 	if (!p->mm)
833 		return -EFAULT;
834 
835 	mmap_read_lock(p->mm);
836 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
837 			      (void *)&priv);
838 	/*
839 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
840 	 * succeeds or fails, then kill the process with SIGBUS.
841 	 * ret = 0 when poison page is a clean page and it's dropped, no
842 	 * SIGBUS is needed.
843 	 */
844 	if (ret == 1 && priv.tk.addr)
845 		kill_proc(&priv.tk, pfn, flags);
846 	mmap_read_unlock(p->mm);
847 
848 	return ret > 0 ? -EHWPOISON : 0;
849 }
850 
851 /*
852  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
853  * But it could not do more to isolate the page from being accessed again,
854  * nor does it kill the process. This is extremely rare and one of the
855  * potential causes is that the page state has been changed due to
856  * underlying race condition. This is the most severe outcomes.
857  *
858  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
859  * It should have killed the process, but it can't isolate the page,
860  * due to conditions such as extra pin, unmap failure, etc. Accessing
861  * the page again may trigger another MCE and the process will be killed
862  * by the m-f() handler immediately.
863  *
864  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
865  * The page is unmapped, and is removed from the LRU or file mapping.
866  * An attempt to access the page again will trigger page fault and the
867  * PF handler will kill the process.
868  *
869  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
870  * The page has been completely isolated, that is, unmapped, taken out of
871  * the buddy system, or hole-punnched out of the file mapping.
872  */
873 static const char *action_name[] = {
874 	[MF_IGNORED] = "Ignored",
875 	[MF_FAILED] = "Failed",
876 	[MF_DELAYED] = "Delayed",
877 	[MF_RECOVERED] = "Recovered",
878 };
879 
880 static const char * const action_page_types[] = {
881 	[MF_MSG_KERNEL]			= "reserved kernel page",
882 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
883 	[MF_MSG_HUGE]			= "huge page",
884 	[MF_MSG_FREE_HUGE]		= "free huge page",
885 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
886 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
887 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
888 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
889 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
890 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
891 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
892 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
893 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
894 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
895 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
896 	[MF_MSG_BUDDY]			= "free buddy page",
897 	[MF_MSG_DAX]			= "dax page",
898 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
899 	[MF_MSG_ALREADY_POISONED]	= "already poisoned page",
900 	[MF_MSG_PFN_MAP]                = "non struct page pfn",
901 	[MF_MSG_UNKNOWN]		= "unknown page",
902 };
903 
904 /*
905  * XXX: It is possible that a page is isolated from LRU cache,
906  * and then kept in swap cache or failed to remove from page cache.
907  * The page count will stop it from being freed by unpoison.
908  * Stress tests should be aware of this memory leak problem.
909  */
delete_from_lru_cache(struct folio * folio)910 static int delete_from_lru_cache(struct folio *folio)
911 {
912 	if (folio_isolate_lru(folio)) {
913 		/*
914 		 * Clear sensible page flags, so that the buddy system won't
915 		 * complain when the folio is unpoison-and-freed.
916 		 */
917 		folio_clear_active(folio);
918 		folio_clear_unevictable(folio);
919 
920 		/*
921 		 * Poisoned page might never drop its ref count to 0 so we have
922 		 * to uncharge it manually from its memcg.
923 		 */
924 		mem_cgroup_uncharge(folio);
925 
926 		/*
927 		 * drop the refcount elevated by folio_isolate_lru()
928 		 */
929 		folio_put(folio);
930 		return 0;
931 	}
932 	return -EIO;
933 }
934 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)935 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
936 				struct address_space *mapping)
937 {
938 	int ret = MF_FAILED;
939 
940 	if (mapping->a_ops->error_remove_folio) {
941 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
942 
943 		if (err != 0)
944 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
945 		else if (!filemap_release_folio(folio, GFP_NOIO))
946 			pr_info("%#lx: failed to release buffers\n", pfn);
947 		else
948 			ret = MF_RECOVERED;
949 	} else {
950 		/*
951 		 * If the file system doesn't support it just invalidate
952 		 * This fails on dirty or anything with private pages
953 		 */
954 		if (mapping_evict_folio(mapping, folio))
955 			ret = MF_RECOVERED;
956 		else
957 			pr_info("%#lx: Failed to invalidate\n",	pfn);
958 	}
959 
960 	return ret;
961 }
962 
963 struct page_state {
964 	unsigned long mask;
965 	unsigned long res;
966 	enum mf_action_page_type type;
967 
968 	/* Callback ->action() has to unlock the relevant page inside it. */
969 	int (*action)(struct page_state *ps, struct page *p);
970 };
971 
972 /*
973  * Return true if page is still referenced by others, otherwise return
974  * false.
975  *
976  * The extra_pins is true when one extra refcount is expected.
977  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)978 static bool has_extra_refcount(struct page_state *ps, struct page *p,
979 			       bool extra_pins)
980 {
981 	int count = page_count(p) - 1;
982 
983 	if (extra_pins)
984 		count -= folio_nr_pages(page_folio(p));
985 
986 	if (count > 0) {
987 		pr_err("%#lx: %s still referenced by %d users\n",
988 		       page_to_pfn(p), action_page_types[ps->type], count);
989 		return true;
990 	}
991 
992 	return false;
993 }
994 
995 /*
996  * Error hit kernel page.
997  * Do nothing, try to be lucky and not touch this instead. For a few cases we
998  * could be more sophisticated.
999  */
me_kernel(struct page_state * ps,struct page * p)1000 static int me_kernel(struct page_state *ps, struct page *p)
1001 {
1002 	unlock_page(p);
1003 	return MF_IGNORED;
1004 }
1005 
1006 /*
1007  * Page in unknown state. Do nothing.
1008  * This is a catch-all in case we fail to make sense of the page state.
1009  */
me_unknown(struct page_state * ps,struct page * p)1010 static int me_unknown(struct page_state *ps, struct page *p)
1011 {
1012 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1013 	unlock_page(p);
1014 	return MF_IGNORED;
1015 }
1016 
1017 /*
1018  * Clean (or cleaned) page cache page.
1019  */
me_pagecache_clean(struct page_state * ps,struct page * p)1020 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1021 {
1022 	struct folio *folio = page_folio(p);
1023 	int ret;
1024 	struct address_space *mapping;
1025 	bool extra_pins;
1026 
1027 	delete_from_lru_cache(folio);
1028 
1029 	/*
1030 	 * For anonymous folios the only reference left
1031 	 * should be the one m_f() holds.
1032 	 */
1033 	if (folio_test_anon(folio)) {
1034 		ret = MF_RECOVERED;
1035 		goto out;
1036 	}
1037 
1038 	/*
1039 	 * Now truncate the page in the page cache. This is really
1040 	 * more like a "temporary hole punch"
1041 	 * Don't do this for block devices when someone else
1042 	 * has a reference, because it could be file system metadata
1043 	 * and that's not safe to truncate.
1044 	 */
1045 	mapping = folio_mapping(folio);
1046 	if (!mapping) {
1047 		/* Folio has been torn down in the meantime */
1048 		ret = MF_FAILED;
1049 		goto out;
1050 	}
1051 
1052 	/*
1053 	 * The shmem page is kept in page cache instead of truncating
1054 	 * so is expected to have an extra refcount after error-handling.
1055 	 */
1056 	extra_pins = shmem_mapping(mapping);
1057 
1058 	/*
1059 	 * Truncation is a bit tricky. Enable it per file system for now.
1060 	 *
1061 	 * Open: to take i_rwsem or not for this? Right now we don't.
1062 	 */
1063 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1064 	if (has_extra_refcount(ps, p, extra_pins))
1065 		ret = MF_FAILED;
1066 
1067 out:
1068 	folio_unlock(folio);
1069 
1070 	return ret;
1071 }
1072 
1073 /*
1074  * Dirty pagecache page
1075  * Issues: when the error hit a hole page the error is not properly
1076  * propagated.
1077  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1078 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1079 {
1080 	struct folio *folio = page_folio(p);
1081 	struct address_space *mapping = folio_mapping(folio);
1082 
1083 	/* TBD: print more information about the file. */
1084 	if (mapping) {
1085 		/*
1086 		 * IO error will be reported by write(), fsync(), etc.
1087 		 * who check the mapping.
1088 		 * This way the application knows that something went
1089 		 * wrong with its dirty file data.
1090 		 */
1091 		mapping_set_error(mapping, -EIO);
1092 	}
1093 
1094 	return me_pagecache_clean(ps, p);
1095 }
1096 
1097 /*
1098  * Clean and dirty swap cache.
1099  *
1100  * Dirty swap cache page is tricky to handle. The page could live both in page
1101  * table and swap cache(ie. page is freshly swapped in). So it could be
1102  * referenced concurrently by 2 types of PTEs:
1103  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1104  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1105  * and then
1106  *      - clear dirty bit to prevent IO
1107  *      - remove from LRU
1108  *      - but keep in the swap cache, so that when we return to it on
1109  *        a later page fault, we know the application is accessing
1110  *        corrupted data and shall be killed (we installed simple
1111  *        interception code in do_swap_page to catch it).
1112  *
1113  * Clean swap cache pages can be directly isolated. A later page fault will
1114  * bring in the known good data from disk.
1115  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1116 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1117 {
1118 	struct folio *folio = page_folio(p);
1119 	int ret;
1120 	bool extra_pins = false;
1121 
1122 	folio_clear_dirty(folio);
1123 	/* Trigger EIO in shmem: */
1124 	folio_clear_uptodate(folio);
1125 
1126 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1127 	folio_unlock(folio);
1128 
1129 	if (ret == MF_DELAYED)
1130 		extra_pins = true;
1131 
1132 	if (has_extra_refcount(ps, p, extra_pins))
1133 		ret = MF_FAILED;
1134 
1135 	return ret;
1136 }
1137 
me_swapcache_clean(struct page_state * ps,struct page * p)1138 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1139 {
1140 	struct folio *folio = page_folio(p);
1141 	int ret;
1142 
1143 	swap_cache_del_folio(folio);
1144 
1145 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1146 	folio_unlock(folio);
1147 
1148 	if (has_extra_refcount(ps, p, false))
1149 		ret = MF_FAILED;
1150 
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Huge pages. Needs work.
1156  * Issues:
1157  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1158  *   To narrow down kill region to one page, we need to break up pmd.
1159  */
me_huge_page(struct page_state * ps,struct page * p)1160 static int me_huge_page(struct page_state *ps, struct page *p)
1161 {
1162 	struct folio *folio = page_folio(p);
1163 	int res;
1164 	struct address_space *mapping;
1165 	bool extra_pins = false;
1166 
1167 	mapping = folio_mapping(folio);
1168 	if (mapping) {
1169 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1170 		/* The page is kept in page cache. */
1171 		extra_pins = true;
1172 		folio_unlock(folio);
1173 	} else {
1174 		folio_unlock(folio);
1175 		/*
1176 		 * migration entry prevents later access on error hugepage,
1177 		 * so we can free and dissolve it into buddy to save healthy
1178 		 * subpages.
1179 		 */
1180 		folio_put(folio);
1181 		if (__page_handle_poison(p) > 0) {
1182 			page_ref_inc(p);
1183 			res = MF_RECOVERED;
1184 		} else {
1185 			res = MF_FAILED;
1186 		}
1187 	}
1188 
1189 	if (has_extra_refcount(ps, p, extra_pins))
1190 		res = MF_FAILED;
1191 
1192 	return res;
1193 }
1194 
1195 /*
1196  * Various page states we can handle.
1197  *
1198  * A page state is defined by its current page->flags bits.
1199  * The table matches them in order and calls the right handler.
1200  *
1201  * This is quite tricky because we can access page at any time
1202  * in its live cycle, so all accesses have to be extremely careful.
1203  *
1204  * This is not complete. More states could be added.
1205  * For any missing state don't attempt recovery.
1206  */
1207 
1208 #define dirty		(1UL << PG_dirty)
1209 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1210 #define unevict		(1UL << PG_unevictable)
1211 #define mlock		(1UL << PG_mlocked)
1212 #define lru		(1UL << PG_lru)
1213 #define head		(1UL << PG_head)
1214 #define reserved	(1UL << PG_reserved)
1215 
1216 static struct page_state error_states[] = {
1217 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1218 	/*
1219 	 * free pages are specially detected outside this table:
1220 	 * PG_buddy pages only make a small fraction of all free pages.
1221 	 */
1222 
1223 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1224 
1225 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1226 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1227 
1228 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1229 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1230 
1231 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1232 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1233 
1234 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1235 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1236 
1237 	/*
1238 	 * Catchall entry: must be at end.
1239 	 */
1240 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1241 };
1242 
1243 #undef dirty
1244 #undef sc
1245 #undef unevict
1246 #undef mlock
1247 #undef lru
1248 #undef head
1249 #undef reserved
1250 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1251 static void update_per_node_mf_stats(unsigned long pfn,
1252 				     enum mf_result result)
1253 {
1254 	int nid = MAX_NUMNODES;
1255 	struct memory_failure_stats *mf_stats = NULL;
1256 
1257 	nid = pfn_to_nid(pfn);
1258 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1259 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1260 		return;
1261 	}
1262 
1263 	mf_stats = &NODE_DATA(nid)->mf_stats;
1264 	switch (result) {
1265 	case MF_IGNORED:
1266 		++mf_stats->ignored;
1267 		break;
1268 	case MF_FAILED:
1269 		++mf_stats->failed;
1270 		break;
1271 	case MF_DELAYED:
1272 		++mf_stats->delayed;
1273 		break;
1274 	case MF_RECOVERED:
1275 		++mf_stats->recovered;
1276 		break;
1277 	default:
1278 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1279 		break;
1280 	}
1281 	++mf_stats->total;
1282 }
1283 
1284 /*
1285  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1286  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1287  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1288 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1289 			 enum mf_result result)
1290 {
1291 	trace_memory_failure_event(pfn, type, result);
1292 
1293 	if (type != MF_MSG_ALREADY_POISONED && type != MF_MSG_PFN_MAP) {
1294 		num_poisoned_pages_inc(pfn);
1295 		update_per_node_mf_stats(pfn, result);
1296 	}
1297 
1298 	pr_err("%#lx: recovery action for %s: %s\n",
1299 		pfn, action_page_types[type], action_name[result]);
1300 
1301 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1302 }
1303 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1304 static int page_action(struct page_state *ps, struct page *p,
1305 			unsigned long pfn)
1306 {
1307 	int result;
1308 
1309 	/* page p should be unlocked after returning from ps->action().  */
1310 	result = ps->action(ps, p);
1311 
1312 	/* Could do more checks here if page looks ok */
1313 	/*
1314 	 * Could adjust zone counters here to correct for the missing page.
1315 	 */
1316 
1317 	return action_result(pfn, ps->type, result);
1318 }
1319 
PageHWPoisonTakenOff(struct page * page)1320 static inline bool PageHWPoisonTakenOff(struct page *page)
1321 {
1322 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1323 }
1324 
SetPageHWPoisonTakenOff(struct page * page)1325 void SetPageHWPoisonTakenOff(struct page *page)
1326 {
1327 	set_page_private(page, MAGIC_HWPOISON);
1328 }
1329 
ClearPageHWPoisonTakenOff(struct page * page)1330 void ClearPageHWPoisonTakenOff(struct page *page)
1331 {
1332 	if (PageHWPoison(page))
1333 		set_page_private(page, 0);
1334 }
1335 
1336 /*
1337  * Return true if a page type of a given page is supported by hwpoison
1338  * mechanism (while handling could fail), otherwise false.  This function
1339  * does not return true for hugetlb or device memory pages, so it's assumed
1340  * to be called only in the context where we never have such pages.
1341  */
HWPoisonHandlable(struct page * page,unsigned long flags)1342 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1343 {
1344 	if (PageSlab(page))
1345 		return false;
1346 
1347 	/* Soft offline could migrate movable_ops pages */
1348 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1349 		return true;
1350 
1351 	return PageLRU(page) || is_free_buddy_page(page);
1352 }
1353 
__get_hwpoison_page(struct page * page,unsigned long flags)1354 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1355 {
1356 	struct folio *folio = page_folio(page);
1357 	int ret = 0;
1358 	bool hugetlb = false;
1359 
1360 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1361 	if (hugetlb) {
1362 		/* Make sure hugetlb demotion did not happen from under us. */
1363 		if (folio == page_folio(page))
1364 			return ret;
1365 		if (ret > 0) {
1366 			folio_put(folio);
1367 			folio = page_folio(page);
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * This check prevents from calling folio_try_get() for any
1373 	 * unsupported type of folio in order to reduce the risk of unexpected
1374 	 * races caused by taking a folio refcount.
1375 	 */
1376 	if (!HWPoisonHandlable(&folio->page, flags))
1377 		return -EBUSY;
1378 
1379 	if (folio_try_get(folio)) {
1380 		if (folio == page_folio(page))
1381 			return 1;
1382 
1383 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1384 		folio_put(folio);
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 #define GET_PAGE_MAX_RETRY_NUM 3
1391 
get_any_page(struct page * p,unsigned long flags)1392 static int get_any_page(struct page *p, unsigned long flags)
1393 {
1394 	int ret = 0, pass = 0;
1395 	bool count_increased = false;
1396 
1397 	if (flags & MF_COUNT_INCREASED)
1398 		count_increased = true;
1399 
1400 try_again:
1401 	if (!count_increased) {
1402 		ret = __get_hwpoison_page(p, flags);
1403 		if (!ret) {
1404 			if (page_count(p)) {
1405 				/* We raced with an allocation, retry. */
1406 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1407 					goto try_again;
1408 				ret = -EBUSY;
1409 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1410 				/* We raced with put_page, retry. */
1411 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1412 					goto try_again;
1413 				ret = -EIO;
1414 			}
1415 			goto out;
1416 		} else if (ret == -EBUSY) {
1417 			/*
1418 			 * We raced with (possibly temporary) unhandlable
1419 			 * page, retry.
1420 			 */
1421 			if (pass++ < 3) {
1422 				shake_page(p);
1423 				goto try_again;
1424 			}
1425 			ret = -EIO;
1426 			goto out;
1427 		}
1428 	}
1429 
1430 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1431 		ret = 1;
1432 	} else {
1433 		/*
1434 		 * A page we cannot handle. Check whether we can turn
1435 		 * it into something we can handle.
1436 		 */
1437 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1438 			put_page(p);
1439 			shake_page(p);
1440 			count_increased = false;
1441 			goto try_again;
1442 		}
1443 		put_page(p);
1444 		ret = -EIO;
1445 	}
1446 out:
1447 	if (ret == -EIO)
1448 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1449 
1450 	return ret;
1451 }
1452 
__get_unpoison_page(struct page * page)1453 static int __get_unpoison_page(struct page *page)
1454 {
1455 	struct folio *folio = page_folio(page);
1456 	int ret = 0;
1457 	bool hugetlb = false;
1458 
1459 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1460 	if (hugetlb) {
1461 		/* Make sure hugetlb demotion did not happen from under us. */
1462 		if (folio == page_folio(page))
1463 			return ret;
1464 		if (ret > 0)
1465 			folio_put(folio);
1466 	}
1467 
1468 	/*
1469 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1470 	 * but also isolated from buddy freelist, so need to identify the
1471 	 * state and have to cancel both operations to unpoison.
1472 	 */
1473 	if (PageHWPoisonTakenOff(page))
1474 		return -EHWPOISON;
1475 
1476 	return get_page_unless_zero(page) ? 1 : 0;
1477 }
1478 
1479 /**
1480  * get_hwpoison_page() - Get refcount for memory error handling
1481  * @p:		Raw error page (hit by memory error)
1482  * @flags:	Flags controlling behavior of error handling
1483  *
1484  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1485  * error on it, after checking that the error page is in a well-defined state
1486  * (defined as a page-type we can successfully handle the memory error on it,
1487  * such as LRU page and hugetlb page).
1488  *
1489  * Memory error handling could be triggered at any time on any type of page,
1490  * so it's prone to race with typical memory management lifecycle (like
1491  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1492  * extra care for the error page's state (as done in __get_hwpoison_page()),
1493  * and has some retry logic in get_any_page().
1494  *
1495  * When called from unpoison_memory(), the caller should already ensure that
1496  * the given page has PG_hwpoison. So it's never reused for other page
1497  * allocations, and __get_unpoison_page() never races with them.
1498  *
1499  * Return: 0 on failure or free buddy (hugetlb) page,
1500  *         1 on success for in-use pages in a well-defined state,
1501  *         -EIO for pages on which we can not handle memory errors,
1502  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1503  *         operations like allocation and free,
1504  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1505  */
get_hwpoison_page(struct page * p,unsigned long flags)1506 static int get_hwpoison_page(struct page *p, unsigned long flags)
1507 {
1508 	int ret;
1509 
1510 	zone_pcp_disable(page_zone(p));
1511 	if (flags & MF_UNPOISON)
1512 		ret = __get_unpoison_page(p);
1513 	else
1514 		ret = get_any_page(p, flags);
1515 	zone_pcp_enable(page_zone(p));
1516 
1517 	return ret;
1518 }
1519 
1520 /*
1521  * The caller must guarantee the folio isn't large folio, except hugetlb.
1522  * try_to_unmap() can't handle it.
1523  */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1524 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1525 {
1526 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1527 	struct address_space *mapping;
1528 
1529 	if (folio_test_swapcache(folio)) {
1530 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1531 		ttu &= ~TTU_HWPOISON;
1532 	}
1533 
1534 	/*
1535 	 * Propagate the dirty bit from PTEs to struct page first, because we
1536 	 * need this to decide if we should kill or just drop the page.
1537 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1538 	 * be called inside page lock (it's recommended but not enforced).
1539 	 */
1540 	mapping = folio_mapping(folio);
1541 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1542 	    mapping_can_writeback(mapping)) {
1543 		if (folio_mkclean(folio)) {
1544 			folio_set_dirty(folio);
1545 		} else {
1546 			ttu &= ~TTU_HWPOISON;
1547 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1548 				pfn);
1549 		}
1550 	}
1551 
1552 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1553 		/*
1554 		 * For hugetlb folios in shared mappings, try_to_unmap
1555 		 * could potentially call huge_pmd_unshare.  Because of
1556 		 * this, take semaphore in write mode here and set
1557 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1558 		 * at this higher level.
1559 		 */
1560 		mapping = hugetlb_folio_mapping_lock_write(folio);
1561 		if (!mapping) {
1562 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1563 				folio_pfn(folio));
1564 			return -EBUSY;
1565 		}
1566 
1567 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1568 		i_mmap_unlock_write(mapping);
1569 	} else {
1570 		try_to_unmap(folio, ttu);
1571 	}
1572 
1573 	return folio_mapped(folio) ? -EBUSY : 0;
1574 }
1575 
1576 /*
1577  * Do all that is necessary to remove user space mappings. Unmap
1578  * the pages and send SIGBUS to the processes if the data was dirty.
1579  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1580 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1581 		unsigned long pfn, int flags)
1582 {
1583 	LIST_HEAD(tokill);
1584 	bool unmap_success;
1585 	int forcekill;
1586 	bool mlocked = folio_test_mlocked(folio);
1587 
1588 	/*
1589 	 * Here we are interested only in user-mapped pages, so skip any
1590 	 * other types of pages.
1591 	 */
1592 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1593 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1594 		return true;
1595 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1596 		return true;
1597 
1598 	/*
1599 	 * This check implies we don't kill processes if their pages
1600 	 * are in the swap cache early. Those are always late kills.
1601 	 */
1602 	if (!folio_mapped(folio))
1603 		return true;
1604 
1605 	/*
1606 	 * First collect all the processes that have the page
1607 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1608 	 * because ttu takes the rmap data structures down.
1609 	 */
1610 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1611 
1612 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1613 	if (!unmap_success)
1614 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1615 		       pfn, folio_mapcount(folio));
1616 
1617 	/*
1618 	 * try_to_unmap() might put mlocked page in lru cache, so call
1619 	 * shake_page() again to ensure that it's flushed.
1620 	 */
1621 	if (mlocked)
1622 		shake_folio(folio);
1623 
1624 	/*
1625 	 * Now that the dirty bit has been propagated to the
1626 	 * struct page and all unmaps done we can decide if
1627 	 * killing is needed or not.  Only kill when the page
1628 	 * was dirty or the process is not restartable,
1629 	 * otherwise the tokill list is merely
1630 	 * freed.  When there was a problem unmapping earlier
1631 	 * use a more force-full uncatchable kill to prevent
1632 	 * any accesses to the poisoned memory.
1633 	 */
1634 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1635 		    !unmap_success;
1636 	kill_procs(&tokill, forcekill, pfn, flags);
1637 
1638 	return unmap_success;
1639 }
1640 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1641 static int identify_page_state(unsigned long pfn, struct page *p,
1642 				unsigned long page_flags)
1643 {
1644 	struct page_state *ps;
1645 
1646 	/*
1647 	 * The first check uses the current page flags which may not have any
1648 	 * relevant information. The second check with the saved page flags is
1649 	 * carried out only if the first check can't determine the page status.
1650 	 */
1651 	for (ps = error_states;; ps++)
1652 		if ((p->flags.f & ps->mask) == ps->res)
1653 			break;
1654 
1655 	page_flags |= (p->flags.f & (1UL << PG_dirty));
1656 
1657 	if (!ps->mask)
1658 		for (ps = error_states;; ps++)
1659 			if ((page_flags & ps->mask) == ps->res)
1660 				break;
1661 	return page_action(ps, p, pfn);
1662 }
1663 
1664 /*
1665  * When 'release' is 'false', it means that if thp split has failed,
1666  * there is still more to do, hence the page refcount we took earlier
1667  * is still needed.
1668  */
try_to_split_thp_page(struct page * page,unsigned int new_order,bool release)1669 static int try_to_split_thp_page(struct page *page, unsigned int new_order,
1670 		bool release)
1671 {
1672 	int ret;
1673 
1674 	lock_page(page);
1675 	ret = split_huge_page_to_order(page, new_order);
1676 	unlock_page(page);
1677 
1678 	if (ret && release)
1679 		put_page(page);
1680 
1681 	return ret;
1682 }
1683 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1684 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1685 		struct address_space *mapping, pgoff_t index, int flags)
1686 {
1687 	struct to_kill *tk;
1688 	unsigned long size = 0;
1689 
1690 	list_for_each_entry(tk, to_kill, nd)
1691 		if (tk->size_shift)
1692 			size = max(size, 1UL << tk->size_shift);
1693 
1694 	if (size) {
1695 		/*
1696 		 * Unmap the largest mapping to avoid breaking up device-dax
1697 		 * mappings which are constant size. The actual size of the
1698 		 * mapping being torn down is communicated in siginfo, see
1699 		 * kill_proc()
1700 		 */
1701 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1702 
1703 		unmap_mapping_range(mapping, start, size, 0);
1704 	}
1705 
1706 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1707 }
1708 
1709 /*
1710  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1711  * either do not claim or fails to claim a hwpoison event, or devdax.
1712  * The fsdax pages are initialized per base page, and the devdax pages
1713  * could be initialized either as base pages, or as compound pages with
1714  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1715  * hwpoison, such that, if a subpage of a compound page is poisoned,
1716  * simply mark the compound head page is by far sufficient.
1717  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1718 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1719 		struct dev_pagemap *pgmap)
1720 {
1721 	struct folio *folio = pfn_folio(pfn);
1722 	LIST_HEAD(to_kill);
1723 	dax_entry_t cookie;
1724 	int rc = 0;
1725 
1726 	/*
1727 	 * Prevent the inode from being freed while we are interrogating
1728 	 * the address_space, typically this would be handled by
1729 	 * lock_page(), but dax pages do not use the page lock. This
1730 	 * also prevents changes to the mapping of this pfn until
1731 	 * poison signaling is complete.
1732 	 */
1733 	cookie = dax_lock_folio(folio);
1734 	if (!cookie)
1735 		return -EBUSY;
1736 
1737 	if (hwpoison_filter(&folio->page)) {
1738 		rc = -EOPNOTSUPP;
1739 		goto unlock;
1740 	}
1741 
1742 	switch (pgmap->type) {
1743 	case MEMORY_DEVICE_PRIVATE:
1744 	case MEMORY_DEVICE_COHERENT:
1745 		/*
1746 		 * TODO: Handle device pages which may need coordination
1747 		 * with device-side memory.
1748 		 */
1749 		rc = -ENXIO;
1750 		goto unlock;
1751 	default:
1752 		break;
1753 	}
1754 
1755 	/*
1756 	 * Use this flag as an indication that the dax page has been
1757 	 * remapped UC to prevent speculative consumption of poison.
1758 	 */
1759 	SetPageHWPoison(&folio->page);
1760 
1761 	/*
1762 	 * Unlike System-RAM there is no possibility to swap in a
1763 	 * different physical page at a given virtual address, so all
1764 	 * userspace consumption of ZONE_DEVICE memory necessitates
1765 	 * SIGBUS (i.e. MF_MUST_KILL)
1766 	 */
1767 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1768 	collect_procs(folio, &folio->page, &to_kill, true);
1769 
1770 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1771 unlock:
1772 	dax_unlock_folio(folio, cookie);
1773 	return rc;
1774 }
1775 
1776 #ifdef CONFIG_FS_DAX
1777 /**
1778  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1779  * @mapping:	address_space of the file in use
1780  * @index:	start pgoff of the range within the file
1781  * @count:	length of the range, in unit of PAGE_SIZE
1782  * @mf_flags:	memory failure flags
1783  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1784 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1785 		unsigned long count, int mf_flags)
1786 {
1787 	LIST_HEAD(to_kill);
1788 	dax_entry_t cookie;
1789 	struct page *page;
1790 	size_t end = index + count;
1791 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1792 
1793 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1794 
1795 	for (; index < end; index++) {
1796 		page = NULL;
1797 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1798 		if (!cookie)
1799 			return -EBUSY;
1800 		if (!page)
1801 			goto unlock;
1802 
1803 		if (!pre_remove)
1804 			SetPageHWPoison(page);
1805 
1806 		/*
1807 		 * The pre_remove case is revoking access, the memory is still
1808 		 * good and could theoretically be put back into service.
1809 		 */
1810 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1811 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1812 				index, mf_flags);
1813 unlock:
1814 		dax_unlock_mapping_entry(mapping, index, cookie);
1815 	}
1816 	return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1819 #endif /* CONFIG_FS_DAX */
1820 
1821 #ifdef CONFIG_HUGETLB_PAGE
1822 
1823 /*
1824  * Struct raw_hwp_page represents information about "raw error page",
1825  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1826  */
1827 struct raw_hwp_page {
1828 	struct llist_node node;
1829 	struct page *page;
1830 };
1831 
raw_hwp_list_head(struct folio * folio)1832 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1833 {
1834 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1835 }
1836 
is_raw_hwpoison_page_in_hugepage(struct page * page)1837 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1838 {
1839 	struct llist_head *raw_hwp_head;
1840 	struct raw_hwp_page *p;
1841 	struct folio *folio = page_folio(page);
1842 	bool ret = false;
1843 
1844 	if (!folio_test_hwpoison(folio))
1845 		return false;
1846 
1847 	if (!folio_test_hugetlb(folio))
1848 		return PageHWPoison(page);
1849 
1850 	/*
1851 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1852 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1853 	 */
1854 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1855 		return true;
1856 
1857 	mutex_lock(&mf_mutex);
1858 
1859 	raw_hwp_head = raw_hwp_list_head(folio);
1860 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1861 		if (page == p->page) {
1862 			ret = true;
1863 			break;
1864 		}
1865 	}
1866 
1867 	mutex_unlock(&mf_mutex);
1868 
1869 	return ret;
1870 }
1871 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1872 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1873 {
1874 	struct llist_node *head;
1875 	struct raw_hwp_page *p, *next;
1876 	unsigned long count = 0;
1877 
1878 	head = llist_del_all(raw_hwp_list_head(folio));
1879 	llist_for_each_entry_safe(p, next, head, node) {
1880 		if (move_flag)
1881 			SetPageHWPoison(p->page);
1882 		else
1883 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1884 		kfree(p);
1885 		count++;
1886 	}
1887 	return count;
1888 }
1889 
1890 #define	MF_HUGETLB_FREED		0	/* freed hugepage */
1891 #define	MF_HUGETLB_IN_USED		1	/* in-use hugepage */
1892 #define	MF_HUGETLB_NON_HUGEPAGE		2	/* not a hugepage */
1893 #define	MF_HUGETLB_FOLIO_PRE_POISONED	3	/* folio already poisoned */
1894 #define	MF_HUGETLB_PAGE_PRE_POISONED	4	/* exact page already poisoned */
1895 #define	MF_HUGETLB_RETRY		5	/* hugepage is busy, retry */
1896 /*
1897  * Set hugetlb folio as hwpoisoned, update folio private raw hwpoison list
1898  * to keep track of the poisoned pages.
1899  */
hugetlb_update_hwpoison(struct folio * folio,struct page * page)1900 static int hugetlb_update_hwpoison(struct folio *folio, struct page *page)
1901 {
1902 	struct llist_head *head;
1903 	struct raw_hwp_page *raw_hwp;
1904 	struct raw_hwp_page *p;
1905 	int ret = folio_test_set_hwpoison(folio) ? MF_HUGETLB_FOLIO_PRE_POISONED : 0;
1906 
1907 	/*
1908 	 * Once the hwpoison hugepage has lost reliable raw error info,
1909 	 * there is little meaning to keep additional error info precisely,
1910 	 * so skip to add additional raw error info.
1911 	 */
1912 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1913 		return MF_HUGETLB_FOLIO_PRE_POISONED;
1914 	head = raw_hwp_list_head(folio);
1915 	llist_for_each_entry(p, head->first, node) {
1916 		if (p->page == page)
1917 			return MF_HUGETLB_PAGE_PRE_POISONED;
1918 	}
1919 
1920 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1921 	if (raw_hwp) {
1922 		raw_hwp->page = page;
1923 		llist_add(&raw_hwp->node, head);
1924 	} else {
1925 		/*
1926 		 * Failed to save raw error info.  We no longer trace all
1927 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1928 		 * this hwpoisoned hugepage.
1929 		 */
1930 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1931 		/*
1932 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1933 		 * used any more, so free it.
1934 		 */
1935 		__folio_free_raw_hwp(folio, false);
1936 	}
1937 	return ret;
1938 }
1939 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1940 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1941 {
1942 	/*
1943 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1944 	 * pages for tail pages are required but they don't exist.
1945 	 */
1946 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1947 		return 0;
1948 
1949 	/*
1950 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1951 	 * definition.
1952 	 */
1953 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1954 		return 0;
1955 
1956 	return __folio_free_raw_hwp(folio, move_flag);
1957 }
1958 
folio_clear_hugetlb_hwpoison(struct folio * folio)1959 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1960 {
1961 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1962 		return;
1963 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1964 		return;
1965 	folio_clear_hwpoison(folio);
1966 	folio_free_raw_hwp(folio, true);
1967 }
1968 
1969 /*
1970  * Called from hugetlb code with hugetlb_lock held.
1971  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1972 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1973 				 bool *migratable_cleared)
1974 {
1975 	struct page *page = pfn_to_page(pfn);
1976 	struct folio *folio = page_folio(page);
1977 	bool count_increased = false;
1978 	int ret, rc;
1979 
1980 	if (!folio_test_hugetlb(folio)) {
1981 		ret = MF_HUGETLB_NON_HUGEPAGE;
1982 		goto out;
1983 	} else if (flags & MF_COUNT_INCREASED) {
1984 		ret = MF_HUGETLB_IN_USED;
1985 		count_increased = true;
1986 	} else if (folio_test_hugetlb_freed(folio)) {
1987 		ret = MF_HUGETLB_FREED;
1988 	} else if (folio_test_hugetlb_migratable(folio)) {
1989 		if (folio_try_get(folio)) {
1990 			ret = MF_HUGETLB_IN_USED;
1991 			count_increased = true;
1992 		} else {
1993 			ret = MF_HUGETLB_FREED;
1994 		}
1995 	} else {
1996 		ret = MF_HUGETLB_RETRY;
1997 		if (!(flags & MF_NO_RETRY))
1998 			goto out;
1999 	}
2000 
2001 	rc = hugetlb_update_hwpoison(folio, page);
2002 	if (rc >= MF_HUGETLB_FOLIO_PRE_POISONED) {
2003 		ret = rc;
2004 		goto out;
2005 	}
2006 
2007 	/*
2008 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2009 	 * from being migrated by memory hotremove.
2010 	 */
2011 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2012 		folio_clear_hugetlb_migratable(folio);
2013 		*migratable_cleared = true;
2014 	}
2015 
2016 	return ret;
2017 out:
2018 	if (count_increased)
2019 		folio_put(folio);
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Taking refcount of hugetlb pages needs extra care about race conditions
2025  * with basic operations like hugepage allocation/free/demotion.
2026  * So some of prechecks for hwpoison (pinning, and testing/setting
2027  * PageHWPoison) should be done in single hugetlb_lock range.
2028  * Returns:
2029  *	0		- not hugetlb, or recovered
2030  *	-EBUSY		- not recovered
2031  *	-EOPNOTSUPP	- hwpoison_filter'ed
2032  *	-EHWPOISON	- folio or exact page already poisoned
2033  *	-EFAULT		- kill_accessing_process finds current->mm null
2034  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2035 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2036 {
2037 	int res, rv;
2038 	struct page *p = pfn_to_page(pfn);
2039 	struct folio *folio;
2040 	unsigned long page_flags;
2041 	bool migratable_cleared = false;
2042 
2043 	*hugetlb = 1;
2044 retry:
2045 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2046 	switch (res) {
2047 	case MF_HUGETLB_NON_HUGEPAGE:	/* fallback to normal page handling */
2048 		*hugetlb = 0;
2049 		return 0;
2050 	case MF_HUGETLB_RETRY:
2051 		if (!(flags & MF_NO_RETRY)) {
2052 			flags |= MF_NO_RETRY;
2053 			goto retry;
2054 		}
2055 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2056 	case MF_HUGETLB_FOLIO_PRE_POISONED:
2057 	case MF_HUGETLB_PAGE_PRE_POISONED:
2058 		rv = -EHWPOISON;
2059 		if (flags & MF_ACTION_REQUIRED)
2060 			rv = kill_accessing_process(current, pfn, flags);
2061 		if (res == MF_HUGETLB_PAGE_PRE_POISONED)
2062 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2063 		else
2064 			action_result(pfn, MF_MSG_HUGE, MF_FAILED);
2065 		return rv;
2066 	default:
2067 		WARN_ON((res != MF_HUGETLB_FREED) && (res != MF_HUGETLB_IN_USED));
2068 		break;
2069 	}
2070 
2071 	folio = page_folio(p);
2072 	folio_lock(folio);
2073 
2074 	if (hwpoison_filter(p)) {
2075 		folio_clear_hugetlb_hwpoison(folio);
2076 		if (migratable_cleared)
2077 			folio_set_hugetlb_migratable(folio);
2078 		folio_unlock(folio);
2079 		if (res == MF_HUGETLB_IN_USED)
2080 			folio_put(folio);
2081 		return -EOPNOTSUPP;
2082 	}
2083 
2084 	/*
2085 	 * Handling free hugepage.  The possible race with hugepage allocation
2086 	 * or demotion can be prevented by PageHWPoison flag.
2087 	 */
2088 	if (res == MF_HUGETLB_FREED) {
2089 		folio_unlock(folio);
2090 		if (__page_handle_poison(p) > 0) {
2091 			page_ref_inc(p);
2092 			res = MF_RECOVERED;
2093 		} else {
2094 			res = MF_FAILED;
2095 		}
2096 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2097 	}
2098 
2099 	page_flags = folio->flags.f;
2100 
2101 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2102 		folio_unlock(folio);
2103 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2104 	}
2105 
2106 	return identify_page_state(pfn, p, page_flags);
2107 }
2108 
2109 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2110 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2111 {
2112 	return 0;
2113 }
2114 
folio_free_raw_hwp(struct folio * folio,bool flag)2115 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2116 {
2117 	return 0;
2118 }
2119 #endif	/* CONFIG_HUGETLB_PAGE */
2120 
2121 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2122 static void put_ref_page(unsigned long pfn, int flags)
2123 {
2124 	if (!(flags & MF_COUNT_INCREASED))
2125 		return;
2126 
2127 	put_page(pfn_to_page(pfn));
2128 }
2129 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2130 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2131 		struct dev_pagemap *pgmap)
2132 {
2133 	int rc = -ENXIO;
2134 
2135 	/* device metadata space is not recoverable */
2136 	if (!pgmap_pfn_valid(pgmap, pfn))
2137 		goto out;
2138 
2139 	/*
2140 	 * Call driver's implementation to handle the memory failure, otherwise
2141 	 * fall back to generic handler.
2142 	 */
2143 	if (pgmap_has_memory_failure(pgmap)) {
2144 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2145 		/*
2146 		 * Fall back to generic handler too if operation is not
2147 		 * supported inside the driver/device/filesystem.
2148 		 */
2149 		if (rc != -EOPNOTSUPP)
2150 			goto out;
2151 	}
2152 
2153 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2154 out:
2155 	/* drop pgmap ref acquired in caller */
2156 	put_dev_pagemap(pgmap);
2157 	if (rc != -EOPNOTSUPP)
2158 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2159 	return rc;
2160 }
2161 
2162 /*
2163  * The calling condition is as such: thp split failed, page might have
2164  * been RDMA pinned, not much can be done for recovery.
2165  * But a SIGBUS should be delivered with vaddr provided so that the user
2166  * application has a chance to recover. Also, application processes'
2167  * election for MCE early killed will be honored.
2168  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2169 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2170 				struct folio *folio)
2171 {
2172 	LIST_HEAD(tokill);
2173 
2174 	folio_lock(folio);
2175 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2176 	folio_unlock(folio);
2177 
2178 	kill_procs(&tokill, true, pfn, flags);
2179 }
2180 
register_pfn_address_space(struct pfn_address_space * pfn_space)2181 int register_pfn_address_space(struct pfn_address_space *pfn_space)
2182 {
2183 	guard(mutex)(&pfn_space_lock);
2184 
2185 	if (!pfn_space->pfn_to_vma_pgoff)
2186 		return -EINVAL;
2187 
2188 	if (interval_tree_iter_first(&pfn_space_itree,
2189 				     pfn_space->node.start,
2190 				     pfn_space->node.last))
2191 		return -EBUSY;
2192 
2193 	interval_tree_insert(&pfn_space->node, &pfn_space_itree);
2194 
2195 	return 0;
2196 }
2197 EXPORT_SYMBOL_GPL(register_pfn_address_space);
2198 
unregister_pfn_address_space(struct pfn_address_space * pfn_space)2199 void unregister_pfn_address_space(struct pfn_address_space *pfn_space)
2200 {
2201 	guard(mutex)(&pfn_space_lock);
2202 
2203 	if (interval_tree_iter_first(&pfn_space_itree,
2204 				     pfn_space->node.start,
2205 				     pfn_space->node.last))
2206 		interval_tree_remove(&pfn_space->node, &pfn_space_itree);
2207 }
2208 EXPORT_SYMBOL_GPL(unregister_pfn_address_space);
2209 
add_to_kill_pgoff(struct task_struct * tsk,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)2210 static void add_to_kill_pgoff(struct task_struct *tsk,
2211 			      struct vm_area_struct *vma,
2212 			      struct list_head *to_kill,
2213 			      pgoff_t pgoff)
2214 {
2215 	struct to_kill *tk;
2216 
2217 	tk = kmalloc(sizeof(*tk), GFP_ATOMIC);
2218 	if (!tk) {
2219 		pr_info("Unable to kill proc %d\n", tsk->pid);
2220 		return;
2221 	}
2222 
2223 	/* Check for pgoff not backed by struct page */
2224 	tk->addr = vma_address(vma, pgoff, 1);
2225 	tk->size_shift = PAGE_SHIFT;
2226 
2227 	if (tk->addr == -EFAULT)
2228 		pr_info("Unable to find address %lx in %s\n",
2229 			pgoff, tsk->comm);
2230 
2231 	get_task_struct(tsk);
2232 	tk->tsk = tsk;
2233 	list_add_tail(&tk->nd, to_kill);
2234 }
2235 
2236 /*
2237  * Collect processes when the error hit a PFN not backed by struct page.
2238  */
collect_procs_pfn(struct pfn_address_space * pfn_space,unsigned long pfn,struct list_head * to_kill)2239 static void collect_procs_pfn(struct pfn_address_space *pfn_space,
2240 			      unsigned long pfn, struct list_head *to_kill)
2241 {
2242 	struct vm_area_struct *vma;
2243 	struct task_struct *tsk;
2244 	struct address_space *mapping = pfn_space->mapping;
2245 
2246 	i_mmap_lock_read(mapping);
2247 	rcu_read_lock();
2248 	for_each_process(tsk) {
2249 		struct task_struct *t = tsk;
2250 
2251 		t = task_early_kill(tsk, true);
2252 		if (!t)
2253 			continue;
2254 		vma_interval_tree_foreach(vma, &mapping->i_mmap, 0, ULONG_MAX) {
2255 			pgoff_t pgoff;
2256 
2257 			if (vma->vm_mm == t->mm &&
2258 			    !pfn_space->pfn_to_vma_pgoff(vma, pfn, &pgoff))
2259 				add_to_kill_pgoff(t, vma, to_kill, pgoff);
2260 		}
2261 	}
2262 	rcu_read_unlock();
2263 	i_mmap_unlock_read(mapping);
2264 }
2265 
2266 /**
2267  * memory_failure_pfn - Handle memory failure on a page not backed by
2268  *                      struct page.
2269  * @pfn: Page Number of the corrupted page
2270  * @flags: fine tune action taken
2271  *
2272  * Return:
2273  *   0             - success,
2274  *   -EBUSY        - Page PFN does not belong to any address space mapping.
2275  */
memory_failure_pfn(unsigned long pfn,int flags)2276 static int memory_failure_pfn(unsigned long pfn, int flags)
2277 {
2278 	struct interval_tree_node *node;
2279 	LIST_HEAD(tokill);
2280 
2281 	scoped_guard(mutex, &pfn_space_lock) {
2282 		bool mf_handled = false;
2283 
2284 		/*
2285 		 * Modules registers with MM the address space mapping to
2286 		 * the device memory they manage. Iterate to identify
2287 		 * exactly which address space has mapped to this failing
2288 		 * PFN.
2289 		 */
2290 		for (node = interval_tree_iter_first(&pfn_space_itree, pfn, pfn); node;
2291 		     node = interval_tree_iter_next(node, pfn, pfn)) {
2292 			struct pfn_address_space *pfn_space =
2293 				container_of(node, struct pfn_address_space, node);
2294 
2295 			collect_procs_pfn(pfn_space, pfn, &tokill);
2296 
2297 			mf_handled = true;
2298 		}
2299 
2300 		if (!mf_handled)
2301 			return action_result(pfn, MF_MSG_PFN_MAP, MF_IGNORED);
2302 	}
2303 
2304 	/*
2305 	 * Unlike System-RAM there is no possibility to swap in a different
2306 	 * physical page at a given virtual address, so all userspace
2307 	 * consumption of direct PFN memory necessitates SIGBUS (i.e.
2308 	 * MF_MUST_KILL)
2309 	 */
2310 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
2311 
2312 	kill_procs(&tokill, true, pfn, flags);
2313 
2314 	return action_result(pfn, MF_MSG_PFN_MAP, MF_RECOVERED);
2315 }
2316 
2317 /**
2318  * memory_failure - Handle memory failure of a page.
2319  * @pfn: Page Number of the corrupted page
2320  * @flags: fine tune action taken
2321  *
2322  * This function is called by the low level machine check code
2323  * of an architecture when it detects hardware memory corruption
2324  * of a page. It tries its best to recover, which includes
2325  * dropping pages, killing processes etc.
2326  *
2327  * The function is primarily of use for corruptions that
2328  * happen outside the current execution context (e.g. when
2329  * detected by a background scrubber)
2330  *
2331  * Must run in process context (e.g. a work queue) with interrupts
2332  * enabled and no spinlocks held.
2333  *
2334  * Return:
2335  *   0             - success,
2336  *   -ENXIO        - memory not managed by the kernel
2337  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2338  *   -EHWPOISON    - the page was already poisoned, potentially
2339  *                   kill process,
2340  *   other negative values - failure.
2341  */
memory_failure(unsigned long pfn,int flags)2342 int memory_failure(unsigned long pfn, int flags)
2343 {
2344 	struct page *p;
2345 	struct folio *folio;
2346 	struct dev_pagemap *pgmap;
2347 	int res = 0;
2348 	unsigned long page_flags;
2349 	bool retry = true;
2350 	int hugetlb = 0;
2351 
2352 	if (!sysctl_memory_failure_recovery)
2353 		panic("Memory failure on page %lx", pfn);
2354 
2355 	mutex_lock(&mf_mutex);
2356 
2357 	if (!(flags & MF_SW_SIMULATED))
2358 		hw_memory_failure = true;
2359 
2360 	p = pfn_to_online_page(pfn);
2361 	if (!p) {
2362 		res = arch_memory_failure(pfn, flags);
2363 		if (res == 0)
2364 			goto unlock_mutex;
2365 
2366 		if (!pfn_valid(pfn) && !arch_is_platform_page(PFN_PHYS(pfn))) {
2367 			/*
2368 			 * The PFN is not backed by struct page.
2369 			 */
2370 			res = memory_failure_pfn(pfn, flags);
2371 			goto unlock_mutex;
2372 		}
2373 
2374 		if (pfn_valid(pfn)) {
2375 			pgmap = get_dev_pagemap(pfn);
2376 			put_ref_page(pfn, flags);
2377 			if (pgmap) {
2378 				res = memory_failure_dev_pagemap(pfn, flags,
2379 								 pgmap);
2380 				goto unlock_mutex;
2381 			}
2382 		}
2383 		pr_err("%#lx: memory outside kernel control\n", pfn);
2384 		res = -ENXIO;
2385 		goto unlock_mutex;
2386 	}
2387 
2388 try_again:
2389 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2390 	if (hugetlb)
2391 		goto unlock_mutex;
2392 
2393 	if (TestSetPageHWPoison(p)) {
2394 		res = -EHWPOISON;
2395 		if (flags & MF_ACTION_REQUIRED)
2396 			res = kill_accessing_process(current, pfn, flags);
2397 		if (flags & MF_COUNT_INCREASED)
2398 			put_page(p);
2399 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2400 		goto unlock_mutex;
2401 	}
2402 
2403 	/*
2404 	 * We need/can do nothing about count=0 pages.
2405 	 * 1) it's a free page, and therefore in safe hand:
2406 	 *    check_new_page() will be the gate keeper.
2407 	 * 2) it's part of a non-compound high order page.
2408 	 *    Implies some kernel user: cannot stop them from
2409 	 *    R/W the page; let's pray that the page has been
2410 	 *    used and will be freed some time later.
2411 	 * In fact it's dangerous to directly bump up page count from 0,
2412 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2413 	 */
2414 	if (!(flags & MF_COUNT_INCREASED)) {
2415 		res = get_hwpoison_page(p, flags);
2416 		if (!res) {
2417 			if (is_free_buddy_page(p)) {
2418 				if (take_page_off_buddy(p)) {
2419 					page_ref_inc(p);
2420 					res = MF_RECOVERED;
2421 				} else {
2422 					/* We lost the race, try again */
2423 					if (retry) {
2424 						ClearPageHWPoison(p);
2425 						retry = false;
2426 						goto try_again;
2427 					}
2428 					res = MF_FAILED;
2429 				}
2430 				res = action_result(pfn, MF_MSG_BUDDY, res);
2431 			} else {
2432 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2433 			}
2434 			goto unlock_mutex;
2435 		} else if (res < 0) {
2436 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2437 			goto unlock_mutex;
2438 		}
2439 	}
2440 
2441 	folio = page_folio(p);
2442 
2443 	/* filter pages that are protected from hwpoison test by users */
2444 	folio_lock(folio);
2445 	if (hwpoison_filter(p)) {
2446 		ClearPageHWPoison(p);
2447 		folio_unlock(folio);
2448 		folio_put(folio);
2449 		res = -EOPNOTSUPP;
2450 		goto unlock_mutex;
2451 	}
2452 	folio_unlock(folio);
2453 
2454 	if (folio_test_large(folio)) {
2455 		const int new_order = min_order_for_split(folio);
2456 		int err;
2457 
2458 		/*
2459 		 * The flag must be set after the refcount is bumped
2460 		 * otherwise it may race with THP split.
2461 		 * And the flag can't be set in get_hwpoison_page() since
2462 		 * it is called by soft offline too and it is just called
2463 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2464 		 * place.
2465 		 *
2466 		 * Don't need care about the above error handling paths for
2467 		 * get_hwpoison_page() since they handle either free page
2468 		 * or unhandlable page.  The refcount is bumped iff the
2469 		 * page is a valid handlable page.
2470 		 */
2471 		folio_set_has_hwpoisoned(folio);
2472 		err = try_to_split_thp_page(p, new_order, /* release= */ false);
2473 		/*
2474 		 * If splitting a folio to order-0 fails, kill the process.
2475 		 * Split the folio regardless to minimize unusable pages.
2476 		 * Because the memory failure code cannot handle large
2477 		 * folios, this split is always treated as if it failed.
2478 		 */
2479 		if (err || new_order) {
2480 			/* get folio again in case the original one is split */
2481 			folio = page_folio(p);
2482 			res = -EHWPOISON;
2483 			kill_procs_now(p, pfn, flags, folio);
2484 			put_page(p);
2485 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2486 			goto unlock_mutex;
2487 		}
2488 		VM_BUG_ON_PAGE(!page_count(p), p);
2489 		folio = page_folio(p);
2490 	}
2491 
2492 	/*
2493 	 * We ignore non-LRU pages for good reasons.
2494 	 * - PG_locked is only well defined for LRU pages and a few others
2495 	 * - to avoid races with __SetPageLocked()
2496 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2497 	 * The check (unnecessarily) ignores LRU pages being isolated and
2498 	 * walked by the page reclaim code, however that's not a big loss.
2499 	 */
2500 	shake_folio(folio);
2501 
2502 	folio_lock(folio);
2503 
2504 	/*
2505 	 * We're only intended to deal with the non-Compound page here.
2506 	 * The page cannot become compound pages again as folio has been
2507 	 * splited and extra refcnt is held.
2508 	 */
2509 	WARN_ON(folio_test_large(folio));
2510 
2511 	/*
2512 	 * We use page flags to determine what action should be taken, but
2513 	 * the flags can be modified by the error containment action.  One
2514 	 * example is an mlocked page, where PG_mlocked is cleared by
2515 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2516 	 * status correctly, we save a copy of the page flags at this time.
2517 	 */
2518 	page_flags = folio->flags.f;
2519 
2520 	/*
2521 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2522 	 * the folio lock. We need to wait for writeback completion for this
2523 	 * folio or it may trigger a vfs BUG while evicting inode.
2524 	 */
2525 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2526 		goto identify_page_state;
2527 
2528 	/*
2529 	 * It's very difficult to mess with pages currently under IO
2530 	 * and in many cases impossible, so we just avoid it here.
2531 	 */
2532 	folio_wait_writeback(folio);
2533 
2534 	/*
2535 	 * Now take care of user space mappings.
2536 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2537 	 */
2538 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2539 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2540 		goto unlock_page;
2541 	}
2542 
2543 	/*
2544 	 * Torn down by someone else?
2545 	 */
2546 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2547 	    folio->mapping == NULL) {
2548 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2549 		goto unlock_page;
2550 	}
2551 
2552 identify_page_state:
2553 	res = identify_page_state(pfn, p, page_flags);
2554 	mutex_unlock(&mf_mutex);
2555 	return res;
2556 unlock_page:
2557 	folio_unlock(folio);
2558 unlock_mutex:
2559 	mutex_unlock(&mf_mutex);
2560 	return res;
2561 }
2562 EXPORT_SYMBOL_GPL(memory_failure);
2563 
2564 #define MEMORY_FAILURE_FIFO_ORDER	4
2565 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2566 
2567 struct memory_failure_entry {
2568 	unsigned long pfn;
2569 	int flags;
2570 };
2571 
2572 struct memory_failure_cpu {
2573 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2574 		      MEMORY_FAILURE_FIFO_SIZE);
2575 	raw_spinlock_t lock;
2576 	struct work_struct work;
2577 };
2578 
2579 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2580 
2581 /**
2582  * memory_failure_queue - Schedule handling memory failure of a page.
2583  * @pfn: Page Number of the corrupted page
2584  * @flags: Flags for memory failure handling
2585  *
2586  * This function is called by the low level hardware error handler
2587  * when it detects hardware memory corruption of a page. It schedules
2588  * the recovering of error page, including dropping pages, killing
2589  * processes etc.
2590  *
2591  * The function is primarily of use for corruptions that
2592  * happen outside the current execution context (e.g. when
2593  * detected by a background scrubber)
2594  *
2595  * Can run in IRQ context.
2596  */
memory_failure_queue(unsigned long pfn,int flags)2597 void memory_failure_queue(unsigned long pfn, int flags)
2598 {
2599 	struct memory_failure_cpu *mf_cpu;
2600 	unsigned long proc_flags;
2601 	bool buffer_overflow;
2602 	struct memory_failure_entry entry = {
2603 		.pfn =		pfn,
2604 		.flags =	flags,
2605 	};
2606 
2607 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2608 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2609 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2610 	if (!buffer_overflow)
2611 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2612 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2613 	put_cpu_var(memory_failure_cpu);
2614 	if (buffer_overflow)
2615 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2616 		       pfn);
2617 }
2618 EXPORT_SYMBOL_GPL(memory_failure_queue);
2619 
memory_failure_work_func(struct work_struct * work)2620 static void memory_failure_work_func(struct work_struct *work)
2621 {
2622 	struct memory_failure_cpu *mf_cpu;
2623 	struct memory_failure_entry entry = { 0, };
2624 	unsigned long proc_flags;
2625 	int gotten;
2626 
2627 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2628 	for (;;) {
2629 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2630 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2631 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2632 		if (!gotten)
2633 			break;
2634 		if (entry.flags & MF_SOFT_OFFLINE)
2635 			soft_offline_page(entry.pfn, entry.flags);
2636 		else
2637 			memory_failure(entry.pfn, entry.flags);
2638 	}
2639 }
2640 
memory_failure_init(void)2641 static int __init memory_failure_init(void)
2642 {
2643 	struct memory_failure_cpu *mf_cpu;
2644 	int cpu;
2645 
2646 	for_each_possible_cpu(cpu) {
2647 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2648 		raw_spin_lock_init(&mf_cpu->lock);
2649 		INIT_KFIFO(mf_cpu->fifo);
2650 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2651 	}
2652 
2653 	register_sysctl_init("vm", memory_failure_table);
2654 
2655 	return 0;
2656 }
2657 core_initcall(memory_failure_init);
2658 
2659 #undef pr_fmt
2660 #define pr_fmt(fmt)	"Unpoison: " fmt
2661 #define unpoison_pr_info(fmt, pfn, rs)			\
2662 ({							\
2663 	if (__ratelimit(rs))				\
2664 		pr_info(fmt, pfn);			\
2665 })
2666 
2667 /**
2668  * unpoison_memory - Unpoison a previously poisoned page
2669  * @pfn: Page number of the to be unpoisoned page
2670  *
2671  * Software-unpoison a page that has been poisoned by
2672  * memory_failure() earlier.
2673  *
2674  * This is only done on the software-level, so it only works
2675  * for linux injected failures, not real hardware failures
2676  *
2677  * Returns 0 for success, otherwise -errno.
2678  */
unpoison_memory(unsigned long pfn)2679 int unpoison_memory(unsigned long pfn)
2680 {
2681 	struct folio *folio;
2682 	struct page *p;
2683 	int ret = -EBUSY, ghp;
2684 	unsigned long count;
2685 	bool huge = false;
2686 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2687 					DEFAULT_RATELIMIT_BURST);
2688 
2689 	p = pfn_to_online_page(pfn);
2690 	if (!p)
2691 		return -EIO;
2692 	folio = page_folio(p);
2693 
2694 	mutex_lock(&mf_mutex);
2695 
2696 	if (hw_memory_failure) {
2697 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2698 				 pfn, &unpoison_rs);
2699 		ret = -EOPNOTSUPP;
2700 		goto unlock_mutex;
2701 	}
2702 
2703 	if (is_huge_zero_folio(folio)) {
2704 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2705 				 pfn, &unpoison_rs);
2706 		ret = -EOPNOTSUPP;
2707 		goto unlock_mutex;
2708 	}
2709 
2710 	if (!PageHWPoison(p)) {
2711 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2712 				 pfn, &unpoison_rs);
2713 		goto unlock_mutex;
2714 	}
2715 
2716 	if (folio_ref_count(folio) > 1) {
2717 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2718 				 pfn, &unpoison_rs);
2719 		goto unlock_mutex;
2720 	}
2721 
2722 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2723 	    folio_test_reserved(folio) || folio_test_offline(folio))
2724 		goto unlock_mutex;
2725 
2726 	if (folio_mapped(folio)) {
2727 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2728 				 pfn, &unpoison_rs);
2729 		goto unlock_mutex;
2730 	}
2731 
2732 	if (folio_mapping(folio)) {
2733 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2734 				 pfn, &unpoison_rs);
2735 		goto unlock_mutex;
2736 	}
2737 
2738 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2739 	if (!ghp) {
2740 		if (folio_test_hugetlb(folio)) {
2741 			huge = true;
2742 			count = folio_free_raw_hwp(folio, false);
2743 			if (count == 0)
2744 				goto unlock_mutex;
2745 		}
2746 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2747 	} else if (ghp < 0) {
2748 		if (ghp == -EHWPOISON) {
2749 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2750 		} else {
2751 			ret = ghp;
2752 			unpoison_pr_info("%#lx: failed to grab page\n",
2753 					 pfn, &unpoison_rs);
2754 		}
2755 	} else {
2756 		if (folio_test_hugetlb(folio)) {
2757 			huge = true;
2758 			count = folio_free_raw_hwp(folio, false);
2759 			if (count == 0) {
2760 				folio_put(folio);
2761 				goto unlock_mutex;
2762 			}
2763 		}
2764 
2765 		folio_put(folio);
2766 		if (TestClearPageHWPoison(p)) {
2767 			folio_put(folio);
2768 			ret = 0;
2769 		}
2770 	}
2771 
2772 unlock_mutex:
2773 	mutex_unlock(&mf_mutex);
2774 	if (!ret) {
2775 		if (!huge)
2776 			num_poisoned_pages_sub(pfn, 1);
2777 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2778 				 page_to_pfn(p), &unpoison_rs);
2779 	}
2780 	return ret;
2781 }
2782 EXPORT_SYMBOL(unpoison_memory);
2783 
2784 #undef pr_fmt
2785 #define pr_fmt(fmt) "Soft offline: " fmt
2786 
2787 /*
2788  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2789  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2790  * If the page is mapped, it migrates the contents over.
2791  */
soft_offline_in_use_page(struct page * page)2792 static int soft_offline_in_use_page(struct page *page)
2793 {
2794 	long ret = 0;
2795 	unsigned long pfn = page_to_pfn(page);
2796 	struct folio *folio = page_folio(page);
2797 	char const *msg_page[] = {"page", "hugepage"};
2798 	bool huge = folio_test_hugetlb(folio);
2799 	bool isolated;
2800 	LIST_HEAD(pagelist);
2801 	struct migration_target_control mtc = {
2802 		.nid = NUMA_NO_NODE,
2803 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2804 		.reason = MR_MEMORY_FAILURE,
2805 	};
2806 
2807 	if (!huge && folio_test_large(folio)) {
2808 		const int new_order = min_order_for_split(folio);
2809 
2810 		/*
2811 		 * If new_order (target split order) is not 0, do not split the
2812 		 * folio at all to retain the still accessible large folio.
2813 		 * NOTE: if minimizing the number of soft offline pages is
2814 		 * preferred, split it to non-zero new_order like it is done in
2815 		 * memory_failure().
2816 		 */
2817 		if (new_order || try_to_split_thp_page(page, /* new_order= */ 0,
2818 						       /* release= */ true)) {
2819 			pr_info("%#lx: thp split failed\n", pfn);
2820 			return -EBUSY;
2821 		}
2822 		folio = page_folio(page);
2823 	}
2824 
2825 	folio_lock(folio);
2826 	if (!huge)
2827 		folio_wait_writeback(folio);
2828 	if (PageHWPoison(page)) {
2829 		folio_unlock(folio);
2830 		folio_put(folio);
2831 		pr_info("%#lx: page already poisoned\n", pfn);
2832 		return 0;
2833 	}
2834 
2835 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2836 		/*
2837 		 * Try to invalidate first. This should work for
2838 		 * non dirty unmapped page cache pages.
2839 		 */
2840 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2841 	folio_unlock(folio);
2842 
2843 	if (ret) {
2844 		pr_info("%#lx: invalidated\n", pfn);
2845 		page_handle_poison(page, false, true);
2846 		return 0;
2847 	}
2848 
2849 	isolated = isolate_folio_to_list(folio, &pagelist);
2850 
2851 	/*
2852 	 * If we succeed to isolate the folio, we grabbed another refcount on
2853 	 * the folio, so we can safely drop the one we got from get_any_page().
2854 	 * If we failed to isolate the folio, it means that we cannot go further
2855 	 * and we will return an error, so drop the reference we got from
2856 	 * get_any_page() as well.
2857 	 */
2858 	folio_put(folio);
2859 
2860 	if (isolated) {
2861 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2862 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2863 		if (!ret) {
2864 			bool release = !huge;
2865 
2866 			if (!page_handle_poison(page, huge, release))
2867 				ret = -EBUSY;
2868 		} else {
2869 			if (!list_empty(&pagelist))
2870 				putback_movable_pages(&pagelist);
2871 
2872 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2873 				pfn, msg_page[huge], ret, &page->flags.f);
2874 			if (ret > 0)
2875 				ret = -EBUSY;
2876 		}
2877 	} else {
2878 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2879 			pfn, msg_page[huge], page_count(page), &page->flags.f);
2880 		ret = -EBUSY;
2881 	}
2882 	return ret;
2883 }
2884 
2885 /**
2886  * soft_offline_page - Soft offline a page.
2887  * @pfn: pfn to soft-offline
2888  * @flags: flags. Same as memory_failure().
2889  *
2890  * Returns 0 on success,
2891  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2892  *         disabled by /proc/sys/vm/enable_soft_offline,
2893  *         < 0 otherwise negated errno.
2894  *
2895  * Soft offline a page, by migration or invalidation,
2896  * without killing anything. This is for the case when
2897  * a page is not corrupted yet (so it's still valid to access),
2898  * but has had a number of corrected errors and is better taken
2899  * out.
2900  *
2901  * The actual policy on when to do that is maintained by
2902  * user space.
2903  *
2904  * This should never impact any application or cause data loss,
2905  * however it might take some time.
2906  *
2907  * This is not a 100% solution for all memory, but tries to be
2908  * ``good enough'' for the majority of memory.
2909  */
soft_offline_page(unsigned long pfn,int flags)2910 int soft_offline_page(unsigned long pfn, int flags)
2911 {
2912 	int ret;
2913 	bool try_again = true;
2914 	struct page *page;
2915 
2916 	if (!pfn_valid(pfn)) {
2917 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2918 		return -ENXIO;
2919 	}
2920 
2921 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2922 	page = pfn_to_online_page(pfn);
2923 	if (!page) {
2924 		put_ref_page(pfn, flags);
2925 		return -EIO;
2926 	}
2927 
2928 	if (!sysctl_enable_soft_offline) {
2929 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2930 		put_ref_page(pfn, flags);
2931 		return -EOPNOTSUPP;
2932 	}
2933 
2934 	mutex_lock(&mf_mutex);
2935 
2936 	if (PageHWPoison(page)) {
2937 		pr_info("%#lx: page already poisoned\n", pfn);
2938 		put_ref_page(pfn, flags);
2939 		mutex_unlock(&mf_mutex);
2940 		return 0;
2941 	}
2942 
2943 retry:
2944 	get_online_mems();
2945 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2946 	put_online_mems();
2947 
2948 	if (hwpoison_filter(page)) {
2949 		if (ret > 0)
2950 			put_page(page);
2951 
2952 		mutex_unlock(&mf_mutex);
2953 		return -EOPNOTSUPP;
2954 	}
2955 
2956 	if (ret > 0) {
2957 		ret = soft_offline_in_use_page(page);
2958 	} else if (ret == 0) {
2959 		if (!page_handle_poison(page, true, false)) {
2960 			if (try_again) {
2961 				try_again = false;
2962 				flags &= ~MF_COUNT_INCREASED;
2963 				goto retry;
2964 			}
2965 			ret = -EBUSY;
2966 		}
2967 	}
2968 
2969 	mutex_unlock(&mf_mutex);
2970 
2971 	return ret;
2972 }
2973