xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision bd91417a962db247d41a22720a79e68a509a9353)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union zen_patch_rev {
98 	struct {
99 		__u32 rev	 : 8,
100 		      stepping	 : 4,
101 		      model	 : 4,
102 		      __reserved : 4,
103 		      ext_model	 : 4,
104 		      ext_fam	 : 8;
105 	};
106 	__u32 ucode_rev;
107 };
108 
109 union cpuid_1_eax {
110 	struct {
111 		__u32 stepping    : 4,
112 		      model	  : 4,
113 		      family	  : 4,
114 		      __reserved0 : 4,
115 		      ext_model   : 4,
116 		      ext_fam     : 8,
117 		      __reserved1 : 4;
118 	};
119 	__u32 full;
120 };
121 
122 /*
123  * This points to the current valid container of microcode patches which we will
124  * save from the initrd/builtin before jettisoning its contents. @mc is the
125  * microcode patch we found to match.
126  */
127 struct cont_desc {
128 	struct microcode_amd *mc;
129 	u32		     psize;
130 	u8		     *data;
131 	size_t		     size;
132 };
133 
134 /*
135  * Microcode patch container file is prepended to the initrd in cpio
136  * format. See Documentation/arch/x86/microcode.rst
137  */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140 
141 /*
142  * This is CPUID(1).EAX on the BSP. It is used in two ways:
143  *
144  * 1. To ignore the equivalence table on Zen1 and newer.
145  *
146  * 2. To match which patches to load because the patch revision ID
147  *    already contains the f/m/s for which the microcode is destined
148  *    for.
149  */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151 
152 static bool sha_check = true;
153 
154 struct patch_digest {
155 	u32 patch_id;
156 	u8 sha256[SHA256_DIGEST_SIZE];
157 };
158 
159 #include "amd_shas.c"
160 
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 	struct patch_digest *pd = (struct patch_digest *)elem;
164 	u32 patch_id = *(u32 *)key;
165 
166 	if (patch_id == pd->patch_id)
167 		return 0;
168 	else if (patch_id < pd->patch_id)
169 		return -1;
170 	else
171 		return 1;
172 }
173 
cpuid_to_ucode_rev(unsigned int val)174 static u32 cpuid_to_ucode_rev(unsigned int val)
175 {
176 	union zen_patch_rev p = {};
177 	union cpuid_1_eax c;
178 
179 	c.full = val;
180 
181 	p.stepping  = c.stepping;
182 	p.model     = c.model;
183 	p.ext_model = c.ext_model;
184 	p.ext_fam   = c.ext_fam;
185 
186 	return p.ucode_rev;
187 }
188 
need_sha_check(u32 cur_rev)189 static bool need_sha_check(u32 cur_rev)
190 {
191 	if (!cur_rev) {
192 		cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
193 		pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
194 	}
195 
196 	switch (cur_rev >> 8) {
197 	case 0x80012: return cur_rev <= 0x800126f; break;
198 	case 0x80082: return cur_rev <= 0x800820f; break;
199 	case 0x83010: return cur_rev <= 0x830107c; break;
200 	case 0x86001: return cur_rev <= 0x860010e; break;
201 	case 0x86081: return cur_rev <= 0x8608108; break;
202 	case 0x87010: return cur_rev <= 0x8701034; break;
203 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
204 	case 0xa0010: return cur_rev <= 0xa00107a; break;
205 	case 0xa0011: return cur_rev <= 0xa0011da; break;
206 	case 0xa0012: return cur_rev <= 0xa001243; break;
207 	case 0xa0082: return cur_rev <= 0xa00820e; break;
208 	case 0xa1011: return cur_rev <= 0xa101153; break;
209 	case 0xa1012: return cur_rev <= 0xa10124e; break;
210 	case 0xa1081: return cur_rev <= 0xa108109; break;
211 	case 0xa2010: return cur_rev <= 0xa20102f; break;
212 	case 0xa2012: return cur_rev <= 0xa201212; break;
213 	case 0xa4041: return cur_rev <= 0xa404109; break;
214 	case 0xa5000: return cur_rev <= 0xa500013; break;
215 	case 0xa6012: return cur_rev <= 0xa60120a; break;
216 	case 0xa7041: return cur_rev <= 0xa704109; break;
217 	case 0xa7052: return cur_rev <= 0xa705208; break;
218 	case 0xa7080: return cur_rev <= 0xa708009; break;
219 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
220 	case 0xaa001: return cur_rev <= 0xaa00116; break;
221 	case 0xaa002: return cur_rev <= 0xaa00218; break;
222 	case 0xb0021: return cur_rev <= 0xb002146; break;
223 	case 0xb1010: return cur_rev <= 0xb101046; break;
224 	case 0xb2040: return cur_rev <= 0xb204031; break;
225 	case 0xb4040: return cur_rev <= 0xb404031; break;
226 	case 0xb6000: return cur_rev <= 0xb600031; break;
227 	case 0xb7000: return cur_rev <= 0xb700031; break;
228 	default: break;
229 	}
230 
231 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
232 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
233 	return true;
234 }
235 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)236 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
237 {
238 	struct patch_digest *pd = NULL;
239 	u8 digest[SHA256_DIGEST_SIZE];
240 	int i;
241 
242 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
243 		return true;
244 
245 	if (!need_sha_check(cur_rev))
246 		return true;
247 
248 	if (!sha_check)
249 		return true;
250 
251 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
252 	if (!pd) {
253 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
254 		return false;
255 	}
256 
257 	sha256(data, len, digest);
258 
259 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
260 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
261 
262 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
263 			pr_cont("0x%x ", digest[i]);
264 		pr_info("\n");
265 
266 		return false;
267 	}
268 
269 	return true;
270 }
271 
ucode_rev_to_cpuid(unsigned int val)272 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
273 {
274 	union zen_patch_rev p;
275 	union cpuid_1_eax c;
276 
277 	p.ucode_rev = val;
278 	c.full = 0;
279 
280 	c.stepping  = p.stepping;
281 	c.model     = p.model;
282 	c.ext_model = p.ext_model;
283 	c.family    = 0xf;
284 	c.ext_fam   = p.ext_fam;
285 
286 	return c;
287 }
288 
get_patch_level(void)289 static u32 get_patch_level(void)
290 {
291 	u32 rev, dummy __always_unused;
292 
293 	if (IS_ENABLED(CONFIG_MICROCODE_DBG)) {
294 		int cpu = smp_processor_id();
295 
296 		if (!microcode_rev[cpu]) {
297 			if (!base_rev)
298 				base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
299 
300 			microcode_rev[cpu] = base_rev;
301 
302 			ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev);
303 		}
304 
305 		return microcode_rev[cpu];
306 	}
307 
308 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
309 
310 	return rev;
311 }
312 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)313 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
314 {
315 	unsigned int i;
316 
317 	/* Zen and newer do not need an equivalence table. */
318 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
319 		return 0;
320 
321 	if (!et || !et->num_entries)
322 		return 0;
323 
324 	for (i = 0; i < et->num_entries; i++) {
325 		struct equiv_cpu_entry *e = &et->entry[i];
326 
327 		if (sig == e->installed_cpu)
328 			return e->equiv_cpu;
329 	}
330 	return 0;
331 }
332 
333 /*
334  * Check whether there is a valid microcode container file at the beginning
335  * of @buf of size @buf_size.
336  */
verify_container(const u8 * buf,size_t buf_size)337 static bool verify_container(const u8 *buf, size_t buf_size)
338 {
339 	u32 cont_magic;
340 
341 	if (buf_size <= CONTAINER_HDR_SZ) {
342 		ucode_dbg("Truncated microcode container header.\n");
343 		return false;
344 	}
345 
346 	cont_magic = *(const u32 *)buf;
347 	if (cont_magic != UCODE_MAGIC) {
348 		ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 /*
356  * Check whether there is a valid, non-truncated CPU equivalence table at the
357  * beginning of @buf of size @buf_size.
358  */
verify_equivalence_table(const u8 * buf,size_t buf_size)359 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
360 {
361 	const u32 *hdr = (const u32 *)buf;
362 	u32 cont_type, equiv_tbl_len;
363 
364 	if (!verify_container(buf, buf_size))
365 		return false;
366 
367 	/* Zen and newer do not need an equivalence table. */
368 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
369 		return true;
370 
371 	cont_type = hdr[1];
372 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
373 		ucode_dbg("Wrong microcode container equivalence table type: %u.\n",
374 			  cont_type);
375 		return false;
376 	}
377 
378 	buf_size -= CONTAINER_HDR_SZ;
379 
380 	equiv_tbl_len = hdr[2];
381 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
382 	    buf_size < equiv_tbl_len) {
383 		ucode_dbg("Truncated equivalence table.\n");
384 		return false;
385 	}
386 
387 	return true;
388 }
389 
390 /*
391  * Check whether there is a valid, non-truncated microcode patch section at the
392  * beginning of @buf of size @buf_size.
393  *
394  * On success, @sh_psize returns the patch size according to the section header,
395  * to the caller.
396  */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)397 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
398 {
399 	u32 p_type, p_size;
400 	const u32 *hdr;
401 
402 	if (buf_size < SECTION_HDR_SIZE) {
403 		ucode_dbg("Truncated patch section.\n");
404 		return false;
405 	}
406 
407 	hdr = (const u32 *)buf;
408 	p_type = hdr[0];
409 	p_size = hdr[1];
410 
411 	if (p_type != UCODE_UCODE_TYPE) {
412 		ucode_dbg("Invalid type field (0x%x) in container file section header.\n",
413 			  p_type);
414 		return false;
415 	}
416 
417 	if (p_size < sizeof(struct microcode_header_amd)) {
418 		ucode_dbg("Patch of size %u too short.\n", p_size);
419 		return false;
420 	}
421 
422 	*sh_psize = p_size;
423 
424 	return true;
425 }
426 
427 /*
428  * Check whether the passed remaining file @buf_size is large enough to contain
429  * a patch of the indicated @sh_psize (and also whether this size does not
430  * exceed the per-family maximum). @sh_psize is the size read from the section
431  * header.
432  */
__verify_patch_size(u32 sh_psize,size_t buf_size)433 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
434 {
435 	u8 family = x86_family(bsp_cpuid_1_eax);
436 	u32 max_size;
437 
438 	if (family >= 0x15)
439 		goto ret;
440 
441 #define F1XH_MPB_MAX_SIZE 2048
442 #define F14H_MPB_MAX_SIZE 1824
443 
444 	switch (family) {
445 	case 0x10 ... 0x12:
446 		max_size = F1XH_MPB_MAX_SIZE;
447 		break;
448 	case 0x14:
449 		max_size = F14H_MPB_MAX_SIZE;
450 		break;
451 	default:
452 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
453 		return false;
454 	}
455 
456 	if (sh_psize > max_size)
457 		return false;
458 
459 ret:
460 	/* Working with the whole buffer so < is ok. */
461 	return sh_psize <= buf_size;
462 }
463 
464 /*
465  * Verify the patch in @buf.
466  *
467  * Returns:
468  * negative: on error
469  * positive: patch is not for this family, skip it
470  * 0: success
471  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)472 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
473 {
474 	u8 family = x86_family(bsp_cpuid_1_eax);
475 	struct microcode_header_amd *mc_hdr;
476 	u32 sh_psize;
477 	u16 proc_id;
478 	u8 patch_fam;
479 
480 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
481 		return -1;
482 
483 	/*
484 	 * The section header length is not included in this indicated size
485 	 * but is present in the leftover file length so we need to subtract
486 	 * it before passing this value to the function below.
487 	 */
488 	buf_size -= SECTION_HDR_SIZE;
489 
490 	/*
491 	 * Check if the remaining buffer is big enough to contain a patch of
492 	 * size sh_psize, as the section claims.
493 	 */
494 	if (buf_size < sh_psize) {
495 		ucode_dbg("Patch of size %u truncated.\n", sh_psize);
496 		return -1;
497 	}
498 
499 	if (!__verify_patch_size(sh_psize, buf_size)) {
500 		ucode_dbg("Per-family patch size mismatch.\n");
501 		return -1;
502 	}
503 
504 	*patch_size = sh_psize;
505 
506 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
507 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
508 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
509 		return -1;
510 	}
511 
512 	proc_id	= mc_hdr->processor_rev_id;
513 	patch_fam = 0xf + (proc_id >> 12);
514 
515 	ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam);
516 
517 	if (patch_fam != family)
518 		return 1;
519 
520 	return 0;
521 }
522 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)523 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
524 {
525 	/* Zen and newer do not need an equivalence table. */
526 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
527 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
528 	else
529 		return eq_id == mc->hdr.processor_rev_id;
530 }
531 
532 /*
533  * This scans the ucode blob for the proper container as we can have multiple
534  * containers glued together.
535  *
536  * Returns the amount of bytes consumed while scanning. @desc contains all the
537  * data we're going to use in later stages of the application.
538  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)539 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
540 {
541 	struct equiv_cpu_table table;
542 	size_t orig_size = size;
543 	u32 *hdr = (u32 *)ucode;
544 	u16 eq_id;
545 	u8 *buf;
546 
547 	if (!verify_equivalence_table(ucode, size))
548 		return 0;
549 
550 	buf = ucode;
551 
552 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
553 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
554 
555 	/*
556 	 * Find the equivalence ID of our CPU in this table. Even if this table
557 	 * doesn't contain a patch for the CPU, scan through the whole container
558 	 * so that it can be skipped in case there are other containers appended.
559 	 */
560 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
561 
562 	buf  += hdr[2] + CONTAINER_HDR_SZ;
563 	size -= hdr[2] + CONTAINER_HDR_SZ;
564 
565 	/*
566 	 * Scan through the rest of the container to find where it ends. We do
567 	 * some basic sanity-checking too.
568 	 */
569 	while (size > 0) {
570 		struct microcode_amd *mc;
571 		u32 patch_size;
572 		int ret;
573 
574 		ret = verify_patch(buf, size, &patch_size);
575 		if (ret < 0) {
576 			/*
577 			 * Patch verification failed, skip to the next container, if
578 			 * there is one. Before exit, check whether that container has
579 			 * found a patch already. If so, use it.
580 			 */
581 			goto out;
582 		} else if (ret > 0) {
583 			goto skip;
584 		}
585 
586 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
587 
588 		ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id);
589 
590 		if (mc_patch_matches(mc, eq_id)) {
591 			desc->psize = patch_size;
592 			desc->mc = mc;
593 
594 			ucode_dbg(" match: size: %d\n", patch_size);
595 		}
596 
597 skip:
598 		/* Skip patch section header too: */
599 		buf  += patch_size + SECTION_HDR_SIZE;
600 		size -= patch_size + SECTION_HDR_SIZE;
601 	}
602 
603 out:
604 	/*
605 	 * If we have found a patch (desc->mc), it means we're looking at the
606 	 * container which has a patch for this CPU so return 0 to mean, @ucode
607 	 * already points to the proper container. Otherwise, we return the size
608 	 * we scanned so that we can advance to the next container in the
609 	 * buffer.
610 	 */
611 	if (desc->mc) {
612 		desc->data = ucode;
613 		desc->size = orig_size - size;
614 
615 		return 0;
616 	}
617 
618 	return orig_size - size;
619 }
620 
621 /*
622  * Scan the ucode blob for the proper container as we can have multiple
623  * containers glued together.
624  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)625 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
626 {
627 	while (size) {
628 		size_t s = parse_container(ucode, size, desc);
629 		if (!s)
630 			return;
631 
632 		/* catch wraparound */
633 		if (size >= s) {
634 			ucode += s;
635 			size  -= s;
636 		} else {
637 			return;
638 		}
639 	}
640 }
641 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)642 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
643 				  unsigned int psize)
644 {
645 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
646 
647 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
648 		return false;
649 
650 	native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
651 
652 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
653 		unsigned long p_addr_end = p_addr + psize - 1;
654 
655 		invlpg(p_addr);
656 
657 		/*
658 		 * Flush next page too if patch image is crossing a page
659 		 * boundary.
660 		 */
661 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
662 			invlpg(p_addr_end);
663 	}
664 
665 	if (IS_ENABLED(CONFIG_MICROCODE_DBG))
666 		microcode_rev[smp_processor_id()] = mc->hdr.patch_id;
667 
668 	/* verify patch application was successful */
669 	*cur_rev = get_patch_level();
670 
671 	ucode_dbg("updated rev: 0x%x\n", *cur_rev);
672 
673 	if (*cur_rev != mc->hdr.patch_id)
674 		return false;
675 
676 	return true;
677 }
678 
get_builtin_microcode(struct cpio_data * cp)679 static bool get_builtin_microcode(struct cpio_data *cp)
680 {
681 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
682 	u8 family = x86_family(bsp_cpuid_1_eax);
683 	struct firmware fw;
684 
685 	if (IS_ENABLED(CONFIG_X86_32))
686 		return false;
687 
688 	if (family >= 0x15)
689 		snprintf(fw_name, sizeof(fw_name),
690 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
691 
692 	if (firmware_request_builtin(&fw, fw_name)) {
693 		cp->size = fw.size;
694 		cp->data = (void *)fw.data;
695 		return true;
696 	}
697 
698 	return false;
699 }
700 
find_blobs_in_containers(struct cpio_data * ret)701 static bool __init find_blobs_in_containers(struct cpio_data *ret)
702 {
703 	struct cpio_data cp;
704 	bool found;
705 
706 	if (!get_builtin_microcode(&cp))
707 		cp = find_microcode_in_initrd(ucode_path);
708 
709 	found = cp.data && cp.size;
710 	if (found)
711 		*ret = cp;
712 
713 	return found;
714 }
715 
716 /*
717  * Early load occurs before we can vmalloc(). So we look for the microcode
718  * patch container file in initrd, traverse equivalent cpu table, look for a
719  * matching microcode patch, and update, all in initrd memory in place.
720  * When vmalloc() is available for use later -- on 64-bit during first AP load,
721  * and on 32-bit during save_microcode_in_initrd() -- we can call
722  * load_microcode_amd() to save equivalent cpu table and microcode patches in
723  * kernel heap memory.
724  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)725 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
726 {
727 	struct cont_desc desc = { };
728 	struct microcode_amd *mc;
729 	struct cpio_data cp = { };
730 	char buf[4];
731 	u32 rev;
732 
733 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
734 		if (!strncmp(buf, "off", 3)) {
735 			sha_check = false;
736 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
737 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
738 		}
739 	}
740 
741 	bsp_cpuid_1_eax = cpuid_1_eax;
742 
743 	rev = get_patch_level();
744 	ed->old_rev = rev;
745 
746 	/* Needed in load_microcode_amd() */
747 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
748 
749 	if (!find_blobs_in_containers(&cp))
750 		return;
751 
752 	scan_containers(cp.data, cp.size, &desc);
753 
754 	mc = desc.mc;
755 	if (!mc)
756 		return;
757 
758 	/*
759 	 * Allow application of the same revision to pick up SMT-specific
760 	 * changes even if the revision of the other SMT thread is already
761 	 * up-to-date.
762 	 */
763 	if (ed->old_rev > mc->hdr.patch_id)
764 		return;
765 
766 	if (__apply_microcode_amd(mc, &rev, desc.psize))
767 		ed->new_rev = rev;
768 }
769 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)770 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
771 					 struct ucode_patch *n,
772 					 bool ignore_stepping)
773 {
774 	/* Zen and newer hardcode the f/m/s in the patch ID */
775         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
776 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
777 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
778 
779 		if (ignore_stepping) {
780 			p_cid.stepping = 0;
781 			n_cid.stepping = 0;
782 		}
783 
784 		return p_cid.full == n_cid.full;
785 	} else {
786 		return p->equiv_cpu == n->equiv_cpu;
787 	}
788 }
789 
790 /*
791  * a small, trivial cache of per-family ucode patches
792  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)793 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
794 {
795 	struct ucode_patch *p;
796 	struct ucode_patch n;
797 
798 	n.equiv_cpu = equiv_cpu;
799 	n.patch_id  = uci->cpu_sig.rev;
800 
801 	list_for_each_entry(p, &microcode_cache, plist)
802 		if (patch_cpus_equivalent(p, &n, false))
803 			return p;
804 
805 	return NULL;
806 }
807 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)808 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
809 {
810 	/* Zen and newer hardcode the f/m/s in the patch ID */
811         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
812 		union zen_patch_rev zp, zn;
813 
814 		zp.ucode_rev = p->patch_id;
815 		zn.ucode_rev = n->patch_id;
816 
817 		if (zn.stepping != zp.stepping)
818 			return -1;
819 
820 		return zn.rev > zp.rev;
821 	} else {
822 		return n->patch_id > p->patch_id;
823 	}
824 }
825 
update_cache(struct ucode_patch * new_patch)826 static void update_cache(struct ucode_patch *new_patch)
827 {
828 	struct ucode_patch *p;
829 	int ret;
830 
831 	list_for_each_entry(p, &microcode_cache, plist) {
832 		if (patch_cpus_equivalent(p, new_patch, true)) {
833 			ret = patch_newer(p, new_patch);
834 			if (ret < 0)
835 				continue;
836 			else if (!ret) {
837 				/* we already have the latest patch */
838 				kfree(new_patch->data);
839 				kfree(new_patch);
840 				return;
841 			}
842 
843 			list_replace(&p->plist, &new_patch->plist);
844 			kfree(p->data);
845 			kfree(p);
846 			return;
847 		}
848 	}
849 	/* no patch found, add it */
850 	list_add_tail(&new_patch->plist, &microcode_cache);
851 }
852 
free_cache(void)853 static void free_cache(void)
854 {
855 	struct ucode_patch *p, *tmp;
856 
857 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
858 		__list_del(p->plist.prev, p->plist.next);
859 		kfree(p->data);
860 		kfree(p);
861 	}
862 }
863 
find_patch(unsigned int cpu)864 static struct ucode_patch *find_patch(unsigned int cpu)
865 {
866 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
867 	u16 equiv_id = 0;
868 
869 	uci->cpu_sig.rev = get_patch_level();
870 
871 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
872 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
873 		if (!equiv_id)
874 			return NULL;
875 	}
876 
877 	return cache_find_patch(uci, equiv_id);
878 }
879 
reload_ucode_amd(unsigned int cpu)880 void reload_ucode_amd(unsigned int cpu)
881 {
882 	u32 rev, dummy __always_unused;
883 	struct microcode_amd *mc;
884 	struct ucode_patch *p;
885 
886 	p = find_patch(cpu);
887 	if (!p)
888 		return;
889 
890 	mc = p->data;
891 
892 	rev = get_patch_level();
893 	if (rev < mc->hdr.patch_id) {
894 		if (__apply_microcode_amd(mc, &rev, p->size))
895 			pr_info_once("reload revision: 0x%08x\n", rev);
896 	}
897 }
898 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)899 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
900 {
901 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
902 	struct ucode_patch *p;
903 
904 	csig->sig = cpuid_eax(0x00000001);
905 	csig->rev = get_patch_level();
906 
907 	/*
908 	 * a patch could have been loaded early, set uci->mc so that
909 	 * mc_bp_resume() can call apply_microcode()
910 	 */
911 	p = find_patch(cpu);
912 	if (p && (p->patch_id == csig->rev))
913 		uci->mc = p->data;
914 
915 	return 0;
916 }
917 
apply_microcode_amd(int cpu)918 static enum ucode_state apply_microcode_amd(int cpu)
919 {
920 	struct cpuinfo_x86 *c = &cpu_data(cpu);
921 	struct microcode_amd *mc_amd;
922 	struct ucode_cpu_info *uci;
923 	struct ucode_patch *p;
924 	enum ucode_state ret;
925 	u32 rev;
926 
927 	BUG_ON(raw_smp_processor_id() != cpu);
928 
929 	uci = ucode_cpu_info + cpu;
930 
931 	p = find_patch(cpu);
932 	if (!p)
933 		return UCODE_NFOUND;
934 
935 	rev = uci->cpu_sig.rev;
936 
937 	mc_amd  = p->data;
938 	uci->mc = p->data;
939 
940 	/* need to apply patch? */
941 	if (rev > mc_amd->hdr.patch_id) {
942 		ret = UCODE_OK;
943 		goto out;
944 	}
945 
946 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
947 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
948 			cpu, mc_amd->hdr.patch_id);
949 		return UCODE_ERROR;
950 	}
951 
952 	rev = mc_amd->hdr.patch_id;
953 	ret = UCODE_UPDATED;
954 
955 out:
956 	uci->cpu_sig.rev = rev;
957 	c->microcode	 = rev;
958 
959 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
960 	if (c->cpu_index == boot_cpu_data.cpu_index)
961 		boot_cpu_data.microcode = rev;
962 
963 	return ret;
964 }
965 
load_ucode_amd_ap(unsigned int cpuid_1_eax)966 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
967 {
968 	unsigned int cpu = smp_processor_id();
969 
970 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
971 	apply_microcode_amd(cpu);
972 }
973 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)974 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
975 {
976 	u32 equiv_tbl_len;
977 	const u32 *hdr;
978 
979 	if (!verify_equivalence_table(buf, buf_size))
980 		return 0;
981 
982 	hdr = (const u32 *)buf;
983 	equiv_tbl_len = hdr[2];
984 
985 	/* Zen and newer do not need an equivalence table. */
986 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
987 		goto out;
988 
989 	equiv_table.entry = vmalloc(equiv_tbl_len);
990 	if (!equiv_table.entry) {
991 		pr_err("failed to allocate equivalent CPU table\n");
992 		return 0;
993 	}
994 
995 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
996 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
997 
998 out:
999 	/* add header length */
1000 	return equiv_tbl_len + CONTAINER_HDR_SZ;
1001 }
1002 
free_equiv_cpu_table(void)1003 static void free_equiv_cpu_table(void)
1004 {
1005 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1006 		return;
1007 
1008 	vfree(equiv_table.entry);
1009 	memset(&equiv_table, 0, sizeof(equiv_table));
1010 }
1011 
cleanup(void)1012 static void cleanup(void)
1013 {
1014 	free_equiv_cpu_table();
1015 	free_cache();
1016 }
1017 
1018 /*
1019  * Return a non-negative value even if some of the checks failed so that
1020  * we can skip over the next patch. If we return a negative value, we
1021  * signal a grave error like a memory allocation has failed and the
1022  * driver cannot continue functioning normally. In such cases, we tear
1023  * down everything we've used up so far and exit.
1024  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)1025 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
1026 				unsigned int *patch_size)
1027 {
1028 	struct microcode_header_amd *mc_hdr;
1029 	struct ucode_patch *patch;
1030 	u16 proc_id;
1031 	int ret;
1032 
1033 	ret = verify_patch(fw, leftover, patch_size);
1034 	if (ret)
1035 		return ret;
1036 
1037 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1038 	if (!patch) {
1039 		pr_err("Patch allocation failure.\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1044 	if (!patch->data) {
1045 		pr_err("Patch data allocation failure.\n");
1046 		kfree(patch);
1047 		return -EINVAL;
1048 	}
1049 	patch->size = *patch_size;
1050 
1051 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1052 	proc_id     = mc_hdr->processor_rev_id;
1053 
1054 	INIT_LIST_HEAD(&patch->plist);
1055 	patch->patch_id  = mc_hdr->patch_id;
1056 	patch->equiv_cpu = proc_id;
1057 
1058 	ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1059 		 __func__, patch->patch_id, proc_id);
1060 
1061 	/* ... and add to cache. */
1062 	update_cache(patch);
1063 
1064 	return 0;
1065 }
1066 
1067 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1068 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1069 {
1070 	u8 *fw = (u8 *)data;
1071 	size_t offset;
1072 
1073 	offset = install_equiv_cpu_table(data, size);
1074 	if (!offset)
1075 		return UCODE_ERROR;
1076 
1077 	fw   += offset;
1078 	size -= offset;
1079 
1080 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1081 		pr_err("invalid type field in container file section header\n");
1082 		free_equiv_cpu_table();
1083 		return UCODE_ERROR;
1084 	}
1085 
1086 	while (size > 0) {
1087 		unsigned int crnt_size = 0;
1088 		int ret;
1089 
1090 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1091 		if (ret < 0)
1092 			return UCODE_ERROR;
1093 
1094 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1095 		size -= (crnt_size + SECTION_HDR_SIZE);
1096 	}
1097 
1098 	return UCODE_OK;
1099 }
1100 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1101 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1102 {
1103 	enum ucode_state ret;
1104 
1105 	/* free old equiv table */
1106 	free_equiv_cpu_table();
1107 
1108 	ret = __load_microcode_amd(family, data, size);
1109 	if (ret != UCODE_OK)
1110 		cleanup();
1111 
1112 	return ret;
1113 }
1114 
load_microcode_amd(u8 family,const u8 * data,size_t size)1115 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1116 {
1117 	struct cpuinfo_x86 *c;
1118 	unsigned int nid, cpu;
1119 	struct ucode_patch *p;
1120 	enum ucode_state ret;
1121 
1122 	ret = _load_microcode_amd(family, data, size);
1123 	if (ret != UCODE_OK)
1124 		return ret;
1125 
1126 	for_each_node_with_cpus(nid) {
1127 		cpu = cpumask_first(cpumask_of_node(nid));
1128 		c = &cpu_data(cpu);
1129 
1130 		p = find_patch(cpu);
1131 		if (!p)
1132 			continue;
1133 
1134 		if (c->microcode >= p->patch_id)
1135 			continue;
1136 
1137 		ret = UCODE_NEW;
1138 	}
1139 
1140 	return ret;
1141 }
1142 
save_microcode_in_initrd(void)1143 static int __init save_microcode_in_initrd(void)
1144 {
1145 	struct cpuinfo_x86 *c = &boot_cpu_data;
1146 	struct cont_desc desc = { 0 };
1147 	unsigned int cpuid_1_eax;
1148 	enum ucode_state ret;
1149 	struct cpio_data cp;
1150 
1151 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1152 		return 0;
1153 
1154 	cpuid_1_eax = native_cpuid_eax(1);
1155 
1156 	if (!find_blobs_in_containers(&cp))
1157 		return -EINVAL;
1158 
1159 	scan_containers(cp.data, cp.size, &desc);
1160 	if (!desc.mc)
1161 		return -EINVAL;
1162 
1163 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1164 	if (ret > UCODE_UPDATED)
1165 		return -EINVAL;
1166 
1167 	return 0;
1168 }
1169 early_initcall(save_microcode_in_initrd);
1170 
1171 /*
1172  * AMD microcode firmware naming convention, up to family 15h they are in
1173  * the legacy file:
1174  *
1175  *    amd-ucode/microcode_amd.bin
1176  *
1177  * This legacy file is always smaller than 2K in size.
1178  *
1179  * Beginning with family 15h, they are in family-specific firmware files:
1180  *
1181  *    amd-ucode/microcode_amd_fam15h.bin
1182  *    amd-ucode/microcode_amd_fam16h.bin
1183  *    ...
1184  *
1185  * These might be larger than 2K.
1186  */
request_microcode_amd(int cpu,struct device * device)1187 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1188 {
1189 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1190 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1191 	enum ucode_state ret = UCODE_NFOUND;
1192 	const struct firmware *fw;
1193 
1194 	if (force_minrev)
1195 		return UCODE_NFOUND;
1196 
1197 	if (c->x86 >= 0x15)
1198 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1199 
1200 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1201 		ucode_dbg("failed to load file %s\n", fw_name);
1202 		goto out;
1203 	}
1204 
1205 	ret = UCODE_ERROR;
1206 	if (!verify_container(fw->data, fw->size))
1207 		goto fw_release;
1208 
1209 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1210 
1211  fw_release:
1212 	release_firmware(fw);
1213 
1214  out:
1215 	return ret;
1216 }
1217 
microcode_fini_cpu_amd(int cpu)1218 static void microcode_fini_cpu_amd(int cpu)
1219 {
1220 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1221 
1222 	uci->mc = NULL;
1223 }
1224 
finalize_late_load_amd(int result)1225 static void finalize_late_load_amd(int result)
1226 {
1227 	if (result)
1228 		cleanup();
1229 }
1230 
1231 static struct microcode_ops microcode_amd_ops = {
1232 	.request_microcode_fw	= request_microcode_amd,
1233 	.collect_cpu_info	= collect_cpu_info_amd,
1234 	.apply_microcode	= apply_microcode_amd,
1235 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1236 	.finalize_late_load	= finalize_late_load_amd,
1237 	.nmi_safe		= true,
1238 };
1239 
init_amd_microcode(void)1240 struct microcode_ops * __init init_amd_microcode(void)
1241 {
1242 	struct cpuinfo_x86 *c = &boot_cpu_data;
1243 
1244 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1245 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1246 		return NULL;
1247 	}
1248 	return &microcode_amd_ops;
1249 }
1250 
exit_amd_microcode(void)1251 void __exit exit_amd_microcode(void)
1252 {
1253 	cleanup();
1254 }
1255